gcc/
[official-gcc/alias-decl.git] / gcc / reload.c
blobfb87a1580a168c75f33cebf23255bb507d18eb44
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "reload.h"
104 #include "regs.h"
105 #include "addresses.h"
106 #include "hard-reg-set.h"
107 #include "flags.h"
108 #include "real.h"
109 #include "output.h"
110 #include "function.h"
111 #include "toplev.h"
112 #include "params.h"
113 #include "target.h"
114 #include "df.h"
116 /* True if X is a constant that can be forced into the constant pool. */
117 #define CONST_POOL_OK_P(X) \
118 (CONSTANT_P (X) \
119 && GET_CODE (X) != HIGH \
120 && !targetm.cannot_force_const_mem (X))
122 /* True if C is a non-empty register class that has too few registers
123 to be safely used as a reload target class. */
124 #define SMALL_REGISTER_CLASS_P(C) \
125 (reg_class_size [(C)] == 1 \
126 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
129 /* All reloads of the current insn are recorded here. See reload.h for
130 comments. */
131 int n_reloads;
132 struct reload rld[MAX_RELOADS];
134 /* All the "earlyclobber" operands of the current insn
135 are recorded here. */
136 int n_earlyclobbers;
137 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
139 int reload_n_operands;
141 /* Replacing reloads.
143 If `replace_reloads' is nonzero, then as each reload is recorded
144 an entry is made for it in the table `replacements'.
145 Then later `subst_reloads' can look through that table and
146 perform all the replacements needed. */
148 /* Nonzero means record the places to replace. */
149 static int replace_reloads;
151 /* Each replacement is recorded with a structure like this. */
152 struct replacement
154 rtx *where; /* Location to store in */
155 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
156 a SUBREG; 0 otherwise. */
157 int what; /* which reload this is for */
158 enum machine_mode mode; /* mode it must have */
161 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
163 /* Number of replacements currently recorded. */
164 static int n_replacements;
166 /* Used to track what is modified by an operand. */
167 struct decomposition
169 int reg_flag; /* Nonzero if referencing a register. */
170 int safe; /* Nonzero if this can't conflict with anything. */
171 rtx base; /* Base address for MEM. */
172 HOST_WIDE_INT start; /* Starting offset or register number. */
173 HOST_WIDE_INT end; /* Ending offset or register number. */
176 #ifdef SECONDARY_MEMORY_NEEDED
178 /* Save MEMs needed to copy from one class of registers to another. One MEM
179 is used per mode, but normally only one or two modes are ever used.
181 We keep two versions, before and after register elimination. The one
182 after register elimination is record separately for each operand. This
183 is done in case the address is not valid to be sure that we separately
184 reload each. */
186 static rtx secondary_memlocs[NUM_MACHINE_MODES];
187 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
188 static int secondary_memlocs_elim_used = 0;
189 #endif
191 /* The instruction we are doing reloads for;
192 so we can test whether a register dies in it. */
193 static rtx this_insn;
195 /* Nonzero if this instruction is a user-specified asm with operands. */
196 static int this_insn_is_asm;
198 /* If hard_regs_live_known is nonzero,
199 we can tell which hard regs are currently live,
200 at least enough to succeed in choosing dummy reloads. */
201 static int hard_regs_live_known;
203 /* Indexed by hard reg number,
204 element is nonnegative if hard reg has been spilled.
