PR tree-optimization/43833
[official-gcc/alias-decl.git] / gcc / ada / s-taprop-solaris.adb
blob5250e0e2c1568d2cb2f87787c8efba0866b8d3b9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is a Solaris (native) version of this package
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
37 pragma Polling (Off);
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
41 with Ada.Unchecked_Deallocation;
43 with Interfaces.C;
45 with System.Tasking.Debug;
46 with System.Interrupt_Management;
47 with System.OS_Primitives;
48 with System.Task_Info;
50 pragma Warnings (Off);
51 with System.OS_Lib;
52 pragma Warnings (On);
54 with System.Soft_Links;
55 -- We use System.Soft_Links instead of System.Tasking.Initialization
56 -- because the later is a higher level package that we shouldn't depend on.
57 -- For example when using the restricted run time, it is replaced by
58 -- System.Tasking.Restricted.Stages.
60 package body System.Task_Primitives.Operations is
62 package SSL renames System.Soft_Links;
64 use System.Tasking.Debug;
65 use System.Tasking;
66 use Interfaces.C;
67 use System.OS_Interface;
68 use System.Parameters;
69 use System.OS_Primitives;
71 ----------------
72 -- Local Data --
73 ----------------
75 -- The following are logically constants, but need to be initialized
76 -- at run time.
78 Environment_Task_Id : Task_Id;
79 -- A variable to hold Task_Id for the environment task.
80 -- If we use this variable to get the Task_Id, we need the following
81 -- ATCB_Key only for non-Ada threads.
83 Unblocked_Signal_Mask : aliased sigset_t;
84 -- The set of signals that should unblocked in all tasks
86 ATCB_Key : aliased thread_key_t;
87 -- Key used to find the Ada Task_Id associated with a thread,
88 -- at least for C threads unknown to the Ada run-time system.
90 Single_RTS_Lock : aliased RTS_Lock;
91 -- This is a lock to allow only one thread of control in the RTS at
92 -- a time; it is used to execute in mutual exclusion from all other tasks.
93 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
95 Next_Serial_Number : Task_Serial_Number := 100;
96 -- We start at 100, to reserve some special values for
97 -- using in error checking.
98 -- The following are internal configuration constants needed.
100 Abort_Handler_Installed : Boolean := False;
101 -- True if a handler for the abort signal is installed
103 ----------------------
104 -- Priority Support --
105 ----------------------
107 Priority_Ceiling_Emulation : constant Boolean := True;
108 -- controls whether we emulate priority ceiling locking
110 -- To get a scheduling close to annex D requirements, we use the real-time
111 -- class provided for LWPs and map each task/thread to a specific and
112 -- unique LWP (there is 1 thread per LWP, and 1 LWP per thread).
114 -- The real time class can only be set when the process has root
115 -- privileges, so in the other cases, we use the normal thread scheduling
116 -- and priority handling.
118 Using_Real_Time_Class : Boolean := False;
119 -- indicates whether the real time class is being used (i.e. the process
120 -- has root privileges).
122 Prio_Param : aliased struct_pcparms;
123 -- Hold priority info (Real_Time) initialized during the package
124 -- elaboration.
126 -----------------------------------
127 -- External Configuration Values --
128 -----------------------------------
130 Time_Slice_Val : Integer;
131 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
133 Locking_Policy : Character;
134 pragma Import (C, Locking_Policy, "__gl_locking_policy");
136 Dispatching_Policy : Character;
137 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
139 Foreign_Task_Elaborated : aliased Boolean := True;
140 -- Used to identified fake tasks (i.e., non-Ada Threads)
142 -----------------------
143 -- Local Subprograms --
144 -----------------------
146 function sysconf (name : System.OS_Interface.int) return processorid_t;
147 pragma Import (C, sysconf, "sysconf");
149 SC_NPROCESSORS_CONF : constant System.OS_Interface.int := 14;
151 function Num_Procs
152 (name : System.OS_Interface.int := SC_NPROCESSORS_CONF)
153 return processorid_t renames sysconf;
155 procedure Abort_Handler
156 (Sig : Signal;
157 Code : not null access siginfo_t;
158 Context : not null access ucontext_t);
159 -- Target-dependent binding of inter-thread Abort signal to
160 -- the raising of the Abort_Signal exception.
161 -- See also comments in 7staprop.adb
163 ------------
164 -- Checks --
165 ------------
167 function Check_Initialize_Lock
168 (L : Lock_Ptr;
169 Level : Lock_Level) return Boolean;
170 pragma Inline (Check_Initialize_Lock);
172 function Check_Lock (L : Lock_Ptr) return Boolean;
173 pragma Inline (Check_Lock);
175 function Record_Lock (L : Lock_Ptr) return Boolean;
176 pragma Inline (Record_Lock);
178 function Check_Sleep (Reason : Task_States) return Boolean;
179 pragma Inline (Check_Sleep);
181 function Record_Wakeup
182 (L : Lock_Ptr;
183 Reason : Task_States) return Boolean;
184 pragma Inline (Record_Wakeup);
186 function Check_Wakeup
187 (T : Task_Id;
188 Reason : Task_States) return Boolean;
189 pragma Inline (Check_Wakeup);
191 function Check_Unlock (L : Lock_Ptr) return Boolean;
192 pragma Inline (Check_Unlock);
194 function Check_Finalize_Lock (L : Lock_Ptr) return Boolean;
195 pragma Inline (Check_Finalize_Lock);
197 --------------------
198 -- Local Packages --
199 --------------------
201 package Specific is
203 procedure Initialize (Environment_Task : Task_Id);
204 pragma Inline (Initialize);
205 -- Initialize various data needed by this package
207 function Is_Valid_Task return Boolean;
208 pragma Inline (Is_Valid_Task);
209 -- Does executing thread have a TCB?
211 procedure Set (Self_Id : Task_Id);
212 pragma Inline (Set);
213 -- Set the self id for the current task
215 function Self return Task_Id;
216 pragma Inline (Self);
217 -- Return a pointer to the Ada Task Control Block of the calling task
219 end Specific;
221 package body Specific is separate;
222 -- The body of this package is target specific
224 ---------------------------------
225 -- Support for foreign threads --
226 ---------------------------------
228 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
229 -- Allocate and Initialize a new ATCB for the current Thread
231 function Register_Foreign_Thread
232 (Thread : Thread_Id) return Task_Id is separate;
234 ------------
235 -- Checks --
236 ------------
238 Check_Count : Integer := 0;
239 Lock_Count : Integer := 0;
240 Unlock_Count : Integer := 0;
242 -------------------
243 -- Abort_Handler --
244 -------------------
246 procedure Abort_Handler
247 (Sig : Signal;
248 Code : not null access siginfo_t;
249 Context : not null access ucontext_t)
251 pragma Unreferenced (Sig);
252 pragma Unreferenced (Code);
253 pragma Unreferenced (Context);
255 Self_ID : constant Task_Id := Self;
256 Old_Set : aliased sigset_t;
258 Result : Interfaces.C.int;
259 pragma Warnings (Off, Result);
261 begin
262 -- It's not safe to raise an exception when using GCC ZCX mechanism.
