1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
4 Copyright (C) 2009 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
31 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
35 #include "tree-dump.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-pass.h"
43 #include "value-prof.h"
44 #include "pointer-set.h"
49 #include "cloog/cloog.h"
52 #include "graphite-ppl.h"
54 #include "graphite-poly.h"
56 /* Builds a linear expression, of dimension DIM, representing PDR's
59 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
61 For an array A[10][20] with two subscript locations s0 and s1, the
62 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
63 corresponds to a memory stride of 20.
65 OFFSET is a number of dimensions to prepend before the
66 subscript dimensions: s_0, s_1, ..., s_n.
68 Thus, the final linear expression has the following format:
69 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
70 where the expression itself is:
71 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
73 static ppl_Linear_Expression_t
74 build_linearized_memory_access (ppl_dimension_type offset
, poly_dr_p pdr
)
76 ppl_Linear_Expression_t res
;
77 ppl_Linear_Expression_t le
;
79 ppl_dimension_type first
= pdr_subscript_dim (pdr
, 0);
80 ppl_dimension_type last
= pdr_subscript_dim (pdr
, PDR_NB_SUBSCRIPTS (pdr
));
82 graphite_dim_t dim
= offset
+ pdr_dim (pdr
);
84 ppl_new_Linear_Expression_with_dimension (&res
, dim
);
87 value_set_si (size
, 1);
88 value_init (sub_size
);
89 value_set_si (sub_size
, 1);
91 for (i
= last
- 1; i
>= first
; i
--)
93 ppl_set_coef_gmp (res
, i
+ offset
, size
);
95 ppl_new_Linear_Expression_with_dimension (&le
, dim
- offset
);
96 ppl_set_coef (le
, i
, 1);
97 ppl_max_for_le_pointset (PDR_ACCESSES (pdr
), le
, sub_size
);
98 value_multiply (size
, size
, sub_size
);
99 ppl_delete_Linear_Expression (le
);
102 value_clear (sub_size
);
107 /* Builds a partial difference equations and inserts them
108 into pointset powerset polyhedron P. Polyhedron is assumed
109 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
111 TIME_DEPTH is the time dimension w.r.t. which we are
113 OFFSET represents the number of dimensions between
114 columns t_{time_depth} and t'_{time_depth}.
115 DIM_SCTR is the number of scattering dimensions. It is
116 essentially the dimensionality of the T vector.
118 The following equations are inserted into the polyhedron P:
121 | t_{time_depth-1} = t'_{time_depth-1}
122 | t_{time_depth} = t'_{time_depth} + 1
123 | t_{time_depth+1} = t'_{time_depth + 1}
125 | t_{dim_sctr} = t'_{dim_sctr}. */
128 build_partial_difference (ppl_Pointset_Powerset_C_Polyhedron_t
*p
,
129 ppl_dimension_type time_depth
,
130 ppl_dimension_type offset
,
131 ppl_dimension_type dim_sctr
)
133 ppl_Constraint_t new_cstr
;
134 ppl_Linear_Expression_t le
;
135 ppl_dimension_type i
;
136 ppl_dimension_type dim
;
137 ppl_Pointset_Powerset_C_Polyhedron_t temp
;
139 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
140 This is the core part of this alogrithm, since this
141 constraint asks for the memory access stride (difference)
