PR c/15498
[official-gcc/alias-decl.git] / gcc / regclass.c
bloba73d8865bac3ba11f0f435918de97c7392513d3c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "timevar.h"
49 static void init_reg_sets_1 (void);
50 static void init_reg_autoinc (void);
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105 #endif
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
112 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
114 /* The same info as a HARD_REG_SET. */
116 HARD_REG_SET call_fixed_reg_set;
118 /* Number of non-fixed registers. */
120 int n_non_fixed_regs;
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
127 char global_regs[FIRST_PSEUDO_REGISTER];
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
136 HARD_REG_SET regs_invalidated_by_call;
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
144 #endif
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
148 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
155 #define N_REG_INTS \
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
158 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159 = REG_CLASS_CONTENTS;
161 /* For each reg class, number of regs it contains. */
163 unsigned int reg_class_size[N_REG_CLASSES];
165 /* For each reg class, table listing all the containing classes. */
167 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
169 /* For each reg class, table listing all the classes contained in it. */
171 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
176 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
181 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
183 /* Array containing all of the register names. */
185 const char * reg_names[] = REGISTER_NAMES;
187 /* For each hard register, the widest mode object that it can contain.
188 This will be a MODE_INT mode if the register can hold integers. Otherwise
189 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
190 register. */
192 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
194 /* 1 if there is a register of given mode. */
196 bool have_regs_of_mode [MAX_MACHINE_MODE];
198 /* 1 if class does contain register of given mode. */
200 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
202 /* Maximum cost of moving from a register in one class to a register in
203 another class. Based on REGISTER_MOVE_COST. */
205 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
207 /* Similar, but here we don't have to move if the first index is a subset
208 of the second so in that case the cost is zero. */
210 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
212 /* Similar, but here we don't have to move if the first index is a superset
213 of the second so in that case the cost is zero. */
215 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
217 #ifdef FORBIDDEN_INC_DEC_CLASSES
219 /* These are the classes that regs which are auto-incremented or decremented
220 cannot be put in. */
222 static int forbidden_inc_dec_class[N_REG_CLASSES];
224 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
225 context. */
227 static char *in_inc_dec;
229 #endif /* FORBIDDEN_INC_DEC_CLASSES */
231 #ifdef CANNOT_CHANGE_MODE_CLASS
232 /* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
233 + mode. */
234 bitmap_head subregs_of_mode;
235 #endif
237 /* Sample MEM values for use by memory_move_secondary_cost. */
239 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
241 /* Linked list of reg_info structures allocated for reg_n_info array.
242 Grouping all of the allocated structures together in one lump
243 means only one call to bzero to clear them, rather than n smaller
244 calls. */
245 struct reg_info_data {
246 struct reg_info_data *next; /* next set of reg_info structures */
247 size_t min_index; /* minimum index # */
248 size_t max_index; /* maximum index # */
249 char used_p; /* nonzero if this has been used previously */
250 reg_info data[1]; /* beginning of the reg_info data */
253 static struct reg_info_data *reg_info_head;
255 /* No more global register variables may be declared; true once
256 regclass has been initialized. */
258 static int no_global_reg_vars = 0;
260 /* Specify number of hard registers given machine mode occupy. */
261 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
263 /* Function called only once to initialize the above data on reg usage.
264 Once this is done, various switches may override. */
266 void
267 init_reg_sets (void)
269 int i, j;
271 /* First copy the register information from the initial int form into
272 the regsets. */
274 for (i = 0; i < N_REG_CLASSES; i++)
276 CLEAR_HARD_REG_SET (reg_class_contents[i]);
278 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
279 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
280 if (int_reg_class_contents[i][j / 32]
281 & ((unsigned) 1 << (j % 32)))
282 SET_HARD_REG_BIT (reg_class_contents[i], j);
285 /* Sanity check: make sure the target macros FIXED_REGISTERS and
286 CALL_USED_REGISTERS had the right number of initializers. */
287 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
288 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
290 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
291 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
292 memset (global_regs, 0, sizeof global_regs);
294 /* Do any additional initialization regsets may need. */
295 INIT_ONCE_REG_SET ();
297 #ifdef REG_ALLOC_ORDER
298 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
299 inv_reg_alloc_order[reg_alloc_order[i]] = i;
300 #endif
303 /* After switches have been processed, which perhaps alter
304 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
306 static void
307 init_reg_sets_1 (void)
309 unsigned int i, j;
310 unsigned int /* enum machine_mode */ m;
312 /* This macro allows the fixed or call-used registers
313 and the register classes to depend on target flags. */
315 #ifdef CONDITIONAL_REGISTER_USAGE
316 CONDITIONAL_REGISTER_USAGE;
317 #endif
319 /* Compute number of hard regs in each class. */
321 memset (reg_class_size, 0, sizeof reg_class_size);
322 for (i = 0; i < N_REG_CLASSES; i++)
323 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
324 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
325 reg_class_size[i]++;
327 /* Initialize the table of subunions.
328 reg_class_subunion[I][J] gets the largest-numbered reg-class
329 that is contained in the union of classes I and J. */
331 for (i = 0; i < N_REG_CLASSES; i++)
333 for (j = 0; j < N_REG_CLASSES; j++)
335 HARD_REG_SET c;
336 int k;
338 COPY_HARD_REG_SET (c, reg_class_contents[i]);
339 IOR_HARD_REG_SET (c, reg_class_contents[j]);
340 for (k = 0; k < N_REG_CLASSES; k++)
342 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
343 subclass1);
344 continue;
346 subclass1:
347 /* Keep the largest subclass. */ /* SPEE 900308 */
348 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
349 reg_class_contents[(int) reg_class_subunion[i][j]],
350 subclass2);
351 reg_class_subunion[i][j] = (enum reg_class) k;
352 subclass2:
358 /* Initialize the table of superunions.
359 reg_class_superunion[I][J] gets the smallest-numbered reg-class
360 containing the union of classes I and J. */
362 for (i = 0; i < N_REG_CLASSES; i++)
364 for (j = 0; j < N_REG_CLASSES; j++)
366 HARD_REG_SET c;
367 int k;
369 COPY_HARD_REG_SET (c, reg_class_contents[i]);
370 IOR_HARD_REG_SET (c, reg_class_contents[j]);
371 for (k = 0; k < N_REG_CLASSES; k++)
372 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
374 superclass:
375 reg_class_superunion[i][j] = (enum reg_class) k;
379 /* Initialize the tables of subclasses and superclasses of each reg class.
380 First clear the whole table, then add the elements as they are found. */
382 for (i = 0; i < N_REG_CLASSES; i++)
384 for (j = 0; j < N_REG_CLASSES; j++)
386 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
387 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
391 for (i = 0; i < N_REG_CLASSES; i++)
393 if (i == (int) NO_REGS)
394 continue;
396 for (j = i + 1; j < N_REG_CLASSES; j++)
398 enum reg_class *p;
400 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
401 subclass);
402 continue;
403 subclass:
404 /* Reg class I is a subclass of J.