263 -- Note that we still need to install a signal handler, since in some
264 -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
265 -- need to send the Abort signal to a task.
267 if ZCX_By_Default and then GCC_ZCX_Support then
268 return;
269 end if;
271 if Self_ID.Deferral_Level = 0
272 and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
273 and then not Self_ID.Aborting
274 then
275 Self_ID.Aborting := True;
277 -- Make sure signals used for RTS internal purpose are unmasked
279 Result :=
280 thr_sigsetmask
281 (SIG_UNBLOCK,
282 Unblocked_Signal_Mask'Unchecked_Access,
283 Old_Set'Unchecked_Access);
284 pragma Assert (Result = 0);
286 raise Standard'Abort_Signal;
287 end if;
288 end Abort_Handler;
290 -----------------
291 -- Stack_Guard --
292 -----------------
294 -- The underlying thread system sets a guard page at the
295 -- bottom of a thread stack, so nothing is needed.
297 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
298 pragma Unreferenced (T);
299 pragma Unreferenced (On);
300 begin
301 null;
302 end Stack_Guard;
304 -------------------
305 -- Get_Thread_Id --
306 -------------------
308 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
309 begin
310 return T.Common.LL.Thread;
311 end Get_Thread_Id;
313 ----------------
314 -- Initialize --
315 ----------------
317 procedure Initialize (Environment_Task : ST.Task_Id) is
318 act : aliased struct_sigaction;
319 old_act : aliased struct_sigaction;
320 Tmp_Set : aliased sigset_t;
321 Result : Interfaces.C.int;
323 procedure Configure_Processors;
324 -- Processors configuration
325 -- The user can specify a processor which the program should run
326 -- on to emulate a single-processor system. This can be easily
327 -- done by setting environment variable GNAT_PROCESSOR to one of
328 -- the following :
330 -- -2 : use the default configuration (run the program on all
331 -- available processors) - this is the same as having
332 -- GNAT_PROCESSOR unset
333 -- -1 : let the RTS choose one processor and run the program on
334 -- that processor
335 -- 0 .. Last_Proc : run the program on the specified processor
337 -- Last_Proc is equal to the value of the system variable
338 -- _SC_NPROCESSORS_CONF, minus one.
340 procedure Configure_Processors is
341 Proc_Acc : constant System.OS_Lib.String_Access :=
342 System.OS_Lib.Getenv ("GNAT_PROCESSOR");
343 Proc : aliased processorid_t; -- User processor #
344 Last_Proc : processorid_t; -- Last processor #
346 begin
347 if Proc_Acc.all'Length /= 0 then
349 -- Environment variable is defined
351 Last_Proc := Num_Procs - 1;
353 if Last_Proc /= -1 then
354 Proc := processorid_t'Value (Proc_Acc.all);
356 if Proc <= -2 or else Proc > Last_Proc then
358 -- Use the default configuration
360 null;
362 elsif Proc = -1 then
364 -- Choose a processor
366 Result := 0;
367 while Proc < Last_Proc loop
368 Proc := Proc + 1;
369 Result := p_online (Proc, PR_STATUS);
370 exit when Result = PR_ONLINE;
371 end loop;
373 pragma Assert (Result = PR_ONLINE);
374 Result := processor_bind (P_PID, P_MYID, Proc, null);
375 pragma Assert (Result = 0);
377 else
378 -- Use user processor
380 Result := processor_bind (P_PID, P_MYID, Proc, null);
381 pragma Assert (Result = 0);
382 end if;
383 end if;
384 end if;
386 exception
387 when Constraint_Error =>
389 -- Illegal environment variable GNAT_PROCESSOR - ignored
391 null;
392 end Configure_Processors;
394 function State
395 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
396 pragma Import (C, State, "__gnat_get_interrupt_state");
397 -- Get interrupt state. Defined in a-init.c
398 -- The input argument is the interrupt number,
399 -- and the result is one of the following:
401 Default : constant Character := 's';
402 -- 'n' this interrupt not set by any Interrupt_State pragma
403 -- 'u' Interrupt_State pragma set state to User
404 -- 'r' Interrupt_State pragma set state to Runtime
405 -- 's' Interrupt_State pragma set state to System (use "default"
406 -- system handler)
408 -- Start of processing for Initialize
410 begin
411 Environment_Task_Id := Environment_Task;
413 Interrupt_Management.Initialize;
415 -- Prepare the set of signals that should unblocked in all tasks
417 Result := sigemptyset (Unblocked_Signal_Mask'Access);
418 pragma Assert (Result = 0);
420 for J in Interrupt_Management.Interrupt_ID loop
421 if System.Interrupt_Management.Keep_Unmasked (J) then
422 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
423 pragma Assert (Result = 0);
424 end if;
425 end loop;
427 if Dispatching_Policy = 'F' then
428 declare
429 Result : Interfaces.C.long;
430 Class_Info : aliased struct_pcinfo;
431 Secs, Nsecs : Interfaces.C.long;
433 begin
434 -- If a pragma Time_Slice is specified, takes the value in account
436 if Time_Slice_Val > 0 then
438 -- Convert Time_Slice_Val (microseconds) to seconds/nanosecs
440 Secs := Interfaces.C.long (Time_Slice_Val / 1_000_000);
441 Nsecs :=
442 Interfaces.C.long ((Time_Slice_Val rem 1_000_000) * 1_000);
444 -- Otherwise, default to no time slicing (i.e run until blocked)
446 else
447 Secs := RT_TQINF;
448 Nsecs := RT_TQINF;
449 end if;
451 -- Get the real time class id
453 Class_Info.pc_clname (1) := 'R';
454 Class_Info.pc_clname (2) := 'T';
455 Class_Info.pc_clname (3) := ASCII.NUL;
457 Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_GETCID,
458 Class_Info'Address);
460 -- Request the real time class
462 Prio_Param.pc_cid := Class_Info.pc_cid;
463 Prio_Param.rt_pri := pri_t (Class_Info.rt_maxpri);
464 Prio_Param.rt_tqsecs := Secs;
465 Prio_Param.rt_tqnsecs := Nsecs;
467 Result :=
468 priocntl
469 (PC_VERSION, P_LWPID, P_MYID, PC_SETPARMS, Prio_Param'Address);
471 Using_Real_Time_Class := Result /= -1;
472 end;
473 end if;
475 Specific.Initialize (Environment_Task);
477 -- The following is done in Enter_Task, but this is too late for the
478 -- Environment Task, since we need to call Self in Check_Locks when
479 -- the run time is compiled with assertions on.
481 Specific.Set (Environment_Task);
483 -- Initialize the lock used to synchronize chain of all ATCBs
485 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
487 -- Make environment task known here because it doesn't go through
488 -- Activate_Tasks, which does it for all other tasks.
