1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
49 #include "coretypes.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
59 #include "conditions.h"
62 #include "hard-reg-set.h"
69 #include "basic-block.h"
73 #include "cfglayout.h"
74 #include "tree-pass.h"
75 #include "tree-flow.h"
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data
87 declarations for e.g. AIX 4.x. */
90 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
91 #include "dwarf2out.h"
94 #ifdef DBX_DEBUGGING_INFO
98 #ifdef SDB_DEBUGGING_INFO
102 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
103 null default for it to save conditionalization later. */
104 #ifndef CC_STATUS_INIT
105 #define CC_STATUS_INIT
108 /* How to start an assembler comment. */
109 #ifndef ASM_COMMENT_START
110 #define ASM_COMMENT_START ";#"
113 /* Is the given character a logical line separator for the assembler? */
114 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
115 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
118 #ifndef JUMP_TABLES_IN_TEXT_SECTION
119 #define JUMP_TABLES_IN_TEXT_SECTION 0
122 /* Bitflags used by final_scan_insn. */
125 #define SEEN_EMITTED 4
127 /* Last insn processed by final_scan_insn. */
128 static rtx debug_insn
;
129 rtx current_output_insn
;
131 /* Line number of last NOTE. */
132 static int last_linenum
;
134 /* Last discriminator written to assembly. */
135 static int last_discriminator
;
137 /* Discriminator of current block. */
138 static int discriminator
;
140 /* Highest line number in current block. */
141 static int high_block_linenum
;
143 /* Likewise for function. */
144 static int high_function_linenum
;
146 /* Filename of last NOTE. */
147 static const char *last_filename
;
149 /* Override filename and line number. */
150 static const char *override_filename
;
151 static int override_linenum
;
153 /* Whether to force emission of a line note before the next insn. */
154 static bool force_source_line
= false;
156 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
158 /* Nonzero while outputting an `asm' with operands.
159 This means that inconsistencies are the user's fault, so don't die.
160 The precise value is the insn being output, to pass to error_for_asm. */
161 rtx this_is_asm_operands
;
163 /* Number of operands of this insn, for an `asm' with operands. */
164 static unsigned int insn_noperands
;
166 /* Compare optimization flag. */
168 static rtx last_ignored_compare
= 0;
170 /* Assign a unique number to each insn that is output.
171 This can be used to generate unique local labels. */
173 static int insn_counter
= 0;
176 /* This variable contains machine-dependent flags (defined in tm.h)
177 set and examined by output routines
178 that describe how to interpret the condition codes properly. */
182 /* During output of an insn, this contains a copy of cc_status
183 from before the insn. */
185 CC_STATUS cc_prev_status
;
188 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
190 static int block_depth
;
192 /* Nonzero if have enabled APP processing of our assembler output. */
196 /* If we are outputting an insn sequence, this contains the sequence rtx.
201 #ifdef ASSEMBLER_DIALECT
203 /* Number of the assembler dialect to use, starting at 0. */
204 static int dialect_number
;
207 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
208 rtx current_insn_predicate
;
210 /* True if printing into -fdump-final-insns= dump. */
211 bool final_insns_dump_p
;
213 #ifdef HAVE_ATTR_length
214 static int asm_insn_count (rtx
);
216 static void profile_function (FILE *);
217 static void profile_after_prologue (FILE *);
218 static bool notice_source_line (rtx
, bool *);
219 static rtx
walk_alter_subreg (rtx
*, bool *);
220 static void output_asm_name (void);
221 static void output_alternate_entry_point (FILE *, rtx
);
222 static tree
get_mem_expr_from_op (rtx
, int *);
223 static void output_asm_operand_names (rtx
*, int *, int);
224 static void output_operand (rtx
, int);
225 #ifdef LEAF_REGISTERS
226 static void leaf_renumber_regs (rtx
);
229 static int alter_cond (rtx
);
231 #ifndef ADDR_VEC_ALIGN
232 static int final_addr_vec_align (rtx
);
234 #ifdef HAVE_ATTR_length
235 static int align_fuzz (rtx
, rtx
, int, unsigned);
238 /* Initialize data in final at the beginning of a compilation. */
241 init_final (const char *filename ATTRIBUTE_UNUSED
)
246 #ifdef ASSEMBLER_DIALECT
247 dialect_number
= ASSEMBLER_DIALECT
;
251 /* Default target function prologue and epilogue assembler output.
253 If not overridden for epilogue code, then the function body itself
254 contains return instructions wherever needed. */
256 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
257 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
261 /* Default target hook that outputs nothing to a stream. */
263 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
267 /* Enable APP processing of subsequent output.
268 Used before the output from an `asm' statement. */
275 fputs (ASM_APP_ON
, asm_out_file
);
280 /* Disable APP processing of subsequent output.
281 Called from varasm.c before most kinds of output. */
288 fputs (ASM_APP_OFF
, asm_out_file
);
293 /* Return the number of slots filled in the current
294 delayed branch sequence (we don't count the insn needing the
295 delay slot). Zero if not in a delayed branch sequence. */
299 dbr_sequence_length (void)
301 if (final_sequence
!= 0)
302 return XVECLEN (final_sequence
, 0) - 1;
308 /* The next two pages contain routines used to compute the length of an insn
309 and to shorten branches. */
311 /* Arrays for insn lengths, and addresses. The latter is referenced by
312 `insn_current_length'. */
314 static int *insn_lengths
;
316 VEC(int,heap
) *insn_addresses_
;
318 /* Max uid for which the above arrays are valid. */
319 static int insn_lengths_max_uid
;
321 /* Address of insn being processed. Used by `insn_current_length'. */
322 int insn_current_address
;
324 /* Address of insn being processed in previous iteration. */
325 int insn_last_address
;
327 /* known invariant alignment of insn being processed. */
328 int insn_current_align
;
330 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
331 gives the next following alignment insn that increases the known
332 alignment, or NULL_RTX if there is no such insn.
333 For any alignment obtained this way, we can again index uid_align with
334 its uid to obtain the next following align that in turn increases the
335 alignment, till we reach NULL_RTX; the sequence obtained this way
336 for each insn we'll call the alignment chain of this insn in the following
339 struct label_alignment
345 static rtx
*uid_align
;
346 static int *uid_shuid
;
347 static struct label_alignment
*label_align
;
349 /* Indicate that branch shortening hasn't yet been done. */
352 init_insn_lengths (void)
363 insn_lengths_max_uid
= 0;
365 #ifdef HAVE_ATTR_length
366 INSN_ADDRESSES_FREE ();
375 /* Obtain the current length of an insn. If branch shortening has been done,
376 get its actual length. Otherwise, use FALLBACK_FN to calculate the
379 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED
,
380 int (*fallback_fn
) (rtx
) ATTRIBUTE_UNUSED
)
382 #ifdef HAVE_ATTR_length
387 if (insn_lengths_max_uid
> INSN_UID (insn
))
388 return insn_lengths
[INSN_UID (insn
)];
390 switch (GET_CODE (insn
))
399 length
= fallback_fn (insn
);
403 body
= PATTERN (insn
);
404 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
406 /* Alignment is machine-dependent and should be handled by
410 length
= fallback_fn (insn
);
414 body
= PATTERN (insn
);
415 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
418 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
419 length
= asm_insn_count (body
) * fallback_fn (insn
);
420 else if (GET_CODE (body
) == SEQUENCE
)
421 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
422 length
+= get_attr_length_1 (XVECEXP (body
, 0, i
), fallback_fn
);
424 length
= fallback_fn (insn
);
431 #ifdef ADJUST_INSN_LENGTH
432 ADJUST_INSN_LENGTH (insn
, length
);
435 #else /* not HAVE_ATTR_length */
437 #define insn_default_length 0
438 #define insn_min_length 0
439 #endif /* not HAVE_ATTR_length */
442 /* Obtain the current length of an insn. If branch shortening has been done,
443 get its actual length. Otherwise, get its maximum length. */
445 get_attr_length (rtx insn
)
447 return get_attr_length_1 (insn
, insn_default_length
);
450 /* Obtain the current length of an insn. If branch shortening has been done,
451 get its actual length. Otherwise, get its minimum length. */
453 get_attr_min_length (rtx insn
)
455 return get_attr_length_1 (insn
, insn_min_length
);
458 /* Code to handle alignment inside shorten_branches. */
460 /* Here is an explanation how the algorithm in align_fuzz can give
463 Call a sequence of instructions beginning with alignment point X
464 and continuing until the next alignment point `block X'. When `X'
465 is used in an expression, it means the alignment value of the
468 Call the distance between the start of the first insn of block X, and
469 the end of the last insn of block X `IX', for the `inner size of X'.
470 This is clearly the sum of the instruction lengths.
472 Likewise with the next alignment-delimited block following X, which we
475 Call the distance between the start of the first insn of block X, and
476 the start of the first insn of block Y `OX', for the `outer size of X'.
478 The estimated padding is then OX - IX.
480 OX can be safely estimated as
485 OX = round_up(IX, X) + Y - X
487 Clearly est(IX) >= real(IX), because that only depends on the
488 instruction lengths, and those being overestimated is a given.
490 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
491 we needn't worry about that when thinking about OX.
493 When X >= Y, the alignment provided by Y adds no uncertainty factor
494 for branch ranges starting before X, so we can just round what we have.
495 But when X < Y, we don't know anything about the, so to speak,
496 `middle bits', so we have to assume the worst when aligning up from an
497 address mod X to one mod Y, which is Y - X. */
500 #define LABEL_ALIGN(LABEL) align_labels_log
503 #ifndef LABEL_ALIGN_MAX_SKIP
504 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
508 #define LOOP_ALIGN(LABEL) align_loops_log
511 #ifndef LOOP_ALIGN_MAX_SKIP
512 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
515 #ifndef LABEL_ALIGN_AFTER_BARRIER
516 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
519 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
520 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
524 #define JUMP_ALIGN(LABEL) align_jumps_log
527 #ifndef JUMP_ALIGN_MAX_SKIP
528 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
531 #ifndef ADDR_VEC_ALIGN
533 final_addr_vec_align (rtx addr_vec
)
535 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
537 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
538 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
539 return exact_log2 (align
);
543 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
546 #ifndef INSN_LENGTH_ALIGNMENT
547 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
550 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
552 static int min_labelno
, max_labelno
;
554 #define LABEL_TO_ALIGNMENT(LABEL) \
555 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
557 #define LABEL_TO_MAX_SKIP(LABEL) \
558 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
560 /* For the benefit of port specific code do this also as a function. */
563 label_to_alignment (rtx label
)
565 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
566 return LABEL_TO_ALIGNMENT (label
);
571 label_to_max_skip (rtx label
)
573 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
574 return LABEL_TO_MAX_SKIP (label
);
578 #ifdef HAVE_ATTR_length
579 /* The differences in addresses
580 between a branch and its target might grow or shrink depending on
581 the alignment the start insn of the range (the branch for a forward
582 branch or the label for a backward branch) starts out on; if these
583 differences are used naively, they can even oscillate infinitely.
584 We therefore want to compute a 'worst case' address difference that
585 is independent of the alignment the start insn of the range end
586 up on, and that is at least as large as the actual difference.
587 The function align_fuzz calculates the amount we have to add to the
588 naively computed difference, by traversing the part of the alignment
589 chain of the start insn of the range that is in front of the end insn
590 of the range, and considering for each alignment the maximum amount
591 that it might contribute to a size increase.
593 For casesi tables, we also want to know worst case minimum amounts of
594 address difference, in case a machine description wants to introduce
595 some common offset that is added to all offsets in a table.
596 For this purpose, align_fuzz with a growth argument of 0 computes the
597 appropriate adjustment. */
599 /* Compute the maximum delta by which the difference of the addresses of
600 START and END might grow / shrink due to a different address for start
601 which changes the size of alignment insns between START and END.
602 KNOWN_ALIGN_LOG is the alignment known for START.
603 GROWTH should be ~0 if the objective is to compute potential code size
604 increase, and 0 if the objective is to compute potential shrink.