405 Add J to the table of superclasses of I. */
406 p = &reg_class_superclasses[i][0];
407 while (*p != LIM_REG_CLASSES) p++;
408 *p = (enum reg_class) j;
409 /* Add I to the table of superclasses of J. */
410 p = &reg_class_subclasses[j][0];
411 while (*p != LIM_REG_CLASSES) p++;
412 *p = (enum reg_class) i;
416 /* Initialize "constant" tables. */
418 CLEAR_HARD_REG_SET (fixed_reg_set);
419 CLEAR_HARD_REG_SET (call_used_reg_set);
420 CLEAR_HARD_REG_SET (call_fixed_reg_set);
421 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
423 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
425 n_non_fixed_regs = 0;
427 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
429 /* call_used_regs must include fixed_regs. */
430 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
431 #ifdef CALL_REALLY_USED_REGISTERS
432 /* call_used_regs must include call_really_used_regs. */
433 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
434 #endif
436 if (fixed_regs[i])
437 SET_HARD_REG_BIT (fixed_reg_set, i);
438 else
439 n_non_fixed_regs++;
441 if (call_used_regs[i])
442 SET_HARD_REG_BIT (call_used_reg_set, i);
443 if (call_fixed_regs[i])
444 SET_HARD_REG_BIT (call_fixed_reg_set, i);
445 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
446 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
448 /* There are a couple of fixed registers that we know are safe to
449 exclude from being clobbered by calls:
451 The frame pointer is always preserved across calls. The arg pointer
452 is if it is fixed. The stack pointer usually is, unless
453 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
454 If we are generating PIC code, the PIC offset table register is
455 preserved across calls, though the target can override that. */
457 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
459 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
460 else if (i == HARD_FRAME_POINTER_REGNUM)
462 #endif
463 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
464 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
466 #endif
467 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
468 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
470 #endif
471 else if (0
472 #ifdef CALL_REALLY_USED_REGISTERS
473 || call_really_used_regs[i]
474 #else
475 || call_used_regs[i]
476 #endif
477 || global_regs[i])
478 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
481 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
482 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
483 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
484 for (i = 0; i < N_REG_CLASSES; i++)
485 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
486 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
487 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
488 && HARD_REGNO_MODE_OK (j, m))
490 contains_reg_of_mode [i][m] = 1;
491 have_regs_of_mode [m] = 1;
492 break;
495 /* Initialize the move cost table. Find every subset of each class
496 and take the maximum cost of moving any subset to any other. */
498 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
499 if (have_regs_of_mode [m])
501 for (i = 0; i < N_REG_CLASSES; i++)
502 if (contains_reg_of_mode [i][m])
503 for (j = 0; j < N_REG_CLASSES; j++)
505 int cost;
506 enum reg_class *p1, *p2;
508 if (!contains_reg_of_mode [j][m])
510 move_cost[m][i][j] = 65536;
511 may_move_in_cost[m][i][j] = 65536;
512 may_move_out_cost[m][i][j] = 65536;
514 else
516 cost = REGISTER_MOVE_COST (m, i, j);
518 for (p2 = &reg_class_subclasses[j][0];
519 *p2 != LIM_REG_CLASSES;
520 p2++)
521 if (*p2 != i && contains_reg_of_mode [*p2][m])
522 cost = MAX (cost, move_cost [m][i][*p2]);
524 for (p1 = &reg_class_subclasses[i][0];
525 *p1 != LIM_REG_CLASSES;
526 p1++)
527 if (*p1 != j && contains_reg_of_mode [*p1][m])
528 cost = MAX (cost, move_cost [m][*p1][j]);
530 move_cost[m][i][j] = cost;
532 if (reg_class_subset_p (i, j))
533 may_move_in_cost[m][i][j] = 0;
534 else
535 may_move_in_cost[m][i][j] = cost;
537 if (reg_class_subset_p (j, i))
538 may_move_out_cost[m][i][j] = 0;
539 else
540 may_move_out_cost[m][i][j] = cost;
543 else
544 for (j = 0; j < N_REG_CLASSES; j++)
546 move_cost[m][i][j] = 65536;
547 may_move_in_cost[m][i][j] = 65536;
548 may_move_out_cost[m][i][j] = 65536;
553 /* Compute the table of register modes.
554 These values are used to record death information for individual registers
555 (as opposed to a multi-register mode). */
557 void
558 init_reg_modes_once (void)
560 int i, j;
562 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
563 for (j = 0; j < MAX_MACHINE_MODE; j++)
564 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
566 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
568 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
570 /* If we couldn't find a valid mode, just use the previous mode.
571 ??? One situation in which we need to do this is on the mips where
572 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
573 to use DF mode for the even registers and VOIDmode for the odd
574 (for the cpu models where the odd ones are inaccessible). */
575 if (reg_raw_mode[i] == VOIDmode)
576 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
580 /* Finish initializing the register sets and
581 initialize the register modes. */
583 void
584 init_regs (void)
586 /* This finishes what was started by init_reg_sets, but couldn't be done
587 until after register usage was specified. */
588 init_reg_sets_1 ();
590 init_reg_autoinc ();
593 /* Initialize some fake stack-frame MEM references for use in
594 memory_move_secondary_cost. */
596 void
597 init_fake_stack_mems (void)
599 #ifdef HAVE_SECONDARY_RELOADS
601 int i;
603 for (i = 0; i < MAX_MACHINE_MODE; i++)
604 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
606 #endif
609 #ifdef HAVE_SECONDARY_RELOADS
611 /* Compute extra cost of moving registers to/from memory due to reloads.
612 Only needed if secondary reloads are required for memory moves. */
615 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
617 enum reg_class altclass;
618 int partial_cost = 0;
619 /* We need a memory reference to feed to SECONDARY... macros. */
620 /* mem may be unused even if the SECONDARY_ macros are defined. */
621 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
624 if (in)
626 #ifdef SECONDARY_INPUT_RELOAD_CLASS
627 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
628 #else
629 altclass = NO_REGS;
630 #endif
632 else
634 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
635 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
636 #else
637 altclass = NO_REGS;
638 #endif
641 if (altclass == NO_REGS)
642 return 0;
644 if (in)
645 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
646 else
647 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
649 if (class == altclass)
650 /* This isn't simply a copy-to-temporary situation. Can't guess
651 what it is, so MEMORY_MOVE_COST really ought not to be calling
652 here in that case.
654 I'm tempted to put in an assert here, but returning this will
655 probably only give poor estimates, which is what we would've
656 had before this code anyways. */
657 return partial_cost;
659 /* Check if the secondary reload register will also need a
660 secondary reload. */
661 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
663 #endif
665 /* Return a machine mode that is legitimate for hard reg REGNO and large
666 enough to save nregs. If we can't find one, return VOIDmode.
667 If CALL_SAVED is true, only consider modes that are call saved. */
669 enum machine_mode
670 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
671 unsigned int nregs, bool call_saved)
673 unsigned int /* enum machine_mode */ m;
674 enum machine_mode found_mode = VOIDmode, mode;
676 /* We first look for the largest integer mode that can be validly
677 held in REGNO. If none, we look for the largest floating-point mode.
678 If we still didn't find a valid mode, try CCmode. */
680 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
681 mode != VOIDmode;
682 mode = GET_MODE_WIDER_MODE (mode))
683 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
684 && HARD_REGNO_MODE_OK (regno, mode)
685 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
686 found_mode = mode;
688 if (found_mode != VOIDmode)
689 return found_mode;
691 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
692 mode != VOIDmode;
693 mode = GET_MODE_WIDER_MODE (mode))
694 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
695 && HARD_REGNO_MODE_OK (regno, mode)
696 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
697 found_mode = mode;
699 if (found_mode != VOIDmode)
700 return found_mode;
702 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
703 mode != VOIDmode;
704 mode = GET_MODE_WIDER_MODE (mode))
705 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
706 && HARD_REGNO_MODE_OK (regno, mode)
707 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
708 found_mode = mode;
710 if (found_mode != VOIDmode)
711 return found_mode;
713 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
714 mode != VOIDmode;
715 mode = GET_MODE_WIDER_MODE (mode))
716 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
717 && HARD_REGNO_MODE_OK (regno, mode)
718 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
719 found_mode = mode;
721 if (found_mode != VOIDmode)
722 return found_mode;
724 /* Iterate over all of the CCmodes. */
725 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
727 mode = (enum machine_mode) m;
728 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
729 && HARD_REGNO_MODE_OK (regno, mode)
730 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
731 return mode;
734 /* We can't find a mode valid for this register. */
735 return VOIDmode;
738 /* Specify the usage characteristics of the register named NAME.
739 It should be a fixed register if FIXED and a
740 call-used register if CALL_USED. */
742 void
743 fix_register (const char *name, int fixed, int call_used)
745 int i;
747 /* Decode the name and update the primary form of
748 the register info. */
750 if ((i = decode_reg_name (name)) >= 0)
752 if ((i == STACK_POINTER_REGNUM
753 #ifdef HARD_FRAME_POINTER_REGNUM
754 || i == HARD_FRAME_POINTER_REGNUM
755 #else
756 || i == FRAME_POINTER_REGNUM
757 #endif
759 && (fixed == 0 || call_used == 0))
761 static const char * const what_option[2][2] = {
762 { "call-saved", "call-used" },
763 { "no-such-option", "fixed" }};
765 error ("can't use '%s' as a %s register", name,
766 what_option[fixed][call_used]);
768 else
770 fixed_regs[i] = fixed;
771 call_used_regs[i] = call_used;
772 #ifdef CALL_REALLY_USED_REGISTERS
773 if (fixed == 0)
774 call_really_used_regs[i] = call_used;
775 #endif
778 else
780 warning ("unknown register name: %s", name);
784 /* Mark register number I as global. */
786 void
787 globalize_reg (int i)
789 if (fixed_regs[i] == 0 && no_global_reg_vars)
790 error ("global register variable follows a function definition");
792 if (global_regs[i])
794 warning ("register used for two global register variables");
795 return;
798 if (call_used_regs[i] && ! fixed_regs[i])
799 warning ("call-clobbered register used for global register variable");
801 global_regs[i] = 1;
803 /* If already fixed, nothing else to do. */
804 if (fixed_regs[i])
805 return;
807 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
808 #ifdef CALL_REALLY_USED_REGISTERS
809 call_really_used_regs[i] = 1;
810 #endif
811 n_non_fixed_regs--;
813 SET_HARD_REG_BIT (fixed_reg_set, i);
814 SET_HARD_REG_BIT (call_used_reg_set, i);
815 SET_HARD_REG_BIT (call_fixed_reg_set, i);
816 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
819 /* Now the data and code for the `regclass' pass, which happens
820 just before local-alloc. */
822 /* The `costs' struct records the cost of using a hard register of each class
823 and of using memory for each pseudo. We use this data to set up
824 register class preferences. */
826 struct costs
828 int cost[N_REG_CLASSES];
829 int mem_cost;
832 /* Structure used to record preferences of given pseudo. */
833 struct reg_pref
835 /* (enum reg_class) prefclass is the preferred class. */
836 char prefclass;
838 /* altclass is a register class that we should use for allocating
839 pseudo if no register in the preferred class is available.