490 Known_Tasks (Known_Tasks'First) := Environment_Task;
491 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
493 Enter_Task (Environment_Task);
495 Configure_Processors;
497 if State
498 (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
499 then
500 -- Set sa_flags to SA_NODEFER so that during the handler execution
501 -- we do not change the Signal_Mask to be masked for the Abort_Signal
502 -- This is a temporary fix to the problem that the Signal_Mask is
503 -- not restored after the exception (longjmp) from the handler.
504 -- The right fix should be made in sigsetjmp so that we save
505 -- the Signal_Set and restore it after a longjmp.
506 -- In that case, this field should be changed back to 0. ???
508 act.sa_flags := 16;
510 act.sa_handler := Abort_Handler'Address;
511 Result := sigemptyset (Tmp_Set'Access);
512 pragma Assert (Result = 0);
513 act.sa_mask := Tmp_Set;
515 Result :=
516 sigaction
517 (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
518 act'Unchecked_Access,
519 old_act'Unchecked_Access);
520 pragma Assert (Result = 0);
521 Abort_Handler_Installed := True;
522 end if;
523 end Initialize;
525 ---------------------
526 -- Initialize_Lock --
527 ---------------------
529 -- Note: mutexes and cond_variables needed per-task basis are initialized
530 -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
531 -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
532 -- status change of RTS. Therefore raising Storage_Error in the following
533 -- routines should be able to be handled safely.
535 procedure Initialize_Lock
536 (Prio : System.Any_Priority;
537 L : not null access Lock)
539 Result : Interfaces.C.int;
541 begin
542 pragma Assert (Check_Initialize_Lock (Lock_Ptr (L), PO_Level));
544 if Priority_Ceiling_Emulation then
545 L.Ceiling := Prio;
546 end if;
548 Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
549 pragma Assert (Result = 0 or else Result = ENOMEM);
551 if Result = ENOMEM then
552 raise Storage_Error with "Failed to allocate a lock";
553 end if;
554 end Initialize_Lock;
556 procedure Initialize_Lock
557 (L : not null access RTS_Lock;
558 Level : Lock_Level)
560 Result : Interfaces.C.int;
562 begin
563 pragma Assert
564 (Check_Initialize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)), Level));
565 Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
566 pragma Assert (Result = 0 or else Result = ENOMEM);
568 if Result = ENOMEM then
569 raise Storage_Error with "Failed to allocate a lock";
570 end if;
571 end Initialize_Lock;
573 -------------------
574 -- Finalize_Lock --
575 -------------------
577 procedure Finalize_Lock (L : not null access Lock) is
578 Result : Interfaces.C.int;
579 begin
580 pragma Assert (Check_Finalize_Lock (Lock_Ptr (L)));
581 Result := mutex_destroy (L.L'Access);
582 pragma Assert (Result = 0);
583 end Finalize_Lock;
585 procedure Finalize_Lock (L : not null access RTS_Lock) is
586 Result : Interfaces.C.int;
587 begin
588 pragma Assert (Check_Finalize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
589 Result := mutex_destroy (L.L'Access);
590 pragma Assert (Result = 0);
591 end Finalize_Lock;
593 ----------------
594 -- Write_Lock --
595 ----------------
597 procedure Write_Lock
598 (L : not null access Lock;
599 Ceiling_Violation : out Boolean)
601 Result : Interfaces.C.int;
603 begin
604 pragma Assert (Check_Lock (Lock_Ptr (L)));
606 if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
607 declare
608 Self_Id : constant Task_Id := Self;
609 Saved_Priority : System.Any_Priority;
611 begin
612 if Self_Id.Common.LL.Active_Priority > L.Ceiling then
613 Ceiling_Violation := True;
614 return;
615 end if;
617 Saved_Priority := Self_Id.Common.LL.Active_Priority;
619 if Self_Id.Common.LL.Active_Priority < L.Ceiling then
620 Set_Priority (Self_Id, L.Ceiling);
621 end if;
623 Result := mutex_lock (L.L'Access);
624 pragma Assert (Result = 0);
625 Ceiling_Violation := False;
627 L.Saved_Priority := Saved_Priority;
628 end;
630 else
631 Result := mutex_lock (L.L'Access);
632 pragma Assert (Result = 0);
633 Ceiling_Violation := False;
634 end if;
636 pragma Assert (Record_Lock (Lock_Ptr (L)));
637 end Write_Lock;
639 procedure Write_Lock
640 (L : not null access RTS_Lock;
641 Global_Lock : Boolean := False)
643 Result : Interfaces.C.int;
644 begin
645 if not Single_Lock or else Global_Lock then
646 pragma Assert (Check_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
647 Result := mutex_lock (L.L'Access);
648 pragma Assert (Result = 0);
649 pragma Assert (Record_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
650 end if;
651 end Write_Lock;
653 procedure Write_Lock (T : Task_Id) is
654 Result : Interfaces.C.int;
655 begin
656 if not Single_Lock then
657 pragma Assert (Check_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
658 Result := mutex_lock (T.Common.LL.L.L'Access);
659 pragma Assert (Result = 0);
660 pragma Assert (Record_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
661 end if;
662 end Write_Lock;
664 ---------------
665 -- Read_Lock --
666 ---------------
668 procedure Read_Lock
669 (L : not null access Lock;
670 Ceiling_Violation : out Boolean) is
671 begin
672 Write_Lock (L, Ceiling_Violation);
673 end Read_Lock;
675 ------------
676 -- Unlock --
677 ------------
679 procedure Unlock (L : not null access Lock) is
680 Result : Interfaces.C.int;
682 begin
683 pragma Assert (Check_Unlock (Lock_Ptr (L)));
685 if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
686 declare
687 Self_Id : constant Task_Id := Self;
689 begin
690 Result := mutex_unlock (L.L'Access);
691 pragma Assert (Result = 0);
693 if Self_Id.Common.LL.Active_Priority > L.Saved_Priority then
694 Set_Priority (Self_Id, L.Saved_Priority);
695 end if;
696 end;
697 else
698 Result := mutex_unlock (L.L'Access);
699 pragma Assert (Result = 0);
700 end if;
701 end Unlock;
703 procedure Unlock
704 (L : not null access RTS_Lock;
705 Global_Lock : Boolean := False)
707 Result : Interfaces.C.int;
708 begin
709 if not Single_Lock or else Global_Lock then
710 pragma Assert (Check_Unlock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
711 Result := mutex_unlock (L.L'Access);
712 pragma Assert (Result = 0);
713 end if;
714 end Unlock;
716 procedure Unlock (T : Task_Id) is
717 Result : Interfaces.C.int;
718 begin
719 if not Single_Lock then
720 pragma Assert (Check_Unlock (To_Lock_Ptr (T.Common.LL.L'Access)));
721 Result := mutex_unlock (T.Common.LL.L.L'Access);
722 pragma Assert (Result = 0);
723 end if;
724 end Unlock;
726 -----------------
727 -- Set_Ceiling --
728 -----------------
730 -- Dynamic priority ceilings are not supported by the underlying system
732 procedure Set_Ceiling
733 (L : not null access Lock;
734 Prio : System.Any_Priority)
736 pragma Unreferenced (L, Prio);
737 begin
738 null;
739 end Set_Ceiling;
741 -- For the time delay implementation, we need to make sure we
742 -- achieve following criteria:
744 -- 1) We have to delay at least for the amount requested.