605 The return value is undefined for any other value of GROWTH. */
608 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
610 int uid
= INSN_UID (start
);
612 int known_align
= 1 << known_align_log
;
613 int end_shuid
= INSN_SHUID (end
);
616 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
618 int align_addr
, new_align
;
620 uid
= INSN_UID (align_label
);
621 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
622 if (uid_shuid
[uid
] > end_shuid
)
624 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
625 new_align
= 1 << known_align_log
;
626 if (new_align
< known_align
)
628 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
629 known_align
= new_align
;
634 /* Compute a worst-case reference address of a branch so that it
635 can be safely used in the presence of aligned labels. Since the
636 size of the branch itself is unknown, the size of the branch is
637 not included in the range. I.e. for a forward branch, the reference
638 address is the end address of the branch as known from the previous
639 branch shortening pass, minus a value to account for possible size
640 increase due to alignment. For a backward branch, it is the start
641 address of the branch as known from the current pass, plus a value
642 to account for possible size increase due to alignment.
643 NB.: Therefore, the maximum offset allowed for backward branches needs
644 to exclude the branch size. */
647 insn_current_reference_address (rtx branch
)
652 if (! INSN_ADDRESSES_SET_P ())
655 seq
= NEXT_INSN (PREV_INSN (branch
));
656 seq_uid
= INSN_UID (seq
);
657 if (!JUMP_P (branch
))
658 /* This can happen for example on the PA; the objective is to know the
659 offset to address something in front of the start of the function.
660 Thus, we can treat it like a backward branch.
661 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
662 any alignment we'd encounter, so we skip the call to align_fuzz. */
663 return insn_current_address
;
664 dest
= JUMP_LABEL (branch
);
666 /* BRANCH has no proper alignment chain set, so use SEQ.
667 BRANCH also has no INSN_SHUID. */
668 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
670 /* Forward branch. */
671 return (insn_last_address
+ insn_lengths
[seq_uid
]
672 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
676 /* Backward branch. */
677 return (insn_current_address
678 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
681 #endif /* HAVE_ATTR_length */
683 /* Compute branch alignments based on frequency information in the
687 compute_alignments (void)
689 int log
, max_skip
, max_log
;
692 int freq_threshold
= 0;
700 max_labelno
= max_label_num ();
701 min_labelno
= get_first_label_num ();
702 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
704 /* If not optimizing or optimizing for size, don't assign any alignments. */
705 if (! optimize
|| optimize_function_for_size_p (cfun
))
710 dump_flow_info (dump_file
, TDF_DETAILS
);
711 flow_loops_dump (dump_file
, NULL
, 1);
712 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
715 if (bb
->frequency
> freq_max
)
716 freq_max
= bb
->frequency
;
717 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
720 fprintf(dump_file
, "freq_max: %i\n",freq_max
);
723 rtx label
= BB_HEAD (bb
);
724 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
729 || optimize_bb_for_size_p (bb
))
732 fprintf(dump_file
, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
733 bb
->index
, bb
->frequency
, bb
->loop_father
->num
, bb
->loop_depth
);
736 max_log
= LABEL_ALIGN (label
);
737 max_skip
= LABEL_ALIGN_MAX_SKIP
;
739 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
741 if (e
->flags
& EDGE_FALLTHRU
)
742 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
744 branch_frequency
+= EDGE_FREQUENCY (e
);
748 fprintf(dump_file
, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
749 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
751 fallthru_frequency
, branch_frequency
);
752 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
753 fprintf (dump_file
, " inner_loop");
754 if (bb
->loop_father
->header
== bb
)
755 fprintf (dump_file
, " loop_header");
756 fprintf (dump_file
, "\n");
759 /* There are two purposes to align block with no fallthru incoming edge:
760 1) to avoid fetch stalls when branch destination is near cache boundary
761 2) to improve cache efficiency in case the previous block is not executed
762 (so it does not need to be in the cache).
764 We to catch first case, we align frequently executed blocks.
765 To catch the second, we align blocks that are executed more frequently
766 than the predecessor and the predecessor is likely to not be executed
767 when function is called. */
770 && (branch_frequency
> freq_threshold
771 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
772 && (bb
->prev_bb
->frequency
773 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
775 log
= JUMP_ALIGN (label
);
777 fprintf(dump_file
, " jump alignment added.\n");
781 max_skip
= JUMP_ALIGN_MAX_SKIP
;
784 /* In case block is frequent and reached mostly by non-fallthru edge,
785 align it. It is most likely a first block of loop. */
787 && optimize_bb_for_speed_p (bb
)
788 && branch_frequency
+ fallthru_frequency
> freq_threshold
790 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
792 log
= LOOP_ALIGN (label
);
794 fprintf(dump_file
, " internal loop alignment added.\n");
798 max_skip
= LOOP_ALIGN_MAX_SKIP
;
801 LABEL_TO_ALIGNMENT (label
) = max_log
;
802 LABEL_TO_MAX_SKIP (label
) = max_skip
;
807 loop_optimizer_finalize ();
808 free_dominance_info (CDI_DOMINATORS
);
813 struct rtl_opt_pass pass_compute_alignments
=
817 "alignments", /* name */
819 compute_alignments
, /* execute */
822 0, /* static_pass_number */
824 0, /* properties_required */
825 0, /* properties_provided */
826 0, /* properties_destroyed */
827 0, /* todo_flags_start */
828 TODO_dump_func
| TODO_verify_rtl_sharing
829 | TODO_ggc_collect
/* todo_flags_finish */
834 /* Make a pass over all insns and compute their actual lengths by shortening
835 any branches of variable length if possible. */
837 /* shorten_branches might be called multiple times: for example, the SH
838 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
839 In order to do this, it needs proper length information, which it obtains
840 by calling shorten_branches. This cannot be collapsed with
841 shorten_branches itself into a single pass unless we also want to integrate
842 reorg.c, since the branch splitting exposes new instructions with delay
846 shorten_branches (rtx first ATTRIBUTE_UNUSED
)
853 #ifdef HAVE_ATTR_length
854 #define MAX_CODE_ALIGN 16
856 int something_changed
= 1;
857 char *varying_length
;
860 rtx align_tab
[MAX_CODE_ALIGN
];
864 /* Compute maximum UID and allocate label_align / uid_shuid. */
865 max_uid
= get_max_uid ();
867 /* Free uid_shuid before reallocating it. */
870 uid_shuid
= XNEWVEC (int, max_uid
);
872 if (max_labelno
!= max_label_num ())
874 int old
= max_labelno
;
878 max_labelno
= max_label_num ();
880 n_labels
= max_labelno
- min_labelno
+ 1;
881 n_old_labels
= old
- min_labelno
+ 1;
883 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
885 /* Range of labels grows monotonically in the function. Failing here
886 means that the initialization of array got lost. */
887 gcc_assert (n_old_labels
<= n_labels
);
889 memset (label_align
+ n_old_labels
, 0,
890 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
893 /* Initialize label_align and set up uid_shuid to be strictly
894 monotonically rising with insn order. */
895 /* We use max_log here to keep track of the maximum alignment we want to
896 impose on the next CODE_LABEL (or the current one if we are processing
897 the CODE_LABEL itself). */
902 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
906 INSN_SHUID (insn
) = i
++;
913 bool next_is_jumptable
;
915 /* Merge in alignments computed by compute_alignments. */
916 log
= LABEL_TO_ALIGNMENT (insn
);
920 max_skip
= LABEL_TO_MAX_SKIP (insn
);
923 next
= next_nonnote_insn (insn
);
924 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
925 if (!next_is_jumptable
)
927 log
= LABEL_ALIGN (insn
);
931 max_skip
= LABEL_ALIGN_MAX_SKIP
;
934 /* ADDR_VECs only take room if read-only data goes into the text
936 if ((JUMP_TABLES_IN_TEXT_SECTION
937 || readonly_data_section
== text_section
)
938 && next_is_jumptable
)
940 log
= ADDR_VEC_ALIGN (next
);
944 max_skip
= LABEL_ALIGN_MAX_SKIP
;
947 LABEL_TO_ALIGNMENT (insn
) = max_log
;
948 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
952 else if (BARRIER_P (insn
))
956 for (label
= insn
; label
&& ! INSN_P (label
);
957 label
= NEXT_INSN (label
))
960 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
964 max_skip
= LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
;
970 #ifdef HAVE_ATTR_length
972 /* Allocate the rest of the arrays. */
973 insn_lengths
= XNEWVEC (int, max_uid
);
974 insn_lengths_max_uid
= max_uid
;
975 /* Syntax errors can lead to labels being outside of the main insn stream.
976 Initialize insn_addresses, so that we get reproducible results. */
977 INSN_ADDRESSES_ALLOC (max_uid
);
979 varying_length
= XCNEWVEC (char, max_uid
);
981 /* Initialize uid_align. We scan instructions
982 from end to start, and keep in align_tab[n] the last seen insn
983 that does an alignment of at least n+1, i.e. the successor
984 in the alignment chain for an insn that does / has a known
986 uid_align
= XCNEWVEC (rtx
, max_uid
);
988 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
989 align_tab
[i
] = NULL_RTX
;
990 seq
= get_last_insn ();
991 for (; seq
; seq
= PREV_INSN (seq
))
993 int uid
= INSN_UID (seq
);
995 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
996 uid_align
[uid
] = align_tab
[0];
999 /* Found an alignment label. */
1000 uid_align
[uid
] = align_tab
[log
];
1001 for (i
= log
- 1; i
>= 0; i
--)
1005 #ifdef CASE_VECTOR_SHORTEN_MODE
1008 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1011 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1012 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1015 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1017 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1018 int len
, i
, min
, max
, insn_shuid
;
1020 addr_diff_vec_flags flags
;
1023 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1025 pat
= PATTERN (insn
);
1026 len
= XVECLEN (pat
, 1);
1027 gcc_assert (len
> 0);
1028 min_align
= MAX_CODE_ALIGN
;
1029 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1031 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1032 int shuid
= INSN_SHUID (lab
);
1043 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1044 min_align
= LABEL_TO_ALIGNMENT (lab
);
1046 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1047 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1048 insn_shuid
= INSN_SHUID (insn
);
1049 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1050 memset (&flags
, 0, sizeof (flags
));
1051 flags
.min_align
= min_align
;
1052 flags
.base_after_vec
= rel
> insn_shuid
;
1053 flags
.min_after_vec
= min
> insn_shuid
;
1054 flags
.max_after_vec
= max
> insn_shuid
;
1055 flags
.min_after_base
= min
> rel
;
1056 flags
.max_after_base
= max
> rel
;
1057 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1060 #endif /* CASE_VECTOR_SHORTEN_MODE */
1062 /* Compute initial lengths, addresses, and varying flags for each insn. */
1063 for (insn_current_address
= 0, insn
= first
;
1065 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1067 uid
= INSN_UID (insn
);
1069 insn_lengths
[uid
] = 0;
1073 int log
= LABEL_TO_ALIGNMENT (insn
);
1076 int align
= 1 << log
;
1077 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1078 insn_lengths
[uid
] = new_address
- insn_current_address
;
1082 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1084 if (NOTE_P (insn
) || BARRIER_P (insn
)
1085 || LABEL_P (insn
) || DEBUG_INSN_P(insn
))
1087 if (INSN_DELETED_P (insn
))
1090 body
= PATTERN (insn
);
1091 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1093 /* This only takes room if read-only data goes into the text
1095 if (JUMP_TABLES_IN_TEXT_SECTION
1096 || readonly_data_section
== text_section
)
1097 insn_lengths
[uid
] = (XVECLEN (body
,
1098 GET_CODE (body
) == ADDR_DIFF_VEC
)
1099 * GET_MODE_SIZE (GET_MODE (body
)));
1100 /* Alignment is handled by ADDR_VEC_ALIGN. */
1102 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1103 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1104 else if (GET_CODE (body
) == SEQUENCE
)
1107 int const_delay_slots
;
1109 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1111 const_delay_slots
= 0;
1113 /* Inside a delay slot sequence, we do not do any branch shortening
1114 if the shortening could change the number of delay slots
1116 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1118 rtx inner_insn
= XVECEXP (body
, 0, i
);
1119 int inner_uid
= INSN_UID (inner_insn
);
1122 if (GET_CODE (body
) == ASM_INPUT
1123 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1124 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1125 * insn_default_length (inner_insn
));
1127 inner_length
= insn_default_length (inner_insn
);
1129 insn_lengths
[inner_uid
] = inner_length
;
1130 if (const_delay_slots
)
1132 if ((varying_length
[inner_uid
]
1133 = insn_variable_length_p (inner_insn
)) != 0)
1134 varying_length
[uid
] = 1;
1135 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1136 + insn_lengths
[uid
]);
1139 varying_length
[inner_uid
] = 0;
1140 insn_lengths
[uid
] += inner_length
;
1143 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1145 insn_lengths
[uid
] = insn_default_length (insn
);
1146 varying_length
[uid
] = insn_variable_length_p (insn
);
1149 /* If needed, do any adjustment. */
1150 #ifdef ADJUST_INSN_LENGTH
1151 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1152 if (insn_lengths
[uid
] < 0)
1153 fatal_insn ("negative insn length", insn
);
1157 /* Now loop over all the insns finding varying length insns. For each,
1158 get the current insn length. If it has changed, reflect the change.