840 If no register in this class is available, memory is preferred.
842 It might appear to be more general to have a bitmask of classes here,
843 but since it is recommended that there be a class corresponding to the
844 union of most major pair of classes, that generality is not required. */
845 char altclass;
848 /* Record the cost of each class for each pseudo. */
850 static struct costs *costs;
852 /* Initialized once, and used to initialize cost values for each insn. */
854 static struct costs init_cost;
856 /* Record preferences of each pseudo.
857 This is available after `regclass' is run. */
859 static struct reg_pref *reg_pref;
861 /* Allocated buffers for reg_pref. */
863 static struct reg_pref *reg_pref_buffer;
865 /* Frequency of executions of current insn. */
867 static int frequency;
869 static rtx scan_one_insn (rtx, int);
870 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
871 static void dump_regclass (FILE *);
872 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
873 const char **, rtx, struct costs *,
874 struct reg_pref *);
875 static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
876 static void record_address_regs (rtx, enum reg_class, int);
877 #ifdef FORBIDDEN_INC_DEC_CLASSES
878 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
879 #endif
880 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
882 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
883 This function is sometimes called before the info has been computed.
884 When that happens, just return GENERAL_REGS, which is innocuous. */
886 enum reg_class
887 reg_preferred_class (int regno)
889 if (reg_pref == 0)
890 return GENERAL_REGS;
891 return (enum reg_class) reg_pref[regno].prefclass;
894 enum reg_class
895 reg_alternate_class (int regno)
897 if (reg_pref == 0)
898 return ALL_REGS;
900 return (enum reg_class) reg_pref[regno].altclass;
903 /* Initialize some global data for this pass. */
905 void
906 regclass_init (void)
908 int i;
910 init_cost.mem_cost = 10000;
911 for (i = 0; i < N_REG_CLASSES; i++)
912 init_cost.cost[i] = 10000;
914 /* This prevents dump_flow_info from losing if called
915 before regclass is run. */
916 reg_pref = NULL;
918 /* No more global register variables may be declared. */
919 no_global_reg_vars = 1;
922 /* Dump register costs. */
923 static void
924 dump_regclass (FILE *dump)
926 static const char *const reg_class_names[] = REG_CLASS_NAMES;
927 int i;
928 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
930 int /* enum reg_class */ class;
931 if (REG_N_REFS (i))
933 fprintf (dump, " Register %i costs:", i);
934 for (class = 0; class < (int) N_REG_CLASSES; class++)
935 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
936 #ifdef FORBIDDEN_INC_DEC_CLASSES
937 && (!in_inc_dec[i]
938 || !forbidden_inc_dec_class[(enum reg_class) class])
939 #endif
940 #ifdef CANNOT_CHANGE_MODE_CLASS
941 && ! invalid_mode_change_p (i, (enum reg_class) class,
942 PSEUDO_REGNO_MODE (i))
943 #endif
945 fprintf (dump, " %s:%i", reg_class_names[class],
946 costs[i].cost[(enum reg_class) class]);
947 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
953 /* Calculate the costs of insn operands. */
955 static void
956 record_operand_costs (rtx insn, struct costs *op_costs,
957 struct reg_pref *reg_pref)
959 const char *constraints[MAX_RECOG_OPERANDS];
960 enum machine_mode modes[MAX_RECOG_OPERANDS];
961 int i;
963 for (i = 0; i < recog_data.n_operands; i++)
965 constraints[i] = recog_data.constraints[i];
966 modes[i] = recog_data.operand_mode[i];
969 /* If we get here, we are set up to record the costs of all the
970 operands for this insn. Start by initializing the costs.
971 Then handle any address registers. Finally record the desired
972 classes for any pseudos, doing it twice if some pair of
973 operands are commutative. */
975 for (i = 0; i < recog_data.n_operands; i++)
977 op_costs[i] = init_cost;
979 if (GET_CODE (recog_data.operand[i]) == SUBREG)
980 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
982 if (MEM_P (recog_data.operand[i]))
983 record_address_regs (XEXP (recog_data.operand[i], 0),
984 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
985 else if (constraints[i][0] == 'p'
986 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
987 record_address_regs (recog_data.operand[i],
988 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
991 /* Check for commutative in a separate loop so everything will
992 have been initialized. We must do this even if one operand
993 is a constant--see addsi3 in m68k.md. */
995 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
996 if (constraints[i][0] == '%')
998 const char *xconstraints[MAX_RECOG_OPERANDS];
999 int j;
1001 /* Handle commutative operands by swapping the constraints.
1002 We assume the modes are the same. */
1004 for (j = 0; j < recog_data.n_operands; j++)
1005 xconstraints[j] = constraints[j];
1007 xconstraints[i] = constraints[i+1];
1008 xconstraints[i+1] = constraints[i];
1009 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1010 recog_data.operand, modes,
1011 xconstraints, insn, op_costs, reg_pref);
1014 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1015 recog_data.operand, modes,
1016 constraints, insn, op_costs, reg_pref);
1019 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1020 time it would save code to put a certain register in a certain class.
1021 PASS, when nonzero, inhibits some optimizations which need only be done
1022 once.
1023 Return the last insn processed, so that the scan can be continued from
1024 there. */
1026 static rtx
1027 scan_one_insn (rtx insn, int pass)
1029 enum rtx_code pat_code;
1030 rtx set, note;
1031 int i, j;
1032 struct costs op_costs[MAX_RECOG_OPERANDS];
1034 if (!INSN_P (insn))
1035 return insn;
1037 pat_code = GET_CODE (PATTERN (insn));
1038 if (pat_code == USE
1039 || pat_code == CLOBBER
1040 || pat_code == ASM_INPUT
1041 || pat_code == ADDR_VEC
1042 || pat_code == ADDR_DIFF_VEC)
1043 return insn;
1045 set = single_set (insn);
1046 extract_insn (insn);
1048 /* If this insn loads a parameter from its stack slot, then
1049 it represents a savings, rather than a cost, if the
1050 parameter is stored in memory. Record this fact. */
1052 if (set != 0 && REG_P (SET_DEST (set))
1053 && MEM_P (SET_SRC (set))
1054 && (note = find_reg_note (insn, REG_EQUIV,
1055 NULL_RTX)) != 0
1056 && MEM_P (XEXP (note, 0)))
1058 costs[REGNO (SET_DEST (set))].mem_cost
1059 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1060 GENERAL_REGS, 1)
1061 * frequency);
1062 record_address_regs (XEXP (SET_SRC (set), 0),
1063 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1064 return insn;
1067 /* Improve handling of two-address insns such as
1068 (set X (ashift CONST Y)) where CONST must be made to
1069 match X. Change it into two insns: (set X CONST)
1070 (set X (ashift X Y)). If we left this for reloading, it
1071 would probably get three insns because X and Y might go
1072 in the same place. This prevents X and Y from receiving
1073 the same hard reg.
1075 We can only do this if the modes of operands 0 and 1
1076 (which might not be the same) are tieable and we only need
1077 do this during our first pass. */
1079 if (pass == 0 && optimize
1080 && recog_data.n_operands >= 3
1081 && recog_data.constraints[1][0] == '0'
1082 && recog_data.constraints[1][1] == 0
1083 && CONSTANT_P (recog_data.operand[1])
1084 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1085 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1086 && REG_P (recog_data.operand[0])
1087 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1088 recog_data.operand_mode[1]))
1090 rtx previnsn = prev_real_insn (insn);
1091 rtx dest
1092 = gen_lowpart (recog_data.operand_mode[1],
1093 recog_data.operand[0]);
1094 rtx newinsn
1095 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1097 /* If this insn was the start of a basic block,
1098 include the new insn in that block.