745 -- 2) We have to give up CPU even though the actual delay does not
746 -- result in blocking.
747 -- 3) Except for restricted run-time systems that do not support
748 -- ATC or task abort, the delay must be interrupted by the
749 -- abort_task operation.
750 -- 4) The implementation has to be efficient so that the delay overhead
751 -- is relatively cheap.
752 -- (1)-(3) are Ada requirements. Even though (2) is an Annex-D
753 -- requirement we still want to provide the effect in all cases.
754 -- The reason is that users may want to use short delays to implement
755 -- their own scheduling effect in the absence of language provided
756 -- scheduling policies.
758 ---------------------
759 -- Monotonic_Clock --
760 ---------------------
762 function Monotonic_Clock return Duration is
763 TS : aliased timespec;
764 Result : Interfaces.C.int;
765 begin
766 Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
767 pragma Assert (Result = 0);
768 return To_Duration (TS);
769 end Monotonic_Clock;
771 -------------------
772 -- RT_Resolution --
773 -------------------
775 function RT_Resolution return Duration is
776 begin
777 return 10#1.0#E-6;
778 end RT_Resolution;
780 -----------
781 -- Yield --
782 -----------
784 procedure Yield (Do_Yield : Boolean := True) is
785 begin
786 if Do_Yield then
787 System.OS_Interface.thr_yield;
788 end if;
789 end Yield;
791 -----------
792 -- Self ---
793 -----------
795 function Self return Task_Id renames Specific.Self;
797 ------------------
798 -- Set_Priority --
799 ------------------
801 procedure Set_Priority
802 (T : Task_Id;
803 Prio : System.Any_Priority;
804 Loss_Of_Inheritance : Boolean := False)
806 pragma Unreferenced (Loss_Of_Inheritance);
808 Result : Interfaces.C.int;
809 pragma Unreferenced (Result);
811 Param : aliased struct_pcparms;
813 use Task_Info;
815 begin
816 T.Common.Current_Priority := Prio;
818 if Priority_Ceiling_Emulation then
819 T.Common.LL.Active_Priority := Prio;
820 end if;
822 if Using_Real_Time_Class then
823 Param.pc_cid := Prio_Param.pc_cid;
824 Param.rt_pri := pri_t (Prio);
825 Param.rt_tqsecs := Prio_Param.rt_tqsecs;
826 Param.rt_tqnsecs := Prio_Param.rt_tqnsecs;
828 Result := Interfaces.C.int (
829 priocntl (PC_VERSION, P_LWPID, T.Common.LL.LWP, PC_SETPARMS,
830 Param'Address));
832 else
833 if T.Common.Task_Info /= null
834 and then not T.Common.Task_Info.Bound_To_LWP
835 then
836 -- The task is not bound to a LWP, so use thr_setprio
838 Result :=
839 thr_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio));
841 else
842 -- The task is bound to a LWP, use priocntl
843 -- ??? TBD
845 null;
846 end if;
847 end if;
848 end Set_Priority;
850 ------------------
851 -- Get_Priority --
852 ------------------
854 function Get_Priority (T : Task_Id) return System.Any_Priority is
855 begin
856 return T.Common.Current_Priority;
857 end Get_Priority;
859 ----------------
860 -- Enter_Task --
861 ----------------
863 procedure Enter_Task (Self_ID : Task_Id) is
864 Result : Interfaces.C.int;
865 Proc : processorid_t; -- User processor #
866 Last_Proc : processorid_t; -- Last processor #
868 use System.Task_Info;
869 begin
870 Self_ID.Common.LL.Thread := thr_self;
872 Self_ID.Common.LL.LWP := lwp_self;
874 if Self_ID.Common.Task_Info /= null then
875 if Self_ID.Common.Task_Info.New_LWP
876 and then Self_ID.Common.Task_Info.CPU /= CPU_UNCHANGED
877 then
878 Last_Proc := Num_Procs - 1;
880 if Self_ID.Common.Task_Info.CPU = ANY_CPU then
881 Result := 0;
882 Proc := 0;
883 while Proc < Last_Proc loop
884 Result := p_online (Proc, PR_STATUS);
885 exit when Result = PR_ONLINE;
886 Proc := Proc + 1;
887 end loop;
889 Result := processor_bind (P_LWPID, P_MYID, Proc, null);
890 pragma Assert (Result = 0);
892 else
893 -- Use specified processor
895 if Self_ID.Common.Task_Info.CPU < 0
896 or else Self_ID.Common.Task_Info.CPU > Last_Proc
897 then
898 raise Invalid_CPU_Number;
899 end if;
901 Result :=
902 processor_bind
903 (P_LWPID, P_MYID, Self_ID.Common.Task_Info.CPU, null);
904 pragma Assert (Result = 0);
905 end if;
906 end if;
907 end if;
909 Specific.Set (Self_ID);
911 -- We need the above code even if we do direct fetch of Task_Id in Self
912 -- for the main task on Sun, x86 Solaris and for gcc 2.7.2.
913 end Enter_Task;
915 --------------
916 -- New_ATCB --
917 --------------
919 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
920 begin
921 return new Ada_Task_Control_Block (Entry_Num);
922 end New_ATCB;
924 -------------------
925 -- Is_Valid_Task --
926 -------------------
928 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
930 -----------------------------
931 -- Register_Foreign_Thread --
932 -----------------------------
934 function Register_Foreign_Thread return Task_Id is
935 begin
936 if Is_Valid_Task then
937 return Self;
938 else
939 return Register_Foreign_Thread (thr_self);
940 end if;
941 end Register_Foreign_Thread;
943 --------------------
944 -- Initialize_TCB --
945 --------------------
947 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
948 Result : Interfaces.C.int := 0;
950 begin
951 -- Give the task a unique serial number
953 Self_ID.Serial_Number := Next_Serial_Number;
954 Next_Serial_Number := Next_Serial_Number + 1;
955 pragma Assert (Next_Serial_Number /= 0);
957 Self_ID.Common.LL.Thread := To_thread_t (-1);
959 if not Single_Lock then
960 Result :=
961 mutex_init
962 (Self_ID.Common.LL.L.L'Access, USYNC_THREAD, System.Null_Address);
963 Self_ID.Common.LL.L.Level :=
964 Private_Task_Serial_Number (Self_ID.Serial_Number);
965 pragma Assert (Result = 0 or else Result = ENOMEM);
966 end if;
968 if Result = 0 then
969 Result := cond_init (Self_ID.Common.LL.CV'Access, USYNC_THREAD, 0);
970 pragma Assert (Result = 0 or else Result = ENOMEM);
971 end if;
973 if Result = 0 then
974 Succeeded := True;
975 else
976 if not Single_Lock then
977 Result := mutex_destroy (Self_ID.Common.LL.L.L'Access);
978 pragma Assert (Result = 0);
979 end if;
981 Succeeded := False;
982 end if;
983 end Initialize_TCB;
985 -----------------
986 -- Create_Task --
987 -----------------
989 procedure Create_Task
990 (T : Task_Id;
991 Wrapper : System.Address;
992 Stack_Size : System.Parameters.Size_Type;
993 Priority : System.Any_Priority;
994 Succeeded : out Boolean)
996 pragma Unreferenced (Priority);
998 Result : Interfaces.C.int;
999 Adjusted_Stack_Size : Interfaces.C.size_t;
1000 Opts : Interfaces.C.int := THR_DETACHED;
1002 Page_Size : constant System.Parameters.Size_Type := 4096;
1003 -- This constant is for reserving extra space at the
1004 -- end of the stack, which can be used by the stack
1005 -- checking as guard page. The idea is that we need
1006 -- to have at least Stack_Size bytes available for
1007 -- actual use.
