PR tree-optimization/43833
[official-gcc/alias-decl.git] / gcc / tree-cfg.c
blob761dce159d1d5be575c509e03288f60473c3a34d
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "ggc.h"
36 #include "langhooks.h"
37 #include "diagnostic.h"
38 #include "tree-flow.h"
39 #include "timevar.h"
40 #include "tree-dump.h"
41 #include "tree-pass.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "cfgloop.h"
45 #include "cfglayout.h"
46 #include "tree-ssa-propagate.h"
47 #include "value-prof.h"
48 #include "pointer-set.h"
49 #include "tree-inline.h"
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
54 /* Local declarations. */
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
72 static struct pointer_map_t *edge_to_cases;
74 /* If we record edge_to_cases, this bitmap will hold indexes
75 of basic blocks that end in a GIMPLE_SWITCH which we touched
76 due to edge manipulations. */
78 static bitmap touched_switch_bbs;
80 /* CFG statistics. */
81 struct cfg_stats_d
83 long num_merged_labels;
86 static struct cfg_stats_d cfg_stats;
88 /* Nonzero if we found a computed goto while building basic blocks. */
89 static bool found_computed_goto;
91 /* Hash table to store last discriminator assigned for each locus. */
92 struct locus_discrim_map
94 location_t locus;
95 int discriminator;
97 static htab_t discriminator_per_locus;
99 /* Basic blocks and flowgraphs. */
100 static void make_blocks (gimple_seq);
101 static void factor_computed_gotos (void);
103 /* Edges. */
104 static void make_edges (void);
105 static void make_cond_expr_edges (basic_block);
106 static void make_gimple_switch_edges (basic_block);
107 static void make_goto_expr_edges (basic_block);
108 static void make_gimple_asm_edges (basic_block);
109 static unsigned int locus_map_hash (const void *);
110 static int locus_map_eq (const void *, const void *);
111 static void assign_discriminator (location_t, basic_block);
112 static edge gimple_redirect_edge_and_branch (edge, basic_block);
113 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
114 static unsigned int split_critical_edges (void);
116 /* Various helpers. */
117 static inline bool stmt_starts_bb_p (gimple, gimple);
118 static int gimple_verify_flow_info (void);
119 static void gimple_make_forwarder_block (edge);
120 static void gimple_cfg2vcg (FILE *);
121 static gimple first_non_label_stmt (basic_block);
123 /* Flowgraph optimization and cleanup. */
124 static void gimple_merge_blocks (basic_block, basic_block);
125 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
126 static void remove_bb (basic_block);
127 static edge find_taken_edge_computed_goto (basic_block, tree);
128 static edge find_taken_edge_cond_expr (basic_block, tree);
129 static edge find_taken_edge_switch_expr (basic_block, tree);
130 static tree find_case_label_for_value (gimple, tree);
131 static void group_case_labels_stmt (gimple);
133 void
134 init_empty_tree_cfg_for_function (struct function *fn)
136 /* Initialize the basic block array. */
137 init_flow (fn);
138 profile_status_for_function (fn) = PROFILE_ABSENT;
139 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
140 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
141 basic_block_info_for_function (fn)
142 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
143 VEC_safe_grow_cleared (basic_block, gc,
144 basic_block_info_for_function (fn),
145 initial_cfg_capacity);
147 /* Build a mapping of labels to their associated blocks. */
148 label_to_block_map_for_function (fn)
149 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
150 VEC_safe_grow_cleared (basic_block, gc,
151 label_to_block_map_for_function (fn),
152 initial_cfg_capacity);
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
155 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
156 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
157 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
159 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
160 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
161 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
162 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
165 void
166 init_empty_tree_cfg (void)
168 init_empty_tree_cfg_for_function (cfun);
171 /*---------------------------------------------------------------------------
172 Create basic blocks
173 ---------------------------------------------------------------------------*/
175 /* Entry point to the CFG builder for trees. SEQ is the sequence of
176 statements to be added to the flowgraph. */
178 static void
179 build_gimple_cfg (gimple_seq seq)
181 /* Register specific gimple functions. */
182 gimple_register_cfg_hooks ();
184 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
186 init_empty_tree_cfg ();
188 found_computed_goto = 0;
189 make_blocks (seq);
191 /* Computed gotos are hell to deal with, especially if there are
192 lots of them with a large number of destinations. So we factor
193 them to a common computed goto location before we build the
194 edge list. After we convert back to normal form, we will un-factor
195 the computed gotos since factoring introduces an unwanted jump. */
196 if (found_computed_goto)
197 factor_computed_gotos ();
199 /* Make sure there is always at least one block, even if it's empty. */
200 if (n_basic_blocks == NUM_FIXED_BLOCKS)
201 create_empty_bb (ENTRY_BLOCK_PTR);
203 /* Adjust the size of the array. */
204 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
205 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
207 /* To speed up statement iterator walks, we first purge dead labels. */
208 cleanup_dead_labels ();
210 /* Group case nodes to reduce the number of edges.
211 We do this after cleaning up dead labels because otherwise we miss
212 a lot of obvious case merging opportunities. */
213 group_case_labels ();
215 /* Create the edges of the flowgraph. */
216 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
217 free);
218 make_edges ();
219 cleanup_dead_labels ();
220 htab_delete (discriminator_per_locus);
222 /* Debugging dumps. */
224 /* Write the flowgraph to a VCG file. */
226 int local_dump_flags;
227 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
228 if (vcg_file)
230 gimple_cfg2vcg (vcg_file);
231 dump_end (TDI_vcg, vcg_file);
235 #ifdef ENABLE_CHECKING
236 verify_stmts ();
237 #endif
240 static unsigned int
241 execute_build_cfg (void)
243 gimple_seq body = gimple_body (current_function_decl);
245 build_gimple_cfg (body);
246 gimple_set_body (current_function_decl, NULL);
247 if (dump_file && (dump_flags & TDF_DETAILS))
249 fprintf (dump_file, "Scope blocks:\n");
250 dump_scope_blocks (dump_file, dump_flags);
252 return 0;
255 struct gimple_opt_pass pass_build_cfg =
258 GIMPLE_PASS,
259 "cfg", /* name */
260 NULL, /* gate */
261 execute_build_cfg, /* execute */
262 NULL, /* sub */
263 NULL, /* next */
264 0, /* static_pass_number */
265 TV_TREE_CFG, /* tv_id */
266 PROP_gimple_leh, /* properties_required */
267 PROP_cfg, /* properties_provided */
268 0, /* properties_destroyed */
269 0, /* todo_flags_start */
270 TODO_verify_stmts | TODO_cleanup_cfg
271 | TODO_dump_func /* todo_flags_finish */
276 /* Return true if T is a computed goto. */
278 static bool
279 computed_goto_p (gimple t)
281 return (gimple_code (t) == GIMPLE_GOTO
282 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
286 /* Search the CFG for any computed gotos. If found, factor them to a
287 common computed goto site. Also record the location of that site so
288 that we can un-factor the gotos after we have converted back to
289 normal form. */
291 static void
292 factor_computed_gotos (void)
294 basic_block bb;
295 tree factored_label_decl = NULL;
296 tree var = NULL;
297 gimple factored_computed_goto_label = NULL;
298 gimple factored_computed_goto = NULL;
300 /* We know there are one or more computed gotos in this function.
301 Examine the last statement in each basic block to see if the block
302 ends with a computed goto. */
304 FOR_EACH_BB (bb)
306 gimple_stmt_iterator gsi = gsi_last_bb (bb);
307 gimple last;
309 if (gsi_end_p (gsi))
310 continue;
312 last = gsi_stmt (gsi);
314 /* Ignore the computed goto we create when we factor the original
315 computed gotos. */
316 if (last == factored_computed_goto)
317 continue;
319 /* If the last statement is a computed goto, factor it. */
320 if (computed_goto_p (last))
322 gimple assignment;
324 /* The first time we find a computed goto we need to create
325 the factored goto block and the variable each original
326 computed goto will use for their goto destination. */
327 if (!factored_computed_goto)
329 basic_block new_bb = create_empty_bb (bb);
330 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
332 /* Create the destination of the factored goto. Each original
333 computed goto will put its desired destination into this
334 variable and jump to the label we create immediately
335 below. */
336 var = create_tmp_var (ptr_type_node, "gotovar");
338 /* Build a label for the new block which will contain the
339 factored computed goto. */
340 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
341 factored_computed_goto_label
342 = gimple_build_label (factored_label_decl);
343 gsi_insert_after (&new_gsi, factored_computed_goto_label,
344 GSI_NEW_STMT);
346 /* Build our new computed goto. */
347 factored_computed_goto = gimple_build_goto (var);
348 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
351 /* Copy the original computed goto's destination into VAR. */
352 assignment = gimple_build_assign (var, gimple_goto_dest (last));
353 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
355 /* And re-vector the computed goto to the new destination. */
356 gimple_goto_set_dest (last, factored_label_decl);
362 /* Build a flowgraph for the sequence of stmts SEQ. */
364 static void
365 make_blocks (gimple_seq seq)
367 gimple_stmt_iterator i = gsi_start (seq);
368 gimple stmt = NULL;
369 bool start_new_block = true;
370 bool first_stmt_of_seq = true;
371 basic_block bb = ENTRY_BLOCK_PTR;
373 while (!gsi_end_p (i))
375 gimple prev_stmt;
377 prev_stmt = stmt;
378 stmt = gsi_stmt (i);
380 /* If the statement starts a new basic block or if we have determined
381 in a previous pass that we need to create a new block for STMT, do
382 so now. */
383 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
385 if (!first_stmt_of_seq)
386 seq = gsi_split_seq_before (&i);
387 bb = create_basic_block (seq, NULL, bb);
388 start_new_block = false;
391 /* Now add STMT to BB and create the subgraphs for special statement
392 codes. */
393 gimple_set_bb (stmt, bb);
395 if (computed_goto_p (stmt))
396 found_computed_goto = true;
398 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
399 next iteration. */
400 if (stmt_ends_bb_p (stmt))
402 /* If the stmt can make abnormal goto use a new temporary
403 for the assignment to the LHS. This makes sure the old value
404 of the LHS is available on the abnormal edge. Otherwise
405 we will end up with overlapping life-ranges for abnormal
406 SSA names. */
407 if (gimple_has_lhs (stmt)
408 && stmt_can_make_abnormal_goto (stmt)
409 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
411 tree lhs = gimple_get_lhs (stmt);
412 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
413 gimple s = gimple_build_assign (lhs, tmp);
414 gimple_set_location (s, gimple_location (stmt));
415 gimple_set_block (s, gimple_block (stmt));
416 gimple_set_lhs (stmt, tmp);
417 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
418 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
419 DECL_GIMPLE_REG_P (tmp) = 1;
420 gsi_insert_after (&i, s, GSI_SAME_STMT);
422 start_new_block = true;
425 gsi_next (&i);
426 first_stmt_of_seq = false;
431 /* Create and return a new empty basic block after bb AFTER. */
433 static basic_block
434 create_bb (void *h, void *e, basic_block after)
436 basic_block bb;
438 gcc_assert (!e);
440 /* Create and initialize a new basic block. Since alloc_block uses
441 ggc_alloc_cleared to allocate a basic block, we do not have to
442 clear the newly allocated basic block here. */
443 bb = alloc_block ();
445 bb->index = last_basic_block;
446 bb->flags = BB_NEW;
447 bb->il.gimple = GGC_CNEW (struct gimple_bb_info);
448 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
450 /* Add the new block to the linked list of blocks. */
451 link_block (bb, after);
453 /* Grow the basic block array if needed. */
454 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
456 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
457 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
460 /* Add the newly created block to the array. */
461 SET_BASIC_BLOCK (last_basic_block, bb);
463 n_basic_blocks++;
464 last_basic_block++;
466 return bb;
470 /*---------------------------------------------------------------------------
471 Edge creation
472 ---------------------------------------------------------------------------*/
474 /* Fold COND_EXPR_COND of each COND_EXPR. */
476 void
477 fold_cond_expr_cond (void)
479 basic_block bb;
481 FOR_EACH_BB (bb)
483 gimple stmt = last_stmt (bb);
485 if (stmt && gimple_code (stmt) == GIMPLE_COND)
487 location_t loc = gimple_location (stmt);
488 tree cond;
489 bool zerop, onep;
491 fold_defer_overflow_warnings ();
492 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
493 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
494 if (cond)
496 zerop = integer_zerop (cond);
497 onep = integer_onep (cond);
499 else
500 zerop = onep = false;
502 fold_undefer_overflow_warnings (zerop || onep,
503 stmt,
504 WARN_STRICT_OVERFLOW_CONDITIONAL);
505 if (zerop)
506 gimple_cond_make_false (stmt);
507 else if (onep)
508 gimple_cond_make_true (stmt);
513 /* Join all the blocks in the flowgraph. */
515 static void
516 make_edges (void)
518 basic_block bb;
519 struct omp_region *cur_region = NULL;
521 /* Create an edge from entry to the first block with executable
522 statements in it. */
523 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
525 /* Traverse the basic block array placing edges. */
526 FOR_EACH_BB (bb)
528 gimple last = last_stmt (bb);
529 bool fallthru;
531 if (last)
533 enum gimple_code code = gimple_code (last);
534 switch (code)
536 case GIMPLE_GOTO:
537 make_goto_expr_edges (bb);
538 fallthru = false;
539 break;
540 case GIMPLE_RETURN:
541 make_edge (bb, EXIT_BLOCK_PTR, 0);
542 fallthru = false;
543 break;
544 case GIMPLE_COND:
545 make_cond_expr_edges (bb);
546 fallthru = false;
547 break;
548 case GIMPLE_SWITCH:
549 make_gimple_switch_edges (bb);
550 fallthru = false;
551 break;
552 case GIMPLE_RESX:
553 make_eh_edges (last);
554 fallthru = false;
555 break;
556 case GIMPLE_EH_DISPATCH:
557 fallthru = make_eh_dispatch_edges (last);
558 break;
560 case GIMPLE_CALL:
561 /* If this function receives a nonlocal goto, then we need to
562 make edges from this call site to all the nonlocal goto
563 handlers. */
564 if (stmt_can_make_abnormal_goto (last))
565 make_abnormal_goto_edges (bb, true);
567 /* If this statement has reachable exception handlers, then
568 create abnormal edges to them. */
569 make_eh_edges (last);
571 /* Some calls are known not to return. */
572 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
573 break;
575 case GIMPLE_ASSIGN:
576 /* A GIMPLE_ASSIGN may throw internally and thus be considered
577 control-altering. */
578 if (is_ctrl_altering_stmt (last))
579 make_eh_edges (last);
580 fallthru = true;
581 break;
583 case GIMPLE_ASM:
584 make_gimple_asm_edges (bb);
585 fallthru = true;
586 break;
588 case GIMPLE_OMP_PARALLEL:
589 case GIMPLE_OMP_TASK:
590 case GIMPLE_OMP_FOR:
591 case GIMPLE_OMP_SINGLE:
592 case GIMPLE_OMP_MASTER:
593 case GIMPLE_OMP_ORDERED:
594 case GIMPLE_OMP_CRITICAL:
595 case GIMPLE_OMP_SECTION:
596 cur_region = new_omp_region (bb, code, cur_region);
597 fallthru = true;
598 break;
600 case GIMPLE_OMP_SECTIONS:
601 cur_region = new_omp_region (bb, code, cur_region);
602 fallthru = true;
603 break;
605 case GIMPLE_OMP_SECTIONS_SWITCH:
606 fallthru = false;
607 break;
609 case GIMPLE_OMP_ATOMIC_LOAD:
610 case GIMPLE_OMP_ATOMIC_STORE:
611 fallthru = true;
612 break;
614 case GIMPLE_OMP_RETURN:
615 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
616 somewhere other than the next block. This will be
617 created later. */
618 cur_region->exit = bb;
619 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
620 cur_region = cur_region->outer;
621 break;
623 case GIMPLE_OMP_CONTINUE:
624 cur_region->cont = bb;
625 switch (cur_region->type)
627 case GIMPLE_OMP_FOR:
628 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
629 succs edges as abnormal to prevent splitting
630 them. */
631 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
632 /* Make the loopback edge. */
633 make_edge (bb, single_succ (cur_region->entry),
634 EDGE_ABNORMAL);
636 /* Create an edge from GIMPLE_OMP_FOR to exit, which
637 corresponds to the case that the body of the loop
638 is not executed at all. */
639 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
640 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
641 fallthru = false;
642 break;
644 case GIMPLE_OMP_SECTIONS:
645 /* Wire up the edges into and out of the nested sections. */
647 basic_block switch_bb = single_succ (cur_region->entry);
649 struct omp_region *i;
650 for (i = cur_region->inner; i ; i = i->next)
652 gcc_assert (i->type == GIMPLE_OMP_SECTION);
653 make_edge (switch_bb, i->entry, 0);
654 make_edge (i->exit, bb, EDGE_FALLTHRU);
657 /* Make the loopback edge to the block with
658 GIMPLE_OMP_SECTIONS_SWITCH. */
659 make_edge (bb, switch_bb, 0);
661 /* Make the edge from the switch to exit. */
662 make_edge (switch_bb, bb->next_bb, 0);
663 fallthru = false;
665 break;
667 default:
668 gcc_unreachable ();
670 break;
672 default:
673 gcc_assert (!stmt_ends_bb_p (last));
674 fallthru = true;
677 else
678 fallthru = true;
680 if (fallthru)
682 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
683 if (last)
684 assign_discriminator (gimple_location (last), bb->next_bb);
688 if (root_omp_region)
689 free_omp_regions ();
691 /* Fold COND_EXPR_COND of each COND_EXPR. */
692 fold_cond_expr_cond ();
695 /* Trivial hash function for a location_t. ITEM is a pointer to
696 a hash table entry that maps a location_t to a discriminator. */
698 static unsigned int
699 locus_map_hash (const void *item)
701 return ((const struct locus_discrim_map *) item)->locus;
704 /* Equality function for the locus-to-discriminator map. VA and VB
705 point to the two hash table entries to compare. */
707 static int
708 locus_map_eq (const void *va, const void *vb)
710 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
711 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
712 return a->locus == b->locus;
715 /* Find the next available discriminator value for LOCUS. The
716 discriminator distinguishes among several basic blocks that
717 share a common locus, allowing for more accurate sample-based
718 profiling. */
720 static int
721 next_discriminator_for_locus (location_t locus)
723 struct locus_discrim_map item;
724 struct locus_discrim_map **slot;
726 item.locus = locus;
727 item.discriminator = 0;
728 slot = (struct locus_discrim_map **)
729 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
730 (hashval_t) locus, INSERT);
731 gcc_assert (slot);
732 if (*slot == HTAB_EMPTY_ENTRY)
734 *slot = XNEW (struct locus_discrim_map);
735 gcc_assert (*slot);
736 (*slot)->locus = locus;
737 (*slot)->discriminator = 0;
739 (*slot)->discriminator++;
740 return (*slot)->discriminator;
743 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
745 static bool
746 same_line_p (location_t locus1, location_t locus2)
748 expanded_location from, to;
750 if (locus1 == locus2)
751 return true;
753 from = expand_location (locus1);
754 to = expand_location (locus2);
756 if (from.line != to.line)
757 return false;
758 if (from.file == to.file)
759 return true;
760 return (from.file != NULL
761 && to.file != NULL
762 && strcmp (from.file, to.file) == 0);
765 /* Assign a unique discriminator value to block BB if it begins at the same
766 LOCUS as its predecessor block. */
768 static void
769 assign_discriminator (location_t locus, basic_block bb)
771 gimple first_in_to_bb, last_in_to_bb;
773 if (locus == 0 || bb->discriminator != 0)
774 return;
776 first_in_to_bb = first_non_label_stmt (bb);
777 last_in_to_bb = last_stmt (bb);
778 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
779 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
780 bb->discriminator = next_discriminator_for_locus (locus);
783 /* Create the edges for a GIMPLE_COND starting at block BB. */
785 static void
786 make_cond_expr_edges (basic_block bb)
788 gimple entry = last_stmt (bb);
789 gimple then_stmt, else_stmt;
790 basic_block then_bb, else_bb;
791 tree then_label, else_label;
792 edge e;
793 location_t entry_locus;
795 gcc_assert (entry);
796 gcc_assert (gimple_code (entry) == GIMPLE_COND);
798 entry_locus = gimple_location (entry);
800 /* Entry basic blocks for each component. */
801 then_label = gimple_cond_true_label (entry);
802 else_label = gimple_cond_false_label (entry);
803 then_bb = label_to_block (then_label);
804 else_bb = label_to_block (else_label);
805 then_stmt = first_stmt (then_bb);
806 else_stmt = first_stmt (else_bb);
808 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
809 assign_discriminator (entry_locus, then_bb);
810 e->goto_locus = gimple_location (then_stmt);
811 if (e->goto_locus)
812 e->goto_block = gimple_block (then_stmt);
813 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
814 if (e)
816 assign_discriminator (entry_locus, else_bb);
817 e->goto_locus = gimple_location (else_stmt);
818 if (e->goto_locus)
819 e->goto_block = gimple_block (else_stmt);
822 /* We do not need the labels anymore. */
823 gimple_cond_set_true_label (entry, NULL_TREE);
824 gimple_cond_set_false_label (entry, NULL_TREE);
828 /* Called for each element in the hash table (P) as we delete the
829 edge to cases hash table.
831 Clear all the TREE_CHAINs to prevent problems with copying of
832 SWITCH_EXPRs and structure sharing rules, then free the hash table
833 element. */
835 static bool
836 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
837 void *data ATTRIBUTE_UNUSED)
839 tree t, next;
841 for (t = (tree) *value; t; t = next)
843 next = TREE_CHAIN (t);
844 TREE_CHAIN (t) = NULL;
847 *value = NULL;
848 return false;
851 /* Start recording information mapping edges to case labels. */
853 void
854 start_recording_case_labels (void)
856 gcc_assert (edge_to_cases == NULL);
857 edge_to_cases = pointer_map_create ();
858 touched_switch_bbs = BITMAP_ALLOC (NULL);
861 /* Return nonzero if we are recording information for case labels. */
863 static bool
864 recording_case_labels_p (void)
866 return (edge_to_cases != NULL);
869 /* Stop recording information mapping edges to case labels and
870 remove any information we have recorded. */
871 void
872 end_recording_case_labels (void)
874 bitmap_iterator bi;
875 unsigned i;
876 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
877 pointer_map_destroy (edge_to_cases);
878 edge_to_cases = NULL;
879 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
881 basic_block bb = BASIC_BLOCK (i);
882 if (bb)
884 gimple stmt = last_stmt (bb);
885 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
886 group_case_labels_stmt (stmt);
889 BITMAP_FREE (touched_switch_bbs);
892 /* If we are inside a {start,end}_recording_cases block, then return
893 a chain of CASE_LABEL_EXPRs from T which reference E.