1099 We need not check for code_label here;
1100 while a basic block can start with a code_label,
1101 INSN could not be at the beginning of that block. */
1102 if (previnsn == 0 || JUMP_P (previnsn))
1104 basic_block b;
1105 FOR_EACH_BB (b)
1106 if (insn == BB_HEAD (b))
1107 BB_HEAD (b) = newinsn;
1110 /* This makes one more setting of new insns's dest. */
1111 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1112 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1113 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1115 *recog_data.operand_loc[1] = recog_data.operand[0];
1116 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1117 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1118 for (i = recog_data.n_dups - 1; i >= 0; i--)
1119 if (recog_data.dup_num[i] == 1)
1121 *recog_data.dup_loc[i] = recog_data.operand[0];
1122 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1123 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1126 return PREV_INSN (newinsn);
1129 record_operand_costs (insn, op_costs, reg_pref);
1131 /* Now add the cost for each operand to the total costs for
1132 its register. */
1134 for (i = 0; i < recog_data.n_operands; i++)
1135 if (REG_P (recog_data.operand[i])
1136 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1138 int regno = REGNO (recog_data.operand[i]);
1139 struct costs *p = &costs[regno], *q = &op_costs[i];
1141 p->mem_cost += q->mem_cost * frequency;
1142 for (j = 0; j < N_REG_CLASSES; j++)
1143 p->cost[j] += q->cost[j] * frequency;
1146 return insn;
1149 /* Initialize information about which register classes can be used for
1150 pseudos that are auto-incremented or auto-decremented. */
1152 static void
1153 init_reg_autoinc (void)
1155 #ifdef FORBIDDEN_INC_DEC_CLASSES
1156 int i;
1158 for (i = 0; i < N_REG_CLASSES; i++)
1160 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1161 enum machine_mode m;
1162 int j;
1164 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1165 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1167 REGNO (r) = j;
1169 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1170 m = (enum machine_mode) ((int) m + 1))
1171 if (HARD_REGNO_MODE_OK (j, m))
1173 PUT_MODE (r, m);
1175 /* If a register is not directly suitable for an
1176 auto-increment or decrement addressing mode and
1177 requires secondary reloads, disallow its class from
1178 being used in such addresses. */
1180 if ((0
1181 #ifdef SECONDARY_RELOAD_CLASS
1182 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1183 != NO_REGS)
1184 #else
1185 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1186 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1187 != NO_REGS)
1188 #endif
1189 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1190 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1191 != NO_REGS)
1192 #endif
1193 #endif
1195 && ! auto_inc_dec_reg_p (r, m))
1196 forbidden_inc_dec_class[i] = 1;
1200 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1203 /* This is a pass of the compiler that scans all instructions
1204 and calculates the preferred class for each pseudo-register.
1205 This information can be accessed later by calling `reg_preferred_class'.
1206 This pass comes just before local register allocation. */
1208 void
1209 regclass (rtx f, int nregs, FILE *dump)
1211 rtx insn;
1212 int i;
1213 int pass;
1215 init_recog ();
1217 costs = xmalloc (nregs * sizeof (struct costs));
1219 #ifdef FORBIDDEN_INC_DEC_CLASSES
1221 in_inc_dec = xmalloc (nregs);
1223 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1225 /* Normally we scan the insns once and determine the best class to use for
1226 each register. However, if -fexpensive_optimizations are on, we do so
1227 twice, the second time using the tentative best classes to guide the
1228 selection. */
1230 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1232 basic_block bb;
1234 if (dump)
1235 fprintf (dump, "\n\nPass %i\n\n",pass);
1236 /* Zero out our accumulation of the cost of each class for each reg. */
1238 memset (costs, 0, nregs * sizeof (struct costs));
1240 #ifdef FORBIDDEN_INC_DEC_CLASSES
1241 memset (in_inc_dec, 0, nregs);
1242 #endif
1244 /* Scan the instructions and record each time it would
1245 save code to put a certain register in a certain class. */
1247 if (!optimize)
1249 frequency = REG_FREQ_MAX;
1250 for (insn = f; insn; insn = NEXT_INSN (insn))
1251 insn = scan_one_insn (insn, pass);
1253 else
1254 FOR_EACH_BB (bb)
1256 /* Show that an insn inside a loop is likely to be executed three
1257 times more than insns outside a loop. This is much more
1258 aggressive than the assumptions made elsewhere and is being
1259 tried as an experiment. */
1260 frequency = REG_FREQ_FROM_BB (bb);
1261 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1263 insn = scan_one_insn (insn, pass);
1264 if (insn == BB_END (bb))
1265 break;
1269 /* Now for each register look at how desirable each class is
1270 and find which class is preferred. Store that in
1271 `prefclass'. Record in `altclass' the largest register
1272 class any of whose registers is better than memory. */
1274 if (pass == 0)
1275 reg_pref = reg_pref_buffer;
1277 if (dump)
1279 dump_regclass (dump);
1280 fprintf (dump,"\n");
1282 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1284 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1285 enum reg_class best = ALL_REGS, alt = NO_REGS;
1286 /* This is an enum reg_class, but we call it an int
1287 to save lots of casts. */
1288 int class;
1289 struct costs *p = &costs[i];
1291 /* In non-optimizing compilation REG_N_REFS is not initialized
1292 yet. */
1293 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1294 continue;
1296 for (class = (int) ALL_REGS - 1; class > 0; class--)
1298 /* Ignore classes that are too small for this operand or
1299 invalid for an operand that was auto-incremented. */
1300 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1301 #ifdef FORBIDDEN_INC_DEC_CLASSES
1302 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1303 #endif
1304 #ifdef CANNOT_CHANGE_MODE_CLASS
1305 || invalid_mode_change_p (i, (enum reg_class) class,
1306 PSEUDO_REGNO_MODE (i))
1307 #endif
1310 else if (p->cost[class] < best_cost)
1312 best_cost = p->cost[class];
1313 best = (enum reg_class) class;
1315 else if (p->cost[class] == best_cost)
1316 best = reg_class_subunion[(int) best][class];
1319 /* Record the alternate register class; i.e., a class for which
1320 every register in it is better than using memory. If adding a
1321 class would make a smaller class (i.e., no union of just those
1322 classes exists), skip that class. The major unions of classes
1323 should be provided as a register class. Don't do this if we
1324 will be doing it again later. */
1326 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1327 for (class = 0; class < N_REG_CLASSES; class++)
1328 if (p->cost[class] < p->mem_cost
1329 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1330 > reg_class_size[(int) alt])
1331 #ifdef FORBIDDEN_INC_DEC_CLASSES
1332 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1333 #endif
1334 #ifdef CANNOT_CHANGE_MODE_CLASS
1335 && ! invalid_mode_change_p (i, (enum reg_class) class,
1336 PSEUDO_REGNO_MODE (i))
1337 #endif
1339 alt = reg_class_subunion[(int) alt][class];
1341 /* If we don't add any classes, nothing to try. */
1342 if (alt == best)
1343 alt = NO_REGS;
1345 if (dump
1346 && (reg_pref[i].prefclass != (int) best
1347 || reg_pref[i].altclass != (int) alt))
1349 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1350 fprintf (dump, " Register %i", i);
1351 if (alt == ALL_REGS || best == ALL_REGS)
1352 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1353 else if (alt == NO_REGS)
1354 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1355 else
1356 fprintf (dump, " pref %s, else %s\n",
1357 reg_class_names[(int) best],
1358 reg_class_names[(int) alt]);
1361 /* We cast to (int) because (char) hits bugs in some compilers. */
1362 reg_pref[i].prefclass = (int) best;
1363 reg_pref[i].altclass = (int) alt;
1367 #ifdef FORBIDDEN_INC_DEC_CLASSES
1368 free (in_inc_dec);
1369 #endif
1370 free (costs);
1373 /* Record the cost of using memory or registers of various classes for
1374 the operands in INSN.
1376 N_ALTS is the number of alternatives.
1378 N_OPS is the number of operands.
1380 OPS is an array of the operands.
1382 MODES are the modes of the operands, in case any are VOIDmode.
1384 CONSTRAINTS are the constraints to use for the operands. This array
1385 is modified by this procedure.