1159 When nothing changes for a full pass, we are done. */
1161 while (something_changed
)
1163 something_changed
= 0;
1164 insn_current_align
= MAX_CODE_ALIGN
- 1;
1165 for (insn_current_address
= 0, insn
= first
;
1167 insn
= NEXT_INSN (insn
))
1170 #ifdef ADJUST_INSN_LENGTH
1175 uid
= INSN_UID (insn
);
1179 int log
= LABEL_TO_ALIGNMENT (insn
);
1180 if (log
> insn_current_align
)
1182 int align
= 1 << log
;
1183 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1184 insn_lengths
[uid
] = new_address
- insn_current_address
;
1185 insn_current_align
= log
;
1186 insn_current_address
= new_address
;
1189 insn_lengths
[uid
] = 0;
1190 INSN_ADDRESSES (uid
) = insn_current_address
;
1194 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1195 if (length_align
< insn_current_align
)
1196 insn_current_align
= length_align
;
1198 insn_last_address
= INSN_ADDRESSES (uid
);
1199 INSN_ADDRESSES (uid
) = insn_current_address
;
1201 #ifdef CASE_VECTOR_SHORTEN_MODE
1202 if (optimize
&& JUMP_P (insn
)
1203 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1205 rtx body
= PATTERN (insn
);
1206 int old_length
= insn_lengths
[uid
];
1207 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1208 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1209 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1210 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1211 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1212 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1215 addr_diff_vec_flags flags
;
1217 /* Avoid automatic aggregate initialization. */
1218 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1220 /* Try to find a known alignment for rel_lab. */
1221 for (prev
= rel_lab
;
1223 && ! insn_lengths
[INSN_UID (prev
)]
1224 && ! (varying_length
[INSN_UID (prev
)] & 1);
1225 prev
= PREV_INSN (prev
))
1226 if (varying_length
[INSN_UID (prev
)] & 2)
1228 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1232 /* See the comment on addr_diff_vec_flags in rtl.h for the
1233 meaning of the flags values. base: REL_LAB vec: INSN */
1234 /* Anything after INSN has still addresses from the last
1235 pass; adjust these so that they reflect our current
1236 estimate for this pass. */
1237 if (flags
.base_after_vec
)
1238 rel_addr
+= insn_current_address
- insn_last_address
;
1239 if (flags
.min_after_vec
)
1240 min_addr
+= insn_current_address
- insn_last_address
;
1241 if (flags
.max_after_vec
)
1242 max_addr
+= insn_current_address
- insn_last_address
;
1243 /* We want to know the worst case, i.e. lowest possible value
1244 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1245 its offset is positive, and we have to be wary of code shrink;
1246 otherwise, it is negative, and we have to be vary of code
1248 if (flags
.min_after_base
)
1250 /* If INSN is between REL_LAB and MIN_LAB, the size
1251 changes we are about to make can change the alignment
1252 within the observed offset, therefore we have to break
1253 it up into two parts that are independent. */
1254 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1256 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1257 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1260 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1264 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1266 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1267 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1270 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1272 /* Likewise, determine the highest lowest possible value
1273 for the offset of MAX_LAB. */
1274 if (flags
.max_after_base
)
1276 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1278 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1279 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1282 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1286 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1288 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1289 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1292 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1294 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1295 max_addr
- rel_addr
,
1297 if (JUMP_TABLES_IN_TEXT_SECTION
1298 || readonly_data_section
== text_section
)
1301 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1302 insn_current_address
+= insn_lengths
[uid
];
1303 if (insn_lengths
[uid
] != old_length
)
1304 something_changed
= 1;
1309 #endif /* CASE_VECTOR_SHORTEN_MODE */
1311 if (! (varying_length
[uid
]))
1313 if (NONJUMP_INSN_P (insn
)
1314 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1318 body
= PATTERN (insn
);
1319 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1321 rtx inner_insn
= XVECEXP (body
, 0, i
);
1322 int inner_uid
= INSN_UID (inner_insn
);
1324 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1326 insn_current_address
+= insn_lengths
[inner_uid
];
1330 insn_current_address
+= insn_lengths
[uid
];
1335 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1339 body
= PATTERN (insn
);
1341 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1343 rtx inner_insn
= XVECEXP (body
, 0, i
);
1344 int inner_uid
= INSN_UID (inner_insn
);
1347 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1349 /* insn_current_length returns 0 for insns with a
1350 non-varying length. */
1351 if (! varying_length
[inner_uid
])
1352 inner_length
= insn_lengths
[inner_uid
];
1354 inner_length
= insn_current_length (inner_insn
);
1356 if (inner_length
!= insn_lengths
[inner_uid
])
1358 insn_lengths
[inner_uid
] = inner_length
;
1359 something_changed
= 1;
1361 insn_current_address
+= insn_lengths
[inner_uid
];
1362 new_length
+= inner_length
;
1367 new_length
= insn_current_length (insn
);
1368 insn_current_address
+= new_length
;
1371 #ifdef ADJUST_INSN_LENGTH
1372 /* If needed, do any adjustment. */
1373 tmp_length
= new_length
;
1374 ADJUST_INSN_LENGTH (insn
, new_length
);
1375 insn_current_address
+= (new_length
- tmp_length
);
1378 if (new_length
!= insn_lengths
[uid
])
1380 insn_lengths
[uid
] = new_length
;
1381 something_changed
= 1;
1384 /* For a non-optimizing compile, do only a single pass. */
1389 free (varying_length
);
1391 #endif /* HAVE_ATTR_length */
1394 #ifdef HAVE_ATTR_length
1395 /* Given the body of an INSN known to be generated by an ASM statement, return
1396 the number of machine instructions likely to be generated for this insn.
1397 This is used to compute its length. */
1400 asm_insn_count (rtx body
)
1404 if (GET_CODE (body
) == ASM_INPUT
)
1405 templ
= XSTR (body
, 0);
1407 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1409 return asm_str_count (templ
);
1413 /* Return the number of machine instructions likely to be generated for the
1414 inline-asm template. */
1416 asm_str_count (const char *templ
)
1423 for (; *templ
; templ
++)
1424 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1431 /* ??? This is probably the wrong place for these. */
1432 /* Structure recording the mapping from source file and directory
1433 names at compile time to those to be embedded in debug
1435 typedef struct debug_prefix_map
1437 const char *old_prefix
;
1438 const char *new_prefix
;
1441 struct debug_prefix_map
*next
;
1444 /* Linked list of such structures. */
1445 debug_prefix_map
*debug_prefix_maps
;
1448 /* Record a debug file prefix mapping. ARG is the argument to
1449 -fdebug-prefix-map and must be of the form OLD=NEW. */
1452 add_debug_prefix_map (const char *arg
)
1454 debug_prefix_map
*map
;
1457 p
= strchr (arg
, '=');
1460 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1463 map
= XNEW (debug_prefix_map
);
1464 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1465 map
->old_len
= p
- arg
;
1467 map
->new_prefix
= xstrdup (p
);
1468 map
->new_len
= strlen (p
);
1469 map
->next
= debug_prefix_maps
;
1470 debug_prefix_maps
= map
;
1473 /* Perform user-specified mapping of debug filename prefixes. Return
1474 the new name corresponding to FILENAME. */
1477 remap_debug_filename (const char *filename
)
1479 debug_prefix_map
*map
;
1484 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1485 if (strncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1489 name
= filename
+ map
->old_len
;
1490 name_len
= strlen (name
) + 1;
1491 s
= (char *) alloca (name_len
+ map
->new_len
);
1492 memcpy (s
, map
->new_prefix
, map
->new_len
);
1493 memcpy (s
+ map
->new_len
, name
, name_len
);
1494 return ggc_strdup (s
);
1497 /* Return true if DWARF2 debug info can be emitted for DECL. */
1500 dwarf2_debug_info_emitted_p (tree decl
)
1502 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1505 if (DECL_IGNORED_P (decl
))
1511 /* Output assembler code for the start of a function,
1512 and initialize some of the variables in this file
1513 for the new function. The label for the function and associated
1514 assembler pseudo-ops have already been output in `assemble_start_function'.
1516 FIRST is the first insn of the rtl for the function being compiled.
1517 FILE is the file to write assembler code to.
1518 OPTIMIZE is nonzero if we should eliminate redundant
1519 test and compare insns. */
1522 final_start_function (rtx first ATTRIBUTE_UNUSED
, FILE *file
,
1523 int optimize ATTRIBUTE_UNUSED
)
1527 this_is_asm_operands
= 0;
1529 last_filename
= locator_file (prologue_locator
);
1530 last_linenum
= locator_line (prologue_locator
);
1531 last_discriminator
= discriminator
= 0;
1533 high_block_linenum
= high_function_linenum
= last_linenum
;
1535 if (!DECL_IGNORED_P (current_function_decl
))
1536 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1538 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1539 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1540 dwarf2out_begin_prologue (0, NULL
);
1543 #ifdef LEAF_REG_REMAP
1544 if (current_function_uses_only_leaf_regs
)
1545 leaf_renumber_regs (first
);
1548 /* The Sun386i and perhaps other machines don't work right
1549 if the profiling code comes after the prologue. */
1550 #ifdef PROFILE_BEFORE_PROLOGUE
1552 profile_function (file
);
1553 #endif /* PROFILE_BEFORE_PROLOGUE */
1555 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1556 if (dwarf2out_do_frame ())
1557 dwarf2out_frame_debug (NULL_RTX
, false);
1560 /* If debugging, assign block numbers to all of the blocks in this
1564 reemit_insn_block_notes ();
1565 number_blocks (current_function_decl
);
1566 /* We never actually put out begin/end notes for the top-level
1567 block in the function. But, conceptually, that block is
1569 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1572 if (warn_frame_larger_than
1573 && get_frame_size () > frame_larger_than_size
)
1575 /* Issue a warning */
1576 warning (OPT_Wframe_larger_than_
,
1577 "the frame size of %wd bytes is larger than %wd bytes",
1578 get_frame_size (), frame_larger_than_size
);
1581 /* First output the function prologue: code to set up the stack frame. */
1582 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1584 /* If the machine represents the prologue as RTL, the profiling code must
1585 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1586 #ifdef HAVE_prologue
1587 if (! HAVE_prologue
)
1589 profile_after_prologue (file
);
1593 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1595 #ifndef PROFILE_BEFORE_PROLOGUE
1597 profile_function (file
);
1598 #endif /* not PROFILE_BEFORE_PROLOGUE */
1602 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1604 #ifndef NO_PROFILE_COUNTERS
1605 # define NO_PROFILE_COUNTERS 0
1607 #ifdef ASM_OUTPUT_REG_PUSH
1608 rtx sval
= NULL
, chain
= NULL
;
1610 if (cfun
->returns_struct
)
1611 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1613 if (cfun
->static_chain_decl
)
1614 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1615 #endif /* ASM_OUTPUT_REG_PUSH */
1617 if (! NO_PROFILE_COUNTERS
)
1619 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1620 switch_to_section (data_section
);
1621 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1622 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1623 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1626 switch_to_section (current_function_section ());
1628 #ifdef ASM_OUTPUT_REG_PUSH
1629 if (sval
&& REG_P (sval
))
1630 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1631 if (chain
&& REG_P (chain
))
1632 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1635 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1637 #ifdef ASM_OUTPUT_REG_PUSH
1638 if (chain
&& REG_P (chain
))
1639 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1640 if (sval
&& REG_P (sval
))
1641 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1645 /* Output assembler code for the end of a function.