895 Otherwise return NULL. */
897 static tree
898 get_cases_for_edge (edge e, gimple t)
900 void **slot;
901 size_t i, n;
903 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
904 chains available. Return NULL so the caller can detect this case. */
905 if (!recording_case_labels_p ())
906 return NULL;
908 slot = pointer_map_contains (edge_to_cases, e);
909 if (slot)
910 return (tree) *slot;
912 /* If we did not find E in the hash table, then this must be the first
913 time we have been queried for information about E & T. Add all the
914 elements from T to the hash table then perform the query again. */
916 n = gimple_switch_num_labels (t);
917 for (i = 0; i < n; i++)
919 tree elt = gimple_switch_label (t, i);
920 tree lab = CASE_LABEL (elt);
921 basic_block label_bb = label_to_block (lab);
922 edge this_edge = find_edge (e->src, label_bb);
924 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
925 a new chain. */
926 slot = pointer_map_insert (edge_to_cases, this_edge);
927 TREE_CHAIN (elt) = (tree) *slot;
928 *slot = elt;
931 return (tree) *pointer_map_contains (edge_to_cases, e);
934 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
936 static void
937 make_gimple_switch_edges (basic_block bb)
939 gimple entry = last_stmt (bb);
940 location_t entry_locus;
941 size_t i, n;
943 entry_locus = gimple_location (entry);
945 n = gimple_switch_num_labels (entry);
947 for (i = 0; i < n; ++i)
949 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
950 basic_block label_bb = label_to_block (lab);
951 make_edge (bb, label_bb, 0);
952 assign_discriminator (entry_locus, label_bb);
957 /* Return the basic block holding label DEST. */
959 basic_block
960 label_to_block_fn (struct function *ifun, tree dest)
962 int uid = LABEL_DECL_UID (dest);
964 /* We would die hard when faced by an undefined label. Emit a label to
965 the very first basic block. This will hopefully make even the dataflow
966 and undefined variable warnings quite right. */
967 if ((errorcount || sorrycount) && uid < 0)
969 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
970 gimple stmt;
972 stmt = gimple_build_label (dest);
973 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
974 uid = LABEL_DECL_UID (dest);
976 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
977 <= (unsigned int) uid)
978 return NULL;
979 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
982 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
983 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
985 void
986 make_abnormal_goto_edges (basic_block bb, bool for_call)
988 basic_block target_bb;
989 gimple_stmt_iterator gsi;
991 FOR_EACH_BB (target_bb)
992 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
994 gimple label_stmt = gsi_stmt (gsi);
995 tree target;
997 if (gimple_code (label_stmt) != GIMPLE_LABEL)
998 break;
1000 target = gimple_label_label (label_stmt);
1002 /* Make an edge to every label block that has been marked as a
1003 potential target for a computed goto or a non-local goto. */
1004 if ((FORCED_LABEL (target) && !for_call)
1005 || (DECL_NONLOCAL (target) && for_call))
1007 make_edge (bb, target_bb, EDGE_ABNORMAL);
1008 break;
1013 /* Create edges for a goto statement at block BB. */
1015 static void
1016 make_goto_expr_edges (basic_block bb)
1018 gimple_stmt_iterator last = gsi_last_bb (bb);
1019 gimple goto_t = gsi_stmt (last);
1021 /* A simple GOTO creates normal edges. */
1022 if (simple_goto_p (goto_t))
1024 tree dest = gimple_goto_dest (goto_t);
1025 basic_block label_bb = label_to_block (dest);
1026 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1027 e->goto_locus = gimple_location (goto_t);
1028 assign_discriminator (e->goto_locus, label_bb);
1029 if (e->goto_locus)
1030 e->goto_block = gimple_block (goto_t);
1031 gsi_remove (&last, true);
1032 return;
1035 /* A computed GOTO creates abnormal edges. */
1036 make_abnormal_goto_edges (bb, false);
1039 /* Create edges for an asm statement with labels at block BB. */
1041 static void
1042 make_gimple_asm_edges (basic_block bb)
1044 gimple stmt = last_stmt (bb);
1045 location_t stmt_loc = gimple_location (stmt);
1046 int i, n = gimple_asm_nlabels (stmt);
1048 for (i = 0; i < n; ++i)
1050 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1051 basic_block label_bb = label_to_block (label);
1052 make_edge (bb, label_bb, 0);
1053 assign_discriminator (stmt_loc, label_bb);
1057 /*---------------------------------------------------------------------------
1058 Flowgraph analysis
1059 ---------------------------------------------------------------------------*/
1061 /* Cleanup useless labels in basic blocks. This is something we wish
1062 to do early because it allows us to group case labels before creating
1063 the edges for the CFG, and it speeds up block statement iterators in
1064 all passes later on.
1065 We rerun this pass after CFG is created, to get rid of the labels that
1066 are no longer referenced. After then we do not run it any more, since
1067 (almost) no new labels should be created. */
1069 /* A map from basic block index to the leading label of that block. */
1070 static struct label_record
1072 /* The label. */
1073 tree label;
1075 /* True if the label is referenced from somewhere. */
1076 bool used;
1077 } *label_for_bb;
1079 /* Given LABEL return the first label in the same basic block. */
1081 static tree
1082 main_block_label (tree label)
1084 basic_block bb = label_to_block (label);
1085 tree main_label = label_for_bb[bb->index].label;
1087 /* label_to_block possibly inserted undefined label into the chain. */
1088 if (!main_label)
1090 label_for_bb[bb->index].label = label;
1091 main_label = label;
1094 label_for_bb[bb->index].used = true;
1095 return main_label;
1098 /* Clean up redundant labels within the exception tree. */
1100 static void
1101 cleanup_dead_labels_eh (void)
1103 eh_landing_pad lp;
1104 eh_region r;
1105 tree lab;
1106 int i;
1108 if (cfun->eh == NULL)
1109 return;
1111 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1112 if (lp && lp->post_landing_pad)
1114 lab = main_block_label (lp->post_landing_pad);
1115 if (lab != lp->post_landing_pad)
1117 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1118 EH_LANDING_PAD_NR (lab) = lp->index;
1122 FOR_ALL_EH_REGION (r)
1123 switch (r->type)
1125 case ERT_CLEANUP:
1126 case ERT_MUST_NOT_THROW:
1127 break;
1129 case ERT_TRY:
1131 eh_catch c;
1132 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1134 lab = c->label;
1135 if (lab)
1136 c->label = main_block_label (lab);
1139 break;
1141 case ERT_ALLOWED_EXCEPTIONS:
1142 lab = r->u.allowed.label;
1143 if (lab)
1144 r->u.allowed.label = main_block_label (lab);
1145 break;
1150 /* Cleanup redundant labels. This is a three-step process:
1151 1) Find the leading label for each block.
1152 2) Redirect all references to labels to the leading labels.
1153 3) Cleanup all useless labels. */
1155 void
1156 cleanup_dead_labels (void)
1158 basic_block bb;
1159 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1161 /* Find a suitable label for each block. We use the first user-defined
1162 label if there is one, or otherwise just the first label we see. */
1163 FOR_EACH_BB (bb)
1165 gimple_stmt_iterator i;
1167 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1169 tree label;
1170 gimple stmt = gsi_stmt (i);
1172 if (gimple_code (stmt) != GIMPLE_LABEL)
1173 break;
1175 label = gimple_label_label (stmt);
1177 /* If we have not yet seen a label for the current block,
1178 remember this one and see if there are more labels. */
1179 if (!label_for_bb[bb->index].label)
1181 label_for_bb[bb->index].label = label;
1182 continue;
1185 /* If we did see a label for the current block already, but it
1186 is an artificially created label, replace it if the current
1187 label is a user defined label. */
1188 if (!DECL_ARTIFICIAL (label)
1189 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1191 label_for_bb[bb->index].label = label;
1192 break;
1197 /* Now redirect all jumps/branches to the selected label.
1198 First do so for each block ending in a control statement. */
1199 FOR_EACH_BB (bb)
1201 gimple stmt = last_stmt (bb);
1202 if (!stmt)
1203 continue;
1205 switch (gimple_code (stmt))
1207 case GIMPLE_COND:
1209 tree true_label = gimple_cond_true_label (stmt);
1210 tree false_label = gimple_cond_false_label (stmt);
1212 if (true_label)
1213 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1214 if (false_label)
1215 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1216 break;
1219 case GIMPLE_SWITCH:
1221 size_t i, n = gimple_switch_num_labels (stmt);
1223 /* Replace all destination labels. */
1224 for (i = 0; i < n; ++i)
1226 tree case_label = gimple_switch_label (stmt, i);
1227 tree label = main_block_label (CASE_LABEL (case_label));
1228 CASE_LABEL (case_label) = label;
1230 break;
1233 case GIMPLE_ASM:
1235 int i, n = gimple_asm_nlabels (stmt);
1237 for (i = 0; i < n; ++i)
1239 tree cons = gimple_asm_label_op (stmt, i);
1240 tree label = main_block_label (TREE_VALUE (cons));
1241 TREE_VALUE (cons) = label;
1243 break;
1246 /* We have to handle gotos until they're removed, and we don't
1247 remove them until after we've created the CFG edges. */
1248 case GIMPLE_GOTO:
1249 if (!computed_goto_p (stmt))
1251 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1252 gimple_goto_set_dest (stmt, new_dest);
1254 break;
1256 default:
1257 break;
1261 /* Do the same for the exception region tree labels. */
1262 cleanup_dead_labels_eh ();
1264 /* Finally, purge dead labels. All user-defined labels and labels that
1265 can be the target of non-local gotos and labels which have their
1266 address taken are preserved. */
1267 FOR_EACH_BB (bb)
1269 gimple_stmt_iterator i;
1270 tree label_for_this_bb = label_for_bb[bb->index].label;
1272 if (!label_for_this_bb)
1273 continue;
1275 /* If the main label of the block is unused, we may still remove it. */
1276 if (!label_for_bb[bb->index].used)
1277 label_for_this_bb = NULL;
1279 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1281 tree label;
1282 gimple stmt = gsi_stmt (i);
1284 if (gimple_code (stmt) != GIMPLE_LABEL)
1285 break;
1287 label = gimple_label_label (stmt);
1289 if (label == label_for_this_bb
1290 || !DECL_ARTIFICIAL (label)
1291 || DECL_NONLOCAL (label)
1292 || FORCED_LABEL (label))
1293 gsi_next (&i);
1294 else
1295 gsi_remove (&i, true);
1299 free (label_for_bb);
1302 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1303 the ones jumping to the same label.
1304 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1306 static void
1307 group_case_labels_stmt (gimple stmt)
1309 int old_size = gimple_switch_num_labels (stmt);
1310 int i, j, new_size = old_size;
1311 tree default_case = NULL_TREE;
1312 tree default_label = NULL_TREE;
1313 bool has_default;
1315 /* The default label is always the first case in a switch
1316 statement after gimplification if it was not optimized
1317 away */
1318 if (!CASE_LOW (gimple_switch_default_label (stmt))
1319 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1321 default_case = gimple_switch_default_label (stmt);
1322 default_label = CASE_LABEL (default_case);
1323 has_default = true;
1325 else
1326 has_default = false;
1328 /* Look for possible opportunities to merge cases. */
1329 if (has_default)
1330 i = 1;
1331 else
1332 i = 0;
1333 while (i < old_size)
1335 tree base_case, base_label, base_high;
1336 base_case = gimple_switch_label (stmt, i);
1338 gcc_assert (base_case);
1339 base_label = CASE_LABEL (base_case);
1341 /* Discard cases that have the same destination as the
1342 default case. */
1343 if (base_label == default_label)
1345 gimple_switch_set_label (stmt, i, NULL_TREE);
1346 i++;
1347 new_size--;
1348 continue;
1351 base_high = CASE_HIGH (base_case)
1352 ? CASE_HIGH (base_case)
1353 : CASE_LOW (base_case);
1354 i++;
1356 /* Try to merge case labels. Break out when we reach the end
1357 of the label vector or when we cannot merge the next case
1358 label with the current one. */
1359 while (i < old_size)
1361 tree merge_case = gimple_switch_label (stmt, i);
1362 tree merge_label = CASE_LABEL (merge_case);
1363 tree t = int_const_binop (PLUS_EXPR, base_high,
1364 integer_one_node, 1);
1366 /* Merge the cases if they jump to the same place,
1367 and their ranges are consecutive. */
1368 if (merge_label == base_label
1369 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1371 base_high = CASE_HIGH (merge_case) ?
1372 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1373 CASE_HIGH (base_case) = base_high;
1374 gimple_switch_set_label (stmt, i, NULL_TREE);
1375 new_size--;
1376 i++;
1378 else
1379 break;
1383 /* Compress the case labels in the label vector, and adjust the
1384 length of the vector. */
1385 for (i = 0, j = 0; i < new_size; i++)
1387 while (! gimple_switch_label (stmt, j))
1388 j++;
1389 gimple_switch_set_label (stmt, i,
1390 gimple_switch_label (stmt, j++));
1393 gcc_assert (new_size <= old_size);
1394 gimple_switch_set_num_labels (stmt, new_size);
1397 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1398 and scan the sorted vector of cases. Combine the ones jumping to the
1399 same label. */
1401 void
1402 group_case_labels (void)
1404 basic_block bb;
1406 FOR_EACH_BB (bb)
1408 gimple stmt = last_stmt (bb);
1409 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1410 group_case_labels_stmt (stmt);
1414 /* Checks whether we can merge block B into block A. */
1416 static bool
1417 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1419 gimple stmt;
1420 gimple_stmt_iterator gsi;
1421 gimple_seq phis;
1423 if (!single_succ_p (a))
1424 return false;
1426 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1427 return false;
1429 if (single_succ (a) != b)
1430 return false;
1432 if (!single_pred_p (b))
1433 return false;
1435 if (b == EXIT_BLOCK_PTR)
1436 return false;
1438 /* If A ends by a statement causing exceptions or something similar, we
1439 cannot merge the blocks. */
1440 stmt = last_stmt (a);
1441 if (stmt && stmt_ends_bb_p (stmt))
1442 return false;
1444 /* Do not allow a block with only a non-local label to be merged. */
1445 if (stmt
1446 && gimple_code (stmt) == GIMPLE_LABEL
1447 && DECL_NONLOCAL (gimple_label_label (stmt)))
1448 return false;
1450 /* Examine the labels at the beginning of B. */
1451 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1453 tree lab;
1454 stmt = gsi_stmt (gsi);
1455 if (gimple_code (stmt) != GIMPLE_LABEL)
1456 break;
1457 lab = gimple_label_label (stmt);
1459 /* Do not remove user labels. */
1460 if (!DECL_ARTIFICIAL (lab))
1461 return false;
1464 /* Protect the loop latches. */
1465 if (current_loops && b->loop_father->latch == b)
1466 return false;
1468 /* It must be possible to eliminate all phi nodes in B. If ssa form
1469 is not up-to-date and a name-mapping is registered, we cannot eliminate
1470 any phis. Symbols marked for renaming are never a problem though. */
1471 phis = phi_nodes (b);
1472 if (!gimple_seq_empty_p (phis)
1473 && name_mappings_registered_p ())
1474 return false;
1476 return true;
1479 /* Return true if the var whose chain of uses starts at PTR has no
1480 nondebug uses. */
1481 bool
1482 has_zero_uses_1 (const ssa_use_operand_t *head)
1484 const ssa_use_operand_t *ptr;
1486 for (ptr = head->next; ptr != head; ptr = ptr->next)
1487 if (!is_gimple_debug (USE_STMT (ptr)))
1488 return false;
1490 return true;
1493 /* Return true if the var whose chain of uses starts at PTR has a
1494 single nondebug use. Set USE_P and STMT to that single nondebug
1495 use, if so, or to NULL otherwise. */
1496 bool
1497 single_imm_use_1 (const ssa_use_operand_t *head,
1498 use_operand_p *use_p, gimple *stmt)
1500 ssa_use_operand_t *ptr, *single_use = 0;
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1505 if (single_use)
1507 single_use = NULL;
1508 break;
1510 single_use = ptr;
1513 if (use_p)
1514 *use_p = single_use;
1516 if (stmt)
1517 *stmt = single_use ? single_use->loc.stmt : NULL;
1519 return !!single_use;
1522 /* Replaces all uses of NAME by VAL. */
1524 void
1525 replace_uses_by (tree name, tree val)
1527 imm_use_iterator imm_iter;
1528 use_operand_p use;
1529 gimple stmt;
1530 edge e;
1532 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1534 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1536 replace_exp (use, val);
1538 if (gimple_code (stmt) == GIMPLE_PHI)
1540 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1541 if (e->flags & EDGE_ABNORMAL)
1543 /* This can only occur for virtual operands, since
1544 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1545 would prevent replacement. */
1546 gcc_assert (!is_gimple_reg (name));
1547 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1552 if (gimple_code (stmt) != GIMPLE_PHI)
1554 size_t i;
1556 fold_stmt_inplace (stmt);
1557 if (cfgcleanup_altered_bbs)
1558 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1560 /* FIXME. This should go in update_stmt. */
1561 for (i = 0; i < gimple_num_ops (stmt); i++)
1563 tree op = gimple_op (stmt, i);
1564 /* Operands may be empty here. For example, the labels
1565 of a GIMPLE_COND are nulled out following the creation
1566 of the corresponding CFG edges. */
1567 if (op && TREE_CODE (op) == ADDR_EXPR)
1568 recompute_tree_invariant_for_addr_expr (op);
1571 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1572 update_stmt (stmt);
1576 gcc_assert (has_zero_uses (name));
1578 /* Also update the trees stored in loop structures. */
1579 if (current_loops)
1581 struct loop *loop;
1582 loop_iterator li;
1584 FOR_EACH_LOOP (li, loop, 0)
1586 substitute_in_loop_info (loop, name, val);
1591 /* Merge block B into block A. */
1593 static void
1594 gimple_merge_blocks (basic_block a, basic_block b)
1596 gimple_stmt_iterator last, gsi, psi;
1597 gimple_seq phis = phi_nodes (b);
1599 if (dump_file)
1600 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1602 /* Remove all single-valued PHI nodes from block B of the form
1603 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1604 gsi = gsi_last_bb (a);
1605 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1607 gimple phi = gsi_stmt (psi);
1608 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1609 gimple copy;
1610 bool may_replace_uses = !is_gimple_reg (def)
1611 || may_propagate_copy (def, use);
1613 /* In case we maintain loop closed ssa form, do not propagate arguments
1614 of loop exit phi nodes. */
1615 if (current_loops
1616 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1617 && is_gimple_reg (def)
1618 && TREE_CODE (use) == SSA_NAME
1619 && a->loop_father != b->loop_father)
1620 may_replace_uses = false;
1622 if (!may_replace_uses)
1624 gcc_assert (is_gimple_reg (def));
1626 /* Note that just emitting the copies is fine -- there is no problem
1627 with ordering of phi nodes. This is because A is the single
1628 predecessor of B, therefore results of the phi nodes cannot
1629 appear as arguments of the phi nodes. */
1630 copy = gimple_build_assign (def, use);
1631 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1632 remove_phi_node (&psi, false);
1634 else
1636 /* If we deal with a PHI for virtual operands, we can simply
1637 propagate these without fussing with folding or updating
1638 the stmt. */
1639 if (!is_gimple_reg (def))
1641 imm_use_iterator iter;
1642 use_operand_p use_p;
1643 gimple stmt;
1645 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1646 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1647 SET_USE (use_p, use);
1649 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1650 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1652 else
1653 replace_uses_by (def, use);
1655 remove_phi_node (&psi, true);
1659 /* Ensure that B follows A. */
1660 move_block_after (b, a);
1662 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1663 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1665 /* Remove labels from B and set gimple_bb to A for other statements. */
1666 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1668 gimple stmt = gsi_stmt (gsi);
1669 if (gimple_code (stmt) == GIMPLE_LABEL)
1671 tree label = gimple_label_label (stmt);
1672 int lp_nr;
1674 gsi_remove (&gsi, false);
1676 /* Now that we can thread computed gotos, we might have
1677 a situation where we have a forced label in block B
1678 However, the label at the start of block B might still be
1679 used in other ways (think about the runtime checking for
1680 Fortran assigned gotos). So we can not just delete the
1681 label. Instead we move the label to the start of block A. */
1682 if (FORCED_LABEL (label))
1684 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1685 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1688 lp_nr = EH_LANDING_PAD_NR (label);
1689 if (lp_nr)
1691 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1692 lp->post_landing_pad = NULL;
1695 else
1697 gimple_set_bb (stmt, a);
1698 gsi_next (&gsi);
1702 /* Merge the sequences. */
1703 last = gsi_last_bb (a);
1704 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1705 set_bb_seq (b, NULL);
1707 if (cfgcleanup_altered_bbs)
1708 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1712 /* Return the one of two successors of BB that is not reachable by a
1713 complex edge, if there is one. Else, return BB. We use
1714 this in optimizations that use post-dominators for their heuristics,
1715 to catch the cases in C++ where function calls are involved. */
1717 basic_block
1718 single_noncomplex_succ (basic_block bb)
1720 edge e0, e1;
1721 if (EDGE_COUNT (bb->succs) != 2)
1722 return bb;
1724 e0 = EDGE_SUCC (bb, 0);
1725 e1 = EDGE_SUCC (bb, 1);
1726 if (e0->flags & EDGE_COMPLEX)
1727 return e1->dest;
1728 if (e1->flags & EDGE_COMPLEX)
1729 return e0->dest;
1731 return bb;
1734 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1736 void
1737 notice_special_calls (gimple call)
1739 int flags = gimple_call_flags (call);
1741 if (flags & ECF_MAY_BE_ALLOCA)
1742 cfun->calls_alloca = true;
1743 if (flags & ECF_RETURNS_TWICE)
1744 cfun->calls_setjmp = true;
1748 /* Clear flags set by notice_special_calls. Used by dead code removal
1749 to update the flags. */
1751 void
1752 clear_special_calls (void)
1754 cfun->calls_alloca = false;
1755 cfun->calls_setjmp = false;
1758 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1760 static void
1761 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1763 /* Since this block is no longer reachable, we can just delete all
1764 of its PHI nodes. */
1765 remove_phi_nodes (bb);
1767 /* Remove edges to BB's successors. */
1768 while (EDGE_COUNT (bb->succs) > 0)
1769 remove_edge (EDGE_SUCC (bb, 0));
1773 /* Remove statements of basic block BB. */
1775 static void
1776 remove_bb (basic_block bb)
1778 gimple_stmt_iterator i;
1780 if (dump_file)
1782 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1783 if (dump_flags & TDF_DETAILS)
1785 dump_bb (bb, dump_file, 0);
1786 fprintf (dump_file, "\n");
1790 if (current_loops)
1792 struct loop *loop = bb->loop_father;
1794 /* If a loop gets removed, clean up the information associated
1795 with it. */
1796 if (loop->latch == bb
1797 || loop->header == bb)
1798 free_numbers_of_iterations_estimates_loop (loop);
1801 /* Remove all the instructions in the block. */
1802 if (bb_seq (bb) != NULL)
1804 /* Walk backwards so as to get a chance to substitute all
1805 released DEFs into debug stmts. See
1806 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1807 details. */
1808 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1810 gimple stmt = gsi_stmt (i);
1811 if (gimple_code (stmt) == GIMPLE_LABEL
1812 && (FORCED_LABEL (gimple_label_label (stmt))
1813 || DECL_NONLOCAL (gimple_label_label (stmt))))
1815 basic_block new_bb;
1816 gimple_stmt_iterator new_gsi;
1818 /* A non-reachable non-local label may still be referenced.
1819 But it no longer needs to carry the extra semantics of
1820 non-locality. */
1821 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1823 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1824 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1827 new_bb = bb->prev_bb;
1828 new_gsi = gsi_start_bb (new_bb);
1829 gsi_remove (&i, false);
1830 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1832 else
1834 /* Release SSA definitions if we are in SSA. Note that we
1835 may be called when not in SSA. For example,
1836 final_cleanup calls this function via
1837 cleanup_tree_cfg. */
1838 if (gimple_in_ssa_p (cfun))
1839 release_defs (stmt);
1841 gsi_remove (&i, true);
1844 if (gsi_end_p (i))
1845 i = gsi_last_bb (bb);
1846 else
1847 gsi_prev (&i);
1851 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1852 bb->il.gimple = NULL;
1856 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1857 predicate VAL, return the edge that will be taken out of the block.