1387 This procedure works alternative by alternative. For each alternative
1388 we assume that we will be able to allocate all pseudos to their ideal
1389 register class and calculate the cost of using that alternative. Then
1390 we compute for each operand that is a pseudo-register, the cost of
1391 having the pseudo allocated to each register class and using it in that
1392 alternative. To this cost is added the cost of the alternative.
1394 The cost of each class for this insn is its lowest cost among all the
1395 alternatives. */
1397 static void
1398 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1399 enum machine_mode *modes, const char **constraints,
1400 rtx insn, struct costs *op_costs,
1401 struct reg_pref *reg_pref)
1403 int alt;
1404 int i, j;
1405 rtx set;
1407 /* Process each alternative, each time minimizing an operand's cost with
1408 the cost for each operand in that alternative. */
1410 for (alt = 0; alt < n_alts; alt++)
1412 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1413 int alt_fail = 0;
1414 int alt_cost = 0;
1415 enum reg_class classes[MAX_RECOG_OPERANDS];
1416 int allows_mem[MAX_RECOG_OPERANDS];
1417 int class;
1419 for (i = 0; i < n_ops; i++)
1421 const char *p = constraints[i];
1422 rtx op = ops[i];
1423 enum machine_mode mode = modes[i];
1424 int allows_addr = 0;
1425 int win = 0;
1426 unsigned char c;
1428 /* Initially show we know nothing about the register class. */
1429 classes[i] = NO_REGS;
1430 allows_mem[i] = 0;
1432 /* If this operand has no constraints at all, we can conclude
1433 nothing about it since anything is valid. */
1435 if (*p == 0)
1437 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1438 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1440 continue;
1443 /* If this alternative is only relevant when this operand
1444 matches a previous operand, we do different things depending
1445 on whether this operand is a pseudo-reg or not. We must process
1446 any modifiers for the operand before we can make this test. */
1448 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1449 p++;
1451 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1453 /* Copy class and whether memory is allowed from the matching
1454 alternative. Then perform any needed cost computations
1455 and/or adjustments. */
1456 j = p[0] - '0';
1457 classes[i] = classes[j];
1458 allows_mem[i] = allows_mem[j];
1460 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1462 /* If this matches the other operand, we have no added
1463 cost and we win. */
1464 if (rtx_equal_p (ops[j], op))
1465 win = 1;
1467 /* If we can put the other operand into a register, add to
1468 the cost of this alternative the cost to copy this
1469 operand to the register used for the other operand. */
1471 else if (classes[j] != NO_REGS)
1472 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1474 else if (!REG_P (ops[j])
1475 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1477 /* This op is a pseudo but the one it matches is not. */
1479 /* If we can't put the other operand into a register, this
1480 alternative can't be used. */
1482 if (classes[j] == NO_REGS)
1483 alt_fail = 1;
1485 /* Otherwise, add to the cost of this alternative the cost
1486 to copy the other operand to the register used for this
1487 operand. */
1489 else
1490 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1492 else
1494 /* The costs of this operand are not the same as the other
1495 operand since move costs are not symmetric. Moreover,
1496 if we cannot tie them, this alternative needs to do a
1497 copy, which is one instruction. */
1499 struct costs *pp = &this_op_costs[i];
1501 for (class = 0; class < N_REG_CLASSES; class++)
1502 pp->cost[class]
1503 = ((recog_data.operand_type[i] != OP_OUT
1504 ? may_move_in_cost[mode][class][(int) classes[i]]
1505 : 0)
1506 + (recog_data.operand_type[i] != OP_IN
1507 ? may_move_out_cost[mode][(int) classes[i]][class]
1508 : 0));
1510 /* If the alternative actually allows memory, make things
1511 a bit cheaper since we won't need an extra insn to
1512 load it. */
1514 pp->mem_cost
1515 = ((recog_data.operand_type[i] != OP_IN
1516 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1517 : 0)
1518 + (recog_data.operand_type[i] != OP_OUT
1519 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1520 : 0) - allows_mem[i]);
1522 /* If we have assigned a class to this register in our
1523 first pass, add a cost to this alternative corresponding
1524 to what we would add if this register were not in the
1525 appropriate class. */
1527 if (reg_pref)
1528 alt_cost
1529 += (may_move_in_cost[mode]
1530 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1531 [(int) classes[i]]);
1533 if (REGNO (ops[i]) != REGNO (ops[j])
1534 && ! find_reg_note (insn, REG_DEAD, op))
1535 alt_cost += 2;
1537 /* This is in place of ordinary cost computation
1538 for this operand, so skip to the end of the
1539 alternative (should be just one character). */
1540 while (*p && *p++ != ',')
1543 constraints[i] = p;
1544 continue;
1548 /* Scan all the constraint letters. See if the operand matches
1549 any of the constraints. Collect the valid register classes
1550 and see if this operand accepts memory. */
1552 while ((c = *p))
1554 switch (c)
1556 case ',':
1557 break;
1558 case '*':
1559 /* Ignore the next letter for this pass. */
1560 c = *++p;
1561 break;
1563 case '?':
1564 alt_cost += 2;
1565 case '!': case '#': case '&':
1566 case '0': case '1': case '2': case '3': case '4':
1567 case '5': case '6': case '7': case '8': case '9':
1568 break;
1570 case 'p':
1571 allows_addr = 1;
1572 win = address_operand (op, GET_MODE (op));
1573 /* We know this operand is an address, so we want it to be
1574 allocated to a register that can be the base of an
1575 address, ie BASE_REG_CLASS. */
1576 classes[i]
1577 = reg_class_subunion[(int) classes[i]]
1578 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1579 break;
1581 case 'm': case 'o': case 'V':
1582 /* It doesn't seem worth distinguishing between offsettable
1583 and non-offsettable addresses here. */
1584 allows_mem[i] = 1;
1585 if (MEM_P (op))
1586 win = 1;
1587 break;
1589 case '<':
1590 if (MEM_P (op)
1591 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1592 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1593 win = 1;
1594 break;
1596 case '>':
1597 if (MEM_P (op)
1598 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1599 || GET_CODE (XEXP (op, 0)) == POST_INC))
1600 win = 1;
1601 break;
1603 case 'E':
1604 case 'F':
1605 if (GET_CODE (op) == CONST_DOUBLE
1606 || (GET_CODE (op) == CONST_VECTOR
1607 && (GET_MODE_CLASS (GET_MODE (op))
1608 == MODE_VECTOR_FLOAT)))
1609 win = 1;
1610 break;
1612 case 'G':
1613 case 'H':
1614 if (GET_CODE (op) == CONST_DOUBLE
1615 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1616 win = 1;
1617 break;
1619 case 's':
1620 if (GET_CODE (op) == CONST_INT
1621 || (GET_CODE (op) == CONST_DOUBLE
1622 && GET_MODE (op) == VOIDmode))
1623 break;
1624 case 'i':
1625 if (CONSTANT_P (op)
1626 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1627 win = 1;
1628 break;
1630 case 'n':
1631 if (GET_CODE (op) == CONST_INT
1632 || (GET_CODE (op) == CONST_DOUBLE
1633 && GET_MODE (op) == VOIDmode))
1634 win = 1;
1635 break;
1637 case 'I':
1638 case 'J':
1639 case 'K':
1640 case 'L':
1641 case 'M':
1642 case 'N':
1643 case 'O':
1644 case 'P':
1645 if (GET_CODE (op) == CONST_INT
1646 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1647 win = 1;
1648 break;
1650 case 'X':
1651 win = 1;
1652 break;
1654 case 'g':
1655 if (MEM_P (op)
1656 || (CONSTANT_P (op)
1657 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1658 win = 1;
1659 allows_mem[i] = 1;
1660 case 'r':
1661 classes[i]
1662 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1663 break;
1665 default:
1666 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1667 classes[i]
1668 = reg_class_subunion[(int) classes[i]]
1669 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1670 #ifdef EXTRA_CONSTRAINT_STR
1671 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1672 win = 1;
1674 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1676 /* Every MEM can be reloaded to fit. */
1677 allows_mem[i] = 1;
1678 if (MEM_P (op))
1679 win = 1;
1681 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1683 /* Every address can be reloaded to fit. */
1684 allows_addr = 1;
1685 if (address_operand (op, GET_MODE (op)))
1686 win = 1;
1687 /* We know this operand is an address, so we want it to
1688 be allocated to a register that can be the base of an
1689 address, ie BASE_REG_CLASS. */
1690 classes[i]
1691 = reg_class_subunion[(int) classes[i]]
1692 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1694 #endif
1695 break;
1697 p += CONSTRAINT_LEN (c, p);
1698 if (c == ',')
1699 break;
1702 constraints[i] = p;
1704 /* How we account for this operand now depends on whether it is a
1705 pseudo register or not. If it is, we first check if any
1706 register classes are valid. If not, we ignore this alternative,
1707 since we want to assume that all pseudos get allocated for
1708 register preferencing. If some register class is valid, compute
1709 the costs of moving the pseudo into that class. */
1711 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1713 if (classes[i] == NO_REGS)
1715 /* We must always fail if the operand is a REG, but
1716 we did not find a suitable class.