1646 For clarity, args are same as those of `final_start_function'
1647 even though not all of them are needed. */
1650 final_end_function (void)
1654 if (!DECL_IGNORED_P (current_function_decl
))
1655 debug_hooks
->end_function (high_function_linenum
);
1657 /* Finally, output the function epilogue:
1658 code to restore the stack frame and return to the caller. */
1659 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1661 /* And debug output. */
1662 if (!DECL_IGNORED_P (current_function_decl
))
1663 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1665 #if defined (DWARF2_UNWIND_INFO)
1666 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1667 && dwarf2out_do_frame ())
1668 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1672 /* Output assembler code for some insns: all or part of a function.
1673 For description of args, see `final_start_function', above. */
1676 final (rtx first
, FILE *file
, int optimize
)
1682 last_ignored_compare
= 0;
1684 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1686 if (INSN_UID (insn
) > max_uid
) /* Find largest UID. */
1687 max_uid
= INSN_UID (insn
);
1689 /* If CC tracking across branches is enabled, record the insn which
1690 jumps to each branch only reached from one place. */
1691 if (optimize
&& JUMP_P (insn
))
1693 rtx lab
= JUMP_LABEL (insn
);
1694 if (lab
&& LABEL_NUSES (lab
) == 1)
1696 LABEL_REFS (lab
) = insn
;
1706 /* Output the insns. */
1707 for (insn
= first
; insn
;)
1709 #ifdef HAVE_ATTR_length
1710 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1712 /* This can be triggered by bugs elsewhere in the compiler if
1713 new insns are created after init_insn_lengths is called. */
1714 gcc_assert (NOTE_P (insn
));
1715 insn_current_address
= -1;
1718 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
1719 #endif /* HAVE_ATTR_length */
1721 insn
= final_scan_insn (insn
, file
, optimize
, 0, &seen
);
1726 get_insn_template (int code
, rtx insn
)
1728 switch (insn_data
[code
].output_format
)
1730 case INSN_OUTPUT_FORMAT_SINGLE
:
1731 return insn_data
[code
].output
.single
;
1732 case INSN_OUTPUT_FORMAT_MULTI
:
1733 return insn_data
[code
].output
.multi
[which_alternative
];
1734 case INSN_OUTPUT_FORMAT_FUNCTION
:
1736 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
1743 /* Emit the appropriate declaration for an alternate-entry-point
1744 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1745 LABEL_KIND != LABEL_NORMAL.
1747 The case fall-through in this function is intentional. */
1749 output_alternate_entry_point (FILE *file
, rtx insn
)
1751 const char *name
= LABEL_NAME (insn
);
1753 switch (LABEL_KIND (insn
))
1755 case LABEL_WEAK_ENTRY
:
1756 #ifdef ASM_WEAKEN_LABEL
1757 ASM_WEAKEN_LABEL (file
, name
);
1759 case LABEL_GLOBAL_ENTRY
:
1760 targetm
.asm_out
.globalize_label (file
, name
);
1761 case LABEL_STATIC_ENTRY
:
1762 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1763 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
1765 ASM_OUTPUT_LABEL (file
, name
);
1774 /* Given a CALL_INSN, find and return the nested CALL. */
1776 call_from_call_insn (rtx insn
)
1779 gcc_assert (CALL_P (insn
));
1782 while (GET_CODE (x
) != CALL
)
1784 switch (GET_CODE (x
))
1789 x
= COND_EXEC_CODE (x
);
1792 x
= XVECEXP (x
, 0, 0);
1802 /* The final scan for one insn, INSN.
1803 Args are same as in `final', except that INSN
1804 is the insn being scanned.
1805 Value returned is the next insn to be scanned.
1807 NOPEEPHOLES is the flag to disallow peephole processing (currently
1808 used for within delayed branch sequence output).
1810 SEEN is used to track the end of the prologue, for emitting
1811 debug information. We force the emission of a line note after
1812 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1813 at the beginning of the second basic block, whichever comes
1817 final_scan_insn (rtx insn
, FILE *file
, int optimize ATTRIBUTE_UNUSED
,
1818 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
1827 /* Ignore deleted insns. These can occur when we split insns (due to a
1828 template of "#") while not optimizing. */
1829 if (INSN_DELETED_P (insn
))
1830 return NEXT_INSN (insn
);
1832 switch (GET_CODE (insn
))
1835 switch (NOTE_KIND (insn
))
1837 case NOTE_INSN_DELETED
:
1840 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
1841 in_cold_section_p
= !in_cold_section_p
;
1842 #ifdef DWARF2_UNWIND_INFO
1843 if (dwarf2out_do_frame ())
1844 dwarf2out_switch_text_section ();
1847 if (!DECL_IGNORED_P (current_function_decl
))
1848 debug_hooks
->switch_text_section ();
1850 switch_to_section (current_function_section ());
1853 case NOTE_INSN_BASIC_BLOCK
:
1854 #ifdef TARGET_UNWIND_INFO
1855 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
1859 fprintf (asm_out_file
, "\t%s basic block %d\n",
1860 ASM_COMMENT_START
, NOTE_BASIC_BLOCK (insn
)->index
);
1862 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
1864 *seen
|= SEEN_EMITTED
;
1865 force_source_line
= true;
1870 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
1874 case NOTE_INSN_EH_REGION_BEG
:
1875 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
1876 NOTE_EH_HANDLER (insn
));
1879 case NOTE_INSN_EH_REGION_END
:
1880 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
1881 NOTE_EH_HANDLER (insn
));
1884 case NOTE_INSN_PROLOGUE_END
:
1885 targetm
.asm_out
.function_end_prologue (file
);
1886 profile_after_prologue (file
);
1888 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1890 *seen
|= SEEN_EMITTED
;
1891 force_source_line
= true;
1898 case NOTE_INSN_EPILOGUE_BEG
:
1899 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_epilogue)
1900 if (dwarf2out_do_frame ())
1901 dwarf2out_begin_epilogue (insn
);
1903 targetm
.asm_out
.function_begin_epilogue (file
);
1906 case NOTE_INSN_CFA_RESTORE_STATE
:
1907 #if defined (DWARF2_UNWIND_INFO)
1908 dwarf2out_frame_debug_restore_state ();
1912 case NOTE_INSN_FUNCTION_BEG
:
1914 if (!DECL_IGNORED_P (current_function_decl
))
1915 debug_hooks
->end_prologue (last_linenum
, last_filename
);
1917 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1919 *seen
|= SEEN_EMITTED
;
1920 force_source_line
= true;
1927 case NOTE_INSN_BLOCK_BEG
:
1928 if (debug_info_level
== DINFO_LEVEL_NORMAL
1929 || debug_info_level
== DINFO_LEVEL_VERBOSE
1930 || write_symbols
== DWARF2_DEBUG
1931 || write_symbols
== VMS_AND_DWARF2_DEBUG
1932 || write_symbols
== VMS_DEBUG
)
1934 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1938 high_block_linenum
= last_linenum
;
1940 /* Output debugging info about the symbol-block beginning. */
1941 if (!DECL_IGNORED_P (current_function_decl
))
1942 debug_hooks
->begin_block (last_linenum
, n
);
1944 /* Mark this block as output. */
1945 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
1947 if (write_symbols
== DBX_DEBUG
1948 || write_symbols
== SDB_DEBUG
)
1950 location_t
*locus_ptr
1951 = block_nonartificial_location (NOTE_BLOCK (insn
));
1953 if (locus_ptr
!= NULL
)
1955 override_filename
= LOCATION_FILE (*locus_ptr
);
1956 override_linenum
= LOCATION_LINE (*locus_ptr
);
1961 case NOTE_INSN_BLOCK_END
:
1962 if (debug_info_level
== DINFO_LEVEL_NORMAL
1963 || debug_info_level
== DINFO_LEVEL_VERBOSE
1964 || write_symbols
== DWARF2_DEBUG
1965 || write_symbols
== VMS_AND_DWARF2_DEBUG
1966 || write_symbols
== VMS_DEBUG
)
1968 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1972 /* End of a symbol-block. */
1974 gcc_assert (block_depth
>= 0);
1976 if (!DECL_IGNORED_P (current_function_decl
))
1977 debug_hooks
->end_block (high_block_linenum
, n
);
1979 if (write_symbols
== DBX_DEBUG
1980 || write_symbols
== SDB_DEBUG
)
1982 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
1983 location_t
*locus_ptr
1984 = block_nonartificial_location (outer_block
);
1986 if (locus_ptr
!= NULL
)
1988 override_filename
= LOCATION_FILE (*locus_ptr
);
1989 override_linenum
= LOCATION_LINE (*locus_ptr
);
1993 override_filename
= NULL
;
1994 override_linenum
= 0;
1999 case NOTE_INSN_DELETED_LABEL
:
2000 /* Emit the label. We may have deleted the CODE_LABEL because
2001 the label could be proved to be unreachable, though still
2002 referenced (in the form of having its address taken. */
2003 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2006 case NOTE_INSN_VAR_LOCATION
:
2007 if (!DECL_IGNORED_P (current_function_decl
))
2008 debug_hooks
->var_location (insn
);
2018 #if defined (DWARF2_UNWIND_INFO)
2019 if (dwarf2out_do_frame ())
2020 dwarf2out_frame_debug (insn
, false);
2025 /* The target port might emit labels in the output function for
2026 some insn, e.g. sh.c output_branchy_insn. */
2027 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2029 int align
= LABEL_TO_ALIGNMENT (insn
);
2030 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2031 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2034 if (align
&& NEXT_INSN (insn
))
2036 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2037 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2039 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2040 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2042 ASM_OUTPUT_ALIGN (file
, align
);
2051 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2052 debug_hooks
->label (insn
);
2056 next
= next_nonnote_insn (insn
);
2057 /* If this label is followed by a jump-table, make sure we put
2058 the label in the read-only section. Also possibly write the
2059 label and jump table together. */
2060 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2062 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2063 /* In this case, the case vector is being moved by the
2064 target, so don't output the label at all. Leave that
2065 to the back end macros. */
2067 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2071 switch_to_section (targetm
.asm_out
.function_rodata_section
2072 (current_function_decl
));
2074 #ifdef ADDR_VEC_ALIGN
2075 log_align
= ADDR_VEC_ALIGN (next
);
2077 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2079 ASM_OUTPUT_ALIGN (file
, log_align
);
2082 switch_to_section (current_function_section ());
2084 #ifdef ASM_OUTPUT_CASE_LABEL
2085 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2088 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2093 if (LABEL_ALT_ENTRY_P (insn
))
2094 output_alternate_entry_point (file
, insn
);
2096 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2101 rtx body
= PATTERN (insn
);
2102 int insn_code_number
;
2106 /* Reset this early so it is correct for ASM statements. */
2107 current_insn_predicate
= NULL_RTX
;
2109 /* An INSN, JUMP_INSN or CALL_INSN.
2110 First check for special kinds that recog doesn't recognize. */
2112 if (GET_CODE (body
) == USE
/* These are just declarations. */
2113 || GET_CODE (body
) == CLOBBER
)
2118 /* If there is a REG_CC_SETTER note on this insn, it means that
2119 the setting of the condition code was done in the delay slot
2120 of the insn that branched here. So recover the cc status
2121 from the insn that set it. */
2123 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2126 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2127 cc_prev_status
= cc_status
;
2132 /* Detect insns that are really jump-tables
2133 and output them as such. */
2135 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
2137 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2141 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2142 switch_to_section (targetm
.asm_out
.function_rodata_section
2143 (current_function_decl
));
2145 switch_to_section (current_function_section ());
2149 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2150 if (GET_CODE (body
) == ADDR_VEC
)
2152 #ifdef ASM_OUTPUT_ADDR_VEC
2153 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2160 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2161 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2167 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2168 for (idx
= 0; idx
< vlen
; idx
++)
2170 if (GET_CODE (body
) == ADDR_VEC
)
2172 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2173 ASM_OUTPUT_ADDR_VEC_ELT
2174 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2181 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2182 ASM_OUTPUT_ADDR_DIFF_ELT
2185 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2186 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2192 #ifdef ASM_OUTPUT_CASE_END
2193 ASM_OUTPUT_CASE_END (file
,
2194 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2199 switch_to_section (current_function_section ());
2203 /* Output this line note if it is the first or the last line
2205 if (!DECL_IGNORED_P (current_function_decl
)
2206 && notice_source_line (insn
, &is_stmt
))
2207 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2208 last_discriminator
, is_stmt
);
2210 if (GET_CODE (body
) == ASM_INPUT
)
2212 const char *string
= XSTR (body
, 0);
2214 /* There's no telling what that did to the condition codes. */
2219 expanded_location loc
;
2222 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2223 if (*loc
.file
&& loc
.line
)
2224 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2225 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2226 fprintf (asm_out_file
, "\t%s\n", string
);
2227 #if HAVE_AS_LINE_ZERO
2228 if (*loc
.file
&& loc
.line
)
2229 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2235 /* Detect `asm' construct with operands. */
2236 if (asm_noperands (body
) >= 0)
2238 unsigned int noperands
= asm_noperands (body
);
2239 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2242 expanded_location expanded
;
2244 /* There's no telling what that did to the condition codes. */
2247 /* Get out the operand values. */
2248 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2249 /* Inhibit dying on what would otherwise be compiler bugs. */
2250 insn_noperands
= noperands
;
2251 this_is_asm_operands
= insn
;
2252 expanded
= expand_location (loc
);
2254 #ifdef FINAL_PRESCAN_INSN
2255 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2258 /* Output the insn using them. */
2262 if (expanded
.file
&& expanded
.line
)
2263 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2264 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2265 output_asm_insn (string
, ops
);
2266 #if HAVE_AS_LINE_ZERO
2267 if (expanded
.file
&& expanded
.line
)
2268 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2272 if (targetm
.asm_out
.final_postscan_insn
)
2273 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2276 this_is_asm_operands
= 0;
2282 if (GET_CODE (body
) == SEQUENCE
)
2284 /* A delayed-branch sequence */
2287 final_sequence
= body
;
2289 /* Record the delay slots' frame information before the branch.