1858 If VAL does not match a unique edge, NULL is returned. */
1860 edge
1861 find_taken_edge (basic_block bb, tree val)
1863 gimple stmt;
1865 stmt = last_stmt (bb);
1867 gcc_assert (stmt);
1868 gcc_assert (is_ctrl_stmt (stmt));
1870 if (val == NULL)
1871 return NULL;
1873 if (!is_gimple_min_invariant (val))
1874 return NULL;
1876 if (gimple_code (stmt) == GIMPLE_COND)
1877 return find_taken_edge_cond_expr (bb, val);
1879 if (gimple_code (stmt) == GIMPLE_SWITCH)
1880 return find_taken_edge_switch_expr (bb, val);
1882 if (computed_goto_p (stmt))
1884 /* Only optimize if the argument is a label, if the argument is
1885 not a label then we can not construct a proper CFG.
1887 It may be the case that we only need to allow the LABEL_REF to
1888 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1889 appear inside a LABEL_EXPR just to be safe. */
1890 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1891 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1892 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1893 return NULL;
1896 gcc_unreachable ();
1899 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1900 statement, determine which of the outgoing edges will be taken out of the
1901 block. Return NULL if either edge may be taken. */
1903 static edge
1904 find_taken_edge_computed_goto (basic_block bb, tree val)
1906 basic_block dest;
1907 edge e = NULL;
1909 dest = label_to_block (val);
1910 if (dest)
1912 e = find_edge (bb, dest);
1913 gcc_assert (e != NULL);
1916 return e;
1919 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1920 statement, determine which of the two edges will be taken out of the
1921 block. Return NULL if either edge may be taken. */
1923 static edge
1924 find_taken_edge_cond_expr (basic_block bb, tree val)
1926 edge true_edge, false_edge;
1928 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1930 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1931 return (integer_zerop (val) ? false_edge : true_edge);
1934 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1935 statement, determine which edge will be taken out of the block. Return
1936 NULL if any edge may be taken. */
1938 static edge
1939 find_taken_edge_switch_expr (basic_block bb, tree val)
1941 basic_block dest_bb;
1942 edge e;
1943 gimple switch_stmt;
1944 tree taken_case;
1946 switch_stmt = last_stmt (bb);
1947 taken_case = find_case_label_for_value (switch_stmt, val);
1948 dest_bb = label_to_block (CASE_LABEL (taken_case));
1950 e = find_edge (bb, dest_bb);
1951 gcc_assert (e);
1952 return e;
1956 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1957 We can make optimal use here of the fact that the case labels are
1958 sorted: We can do a binary search for a case matching VAL. */
1960 static tree
1961 find_case_label_for_value (gimple switch_stmt, tree val)
1963 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1964 tree default_case = gimple_switch_default_label (switch_stmt);
1966 for (low = 0, high = n; high - low > 1; )
1968 size_t i = (high + low) / 2;
1969 tree t = gimple_switch_label (switch_stmt, i);
1970 int cmp;
1972 /* Cache the result of comparing CASE_LOW and val. */
1973 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1975 if (cmp > 0)
1976 high = i;
1977 else
1978 low = i;
1980 if (CASE_HIGH (t) == NULL)
1982 /* A singe-valued case label. */
1983 if (cmp == 0)
1984 return t;
1986 else
1988 /* A case range. We can only handle integer ranges. */
1989 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
1990 return t;
1994 return default_case;
1998 /* Dump a basic block on stderr. */
2000 void
2001 gimple_debug_bb (basic_block bb)
2003 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2007 /* Dump basic block with index N on stderr. */
2009 basic_block
2010 gimple_debug_bb_n (int n)
2012 gimple_debug_bb (BASIC_BLOCK (n));
2013 return BASIC_BLOCK (n);
2017 /* Dump the CFG on stderr.
2019 FLAGS are the same used by the tree dumping functions
2020 (see TDF_* in tree-pass.h). */
2022 void
2023 gimple_debug_cfg (int flags)
2025 gimple_dump_cfg (stderr, flags);
2029 /* Dump the program showing basic block boundaries on the given FILE.
2031 FLAGS are the same used by the tree dumping functions (see TDF_* in
2032 tree.h). */
2034 void
2035 gimple_dump_cfg (FILE *file, int flags)
2037 if (flags & TDF_DETAILS)
2039 const char *funcname
2040 = lang_hooks.decl_printable_name (current_function_decl, 2);
2042 fputc ('\n', file);
2043 fprintf (file, ";; Function %s\n\n", funcname);
2044 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2045 n_basic_blocks, n_edges, last_basic_block);
2047 brief_dump_cfg (file);
2048 fprintf (file, "\n");
2051 if (flags & TDF_STATS)
2052 dump_cfg_stats (file);
2054 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2058 /* Dump CFG statistics on FILE. */
2060 void
2061 dump_cfg_stats (FILE *file)
2063 static long max_num_merged_labels = 0;
2064 unsigned long size, total = 0;
2065 long num_edges;
2066 basic_block bb;
2067 const char * const fmt_str = "%-30s%-13s%12s\n";
2068 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2069 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2070 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2071 const char *funcname
2072 = lang_hooks.decl_printable_name (current_function_decl, 2);
2075 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2077 fprintf (file, "---------------------------------------------------------\n");
2078 fprintf (file, fmt_str, "", " Number of ", "Memory");
2079 fprintf (file, fmt_str, "", " instances ", "used ");
2080 fprintf (file, "---------------------------------------------------------\n");
2082 size = n_basic_blocks * sizeof (struct basic_block_def);
2083 total += size;
2084 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2085 SCALE (size), LABEL (size));
2087 num_edges = 0;
2088 FOR_EACH_BB (bb)
2089 num_edges += EDGE_COUNT (bb->succs);
2090 size = num_edges * sizeof (struct edge_def);
2091 total += size;
2092 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2094 fprintf (file, "---------------------------------------------------------\n");
2095 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2096 LABEL (total));
2097 fprintf (file, "---------------------------------------------------------\n");
2098 fprintf (file, "\n");
2100 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2101 max_num_merged_labels = cfg_stats.num_merged_labels;
2103 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2104 cfg_stats.num_merged_labels, max_num_merged_labels);
2106 fprintf (file, "\n");
2110 /* Dump CFG statistics on stderr. Keep extern so that it's always
2111 linked in the final executable. */
2113 void
2114 debug_cfg_stats (void)
2116 dump_cfg_stats (stderr);
2120 /* Dump the flowgraph to a .vcg FILE. */
2122 static void
2123 gimple_cfg2vcg (FILE *file)
2125 edge e;
2126 edge_iterator ei;
2127 basic_block bb;
2128 const char *funcname
2129 = lang_hooks.decl_printable_name (current_function_decl, 2);
2131 /* Write the file header. */
2132 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2133 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2134 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2136 /* Write blocks and edges. */
2137 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2139 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2140 e->dest->index);
2142 if (e->flags & EDGE_FAKE)
2143 fprintf (file, " linestyle: dotted priority: 10");
2144 else
2145 fprintf (file, " linestyle: solid priority: 100");
2147 fprintf (file, " }\n");
2149 fputc ('\n', file);
2151 FOR_EACH_BB (bb)
2153 enum gimple_code head_code, end_code;
2154 const char *head_name, *end_name;
2155 int head_line = 0;
2156 int end_line = 0;
2157 gimple first = first_stmt (bb);
2158 gimple last = last_stmt (bb);
2160 if (first)
2162 head_code = gimple_code (first);
2163 head_name = gimple_code_name[head_code];
2164 head_line = get_lineno (first);
2166 else
2167 head_name = "no-statement";
2169 if (last)
2171 end_code = gimple_code (last);
2172 end_name = gimple_code_name[end_code];
2173 end_line = get_lineno (last);
2175 else
2176 end_name = "no-statement";
2178 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2179 bb->index, bb->index, head_name, head_line, end_name,
2180 end_line);
2182 FOR_EACH_EDGE (e, ei, bb->succs)
2184 if (e->dest == EXIT_BLOCK_PTR)
2185 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2186 else
2187 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2189 if (e->flags & EDGE_FAKE)
2190 fprintf (file, " priority: 10 linestyle: dotted");
2191 else
2192 fprintf (file, " priority: 100 linestyle: solid");
2194 fprintf (file, " }\n");
2197 if (bb->next_bb != EXIT_BLOCK_PTR)
2198 fputc ('\n', file);
2201 fputs ("}\n\n", file);
2206 /*---------------------------------------------------------------------------
2207 Miscellaneous helpers
2208 ---------------------------------------------------------------------------*/
2210 /* Return true if T represents a stmt that always transfers control. */
2212 bool
2213 is_ctrl_stmt (gimple t)
2215 switch (gimple_code (t))
2217 case GIMPLE_COND:
2218 case GIMPLE_SWITCH:
2219 case GIMPLE_GOTO:
2220 case GIMPLE_RETURN:
2221 case GIMPLE_RESX:
2222 return true;
2223 default:
2224 return false;
2229 /* Return true if T is a statement that may alter the flow of control
2230 (e.g., a call to a non-returning function). */
2232 bool
2233 is_ctrl_altering_stmt (gimple t)
2235 gcc_assert (t);
2237 switch (gimple_code (t))
2239 case GIMPLE_CALL:
2241 int flags = gimple_call_flags (t);
2243 /* A non-pure/const call alters flow control if the current
2244 function has nonlocal labels. */
2245 if (!(flags & (ECF_CONST | ECF_PURE)) && cfun->has_nonlocal_label)
2246 return true;
2248 /* A call also alters control flow if it does not return. */
2249 if (flags & ECF_NORETURN)
2250 return true;
2252 break;
2254 case GIMPLE_EH_DISPATCH:
2255 /* EH_DISPATCH branches to the individual catch handlers at
2256 this level of a try or allowed-exceptions region. It can
2257 fallthru to the next statement as well. */
2258 return true;
2260 case GIMPLE_ASM:
2261 if (gimple_asm_nlabels (t) > 0)
2262 return true;
2263 break;
2265 CASE_GIMPLE_OMP:
2266 /* OpenMP directives alter control flow. */
2267 return true;
2269 default:
2270 break;
2273 /* If a statement can throw, it alters control flow. */
2274 return stmt_can_throw_internal (t);
2278 /* Return true if T is a simple local goto. */
2280 bool
2281 simple_goto_p (gimple t)
2283 return (gimple_code (t) == GIMPLE_GOTO
2284 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2288 /* Return true if T can make an abnormal transfer of control flow.
2289 Transfers of control flow associated with EH are excluded. */
2291 bool
2292 stmt_can_make_abnormal_goto (gimple t)
2294 if (computed_goto_p (t))
2295 return true;
2296 if (is_gimple_call (t))
2297 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
2298 return false;
2302 /* Return true if STMT should start a new basic block. PREV_STMT is
2303 the statement preceding STMT. It is used when STMT is a label or a
2304 case label. Labels should only start a new basic block if their
2305 previous statement wasn't a label. Otherwise, sequence of labels
2306 would generate unnecessary basic blocks that only contain a single
2307 label. */
2309 static inline bool
2310 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2312 if (stmt == NULL)
2313 return false;
2315 /* Labels start a new basic block only if the preceding statement
2316 wasn't a label of the same type. This prevents the creation of
2317 consecutive blocks that have nothing but a single label. */
2318 if (gimple_code (stmt) == GIMPLE_LABEL)
2320 /* Nonlocal and computed GOTO targets always start a new block. */
2321 if (DECL_NONLOCAL (gimple_label_label (stmt))
2322 || FORCED_LABEL (gimple_label_label (stmt)))
2323 return true;
2325 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2327 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2328 return true;
2330 cfg_stats.num_merged_labels++;
2331 return false;
2333 else
2334 return true;
2337 return false;
2341 /* Return true if T should end a basic block. */
2343 bool
2344 stmt_ends_bb_p (gimple t)
2346 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2349 /* Remove block annotations and other data structures. */
2351 void
2352 delete_tree_cfg_annotations (void)
2354 label_to_block_map = NULL;
2358 /* Return the first statement in basic block BB. */
2360 gimple
2361 first_stmt (basic_block bb)
2363 gimple_stmt_iterator i = gsi_start_bb (bb);
2364 gimple stmt = NULL;
2366 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2368 gsi_next (&i);
2369 stmt = NULL;
2371 return stmt;
2374 /* Return the first non-label statement in basic block BB. */
2376 static gimple
2377 first_non_label_stmt (basic_block bb)
2379 gimple_stmt_iterator i = gsi_start_bb (bb);
2380 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2381 gsi_next (&i);
2382 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2385 /* Return the last statement in basic block BB. */
2387 gimple
2388 last_stmt (basic_block bb)
2390 gimple_stmt_iterator i = gsi_last_bb (bb);
2391 gimple stmt = NULL;
2393 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2395 gsi_prev (&i);
2396 stmt = NULL;
2398 return stmt;
2401 /* Return the last statement of an otherwise empty block. Return NULL
2402 if the block is totally empty, or if it contains more than one
2403 statement. */
2405 gimple
2406 last_and_only_stmt (basic_block bb)
2408 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2409 gimple last, prev;
2411 if (gsi_end_p (i))
2412 return NULL;
2414 last = gsi_stmt (i);
2415 gsi_prev_nondebug (&i);
2416 if (gsi_end_p (i))
2417 return last;
2419 /* Empty statements should no longer appear in the instruction stream.
2420 Everything that might have appeared before should be deleted by
2421 remove_useless_stmts, and the optimizers should just gsi_remove
2422 instead of smashing with build_empty_stmt.
2424 Thus the only thing that should appear here in a block containing
2425 one executable statement is a label. */
2426 prev = gsi_stmt (i);
2427 if (gimple_code (prev) == GIMPLE_LABEL)
2428 return last;
2429 else
2430 return NULL;
2433 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2435 static void
2436 reinstall_phi_args (edge new_edge, edge old_edge)
2438 edge_var_map_vector v;
2439 edge_var_map *vm;
2440 int i;
2441 gimple_stmt_iterator phis;
2443 v = redirect_edge_var_map_vector (old_edge);
2444 if (!v)
2445 return;
2447 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2448 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2449 i++, gsi_next (&phis))
2451 gimple phi = gsi_stmt (phis);
2452 tree result = redirect_edge_var_map_result (vm);
2453 tree arg = redirect_edge_var_map_def (vm);
2455 gcc_assert (result == gimple_phi_result (phi));
2457 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2460 redirect_edge_var_map_clear (old_edge);
2463 /* Returns the basic block after which the new basic block created
2464 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2465 near its "logical" location. This is of most help to humans looking
2466 at debugging dumps. */
2468 static basic_block
2469 split_edge_bb_loc (edge edge_in)
2471 basic_block dest = edge_in->dest;
2472 basic_block dest_prev = dest->prev_bb;
2474 if (dest_prev)
2476 edge e = find_edge (dest_prev, dest);
2477 if (e && !(e->flags & EDGE_COMPLEX))
2478 return edge_in->src;
2480 return dest_prev;
2483 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2484 Abort on abnormal edges. */
2486 static basic_block
2487 gimple_split_edge (edge edge_in)
2489 basic_block new_bb, after_bb, dest;
2490 edge new_edge, e;
2492 /* Abnormal edges cannot be split. */
2493 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2495 dest = edge_in->dest;
2497 after_bb = split_edge_bb_loc (edge_in);
2499 new_bb = create_empty_bb (after_bb);
2500 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2501 new_bb->count = edge_in->count;
2502 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2503 new_edge->probability = REG_BR_PROB_BASE;
2504 new_edge->count = edge_in->count;
2506 e = redirect_edge_and_branch (edge_in, new_bb);
2507 gcc_assert (e == edge_in);
2508 reinstall_phi_args (new_edge, e);
2510 return new_bb;
2513 /* Callback for walk_tree, check that all elements with address taken are
2514 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2515 inside a PHI node. */
2517 static tree
2518 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2520 tree t = *tp, x;
2522 if (TYPE_P (t))
2523 *walk_subtrees = 0;
2525 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2526 #define CHECK_OP(N, MSG) \
2527 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2528 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2530 switch (TREE_CODE (t))
2532 case SSA_NAME:
2533 if (SSA_NAME_IN_FREE_LIST (t))
2535 error ("SSA name in freelist but still referenced");
2536 return *tp;
2538 break;
2540 case INDIRECT_REF:
2541 x = TREE_OPERAND (t, 0);
2542 if (!is_gimple_reg (x) && !is_gimple_min_invariant (x))
2544 error ("Indirect reference's operand is not a register or a constant.");
2545 return x;
2547 break;
2549 case ASSERT_EXPR:
2550 x = fold (ASSERT_EXPR_COND (t));
2551 if (x == boolean_false_node)
2553 error ("ASSERT_EXPR with an always-false condition");
2554 return *tp;
2556 break;
2558 case MODIFY_EXPR:
2559 error ("MODIFY_EXPR not expected while having tuples.");
2560 return *tp;
2562 case ADDR_EXPR:
2564 bool old_constant;
2565 bool old_side_effects;
2566 bool new_constant;
2567 bool new_side_effects;
2569 gcc_assert (is_gimple_address (t));
2571 old_constant = TREE_CONSTANT (t);
2572 old_side_effects = TREE_SIDE_EFFECTS (t);
2574 recompute_tree_invariant_for_addr_expr (t);
2575 new_side_effects = TREE_SIDE_EFFECTS (t);
2576 new_constant = TREE_CONSTANT (t);
2578 if (old_constant != new_constant)
2580 error ("constant not recomputed when ADDR_EXPR changed");
2581 return t;
2583 if (old_side_effects != new_side_effects)
2585 error ("side effects not recomputed when ADDR_EXPR changed");
2586 return t;
2589 /* Skip any references (they will be checked when we recurse down the
2590 tree) and ensure that any variable used as a prefix is marked
2591 addressable. */
2592 for (x = TREE_OPERAND (t, 0);
2593 handled_component_p (x);
2594 x = TREE_OPERAND (x, 0))
2597 if (!(TREE_CODE (x) == VAR_DECL
2598 || TREE_CODE (x) == PARM_DECL
2599 || TREE_CODE (x) == RESULT_DECL))
2600 return NULL;
2601 if (!TREE_ADDRESSABLE (x))
2603 error ("address taken, but ADDRESSABLE bit not set");
2604 return x;
2606 if (DECL_GIMPLE_REG_P (x))
2608 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2609 return x;
2612 break;
2615 case COND_EXPR:
2616 x = COND_EXPR_COND (t);
2617 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2619 error ("non-integral used in condition");
2620 return x;
2622 if (!is_gimple_condexpr (x))
2624 error ("invalid conditional operand");
2625 return x;
2627 break;
2629 case NON_LVALUE_EXPR:
2630 gcc_unreachable ();
2632 CASE_CONVERT:
2633 case FIX_TRUNC_EXPR:
2634 case FLOAT_EXPR:
2635 case NEGATE_EXPR:
2636 case ABS_EXPR:
2637 case BIT_NOT_EXPR:
2638 case TRUTH_NOT_EXPR:
2639 CHECK_OP (0, "invalid operand to unary operator");
2640 break;
2642 case REALPART_EXPR:
2643 case IMAGPART_EXPR:
2644 case COMPONENT_REF:
2645 case ARRAY_REF:
2646 case ARRAY_RANGE_REF:
2647 case BIT_FIELD_REF:
2648 case VIEW_CONVERT_EXPR:
2649 /* We have a nest of references. Verify that each of the operands
2650 that determine where to reference is either a constant or a variable,
2651 verify that the base is valid, and then show we've already checked
2652 the subtrees. */
2653 while (handled_component_p (t))
2655 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2656 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2657 else if (TREE_CODE (t) == ARRAY_REF
2658 || TREE_CODE (t) == ARRAY_RANGE_REF)
2660 CHECK_OP (1, "invalid array index");
2661 if (TREE_OPERAND (t, 2))
2662 CHECK_OP (2, "invalid array lower bound");
2663 if (TREE_OPERAND (t, 3))
2664 CHECK_OP (3, "invalid array stride");
2666 else if (TREE_CODE (t) == BIT_FIELD_REF)
2668 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2669 || !host_integerp (TREE_OPERAND (t, 2), 1))
2671 error ("invalid position or size operand to BIT_FIELD_REF");
2672 return t;
2674 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2675 && (TYPE_PRECISION (TREE_TYPE (t))
2676 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2678 error ("integral result type precision does not match "
2679 "field size of BIT_FIELD_REF");
2680 return t;
2682 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2683 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2684 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2686 error ("mode precision of non-integral result does not "
2687 "match field size of BIT_FIELD_REF");
2688 return t;
2692 t = TREE_OPERAND (t, 0);
2695 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2697 error ("invalid reference prefix");
2698 return t;
2700 *walk_subtrees = 0;
2701 break;
2702 case PLUS_EXPR:
2703 case MINUS_EXPR:
2704 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2705 POINTER_PLUS_EXPR. */
2706 if (POINTER_TYPE_P (TREE_TYPE (t)))
2708 error ("invalid operand to plus/minus, type is a pointer");
2709 return t;
2711 CHECK_OP (0, "invalid operand to binary operator");
2712 CHECK_OP (1, "invalid operand to binary operator");
2713 break;
2715 case POINTER_PLUS_EXPR:
2716 /* Check to make sure the first operand is a pointer or reference type. */
2717 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2719 error ("invalid operand to pointer plus, first operand is not a pointer");
2720 return t;
2722 /* Check to make sure the second operand is an integer with type of
2723 sizetype. */
2724 if (!useless_type_conversion_p (sizetype,
2725 TREE_TYPE (TREE_OPERAND (t, 1))))
2727 error ("invalid operand to pointer plus, second operand is not an "
2728 "integer with type of sizetype.");
2729 return t;
2731 /* FALLTHROUGH */
2732 case LT_EXPR:
2733 case LE_EXPR:
2734 case GT_EXPR:
2735 case GE_EXPR:
2736 case EQ_EXPR:
2737 case NE_EXPR:
2738 case UNORDERED_EXPR:
2739 case ORDERED_EXPR:
2740 case UNLT_EXPR:
2741 case UNLE_EXPR:
2742 case UNGT_EXPR:
2743 case UNGE_EXPR:
2744 case UNEQ_EXPR:
2745 case LTGT_EXPR:
2746 case MULT_EXPR:
2747 case TRUNC_DIV_EXPR:
2748 case CEIL_DIV_EXPR:
2749 case FLOOR_DIV_EXPR:
2750 case ROUND_DIV_EXPR:
2751 case TRUNC_MOD_EXPR:
2752 case CEIL_MOD_EXPR:
2753 case FLOOR_MOD_EXPR:
2754 case ROUND_MOD_EXPR:
2755 case RDIV_EXPR:
2756 case EXACT_DIV_EXPR:
2757 case MIN_EXPR:
2758 case MAX_EXPR:
2759 case LSHIFT_EXPR:
2760 case RSHIFT_EXPR:
2761 case LROTATE_EXPR:
2762 case RROTATE_EXPR:
2763 case BIT_IOR_EXPR:
2764 case BIT_XOR_EXPR:
2765 case BIT_AND_EXPR:
2766 CHECK_OP (0, "invalid operand to binary operator");
2767 CHECK_OP (1, "invalid operand to binary operator");
2768 break;
2770 case CONSTRUCTOR:
2771 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2772 *walk_subtrees = 0;
2773 break;
2775 default:
2776 break;
2778 return NULL;
2780 #undef CHECK_OP
2784 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2785 Returns true if there is an error, otherwise false. */
2787 static bool
2788 verify_types_in_gimple_min_lval (tree expr)
2790 tree op;
2792 if (is_gimple_id (expr))
2793 return false;
2795 if (!INDIRECT_REF_P (expr)
2796 && TREE_CODE (expr) != TARGET_MEM_REF)
2798 error ("invalid expression for min lvalue");
2799 return true;
2802 /* TARGET_MEM_REFs are strange beasts. */
2803 if (TREE_CODE (expr) == TARGET_MEM_REF)
2804 return false;
2806 op = TREE_OPERAND (expr, 0);
2807 if (!is_gimple_val (op))
2809 error ("invalid operand in indirect reference");
2810 debug_generic_stmt (op);
2811 return true;
2813 if (!useless_type_conversion_p (TREE_TYPE (expr),
2814 TREE_TYPE (TREE_TYPE (op))))
2816 error ("type mismatch in indirect reference");
2817 debug_generic_stmt (TREE_TYPE (expr));
2818 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2819 return true;
2822 return false;
2825 /* Verify if EXPR is a valid GIMPLE reference expression. If
2826 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2827 if there is an error, otherwise false. */
2829 static bool
2830 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2832 while (handled_component_p (expr))
2834 tree op = TREE_OPERAND (expr, 0);
2836 if (TREE_CODE (expr) == ARRAY_REF
2837 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2839 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2840 || (TREE_OPERAND (expr, 2)
2841 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2842 || (TREE_OPERAND (expr, 3)
2843 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2845 error ("invalid operands to array reference");
2846 debug_generic_stmt (expr);
2847 return true;
2851 /* Verify if the reference array element types are compatible. */
2852 if (TREE_CODE (expr) == ARRAY_REF
2853 && !useless_type_conversion_p (TREE_TYPE (expr),
2854 TREE_TYPE (TREE_TYPE (op))))
2856 error ("type mismatch in array reference");
2857 debug_generic_stmt (TREE_TYPE (expr));
2858 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2859 return true;
2861 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2862 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2863 TREE_TYPE (TREE_TYPE (op))))
2865 error ("type mismatch in array range reference");
2866 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2867 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2868 return true;
2871 if ((TREE_CODE (expr) == REALPART_EXPR
2872 || TREE_CODE (expr) == IMAGPART_EXPR)
2873 && !useless_type_conversion_p (TREE_TYPE (expr),
2874 TREE_TYPE (TREE_TYPE (op))))
2876 error ("type mismatch in real/imagpart reference");
2877 debug_generic_stmt (TREE_TYPE (expr));
2878 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2879 return true;
2882 if (TREE_CODE (expr) == COMPONENT_REF
2883 && !useless_type_conversion_p (TREE_TYPE (expr),
2884 TREE_TYPE (TREE_OPERAND (expr, 1))))
2886 error ("type mismatch in component reference");
2887 debug_generic_stmt (TREE_TYPE (expr));
2888 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2889 return true;
2892 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2894 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2895 that their operand is not an SSA name or an invariant when
2896 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2897 bug). Otherwise there is nothing to verify, gross mismatches at
2898 most invoke undefined behavior. */
2899 if (require_lvalue
2900 && (TREE_CODE (op) == SSA_NAME
2901 || is_gimple_min_invariant (op)))
2903 error ("Conversion of an SSA_NAME on the left hand side.");
2904 debug_generic_stmt (expr);
2905 return true;
2907 else if (!handled_component_p (op))
2908 return false;
2911 expr = op;
2914 return ((require_lvalue || !is_gimple_min_invariant (expr))
2915 && verify_types_in_gimple_min_lval (expr));
2918 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
2919 list of pointer-to types that is trivially convertible to DEST. */
2921 static bool
2922 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
2924 tree src;
2926 if (!TYPE_POINTER_TO (src_obj))
2927 return true;
2929 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
2930 if (useless_type_conversion_p (dest, src))
2931 return true;
2933 return false;
2936 /* Return true if TYPE1 is a fixed-point type and if conversions to and
2937 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
2939 static bool
2940 valid_fixed_convert_types_p (tree type1, tree type2)
2942 return (FIXED_POINT_TYPE_P (type1)
2943 && (INTEGRAL_TYPE_P (type2)
2944 || SCALAR_FLOAT_TYPE_P (type2)
2945 || FIXED_POINT_TYPE_P (type2)));
2948 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
2949 is a problem, otherwise false. */
2951 static bool
2952 verify_gimple_call (gimple stmt)
2954 tree fn = gimple_call_fn (stmt);
2955 tree fntype;
2956 unsigned i;
2958 if (TREE_CODE (fn) != OBJ_TYPE_REF
2959 && !is_gimple_val (fn))
2961 error ("invalid function in gimple call");
2962 debug_generic_stmt (fn);
2963 return true;
2966 if (!POINTER_TYPE_P (TREE_TYPE (fn))
2967 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
2968 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
2970 error ("non-function in gimple call");
2971 return true;
2974 if (gimple_call_lhs (stmt)
2975 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
2976 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
2978 error ("invalid LHS in gimple call");
2979 return true;
2982 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
2984 error ("LHS in noreturn call");
2985 return true;
2988 fntype = TREE_TYPE (TREE_TYPE (fn));
2989 if (gimple_call_lhs (stmt)
2990 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
2991 TREE_TYPE (fntype))
2992 /* ??? At least C++ misses conversions at assignments from
2993 void * call results.