1718 Otherwise we may perform an uninitialized read
1719 from this_op_costs after the `continue' statement
1720 below. */
1721 alt_fail = 1;
1723 else
1725 struct costs *pp = &this_op_costs[i];
1727 for (class = 0; class < N_REG_CLASSES; class++)
1728 pp->cost[class]
1729 = ((recog_data.operand_type[i] != OP_OUT
1730 ? may_move_in_cost[mode][class][(int) classes[i]]
1731 : 0)
1732 + (recog_data.operand_type[i] != OP_IN
1733 ? may_move_out_cost[mode][(int) classes[i]][class]
1734 : 0));
1736 /* If the alternative actually allows memory, make things
1737 a bit cheaper since we won't need an extra insn to
1738 load it. */
1740 pp->mem_cost
1741 = ((recog_data.operand_type[i] != OP_IN
1742 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1743 : 0)
1744 + (recog_data.operand_type[i] != OP_OUT
1745 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1746 : 0) - allows_mem[i]);
1748 /* If we have assigned a class to this register in our
1749 first pass, add a cost to this alternative corresponding
1750 to what we would add if this register were not in the
1751 appropriate class. */
1753 if (reg_pref)
1754 alt_cost
1755 += (may_move_in_cost[mode]
1756 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1757 [(int) classes[i]]);
1761 /* Otherwise, if this alternative wins, either because we
1762 have already determined that or if we have a hard register of
1763 the proper class, there is no cost for this alternative. */
1765 else if (win
1766 || (REG_P (op)
1767 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1770 /* If registers are valid, the cost of this alternative includes
1771 copying the object to and/or from a register. */
1773 else if (classes[i] != NO_REGS)
1775 if (recog_data.operand_type[i] != OP_OUT)
1776 alt_cost += copy_cost (op, mode, classes[i], 1);
1778 if (recog_data.operand_type[i] != OP_IN)
1779 alt_cost += copy_cost (op, mode, classes[i], 0);
1782 /* The only other way this alternative can be used is if this is a
1783 constant that could be placed into memory. */
1785 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1786 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1787 else
1788 alt_fail = 1;
1791 if (alt_fail)
1792 continue;
1794 /* Finally, update the costs with the information we've calculated
1795 about this alternative. */
1797 for (i = 0; i < n_ops; i++)
1798 if (REG_P (ops[i])
1799 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1801 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1802 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1804 pp->mem_cost = MIN (pp->mem_cost,
1805 (qq->mem_cost + alt_cost) * scale);
1807 for (class = 0; class < N_REG_CLASSES; class++)
1808 pp->cost[class] = MIN (pp->cost[class],
1809 (qq->cost[class] + alt_cost) * scale);
1813 /* If this insn is a single set copying operand 1 to operand 0
1814 and one operand is a pseudo with the other a hard reg or a pseudo
1815 that prefers a register that is in its own register class then
1816 we may want to adjust the cost of that register class to -1.
1818 Avoid the adjustment if the source does not die to avoid stressing of
1819 register allocator by preferrencing two colliding registers into single
1820 class.
1822 Also avoid the adjustment if a copy between registers of the class
1823 is expensive (ten times the cost of a default copy is considered
1824 arbitrarily expensive). This avoids losing when the preferred class
1825 is very expensive as the source of a copy instruction. */
1827 if ((set = single_set (insn)) != 0
1828 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1829 && REG_P (ops[0]) && REG_P (ops[1])
1830 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1831 for (i = 0; i <= 1; i++)
1832 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1834 unsigned int regno = REGNO (ops[!i]);
1835 enum machine_mode mode = GET_MODE (ops[!i]);
1836 int class;
1837 unsigned int nr;
1839 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1841 enum reg_class pref = reg_pref[regno].prefclass;
1843 if ((reg_class_size[(unsigned char) pref]
1844 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1845 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1846 op_costs[i].cost[(unsigned char) pref] = -1;
1848 else if (regno < FIRST_PSEUDO_REGISTER)
1849 for (class = 0; class < N_REG_CLASSES; class++)
1850 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1851 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1853 if (reg_class_size[class] == 1)
1854 op_costs[i].cost[class] = -1;
1855 else
1857 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1859 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1860 regno + nr))
1861 break;
1864 if (nr == (unsigned) hard_regno_nregs[regno][mode])
1865 op_costs[i].cost[class] = -1;
1871 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1872 TO_P is zero) a register of class CLASS in mode MODE.
1874 X must not be a pseudo. */
1876 static int
1877 copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1878 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1880 #ifdef HAVE_SECONDARY_RELOADS
1881 enum reg_class secondary_class = NO_REGS;
1882 #endif
1884 /* If X is a SCRATCH, there is actually nothing to move since we are
1885 assuming optimal allocation. */
1887 if (GET_CODE (x) == SCRATCH)
1888 return 0;
1890 /* Get the class we will actually use for a reload. */
1891 class = PREFERRED_RELOAD_CLASS (x, class);
1893 #ifdef HAVE_SECONDARY_RELOADS
1894 /* If we need a secondary reload (we assume here that we are using
1895 the secondary reload as an intermediate, not a scratch register), the
1896 cost is that to load the input into the intermediate register, then
1897 to copy them. We use a special value of TO_P to avoid recursion. */
1899 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1900 if (to_p == 1)
1901 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1902 #endif
1904 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1905 if (! to_p)
1906 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1907 #endif
1909 if (secondary_class != NO_REGS)
1910 return (move_cost[mode][(int) secondary_class][(int) class]
1911 + copy_cost (x, mode, secondary_class, 2));
1912 #endif /* HAVE_SECONDARY_RELOADS */
1914 /* For memory, use the memory move cost, for (hard) registers, use the
1915 cost to move between the register classes, and use 2 for everything
1916 else (constants). */
1918 if (MEM_P (x) || class == NO_REGS)
1919 return MEMORY_MOVE_COST (mode, class, to_p);
1921 else if (REG_P (x))
1922 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1924 else
1925 /* If this is a constant, we may eventually want to call rtx_cost here. */
1926 return COSTS_N_INSNS (1);
1929 /* Record the pseudo registers we must reload into hard registers
1930 in a subexpression of a memory address, X.
1932 CLASS is the class that the register needs to be in and is either
1933 BASE_REG_CLASS or INDEX_REG_CLASS.
1935 SCALE is twice the amount to multiply the cost by (it is twice so we
1936 can represent half-cost adjustments). */
1938 static void
1939 record_address_regs (rtx x, enum reg_class class, int scale)
1941 enum rtx_code code = GET_CODE (x);
1943 switch (code)
1945 case CONST_INT:
1946 case CONST:
1947 case CC0:
1948 case PC:
1949 case SYMBOL_REF:
1950 case LABEL_REF:
1951 return;
1953 case PLUS:
1954 /* When we have an address that is a sum,
1955 we must determine whether registers are "base" or "index" regs.
1956 If there is a sum of two registers, we must choose one to be
1957 the "base". Luckily, we can use the REG_POINTER to make a good
1958 choice most of the time. We only need to do this on machines
1959 that can have two registers in an address and where the base
1960 and index register classes are different.