142 between two consecutive points in time dimensions. */
144 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*p
, &dim
);
145 ppl_new_Linear_Expression_with_dimension (&le
, dim
);
146 ppl_set_coef (le
, time_depth
, 1);
147 ppl_set_coef (le
, time_depth
+ offset
, -1);
148 ppl_set_inhomogeneous (le
, 1);
149 ppl_new_Constraint (&new_cstr
, le
, PPL_CONSTRAINT_TYPE_EQUAL
);
150 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p
, new_cstr
);
151 ppl_delete_Linear_Expression (le
);
152 ppl_delete_Constraint (new_cstr
);
157 | t_{time_depth-1} = t'_{time_depth-1}
158 | t_{time_depth+1} = t'_{time_depth+1}
160 | t_{dim_sctr} = t'_{dim_sctr}
162 This means that all the time dimensions are equal except for
163 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
164 step. More to this: we should be carefull not to add equalities
165 to the 'coupled' dimensions, which happens when the one dimension
166 is stripmined dimension, and the other dimension corresponds
167 to the point loop inside stripmined dimension. */
169 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp
, *p
);
171 for (i
= 0; i
< dim_sctr
; i
++)
174 ppl_new_Linear_Expression_with_dimension (&le
, dim
);
175 ppl_set_coef (le
, i
, 1);
176 ppl_set_coef (le
, i
+ offset
, -1);
177 ppl_new_Constraint (&new_cstr
, le
, PPL_CONSTRAINT_TYPE_EQUAL
);
178 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (temp
, new_cstr
);
180 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp
))
182 ppl_delete_Pointset_Powerset_C_Polyhedron (temp
);
183 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp
, *p
);
186 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p
, new_cstr
);
187 ppl_delete_Linear_Expression (le
);
188 ppl_delete_Constraint (new_cstr
);
191 ppl_delete_Pointset_Powerset_C_Polyhedron (temp
);
195 /* Set STRIDE to the stride of PDR in memory by advancing by one in
196 the loop at DEPTH. */
199 pdr_stride_in_loop (Value stride
, graphite_dim_t depth
, poly_dr_p pdr
)
201 ppl_dimension_type time_depth
;
202 ppl_Linear_Expression_t le
, lma
;
203 ppl_Constraint_t new_cstr
;
204 ppl_dimension_type i
, *map
;
205 ppl_Pointset_Powerset_C_Polyhedron_t p1
, p2
, sctr
;
206 graphite_dim_t nb_subscripts
= PDR_NB_SUBSCRIPTS (pdr
) + 1;
207 poly_bb_p pbb
= PDR_PBB (pdr
);
208 ppl_dimension_type offset
= pbb_nb_scattering_transform (pbb
)
209 + pbb_nb_local_vars (pbb
)
210 + pbb_dim_iter_domain (pbb
);
211 ppl_dimension_type offsetg
= offset
+ pbb_nb_params (pbb
);
212 ppl_dimension_type dim_sctr
= pbb_nb_scattering_transform (pbb
)
213 + pbb_nb_local_vars (pbb
);
214 ppl_dimension_type dim_L1
= offset
+ offsetg
+ 2 * nb_subscripts
;
215 ppl_dimension_type dim_L2
= offset
+ offsetg
+ 2 * nb_subscripts
+ 1;
216 ppl_dimension_type new_dim
= offset
+ offsetg
+ 2 * nb_subscripts
+ 2;
218 /* The resulting polyhedron should have the following format:
219 T|I|T'|I'|G|S|S'|l1|l2
221 | T = t_1..t_{dim_sctr}
222 | I = i_1..i_{dim_iter_domain}
223 | T'= t'_1..t'_{dim_sctr}
224 | I'= i'_1..i'_{dim_iter_domain}
225 | G = g_1..g_{nb_params}
226 | S = s_1..s_{nb_subscripts}
227 | S'= s'_1..s'_{nb_subscripts}
228 | l1 and l2 are scalars.