2994 ??? Java is completely off. Especially with functions
2995 returning java.lang.Object.
2996 For now simply allow arbitrary pointer type conversions. */
2997 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
2998 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3000 error ("invalid conversion in gimple call");
3001 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3002 debug_generic_stmt (TREE_TYPE (fntype));
3003 return true;
3006 if (gimple_call_chain (stmt)
3007 && !is_gimple_val (gimple_call_chain (stmt)))
3009 error ("invalid static chain in gimple call");
3010 debug_generic_stmt (gimple_call_chain (stmt));
3011 return true;
3014 /* If there is a static chain argument, this should not be an indirect
3015 call, and the decl should have DECL_STATIC_CHAIN set. */
3016 if (gimple_call_chain (stmt))
3018 if (TREE_CODE (fn) != ADDR_EXPR
3019 || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL)
3021 error ("static chain in indirect gimple call");
3022 return true;
3024 fn = TREE_OPERAND (fn, 0);
3026 if (!DECL_STATIC_CHAIN (fn))
3028 error ("static chain with function that doesn't use one");
3029 return true;
3033 /* ??? The C frontend passes unpromoted arguments in case it
3034 didn't see a function declaration before the call. So for now
3035 leave the call arguments mostly unverified. Once we gimplify
3036 unit-at-a-time we have a chance to fix this. */
3038 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3040 tree arg = gimple_call_arg (stmt, i);
3041 if (!is_gimple_operand (arg))
3043 error ("invalid argument to gimple call");
3044 debug_generic_expr (arg);
3048 return false;
3051 /* Verifies the gimple comparison with the result type TYPE and
3052 the operands OP0 and OP1. */
3054 static bool
3055 verify_gimple_comparison (tree type, tree op0, tree op1)
3057 tree op0_type = TREE_TYPE (op0);
3058 tree op1_type = TREE_TYPE (op1);
3060 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3062 error ("invalid operands in gimple comparison");
3063 return true;
3066 /* For comparisons we do not have the operations type as the
3067 effective type the comparison is carried out in. Instead
3068 we require that either the first operand is trivially
3069 convertible into the second, or the other way around.
3070 The resulting type of a comparison may be any integral type.
3071 Because we special-case pointers to void we allow
3072 comparisons of pointers with the same mode as well. */
3073 if ((!useless_type_conversion_p (op0_type, op1_type)
3074 && !useless_type_conversion_p (op1_type, op0_type)
3075 && (!POINTER_TYPE_P (op0_type)
3076 || !POINTER_TYPE_P (op1_type)
3077 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3078 || !INTEGRAL_TYPE_P (type))
3080 error ("type mismatch in comparison expression");
3081 debug_generic_expr (type);
3082 debug_generic_expr (op0_type);
3083 debug_generic_expr (op1_type);
3084 return true;
3087 return false;
3090 /* Verify a gimple assignment statement STMT with an unary rhs.
3091 Returns true if anything is wrong. */
3093 static bool
3094 verify_gimple_assign_unary (gimple stmt)
3096 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3097 tree lhs = gimple_assign_lhs (stmt);
3098 tree lhs_type = TREE_TYPE (lhs);
3099 tree rhs1 = gimple_assign_rhs1 (stmt);
3100 tree rhs1_type = TREE_TYPE (rhs1);
3102 if (!is_gimple_reg (lhs)
3103 && !(optimize == 0
3104 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3106 error ("non-register as LHS of unary operation");
3107 return true;
3110 if (!is_gimple_val (rhs1))
3112 error ("invalid operand in unary operation");
3113 return true;
3116 /* First handle conversions. */
3117 switch (rhs_code)
3119 CASE_CONVERT:
3121 /* Allow conversions between integral types and pointers only if
3122 there is no sign or zero extension involved.
3123 For targets were the precision of sizetype doesn't match that
3124 of pointers we need to allow arbitrary conversions from and
3125 to sizetype. */
3126 if ((POINTER_TYPE_P (lhs_type)
3127 && INTEGRAL_TYPE_P (rhs1_type)
3128 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3129 || rhs1_type == sizetype))
3130 || (POINTER_TYPE_P (rhs1_type)
3131 && INTEGRAL_TYPE_P (lhs_type)
3132 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3133 || lhs_type == sizetype)))
3134 return false;
3136 /* Allow conversion from integer to offset type and vice versa. */
3137 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3138 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3139 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3140 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3141 return false;
3143 /* Otherwise assert we are converting between types of the
3144 same kind. */
3145 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3147 error ("invalid types in nop conversion");
3148 debug_generic_expr (lhs_type);
3149 debug_generic_expr (rhs1_type);
3150 return true;
3153 return false;
3156 case ADDR_SPACE_CONVERT_EXPR:
3158 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3159 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3160 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3162 error ("invalid types in address space conversion");
3163 debug_generic_expr (lhs_type);
3164 debug_generic_expr (rhs1_type);
3165 return true;
3168 return false;
3171 case FIXED_CONVERT_EXPR:
3173 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3174 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3176 error ("invalid types in fixed-point conversion");
3177 debug_generic_expr (lhs_type);
3178 debug_generic_expr (rhs1_type);
3179 return true;
3182 return false;
3185 case FLOAT_EXPR:
3187 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3189 error ("invalid types in conversion to floating point");
3190 debug_generic_expr (lhs_type);
3191 debug_generic_expr (rhs1_type);
3192 return true;
3195 return false;
3198 case FIX_TRUNC_EXPR:
3200 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3202 error ("invalid types in conversion to integer");
3203 debug_generic_expr (lhs_type);
3204 debug_generic_expr (rhs1_type);
3205 return true;
3208 return false;
3211 case VEC_UNPACK_HI_EXPR:
3212 case VEC_UNPACK_LO_EXPR:
3213 case REDUC_MAX_EXPR:
3214 case REDUC_MIN_EXPR:
3215 case REDUC_PLUS_EXPR:
3216 case VEC_UNPACK_FLOAT_HI_EXPR:
3217 case VEC_UNPACK_FLOAT_LO_EXPR:
3218 /* FIXME. */
3219 return false;
3221 case TRUTH_NOT_EXPR:
3222 case NEGATE_EXPR:
3223 case ABS_EXPR:
3224 case BIT_NOT_EXPR:
3225 case PAREN_EXPR:
3226 case NON_LVALUE_EXPR:
3227 case CONJ_EXPR:
3228 break;
3230 default:
3231 gcc_unreachable ();
3234 /* For the remaining codes assert there is no conversion involved. */
3235 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3237 error ("non-trivial conversion in unary operation");
3238 debug_generic_expr (lhs_type);
3239 debug_generic_expr (rhs1_type);
3240 return true;
3243 return false;
3246 /* Verify a gimple assignment statement STMT with a binary rhs.
3247 Returns true if anything is wrong. */
3249 static bool
3250 verify_gimple_assign_binary (gimple stmt)
3252 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3253 tree lhs = gimple_assign_lhs (stmt);
3254 tree lhs_type = TREE_TYPE (lhs);
3255 tree rhs1 = gimple_assign_rhs1 (stmt);
3256 tree rhs1_type = TREE_TYPE (rhs1);
3257 tree rhs2 = gimple_assign_rhs2 (stmt);
3258 tree rhs2_type = TREE_TYPE (rhs2);
3260 if (!is_gimple_reg (lhs)
3261 && !(optimize == 0
3262 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3264 error ("non-register as LHS of binary operation");
3265 return true;
3268 if (!is_gimple_val (rhs1)
3269 || !is_gimple_val (rhs2))
3271 error ("invalid operands in binary operation");
3272 return true;
3275 /* First handle operations that involve different types. */
3276 switch (rhs_code)
3278 case COMPLEX_EXPR:
3280 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3281 || !(INTEGRAL_TYPE_P (rhs1_type)
3282 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3283 || !(INTEGRAL_TYPE_P (rhs2_type)
3284 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3286 error ("type mismatch in complex expression");
3287 debug_generic_expr (lhs_type);
3288 debug_generic_expr (rhs1_type);
3289 debug_generic_expr (rhs2_type);
3290 return true;
3293 return false;
3296 case LSHIFT_EXPR:
3297 case RSHIFT_EXPR:
3298 case LROTATE_EXPR:
3299 case RROTATE_EXPR:
3301 /* Shifts and rotates are ok on integral types, fixed point
3302 types and integer vector types. */
3303 if ((!INTEGRAL_TYPE_P (rhs1_type)
3304 && !FIXED_POINT_TYPE_P (rhs1_type)
3305 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3306 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3307 || (!INTEGRAL_TYPE_P (rhs2_type)
3308 /* Vector shifts of vectors are also ok. */
3309 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3310 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3311 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3312 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3313 || !useless_type_conversion_p (lhs_type, rhs1_type))
3315 error ("type mismatch in shift expression");
3316 debug_generic_expr (lhs_type);
3317 debug_generic_expr (rhs1_type);
3318 debug_generic_expr (rhs2_type);
3319 return true;
3322 return false;
3325 case VEC_LSHIFT_EXPR:
3326 case VEC_RSHIFT_EXPR:
3328 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3329 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3330 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3331 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3332 || (!INTEGRAL_TYPE_P (rhs2_type)
3333 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3334 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3335 || !useless_type_conversion_p (lhs_type, rhs1_type))
3337 error ("type mismatch in vector shift expression");
3338 debug_generic_expr (lhs_type);
3339 debug_generic_expr (rhs1_type);
3340 debug_generic_expr (rhs2_type);
3341 return true;
3343 /* For shifting a vector of floating point components we
3344 only allow shifting by a constant multiple of the element size. */
3345 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
3346 && (TREE_CODE (rhs2) != INTEGER_CST
3347 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3348 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3350 error ("non-element sized vector shift of floating point vector");
3351 return true;
3354 return false;
3357 case PLUS_EXPR:
3359 /* We use regular PLUS_EXPR for vectors.
3360 ??? This just makes the checker happy and may not be what is
3361 intended. */
3362 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3363 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3365 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3366 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3368 error ("invalid non-vector operands to vector valued plus");
3369 return true;
3371 lhs_type = TREE_TYPE (lhs_type);
3372 rhs1_type = TREE_TYPE (rhs1_type);
3373 rhs2_type = TREE_TYPE (rhs2_type);
3374 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3375 the pointer to 2nd place. */
3376 if (POINTER_TYPE_P (rhs2_type))
3378 tree tem = rhs1_type;
3379 rhs1_type = rhs2_type;
3380 rhs2_type = tem;
3382 goto do_pointer_plus_expr_check;
3385 /* Fallthru. */
3386 case MINUS_EXPR:
3388 if (POINTER_TYPE_P (lhs_type)
3389 || POINTER_TYPE_P (rhs1_type)
3390 || POINTER_TYPE_P (rhs2_type))
3392 error ("invalid (pointer) operands to plus/minus");
3393 return true;
3396 /* Continue with generic binary expression handling. */
3397 break;
3400 case POINTER_PLUS_EXPR:
3402 do_pointer_plus_expr_check:
3403 if (!POINTER_TYPE_P (rhs1_type)
3404 || !useless_type_conversion_p (lhs_type, rhs1_type)
3405 || !useless_type_conversion_p (sizetype, rhs2_type))
3407 error ("type mismatch in pointer plus expression");
3408 debug_generic_stmt (lhs_type);
3409 debug_generic_stmt (rhs1_type);
3410 debug_generic_stmt (rhs2_type);
3411 return true;
3414 return false;
3417 case TRUTH_ANDIF_EXPR:
3418 case TRUTH_ORIF_EXPR:
3419 gcc_unreachable ();
3421 case TRUTH_AND_EXPR:
3422 case TRUTH_OR_EXPR:
3423 case TRUTH_XOR_EXPR:
3425 /* We allow any kind of integral typed argument and result. */
3426 if (!INTEGRAL_TYPE_P (rhs1_type)
3427 || !INTEGRAL_TYPE_P (rhs2_type)
3428 || !INTEGRAL_TYPE_P (lhs_type))
3430 error ("type mismatch in binary truth expression");
3431 debug_generic_expr (lhs_type);
3432 debug_generic_expr (rhs1_type);
3433 debug_generic_expr (rhs2_type);
3434 return true;
3437 return false;
3440 case LT_EXPR:
3441 case LE_EXPR:
3442 case GT_EXPR:
3443 case GE_EXPR:
3444 case EQ_EXPR:
3445 case NE_EXPR:
3446 case UNORDERED_EXPR:
3447 case ORDERED_EXPR:
3448 case UNLT_EXPR:
3449 case UNLE_EXPR:
3450 case UNGT_EXPR:
3451 case UNGE_EXPR:
3452 case UNEQ_EXPR:
3453 case LTGT_EXPR:
3454 /* Comparisons are also binary, but the result type is not
3455 connected to the operand types. */
3456 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3458 case WIDEN_MULT_EXPR:
3459 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3460 return true;
3461 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3462 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3464 case WIDEN_SUM_EXPR:
3465 case VEC_WIDEN_MULT_HI_EXPR:
3466 case VEC_WIDEN_MULT_LO_EXPR:
3467 case VEC_PACK_TRUNC_EXPR:
3468 case VEC_PACK_SAT_EXPR:
3469 case VEC_PACK_FIX_TRUNC_EXPR:
3470 case VEC_EXTRACT_EVEN_EXPR:
3471 case VEC_EXTRACT_ODD_EXPR:
3472 case VEC_INTERLEAVE_HIGH_EXPR:
3473 case VEC_INTERLEAVE_LOW_EXPR:
3474 /* FIXME. */
3475 return false;
3477 case MULT_EXPR:
3478 case TRUNC_DIV_EXPR:
3479 case CEIL_DIV_EXPR:
3480 case FLOOR_DIV_EXPR:
3481 case ROUND_DIV_EXPR:
3482 case TRUNC_MOD_EXPR:
3483 case CEIL_MOD_EXPR:
3484 case FLOOR_MOD_EXPR:
3485 case ROUND_MOD_EXPR:
3486 case RDIV_EXPR:
3487 case EXACT_DIV_EXPR:
3488 case MIN_EXPR:
3489 case MAX_EXPR:
3490 case BIT_IOR_EXPR:
3491 case BIT_XOR_EXPR:
3492 case BIT_AND_EXPR:
3493 /* Continue with generic binary expression handling. */
3494 break;
3496 default:
3497 gcc_unreachable ();
3500 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3501 || !useless_type_conversion_p (lhs_type, rhs2_type))
3503 error ("type mismatch in binary expression");
3504 debug_generic_stmt (lhs_type);
3505 debug_generic_stmt (rhs1_type);
3506 debug_generic_stmt (rhs2_type);
3507 return true;
3510 return false;
3513 /* Verify a gimple assignment statement STMT with a single rhs.
3514 Returns true if anything is wrong. */
3516 static bool
3517 verify_gimple_assign_single (gimple stmt)
3519 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3520 tree lhs = gimple_assign_lhs (stmt);
3521 tree lhs_type = TREE_TYPE (lhs);
3522 tree rhs1 = gimple_assign_rhs1 (stmt);
3523 tree rhs1_type = TREE_TYPE (rhs1);
3524 bool res = false;
3526 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3528 error ("non-trivial conversion at assignment");
3529 debug_generic_expr (lhs_type);
3530 debug_generic_expr (rhs1_type);
3531 return true;
3534 if (handled_component_p (lhs))
3535 res |= verify_types_in_gimple_reference (lhs, true);
3537 /* Special codes we cannot handle via their class. */
3538 switch (rhs_code)
3540 case ADDR_EXPR:
3542 tree op = TREE_OPERAND (rhs1, 0);
3543 if (!is_gimple_addressable (op))
3545 error ("invalid operand in unary expression");
3546 return true;
3549 if (!types_compatible_p (TREE_TYPE (op), TREE_TYPE (TREE_TYPE (rhs1)))
3550 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3551 TREE_TYPE (op)))
3553 error ("type mismatch in address expression");
3554 debug_generic_stmt (TREE_TYPE (rhs1));
3555 debug_generic_stmt (TREE_TYPE (op));
3556 return true;
3559 return verify_types_in_gimple_reference (op, true);
3562 /* tcc_reference */
3563 case COMPONENT_REF:
3564 case BIT_FIELD_REF:
3565 case INDIRECT_REF:
3566 case ALIGN_INDIRECT_REF:
3567 case MISALIGNED_INDIRECT_REF:
3568 case ARRAY_REF:
3569 case ARRAY_RANGE_REF:
3570 case VIEW_CONVERT_EXPR:
3571 case REALPART_EXPR:
3572 case IMAGPART_EXPR:
3573 case TARGET_MEM_REF:
3574 if (!is_gimple_reg (lhs)
3575 && is_gimple_reg_type (TREE_TYPE (lhs)))
3577 error ("invalid rhs for gimple memory store");
3578 debug_generic_stmt (lhs);
3579 debug_generic_stmt (rhs1);
3580 return true;
3582 return res || verify_types_in_gimple_reference (rhs1, false);
3584 /* tcc_constant */
3585 case SSA_NAME:
3586 case INTEGER_CST:
3587 case REAL_CST:
3588 case FIXED_CST:
3589 case COMPLEX_CST:
3590 case VECTOR_CST:
3591 case STRING_CST:
3592 return res;
3594 /* tcc_declaration */
3595 case CONST_DECL:
3596 return res;
3597 case VAR_DECL:
3598 case PARM_DECL:
3599 if (!is_gimple_reg (lhs)
3600 && !is_gimple_reg (rhs1)
3601 && is_gimple_reg_type (TREE_TYPE (lhs)))
3603 error ("invalid rhs for gimple memory store");
3604 debug_generic_stmt (lhs);
3605 debug_generic_stmt (rhs1);
3606 return true;
3608 return res;
3610 case COND_EXPR:
3611 case CONSTRUCTOR:
3612 case OBJ_TYPE_REF:
3613 case ASSERT_EXPR:
3614 case WITH_SIZE_EXPR:
3615 case POLYNOMIAL_CHREC:
3616 case DOT_PROD_EXPR:
3617 case VEC_COND_EXPR:
3618 case REALIGN_LOAD_EXPR:
3619 /* FIXME. */
3620 return res;
3622 default:;
3625 return res;
3628 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3629 is a problem, otherwise false. */
3631 static bool
3632 verify_gimple_assign (gimple stmt)
3634 switch (gimple_assign_rhs_class (stmt))
3636 case GIMPLE_SINGLE_RHS:
3637 return verify_gimple_assign_single (stmt);
3639 case GIMPLE_UNARY_RHS:
3640 return verify_gimple_assign_unary (stmt);
3642 case GIMPLE_BINARY_RHS:
3643 return verify_gimple_assign_binary (stmt);
3645 default:
3646 gcc_unreachable ();
3650 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3651 is a problem, otherwise false. */
3653 static bool
3654 verify_gimple_return (gimple stmt)
3656 tree op = gimple_return_retval (stmt);
3657 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3659 /* We cannot test for present return values as we do not fix up missing
3660 return values from the original source. */
3661 if (op == NULL)
3662 return false;
3664 if (!is_gimple_val (op)
3665 && TREE_CODE (op) != RESULT_DECL)
3667 error ("invalid operand in return statement");
3668 debug_generic_stmt (op);
3669 return true;
3672 if (!useless_type_conversion_p (restype, TREE_TYPE (op))
3673 /* ??? With C++ we can have the situation that the result
3674 decl is a reference type while the return type is an aggregate. */
3675 && !(TREE_CODE (op) == RESULT_DECL
3676 && TREE_CODE (TREE_TYPE (op)) == REFERENCE_TYPE
3677 && useless_type_conversion_p (restype, TREE_TYPE (TREE_TYPE (op)))))
3679 error ("invalid conversion in return statement");
3680 debug_generic_stmt (restype);
3681 debug_generic_stmt (TREE_TYPE (op));
3682 return true;
3685 return false;
3689 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3690 is a problem, otherwise false. */
3692 static bool
3693 verify_gimple_goto (gimple stmt)
3695 tree dest = gimple_goto_dest (stmt);
3697 /* ??? We have two canonical forms of direct goto destinations, a
3698 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3699 if (TREE_CODE (dest) != LABEL_DECL
3700 && (!is_gimple_val (dest)
3701 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3703 error ("goto destination is neither a label nor a pointer");
3704 return true;
3707 return false;
3710 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3711 is a problem, otherwise false. */
3713 static bool
3714 verify_gimple_switch (gimple stmt)
3716 if (!is_gimple_val (gimple_switch_index (stmt)))
3718 error ("invalid operand to switch statement");
3719 debug_generic_stmt (gimple_switch_index (stmt));
3720 return true;
3723 return false;
3727 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3728 and false otherwise. */
3730 static bool
3731 verify_gimple_phi (gimple stmt)
3733 tree type = TREE_TYPE (gimple_phi_result (stmt));
3734 unsigned i;
3736 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3738 error ("Invalid PHI result");
3739 return true;
3742 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3744 tree arg = gimple_phi_arg_def (stmt, i);
3745 if ((is_gimple_reg (gimple_phi_result (stmt))
3746 && !is_gimple_val (arg))
3747 || (!is_gimple_reg (gimple_phi_result (stmt))
3748 && !is_gimple_addressable (arg)))
3750 error ("Invalid PHI argument");
3751 debug_generic_stmt (arg);
3752 return true;
3754 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3756 error ("Incompatible types in PHI argument %u", i);
3757 debug_generic_stmt (type);
3758 debug_generic_stmt (TREE_TYPE (arg));
3759 return true;
3763 return false;
3767 /* Verify a gimple debug statement STMT.