2290 This is needed for delayed calls: see execute_cfa_program(). */
2291 #if defined (DWARF2_UNWIND_INFO)
2292 if (dwarf2out_do_frame ())
2293 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2294 dwarf2out_frame_debug (XVECEXP (body
, 0, i
), false);
2297 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2298 force the restoration of a comparison that was previously
2299 thought unnecessary. If that happens, cancel this sequence
2300 and cause that insn to be restored. */
2302 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2303 if (next
!= XVECEXP (body
, 0, 1))
2309 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2311 rtx insn
= XVECEXP (body
, 0, i
);
2312 rtx next
= NEXT_INSN (insn
);
2313 /* We loop in case any instruction in a delay slot gets
2316 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2317 while (insn
!= next
);
2319 #ifdef DBR_OUTPUT_SEQEND
2320 DBR_OUTPUT_SEQEND (file
);
2324 /* If the insn requiring the delay slot was a CALL_INSN, the
2325 insns in the delay slot are actually executed before the
2326 called function. Hence we don't preserve any CC-setting
2327 actions in these insns and the CC must be marked as being
2328 clobbered by the function. */
2329 if (CALL_P (XVECEXP (body
, 0, 0)))
2336 /* We have a real machine instruction as rtl. */
2338 body
= PATTERN (insn
);
2341 set
= single_set (insn
);
2343 /* Check for redundant test and compare instructions
2344 (when the condition codes are already set up as desired).
2345 This is done only when optimizing; if not optimizing,
2346 it should be possible for the user to alter a variable
2347 with the debugger in between statements
2348 and the next statement should reexamine the variable
2349 to compute the condition codes. */
2354 && GET_CODE (SET_DEST (set
)) == CC0
2355 && insn
!= last_ignored_compare
)
2358 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2359 SET_SRC (set
) = alter_subreg (&SET_SRC (set
));
2361 src1
= SET_SRC (set
);
2363 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2365 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2366 XEXP (SET_SRC (set
), 0)
2367 = alter_subreg (&XEXP (SET_SRC (set
), 0));
2368 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2369 XEXP (SET_SRC (set
), 1)
2370 = alter_subreg (&XEXP (SET_SRC (set
), 1));
2371 if (XEXP (SET_SRC (set
), 1)
2372 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2373 src2
= XEXP (SET_SRC (set
), 0);
2375 if ((cc_status
.value1
!= 0
2376 && rtx_equal_p (src1
, cc_status
.value1
))
2377 || (cc_status
.value2
!= 0
2378 && rtx_equal_p (src1
, cc_status
.value2
))
2379 || (src2
!= 0 && cc_status
.value1
!= 0
2380 && rtx_equal_p (src2
, cc_status
.value1
))
2381 || (src2
!= 0 && cc_status
.value2
!= 0
2382 && rtx_equal_p (src2
, cc_status
.value2
)))
2384 /* Don't delete insn if it has an addressing side-effect. */
2385 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2386 /* or if anything in it is volatile. */
2387 && ! volatile_refs_p (PATTERN (insn
)))
2389 /* We don't really delete the insn; just ignore it. */
2390 last_ignored_compare
= insn
;
2397 /* If this is a conditional branch, maybe modify it
2398 if the cc's are in a nonstandard state
2399 so that it accomplishes the same thing that it would
2400 do straightforwardly if the cc's were set up normally. */
2402 if (cc_status
.flags
!= 0
2404 && GET_CODE (body
) == SET
2405 && SET_DEST (body
) == pc_rtx
2406 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2407 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2408 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2410 /* This function may alter the contents of its argument
2411 and clear some of the cc_status.flags bits.
2412 It may also return 1 meaning condition now always true
2413 or -1 meaning condition now always false
2414 or 2 meaning condition nontrivial but altered. */
2415 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2416 /* If condition now has fixed value, replace the IF_THEN_ELSE
2417 with its then-operand or its else-operand. */
2419 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2421 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2423 /* The jump is now either unconditional or a no-op.
2424 If it has become a no-op, don't try to output it.
2425 (It would not be recognized.) */
2426 if (SET_SRC (body
) == pc_rtx
)
2431 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2432 /* Replace (set (pc) (return)) with (return). */
2433 PATTERN (insn
) = body
= SET_SRC (body
);
2435 /* Rerecognize the instruction if it has changed. */
2437 INSN_CODE (insn
) = -1;
2440 /* If this is a conditional trap, maybe modify it if the cc's
2441 are in a nonstandard state so that it accomplishes the same
2442 thing that it would do straightforwardly if the cc's were
2444 if (cc_status
.flags
!= 0
2445 && NONJUMP_INSN_P (insn
)
2446 && GET_CODE (body
) == TRAP_IF
2447 && COMPARISON_P (TRAP_CONDITION (body
))
2448 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2450 /* This function may alter the contents of its argument
2451 and clear some of the cc_status.flags bits.
2452 It may also return 1 meaning condition now always true
2453 or -1 meaning condition now always false
2454 or 2 meaning condition nontrivial but altered. */
2455 int result
= alter_cond (TRAP_CONDITION (body
));
2457 /* If TRAP_CONDITION has become always false, delete the
2465 /* If TRAP_CONDITION has become always true, replace
2466 TRAP_CONDITION with const_true_rtx. */
2468 TRAP_CONDITION (body
) = const_true_rtx
;
2470 /* Rerecognize the instruction if it has changed. */
2472 INSN_CODE (insn
) = -1;
2475 /* Make same adjustments to instructions that examine the
2476 condition codes without jumping and instructions that
2477 handle conditional moves (if this machine has either one). */
2479 if (cc_status
.flags
!= 0
2482 rtx cond_rtx
, then_rtx
, else_rtx
;
2485 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2487 cond_rtx
= XEXP (SET_SRC (set
), 0);
2488 then_rtx
= XEXP (SET_SRC (set
), 1);
2489 else_rtx
= XEXP (SET_SRC (set
), 2);
2493 cond_rtx
= SET_SRC (set
);
2494 then_rtx
= const_true_rtx
;
2495 else_rtx
= const0_rtx
;
2498 switch (GET_CODE (cond_rtx
))
2512 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2514 result
= alter_cond (cond_rtx
);
2516 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2517 else if (result
== -1)
2518 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2519 else if (result
== 2)
2520 INSN_CODE (insn
) = -1;
2521 if (SET_DEST (set
) == SET_SRC (set
))
2533 #ifdef HAVE_peephole
2534 /* Do machine-specific peephole optimizations if desired. */
2536 if (optimize
&& !flag_no_peephole
&& !nopeepholes
)
2538 rtx next
= peephole (insn
);
2539 /* When peepholing, if there were notes within the peephole,
2540 emit them before the peephole. */
2541 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2543 rtx note
, prev
= PREV_INSN (insn
);
2545 for (note
= NEXT_INSN (insn
); note
!= next
;
2546 note
= NEXT_INSN (note
))
2547 final_scan_insn (note
, file
, optimize
, nopeepholes
, seen
);
2549 /* Put the notes in the proper position for a later
2550 rescan. For example, the SH target can do this
2551 when generating a far jump in a delayed branch
2553 note
= NEXT_INSN (insn
);
2554 PREV_INSN (note
) = prev
;
2555 NEXT_INSN (prev
) = note
;
2556 NEXT_INSN (PREV_INSN (next
)) = insn
;
2557 PREV_INSN (insn
) = PREV_INSN (next
);
2558 NEXT_INSN (insn
) = next
;
2559 PREV_INSN (next
) = insn
;
2562 /* PEEPHOLE might have changed this. */
2563 body
= PATTERN (insn
);
2567 /* Try to recognize the instruction.
2568 If successful, verify that the operands satisfy the
2569 constraints for the instruction. Crash if they don't,
2570 since `reload' should have changed them so that they do. */
2572 insn_code_number
= recog_memoized (insn
);
2573 cleanup_subreg_operands (insn
);
2575 /* Dump the insn in the assembly for debugging. */
2576 if (flag_dump_rtl_in_asm
)
2578 print_rtx_head
= ASM_COMMENT_START
;
2579 print_rtl_single (asm_out_file
, insn
);
2580 print_rtx_head
= "";
2583 if (! constrain_operands_cached (1))
2584 fatal_insn_not_found (insn
);
2586 /* Some target machines need to prescan each insn before
2589 #ifdef FINAL_PRESCAN_INSN
2590 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2593 if (targetm
.have_conditional_execution ()
2594 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2595 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2598 cc_prev_status
= cc_status
;
2600 /* Update `cc_status' for this instruction.
2601 The instruction's output routine may change it further.
2602 If the output routine for a jump insn needs to depend
2603 on the cc status, it should look at cc_prev_status. */
2605 NOTICE_UPDATE_CC (body
, insn
);
2608 current_output_insn
= debug_insn
= insn
;
2610 #if defined (DWARF2_UNWIND_INFO)
2611 if (CALL_P (insn
) && dwarf2out_do_frame ())
2612 dwarf2out_frame_debug (insn
, false);
2615 /* Find the proper template for this insn. */
2616 templ
= get_insn_template (insn_code_number
, insn
);
2618 /* If the C code returns 0, it means that it is a jump insn
2619 which follows a deleted test insn, and that test insn
2620 needs to be reinserted. */
2625 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2627 /* We have already processed the notes between the setter and
2628 the user. Make sure we don't process them again, this is
2629 particularly important if one of the notes is a block
2630 scope note or an EH note. */
2632 prev
!= last_ignored_compare
;
2633 prev
= PREV_INSN (prev
))
2636 delete_insn (prev
); /* Use delete_note. */
2642 /* If the template is the string "#", it means that this insn must
2644 if (templ
[0] == '#' && templ
[1] == '\0')
2646 rtx new_rtx
= try_split (body
, insn
, 0);
2648 /* If we didn't split the insn, go away. */
2649 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2650 fatal_insn ("could not split insn", insn
);
2652 #ifdef HAVE_ATTR_length
2653 /* This instruction should have been split in shorten_branches,
2654 to ensure that we would have valid length info for the
2662 #ifdef TARGET_UNWIND_INFO
2663 /* ??? This will put the directives in the wrong place if
2664 get_insn_template outputs assembly directly. However calling it
2665 before get_insn_template breaks if the insns is split. */
2666 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2671 rtx x
= call_from_call_insn (insn
);
2673 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2677 t
= SYMBOL_REF_DECL (x
);
2679 assemble_external (t
);
2683 /* Output assembler code from the template. */
2684 output_asm_insn (templ
, recog_data
.operand
);
2686 /* Record point-of-call information for ICF debugging. */
2687 if (flag_enable_icf_debug
&& CALL_P (insn
))
2689 rtx x
= call_from_call_insn (insn
);
2693 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2697 t
= SYMBOL_REF_DECL (x
);
2699 (*debug_hooks
->direct_call
) (t
);
2702 (*debug_hooks
->virtual_call
) (INSN_UID (insn
));
2706 /* Some target machines need to postscan each insn after
2708 if (targetm
.asm_out
.final_postscan_insn
)
2709 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
2710 recog_data
.n_operands
);
2712 /* If necessary, report the effect that the instruction has on
2713 the unwind info. We've already done this for delay slots
2714 and call instructions. */
2715 #if defined (DWARF2_UNWIND_INFO)
2716 if (final_sequence
== 0
2717 #if !defined (HAVE_prologue)
2718 && !ACCUMULATE_OUTGOING_ARGS
2720 && dwarf2out_do_frame ())
2721 dwarf2out_frame_debug (insn
, true);
2724 current_output_insn
= debug_insn
= 0;
2727 return NEXT_INSN (insn
);
2730 /* Return whether a source line note needs to be emitted before INSN.