205 This vector is passed to `find_reloads' as an argument
206 and is not changed here. */
207 static short *static_reload_reg_p;
209 /* Set to 1 in subst_reg_equivs if it changes anything. */
210 static int subst_reg_equivs_changed;
212 /* On return from push_reload, holds the reload-number for the OUT
213 operand, which can be different for that from the input operand. */
214 static int output_reloadnum;
216 /* Compare two RTX's. */
217 #define MATCHES(x, y) \
218 (x == y || (x != 0 && (REG_P (x) \
219 ? REG_P (y) && REGNO (x) == REGNO (y) \
220 : rtx_equal_p (x, y) && ! side_effects_p (x))))
222 /* Indicates if two reloads purposes are for similar enough things that we
223 can merge their reloads. */
224 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
225 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
226 || ((when1) == (when2) && (op1) == (op2)) \
227 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
228 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
230 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
231 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
233 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
234 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
235 ((when1) != (when2) \
236 || ! ((op1) == (op2) \
237 || (when1) == RELOAD_FOR_INPUT \
238 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
239 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
241 /* If we are going to reload an address, compute the reload type to
242 use. */
243 #define ADDR_TYPE(type) \
244 ((type) == RELOAD_FOR_INPUT_ADDRESS \
245 ? RELOAD_FOR_INPADDR_ADDRESS \
246 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
247 ? RELOAD_FOR_OUTADDR_ADDRESS \
248 : (type)))
250 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
251 enum machine_mode, enum reload_type,
252 enum insn_code *, secondary_reload_info *);
253 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
254 int, unsigned int);
255 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
256 static void push_replacement (rtx *, int, enum machine_mode);
257 static void dup_replacements (rtx *, rtx *);
258 static void combine_reloads (void);
259 static int find_reusable_reload (rtx *, rtx, enum reg_class,
260 enum reload_type, int, int);
261 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
262 enum machine_mode, enum reg_class, int, int);
263 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
264 static struct decomposition decompose (rtx);
265 static int immune_p (rtx, rtx, struct decomposition);
266 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
267 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
268 int *);
269 static rtx make_memloc (rtx, int);
270 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
271 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
272 int, enum reload_type, int, rtx);
273 static rtx subst_reg_equivs (rtx, rtx);
274 static rtx subst_indexed_address (rtx);
275 static void update_auto_inc_notes (rtx, int, int);
276 static int find_reloads_address_1 (enum machine_mode, rtx, int,
277 enum rtx_code, enum rtx_code, rtx *,
278 int, enum reload_type,int, rtx);
279 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
280 enum machine_mode, int,
281 enum reload_type, int);
282 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
283 int, rtx);
284 static void copy_replacements_1 (rtx *, rtx *, int);
285 static int find_inc_amount (rtx, rtx);
286 static int refers_to_mem_for_reload_p (rtx);
287 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
288 rtx, rtx *);
290 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
291 list yet. */
293 static void
294 push_reg_equiv_alt_mem (int regno, rtx mem)
296 rtx it;
298 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
299 if (rtx_equal_p (XEXP (it, 0), mem))
300 return;
302 reg_equiv_alt_mem_list [regno]
303 = alloc_EXPR_LIST (REG_EQUIV, mem,
304 reg_equiv_alt_mem_list [regno]);
307 /* Determine if any secondary reloads are needed for loading (if IN_P is
308 nonzero) or storing (if IN_P is zero) X to or from a reload register of
309 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
310 are needed, push them.
312 Return the reload number of the secondary reload we made, or -1 if
313 we didn't need one. *PICODE is set to the insn_code to use if we do
314 need a secondary reload. */
316 static int