231 offset = dim_sctr + dim_iter_domain + nb_local_vars
232 offsetg = dim_sctr + dim_iter_domain + nb_local_vars + nb_params. */
234 /* Construct the T|I|0|0|G|0|0|0|0 part. */
236 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
237 (&sctr
, PBB_TRANSFORMED_SCATTERING (pbb
));
238 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
239 (sctr
, 2 * nb_subscripts
+ 2);
240 ppl_insert_dimensions_pointset (sctr
, offset
, offset
);
243 /* Construct the 0|I|0|0|G|S|0|0|0 part. */
245 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
246 (&p1
, PDR_ACCESSES (pdr
));
247 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
248 (p1
, nb_subscripts
+ 2);
249 ppl_insert_dimensions_pointset (p1
, 0, dim_sctr
);
250 ppl_insert_dimensions_pointset (p1
, offset
, offset
);
253 /* Construct the 0|0|0|0|0|S|0|l1|0 part. */
255 lma
= build_linearized_memory_access (offset
+ dim_sctr
, pdr
);
256 ppl_set_coef (lma
, dim_L1
, -1);
257 ppl_new_Constraint (&new_cstr
, lma
, PPL_CONSTRAINT_TYPE_EQUAL
);
258 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1
, new_cstr
);
259 ppl_delete_Linear_Expression (lma
);
260 ppl_delete_Constraint (new_cstr
);
263 /* Now intersect all the parts to get the polyhedron P1:
268 T|I|0|0|G|S|0|l1|0. */
270 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1
, sctr
);
271 ppl_delete_Pointset_Powerset_C_Polyhedron (sctr
);
273 /* Build P2, which would have the following form:
274 0|0|T'|I'|G|0|S'|0|l2
276 P2 is built, by remapping the P1 polyhedron:
279 using the following mapping:
285 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
288 map
= ppl_new_id_map (new_dim
);
291 for (i
= 0; i
< offset
; i
++)
292 ppl_interchange (map
, i
, i
+ offset
);
295 ppl_interchange (map
, dim_L1
, dim_L2
);
298 for (i
= 0; i
< nb_subscripts
; i
++)
299 ppl_interchange (map
, offset
+ offsetg
+ i
,
300 offset
+ offsetg
+ nb_subscripts
+ i
);
302 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2
, map
, new_dim
);
306 time_depth
= psct_dynamic_dim (pbb
, depth
);
308 /* P1 = P1 inter P2. */
309 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1
, p2
);
310 build_partial_difference (&p1
, time_depth
, offset
, dim_sctr
);
312 /* Maximise the expression L2 - L1. */
314 ppl_new_Linear_Expression_with_dimension (&le
, new_dim
);
315 ppl_set_coef (le
, dim_L2
, 1);
316 ppl_set_coef (le
, dim_L1
, -1);
317 ppl_max_for_le_pointset (p1
, le
, stride
);
320 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
322 fprintf (dump_file
, "\nStride in BB_%d, DR_%d, depth %d:",
323 pbb_index (pbb
), PDR_ID (pdr
), (int) depth
);
324 value_print (dump_file
, " %s ", stride
);
327 ppl_delete_Pointset_Powerset_C_Polyhedron (p1
);
328 ppl_delete_Pointset_Powerset_C_Polyhedron (p2
);
329 ppl_delete_Linear_Expression (le
);
333 /* Sets STRIDES to the sum of all the strides of the data references
334 accessed in LOOP at DEPTH. */
337 memory_strides_in_loop_1 (lst_p loop
, graphite_dim_t depth
, Value strides
)
347 for (j
= 0; VEC_iterate (lst_p
, LST_SEQ (loop
), j
, l
); j
++)
349 memory_strides_in_loop_1 (l
, depth
, strides
);
351 for (i
= 0; VEC_iterate (poly_dr_p
, PBB_DRS (LST_PBB (l
)), i
, pdr
); i
++)
353 pdr_stride_in_loop (s
, depth
, pdr
);
354 value_set_si (n
, PDR_NB_REFS (pdr
));
355 value_multiply (s
, s
, n
);
356 value_addto (strides
, strides
, s
);
363 /* Sets STRIDES to the sum of all the strides of the data references
364 accessed in LOOP at DEPTH. */
367 memory_strides_in_loop (lst_p loop
, graphite_dim_t depth
, Value strides
)
369 if (value_mone_p (loop
->memory_strides
))
371 value_set_si (strides
, 0);
372 memory_strides_in_loop_1 (loop
, depth
, strides
);
375 value_assign (strides
, loop
->memory_strides
);
378 /* Return true when the interchange of loops LOOP1 and LOOP2 is
391 | for (i = 0; i < N; i++)
392 | for (j = 0; j < N; j++)
398 The data access A[j][i] is described like this:
406 | 0 0 0 0 -1 0 100 >= 0
407 | 0 0 0 0 0 -1 100 >= 0
409 The linearized memory access L to A[100][100] is:
414 TODO: the shown format is not valid as it does not show the fact
415 that the iteration domain "i j" is transformed using the scattering.