2731 Sets IS_STMT to TRUE if the line should be marked as a possible
2732 breakpoint location. */
2735 notice_source_line (rtx insn
, bool *is_stmt
)
2737 const char *filename
;
2740 if (override_filename
)
2742 filename
= override_filename
;
2743 linenum
= override_linenum
;
2747 filename
= insn_file (insn
);
2748 linenum
= insn_line (insn
);
2751 if (filename
== NULL
)
2754 if (force_source_line
2755 || filename
!= last_filename
2756 || last_linenum
!= linenum
)
2758 force_source_line
= false;
2759 last_filename
= filename
;
2760 last_linenum
= linenum
;
2761 last_discriminator
= discriminator
;
2763 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2764 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2768 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
2770 /* If the discriminator changed, but the line number did not,
2771 output the line table entry with is_stmt false so the
2772 debugger does not treat this as a breakpoint location. */
2773 last_discriminator
= discriminator
;
2781 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2782 directly to the desired hard register. */
2785 cleanup_subreg_operands (rtx insn
)
2788 bool changed
= false;
2789 extract_insn_cached (insn
);
2790 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2792 /* The following test cannot use recog_data.operand when testing
2793 for a SUBREG: the underlying object might have been changed
2794 already if we are inside a match_operator expression that
2795 matches the else clause. Instead we test the underlying
2796 expression directly. */
2797 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2799 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
]);
2802 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
2803 || GET_CODE (recog_data
.operand
[i
]) == MULT
2804 || MEM_P (recog_data
.operand
[i
]))
2805 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
2808 for (i
= 0; i
< recog_data
.n_dups
; i
++)
2810 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
2812 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
]);
2815 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
2816 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
2817 || MEM_P (*recog_data
.dup_loc
[i
]))
2818 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
2821 df_insn_rescan (insn
);
2824 /* If X is a SUBREG, replace it with a REG or a MEM,
2825 based on the thing it is a subreg of. */
2828 alter_subreg (rtx
*xp
)
2831 rtx y
= SUBREG_REG (x
);
2833 /* simplify_subreg does not remove subreg from volatile references.
2834 We are required to. */
2837 int offset
= SUBREG_BYTE (x
);
2839 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2840 contains 0 instead of the proper offset. See simplify_subreg. */
2842 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
2844 int difference
= GET_MODE_SIZE (GET_MODE (y
))
2845 - GET_MODE_SIZE (GET_MODE (x
));
2846 if (WORDS_BIG_ENDIAN
)
2847 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
2848 if (BYTES_BIG_ENDIAN
)
2849 offset
+= difference
% UNITS_PER_WORD
;
2852 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
2856 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
2863 /* Simplify_subreg can't handle some REG cases, but we have to. */
2865 HOST_WIDE_INT offset
;
2867 regno
= subreg_regno (x
);
2868 if (subreg_lowpart_p (x
))
2869 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
2871 offset
= SUBREG_BYTE (x
);
2872 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
2879 /* Do alter_subreg on all the SUBREGs contained in X. */
2882 walk_alter_subreg (rtx
*xp
, bool *changed
)
2885 switch (GET_CODE (x
))
2890 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
2891 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
2896 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
2901 return alter_subreg (xp
);
2912 /* Given BODY, the body of a jump instruction, alter the jump condition
2913 as required by the bits that are set in cc_status.flags.
2914 Not all of the bits there can be handled at this level in all cases.
2916 The value is normally 0.
2917 1 means that the condition has become always true.
2918 -1 means that the condition has become always false.
2919 2 means that COND has been altered. */
2922 alter_cond (rtx cond
)
2926 if (cc_status
.flags
& CC_REVERSED
)
2929 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
2932 if (cc_status
.flags
& CC_INVERTED
)
2935 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
2938 if (cc_status
.flags
& CC_NOT_POSITIVE
)
2939 switch (GET_CODE (cond
))
2944 /* Jump becomes unconditional. */
2950 /* Jump becomes no-op. */
2954 PUT_CODE (cond
, EQ
);
2959 PUT_CODE (cond
, NE
);
2967 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
2968 switch (GET_CODE (cond
))
2972 /* Jump becomes unconditional. */
2977 /* Jump becomes no-op. */
2982 PUT_CODE (cond
, EQ
);
2988 PUT_CODE (cond
, NE
);
2996 if (cc_status
.flags
& CC_NO_OVERFLOW
)
2997 switch (GET_CODE (cond
))
3000 /* Jump becomes unconditional. */
3004 PUT_CODE (cond
, EQ
);
3009 PUT_CODE (cond
, NE
);
3014 /* Jump becomes no-op. */
3021 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3022 switch (GET_CODE (cond
))
3028 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3033 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3038 if (cc_status
.flags
& CC_NOT_SIGNED
)
3039 /* The flags are valid if signed condition operators are converted
3041 switch (GET_CODE (cond
))
3044 PUT_CODE (cond
, LEU
);
3049 PUT_CODE (cond
, LTU
);
3054 PUT_CODE (cond
, GTU
);
3059 PUT_CODE (cond
, GEU
);
3071 /* Report inconsistency between the assembler template and the operands.
3072 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3075 output_operand_lossage (const char *cmsgid
, ...)
3079 const char *pfx_str
;
3082 va_start (ap
, cmsgid
);
3084 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3085 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
3086 vasprintf (&new_message
, fmt_string
, ap
);
3088 if (this_is_asm_operands
)
3089 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3091 internal_error ("%s", new_message
);
3098 /* Output of assembler code from a template, and its subroutines. */
3100 /* Annotate the assembly with a comment describing the pattern and
3101 alternative used. */
3104 output_asm_name (void)
3108 int num
= INSN_CODE (debug_insn
);
3109 fprintf (asm_out_file
, "\t%s %d\t%s",
3110 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3111 insn_data
[num
].name
);
3112 if (insn_data
[num
].n_alternatives
> 1)
3113 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3114 #ifdef HAVE_ATTR_length
3115 fprintf (asm_out_file
, "\t[length = %d]",
3116 get_attr_length (debug_insn
));
3118 /* Clear this so only the first assembler insn
3119 of any rtl insn will get the special comment for -dp. */
3124 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3125 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3126 corresponds to the address of the object and 0 if to the object. */
3129 get_mem_expr_from_op (rtx op
, int *paddressp
)
3137 return REG_EXPR (op
);
3138 else if (!MEM_P (op
))
3141 if (MEM_EXPR (op
) != 0)
3142 return MEM_EXPR (op
);
3144 /* Otherwise we have an address, so indicate it and look at the address. */
3148 /* First check if we have a decl for the address, then look at the right side
3149 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3150 But don't allow the address to itself be indirect. */
3151 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3153 else if (GET_CODE (op
) == PLUS
3154 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3158 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3161 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3162 return inner_addressp
? 0 : expr
;
3165 /* Output operand names for assembler instructions. OPERANDS is the
3166 operand vector, OPORDER is the order to write the operands, and NOPS
3167 is the number of operands to write. */
3170 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3175 for (i
= 0; i
< nops
; i
++)
3178 rtx op
= operands
[oporder
[i
]];
3179 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3181 fprintf (asm_out_file
, "%c%s",
3182 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3186 fprintf (asm_out_file
, "%s",
3187 addressp
? "*" : "");
3188 print_mem_expr (asm_out_file
, expr
);
3191 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3192 && ORIGINAL_REGNO (op
) != REGNO (op
))
3193 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3197 /* Output text from TEMPLATE to the assembler output file,
3198 obeying %-directions to substitute operands taken from
3199 the vector OPERANDS.
3201 %N (for N a digit) means print operand N in usual manner.
3202 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3203 and print the label name with no punctuation.
3204 %cN means require operand N to be a constant
3205 and print the constant expression with no punctuation.
3206 %aN means expect operand N to be a memory address
3207 (not a memory reference!) and print a reference
3209 %nN means expect operand N to be a constant
3210 and print a constant expression for minus the value
3211 of the operand, with no other punctuation. */
3214 output_asm_insn (const char *templ
, rtx
*operands
)
3218 #ifdef ASSEMBLER_DIALECT
3221 int oporder
[MAX_RECOG_OPERANDS
];
3222 char opoutput
[MAX_RECOG_OPERANDS
];
3225 /* An insn may return a null string template
3226 in a case where no assembler code is needed. */
3230 memset (opoutput
, 0, sizeof opoutput
);
3232 putc ('\t', asm_out_file
);
3234 #ifdef ASM_OUTPUT_OPCODE
3235 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3242 if (flag_verbose_asm
)
3243 output_asm_operand_names (operands
, oporder
, ops
);
3244 if (flag_print_asm_name
)
3248 memset (opoutput
, 0, sizeof opoutput
);
3250 putc (c
, asm_out_file
);
3251 #ifdef ASM_OUTPUT_OPCODE
3252 while ((c
= *p
) == '\t')
3254 putc (c
, asm_out_file
);
3257 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3261 #ifdef ASSEMBLER_DIALECT
3267 output_operand_lossage ("nested assembly dialect alternatives");
3271 /* If we want the first dialect, do nothing. Otherwise, skip
3272 DIALECT_NUMBER of strings ending with '|'. */
3273 for (i
= 0; i
< dialect_number
; i
++)
3275 while (*p
&& *p
!= '}' && *p
++ != '|')
3284 output_operand_lossage ("unterminated assembly dialect alternative");
3291 /* Skip to close brace. */
3296 output_operand_lossage ("unterminated assembly dialect alternative");
3300 while (*p
++ != '}');
3304 putc (c
, asm_out_file
);
3309 putc (c
, asm_out_file
);
3315 /* %% outputs a single %. */
3319 putc (c
, asm_out_file
);
3321 /* %= outputs a number which is unique to each insn in the entire
3322 compilation. This is useful for making local labels that are
3323 referred to more than once in a given insn. */
3327 fprintf (asm_out_file
, "%d", insn_counter
);
3329 /* % followed by a letter and some digits
3330 outputs an operand in a special way depending on the letter.
3331 Letters `acln' are implemented directly.
3332 Other letters are passed to `output_operand' so that
3333 the PRINT_OPERAND macro can define them. */
3334 else if (ISALPHA (*p
))
3337 unsigned long opnum
;
3340 opnum
= strtoul (p
, &endptr
, 10);
3343 output_operand_lossage ("operand number missing "
3345 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3346 output_operand_lossage ("operand number out of range");
3347 else if (letter
== 'l')
3348 output_asm_label (operands
[opnum
]);
3349 else if (letter
== 'a')
3350 output_address (operands
[opnum
]);
3351 else if (letter
== 'c')
3353 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3354 output_addr_const (asm_out_file
, operands
[opnum
]);
3356 output_operand (operands
[opnum
], 'c');
3358 else if (letter
== 'n')
3360 if (CONST_INT_P (operands
[opnum
]))
3361 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3362 - INTVAL (operands
[opnum
]));
3365 putc ('-', asm_out_file
);
3366 output_addr_const (asm_out_file
, operands
[opnum
]);
3370 output_operand (operands
[opnum
], letter
);
3372 if (!opoutput
[opnum
])
3373 oporder
[ops
++] = opnum
;
3374 opoutput
[opnum
] = 1;
3379 /* % followed by a digit outputs an operand the default way. */
3380 else if (ISDIGIT (*p
))
3382 unsigned long opnum
;
3385 opnum
= strtoul (p
, &endptr
, 10);
3386 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3387 output_operand_lossage ("operand number out of range");
3389 output_operand (operands
[opnum
], 0);
3391 if (!opoutput
[opnum
])
3392 oporder
[ops
++] = opnum
;
3393 opoutput
[opnum
] = 1;
3398 /* % followed by punctuation: output something for that
3399 punctuation character alone, with no operand.