317 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
318 enum reg_class reload_class,
319 enum machine_mode reload_mode, enum reload_type type,
320 enum insn_code *picode, secondary_reload_info *prev_sri)
322 enum reg_class rclass = NO_REGS;
323 enum reg_class scratch_class;
324 enum machine_mode mode = reload_mode;
325 enum insn_code icode = CODE_FOR_nothing;
326 enum insn_code t_icode = CODE_FOR_nothing;
327 enum reload_type secondary_type;
328 int s_reload, t_reload = -1;
329 const char *scratch_constraint;
330 char letter;
331 secondary_reload_info sri;
333 if (type == RELOAD_FOR_INPUT_ADDRESS
334 || type == RELOAD_FOR_OUTPUT_ADDRESS
335 || type == RELOAD_FOR_INPADDR_ADDRESS
336 || type == RELOAD_FOR_OUTADDR_ADDRESS)
337 secondary_type = type;
338 else
339 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
341 *picode = CODE_FOR_nothing;
343 /* If X is a paradoxical SUBREG, use the inner value to determine both the
344 mode and object being reloaded. */
345 if (GET_CODE (x) == SUBREG
346 && (GET_MODE_SIZE (GET_MODE (x))
347 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
349 x = SUBREG_REG (x);
350 reload_mode = GET_MODE (x);
353 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
354 is still a pseudo-register by now, it *must* have an equivalent MEM
355 but we don't want to assume that), use that equivalent when seeing if
356 a secondary reload is needed since whether or not a reload is needed
357 might be sensitive to the form of the MEM. */
359 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
360 && reg_equiv_mem[REGNO (x)] != 0)
361 x = reg_equiv_mem[REGNO (x)];
363 sri.icode = CODE_FOR_nothing;
364 sri.prev_sri = prev_sri;
365 rclass = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
366 icode = (enum insn_code) sri.icode;
368 /* If we don't need any secondary registers, done. */
369 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
370 return -1;
372 if (rclass != NO_REGS)
373 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
374 reload_mode, type, &t_icode, &sri);
376 /* If we will be using an insn, the secondary reload is for a
377 scratch register. */
379 if (icode != CODE_FOR_nothing)
381 /* If IN_P is nonzero, the reload register will be the output in
382 operand 0. If IN_P is zero, the reload register will be the input
383 in operand 1. Outputs should have an initial "=", which we must
384 skip. */
386 /* ??? It would be useful to be able to handle only two, or more than
387 three, operands, but for now we can only handle the case of having
388 exactly three: output, input and one temp/scratch. */
389 gcc_assert (insn_data[(int) icode].n_operands == 3);
391 /* ??? We currently have no way to represent a reload that needs
392 an icode to reload from an intermediate tertiary reload register.
393 We should probably have a new field in struct reload to tag a
394 chain of scratch operand reloads onto. */
395 gcc_assert (rclass == NO_REGS);
397 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
398 gcc_assert (*scratch_constraint == '=');
399 scratch_constraint++;
400 if (*scratch_constraint == '&')
401 scratch_constraint++;
402 letter = *scratch_constraint;
403 scratch_class = (letter == 'r' ? GENERAL_REGS
404 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
405 scratch_constraint));
407 rclass = scratch_class;
408 mode = insn_data[(int) icode].operand[2].mode;
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
425 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
426 || t_icode != CODE_FOR_nothing);
428 /* See if we can reuse an existing secondary reload. */
429 for (s_reload = 0; s_reload < n_reloads; s_reload++)
430 if (rld[s_reload].secondary_p
431 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
432 || reg_class_subset_p (rld[s_reload].rclass, rclass))
433 && ((in_p && rld[s_reload].inmode == mode)
434 || (! in_p && rld[s_reload].outmode == mode))
435 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
436 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
437 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
438 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
439 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
440 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
441 opnum, rld[s_reload].opnum))
443 if (in_p)
444 rld[s_reload].inmode = mode;
445 if (! in_p)
446 rld[s_reload].outmode = mode;
448 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