3768 Returns true if anything is wrong. */
3770 static bool
3771 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3773 /* There isn't much that could be wrong in a gimple debug stmt. A
3774 gimple debug bind stmt, for example, maps a tree, that's usually
3775 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3776 component or member of an aggregate type, to another tree, that
3777 can be an arbitrary expression. These stmts expand into debug
3778 insns, and are converted to debug notes by var-tracking.c. */
3779 return false;
3783 /* Verify the GIMPLE statement STMT. Returns true if there is an
3784 error, otherwise false. */
3786 static bool
3787 verify_types_in_gimple_stmt (gimple stmt)
3789 switch (gimple_code (stmt))
3791 case GIMPLE_ASSIGN:
3792 return verify_gimple_assign (stmt);
3794 case GIMPLE_LABEL:
3795 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3797 case GIMPLE_CALL:
3798 return verify_gimple_call (stmt);
3800 case GIMPLE_COND:
3801 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3803 error ("invalid comparison code in gimple cond");
3804 return true;
3806 if (!(!gimple_cond_true_label (stmt)
3807 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
3808 || !(!gimple_cond_false_label (stmt)
3809 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
3811 error ("invalid labels in gimple cond");
3812 return true;
3815 return verify_gimple_comparison (boolean_type_node,
3816 gimple_cond_lhs (stmt),
3817 gimple_cond_rhs (stmt));
3819 case GIMPLE_GOTO:
3820 return verify_gimple_goto (stmt);
3822 case GIMPLE_SWITCH:
3823 return verify_gimple_switch (stmt);
3825 case GIMPLE_RETURN:
3826 return verify_gimple_return (stmt);
3828 case GIMPLE_ASM:
3829 return false;
3831 case GIMPLE_PHI:
3832 return verify_gimple_phi (stmt);
3834 /* Tuples that do not have tree operands. */
3835 case GIMPLE_NOP:
3836 case GIMPLE_PREDICT:
3837 case GIMPLE_RESX:
3838 case GIMPLE_EH_DISPATCH:
3839 case GIMPLE_EH_MUST_NOT_THROW:
3840 return false;
3842 CASE_GIMPLE_OMP:
3843 /* OpenMP directives are validated by the FE and never operated
3844 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
3845 non-gimple expressions when the main index variable has had
3846 its address taken. This does not affect the loop itself
3847 because the header of an GIMPLE_OMP_FOR is merely used to determine
3848 how to setup the parallel iteration. */
3849 return false;
3851 case GIMPLE_DEBUG:
3852 return verify_gimple_debug (stmt);
3854 default:
3855 gcc_unreachable ();
3859 /* Verify the GIMPLE statements inside the sequence STMTS. */
3861 static bool
3862 verify_types_in_gimple_seq_2 (gimple_seq stmts)
3864 gimple_stmt_iterator ittr;
3865 bool err = false;
3867 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
3869 gimple stmt = gsi_stmt (ittr);
3871 switch (gimple_code (stmt))
3873 case GIMPLE_BIND:
3874 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
3875 break;
3877 case GIMPLE_TRY:
3878 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
3879 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
3880 break;
3882 case GIMPLE_EH_FILTER:
3883 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
3884 break;
3886 case GIMPLE_CATCH:
3887 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
3888 break;
3890 default:
3892 bool err2 = verify_types_in_gimple_stmt (stmt);
3893 if (err2)
3894 debug_gimple_stmt (stmt);
3895 err |= err2;
3900 return err;
3904 /* Verify the GIMPLE statements inside the statement list STMTS. */
3906 void
3907 verify_types_in_gimple_seq (gimple_seq stmts)
3909 if (verify_types_in_gimple_seq_2 (stmts))
3910 internal_error ("verify_gimple failed");
3914 /* Verify STMT, return true if STMT is not in GIMPLE form.
3915 TODO: Implement type checking. */
3917 static bool
3918 verify_stmt (gimple_stmt_iterator *gsi)
3920 tree addr;
3921 struct walk_stmt_info wi;
3922 bool last_in_block = gsi_one_before_end_p (*gsi);
3923 gimple stmt = gsi_stmt (*gsi);
3924 int lp_nr;
3926 if (is_gimple_omp (stmt))
3928 /* OpenMP directives are validated by the FE and never operated
3929 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
3930 non-gimple expressions when the main index variable has had
3931 its address taken. This does not affect the loop itself
3932 because the header of an GIMPLE_OMP_FOR is merely used to determine
3933 how to setup the parallel iteration. */
3934 return false;
3937 /* FIXME. The C frontend passes unpromoted arguments in case it
3938 didn't see a function declaration before the call. */
3939 if (is_gimple_call (stmt))
3941 tree decl;
3943 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
3945 error ("invalid function in call statement");
3946 return true;
3949 decl = gimple_call_fndecl (stmt);
3950 if (decl
3951 && TREE_CODE (decl) == FUNCTION_DECL
3952 && DECL_LOOPING_CONST_OR_PURE_P (decl)
3953 && (!DECL_PURE_P (decl))
3954 && (!TREE_READONLY (decl)))
3956 error ("invalid pure const state for function");
3957 return true;
3961 if (is_gimple_debug (stmt))
3962 return false;
3964 memset (&wi, 0, sizeof (wi));
3965 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
3966 if (addr)
3968 debug_generic_expr (addr);
3969 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
3970 debug_gimple_stmt (stmt);
3971 return true;
3974 /* If the statement is marked as part of an EH region, then it is
3975 expected that the statement could throw. Verify that when we
3976 have optimizations that simplify statements such that we prove
3977 that they cannot throw, that we update other data structures
3978 to match. */
3979 lp_nr = lookup_stmt_eh_lp (stmt);
3980 if (lp_nr != 0)
3982 if (!stmt_could_throw_p (stmt))
3984 /* During IPA passes, ipa-pure-const sets nothrow flags on calls
3985 and they are updated on statements only after fixup_cfg
3986 is executed at beggining of expansion stage. */
3987 if (cgraph_state != CGRAPH_STATE_IPA_SSA)
3989 error ("statement marked for throw, but doesn%'t");
3990 goto fail;
3993 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
3995 error ("statement marked for throw in middle of block");
3996 goto fail;
4000 return false;
4002 fail:
4003 debug_gimple_stmt (stmt);
4004 return true;
4008 /* Return true when the T can be shared. */
4010 bool
4011 tree_node_can_be_shared (tree t)
4013 if (IS_TYPE_OR_DECL_P (t)
4014 || is_gimple_min_invariant (t)
4015 || TREE_CODE (t) == SSA_NAME
4016 || t == error_mark_node
4017 || TREE_CODE (t) == IDENTIFIER_NODE)
4018 return true;
4020 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4021 return true;
4023 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4024 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4025 || TREE_CODE (t) == COMPONENT_REF
4026 || TREE_CODE (t) == REALPART_EXPR
4027 || TREE_CODE (t) == IMAGPART_EXPR)
4028 t = TREE_OPERAND (t, 0);
4030 if (DECL_P (t))
4031 return true;
4033 return false;
4037 /* Called via walk_gimple_stmt. Verify tree sharing. */
4039 static tree
4040 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4042 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4043 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4045 if (tree_node_can_be_shared (*tp))
4047 *walk_subtrees = false;
4048 return NULL;
4051 if (pointer_set_insert (visited, *tp))
4052 return *tp;
4054 return NULL;
4058 static bool eh_error_found;
4059 static int
4060 verify_eh_throw_stmt_node (void **slot, void *data)
4062 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4063 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4065 if (!pointer_set_contains (visited, node->stmt))
4067 error ("Dead STMT in EH table");
4068 debug_gimple_stmt (node->stmt);
4069 eh_error_found = true;
4071 return 1;
4075 /* Verify the GIMPLE statements in every basic block. */
4077 void
4078 verify_stmts (void)
4080 basic_block bb;
4081 gimple_stmt_iterator gsi;
4082 bool err = false;
4083 struct pointer_set_t *visited, *visited_stmts;
4084 tree addr;
4085 struct walk_stmt_info wi;
4087 timevar_push (TV_TREE_STMT_VERIFY);
4088 visited = pointer_set_create ();
4089 visited_stmts = pointer_set_create ();
4091 memset (&wi, 0, sizeof (wi));
4092 wi.info = (void *) visited;
4094 FOR_EACH_BB (bb)
4096 gimple phi;
4097 size_t i;
4099 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4101 phi = gsi_stmt (gsi);
4102 pointer_set_insert (visited_stmts, phi);
4103 if (gimple_bb (phi) != bb)
4105 error ("gimple_bb (phi) is set to a wrong basic block");
4106 err |= true;
4109 for (i = 0; i < gimple_phi_num_args (phi); i++)
4111 tree t = gimple_phi_arg_def (phi, i);
4112 tree addr;
4114 if (!t)
4116 error ("missing PHI def");
4117 debug_gimple_stmt (phi);
4118 err |= true;
4119 continue;
4121 /* Addressable variables do have SSA_NAMEs but they
4122 are not considered gimple values. */
4123 else if (TREE_CODE (t) != SSA_NAME
4124 && TREE_CODE (t) != FUNCTION_DECL
4125 && !is_gimple_min_invariant (t))
4127 error ("PHI argument is not a GIMPLE value");
4128 debug_gimple_stmt (phi);
4129 debug_generic_expr (t);
4130 err |= true;
4133 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4134 if (addr)
4136 error ("incorrect sharing of tree nodes");
4137 debug_gimple_stmt (phi);
4138 debug_generic_expr (addr);
4139 err |= true;
4143 #ifdef ENABLE_TYPES_CHECKING
4144 if (verify_gimple_phi (phi))
4146 debug_gimple_stmt (phi);
4147 err |= true;
4149 #endif
4152 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4154 gimple stmt = gsi_stmt (gsi);
4156 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4157 || gimple_code (stmt) == GIMPLE_BIND)
4159 error ("invalid GIMPLE statement");
4160 debug_gimple_stmt (stmt);
4161 err |= true;
4164 pointer_set_insert (visited_stmts, stmt);
4166 if (gimple_bb (stmt) != bb)
4168 error ("gimple_bb (stmt) is set to a wrong basic block");
4169 debug_gimple_stmt (stmt);
4170 err |= true;
4173 if (gimple_code (stmt) == GIMPLE_LABEL)
4175 tree decl = gimple_label_label (stmt);
4176 int uid = LABEL_DECL_UID (decl);
4178 if (uid == -1
4179 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4181 error ("incorrect entry in label_to_block_map");
4182 err |= true;
4185 uid = EH_LANDING_PAD_NR (decl);
4186 if (uid)
4188 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4189 if (decl != lp->post_landing_pad)
4191 error ("incorrect setting of landing pad number");
4192 err |= true;
4197 err |= verify_stmt (&gsi);
4199 #ifdef ENABLE_TYPES_CHECKING
4200 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4202 debug_gimple_stmt (stmt);
4203 err |= true;
4205 #endif
4206 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4207 if (addr)
4209 error ("incorrect sharing of tree nodes");
4210 debug_gimple_stmt (stmt);
4211 debug_generic_expr (addr);
4212 err |= true;
4214 gsi_next (&gsi);
4218 eh_error_found = false;
4219 if (get_eh_throw_stmt_table (cfun))
4220 htab_traverse (get_eh_throw_stmt_table (cfun),
4221 verify_eh_throw_stmt_node,
4222 visited_stmts);
4224 if (err | eh_error_found)
4225 internal_error ("verify_stmts failed");
4227 pointer_set_destroy (visited);
4228 pointer_set_destroy (visited_stmts);
4229 verify_histograms ();
4230 timevar_pop (TV_TREE_STMT_VERIFY);
4234 /* Verifies that the flow information is OK. */
4236 static int
4237 gimple_verify_flow_info (void)
4239 int err = 0;
4240 basic_block bb;
4241 gimple_stmt_iterator gsi;
4242 gimple stmt;
4243 edge e;
4244 edge_iterator ei;
4246 if (ENTRY_BLOCK_PTR->il.gimple)
4248 error ("ENTRY_BLOCK has IL associated with it");
4249 err = 1;
4252 if (EXIT_BLOCK_PTR->il.gimple)
4254 error ("EXIT_BLOCK has IL associated with it");
4255 err = 1;
4258 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4259 if (e->flags & EDGE_FALLTHRU)
4261 error ("fallthru to exit from bb %d", e->src->index);
4262 err = 1;
4265 FOR_EACH_BB (bb)
4267 bool found_ctrl_stmt = false;
4269 stmt = NULL;
4271 /* Skip labels on the start of basic block. */
4272 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4274 tree label;
4275 gimple prev_stmt = stmt;
4277 stmt = gsi_stmt (gsi);
4279 if (gimple_code (stmt) != GIMPLE_LABEL)
4280 break;
4282 label = gimple_label_label (stmt);
4283 if (prev_stmt && DECL_NONLOCAL (label))
4285 error ("nonlocal label ");
4286 print_generic_expr (stderr, label, 0);
4287 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4288 bb->index);
4289 err = 1;
4292 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4294 error ("EH landing pad label ");
4295 print_generic_expr (stderr, label, 0);
4296 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4297 bb->index);
4298 err = 1;
4301 if (label_to_block (label) != bb)
4303 error ("label ");
4304 print_generic_expr (stderr, label, 0);
4305 fprintf (stderr, " to block does not match in bb %d",
4306 bb->index);
4307 err = 1;
4310 if (decl_function_context (label) != current_function_decl)
4312 error ("label ");
4313 print_generic_expr (stderr, label, 0);
4314 fprintf (stderr, " has incorrect context in bb %d",
4315 bb->index);
4316 err = 1;
4320 /* Verify that body of basic block BB is free of control flow. */
4321 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4323 gimple stmt = gsi_stmt (gsi);
4325 if (found_ctrl_stmt)
4327 error ("control flow in the middle of basic block %d",
4328 bb->index);
4329 err = 1;
4332 if (stmt_ends_bb_p (stmt))
4333 found_ctrl_stmt = true;
4335 if (gimple_code (stmt) == GIMPLE_LABEL)
4337 error ("label ");
4338 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4339 fprintf (stderr, " in the middle of basic block %d", bb->index);
4340 err = 1;
4344 gsi = gsi_last_bb (bb);
4345 if (gsi_end_p (gsi))
4346 continue;
4348 stmt = gsi_stmt (gsi);
4350 if (gimple_code (stmt) == GIMPLE_LABEL)
4351 continue;
4353 err |= verify_eh_edges (stmt);
4355 if (is_ctrl_stmt (stmt))
4357 FOR_EACH_EDGE (e, ei, bb->succs)
4358 if (e->flags & EDGE_FALLTHRU)
4360 error ("fallthru edge after a control statement in bb %d",
4361 bb->index);
4362 err = 1;
4366 if (gimple_code (stmt) != GIMPLE_COND)
4368 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4369 after anything else but if statement. */
4370 FOR_EACH_EDGE (e, ei, bb->succs)
4371 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4373 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4374 bb->index);
4375 err = 1;
4379 switch (gimple_code (stmt))
4381 case GIMPLE_COND:
4383 edge true_edge;
4384 edge false_edge;
4386 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4388 if (!true_edge
4389 || !false_edge
4390 || !(true_edge->flags & EDGE_TRUE_VALUE)
4391 || !(false_edge->flags & EDGE_FALSE_VALUE)
4392 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4393 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4394 || EDGE_COUNT (bb->succs) >= 3)
4396 error ("wrong outgoing edge flags at end of bb %d",
4397 bb->index);
4398 err = 1;
4401 break;
4403 case GIMPLE_GOTO:
4404 if (simple_goto_p (stmt))
4406 error ("explicit goto at end of bb %d", bb->index);
4407 err = 1;
4409 else
4411 /* FIXME. We should double check that the labels in the
4412 destination blocks have their address taken. */
4413 FOR_EACH_EDGE (e, ei, bb->succs)
4414 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4415 | EDGE_FALSE_VALUE))
4416 || !(e->flags & EDGE_ABNORMAL))
4418 error ("wrong outgoing edge flags at end of bb %d",
4419 bb->index);
4420 err = 1;
4423 break;
4425 case GIMPLE_RETURN:
4426 if (!single_succ_p (bb)
4427 || (single_succ_edge (bb)->flags
4428 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4429 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4431 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4432 err = 1;
4434 if (single_succ (bb) != EXIT_BLOCK_PTR)
4436 error ("return edge does not point to exit in bb %d",
4437 bb->index);
4438 err = 1;
4440 break;
4442 case GIMPLE_SWITCH:
4444 tree prev;
4445 edge e;
4446 size_t i, n;
4448 n = gimple_switch_num_labels (stmt);
4450 /* Mark all the destination basic blocks. */
4451 for (i = 0; i < n; ++i)
4453 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4454 basic_block label_bb = label_to_block (lab);
4455 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4456 label_bb->aux = (void *)1;
4459 /* Verify that the case labels are sorted. */
4460 prev = gimple_switch_label (stmt, 0);
4461 for (i = 1; i < n; ++i)
4463 tree c = gimple_switch_label (stmt, i);
4464 if (!CASE_LOW (c))
4466 error ("found default case not at the start of "
4467 "case vector");
4468 err = 1;
4469 continue;
4471 if (CASE_LOW (prev)
4472 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4474 error ("case labels not sorted: ");
4475 print_generic_expr (stderr, prev, 0);
4476 fprintf (stderr," is greater than ");
4477 print_generic_expr (stderr, c, 0);
4478 fprintf (stderr," but comes before it.\n");
4479 err = 1;
4481 prev = c;
4483 /* VRP will remove the default case if it can prove it will
4484 never be executed. So do not verify there always exists
4485 a default case here. */
4487 FOR_EACH_EDGE (e, ei, bb->succs)
4489 if (!e->dest->aux)
4491 error ("extra outgoing edge %d->%d",
4492 bb->index, e->dest->index);
4493 err = 1;
4496 e->dest->aux = (void *)2;
4497 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4498 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4500 error ("wrong outgoing edge flags at end of bb %d",
4501 bb->index);
4502 err = 1;
4506 /* Check that we have all of them. */
4507 for (i = 0; i < n; ++i)
4509 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4510 basic_block label_bb = label_to_block (lab);
4512 if (label_bb->aux != (void *)2)
4514 error ("missing edge %i->%i", bb->index, label_bb->index);
4515 err = 1;
4519 FOR_EACH_EDGE (e, ei, bb->succs)
4520 e->dest->aux = (void *)0;
4522 break;
4524 case GIMPLE_EH_DISPATCH:
4525 err |= verify_eh_dispatch_edge (stmt);
4526 break;
4528 default:
4529 break;
4533 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4534 verify_dominators (CDI_DOMINATORS);
4536 return err;
4540 /* Updates phi nodes after creating a forwarder block joined
4541 by edge FALLTHRU. */
4543 static void
4544 gimple_make_forwarder_block (edge fallthru)
4546 edge e;
4547 edge_iterator ei;
4548 basic_block dummy, bb;
4549 tree var;
4550 gimple_stmt_iterator gsi;
4552 dummy = fallthru->src;
4553 bb = fallthru->dest;
4555 if (single_pred_p (bb))
4556 return;
4558 /* If we redirected a branch we must create new PHI nodes at the
4559 start of BB. */
4560 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4562 gimple phi, new_phi;
4564 phi = gsi_stmt (gsi);
4565 var = gimple_phi_result (phi);
4566 new_phi = create_phi_node (var, bb);
4567 SSA_NAME_DEF_STMT (var) = new_phi;
4568 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4569 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4570 UNKNOWN_LOCATION);
4573 /* Add the arguments we have stored on edges. */
4574 FOR_EACH_EDGE (e, ei, bb->preds)
4576 if (e == fallthru)
4577 continue;
4579 flush_pending_stmts (e);
4584 /* Return a non-special label in the head of basic block BLOCK.
4585 Create one if it doesn't exist. */
4587 tree
4588 gimple_block_label (basic_block bb)
4590 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4591 bool first = true;
4592 tree label;
4593 gimple stmt;
4595 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4597 stmt = gsi_stmt (i);
4598 if (gimple_code (stmt) != GIMPLE_LABEL)
4599 break;
4600 label = gimple_label_label (stmt);
4601 if (!DECL_NONLOCAL (label))
4603 if (!first)
4604 gsi_move_before (&i, &s);
4605 return label;
4609 label = create_artificial_label (UNKNOWN_LOCATION);
4610 stmt = gimple_build_label (label);
4611 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4612 return label;
4616 /* Attempt to perform edge redirection by replacing a possibly complex
4617 jump instruction by a goto or by removing the jump completely.