3400 The PRINT_OPERAND macro decides what is actually done. */
3401 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3402 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p
))
3403 output_operand (NULL_RTX
, *p
++);
3406 output_operand_lossage ("invalid %%-code");
3410 putc (c
, asm_out_file
);
3413 /* Write out the variable names for operands, if we know them. */
3414 if (flag_verbose_asm
)
3415 output_asm_operand_names (operands
, oporder
, ops
);
3416 if (flag_print_asm_name
)
3419 putc ('\n', asm_out_file
);
3422 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3425 output_asm_label (rtx x
)
3429 if (GET_CODE (x
) == LABEL_REF
)
3433 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3434 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3436 output_operand_lossage ("'%%l' operand isn't a label");
3438 assemble_name (asm_out_file
, buf
);
3441 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3442 output_operand. Marks SYMBOL_REFs as referenced through use of
3443 assemble_external. */
3446 mark_symbol_ref_as_used (rtx
*xp
, void *dummy ATTRIBUTE_UNUSED
)
3450 /* If we have a used symbol, we may have to emit assembly
3451 annotations corresponding to whether the symbol is external, weak
3452 or has non-default visibility. */
3453 if (GET_CODE (x
) == SYMBOL_REF
)
3457 t
= SYMBOL_REF_DECL (x
);
3459 assemble_external (t
);
3467 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3470 mark_symbol_refs_as_used (rtx x
)
3472 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3475 /* Print operand X using machine-dependent assembler syntax.
3476 The macro PRINT_OPERAND is defined just to control this function.
3477 CODE is a non-digit that preceded the operand-number in the % spec,
3478 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3479 between the % and the digits.
3480 When CODE is a non-letter, X is 0.
3482 The meanings of the letters are machine-dependent and controlled
3483 by PRINT_OPERAND. */
3486 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3488 if (x
&& GET_CODE (x
) == SUBREG
)
3489 x
= alter_subreg (&x
);
3491 /* X must not be a pseudo reg. */
3492 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3494 PRINT_OPERAND (asm_out_file
, x
, code
);
3499 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3502 /* Print a memory reference operand for address X
3503 using machine-dependent assembler syntax.
3504 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3507 output_address (rtx x
)
3509 bool changed
= false;
3510 walk_alter_subreg (&x
, &changed
);
3511 PRINT_OPERAND_ADDRESS (asm_out_file
, x
);
3514 /* Print an integer constant expression in assembler syntax.
3515 Addition and subtraction are the only arithmetic
3516 that may appear in these expressions. */
3519 output_addr_const (FILE *file
, rtx x
)
3524 switch (GET_CODE (x
))
3531 if (SYMBOL_REF_DECL (x
))
3533 mark_decl_referenced (SYMBOL_REF_DECL (x
));
3534 assemble_external (SYMBOL_REF_DECL (x
));
3536 #ifdef ASM_OUTPUT_SYMBOL_REF
3537 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3539 assemble_name (file
, XSTR (x
, 0));
3547 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3548 #ifdef ASM_OUTPUT_LABEL_REF
3549 ASM_OUTPUT_LABEL_REF (file
, buf
);
3551 assemble_name (file
, buf
);
3556 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3560 /* This used to output parentheses around the expression,
3561 but that does not work on the 386 (either ATT or BSD assembler). */
3562 output_addr_const (file
, XEXP (x
, 0));
3566 if (GET_MODE (x
) == VOIDmode
)
3568 /* We can use %d if the number is one word and positive. */
3569 if (CONST_DOUBLE_HIGH (x
))
3570 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3571 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3572 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3573 else if (CONST_DOUBLE_LOW (x
) < 0)
3574 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3575 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3577 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3580 /* We can't handle floating point constants;
3581 PRINT_OPERAND must handle them. */
3582 output_operand_lossage ("floating constant misused");
3586 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3587 (unsigned HOST_WIDE_INT
) CONST_FIXED_VALUE_LOW (x
));
3591 /* Some assemblers need integer constants to appear last (eg masm). */
3592 if (CONST_INT_P (XEXP (x
, 0)))
3594 output_addr_const (file
, XEXP (x
, 1));
3595 if (INTVAL (XEXP (x
, 0)) >= 0)
3596 fprintf (file
, "+");
3597 output_addr_const (file
, XEXP (x
, 0));
3601 output_addr_const (file
, XEXP (x
, 0));
3602 if (!CONST_INT_P (XEXP (x
, 1))
3603 || INTVAL (XEXP (x
, 1)) >= 0)
3604 fprintf (file
, "+");
3605 output_addr_const (file
, XEXP (x
, 1));
3610 /* Avoid outputting things like x-x or x+5-x,
3611 since some assemblers can't handle that. */
3612 x
= simplify_subtraction (x
);
3613 if (GET_CODE (x
) != MINUS
)
3616 output_addr_const (file
, XEXP (x
, 0));
3617 fprintf (file
, "-");
3618 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3619 || GET_CODE (XEXP (x
, 1)) == PC
3620 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3621 output_addr_const (file
, XEXP (x
, 1));
3624 fputs (targetm
.asm_out
.open_paren
, file
);
3625 output_addr_const (file
, XEXP (x
, 1));
3626 fputs (targetm
.asm_out
.close_paren
, file
);
3634 output_addr_const (file
, XEXP (x
, 0));
3638 #ifdef OUTPUT_ADDR_CONST_EXTRA
3639 OUTPUT_ADDR_CONST_EXTRA (file
, x
, fail
);
3644 output_operand_lossage ("invalid expression as operand");
3648 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3649 %R prints the value of REGISTER_PREFIX.
3650 %L prints the value of LOCAL_LABEL_PREFIX.
3651 %U prints the value of USER_LABEL_PREFIX.
3652 %I prints the value of IMMEDIATE_PREFIX.
3653 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3654 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3656 We handle alternate assembler dialects here, just like output_asm_insn. */
3659 asm_fprintf (FILE *file
, const char *p
, ...)
3665 va_start (argptr
, p
);
3672 #ifdef ASSEMBLER_DIALECT
3677 /* If we want the first dialect, do nothing. Otherwise, skip
3678 DIALECT_NUMBER of strings ending with '|'. */
3679 for (i
= 0; i
< dialect_number
; i
++)
3681 while (*p
&& *p
++ != '|')
3691 /* Skip to close brace. */
3692 while (*p
&& *p
++ != '}')
3703 while (strchr ("-+ #0", c
))
3708 while (ISDIGIT (c
) || c
== '.')
3719 case 'd': case 'i': case 'u':
3720 case 'x': case 'X': case 'o':
3724 fprintf (file
, buf
, va_arg (argptr
, int));
3728 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3729 'o' cases, but we do not check for those cases. It
3730 means that the value is a HOST_WIDE_INT, which may be
3731 either `long' or `long long'. */
3732 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
3733 q
+= strlen (HOST_WIDE_INT_PRINT
);
3736 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3741 #ifdef HAVE_LONG_LONG
3747 fprintf (file
, buf
, va_arg (argptr
, long long));
3754 fprintf (file
, buf
, va_arg (argptr
, long));
3762 fprintf (file
, buf
, va_arg (argptr
, char *));
3766 #ifdef ASM_OUTPUT_OPCODE
3767 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3772 #ifdef REGISTER_PREFIX
3773 fprintf (file
, "%s", REGISTER_PREFIX
);
3778 #ifdef IMMEDIATE_PREFIX
3779 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3784 #ifdef LOCAL_LABEL_PREFIX
3785 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3790 fputs (user_label_prefix
, file
);
3793 #ifdef ASM_FPRINTF_EXTENSIONS
3794 /* Uppercase letters are reserved for general use by asm_fprintf
3795 and so are not available to target specific code. In order to
3796 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3797 they are defined here. As they get turned into real extensions
3798 to asm_fprintf they should be removed from this list. */
3799 case 'A': case 'B': case 'C': case 'D': case 'E':
3800 case 'F': case 'G': case 'H': case 'J': case 'K':
3801 case 'M': case 'N': case 'P': case 'Q': case 'S':
3802 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3805 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
3818 /* Split up a CONST_DOUBLE or integer constant rtx
3819 into two rtx's for single words,
3820 storing in *FIRST the word that comes first in memory in the target
3821 and in *SECOND the other. */
3824 split_double (rtx value
, rtx
*first
, rtx
*second
)
3826 if (CONST_INT_P (value
))
3828 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3830 /* In this case the CONST_INT holds both target words.
3831 Extract the bits from it into two word-sized pieces.
3832 Sign extend each half to HOST_WIDE_INT. */
3833 unsigned HOST_WIDE_INT low
, high
;
3834 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
3836 /* Set sign_bit to the most significant bit of a word. */
3838 sign_bit
<<= BITS_PER_WORD
- 1;
3840 /* Set mask so that all bits of the word are set. We could
3841 have used 1 << BITS_PER_WORD instead of basing the
3842 calculation on sign_bit. However, on machines where
3843 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3844 compiler warning, even though the code would never be
3846 mask
= sign_bit
<< 1;
3849 /* Set sign_extend as any remaining bits. */
3850 sign_extend
= ~mask
;
3852 /* Pick the lower word and sign-extend it. */
3853 low
= INTVAL (value
);
3858 /* Pick the higher word, shifted to the least significant
3859 bits, and sign-extend it. */
3860 high
= INTVAL (value
);
3861 high
>>= BITS_PER_WORD
- 1;
3864 if (high
& sign_bit
)
3865 high
|= sign_extend
;
3867 /* Store the words in the target machine order. */
3868 if (WORDS_BIG_ENDIAN
)
3870 *first
= GEN_INT (high
);
3871 *second
= GEN_INT (low
);
3875 *first
= GEN_INT (low
);
3876 *second
= GEN_INT (high
);
3881 /* The rule for using CONST_INT for a wider mode
3882 is that we regard the value as signed.
3883 So sign-extend it. */
3884 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3885 if (WORDS_BIG_ENDIAN
)
3897 else if (GET_CODE (value
) != CONST_DOUBLE
)
3899 if (WORDS_BIG_ENDIAN
)
3901 *first
= const0_rtx
;
3907 *second
= const0_rtx
;
3910 else if (GET_MODE (value
) == VOIDmode
3911 /* This is the old way we did CONST_DOUBLE integers. */
3912 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
3914 /* In an integer, the words are defined as most and least significant.
3915 So order them by the target's convention. */
3916 if (WORDS_BIG_ENDIAN
)
3918 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3919 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3923 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3924 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3931 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
3933 /* Note, this converts the REAL_VALUE_TYPE to the target's
3934 format, splits up the floating point double and outputs
3935 exactly 32 bits of it into each of l[0] and l[1] --
3936 not necessarily BITS_PER_WORD bits. */
3937 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
3939 /* If 32 bits is an entire word for the target, but not for the host,
3940 then sign-extend on the host so that the number will look the same
3941 way on the host that it would on the target. See for instance
3942 simplify_unary_operation. The #if is needed to avoid compiler
3945 #if HOST_BITS_PER_LONG > 32
3946 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
3948 if (l
[0] & ((long) 1 << 31))
3949 l
[0] |= ((long) (-1) << 32);
3950 if (l
[1] & ((long) 1 << 31))
3951 l
[1] |= ((long) (-1) << 32);
3955 *first
= GEN_INT (l
[0]);
3956 *second
= GEN_INT (l
[1]);
3960 /* Return nonzero if this function has no function calls. */
3963 leaf_function_p (void)
3968 if (crtl
->profile
|| profile_arc_flag
)
3971 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3974 && ! SIBLING_CALL_P (insn
))
3976 if (NONJUMP_INSN_P (insn
)
3977 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3978 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3979 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3982 for (link
= crtl
->epilogue_delay_list
;
3984 link
= XEXP (link
, 1))
3986 insn
= XEXP (link
, 0);
3989 && ! SIBLING_CALL_P (insn
))
3991 if (NONJUMP_INSN_P (insn
)
3992 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3993 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3994 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4001 /* Return 1 if branch is a forward branch.
4002 Uses insn_shuid array, so it works only in the final pass. May be used by
4003 output templates to customary add branch prediction hints.