1009 use System.Task_Info;
1011 begin
1012 Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size + Page_Size);
1014 -- Since the initial signal mask of a thread is inherited from the
1015 -- creator, and the Environment task has all its signals masked, we
1016 -- do not need to manipulate caller's signal mask at this point.
1017 -- All tasks in RTS will have All_Tasks_Mask initially.
1019 if T.Common.Task_Info /= null then
1020 if T.Common.Task_Info.New_LWP then
1021 Opts := Opts + THR_NEW_LWP;
1022 end if;
1024 if T.Common.Task_Info.Bound_To_LWP then
1025 Opts := Opts + THR_BOUND;
1026 end if;
1028 else
1029 Opts := THR_DETACHED + THR_BOUND;
1030 end if;
1032 Result :=
1033 thr_create
1034 (System.Null_Address,
1035 Adjusted_Stack_Size,
1036 Thread_Body_Access (Wrapper),
1037 To_Address (T),
1038 Opts,
1039 T.Common.LL.Thread'Access);
1041 Succeeded := Result = 0;
1042 pragma Assert
1043 (Result = 0
1044 or else Result = ENOMEM
1045 or else Result = EAGAIN);
1046 end Create_Task;
1048 ------------------
1049 -- Finalize_TCB --
1050 ------------------
1052 procedure Finalize_TCB (T : Task_Id) is
1053 Result : Interfaces.C.int;
1054 Tmp : Task_Id := T;
1055 Is_Self : constant Boolean := T = Self;
1057 procedure Free is new
1058 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
1060 begin
1061 T.Common.LL.Thread := To_thread_t (0);
1063 if not Single_Lock then
1064 Result := mutex_destroy (T.Common.LL.L.L'Access);
1065 pragma Assert (Result = 0);
1066 end if;
1068 Result := cond_destroy (T.Common.LL.CV'Access);
1069 pragma Assert (Result = 0);
1071 if T.Known_Tasks_Index /= -1 then
1072 Known_Tasks (T.Known_Tasks_Index) := null;
1073 end if;
1075 Free (Tmp);
1077 if Is_Self then
1078 Specific.Set (null);
1079 end if;
1080 end Finalize_TCB;
1082 ---------------
1083 -- Exit_Task --
1084 ---------------
1086 -- This procedure must be called with abort deferred. It can no longer
1087 -- call Self or access the current task's ATCB, since the ATCB has been
1088 -- deallocated.
1090 procedure Exit_Task is
1091 begin
1092 Specific.Set (null);
1093 end Exit_Task;
1095 ----------------
1096 -- Abort_Task --
1097 ----------------
1099 procedure Abort_Task (T : Task_Id) is
1100 Result : Interfaces.C.int;
1101 begin
1102 if Abort_Handler_Installed then
1103 pragma Assert (T /= Self);
1104 Result :=
1105 thr_kill
1106 (T.Common.LL.Thread,
1107 Signal (System.Interrupt_Management.Abort_Task_Interrupt));
1108 pragma Assert (Result = 0);
1109 end if;
1110 end Abort_Task;
1112 -----------
1113 -- Sleep --
1114 -----------
1116 procedure Sleep
1117 (Self_ID : Task_Id;
1118 Reason : Task_States)
1120 Result : Interfaces.C.int;
1122 begin
1123 pragma Assert (Check_Sleep (Reason));
1125 if Single_Lock then
1126 Result :=
1127 cond_wait
1128 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock.L'Access);
1129 else
1130 Result :=
1131 cond_wait
1132 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L.L'Access);
1133 end if;
1135 pragma Assert
1136 (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
1137 pragma Assert (Result = 0 or else Result = EINTR);
1138 end Sleep;
1140 -- Note that we are relying heavily here on GNAT representing
1141 -- Calendar.Time, System.Real_Time.Time, Duration,
1142 -- System.Real_Time.Time_Span in the same way, i.e., as a 64-bit count of
1143 -- nanoseconds.
1145 -- This allows us to always pass the timeout value as a Duration
1147 -- ???
1148 -- We are taking liberties here with the semantics of the delays. That is,
1149 -- we make no distinction between delays on the Calendar clock and delays
1150 -- on the Real_Time clock. That is technically incorrect, if the Calendar
1151 -- clock happens to be reset or adjusted. To solve this defect will require
1152 -- modification to the compiler interface, so that it can pass through more
1153 -- information, to tell us here which clock to use!
1155 -- cond_timedwait will return if any of the following happens:
1156 -- 1) some other task did cond_signal on this condition variable
1157 -- In this case, the return value is 0
1158 -- 2) the call just returned, for no good reason
1159 -- This is called a "spurious wakeup".
1160 -- In this case, the return value may also be 0.
1161 -- 3) the time delay expires
1162 -- In this case, the return value is ETIME
1163 -- 4) this task received a signal, which was handled by some
1164 -- handler procedure, and now the thread is resuming execution
1165 -- UNIX calls this an "interrupted" system call.
1166 -- In this case, the return value is EINTR
1168 -- If the cond_timedwait returns 0 or EINTR, it is still possible that the
1169 -- time has actually expired, and by chance a signal or cond_signal
1170 -- occurred at around the same time.
1172 -- We have also observed that on some OS's the value ETIME will be
1173 -- returned, but the clock will show that the full delay has not yet
1174 -- expired.
1176 -- For these reasons, we need to check the clock after return from
1177 -- cond_timedwait. If the time has expired, we will set Timedout = True.
1179 -- This check might be omitted for systems on which the cond_timedwait()
1180 -- never returns early or wakes up spuriously.