4618 This can apply only if all edges now point to the same block. The
4619 parameters and return values are equivalent to
4620 redirect_edge_and_branch. */
4622 static edge
4623 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4625 basic_block src = e->src;
4626 gimple_stmt_iterator i;
4627 gimple stmt;
4629 /* We can replace or remove a complex jump only when we have exactly
4630 two edges. */
4631 if (EDGE_COUNT (src->succs) != 2
4632 /* Verify that all targets will be TARGET. Specifically, the
4633 edge that is not E must also go to TARGET. */
4634 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4635 return NULL;
4637 i = gsi_last_bb (src);
4638 if (gsi_end_p (i))
4639 return NULL;
4641 stmt = gsi_stmt (i);
4643 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4645 gsi_remove (&i, true);
4646 e = ssa_redirect_edge (e, target);
4647 e->flags = EDGE_FALLTHRU;
4648 return e;
4651 return NULL;
4655 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4656 edge representing the redirected branch. */
4658 static edge
4659 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4661 basic_block bb = e->src;
4662 gimple_stmt_iterator gsi;
4663 edge ret;
4664 gimple stmt;
4666 if (e->flags & EDGE_ABNORMAL)
4667 return NULL;
4669 if (e->dest == dest)
4670 return NULL;
4672 if (e->flags & EDGE_EH)
4673 return redirect_eh_edge (e, dest);
4675 if (e->src != ENTRY_BLOCK_PTR)
4677 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4678 if (ret)
4679 return ret;
4682 gsi = gsi_last_bb (bb);
4683 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4685 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4687 case GIMPLE_COND:
4688 /* For COND_EXPR, we only need to redirect the edge. */
4689 break;
4691 case GIMPLE_GOTO:
4692 /* No non-abnormal edges should lead from a non-simple goto, and
4693 simple ones should be represented implicitly. */
4694 gcc_unreachable ();
4696 case GIMPLE_SWITCH:
4698 tree label = gimple_block_label (dest);
4699 tree cases = get_cases_for_edge (e, stmt);
4701 /* If we have a list of cases associated with E, then use it
4702 as it's a lot faster than walking the entire case vector. */
4703 if (cases)
4705 edge e2 = find_edge (e->src, dest);
4706 tree last, first;
4708 first = cases;
4709 while (cases)
4711 last = cases;
4712 CASE_LABEL (cases) = label;
4713 cases = TREE_CHAIN (cases);
4716 /* If there was already an edge in the CFG, then we need
4717 to move all the cases associated with E to E2. */
4718 if (e2)
4720 tree cases2 = get_cases_for_edge (e2, stmt);
4722 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4723 TREE_CHAIN (cases2) = first;
4725 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4727 else
4729 size_t i, n = gimple_switch_num_labels (stmt);
4731 for (i = 0; i < n; i++)
4733 tree elt = gimple_switch_label (stmt, i);
4734 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4735 CASE_LABEL (elt) = label;
4739 break;
4741 case GIMPLE_ASM:
4743 int i, n = gimple_asm_nlabels (stmt);
4744 tree label = NULL;
4746 for (i = 0; i < n; ++i)
4748 tree cons = gimple_asm_label_op (stmt, i);
4749 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4751 if (!label)
4752 label = gimple_block_label (dest);
4753 TREE_VALUE (cons) = label;
4757 /* If we didn't find any label matching the former edge in the
4758 asm labels, we must be redirecting the fallthrough
4759 edge. */
4760 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4762 break;
4764 case GIMPLE_RETURN:
4765 gsi_remove (&gsi, true);
4766 e->flags |= EDGE_FALLTHRU;
4767 break;
4769 case GIMPLE_OMP_RETURN:
4770 case GIMPLE_OMP_CONTINUE:
4771 case GIMPLE_OMP_SECTIONS_SWITCH:
4772 case GIMPLE_OMP_FOR:
4773 /* The edges from OMP constructs can be simply redirected. */
4774 break;
4776 case GIMPLE_EH_DISPATCH:
4777 if (!(e->flags & EDGE_FALLTHRU))
4778 redirect_eh_dispatch_edge (stmt, e, dest);
4779 break;
4781 default:
4782 /* Otherwise it must be a fallthru edge, and we don't need to
4783 do anything besides redirecting it. */
4784 gcc_assert (e->flags & EDGE_FALLTHRU);
4785 break;
4788 /* Update/insert PHI nodes as necessary. */
4790 /* Now update the edges in the CFG. */
4791 e = ssa_redirect_edge (e, dest);
4793 return e;
4796 /* Returns true if it is possible to remove edge E by redirecting
4797 it to the destination of the other edge from E->src. */
4799 static bool
4800 gimple_can_remove_branch_p (const_edge e)
4802 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4803 return false;
4805 return true;
4808 /* Simple wrapper, as we can always redirect fallthru edges. */
4810 static basic_block
4811 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4813 e = gimple_redirect_edge_and_branch (e, dest);
4814 gcc_assert (e);
4816 return NULL;
4820 /* Splits basic block BB after statement STMT (but at least after the
4821 labels). If STMT is NULL, BB is split just after the labels. */
4823 static basic_block
4824 gimple_split_block (basic_block bb, void *stmt)
4826 gimple_stmt_iterator gsi;
4827 gimple_stmt_iterator gsi_tgt;
4828 gimple act;
4829 gimple_seq list;
4830 basic_block new_bb;
4831 edge e;
4832 edge_iterator ei;
4834 new_bb = create_empty_bb (bb);
4836 /* Redirect the outgoing edges. */
4837 new_bb->succs = bb->succs;
4838 bb->succs = NULL;
4839 FOR_EACH_EDGE (e, ei, new_bb->succs)
4840 e->src = new_bb;
4842 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
4843 stmt = NULL;
4845 /* Move everything from GSI to the new basic block. */
4846 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4848 act = gsi_stmt (gsi);
4849 if (gimple_code (act) == GIMPLE_LABEL)
4850 continue;
4852 if (!stmt)
4853 break;
4855 if (stmt == act)
4857 gsi_next (&gsi);
4858 break;
4862 if (gsi_end_p (gsi))
4863 return new_bb;
4865 /* Split the statement list - avoid re-creating new containers as this
4866 brings ugly quadratic memory consumption in the inliner.
4867 (We are still quadratic since we need to update stmt BB pointers,
4868 sadly.) */
4869 list = gsi_split_seq_before (&gsi);
4870 set_bb_seq (new_bb, list);
4871 for (gsi_tgt = gsi_start (list);
4872 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
4873 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
4875 return new_bb;
4879 /* Moves basic block BB after block AFTER. */
4881 static bool
4882 gimple_move_block_after (basic_block bb, basic_block after)
4884 if (bb->prev_bb == after)
4885 return true;
4887 unlink_block (bb);
4888 link_block (bb, after);
4890 return true;
4894 /* Return true if basic_block can be duplicated. */
4896 static bool
4897 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
4899 return true;
4902 /* Create a duplicate of the basic block BB. NOTE: This does not
4903 preserve SSA form. */
4905 static basic_block
4906 gimple_duplicate_bb (basic_block bb)
4908 basic_block new_bb;
4909 gimple_stmt_iterator gsi, gsi_tgt;
4910 gimple_seq phis = phi_nodes (bb);
4911 gimple phi, stmt, copy;
4913 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4915 /* Copy the PHI nodes. We ignore PHI node arguments here because
4916 the incoming edges have not been setup yet. */
4917 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
4919 phi = gsi_stmt (gsi);
4920 copy = create_phi_node (gimple_phi_result (phi), new_bb);
4921 create_new_def_for (gimple_phi_result (copy), copy,
4922 gimple_phi_result_ptr (copy));
4925 gsi_tgt = gsi_start_bb (new_bb);
4926 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4928 def_operand_p def_p;
4929 ssa_op_iter op_iter;
4931 stmt = gsi_stmt (gsi);
4932 if (gimple_code (stmt) == GIMPLE_LABEL)
4933 continue;
4935 /* Create a new copy of STMT and duplicate STMT's virtual
4936 operands. */
4937 copy = gimple_copy (stmt);
4938 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
4940 maybe_duplicate_eh_stmt (copy, stmt);
4941 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
4943 /* Create new names for all the definitions created by COPY and
4944 add replacement mappings for each new name. */
4945 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4946 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4949 return new_bb;
4952 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
4954 static void
4955 add_phi_args_after_copy_edge (edge e_copy)
4957 basic_block bb, bb_copy = e_copy->src, dest;
4958 edge e;
4959 edge_iterator ei;
4960 gimple phi, phi_copy;
4961 tree def;
4962 gimple_stmt_iterator psi, psi_copy;
4964 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
4965 return;
4967 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
4969 if (e_copy->dest->flags & BB_DUPLICATED)
4970 dest = get_bb_original (e_copy->dest);
4971 else
4972 dest = e_copy->dest;
4974 e = find_edge (bb, dest);
4975 if (!e)
4977 /* During loop unrolling the target of the latch edge is copied.
4978 In this case we are not looking for edge to dest, but to
4979 duplicated block whose original was dest. */
4980 FOR_EACH_EDGE (e, ei, bb->succs)
4982 if ((e->dest->flags & BB_DUPLICATED)
4983 && get_bb_original (e->dest) == dest)
4984 break;
4987 gcc_assert (e != NULL);
4990 for (psi = gsi_start_phis (e->dest),
4991 psi_copy = gsi_start_phis (e_copy->dest);
4992 !gsi_end_p (psi);
4993 gsi_next (&psi), gsi_next (&psi_copy))
4995 phi = gsi_stmt (psi);
4996 phi_copy = gsi_stmt (psi_copy);
4997 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
4998 add_phi_arg (phi_copy, def, e_copy,
4999 gimple_phi_arg_location_from_edge (phi, e));
5004 /* Basic block BB_COPY was created by code duplication. Add phi node
5005 arguments for edges going out of BB_COPY. The blocks that were
5006 duplicated have BB_DUPLICATED set. */
5008 void
5009 add_phi_args_after_copy_bb (basic_block bb_copy)
5011 edge e_copy;
5012 edge_iterator ei;
5014 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5016 add_phi_args_after_copy_edge (e_copy);
5020 /* Blocks in REGION_COPY array of length N_REGION were created by
5021 duplication of basic blocks. Add phi node arguments for edges
5022 going from these blocks. If E_COPY is not NULL, also add
5023 phi node arguments for its destination.*/
5025 void
5026 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5027 edge e_copy)
5029 unsigned i;
5031 for (i = 0; i < n_region; i++)
5032 region_copy[i]->flags |= BB_DUPLICATED;
5034 for (i = 0; i < n_region; i++)
5035 add_phi_args_after_copy_bb (region_copy[i]);
5036 if (e_copy)
5037 add_phi_args_after_copy_edge (e_copy);
5039 for (i = 0; i < n_region; i++)
5040 region_copy[i]->flags &= ~BB_DUPLICATED;
5043 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5044 important exit edge EXIT. By important we mean that no SSA name defined
5045 inside region is live over the other exit edges of the region. All entry
5046 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5047 to the duplicate of the region. SSA form, dominance and loop information
5048 is updated. The new basic blocks are stored to REGION_COPY in the same
5049 order as they had in REGION, provided that REGION_COPY is not NULL.
5050 The function returns false if it is unable to copy the region,
5051 true otherwise. */
5053 bool
5054 gimple_duplicate_sese_region (edge entry, edge exit,
5055 basic_block *region, unsigned n_region,
5056 basic_block *region_copy)
5058 unsigned i;
5059 bool free_region_copy = false, copying_header = false;
5060 struct loop *loop = entry->dest->loop_father;
5061 edge exit_copy;
5062 VEC (basic_block, heap) *doms;
5063 edge redirected;
5064 int total_freq = 0, entry_freq = 0;
5065 gcov_type total_count = 0, entry_count = 0;
5067 if (!can_copy_bbs_p (region, n_region))
5068 return false;
5070 /* Some sanity checking. Note that we do not check for all possible
5071 missuses of the functions. I.e. if you ask to copy something weird,
5072 it will work, but the state of structures probably will not be
5073 correct. */
5074 for (i = 0; i < n_region; i++)
5076 /* We do not handle subloops, i.e. all the blocks must belong to the
5077 same loop. */
5078 if (region[i]->loop_father != loop)
5079 return false;
5081 if (region[i] != entry->dest
5082 && region[i] == loop->header)
5083 return false;
5086 set_loop_copy (loop, loop);
5088 /* In case the function is used for loop header copying (which is the primary
5089 use), ensure that EXIT and its copy will be new latch and entry edges. */
5090 if (loop->header == entry->dest)
5092 copying_header = true;
5093 set_loop_copy (loop, loop_outer (loop));
5095 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5096 return false;
5098 for (i = 0; i < n_region; i++)
5099 if (region[i] != exit->src
5100 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5101 return false;
5104 if (!region_copy)
5106 region_copy = XNEWVEC (basic_block, n_region);
5107 free_region_copy = true;
5110 gcc_assert (!need_ssa_update_p (cfun));
5112 /* Record blocks outside the region that are dominated by something
5113 inside. */
5114 doms = NULL;
5115 initialize_original_copy_tables ();
5117 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5119 if (entry->dest->count)
5121 total_count = entry->dest->count;
5122 entry_count = entry->count;
5123 /* Fix up corner cases, to avoid division by zero or creation of negative
5124 frequencies. */
5125 if (entry_count > total_count)
5126 entry_count = total_count;
5128 else
5130 total_freq = entry->dest->frequency;
5131 entry_freq = EDGE_FREQUENCY (entry);
5132 /* Fix up corner cases, to avoid division by zero or creation of negative
5133 frequencies. */
5134 if (total_freq == 0)
5135 total_freq = 1;
5136 else if (entry_freq > total_freq)
5137 entry_freq = total_freq;
5140 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5141 split_edge_bb_loc (entry));
5142 if (total_count)
5144 scale_bbs_frequencies_gcov_type (region, n_region,
5145 total_count - entry_count,
5146 total_count);
5147 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5148 total_count);
5150 else
5152 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5153 total_freq);
5154 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5157 if (copying_header)
5159 loop->header = exit->dest;
5160 loop->latch = exit->src;
5163 /* Redirect the entry and add the phi node arguments. */
5164 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5165 gcc_assert (redirected != NULL);
5166 flush_pending_stmts (entry);
5168 /* Concerning updating of dominators: We must recount dominators
5169 for entry block and its copy. Anything that is outside of the
5170 region, but was dominated by something inside needs recounting as
5171 well. */
5172 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5173 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5174 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5175 VEC_free (basic_block, heap, doms);
5177 /* Add the other PHI node arguments. */
5178 add_phi_args_after_copy (region_copy, n_region, NULL);
5180 /* Update the SSA web. */
5181 update_ssa (TODO_update_ssa);
5183 if (free_region_copy)
5184 free (region_copy);
5186 free_original_copy_tables ();
5187 return true;
5190 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5191 are stored to REGION_COPY in the same order in that they appear
5192 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5193 the region, EXIT an exit from it. The condition guarding EXIT
5194 is moved to ENTRY. Returns true if duplication succeeds, false
5195 otherwise.
5197 For example,
5199 some_code;
5200 if (cond)
5202 else
5205 is transformed to
5207 if (cond)
5209 some_code;
5212 else
5214 some_code;
5219 bool
5220 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5221 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5222 basic_block *region_copy ATTRIBUTE_UNUSED)
5224 unsigned i;
5225 bool free_region_copy = false;
5226 struct loop *loop = exit->dest->loop_father;
5227 struct loop *orig_loop = entry->dest->loop_father;
5228 basic_block switch_bb, entry_bb, nentry_bb;
5229 VEC (basic_block, heap) *doms;
5230 int total_freq = 0, exit_freq = 0;
5231 gcov_type total_count = 0, exit_count = 0;
5232 edge exits[2], nexits[2], e;
5233 gimple_stmt_iterator gsi,gsi1;
5234 gimple cond_stmt;
5235 edge sorig, snew;
5236 basic_block exit_bb;
5237 basic_block iters_bb;
5238 tree new_rhs;
5239 gimple_stmt_iterator psi;
5240 gimple phi;
5241 tree def;
5243 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5244 exits[0] = exit;
5245 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5247 if (!can_copy_bbs_p (region, n_region))
5248 return false;
5250 initialize_original_copy_tables ();
5251 set_loop_copy (orig_loop, loop);
5252 duplicate_subloops (orig_loop, loop);
5254 if (!region_copy)
5256 region_copy = XNEWVEC (basic_block, n_region);
5257 free_region_copy = true;
5260 gcc_assert (!need_ssa_update_p (cfun));
5262 /* Record blocks outside the region that are dominated by something
5263 inside. */
5264 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5266 if (exit->src->count)
5268 total_count = exit->src->count;
5269 exit_count = exit->count;
5270 /* Fix up corner cases, to avoid division by zero or creation of negative
5271 frequencies. */
5272 if (exit_count > total_count)
5273 exit_count = total_count;
5275 else
5277 total_freq = exit->src->frequency;
5278 exit_freq = EDGE_FREQUENCY (exit);
5279 /* Fix up corner cases, to avoid division by zero or creation of negative
5280 frequencies. */
5281 if (total_freq == 0)
5282 total_freq = 1;
5283 if (exit_freq > total_freq)
5284 exit_freq = total_freq;
5287 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5288 split_edge_bb_loc (exit));
5289 if (total_count)
5291 scale_bbs_frequencies_gcov_type (region, n_region,
5292 total_count - exit_count,
5293 total_count);
5294 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5295 total_count);
5297 else
5299 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5300 total_freq);
5301 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5304 /* Create the switch block, and put the exit condition to it. */
5305 entry_bb = entry->dest;
5306 nentry_bb = get_bb_copy (entry_bb);
5307 if (!last_stmt (entry->src)
5308 || !stmt_ends_bb_p (last_stmt (entry->src)))
5309 switch_bb = entry->src;
5310 else
5311 switch_bb = split_edge (entry);
5312 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5314 gsi = gsi_last_bb (switch_bb);
5315 cond_stmt = last_stmt (exit->src);
5316 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5317 cond_stmt = gimple_copy (cond_stmt);
5319 /* If the block consisting of the exit condition has the latch as
5320 successor, then the body of the loop is executed before
5321 the exit condition is tested. In such case, moving the
5322 condition to the entry, causes that the loop will iterate
5323 one less iteration (which is the wanted outcome, since we
5324 peel out the last iteration). If the body is executed after
5325 the condition, moving the condition to the entry requires
5326 decrementing one iteration. */
5327 if (exits[1]->dest == orig_loop->latch)
5328 new_rhs = gimple_cond_rhs (cond_stmt);
5329 else
5331 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5332 gimple_cond_rhs (cond_stmt),
5333 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5335 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5337 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5338 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5339 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5340 break;
5342 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5343 NULL_TREE,false,GSI_CONTINUE_LINKING);
5346 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5347 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5348 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5350 sorig = single_succ_edge (switch_bb);
5351 sorig->flags = exits[1]->flags;
5352 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5354 /* Register the new edge from SWITCH_BB in loop exit lists. */
5355 rescan_loop_exit (snew, true, false);
5357 /* Add the PHI node arguments. */
5358 add_phi_args_after_copy (region_copy, n_region, snew);
5360 /* Get rid of now superfluous conditions and associated edges (and phi node
5361 arguments). */
5362 exit_bb = exit->dest;
5364 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5365 PENDING_STMT (e) = NULL;
5367 /* The latch of ORIG_LOOP was copied, and so was the backedge
5368 to the original header. We redirect this backedge to EXIT_BB. */
5369 for (i = 0; i < n_region; i++)
5370 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5372 gcc_assert (single_succ_edge (region_copy[i]));
5373 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5374 PENDING_STMT (e) = NULL;
5375 for (psi = gsi_start_phis (exit_bb);
5376 !gsi_end_p (psi);
5377 gsi_next (&psi))
5379 phi = gsi_stmt (psi);
5380 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5381 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5384 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5385 PENDING_STMT (e) = NULL;
5387 /* Anything that is outside of the region, but was dominated by something
5388 inside needs to update dominance info. */
5389 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5390 VEC_free (basic_block, heap, doms);
5391 /* Update the SSA web. */
5392 update_ssa (TODO_update_ssa);
5394 if (free_region_copy)
5395 free (region_copy);
5397 free_original_copy_tables ();
5398 return true;
5401 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5402 adding blocks when the dominator traversal reaches EXIT. This
5403 function silently assumes that ENTRY strictly dominates EXIT. */
5405 void
5406 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5407 VEC(basic_block,heap) **bbs_p)
5409 basic_block son;
5411 for (son = first_dom_son (CDI_DOMINATORS, entry);
5412 son;
5413 son = next_dom_son (CDI_DOMINATORS, son))
5415 VEC_safe_push (basic_block, heap, *bbs_p, son);
5416 if (son != exit)
5417 gather_blocks_in_sese_region (son, exit, bbs_p);
5421 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5422 The duplicates are recorded in VARS_MAP. */
5424 static void
5425 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5426 tree to_context)
5428 tree t = *tp, new_t;
5429 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5430 void **loc;
5432 if (DECL_CONTEXT (t) == to_context)
5433 return;
5435 loc = pointer_map_contains (vars_map, t);
5437 if (!loc)
5439 loc = pointer_map_insert (vars_map, t);
5441 if (SSA_VAR_P (t))
5443 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5444 f->local_decls = tree_cons (NULL_TREE, new_t, f->local_decls);
5446 else
5448 gcc_assert (TREE_CODE (t) == CONST_DECL);
5449 new_t = copy_node (t);
5451 DECL_CONTEXT (new_t) = to_context;
5453 *loc = new_t;
5455 else
5456 new_t = (tree) *loc;
5458 *tp = new_t;
5462 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5463 VARS_MAP maps old ssa names and var_decls to the new ones. */
5465 static tree
5466 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5467 tree to_context)
5469 void **loc;
5470 tree new_name, decl = SSA_NAME_VAR (name);
5472 gcc_assert (is_gimple_reg (name));
5474 loc = pointer_map_contains (vars_map, name);
5476 if (!loc)
5478 replace_by_duplicate_decl (&decl, vars_map, to_context);
5480 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5481 if (gimple_in_ssa_p (cfun))
5482 add_referenced_var (decl);
5484 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5485 if (SSA_NAME_IS_DEFAULT_DEF (name))
5486 set_default_def (decl, new_name);
5487 pop_cfun ();
5489 loc = pointer_map_insert (vars_map, name);
5490 *loc = new_name;
5492 else
5493 new_name = (tree) *loc;
5495 return new_name;
5498 struct move_stmt_d
5500 tree orig_block;
5501 tree new_block;
5502 tree from_context;
5503 tree to_context;
5504 struct pointer_map_t *vars_map;
5505 htab_t new_label_map;
5506 struct pointer_map_t *eh_map;
5507 bool remap_decls_p;
5510 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5511 contained in *TP if it has been ORIG_BLOCK previously and change the
5512 DECL_CONTEXT of every local variable referenced in *TP. */
5514 static tree
5515 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5517 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5518 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5519 tree t = *tp;
5521 if (EXPR_P (t))
5522 /* We should never have TREE_BLOCK set on non-statements. */
5523 gcc_assert (!TREE_BLOCK (t));
5525 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5527 if (TREE_CODE (t) == SSA_NAME)
5528 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5529 else if (TREE_CODE (t) == LABEL_DECL)
5531 if (p->new_label_map)
5533 struct tree_map in, *out;
5534 in.base.from = t;
5535 out = (struct tree_map *)
5536 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5537 if (out)
5538 *tp = t = out->to;
5541 DECL_CONTEXT (t) = p->to_context;
5543 else if (p->remap_decls_p)
5545 /* Replace T with its duplicate. T should no longer appear in the
5546 parent function, so this looks wasteful; however, it may appear
5547 in referenced_vars, and more importantly, as virtual operands of
5548 statements, and in alias lists of other variables. It would be
5549 quite difficult to expunge it from all those places. ??? It might
5550 suffice to do this for addressable variables. */
5551 if ((TREE_CODE (t) == VAR_DECL
5552 && !is_global_var (t))
5553 || TREE_CODE (t) == CONST_DECL)
5554 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5556 if (SSA_VAR_P (t)
5557 && gimple_in_ssa_p (cfun))
5559 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5560 add_referenced_var (*tp);
5561 pop_cfun ();
5564 *walk_subtrees = 0;
5566 else if (TYPE_P (t))
5567 *walk_subtrees = 0;
5569 return NULL_TREE;
5572 /* Helper for move_stmt_r. Given an EH region number for the source
5573 function, map that to the duplicate EH regio number in the dest. */
5575 static int
5576 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5578 eh_region old_r, new_r;
5579 void **slot;
5581 old_r = get_eh_region_from_number (old_nr);
5582 slot = pointer_map_contains (p->eh_map, old_r);
5583 new_r = (eh_region) *slot;
5585 return new_r->index;
5588 /* Similar, but operate on INTEGER_CSTs. */
5590 static tree
5591 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5593 int old_nr, new_nr;
5595 old_nr = tree_low_cst (old_t_nr, 0);
5596 new_nr = move_stmt_eh_region_nr (old_nr, p);
5598 return build_int_cst (NULL, new_nr);
5601 /* Like move_stmt_op, but for gimple statements.