4006 final_forward_branch_p (rtx insn
)
4008 int insn_id
, label_id
;
4010 gcc_assert (uid_shuid
);
4011 insn_id
= INSN_SHUID (insn
);
4012 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4013 /* We've hit some insns that does not have id information available. */
4014 gcc_assert (insn_id
&& label_id
);
4015 return insn_id
< label_id
;
4018 /* On some machines, a function with no call insns
4019 can run faster if it doesn't create its own register window.
4020 When output, the leaf function should use only the "output"
4021 registers. Ordinarily, the function would be compiled to use
4022 the "input" registers to find its arguments; it is a candidate
4023 for leaf treatment if it uses only the "input" registers.
4024 Leaf function treatment means renumbering so the function
4025 uses the "output" registers instead. */
4027 #ifdef LEAF_REGISTERS
4029 /* Return 1 if this function uses only the registers that can be
4030 safely renumbered. */
4033 only_leaf_regs_used (void)
4036 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4038 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4039 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4040 && ! permitted_reg_in_leaf_functions
[i
])
4043 if (crtl
->uses_pic_offset_table
4044 && pic_offset_table_rtx
!= 0
4045 && REG_P (pic_offset_table_rtx
)
4046 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4052 /* Scan all instructions and renumber all registers into those
4053 available in leaf functions. */
4056 leaf_renumber_regs (rtx first
)
4060 /* Renumber only the actual patterns.
4061 The reg-notes can contain frame pointer refs,
4062 and renumbering them could crash, and should not be needed. */
4063 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4065 leaf_renumber_regs_insn (PATTERN (insn
));
4066 for (insn
= crtl
->epilogue_delay_list
;
4068 insn
= XEXP (insn
, 1))
4069 if (INSN_P (XEXP (insn
, 0)))
4070 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
4073 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4074 available in leaf functions. */
4077 leaf_renumber_regs_insn (rtx in_rtx
)
4080 const char *format_ptr
;
4085 /* Renumber all input-registers into output-registers.
4086 renumbered_regs would be 1 for an output-register;
4093 /* Don't renumber the same reg twice. */
4097 newreg
= REGNO (in_rtx
);
4098 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4099 to reach here as part of a REG_NOTE. */
4100 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4105 newreg
= LEAF_REG_REMAP (newreg
);
4106 gcc_assert (newreg
>= 0);
4107 df_set_regs_ever_live (REGNO (in_rtx
), false);
4108 df_set_regs_ever_live (newreg
, true);
4109 SET_REGNO (in_rtx
, newreg
);
4113 if (INSN_P (in_rtx
))
4115 /* Inside a SEQUENCE, we find insns.
4116 Renumber just the patterns of these insns,
4117 just as we do for the top-level insns. */
4118 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4122 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4124 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4125 switch (*format_ptr
++)
4128 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4132 if (NULL
!= XVEC (in_rtx
, i
))
4134 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4135 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4155 /* When -gused is used, emit debug info for only used symbols. But in
4156 addition to the standard intercepted debug_hooks there are some direct
4157 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
4158 Those routines may also be called from a higher level intercepted routine. So
4159 to prevent recording data for an inner call to one of these for an intercept,
4160 we maintain an intercept nesting counter (debug_nesting). We only save the
4161 intercepted arguments if the nesting is 1. */
4162 int debug_nesting
= 0;
4164 static tree
*symbol_queue
;
4165 int symbol_queue_index
= 0;
4166 static int symbol_queue_size
= 0;
4168 /* Generate the symbols for any queued up type symbols we encountered
4169 while generating the type info for some originally used symbol.
4170 This might generate additional entries in the queue. Only when
4171 the nesting depth goes to 0 is this routine called. */
4174 debug_flush_symbol_queue (void)
4178 /* Make sure that additionally queued items are not flushed
4183 for (i
= 0; i
< symbol_queue_index
; ++i
)
4185 /* If we pushed queued symbols then such symbols must be
4186 output no matter what anyone else says. Specifically,
4187 we need to make sure dbxout_symbol() thinks the symbol was
4188 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
4189 which may be set for outside reasons. */
4190 int saved_tree_used
= TREE_USED (symbol_queue
[i
]);
4191 int saved_suppress_debug
= TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]);
4192 TREE_USED (symbol_queue
[i
]) = 1;
4193 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = 0;
4195 #ifdef DBX_DEBUGGING_INFO
4196 dbxout_symbol (symbol_queue
[i
], 0);
4199 TREE_USED (symbol_queue
[i
]) = saved_tree_used
;
4200 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = saved_suppress_debug
;
4203 symbol_queue_index
= 0;
4207 /* Queue a type symbol needed as part of the definition of a decl
4208 symbol. These symbols are generated when debug_flush_symbol_queue()
4212 debug_queue_symbol (tree decl
)
4214 if (symbol_queue_index
>= symbol_queue_size
)
4216 symbol_queue_size
+= 10;
4217 symbol_queue
= XRESIZEVEC (tree
, symbol_queue
, symbol_queue_size
);
4220 symbol_queue
[symbol_queue_index
++] = decl
;
4223 /* Free symbol queue. */
4225 debug_free_queue (void)
4229 free (symbol_queue
);
4230 symbol_queue
= NULL
;
4231 symbol_queue_size
= 0;
4235 /* Turn the RTL into assembly. */
4237 rest_of_handle_final (void)
4242 /* Get the function's name, as described by its RTL. This may be
4243 different from the DECL_NAME name used in the source file. */
4245 x
= DECL_RTL (current_function_decl
);
4246 gcc_assert (MEM_P (x
));
4248 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
4249 fnname
= XSTR (x
, 0);
4251 assemble_start_function (current_function_decl
, fnname
);
4252 final_start_function (get_insns (), asm_out_file
, optimize
);
4253 final (get_insns (), asm_out_file
, optimize
);
4254 final_end_function ();
4256 #ifdef TARGET_UNWIND_INFO
4257 /* ??? The IA-64 ".handlerdata" directive must be issued before
4258 the ".endp" directive that closes the procedure descriptor. */
4259 output_function_exception_table (fnname
);
4262 assemble_end_function (current_function_decl
, fnname
);
4264 #ifndef TARGET_UNWIND_INFO
4265 /* Otherwise, it feels unclean to switch sections in the middle. */
4266 output_function_exception_table (fnname
);
4269 user_defined_section_attribute
= false;
4271 /* Free up reg info memory. */
4275 fflush (asm_out_file
);
4277 /* Write DBX symbols if requested. */
4279 /* Note that for those inline functions where we don't initially
4280 know for certain that we will be generating an out-of-line copy,
4281 the first invocation of this routine (rest_of_compilation) will
4282 skip over this code by doing a `goto exit_rest_of_compilation;'.
4283 Later on, wrapup_global_declarations will (indirectly) call
4284 rest_of_compilation again for those inline functions that need
4285 to have out-of-line copies generated. During that call, we
4286 *will* be routed past here. */
4288 timevar_push (TV_SYMOUT
);
4289 if (!DECL_IGNORED_P (current_function_decl
))
4290 debug_hooks
->function_decl (current_function_decl
);
4291 timevar_pop (TV_SYMOUT
);
4293 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4294 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4296 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4297 && targetm
.have_ctors_dtors
)
4298 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4299 decl_init_priority_lookup
4300 (current_function_decl
));
4301 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4302 && targetm
.have_ctors_dtors
)
4303 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4304 decl_fini_priority_lookup
4305 (current_function_decl
));
4309 struct rtl_opt_pass pass_final
=
4315 rest_of_handle_final
, /* execute */
4318 0, /* static_pass_number */
4319 TV_FINAL
, /* tv_id */
4320 0, /* properties_required */
4321 0, /* properties_provided */
4322 0, /* properties_destroyed */
4323 0, /* todo_flags_start */
4324 TODO_ggc_collect
/* todo_flags_finish */
4330 rest_of_handle_shorten_branches (void)
4332 /* Shorten branches. */
4333 shorten_branches (get_insns ());
4337 struct rtl_opt_pass pass_shorten_branches
=
4341 "shorten", /* name */
4343 rest_of_handle_shorten_branches
, /* execute */
4346 0, /* static_pass_number */
4347 TV_FINAL
, /* tv_id */
4348 0, /* properties_required */
4349 0, /* properties_provided */
4350 0, /* properties_destroyed */
4351 0, /* todo_flags_start */
4352 TODO_dump_func
/* todo_flags_finish */
4358 rest_of_clean_state (void)
4361 FILE *final_output
= NULL
;
4362 int save_unnumbered
= flag_dump_unnumbered
;
4363 int save_noaddr
= flag_dump_noaddr
;
4365 if (flag_dump_final_insns
)
4367 final_output
= fopen (flag_dump_final_insns
, "a");
4370 error ("could not open final insn dump file %qs: %s",
4371 flag_dump_final_insns
, strerror (errno
));
4372 flag_dump_final_insns
= NULL
;
4378 aname
= (IDENTIFIER_POINTER
4379 (DECL_ASSEMBLER_NAME (current_function_decl
)));
4380 fprintf (final_output
, "\n;; Function (%s) %s\n\n", aname
,
4381 cfun
->function_frequency
== FUNCTION_FREQUENCY_HOT
4383 : cfun
->function_frequency
== FUNCTION_FREQUENCY_UNLIKELY_EXECUTED
4384 ? " (unlikely executed)"
4387 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4388 if (flag_compare_debug_opt
|| flag_compare_debug
)
4389 dump_flags
|= TDF_NOUID
;
4390 final_insns_dump_p
= true;
4392 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4394 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4396 INSN_UID (insn
) = 0;
4400 /* It is very important to decompose the RTL instruction chain here:
4401 debug information keeps pointing into CODE_LABEL insns inside the function
4402 body. If these remain pointing to the other insns, we end up preserving
4403 whole RTL chain and attached detailed debug info in memory. */
4404 for (insn
= get_insns (); insn
; insn
= next
)
4406 next
= NEXT_INSN (insn
);
4407 NEXT_INSN (insn
) = NULL
;
4408 PREV_INSN (insn
) = NULL
;
4411 && (!NOTE_P (insn
) ||
4412 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4413 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4414 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4415 && NOTE_KIND (insn
) != NOTE_INSN_CFA_RESTORE_STATE
)))
4416 print_rtl_single (final_output
, insn
);
4422 flag_dump_noaddr
= save_noaddr
;
4423 flag_dump_unnumbered
= save_unnumbered
;
4424 final_insns_dump_p
= false;
4426 if (fclose (final_output
))
4428 error ("could not close final insn dump file %qs: %s",
4429 flag_dump_final_insns
, strerror (errno
));
4430 flag_dump_final_insns
= NULL
;
4434 /* In case the function was not output,
4435 don't leave any temporary anonymous types
4436 queued up for sdb output. */
4437 #ifdef SDB_DEBUGGING_INFO
4438 if (write_symbols
== SDB_DEBUG
)
4439 sdbout_types (NULL_TREE
);
4442 flag_rerun_cse_after_global_opts
= 0;
4443 reload_completed
= 0;
4444 epilogue_completed
= 0;
4446 regstack_completed
= 0;
4449 /* Clear out the insn_length contents now that they are no
4451 init_insn_lengths ();
4453 /* Show no temporary slots allocated. */
4456 free_bb_for_insn ();
4460 if (targetm
.binds_local_p (current_function_decl
))
4462 unsigned int pref
= crtl
->preferred_stack_boundary
;
4463 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4464 pref
= crtl
->stack_alignment_needed
;
4465 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4469 /* Make sure volatile mem refs aren't considered valid operands for
4470 arithmetic insns. We must call this here if this is a nested inline
4471 function, since the above code leaves us in the init_recog state,
4472 and the function context push/pop code does not save/restore volatile_ok.
4474 ??? Maybe it isn't necessary for expand_start_function to call this
4475 anymore if we do it here? */
4477 init_recog_no_volatile ();
4479 /* We're done with this function. Free up memory if we can. */
4480 free_after_parsing (cfun
);
4481 free_after_compilation (cfun
);
4485 struct rtl_opt_pass pass_clean_state
=
4489 "*clean_state", /* name */
4491 rest_of_clean_state
, /* execute */
4494 0, /* static_pass_number */
4495 TV_FINAL
, /* tv_id */
4496 0, /* properties_required */
4497 0, /* properties_provided */
4498 PROP_rtl
, /* properties_destroyed */
4499 0, /* todo_flags_start */
4500 0 /* todo_flags_finish */