1182 -- Annex D requires that completion of a delay cause the task to go to the
1183 -- end of its priority queue, regardless of whether the task actually was
1184 -- suspended by the delay. Since cond_timedwait does not do this on
1185 -- Solaris, we add a call to thr_yield at the end. We might do this at the
1186 -- beginning, instead, but then the round-robin effect would not be the
1187 -- same; the delayed task would be ahead of other tasks of the same
1188 -- priority that awoke while it was sleeping.
1190 -- For Timed_Sleep, we are expecting possible cond_signals to indicate
1191 -- other events (e.g., completion of a RV or completion of the abortable
1192 -- part of an async. select), we want to always return if interrupted. The
1193 -- caller will be responsible for checking the task state to see whether
1194 -- the wakeup was spurious, and to go back to sleep again in that case. We
1195 -- don't need to check for pending abort or priority change on the way in
1196 -- our out; that is the caller's responsibility.
1198 -- For Timed_Delay, we are not expecting any cond_signals or other
1199 -- interruptions, except for priority changes and aborts. Therefore, we
1200 -- don't want to return unless the delay has actually expired, or the call
1201 -- has been aborted. In this case, since we want to implement the entire
1202 -- delay statement semantics, we do need to check for pending abort and
1203 -- priority changes. We can quietly handle priority changes inside the
1204 -- procedure, since there is no entry-queue reordering involved.
1206 -----------------
1207 -- Timed_Sleep --
1208 -----------------
1210 procedure Timed_Sleep
1211 (Self_ID : Task_Id;
1212 Time : Duration;
1213 Mode : ST.Delay_Modes;
1214 Reason : System.Tasking.Task_States;
1215 Timedout : out Boolean;
1216 Yielded : out Boolean)
1218 Base_Time : constant Duration := Monotonic_Clock;
1219 Check_Time : Duration := Base_Time;
1220 Abs_Time : Duration;
1221 Request : aliased timespec;
1222 Result : Interfaces.C.int;
1224 begin
1225 pragma Assert (Check_Sleep (Reason));
1226 Timedout := True;
1227 Yielded := False;
1229 Abs_Time :=
1230 (if Mode = Relative
1231 then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
1232 else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
1234 if Abs_Time > Check_Time then
1235 Request := To_Timespec (Abs_Time);
1236 loop
1237 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
1239 if Single_Lock then
1240 Result :=
1241 cond_timedwait
1242 (Self_ID.Common.LL.CV'Access,
1243 Single_RTS_Lock.L'Access, Request'Access);
1244 else
1245 Result :=
1246 cond_timedwait
1247 (Self_ID.Common.LL.CV'Access,
1248 Self_ID.Common.LL.L.L'Access, Request'Access);
1249 end if;
1251 Yielded := True;
1253 Check_Time := Monotonic_Clock;
1254 exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
1256 if Result = 0 or Result = EINTR then
1258 -- Somebody may have called Wakeup for us
1260 Timedout := False;
1261 exit;
1262 end if;
1264 pragma Assert (Result = ETIME);
1265 end loop;
1266 end if;
1268 pragma Assert
1269 (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
1270 end Timed_Sleep;
1272 -----------------
1273 -- Timed_Delay --
1274 -----------------
1276 procedure Timed_Delay
1277 (Self_ID : Task_Id;
1278 Time : Duration;
1279 Mode : ST.Delay_Modes)
1281 Base_Time : constant Duration := Monotonic_Clock;
1282 Check_Time : Duration := Base_Time;
1283 Abs_Time : Duration;
1284 Request : aliased timespec;
1285 Result : Interfaces.C.int;
1286 Yielded : Boolean := False;
1288 begin
1289 if Single_Lock then
1290 Lock_RTS;
1291 end if;
1293 Write_Lock (Self_ID);
1295 Abs_Time :=
1296 (if Mode = Relative
1297 then Time + Check_Time
1298 else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
1300 if Abs_Time > Check_Time then
1301 Request := To_Timespec (Abs_Time);
1302 Self_ID.Common.State := Delay_Sleep;
1304 pragma Assert (Check_Sleep (Delay_Sleep));
1306 loop
1307 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
1309 if Single_Lock then
1310 Result :=
1311 cond_timedwait
1312 (Self_ID.Common.LL.CV'Access,
1313 Single_RTS_Lock.L'Access,
1314 Request'Access);
1315 else
1316 Result :=
1317 cond_timedwait
1318 (Self_ID.Common.LL.CV'Access,
1319 Self_ID.Common.LL.L.L'Access,
1320 Request'Access);
1321 end if;
1323 Yielded := True;
1325 Check_Time := Monotonic_Clock;
1326 exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
1328 pragma Assert
1329 (Result = 0 or else
1330 Result = ETIME or else
1331 Result = EINTR);
1332 end loop;
1334 pragma Assert
1335 (Record_Wakeup
1336 (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Delay_Sleep));
1338 Self_ID.Common.State := Runnable;
1339 end if;
1341 Unlock (Self_ID);
1343 if Single_Lock then
1344 Unlock_RTS;
1345 end if;
1347 if not Yielded then
1348 thr_yield;
1349 end if;
1350 end Timed_Delay;
1352 ------------
1353 -- Wakeup --
1354 ------------
1356 procedure Wakeup
1357 (T : Task_Id;
1358 Reason : Task_States)
1360 Result : Interfaces.C.int;
1361 begin
1362 pragma Assert (Check_Wakeup (T, Reason));
1363 Result := cond_signal (T.Common.LL.CV'Access);
1364 pragma Assert (Result = 0);
1365 end Wakeup;
1367 ---------------------------
1368 -- Check_Initialize_Lock --
1369 ---------------------------
1371 -- The following code is intended to check some of the invariant assertions
1372 -- related to lock usage, on which we depend.