449 rld[s_reload].rclass = rclass;
451 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
452 rld[s_reload].optional &= optional;
453 rld[s_reload].secondary_p = 1;
454 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
455 opnum, rld[s_reload].opnum))
456 rld[s_reload].when_needed = RELOAD_OTHER;
458 break;
461 if (s_reload == n_reloads)
463 #ifdef SECONDARY_MEMORY_NEEDED
464 /* If we need a memory location to copy between the two reload regs,
465 set it up now. Note that we do the input case before making
466 the reload and the output case after. This is due to the
467 way reloads are output. */
469 if (in_p && icode == CODE_FOR_nothing
470 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
472 get_secondary_mem (x, reload_mode, opnum, type);
474 /* We may have just added new reloads. Make sure we add
475 the new reload at the end. */
476 s_reload = n_reloads;
478 #endif
480 /* We need to make a new secondary reload for this register class. */
481 rld[s_reload].in = rld[s_reload].out = 0;
482 rld[s_reload].rclass = rclass;
484 rld[s_reload].inmode = in_p ? mode : VOIDmode;
485 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
486 rld[s_reload].reg_rtx = 0;
487 rld[s_reload].optional = optional;
488 rld[s_reload].inc = 0;
489 /* Maybe we could combine these, but it seems too tricky. */
490 rld[s_reload].nocombine = 1;
491 rld[s_reload].in_reg = 0;
492 rld[s_reload].out_reg = 0;
493 rld[s_reload].opnum = opnum;
494 rld[s_reload].when_needed = secondary_type;
495 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
496 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
497 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
498 rld[s_reload].secondary_out_icode
499 = ! in_p ? t_icode : CODE_FOR_nothing;
500 rld[s_reload].secondary_p = 1;
502 n_reloads++;
504 #ifdef SECONDARY_MEMORY_NEEDED
505 if (! in_p && icode == CODE_FOR_nothing
506 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
507 get_secondary_mem (x, mode, opnum, type);
508 #endif
511 *picode = icode;
512 return s_reload;
515 /* If a secondary reload is needed, return its class. If both an intermediate
516 register and a scratch register is needed, we return the class of the
517 intermediate register. */
518 enum reg_class
519 secondary_reload_class (bool in_p, enum reg_class rclass,
520 enum machine_mode mode, rtx x)
522 enum insn_code icode;
523 secondary_reload_info sri;
525 sri.icode = CODE_FOR_nothing;
526 sri.prev_sri = NULL;
527 rclass = targetm.secondary_reload (in_p, x, rclass, mode, &sri);
528 icode = (enum insn_code) sri.icode;
530 /* If there are no secondary reloads at all, we return NO_REGS.
531 If an intermediate register is needed, we return its class. */
532 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
533 return rclass;
535 /* No intermediate register is needed, but we have a special reload
536 pattern, which we assume for now needs a scratch register. */
537 return scratch_reload_class (icode);
540 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
541 three operands, verify that operand 2 is an output operand, and return
542 its register class.
543 ??? We'd like to be able to handle any pattern with at least 2 operands,
544 for zero or more scratch registers, but that needs more infrastructure. */
545 enum reg_class
546 scratch_reload_class (enum insn_code icode)
548 const char *scratch_constraint;
549 char scratch_letter;
550 enum reg_class rclass;
552 gcc_assert (insn_data[(int) icode].n_operands == 3);
553 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
554 gcc_assert (*scratch_constraint == '=');
555 scratch_constraint++;
556 if (*scratch_constraint == '&')
557 scratch_constraint++;
558 scratch_letter = *scratch_constraint;
559 if (scratch_letter == 'r')
560 return GENERAL_REGS;
561 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
562 scratch_constraint);
563 gcc_assert (rclass != NO_REGS);
564 return rclass;
567 #ifdef SECONDARY_MEMORY_NEEDED
569 /* Return a memory location that will be used to copy X in mode MODE.
570 If we haven't already made a location for this mode in this insn,
571 call find_reloads_address on the location being returned. */
574 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
575 int opnum, enum reload_type type)
577 rtx loc;
578 int mem_valid;
580 /* By default, if MODE is narrower than a word, widen it to a word.