5603 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5604 contained in the current statement in *GSI_P and change the
5605 DECL_CONTEXT of every local variable referenced in the current
5606 statement. */
5608 static tree
5609 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5610 struct walk_stmt_info *wi)
5612 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5613 gimple stmt = gsi_stmt (*gsi_p);
5614 tree block = gimple_block (stmt);
5616 if (p->orig_block == NULL_TREE
5617 || block == p->orig_block
5618 || block == NULL_TREE)
5619 gimple_set_block (stmt, p->new_block);
5620 #ifdef ENABLE_CHECKING
5621 else if (block != p->new_block)
5623 while (block && block != p->orig_block)
5624 block = BLOCK_SUPERCONTEXT (block);
5625 gcc_assert (block);
5627 #endif
5629 switch (gimple_code (stmt))
5631 case GIMPLE_CALL:
5632 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5634 tree r, fndecl = gimple_call_fndecl (stmt);
5635 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5636 switch (DECL_FUNCTION_CODE (fndecl))
5638 case BUILT_IN_EH_COPY_VALUES:
5639 r = gimple_call_arg (stmt, 1);
5640 r = move_stmt_eh_region_tree_nr (r, p);
5641 gimple_call_set_arg (stmt, 1, r);
5642 /* FALLTHRU */
5644 case BUILT_IN_EH_POINTER:
5645 case BUILT_IN_EH_FILTER:
5646 r = gimple_call_arg (stmt, 0);
5647 r = move_stmt_eh_region_tree_nr (r, p);
5648 gimple_call_set_arg (stmt, 0, r);
5649 break;
5651 default:
5652 break;
5655 break;
5657 case GIMPLE_RESX:
5659 int r = gimple_resx_region (stmt);
5660 r = move_stmt_eh_region_nr (r, p);
5661 gimple_resx_set_region (stmt, r);
5663 break;
5665 case GIMPLE_EH_DISPATCH:
5667 int r = gimple_eh_dispatch_region (stmt);
5668 r = move_stmt_eh_region_nr (r, p);
5669 gimple_eh_dispatch_set_region (stmt, r);
5671 break;
5673 case GIMPLE_OMP_RETURN:
5674 case GIMPLE_OMP_CONTINUE:
5675 break;
5676 default:
5677 if (is_gimple_omp (stmt))
5679 /* Do not remap variables inside OMP directives. Variables
5680 referenced in clauses and directive header belong to the
5681 parent function and should not be moved into the child
5682 function. */
5683 bool save_remap_decls_p = p->remap_decls_p;
5684 p->remap_decls_p = false;
5685 *handled_ops_p = true;
5687 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5688 move_stmt_op, wi);
5690 p->remap_decls_p = save_remap_decls_p;
5692 break;
5695 return NULL_TREE;
5698 /* Marks virtual operands of all statements in basic blocks BBS for
5699 renaming. */
5701 void
5702 mark_virtual_ops_in_bb (basic_block bb)
5704 gimple_stmt_iterator gsi;
5706 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5707 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5709 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5710 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5713 /* Move basic block BB from function CFUN to function DEST_FN. The
5714 block is moved out of the original linked list and placed after
5715 block AFTER in the new list. Also, the block is removed from the
5716 original array of blocks and placed in DEST_FN's array of blocks.
5717 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5718 updated to reflect the moved edges.
5720 The local variables are remapped to new instances, VARS_MAP is used
5721 to record the mapping. */
5723 static void
5724 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5725 basic_block after, bool update_edge_count_p,
5726 struct move_stmt_d *d)
5728 struct control_flow_graph *cfg;
5729 edge_iterator ei;
5730 edge e;
5731 gimple_stmt_iterator si;
5732 unsigned old_len, new_len;
5734 /* Remove BB from dominance structures. */
5735 delete_from_dominance_info (CDI_DOMINATORS, bb);
5736 if (current_loops)
5737 remove_bb_from_loops (bb);
5739 /* Link BB to the new linked list. */
5740 move_block_after (bb, after);
5742 /* Update the edge count in the corresponding flowgraphs. */
5743 if (update_edge_count_p)
5744 FOR_EACH_EDGE (e, ei, bb->succs)
5746 cfun->cfg->x_n_edges--;
5747 dest_cfun->cfg->x_n_edges++;
5750 /* Remove BB from the original basic block array. */
5751 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5752 cfun->cfg->x_n_basic_blocks--;
5754 /* Grow DEST_CFUN's basic block array if needed. */
5755 cfg = dest_cfun->cfg;
5756 cfg->x_n_basic_blocks++;
5757 if (bb->index >= cfg->x_last_basic_block)
5758 cfg->x_last_basic_block = bb->index + 1;
5760 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5761 if ((unsigned) cfg->x_last_basic_block >= old_len)
5763 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5764 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5765 new_len);
5768 VEC_replace (basic_block, cfg->x_basic_block_info,
5769 bb->index, bb);
5771 /* Remap the variables in phi nodes. */
5772 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5774 gimple phi = gsi_stmt (si);
5775 use_operand_p use;
5776 tree op = PHI_RESULT (phi);
5777 ssa_op_iter oi;
5779 if (!is_gimple_reg (op))
5781 /* Remove the phi nodes for virtual operands (alias analysis will be
5782 run for the new function, anyway). */
5783 remove_phi_node (&si, true);
5784 continue;
5787 SET_PHI_RESULT (phi,
5788 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5789 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5791 op = USE_FROM_PTR (use);
5792 if (TREE_CODE (op) == SSA_NAME)
5793 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5796 gsi_next (&si);
5799 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5801 gimple stmt = gsi_stmt (si);
5802 struct walk_stmt_info wi;
5804 memset (&wi, 0, sizeof (wi));
5805 wi.info = d;
5806 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5808 if (gimple_code (stmt) == GIMPLE_LABEL)
5810 tree label = gimple_label_label (stmt);
5811 int uid = LABEL_DECL_UID (label);
5813 gcc_assert (uid > -1);
5815 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5816 if (old_len <= (unsigned) uid)
5818 new_len = 3 * uid / 2 + 1;
5819 VEC_safe_grow_cleared (basic_block, gc,
5820 cfg->x_label_to_block_map, new_len);
5823 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5824 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5826 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5828 if (uid >= dest_cfun->cfg->last_label_uid)
5829 dest_cfun->cfg->last_label_uid = uid + 1;
5832 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5833 remove_stmt_from_eh_lp_fn (cfun, stmt);
5835 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5836 gimple_remove_stmt_histograms (cfun, stmt);
5838 /* We cannot leave any operands allocated from the operand caches of
5839 the current function. */
5840 free_stmt_operands (stmt);
5841 push_cfun (dest_cfun);
5842 update_stmt (stmt);
5843 pop_cfun ();
5846 FOR_EACH_EDGE (e, ei, bb->succs)
5847 if (e->goto_locus)
5849 tree block = e->goto_block;
5850 if (d->orig_block == NULL_TREE
5851 || block == d->orig_block)
5852 e->goto_block = d->new_block;
5853 #ifdef ENABLE_CHECKING
5854 else if (block != d->new_block)
5856 while (block && block != d->orig_block)
5857 block = BLOCK_SUPERCONTEXT (block);
5858 gcc_assert (block);
5860 #endif
5864 /* Examine the statements in BB (which is in SRC_CFUN); find and return
5865 the outermost EH region. Use REGION as the incoming base EH region. */
5867 static eh_region
5868 find_outermost_region_in_block (struct function *src_cfun,
5869 basic_block bb, eh_region region)
5871 gimple_stmt_iterator si;
5873 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5875 gimple stmt = gsi_stmt (si);
5876 eh_region stmt_region;
5877 int lp_nr;
5879 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
5880 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
5881 if (stmt_region)
5883 if (region == NULL)
5884 region = stmt_region;
5885 else if (stmt_region != region)
5887 region = eh_region_outermost (src_cfun, stmt_region, region);
5888 gcc_assert (region != NULL);
5893 return region;
5896 static tree
5897 new_label_mapper (tree decl, void *data)
5899 htab_t hash = (htab_t) data;
5900 struct tree_map *m;
5901 void **slot;
5903 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
5905 m = XNEW (struct tree_map);
5906 m->hash = DECL_UID (decl);
5907 m->base.from = decl;
5908 m->to = create_artificial_label (UNKNOWN_LOCATION);
5909 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
5910 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
5911 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
5913 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
5914 gcc_assert (*slot == NULL);
5916 *slot = m;
5918 return m->to;
5921 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
5922 subblocks. */
5924 static void
5925 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
5926 tree to_context)
5928 tree *tp, t;
5930 for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
5932 t = *tp;
5933 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
5934 continue;
5935 replace_by_duplicate_decl (&t, vars_map, to_context);
5936 if (t != *tp)
5938 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
5940 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
5941 DECL_HAS_VALUE_EXPR_P (t) = 1;
5943 TREE_CHAIN (t) = TREE_CHAIN (*tp);
5944 *tp = t;
5948 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
5949 replace_block_vars_by_duplicates (block, vars_map, to_context);
5952 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
5953 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
5954 single basic block in the original CFG and the new basic block is
5955 returned. DEST_CFUN must not have a CFG yet.
5957 Note that the region need not be a pure SESE region. Blocks inside
5958 the region may contain calls to abort/exit. The only restriction
5959 is that ENTRY_BB should be the only entry point and it must
5960 dominate EXIT_BB.
5962 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
5963 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
5964 to the new function.
5966 All local variables referenced in the region are assumed to be in
5967 the corresponding BLOCK_VARS and unexpanded variable lists
5968 associated with DEST_CFUN. */
5970 basic_block
5971 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
5972 basic_block exit_bb, tree orig_block)
5974 VEC(basic_block,heap) *bbs, *dom_bbs;
5975 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
5976 basic_block after, bb, *entry_pred, *exit_succ, abb;
5977 struct function *saved_cfun = cfun;
5978 int *entry_flag, *exit_flag;
5979 unsigned *entry_prob, *exit_prob;
5980 unsigned i, num_entry_edges, num_exit_edges;
5981 edge e;
5982 edge_iterator ei;
5983 htab_t new_label_map;
5984 struct pointer_map_t *vars_map, *eh_map;
5985 struct loop *loop = entry_bb->loop_father;
5986 struct move_stmt_d d;
5988 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
5989 region. */
5990 gcc_assert (entry_bb != exit_bb
5991 && (!exit_bb
5992 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
5994 /* Collect all the blocks in the region. Manually add ENTRY_BB
5995 because it won't be added by dfs_enumerate_from. */
5996 bbs = NULL;
5997 VEC_safe_push (basic_block, heap, bbs, entry_bb);
5998 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6000 /* The blocks that used to be dominated by something in BBS will now be
6001 dominated by the new block. */
6002 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6003 VEC_address (basic_block, bbs),
6004 VEC_length (basic_block, bbs));
6006 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6007 the predecessor edges to ENTRY_BB and the successor edges to
6008 EXIT_BB so that we can re-attach them to the new basic block that
6009 will replace the region. */
6010 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6011 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6012 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6013 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6014 i = 0;
6015 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6017 entry_prob[i] = e->probability;
6018 entry_flag[i] = e->flags;
6019 entry_pred[i++] = e->src;
6020 remove_edge (e);
6023 if (exit_bb)
6025 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6026 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6027 sizeof (basic_block));
6028 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6029 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6030 i = 0;
6031 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6033 exit_prob[i] = e->probability;
6034 exit_flag[i] = e->flags;
6035 exit_succ[i++] = e->dest;
6036 remove_edge (e);
6039 else
6041 num_exit_edges = 0;
6042 exit_succ = NULL;
6043 exit_flag = NULL;
6044 exit_prob = NULL;
6047 /* Switch context to the child function to initialize DEST_FN's CFG. */
6048 gcc_assert (dest_cfun->cfg == NULL);
6049 push_cfun (dest_cfun);
6051 init_empty_tree_cfg ();
6053 /* Initialize EH information for the new function. */
6054 eh_map = NULL;
6055 new_label_map = NULL;
6056 if (saved_cfun->eh)
6058 eh_region region = NULL;
6060 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6061 region = find_outermost_region_in_block (saved_cfun, bb, region);
6063 init_eh_for_function ();
6064 if (region != NULL)
6066 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6067 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6068 new_label_mapper, new_label_map);
6072 pop_cfun ();
6074 /* Move blocks from BBS into DEST_CFUN. */
6075 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6076 after = dest_cfun->cfg->x_entry_block_ptr;
6077 vars_map = pointer_map_create ();
6079 memset (&d, 0, sizeof (d));
6080 d.orig_block = orig_block;
6081 d.new_block = DECL_INITIAL (dest_cfun->decl);
6082 d.from_context = cfun->decl;
6083 d.to_context = dest_cfun->decl;
6084 d.vars_map = vars_map;
6085 d.new_label_map = new_label_map;
6086 d.eh_map = eh_map;
6087 d.remap_decls_p = true;
6089 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6091 /* No need to update edge counts on the last block. It has
6092 already been updated earlier when we detached the region from
6093 the original CFG. */
6094 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6095 after = bb;
6098 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6099 if (orig_block)
6101 tree block;
6102 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6103 == NULL_TREE);
6104 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6105 = BLOCK_SUBBLOCKS (orig_block);
6106 for (block = BLOCK_SUBBLOCKS (orig_block);
6107 block; block = BLOCK_CHAIN (block))
6108 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6109 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6112 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6113 vars_map, dest_cfun->decl);
6115 if (new_label_map)
6116 htab_delete (new_label_map);
6117 if (eh_map)
6118 pointer_map_destroy (eh_map);
6119 pointer_map_destroy (vars_map);
6121 /* Rewire the entry and exit blocks. The successor to the entry
6122 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6123 the child function. Similarly, the predecessor of DEST_FN's
6124 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6125 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6126 various CFG manipulation function get to the right CFG.
6128 FIXME, this is silly. The CFG ought to become a parameter to
6129 these helpers. */
6130 push_cfun (dest_cfun);
6131 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6132 if (exit_bb)
6133 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6134 pop_cfun ();
6136 /* Back in the original function, the SESE region has disappeared,
6137 create a new basic block in its place. */
6138 bb = create_empty_bb (entry_pred[0]);
6139 if (current_loops)
6140 add_bb_to_loop (bb, loop);
6141 for (i = 0; i < num_entry_edges; i++)
6143 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6144 e->probability = entry_prob[i];
6147 for (i = 0; i < num_exit_edges; i++)
6149 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6150 e->probability = exit_prob[i];
6153 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6154 for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
6155 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6156 VEC_free (basic_block, heap, dom_bbs);
6158 if (exit_bb)
6160 free (exit_prob);
6161 free (exit_flag);
6162 free (exit_succ);
6164 free (entry_prob);
6165 free (entry_flag);
6166 free (entry_pred);
6167 VEC_free (basic_block, heap, bbs);
6169 return bb;
6173 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6176 void
6177 dump_function_to_file (tree fn, FILE *file, int flags)
6179 tree arg, vars, var;
6180 struct function *dsf;
6181 bool ignore_topmost_bind = false, any_var = false;
6182 basic_block bb;
6183 tree chain;
6185 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6187 arg = DECL_ARGUMENTS (fn);
6188 while (arg)
6190 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6191 fprintf (file, " ");
6192 print_generic_expr (file, arg, dump_flags);
6193 if (flags & TDF_VERBOSE)
6194 print_node (file, "", arg, 4);
6195 if (TREE_CHAIN (arg))
6196 fprintf (file, ", ");
6197 arg = TREE_CHAIN (arg);
6199 fprintf (file, ")\n");
6201 if (flags & TDF_VERBOSE)
6202 print_node (file, "", fn, 2);
6204 dsf = DECL_STRUCT_FUNCTION (fn);
6205 if (dsf && (flags & TDF_EH))
6206 dump_eh_tree (file, dsf);
6208 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6210 dump_node (fn, TDF_SLIM | flags, file);
6211 return;
6214 /* Switch CFUN to point to FN. */
6215 push_cfun (DECL_STRUCT_FUNCTION (fn));
6217 /* When GIMPLE is lowered, the variables are no longer available in
6218 BIND_EXPRs, so display them separately. */
6219 if (cfun && cfun->decl == fn && cfun->local_decls)
6221 ignore_topmost_bind = true;
6223 fprintf (file, "{\n");
6224 for (vars = cfun->local_decls; vars; vars = TREE_CHAIN (vars))
6226 var = TREE_VALUE (vars);
6228 print_generic_decl (file, var, flags);
6229 if (flags & TDF_VERBOSE)
6230 print_node (file, "", var, 4);
6231 fprintf (file, "\n");
6233 any_var = true;
6237 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6239 /* If the CFG has been built, emit a CFG-based dump. */
6240 check_bb_profile (ENTRY_BLOCK_PTR, file);
6241 if (!ignore_topmost_bind)
6242 fprintf (file, "{\n");
6244 if (any_var && n_basic_blocks)
6245 fprintf (file, "\n");
6247 FOR_EACH_BB (bb)
6248 gimple_dump_bb (bb, file, 2, flags);
6250 fprintf (file, "}\n");
6251 check_bb_profile (EXIT_BLOCK_PTR, file);
6253 else if (DECL_SAVED_TREE (fn) == NULL)
6255 /* The function is now in GIMPLE form but the CFG has not been
6256 built yet. Emit the single sequence of GIMPLE statements
6257 that make up its body. */
6258 gimple_seq body = gimple_body (fn);
6260 if (gimple_seq_first_stmt (body)
6261 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6262 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6263 print_gimple_seq (file, body, 0, flags);
6264 else
6266 if (!ignore_topmost_bind)
6267 fprintf (file, "{\n");
6269 if (any_var)
6270 fprintf (file, "\n");
6272 print_gimple_seq (file, body, 2, flags);
6273 fprintf (file, "}\n");
6276 else
6278 int indent;
6280 /* Make a tree based dump. */
6281 chain = DECL_SAVED_TREE (fn);
6283 if (chain && TREE_CODE (chain) == BIND_EXPR)
6285 if (ignore_topmost_bind)
6287 chain = BIND_EXPR_BODY (chain);
6288 indent = 2;
6290 else
6291 indent = 0;
6293 else
6295 if (!ignore_topmost_bind)
6296 fprintf (file, "{\n");
6297 indent = 2;
6300 if (any_var)
6301 fprintf (file, "\n");
6303 print_generic_stmt_indented (file, chain, flags, indent);
6304 if (ignore_topmost_bind)
6305 fprintf (file, "}\n");
6308 fprintf (file, "\n\n");
6310 /* Restore CFUN. */
6311 pop_cfun ();
6315 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6317 void
6318 debug_function (tree fn, int flags)
6320 dump_function_to_file (fn, stderr, flags);
6324 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6326 static void
6327 print_pred_bbs (FILE *file, basic_block bb)
6329 edge e;
6330 edge_iterator ei;
6332 FOR_EACH_EDGE (e, ei, bb->preds)
6333 fprintf (file, "bb_%d ", e->src->index);
6337 /* Print on FILE the indexes for the successors of basic_block BB. */
6339 static void
6340 print_succ_bbs (FILE *file, basic_block bb)
6342 edge e;
6343 edge_iterator ei;
6345 FOR_EACH_EDGE (e, ei, bb->succs)
6346 fprintf (file, "bb_%d ", e->dest->index);
6349 /* Print to FILE the basic block BB following the VERBOSITY level. */
6351 void
6352 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6354 char *s_indent = (char *) alloca ((size_t) indent + 1);
6355 memset ((void *) s_indent, ' ', (size_t) indent);
6356 s_indent[indent] = '\0';
6358 /* Print basic_block's header. */
6359 if (verbosity >= 2)
6361 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6362 print_pred_bbs (file, bb);
6363 fprintf (file, "}, succs = {");
6364 print_succ_bbs (file, bb);
6365 fprintf (file, "})\n");
6368 /* Print basic_block's body. */
6369 if (verbosity >= 3)
6371 fprintf (file, "%s {\n", s_indent);
6372 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6373 fprintf (file, "%s }\n", s_indent);
6377 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6379 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6380 VERBOSITY level this outputs the contents of the loop, or just its
6381 structure. */
6383 static void
6384 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6386 char *s_indent;
6387 basic_block bb;
6389 if (loop == NULL)
6390 return;
6392 s_indent = (char *) alloca ((size_t) indent + 1);
6393 memset ((void *) s_indent, ' ', (size_t) indent);
6394 s_indent[indent] = '\0';
6396 /* Print loop's header. */
6397 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6398 loop->num, loop->header->index, loop->latch->index);
6399 fprintf (file, ", niter = ");
6400 print_generic_expr (file, loop->nb_iterations, 0);
6402 if (loop->any_upper_bound)
6404 fprintf (file, ", upper_bound = ");
6405 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6408 if (loop->any_estimate)
6410 fprintf (file, ", estimate = ");
6411 dump_double_int (file, loop->nb_iterations_estimate, true);
6413 fprintf (file, ")\n");
6415 /* Print loop's body. */
6416 if (verbosity >= 1)
6418 fprintf (file, "%s{\n", s_indent);
6419 FOR_EACH_BB (bb)
6420 if (bb->loop_father == loop)
6421 print_loops_bb (file, bb, indent, verbosity);
6423 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6424 fprintf (file, "%s}\n", s_indent);
6428 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6429 spaces. Following VERBOSITY level this outputs the contents of the
6430 loop, or just its structure. */
6432 static void
6433 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6435 if (loop == NULL)
6436 return;
6438 print_loop (file, loop, indent, verbosity);
6439 print_loop_and_siblings (file, loop->next, indent, verbosity);
6442 /* Follow a CFG edge from the entry point of the program, and on entry
6443 of a loop, pretty print the loop structure on FILE. */
6445 void
6446 print_loops (FILE *file, int verbosity)
6448 basic_block bb;
6450 bb = ENTRY_BLOCK_PTR;
6451 if (bb && bb->loop_father)
6452 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6456 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6458 void
6459 debug_loops (int verbosity)
6461 print_loops (stderr, verbosity);
6464 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6466 void
6467 debug_loop (struct loop *loop, int verbosity)
6469 print_loop (stderr, loop, 0, verbosity);
6472 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6473 level. */
6475 void
6476 debug_loop_num (unsigned num, int verbosity)
6478 debug_loop (get_loop (num), verbosity);
6481 /* Return true if BB ends with a call, possibly followed by some
6482 instructions that must stay with the call. Return false,
6483 otherwise. */
6485 static bool
6486 gimple_block_ends_with_call_p (basic_block bb)
6488 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6489 return is_gimple_call (gsi_stmt (gsi));
6493 /* Return true if BB ends with a conditional branch. Return false,
6494 otherwise. */
6496 static bool
6497 gimple_block_ends_with_condjump_p (const_basic_block bb)
6499 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6500 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6504 /* Return true if we need to add fake edge to exit at statement T.