417 Next, to measure the impact of iterating once in loop "i", we build
418 a maximization problem: first, we add to DR accesses the dimensions
419 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
420 L1 and L2 are the linearized memory access functions.
422 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
423 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
424 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
425 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
426 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
427 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
428 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
429 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
430 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
432 Then, we generate the polyhedron P2 by interchanging the dimensions
433 (s0, s2), (s1, s3), (L1, L2), (k, i)
435 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
436 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
437 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
438 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
439 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
440 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
441 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
442 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
443 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
445 then we add to P2 the equality k = i + 1:
447 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
449 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
451 Similarly, to determine the impact of one iteration on loop "j", we
452 interchange (k, j), we add "k = j + 1", and we compute D2 the
453 maximal value of the difference.
455 Finally, the profitability test is D1 < D2: if in the outer loop
456 the strides are smaller than in the inner loop, then it is
457 profitable to interchange the loops at DEPTH1 and DEPTH2. */
460 lst_interchange_profitable_p (lst_p loop1
, lst_p loop2
)
465 gcc_assert (loop1
&& loop2
466 && LST_LOOP_P (loop1
) && LST_LOOP_P (loop2
)
467 && lst_depth (loop1
) < lst_depth (loop2
));
472 memory_strides_in_loop (loop1
, lst_depth (loop1
), d1
);
473 memory_strides_in_loop (loop2
, lst_depth (loop2
), d2
);
475 res
= value_lt (d1
, d2
);
483 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
484 scattering and assigns the resulting polyhedron to the transformed
488 pbb_interchange_loop_depths (graphite_dim_t depth1
, graphite_dim_t depth2
,
491 ppl_dimension_type i
, dim
;
492 ppl_dimension_type
*map
;
493 ppl_Polyhedron_t poly
= PBB_TRANSFORMED_SCATTERING (pbb
);
494 ppl_dimension_type dim1
= psct_dynamic_dim (pbb
, depth1
);
495 ppl_dimension_type dim2
= psct_dynamic_dim (pbb
, depth2
);
497 ppl_Polyhedron_space_dimension (poly
, &dim
);
498 map
= (ppl_dimension_type
*) XNEWVEC (ppl_dimension_type
, dim
);
500 for (i
= 0; i
< dim
; i
++)
506 ppl_Polyhedron_map_space_dimensions (poly
, map
, dim
);
510 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
511 the statements below LST. */
514 lst_apply_interchange (lst_p lst
, int depth1
, int depth2
)
519 if (LST_LOOP_P (lst
))
524 for (i
= 0; VEC_iterate (lst_p
, LST_SEQ (lst
), i
, l
); i
++)
525 lst_apply_interchange (l
, depth1
, depth2
);
528 pbb_interchange_loop_depths (depth1
, depth2
, LST_PBB (lst
));
531 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
532 perfect: i.e. there are no sequence of statements. */
535 lst_perfectly_nested_p (lst_p loop1
, lst_p loop2
)
540 if (!LST_LOOP_P (loop1
))
543 return VEC_length (lst_p
, LST_SEQ (loop1
)) == 1
544 && lst_perfectly_nested_p (VEC_index (lst_p
, LST_SEQ (loop1
), 0), loop2
);
547 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
548 nest. To continue the naming tradition, this function is called
549 after perfect_nestify. NEST is set to the perfectly nested loop