1374 function Check_Initialize_Lock
1375 (L : Lock_Ptr;
1376 Level : Lock_Level) return Boolean
1378 Self_ID : constant Task_Id := Self;
1380 begin
1381 -- Check that caller is abort-deferred
1383 if Self_ID.Deferral_Level = 0 then
1384 return False;
1385 end if;
1387 -- Check that the lock is not yet initialized
1389 if L.Level /= 0 then
1390 return False;
1391 end if;
1393 L.Level := Lock_Level'Pos (Level) + 1;
1394 return True;
1395 end Check_Initialize_Lock;
1397 ----------------
1398 -- Check_Lock --
1399 ----------------
1401 function Check_Lock (L : Lock_Ptr) return Boolean is
1402 Self_ID : constant Task_Id := Self;
1403 P : Lock_Ptr;
1405 begin
1406 -- Check that the argument is not null
1408 if L = null then
1409 return False;
1410 end if;
1412 -- Check that L is not frozen
1414 if L.Frozen then
1415 return False;
1416 end if;
1418 -- Check that caller is abort-deferred
1420 if Self_ID.Deferral_Level = 0 then
1421 return False;
1422 end if;
1424 -- Check that caller is not holding this lock already
1426 if L.Owner = To_Owner_ID (To_Address (Self_ID)) then
1427 return False;
1428 end if;
1430 if Single_Lock then
1431 return True;
1432 end if;
1434 -- Check that TCB lock order rules are satisfied
1436 P := Self_ID.Common.LL.Locks;
1437 if P /= null then
1438 if P.Level >= L.Level
1439 and then (P.Level > 2 or else L.Level > 2)
1440 then
1441 return False;
1442 end if;
1443 end if;
1445 return True;
1446 end Check_Lock;
1448 -----------------
1449 -- Record_Lock --
1450 -----------------
1452 function Record_Lock (L : Lock_Ptr) return Boolean is
1453 Self_ID : constant Task_Id := Self;
1454 P : Lock_Ptr;
1456 begin
1457 Lock_Count := Lock_Count + 1;
1459 -- There should be no owner for this lock at this point
1461 if L.Owner /= null then
1462 return False;
1463 end if;
1465 -- Record new owner
1467 L.Owner := To_Owner_ID (To_Address (Self_ID));
1469 if Single_Lock then
1470 return True;
1471 end if;
1473 -- Check that TCB lock order rules are satisfied
1475 P := Self_ID.Common.LL.Locks;
1477 if P /= null then
1478 L.Next := P;
1479 end if;
1481 Self_ID.Common.LL.Locking := null;
1482 Self_ID.Common.LL.Locks := L;
1483 return True;
1484 end Record_Lock;
1486 -----------------
1487 -- Check_Sleep --
1488 -----------------
1490 function Check_Sleep (Reason : Task_States) return Boolean is
1491 pragma Unreferenced (Reason);
1493 Self_ID : constant Task_Id := Self;
1494 P : Lock_Ptr;
1496 begin
1497 -- Check that caller is abort-deferred
1499 if Self_ID.Deferral_Level = 0 then
1500 return False;
1501 end if;
1503 if Single_Lock then
1504 return True;
1505 end if;
1507 -- Check that caller is holding own lock, on top of list
1509 if Self_ID.Common.LL.Locks /=
1510 To_Lock_Ptr (Self_ID.Common.LL.L'Access)
1511 then
1512 return False;
1513 end if;
1515 -- Check that TCB lock order rules are satisfied
1517 if Self_ID.Common.LL.Locks.Next /= null then
1518 return False;
1519 end if;
1521 Self_ID.Common.LL.L.Owner := null;
1522 P := Self_ID.Common.LL.Locks;
1523 Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
1524 P.Next := null;
1525 return True;
1526 end Check_Sleep;
1528 -------------------
1529 -- Record_Wakeup --
1530 -------------------
1532 function Record_Wakeup
1533 (L : Lock_Ptr;
1534 Reason : Task_States) return Boolean
1536 pragma Unreferenced (Reason);
1538 Self_ID : constant Task_Id := Self;
1539 P : Lock_Ptr;
1541 begin
1542 -- Record new owner
1544 L.Owner := To_Owner_ID (To_Address (Self_ID));
1546 if Single_Lock then
1547 return True;
1548 end if;
1550 -- Check that TCB lock order rules are satisfied
1552 P := Self_ID.Common.LL.Locks;
1554 if P /= null then
1555 L.Next := P;
1556 end if;
1558 Self_ID.Common.LL.Locking := null;
1559 Self_ID.Common.LL.Locks := L;
1560 return True;
1561 end Record_Wakeup;
1563 ------------------
1564 -- Check_Wakeup --
1565 ------------------
1567 function Check_Wakeup
1568 (T : Task_Id;
1569 Reason : Task_States) return Boolean
1571 Self_ID : constant Task_Id := Self;
1573 begin
1574 -- Is caller holding T's lock?
1576 if T.Common.LL.L.Owner /= To_Owner_ID (To_Address (Self_ID)) then
1577 return False;
1578 end if;
1580 -- Are reasons for wakeup and sleep consistent?
1582 if T.Common.State /= Reason then
1583 return False;
1584 end if;
1586 return True;
1587 end Check_Wakeup;
1589 ------------------
1590 -- Check_Unlock --
1591 ------------------
1593 function Check_Unlock (L : Lock_Ptr) return Boolean is
1594 Self_ID : constant Task_Id := Self;
1595 P : Lock_Ptr;
1597 begin
1598 Unlock_Count := Unlock_Count + 1;
1600 if L = null then
1601 return False;
1602 end if;
1604 if L.Buddy /= null then
1605 return False;
1606 end if;
1608 -- Magic constant 4???
1610 if L.Level = 4 then
1611 Check_Count := Unlock_Count;
1612 end if;
1614 -- Magic constant 1000???
1616 if Unlock_Count - Check_Count > 1000 then
1617 Check_Count := Unlock_Count;
1618 end if;
1620 -- Check that caller is abort-deferred
1622 if Self_ID.Deferral_Level = 0 then
1623 return False;
1624 end if;
1626 -- Check that caller is holding this lock, on top of list
1628 if Self_ID.Common.LL.Locks /= L then
1629 return False;
1630 end if;
1632 -- Record there is no owner now
1634 L.Owner := null;
1635 P := Self_ID.Common.LL.Locks;
1636 Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
1637 P.Next := null;
1638 return True;
1639 end Check_Unlock;
1641 --------------------
1642 -- Check_Finalize --
1643 --------------------
1645 function Check_Finalize_Lock (L : Lock_Ptr) return Boolean is
1646 Self_ID : constant Task_Id := Self;
1648 begin
1649 -- Check that caller is abort-deferred
1651 if Self_ID.Deferral_Level = 0 then
1652 return False;
1653 end if;
1655 -- Check that no one is holding this lock
1657 if L.Owner /= null then
1658 return False;
1659 end if;
1661 L.Frozen := True;
1662 return True;
1663 end Check_Finalize_Lock;
1665 ----------------
1666 -- Initialize --
1667 ----------------
1669 procedure Initialize (S : in out Suspension_Object) is
1670 Result : Interfaces.C.int;
1672 begin
1673 -- Initialize internal state (always to zero (RM D.10(6)))
1675 S.State := False;
1676 S.Waiting := False;
1678 -- Initialize internal mutex
1680 Result := mutex_init (S.L'Access, USYNC_THREAD, System.Null_Address);
1681 pragma Assert (Result = 0 or else Result = ENOMEM);
1683 if Result = ENOMEM then
1684 raise Storage_Error with "Failed to allocate a lock";
1685 end if;
1687 -- Initialize internal condition variable
1689 Result := cond_init (S.CV'Access, USYNC_THREAD, 0);
1690 pragma Assert (Result = 0 or else Result = ENOMEM);
1692 if Result /= 0 then
1693 Result := mutex_destroy (S.L'Access);
1694 pragma Assert (Result = 0);
1696 if Result = ENOMEM then
1697 raise Storage_Error;
1698 end if;
1699 end if;
1700 end Initialize;
1702 --------------
1703 -- Finalize --
1704 --------------
1706 procedure Finalize (S : in out Suspension_Object) is
1707 Result : Interfaces.C.int;
1709 begin
1710 -- Destroy internal mutex
1712 Result := mutex_destroy (S.L'Access);
1713 pragma Assert (Result = 0);
1715 -- Destroy internal condition variable
1717 Result := cond_destroy (S.CV'Access);
1718 pragma Assert (Result = 0);
1719 end Finalize;
1721 -------------------
1722 -- Current_State --
1723 -------------------
1725 function Current_State (S : Suspension_Object) return Boolean is
1726 begin
1727 -- We do not want to use lock on this read operation. State is marked
1728 -- as Atomic so that we ensure that the value retrieved is correct.