6505 Helper function for gimple_flow_call_edges_add. */
6507 static bool
6508 need_fake_edge_p (gimple t)
6510 tree fndecl = NULL_TREE;
6511 int call_flags = 0;
6513 /* NORETURN and LONGJMP calls already have an edge to exit.
6514 CONST and PURE calls do not need one.
6515 We don't currently check for CONST and PURE here, although
6516 it would be a good idea, because those attributes are
6517 figured out from the RTL in mark_constant_function, and
6518 the counter incrementation code from -fprofile-arcs
6519 leads to different results from -fbranch-probabilities. */
6520 if (is_gimple_call (t))
6522 fndecl = gimple_call_fndecl (t);
6523 call_flags = gimple_call_flags (t);
6526 if (is_gimple_call (t)
6527 && fndecl
6528 && DECL_BUILT_IN (fndecl)
6529 && (call_flags & ECF_NOTHROW)
6530 && !(call_flags & ECF_RETURNS_TWICE)
6531 /* fork() doesn't really return twice, but the effect of
6532 wrapping it in __gcov_fork() which calls __gcov_flush()
6533 and clears the counters before forking has the same
6534 effect as returning twice. Force a fake edge. */
6535 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6536 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6537 return false;
6539 if (is_gimple_call (t)
6540 && !(call_flags & ECF_NORETURN))
6541 return true;
6543 if (gimple_code (t) == GIMPLE_ASM
6544 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6545 return true;
6547 return false;
6551 /* Add fake edges to the function exit for any non constant and non
6552 noreturn calls, volatile inline assembly in the bitmap of blocks
6553 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6554 the number of blocks that were split.
6556 The goal is to expose cases in which entering a basic block does
6557 not imply that all subsequent instructions must be executed. */
6559 static int
6560 gimple_flow_call_edges_add (sbitmap blocks)
6562 int i;
6563 int blocks_split = 0;
6564 int last_bb = last_basic_block;
6565 bool check_last_block = false;
6567 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6568 return 0;
6570 if (! blocks)
6571 check_last_block = true;
6572 else
6573 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6575 /* In the last basic block, before epilogue generation, there will be
6576 a fallthru edge to EXIT. Special care is required if the last insn
6577 of the last basic block is a call because make_edge folds duplicate
6578 edges, which would result in the fallthru edge also being marked
6579 fake, which would result in the fallthru edge being removed by
6580 remove_fake_edges, which would result in an invalid CFG.
6582 Moreover, we can't elide the outgoing fake edge, since the block
6583 profiler needs to take this into account in order to solve the minimal
6584 spanning tree in the case that the call doesn't return.
6586 Handle this by adding a dummy instruction in a new last basic block. */
6587 if (check_last_block)
6589 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6590 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6591 gimple t = NULL;
6593 if (!gsi_end_p (gsi))
6594 t = gsi_stmt (gsi);
6596 if (t && need_fake_edge_p (t))
6598 edge e;
6600 e = find_edge (bb, EXIT_BLOCK_PTR);
6601 if (e)
6603 gsi_insert_on_edge (e, gimple_build_nop ());
6604 gsi_commit_edge_inserts ();
6609 /* Now add fake edges to the function exit for any non constant
6610 calls since there is no way that we can determine if they will
6611 return or not... */
6612 for (i = 0; i < last_bb; i++)
6614 basic_block bb = BASIC_BLOCK (i);
6615 gimple_stmt_iterator gsi;
6616 gimple stmt, last_stmt;
6618 if (!bb)
6619 continue;
6621 if (blocks && !TEST_BIT (blocks, i))
6622 continue;
6624 gsi = gsi_last_bb (bb);
6625 if (!gsi_end_p (gsi))
6627 last_stmt = gsi_stmt (gsi);
6630 stmt = gsi_stmt (gsi);
6631 if (need_fake_edge_p (stmt))
6633 edge e;
6635 /* The handling above of the final block before the
6636 epilogue should be enough to verify that there is
6637 no edge to the exit block in CFG already.
6638 Calling make_edge in such case would cause us to
6639 mark that edge as fake and remove it later. */
6640 #ifdef ENABLE_CHECKING
6641 if (stmt == last_stmt)
6643 e = find_edge (bb, EXIT_BLOCK_PTR);
6644 gcc_assert (e == NULL);
6646 #endif
6648 /* Note that the following may create a new basic block
6649 and renumber the existing basic blocks. */
6650 if (stmt != last_stmt)
6652 e = split_block (bb, stmt);
6653 if (e)
6654 blocks_split++;
6656 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6658 gsi_prev (&gsi);
6660 while (!gsi_end_p (gsi));
6664 if (blocks_split)
6665 verify_flow_info ();
6667 return blocks_split;
6670 /* Purge dead abnormal call edges from basic block BB. */
6672 bool
6673 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6675 bool changed = gimple_purge_dead_eh_edges (bb);
6677 if (cfun->has_nonlocal_label)
6679 gimple stmt = last_stmt (bb);
6680 edge_iterator ei;
6681 edge e;
6683 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6684 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6686 if (e->flags & EDGE_ABNORMAL)
6688 remove_edge (e);
6689 changed = true;
6691 else
6692 ei_next (&ei);
6695 /* See gimple_purge_dead_eh_edges below. */
6696 if (changed)
6697 free_dominance_info (CDI_DOMINATORS);
6700 return changed;
6703 /* Removes edge E and all the blocks dominated by it, and updates dominance
6704 information. The IL in E->src needs to be updated separately.
6705 If dominance info is not available, only the edge E is removed.*/
6707 void
6708 remove_edge_and_dominated_blocks (edge e)
6710 VEC (basic_block, heap) *bbs_to_remove = NULL;
6711 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6712 bitmap df, df_idom;
6713 edge f;
6714 edge_iterator ei;
6715 bool none_removed = false;
6716 unsigned i;
6717 basic_block bb, dbb;
6718 bitmap_iterator bi;
6720 if (!dom_info_available_p (CDI_DOMINATORS))
6722 remove_edge (e);
6723 return;
6726 /* No updating is needed for edges to exit. */
6727 if (e->dest == EXIT_BLOCK_PTR)
6729 if (cfgcleanup_altered_bbs)
6730 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6731 remove_edge (e);
6732 return;
6735 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6736 that is not dominated by E->dest, then this set is empty. Otherwise,
6737 all the basic blocks dominated by E->dest are removed.
6739 Also, to DF_IDOM we store the immediate dominators of the blocks in
6740 the dominance frontier of E (i.e., of the successors of the
6741 removed blocks, if there are any, and of E->dest otherwise). */
6742 FOR_EACH_EDGE (f, ei, e->dest->preds)
6744 if (f == e)
6745 continue;
6747 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6749 none_removed = true;
6750 break;
6754 df = BITMAP_ALLOC (NULL);
6755 df_idom = BITMAP_ALLOC (NULL);
6757 if (none_removed)
6758 bitmap_set_bit (df_idom,
6759 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6760 else
6762 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6763 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6765 FOR_EACH_EDGE (f, ei, bb->succs)
6767 if (f->dest != EXIT_BLOCK_PTR)
6768 bitmap_set_bit (df, f->dest->index);
6771 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6772 bitmap_clear_bit (df, bb->index);
6774 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6776 bb = BASIC_BLOCK (i);
6777 bitmap_set_bit (df_idom,
6778 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6782 if (cfgcleanup_altered_bbs)
6784 /* Record the set of the altered basic blocks. */
6785 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6786 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6789 /* Remove E and the cancelled blocks. */
6790 if (none_removed)
6791 remove_edge (e);
6792 else
6794 /* Walk backwards so as to get a chance to substitute all
6795 released DEFs into debug stmts. See
6796 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6797 details. */
6798 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6799 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6802 /* Update the dominance information. The immediate dominator may change only
6803 for blocks whose immediate dominator belongs to DF_IDOM:
6805 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6806 removal. Let Z the arbitrary block such that idom(Z) = Y and
6807 Z dominates X after the removal. Before removal, there exists a path P
6808 from Y to X that avoids Z. Let F be the last edge on P that is
6809 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6810 dominates W, and because of P, Z does not dominate W), and W belongs to
6811 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6812 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6814 bb = BASIC_BLOCK (i);
6815 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6816 dbb;
6817 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6818 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6821 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6823 BITMAP_FREE (df);
6824 BITMAP_FREE (df_idom);
6825 VEC_free (basic_block, heap, bbs_to_remove);
6826 VEC_free (basic_block, heap, bbs_to_fix_dom);
6829 /* Purge dead EH edges from basic block BB. */
6831 bool
6832 gimple_purge_dead_eh_edges (basic_block bb)
6834 bool changed = false;
6835 edge e;
6836 edge_iterator ei;
6837 gimple stmt = last_stmt (bb);
6839 if (stmt && stmt_can_throw_internal (stmt))
6840 return false;
6842 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6844 if (e->flags & EDGE_EH)
6846 remove_edge_and_dominated_blocks (e);
6847 changed = true;
6849 else
6850 ei_next (&ei);
6853 return changed;
6856 bool
6857 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6859 bool changed = false;
6860 unsigned i;
6861 bitmap_iterator bi;
6863 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6865 basic_block bb = BASIC_BLOCK (i);
6867 /* Earlier gimple_purge_dead_eh_edges could have removed
6868 this basic block already. */
6869 gcc_assert (bb || changed);
6870 if (bb != NULL)
6871 changed |= gimple_purge_dead_eh_edges (bb);
6874 return changed;
6877 /* This function is called whenever a new edge is created or
6878 redirected. */
6880 static void
6881 gimple_execute_on_growing_pred (edge e)
6883 basic_block bb = e->dest;
6885 if (!gimple_seq_empty_p (phi_nodes (bb)))
6886 reserve_phi_args_for_new_edge (bb);
6889 /* This function is called immediately before edge E is removed from
6890 the edge vector E->dest->preds. */
6892 static void
6893 gimple_execute_on_shrinking_pred (edge e)
6895 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
6896 remove_phi_args (e);
6899 /*---------------------------------------------------------------------------
6900 Helper functions for Loop versioning
6901 ---------------------------------------------------------------------------*/
6903 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
6904 of 'first'. Both of them are dominated by 'new_head' basic block. When
6905 'new_head' was created by 'second's incoming edge it received phi arguments
6906 on the edge by split_edge(). Later, additional edge 'e' was created to
6907 connect 'new_head' and 'first'. Now this routine adds phi args on this
6908 additional edge 'e' that new_head to second edge received as part of edge
6909 splitting. */
6911 static void
6912 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
6913 basic_block new_head, edge e)
6915 gimple phi1, phi2;
6916 gimple_stmt_iterator psi1, psi2;
6917 tree def;
6918 edge e2 = find_edge (new_head, second);
6920 /* Because NEW_HEAD has been created by splitting SECOND's incoming
6921 edge, we should always have an edge from NEW_HEAD to SECOND. */
6922 gcc_assert (e2 != NULL);
6924 /* Browse all 'second' basic block phi nodes and add phi args to
6925 edge 'e' for 'first' head. PHI args are always in correct order. */
6927 for (psi2 = gsi_start_phis (second),
6928 psi1 = gsi_start_phis (first);
6929 !gsi_end_p (psi2) && !gsi_end_p (psi1);
6930 gsi_next (&psi2), gsi_next (&psi1))
6932 phi1 = gsi_stmt (psi1);
6933 phi2 = gsi_stmt (psi2);
6934 def = PHI_ARG_DEF (phi2, e2->dest_idx);
6935 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
6940 /* Adds a if else statement to COND_BB with condition COND_EXPR.
6941 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
6942 the destination of the ELSE part. */
6944 static void
6945 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
6946 basic_block second_head ATTRIBUTE_UNUSED,
6947 basic_block cond_bb, void *cond_e)
6949 gimple_stmt_iterator gsi;
6950 gimple new_cond_expr;
6951 tree cond_expr = (tree) cond_e;
6952 edge e0;
6954 /* Build new conditional expr */
6955 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
6956 NULL_TREE, NULL_TREE);
6958 /* Add new cond in cond_bb. */
6959 gsi = gsi_last_bb (cond_bb);
6960 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
6962 /* Adjust edges appropriately to connect new head with first head
6963 as well as second head. */
6964 e0 = single_succ_edge (cond_bb);
6965 e0->flags &= ~EDGE_FALLTHRU;
6966 e0->flags |= EDGE_FALSE_VALUE;
6969 struct cfg_hooks gimple_cfg_hooks = {
6970 "gimple",
6971 gimple_verify_flow_info,
6972 gimple_dump_bb, /* dump_bb */
6973 create_bb, /* create_basic_block */
6974 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
6975 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
6976 gimple_can_remove_branch_p, /* can_remove_branch_p */
6977 remove_bb, /* delete_basic_block */
6978 gimple_split_block, /* split_block */
6979 gimple_move_block_after, /* move_block_after */
6980 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
6981 gimple_merge_blocks, /* merge_blocks */
6982 gimple_predict_edge, /* predict_edge */
6983 gimple_predicted_by_p, /* predicted_by_p */
6984 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
6985 gimple_duplicate_bb, /* duplicate_block */
6986 gimple_split_edge, /* split_edge */
6987 gimple_make_forwarder_block, /* make_forward_block */
6988 NULL, /* tidy_fallthru_edge */
6989 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
6990 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
6991 gimple_flow_call_edges_add, /* flow_call_edges_add */
6992 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
6993 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
6994 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
6995 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
6996 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
6997 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
6998 flush_pending_stmts /* flush_pending_stmts */
7002 /* Split all critical edges. */
7004 static unsigned int
7005 split_critical_edges (void)
7007 basic_block bb;
7008 edge e;
7009 edge_iterator ei;
7011 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7012 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7013 mappings around the calls to split_edge. */
7014 start_recording_case_labels ();
7015 FOR_ALL_BB (bb)
7017 FOR_EACH_EDGE (e, ei, bb->succs)
7019 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7020 split_edge (e);
7021 /* PRE inserts statements to edges and expects that
7022 since split_critical_edges was done beforehand, committing edge
7023 insertions will not split more edges. In addition to critical
7024 edges we must split edges that have multiple successors and
7025 end by control flow statements, such as RESX.
7026 Go ahead and split them too. This matches the logic in
7027 gimple_find_edge_insert_loc. */
7028 else if ((!single_pred_p (e->dest)
7029 || !gimple_seq_empty_p (phi_nodes (e->dest))
7030 || e->dest == EXIT_BLOCK_PTR)
7031 && e->src != ENTRY_BLOCK_PTR
7032 && !(e->flags & EDGE_ABNORMAL))
7034 gimple_stmt_iterator gsi;
7036 gsi = gsi_last_bb (e->src);
7037 if (!gsi_end_p (gsi)
7038 && stmt_ends_bb_p (gsi_stmt (gsi))
7039 && gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN)
7040 split_edge (e);
7044 end_recording_case_labels ();
7045 return 0;
7048 struct gimple_opt_pass pass_split_crit_edges =
7051 GIMPLE_PASS,
7052 "crited", /* name */
7053 NULL, /* gate */
7054 split_critical_edges, /* execute */
7055 NULL, /* sub */
7056 NULL, /* next */
7057 0, /* static_pass_number */
7058 TV_TREE_SPLIT_EDGES, /* tv_id */
7059 PROP_cfg, /* properties required */
7060 PROP_no_crit_edges, /* properties_provided */
7061 0, /* properties_destroyed */
7062 0, /* todo_flags_start */
7063 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7068 /* Build a ternary operation and gimplify it. Emit code before GSI.
7069 Return the gimple_val holding the result. */
7071 tree
7072 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7073 tree type, tree a, tree b, tree c)
7075 tree ret;
7076 location_t loc = gimple_location (gsi_stmt (*gsi));
7078 ret = fold_build3_loc (loc, code, type, a, b, c);
7079 STRIP_NOPS (ret);
7081 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7082 GSI_SAME_STMT);
7085 /* Build a binary operation and gimplify it. Emit code before GSI.
7086 Return the gimple_val holding the result. */
7088 tree
7089 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7090 tree type, tree a, tree b)
7092 tree ret;
7094 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7095 STRIP_NOPS (ret);
7097 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7098 GSI_SAME_STMT);
7101 /* Build a unary operation and gimplify it. Emit code before GSI.
7102 Return the gimple_val holding the result. */
7104 tree
7105 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7106 tree a)
7108 tree ret;
7110 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7111 STRIP_NOPS (ret);
7113 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7114 GSI_SAME_STMT);
7119 /* Emit return warnings. */
7121 static unsigned int
7122 execute_warn_function_return (void)
7124 source_location location;
7125 gimple last;
7126 edge e;
7127 edge_iterator ei;
7129 /* If we have a path to EXIT, then we do return. */
7130 if (TREE_THIS_VOLATILE (cfun->decl)
7131 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7133 location = UNKNOWN_LOCATION;
7134 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7136 last = last_stmt (e->src);
7137 if (gimple_code (last) == GIMPLE_RETURN
7138 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7139 break;
7141 if (location == UNKNOWN_LOCATION)
7142 location = cfun->function_end_locus;
7143 warning_at (location, 0, "%<noreturn%> function does return");
7146 /* If we see "return;" in some basic block, then we do reach the end
7147 without returning a value. */
7148 else if (warn_return_type
7149 && !TREE_NO_WARNING (cfun->decl)
7150 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7151 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7153 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7155 gimple last = last_stmt (e->src);
7156 if (gimple_code (last) == GIMPLE_RETURN
7157 && gimple_return_retval (last) == NULL
7158 && !gimple_no_warning_p (last))
7160 location = gimple_location (last);
7161 if (location == UNKNOWN_LOCATION)
7162 location = cfun->function_end_locus;
7163 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7164 TREE_NO_WARNING (cfun->decl) = 1;
7165 break;
7169 return 0;
7173 /* Given a basic block B which ends with a conditional and has
7174 precisely two successors, determine which of the edges is taken if
7175 the conditional is true and which is taken if the conditional is
7176 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7178 void
7179 extract_true_false_edges_from_block (basic_block b,
7180 edge *true_edge,
7181 edge *false_edge)
7183 edge e = EDGE_SUCC (b, 0);
7185 if (e->flags & EDGE_TRUE_VALUE)
7187 *true_edge = e;
7188 *false_edge = EDGE_SUCC (b, 1);
7190 else
7192 *false_edge = e;
7193 *true_edge = EDGE_SUCC (b, 1);
7197 struct gimple_opt_pass pass_warn_function_return =
7200 GIMPLE_PASS,
7201 "*warn_function_return", /* name */
7202 NULL, /* gate */
7203 execute_warn_function_return, /* execute */
7204 NULL, /* sub */
7205 NULL, /* next */
7206 0, /* static_pass_number */
7207 TV_NONE, /* tv_id */
7208 PROP_cfg, /* properties_required */
7209 0, /* properties_provided */
7210 0, /* properties_destroyed */
7211 0, /* todo_flags_start */
7212 0 /* todo_flags_finish */
7216 /* Emit noreturn warnings. */
7218 static unsigned int
7219 execute_warn_function_noreturn (void)
7221 if (warn_missing_noreturn
7222 && !TREE_THIS_VOLATILE (cfun->decl)
7223 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
7224 && !lang_hooks.missing_noreturn_ok_p (cfun->decl))
7225 warning_at (DECL_SOURCE_LOCATION (cfun->decl), OPT_Wmissing_noreturn,
7226 "function might be possible candidate "
7227 "for attribute %<noreturn%>");
7228 return 0;
7231 struct gimple_opt_pass pass_warn_function_noreturn =
7234 GIMPLE_PASS,
7235 "*warn_function_noreturn", /* name */
7236 NULL, /* gate */
7237 execute_warn_function_noreturn, /* execute */
7238 NULL, /* sub */
7239 NULL, /* next */
7240 0, /* static_pass_number */
7241 TV_NONE, /* tv_id */
7242 PROP_cfg, /* properties_required */
7243 0, /* properties_provided */
7244 0, /* properties_destroyed */
7245 0, /* todo_flags_start */
7246 0 /* todo_flags_finish */
7251 /* Walk a gimplified function and warn for functions whose return value is
7252 ignored and attribute((warn_unused_result)) is set. This is done before
7253 inlining, so we don't have to worry about that. */
7255 static void
7256 do_warn_unused_result (gimple_seq seq)
7258 tree fdecl, ftype;
7259 gimple_stmt_iterator i;
7261 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7263 gimple g = gsi_stmt (i);
7265 switch (gimple_code (g))
7267 case GIMPLE_BIND:
7268 do_warn_unused_result (gimple_bind_body (g));
7269 break;
7270 case GIMPLE_TRY:
7271 do_warn_unused_result (gimple_try_eval (g));
7272 do_warn_unused_result (gimple_try_cleanup (g));
7273 break;
7274 case GIMPLE_CATCH:
7275 do_warn_unused_result (gimple_catch_handler (g));
7276 break;
7277 case GIMPLE_EH_FILTER:
7278 do_warn_unused_result (gimple_eh_filter_failure (g));
7279 break;
7281 case GIMPLE_CALL:
7282 if (gimple_call_lhs (g))
7283 break;
7285 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7286 LHS. All calls whose value is ignored should be
7287 represented like this. Look for the attribute. */
7288 fdecl = gimple_call_fndecl (g);
7289 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7291 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7293 location_t loc = gimple_location (g);
7295 if (fdecl)
7296 warning_at (loc, OPT_Wunused_result,
7297 "ignoring return value of %qD, "
7298 "declared with attribute warn_unused_result",
7299 fdecl);
7300 else
7301 warning_at (loc, OPT_Wunused_result,
7302 "ignoring return value of function "
7303 "declared with attribute warn_unused_result");
7305 break;
7307 default:
7308 /* Not a container, not a call, or a call whose value is used. */
7309 break;
7314 static unsigned int
7315 run_warn_unused_result (void)
7317 do_warn_unused_result (gimple_body (current_function_decl));
7318 return 0;
7321 static bool
7322 gate_warn_unused_result (void)
7324 return flag_warn_unused_result;
7327 struct gimple_opt_pass pass_warn_unused_result =
7330 GIMPLE_PASS,
7331 "*warn_unused_result", /* name */
7332 gate_warn_unused_result, /* gate */
7333 run_warn_unused_result, /* execute */
7334 NULL, /* sub */
7335 NULL, /* next */
7336 0, /* static_pass_number */
7337 TV_NONE, /* tv_id */
7338 PROP_gimple_any, /* properties_required */
7339 0, /* properties_provided */
7340 0, /* properties_destroyed */
7341 0, /* todo_flags_start */
7342 0, /* todo_flags_finish */