1962 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1963 that seems bogus since it should only be set when we are sure
1964 the register is being used as a pointer. */
1967 rtx arg0 = XEXP (x, 0);
1968 rtx arg1 = XEXP (x, 1);
1969 enum rtx_code code0 = GET_CODE (arg0);
1970 enum rtx_code code1 = GET_CODE (arg1);
1972 /* Look inside subregs. */
1973 if (code0 == SUBREG)
1974 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1975 if (code1 == SUBREG)
1976 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1978 /* If this machine only allows one register per address, it must
1979 be in the first operand. */
1981 if (MAX_REGS_PER_ADDRESS == 1)
1982 record_address_regs (arg0, class, scale);
1984 /* If index and base registers are the same on this machine, just
1985 record registers in any non-constant operands. We assume here,
1986 as well as in the tests below, that all addresses are in
1987 canonical form. */
1989 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1991 record_address_regs (arg0, class, scale);
1992 if (! CONSTANT_P (arg1))
1993 record_address_regs (arg1, class, scale);
1996 /* If the second operand is a constant integer, it doesn't change
1997 what class the first operand must be. */
1999 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2000 record_address_regs (arg0, class, scale);
2002 /* If the second operand is a symbolic constant, the first operand
2003 must be an index register. */
2005 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2006 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2008 /* If both operands are registers but one is already a hard register
2009 of index or base class, give the other the class that the hard
2010 register is not. */
2012 #ifdef REG_OK_FOR_BASE_P
2013 else if (code0 == REG && code1 == REG
2014 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2015 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2016 record_address_regs (arg1,
2017 REG_OK_FOR_BASE_P (arg0)
2018 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2019 scale);
2020 else if (code0 == REG && code1 == REG
2021 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2022 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2023 record_address_regs (arg0,
2024 REG_OK_FOR_BASE_P (arg1)
2025 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2026 scale);
2027 #endif
2029 /* If one operand is known to be a pointer, it must be the base
2030 with the other operand the index. Likewise if the other operand
2031 is a MULT. */
2033 else if ((code0 == REG && REG_POINTER (arg0))
2034 || code1 == MULT)
2036 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2037 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2039 else if ((code1 == REG && REG_POINTER (arg1))
2040 || code0 == MULT)
2042 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2043 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2046 /* Otherwise, count equal chances that each might be a base
2047 or index register. This case should be rare. */
2049 else
2051 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2052 scale / 2);
2053 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2054 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2055 scale / 2);
2056 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2059 break;
2061 /* Double the importance of a pseudo register that is incremented
2062 or decremented, since it would take two extra insns
2063 if it ends up in the wrong place. */
2064 case POST_MODIFY:
2065 case PRE_MODIFY:
2066 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2067 2 * scale);
2068 if (REG_P (XEXP (XEXP (x, 1), 1)))
2069 record_address_regs (XEXP (XEXP (x, 1), 1),
2070 INDEX_REG_CLASS, 2 * scale);
2071 break;
2073 case POST_INC:
2074 case PRE_INC:
2075 case POST_DEC:
2076 case PRE_DEC:
2077 /* Double the importance of a pseudo register that is incremented
2078 or decremented, since it would take two extra insns
2079 if it ends up in the wrong place. If the operand is a pseudo,
2080 show it is being used in an INC_DEC context. */
2082 #ifdef FORBIDDEN_INC_DEC_CLASSES
2083 if (REG_P (XEXP (x, 0))
2084 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2085 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2086 #endif
2088 record_address_regs (XEXP (x, 0), class, 2 * scale);
2089 break;
2091 case REG:
2093 struct costs *pp = &costs[REGNO (x)];
2094 int i;
2096 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2098 for (i = 0; i < N_REG_CLASSES; i++)
2099 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2101 break;
2103 default:
2105 const char *fmt = GET_RTX_FORMAT (code);
2106 int i;
2107 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2108 if (fmt[i] == 'e')
2109 record_address_regs (XEXP (x, i), class, scale);
2114 #ifdef FORBIDDEN_INC_DEC_CLASSES
2116 /* Return 1 if REG is valid as an auto-increment memory reference
2117 to an object of MODE. */
2119 static int
2120 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2122 if (HAVE_POST_INCREMENT
2123 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2124 return 1;
2126 if (HAVE_POST_DECREMENT
2127 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2128 return 1;
2130 if (HAVE_PRE_INCREMENT
2131 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2132 return 1;
2134 if (HAVE_PRE_DECREMENT
2135 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2136 return 1;
2138 return 0;
2140 #endif
2142 static short *renumber;
2143 static size_t regno_allocated;
2144 static unsigned int reg_n_max;
2146 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2147 reg_scan and flow_analysis that are indexed by the register number. If
2148 NEW_P is nonzero, initialize all of the registers, otherwise only
2149 initialize the new registers allocated. The same table is kept from
2150 function to function, only reallocating it when we need more room. If
2151 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2153 void
2154 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2156 size_t size_info;
2157 size_t size_renumber;
2158 size_t min = (new_p) ? 0 : reg_n_max;
2159 struct reg_info_data *reg_data;
2161 if (num_regs > regno_allocated)
2163 size_t old_allocated = regno_allocated;
2165 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2166 size_renumber = regno_allocated * sizeof (short);
2168 if (!reg_n_info)
2170 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2171 renumber = xmalloc (size_renumber);
2172 reg_pref_buffer = xmalloc (regno_allocated
2173 * sizeof (struct reg_pref));
2176 else
2178 VARRAY_GROW (reg_n_info, regno_allocated);
2180 if (new_p) /* If we're zapping everything, no need to realloc. */
2182 free ((char *) renumber);
2183 free ((char *) reg_pref);
2184 renumber = xmalloc (size_renumber);
2185 reg_pref_buffer = xmalloc (regno_allocated
2186 * sizeof (struct reg_pref));
2189 else
2191 renumber = xrealloc (renumber, size_renumber);
2192 reg_pref_buffer = xrealloc (reg_pref_buffer,
2193 regno_allocated
2194 * sizeof (struct reg_pref));
2198 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2199 + sizeof (struct reg_info_data) - sizeof (reg_info);
2200 reg_data = xcalloc (size_info, 1);
2201 reg_data->min_index = old_allocated;
2202 reg_data->max_index = regno_allocated - 1;
2203 reg_data->next = reg_info_head;
2204 reg_info_head = reg_data;
2207 reg_n_max = num_regs;
2208 if (min < num_regs)
2210 /* Loop through each of the segments allocated for the actual
2211 reg_info pages, and set up the pointers, zero the pages, etc. */
2212 for (reg_data = reg_info_head;
2213 reg_data && reg_data->max_index >= min;
2214 reg_data = reg_data->next)
2216 size_t min_index = reg_data->min_index;
2217 size_t max_index = reg_data->max_index;
2218 size_t max = MIN (max_index, num_regs);
2219 size_t local_min = min - min_index;
2220 size_t i;
2222 if (reg_data->min_index > num_regs)
2223 continue;
2225 if (min < min_index)
2226 local_min = 0;
2227 if (!reg_data->used_p) /* page just allocated with calloc */
2228 reg_data->used_p = 1; /* no need to zero */
2229 else
2230 memset (&reg_data->data[local_min], 0,
2231 sizeof (reg_info) * (max - min_index - local_min + 1));
2233 for (i = min_index+local_min; i <= max; i++)
2235 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2236 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2237 renumber[i] = -1;
2238 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2239 reg_pref_buffer[i].altclass = (char) NO_REGS;
2244 /* If {pref,alt}class have already been allocated, update the pointers to
2245 the newly realloced ones. */
2246 if (reg_pref)
2247 reg_pref = reg_pref_buffer;
2249 if (renumber_p)
2250 reg_renumber = renumber;
2252 /* Tell the regset code about the new number of registers. */
2253 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2256 /* Free up the space allocated by allocate_reg_info. */
2257 void
2258 free_reg_info (void)
2260 if (reg_n_info)
2262 struct reg_info_data *reg_data;
2263 struct reg_info_data *reg_next;
2265 VARRAY_FREE (reg_n_info);
2266 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2268 reg_next = reg_data->next;
2269 free ((char *) reg_data);
2272 free (reg_pref_buffer);
2273 reg_pref_buffer = (struct reg_pref *) 0;
2274 reg_info_head = (struct reg_info_data *) 0;
2275 renumber = (short *) 0;
2277 regno_allocated = 0;
2278 reg_n_max = 0;
2281 /* This is the `regscan' pass of the compiler, run just before cse
2282 and again just before loop.
2284 It finds the first and last use of each pseudo-register
2285 and records them in the vectors regno_first_uid, regno_last_uid
2286 and counts the number of sets in the vector reg_n_sets.
2288 REPEAT is nonzero the second time this is called. */
2290 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2291 Always at least 3, since the combiner could put that many together
2292 and we want this to remain correct for all the remaining passes.