581 This is required because most machines that require these memory
582 locations do not support short load and stores from all registers
583 (e.g., FP registers). */
585 #ifdef SECONDARY_MEMORY_NEEDED_MODE
586 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
587 #else
588 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
589 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
590 #endif
592 /* If we already have made a MEM for this operand in MODE, return it. */
593 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
594 return secondary_memlocs_elim[(int) mode][opnum];
596 /* If this is the first time we've tried to get a MEM for this mode,
597 allocate a new one. `something_changed' in reload will get set
598 by noticing that the frame size has changed. */
600 if (secondary_memlocs[(int) mode] == 0)
602 #ifdef SECONDARY_MEMORY_NEEDED_RTX
603 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
604 #else
605 secondary_memlocs[(int) mode]
606 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
607 #endif
610 /* Get a version of the address doing any eliminations needed. If that
611 didn't give us a new MEM, make a new one if it isn't valid. */
613 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
614 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
616 if (! mem_valid && loc == secondary_memlocs[(int) mode])
617 loc = copy_rtx (loc);
619 /* The only time the call below will do anything is if the stack
620 offset is too large. In that case IND_LEVELS doesn't matter, so we
621 can just pass a zero. Adjust the type to be the address of the
622 corresponding object. If the address was valid, save the eliminated
623 address. If it wasn't valid, we need to make a reload each time, so
624 don't save it. */
626 if (! mem_valid)
628 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
629 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
630 : RELOAD_OTHER);
632 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
633 opnum, type, 0, 0);
636 secondary_memlocs_elim[(int) mode][opnum] = loc;
637 if (secondary_memlocs_elim_used <= (int)mode)
638 secondary_memlocs_elim_used = (int)mode + 1;
639 return loc;
642 /* Clear any secondary memory locations we've made. */
644 void
645 clear_secondary_mem (void)
647 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
649 #endif /* SECONDARY_MEMORY_NEEDED */
652 /* Find the largest class which has at least one register valid in
653 mode INNER, and which for every such register, that register number
654 plus N is also valid in OUTER (if in range) and is cheap to move
655 into REGNO. Such a class must exist. */
657 static enum reg_class
658 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
659 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
660 unsigned int dest_regno ATTRIBUTE_UNUSED)
662 int best_cost = -1;
663 int rclass;
664 int regno;
665 enum reg_class best_class = NO_REGS;
666 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
667 unsigned int best_size = 0;
668 int cost;
670 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
672 int bad = 0;
673 int good = 0;
674 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
675 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
677 if (HARD_REGNO_MODE_OK (regno, inner))
679 good = 1;
680 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
681 || ! HARD_REGNO_MODE_OK (regno + n, outer))
682 bad = 1;
686 if (bad || !good)
687 continue;
688 cost = REGISTER_MOVE_COST (outer, (enum reg_class) rclass, dest_class);
690 if ((reg_class_size[rclass] > best_size
691 && (best_cost < 0 || best_cost >= cost))
692 || best_cost > cost)
694 best_class = (enum reg_class) rclass;
695 best_size = reg_class_size[rclass];
696 best_cost = REGISTER_MOVE_COST (outer, (enum reg_class) rclass,
697 dest_class);
701 gcc_assert (best_size != 0);
703 return best_class;
706 /* Return the number of a previously made reload that can be combined with
707 a new one, or n_reloads if none of the existing reloads can be used.
708 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
709 push_reload, they determine the kind of the new reload that we try to
710 combine. P_IN points to the corresponding value of IN, which can be
711 modified by this function.
712 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
714 static int
715 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
716 enum reload_type type, int opnum, int dont_share)
718 rtx in = *p_in;
719 int i;
720 /* We can't merge two reloads if the output of either one is
721 earlyclobbered. */
723 if (earlyclobber_operand_p (out))
724 return n_reloads;
726 /* We can use an existing reload if the class is right
727 and at least one of IN and OUT is a match
728 and the other is at worst neutral.
729 (A zero compared against anything is neutral.)
731 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
732 for the same thing since that can cause us to need more reload registers
733 than we otherwise would. */
735 for (i = 0; i < n_reloads; i++)
736 if ((reg_class_subset_p (rclass, rld[i].rclass)
737 || reg_class_subset_p (rld[i].rclass, rclass))
738 /* If the existing reload has a register, it must fit our class. */
739 && (rld[i].reg_rtx == 0
740 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
741 true_regnum (rld[i].reg_rtx)))
742 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
743 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
744 || (out != 0 && MATCHES (rld[i].out, out)
745 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
746 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
747 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
748 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
749 return i;
751 /* Reloading a plain reg for input can match a reload to postincrement
752 that reg, since the postincrement's value is the right value.