550 that is created. BEFORE/AFTER are set to the loops distributed
551 before/after the loop NEST. */
554 lst_perfect_nestify (lst_p loop1
, lst_p loop2
, lst_p
*before
,
555 lst_p
*nest
, lst_p
*after
)
557 poly_bb_p first
, last
;
559 gcc_assert (loop1
&& loop2
561 && LST_LOOP_P (loop1
) && LST_LOOP_P (loop2
));
563 first
= LST_PBB (lst_find_first_pbb (loop2
));
564 last
= LST_PBB (lst_find_last_pbb (loop2
));
566 *before
= copy_lst (loop1
);
567 *nest
= copy_lst (loop1
);
568 *after
= copy_lst (loop1
);
570 lst_remove_all_before_including_pbb (*before
, first
, false);
571 lst_remove_all_before_including_pbb (*after
, last
, true);
573 lst_remove_all_before_excluding_pbb (*nest
, first
, true);
574 lst_remove_all_before_excluding_pbb (*nest
, last
, false);
576 if (lst_empty_p (*before
))
581 if (lst_empty_p (*after
))
586 if (lst_empty_p (*nest
))
593 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
594 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
598 lst_try_interchange_loops (scop_p scop
, lst_p loop1
, lst_p loop2
)
600 int depth1
= lst_depth (loop1
);
601 int depth2
= lst_depth (loop2
);
604 lst_p before
= NULL
, nest
= NULL
, after
= NULL
;
606 if (!lst_interchange_profitable_p (loop1
, loop2
))
609 if (!lst_perfectly_nested_p (loop1
, loop2
))
610 lst_perfect_nestify (loop1
, loop2
, &before
, &nest
, &after
);
612 lst_apply_interchange (loop2
, depth1
, depth2
);
614 /* Sync the transformed LST information and the PBB scatterings
615 before using the scatterings in the data dependence analysis. */
616 if (before
|| nest
|| after
)
618 transformed
= lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop
), loop1
,
619 before
, nest
, after
);
620 lst_update_scattering (transformed
);
621 free_lst (transformed
);
624 if (graphite_legal_transform (scop
))
626 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
628 "Loops at depths %d and %d will be interchanged.\n",
631 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
632 lst_insert_in_sequence (before
, loop1
, true);
633 lst_insert_in_sequence (after
, loop1
, false);
637 lst_replace (loop1
, nest
);
644 /* Undo the transform. */
648 lst_apply_interchange (loop2
, depth2
, depth1
);
652 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
653 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
656 lst_interchange_select_inner (scop_p scop
, lst_p outer_father
, int outer
,
662 gcc_assert (outer_father
663 && LST_LOOP_P (outer_father
)
664 && LST_LOOP_P (VEC_index (lst_p
, LST_SEQ (outer_father
), outer
))
666 && LST_LOOP_P (inner_father
));
668 loop1
= VEC_index (lst_p
, LST_SEQ (outer_father
), outer
);
670 for (inner
= 0; VEC_iterate (lst_p
, LST_SEQ (inner_father
), inner
, loop2
); inner
++)
671 if (LST_LOOP_P (loop2
)
672 && (lst_try_interchange_loops (scop
, loop1
, loop2
)
673 || lst_interchange_select_inner (scop
, outer_father
, outer
, loop2
)))
679 /* Interchanges all the loops of LOOP and the loops of its body that
680 are considered profitable to interchange. Return true if it did
681 interchanged some loops. OUTER is the index in LST_SEQ (LOOP) that
682 points to the next outer loop to be considered for interchange. */
685 lst_interchange_select_outer (scop_p scop
, lst_p loop
, int outer
)
692 if (!loop
|| !LST_LOOP_P (loop
))
695 father
= LST_LOOP_FATHER (loop
);
698 while (lst_interchange_select_inner (scop
, father
, outer
, loop
))
701 loop
= VEC_index (lst_p
, LST_SEQ (father
), outer
);
705 if (LST_LOOP_P (loop
))
706 for (i
= 0; VEC_iterate (lst_p
, LST_SEQ (loop
), i
, l
); i
++)
708 res
|= lst_interchange_select_outer (scop
, l
, i
);
713 /* Interchanges all the loop depths that are considered profitable for SCOP. */
716 scop_do_interchange (scop_p scop
)
718 bool res
= lst_interchange_select_outer
719 (scop
, SCOP_TRANSFORMED_SCHEDULE (scop
), 0);
721 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop
));