2293 This corresponds to the maximum number of times note_stores will call
2294 a function for any insn. */
2296 int max_parallel;
2298 /* Used as a temporary to record the largest number of registers in
2299 PARALLEL in a SET_DEST. This is added to max_parallel. */
2301 static int max_set_parallel;
2303 void
2304 reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
2306 rtx insn;
2308 timevar_push (TV_REG_SCAN);
2310 allocate_reg_info (nregs, TRUE, FALSE);
2311 max_parallel = 3;
2312 max_set_parallel = 0;
2314 for (insn = f; insn; insn = NEXT_INSN (insn))
2315 if (INSN_P (insn))
2317 rtx pat = PATTERN (insn);
2318 if (GET_CODE (pat) == PARALLEL
2319 && XVECLEN (pat, 0) > max_parallel)
2320 max_parallel = XVECLEN (pat, 0);
2321 reg_scan_mark_refs (pat, insn, 0, 0);
2323 if (REG_NOTES (insn))
2324 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2327 max_parallel += max_set_parallel;
2329 timevar_pop (TV_REG_SCAN);
2332 /* Update 'regscan' information by looking at the insns
2333 from FIRST to LAST. Some new REGs have been created,
2334 and any REG with number greater than OLD_MAX_REGNO is
2335 such a REG. We only update information for those. */
2337 void
2338 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2340 rtx insn;
2342 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2344 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2345 if (INSN_P (insn))
2347 rtx pat = PATTERN (insn);
2348 if (GET_CODE (pat) == PARALLEL
2349 && XVECLEN (pat, 0) > max_parallel)
2350 max_parallel = XVECLEN (pat, 0);
2351 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2353 if (REG_NOTES (insn))
2354 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2358 /* X is the expression to scan. INSN is the insn it appears in.
2359 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2360 We should only record information for REGs with numbers
2361 greater than or equal to MIN_REGNO. */
2363 static void
2364 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2366 enum rtx_code code;
2367 rtx dest;
2368 rtx note;
2370 if (!x)
2371 return;
2372 code = GET_CODE (x);
2373 switch (code)
2375 case CONST:
2376 case CONST_INT:
2377 case CONST_DOUBLE:
2378 case CONST_VECTOR:
2379 case CC0:
2380 case PC:
2381 case SYMBOL_REF:
2382 case LABEL_REF:
2383 case ADDR_VEC:
2384 case ADDR_DIFF_VEC:
2385 return;
2387 case REG:
2389 unsigned int regno = REGNO (x);
2391 if (regno >= min_regno)
2393 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2394 if (!note_flag)
2395 REGNO_LAST_UID (regno) = INSN_UID (insn);
2396 if (REGNO_FIRST_UID (regno) == 0)
2397 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2398 /* If we are called by reg_scan_update() (indicated by min_regno
2399 being set), we also need to update the reference count. */
2400 if (min_regno)
2401 REG_N_REFS (regno)++;
2404 break;
2406 case EXPR_LIST:
2407 if (XEXP (x, 0))
2408 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2409 if (XEXP (x, 1))
2410 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2411 break;
2413 case INSN_LIST:
2414 if (XEXP (x, 1))
2415 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2416 break;
2418 case CLOBBER:
2420 rtx reg = XEXP (x, 0);
2421 if (REG_P (reg)
2422 && REGNO (reg) >= min_regno)
2424 REG_N_SETS (REGNO (reg))++;
2425 REG_N_REFS (REGNO (reg))++;
2427 else if (MEM_P (reg))
2428 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
2430 break;
2432 case SET:
2433 /* Count a set of the destination if it is a register. */
2434 for (dest = SET_DEST (x);
2435 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2436 || GET_CODE (dest) == ZERO_EXTEND;
2437 dest = XEXP (dest, 0))
2440 /* For a PARALLEL, record the number of things (less the usual one for a
2441 SET) that are set. */
2442 if (GET_CODE (dest) == PARALLEL)
2443 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2445 if (REG_P (dest)
2446 && REGNO (dest) >= min_regno)
2448 REG_N_SETS (REGNO (dest))++;
2449 REG_N_REFS (REGNO (dest))++;
2452 /* If this is setting a pseudo from another pseudo or the sum of a
2453 pseudo and a constant integer and the other pseudo is known to be
2454 a pointer, set the destination to be a pointer as well.
2456 Likewise if it is setting the destination from an address or from a
2457 value equivalent to an address or to the sum of an address and
2458 something else.
2460 But don't do any of this if the pseudo corresponds to a user
2461 variable since it should have already been set as a pointer based
2462 on the type. */
2464 if (REG_P (SET_DEST (x))
2465 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2466 && REGNO (SET_DEST (x)) >= min_regno
2467 /* If the destination pseudo is set more than once, then other
2468 sets might not be to a pointer value (consider access to a
2469 union in two threads of control in the presence of global
2470 optimizations). So only set REG_POINTER on the destination
2471 pseudo if this is the only set of that pseudo. */
2472 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2473 && ! REG_USERVAR_P (SET_DEST (x))
2474 && ! REG_POINTER (SET_DEST (x))
2475 && ((REG_P (SET_SRC (x))
2476 && REG_POINTER (SET_SRC (x)))
2477 || ((GET_CODE (SET_SRC (x)) == PLUS
2478 || GET_CODE (SET_SRC (x)) == LO_SUM)
2479 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2480 && REG_P (XEXP (SET_SRC (x), 0))
2481 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2482 || GET_CODE (SET_SRC (x)) == CONST
2483 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2484 || GET_CODE (SET_SRC (x)) == LABEL_REF
2485 || (GET_CODE (SET_SRC (x)) == HIGH
2486 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2487 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2488 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2489 || ((GET_CODE (SET_SRC (x)) == PLUS
2490 || GET_CODE (SET_SRC (x)) == LO_SUM)
2491 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2492 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2493 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2494 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2495 && (GET_CODE (XEXP (note, 0)) == CONST
2496 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2497 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2498 REG_POINTER (SET_DEST (x)) = 1;
2500 /* If this is setting a register from a register or from a simple
2501 conversion of a register, propagate REG_EXPR. */
2502 if (REG_P (dest))
2504 rtx src = SET_SRC (x);
2506 while (GET_CODE (src) == SIGN_EXTEND
2507 || GET_CODE (src) == ZERO_EXTEND
2508 || GET_CODE (src) == TRUNCATE
2509 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2510 src = XEXP (src, 0);
2512 if (!REG_ATTRS (dest) && REG_P (src))
2513 REG_ATTRS (dest) = REG_ATTRS (src);
2514 if (!REG_ATTRS (dest) && MEM_P (src))
2515 set_reg_attrs_from_mem (dest, src);
2518 /* ... fall through ... */
2520 default:
2522 const char *fmt = GET_RTX_FORMAT (code);
2523 int i;
2524 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2526 if (fmt[i] == 'e')
2527 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2528 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2530 int j;
2531 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2532 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2539 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2540 is also in C2. */
2543 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2545 if (c1 == c2) return 1;
2547 if (c2 == ALL_REGS)
2548 win:
2549 return 1;
2550 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2551 reg_class_contents[(int) c2],
2552 win);
2553 return 0;
2556 /* Return nonzero if there is a register that is in both C1 and C2. */
2559 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2561 HARD_REG_SET c;
2563 if (c1 == c2) return 1;
2565 if (c1 == ALL_REGS || c2 == ALL_REGS)
2566 return 1;
2568 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2569 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2571 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2572 return 1;
2574 lose:
2575 return 0;
2578 /* Release any memory allocated by register sets. */
2580 void
2581 regset_release_memory (void)
2583 bitmap_release_memory ();
2586 #ifdef CANNOT_CHANGE_MODE_CLASS
2587 /* Set bits in *USED which correspond to registers which can't change
2588 their mode from FROM to any mode in which REGNO was encountered. */
2590 void
2591 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2592 unsigned int regno)
2594 enum machine_mode to;
2595 int n, i;
2596 int start = regno * MAX_MACHINE_MODE;
2598 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2599 if (n >= MAX_MACHINE_MODE + start)
2600 return;
2601 to = n - start;
2602 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2603 if (! TEST_HARD_REG_BIT (*used, i)
2604 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2605 SET_HARD_REG_BIT (*used, i);
2609 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2610 mode. */
2612 bool
2613 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2614 enum machine_mode from_mode)
2616 enum machine_mode to_mode;
2617 int n;
2618 int start = regno * MAX_MACHINE_MODE;
2620 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2621 if (n >= MAX_MACHINE_MODE + start)
2622 return 0;
2623 to_mode = n - start;
2624 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
2625 return 1;
2627 return 0;
2629 #endif /* CANNOT_CHANGE_MODE_CLASS */
2631 #include "gt-regclass.h"