1730 return S.State;
1731 end Current_State;
1733 ---------------
1734 -- Set_False --
1735 ---------------
1737 procedure Set_False (S : in out Suspension_Object) is
1738 Result : Interfaces.C.int;
1740 begin
1741 SSL.Abort_Defer.all;
1743 Result := mutex_lock (S.L'Access);
1744 pragma Assert (Result = 0);
1746 S.State := False;
1748 Result := mutex_unlock (S.L'Access);
1749 pragma Assert (Result = 0);
1751 SSL.Abort_Undefer.all;
1752 end Set_False;
1754 --------------
1755 -- Set_True --
1756 --------------
1758 procedure Set_True (S : in out Suspension_Object) is
1759 Result : Interfaces.C.int;
1761 begin
1762 SSL.Abort_Defer.all;
1764 Result := mutex_lock (S.L'Access);
1765 pragma Assert (Result = 0);
1767 -- If there is already a task waiting on this suspension object then
1768 -- we resume it, leaving the state of the suspension object to False,
1769 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1770 -- the state to True.
1772 if S.Waiting then
1773 S.Waiting := False;
1774 S.State := False;
1776 Result := cond_signal (S.CV'Access);
1777 pragma Assert (Result = 0);
1779 else
1780 S.State := True;
1781 end if;
1783 Result := mutex_unlock (S.L'Access);
1784 pragma Assert (Result = 0);
1786 SSL.Abort_Undefer.all;
1787 end Set_True;
1789 ------------------------
1790 -- Suspend_Until_True --
1791 ------------------------
1793 procedure Suspend_Until_True (S : in out Suspension_Object) is
1794 Result : Interfaces.C.int;
1796 begin
1797 SSL.Abort_Defer.all;
1799 Result := mutex_lock (S.L'Access);
1800 pragma Assert (Result = 0);
1802 if S.Waiting then
1804 -- Program_Error must be raised upon calling Suspend_Until_True
1805 -- if another task is already waiting on that suspension object
1806 -- (RM D.10(10)).
1808 Result := mutex_unlock (S.L'Access);
1809 pragma Assert (Result = 0);
1811 SSL.Abort_Undefer.all;
1813 raise Program_Error;
1815 else
1816 -- Suspend the task if the state is False. Otherwise, the task
1817 -- continues its execution, and the state of the suspension object
1818 -- is set to False (ARM D.10 par. 9).
1820 if S.State then
1821 S.State := False;
1822 else
1823 S.Waiting := True;
1825 loop
1826 -- Loop in case pthread_cond_wait returns earlier than expected
1827 -- (e.g. in case of EINTR caused by a signal).
1829 Result := cond_wait (S.CV'Access, S.L'Access);
1830 pragma Assert (Result = 0 or else Result = EINTR);
1832 exit when not S.Waiting;
1833 end loop;
1834 end if;
1836 Result := mutex_unlock (S.L'Access);
1837 pragma Assert (Result = 0);
1839 SSL.Abort_Undefer.all;
1840 end if;
1841 end Suspend_Until_True;
1843 ----------------
1844 -- Check_Exit --
1845 ----------------
1847 function Check_Exit (Self_ID : Task_Id) return Boolean is
1848 begin
1849 -- Check that caller is just holding Global_Task_Lock and no other locks
1851 if Self_ID.Common.LL.Locks = null then
1852 return False;
1853 end if;
1855 -- 2 = Global_Task_Level
1857 if Self_ID.Common.LL.Locks.Level /= 2 then
1858 return False;
1859 end if;
1861 if Self_ID.Common.LL.Locks.Next /= null then
1862 return False;
1863 end if;
1865 -- Check that caller is abort-deferred
1867 if Self_ID.Deferral_Level = 0 then
1868 return False;
1869 end if;
1871 return True;
1872 end Check_Exit;
1874 --------------------
1875 -- Check_No_Locks --
1876 --------------------
1878 function Check_No_Locks (Self_ID : Task_Id) return Boolean is
1879 begin
1880 return Self_ID.Common.LL.Locks = null;
1881 end Check_No_Locks;
1883 ----------------------
1884 -- Environment_Task --
1885 ----------------------
1887 function Environment_Task return Task_Id is
1888 begin
1889 return Environment_Task_Id;
1890 end Environment_Task;
1892 --------------
1893 -- Lock_RTS --
1894 --------------
1896 procedure Lock_RTS is
1897 begin
1898 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1899 end Lock_RTS;
1901 ----------------
1902 -- Unlock_RTS --
1903 ----------------
1905 procedure Unlock_RTS is
1906 begin
1907 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1908 end Unlock_RTS;
1910 ------------------
1911 -- Suspend_Task --
1912 ------------------
1914 function Suspend_Task
1915 (T : ST.Task_Id;
1916 Thread_Self : Thread_Id) return Boolean
1918 begin
1919 if T.Common.LL.Thread /= Thread_Self then
1920 return thr_suspend (T.Common.LL.Thread) = 0;
1921 else
1922 return True;
1923 end if;
1924 end Suspend_Task;
1926 -----------------
1927 -- Resume_Task --
1928 -----------------
1930 function Resume_Task
1931 (T : ST.Task_Id;
1932 Thread_Self : Thread_Id) return Boolean
1934 begin
1935 if T.Common.LL.Thread /= Thread_Self then
1936 return thr_continue (T.Common.LL.Thread) = 0;
1937 else
1938 return True;
1939 end if;
1940 end Resume_Task;
1942 --------------------
1943 -- Stop_All_Tasks --
1944 --------------------
1946 procedure Stop_All_Tasks is
1947 begin
1948 null;
1949 end Stop_All_Tasks;
1951 ---------------
1952 -- Stop_Task --
1953 ---------------
1955 function Stop_Task (T : ST.Task_Id) return Boolean is
1956 pragma Unreferenced (T);
1957 begin
1958 return False;
1959 end Stop_Task;
1961 -------------------
1962 -- Continue_Task --
1963 -------------------
1965 function Continue_Task (T : ST.Task_Id) return Boolean is
1966 pragma Unreferenced (T);
1967 begin
1968 return False;
1969 end Continue_Task;
1971 end System.Task_Primitives.Operations;