753 Likewise, it can match a preincrement reload, since we regard
754 the preincrementation as happening before any ref in this insn
755 to that register. */
756 for (i = 0; i < n_reloads; i++)
757 if ((reg_class_subset_p (rclass, rld[i].rclass)
758 || reg_class_subset_p (rld[i].rclass, rclass))
759 /* If the existing reload has a register, it must fit our
760 class. */
761 && (rld[i].reg_rtx == 0
762 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
763 true_regnum (rld[i].reg_rtx)))
764 && out == 0 && rld[i].out == 0 && rld[i].in != 0
765 && ((REG_P (in)
766 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
767 && MATCHES (XEXP (rld[i].in, 0), in))
768 || (REG_P (rld[i].in)
769 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
770 && MATCHES (XEXP (in, 0), rld[i].in)))
771 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
772 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
773 && MERGABLE_RELOADS (type, rld[i].when_needed,
774 opnum, rld[i].opnum))
776 /* Make sure reload_in ultimately has the increment,
777 not the plain register. */
778 if (REG_P (in))
779 *p_in = rld[i].in;
780 return i;
782 return n_reloads;
785 /* Return nonzero if X is a SUBREG which will require reloading of its
786 SUBREG_REG expression. */
788 static int
789 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
791 rtx inner;
793 /* Only SUBREGs are problematical. */
794 if (GET_CODE (x) != SUBREG)
795 return 0;
797 inner = SUBREG_REG (x);
799 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
800 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
801 return 1;
803 /* If INNER is not a hard register, then INNER will not need to
804 be reloaded. */
805 if (!REG_P (inner)
806 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
807 return 0;
809 /* If INNER is not ok for MODE, then INNER will need reloading. */
810 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
811 return 1;
813 /* If the outer part is a word or smaller, INNER larger than a
814 word and the number of regs for INNER is not the same as the
815 number of words in INNER, then INNER will need reloading. */
816 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
817 && output
818 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
819 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
820 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
823 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
824 requiring an extra reload register. The caller has already found that
825 IN contains some reference to REGNO, so check that we can produce the
826 new value in a single step. E.g. if we have
827 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
828 instruction that adds one to a register, this should succeed.
829 However, if we have something like
830 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
831 needs to be loaded into a register first, we need a separate reload
832 register.
833 Such PLUS reloads are generated by find_reload_address_part.
834 The out-of-range PLUS expressions are usually introduced in the instruction
835 patterns by register elimination and substituting pseudos without a home
836 by their function-invariant equivalences. */
837 static int
838 can_reload_into (rtx in, int regno, enum machine_mode mode)
840 rtx dst, test_insn;
841 int r = 0;
842 struct recog_data save_recog_data;
844 /* For matching constraints, we often get notional input reloads where
845 we want to use the original register as the reload register. I.e.
846 technically this is a non-optional input-output reload, but IN is
847 already a valid register, and has been chosen as the reload register.
848 Speed this up, since it trivially works. */
849 if (REG_P (in))
850 return 1;
852 /* To test MEMs properly, we'd have to take into account all the reloads
853 that are already scheduled, which can become quite complicated.
854 And since we've already handled address reloads for this MEM, it
855 should always succeed anyway. */
856 if (MEM_P (in))
857 return 1;
859 /* If we can make a simple SET insn that does the job, everything should
860 be fine. */
861 dst = gen_rtx_REG (mode, regno);
862 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
863 save_recog_data = recog_data;
864 if (recog_memoized (test_insn) >= 0)
866 extract_insn (test_insn);
867 r = constrain_operands (1);
869 recog_data = save_recog_data;
870 return r;
873 /* Record one reload that needs to be performed.
874 IN is an rtx saying where the data are to be found before this instruction.
875 OUT says where they must be stored after the instruction.
876 (IN is zero for data not read, and OUT is zero for data not written.)
877 INLOC and OUTLOC point to the places in the instructions where
878 IN and OUT were found.
879 If IN and OUT are both nonzero, it means the same register must be used
880 to reload both IN and OUT.
882 RCLASS is a register class required for the reloaded data.
883 INMODE is the machine mode that the instruction requires
884 for the reg that replaces IN and OUTMODE is likewise for OUT.
886 If IN is zero, then OUT's location and mode should be passed as
887 INLOC and INMODE.
889 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
891 OPTIONAL nonzero means this reload does not need to be performed:
892 it can be discarded if that is more convenient.
894 OPNUM and TYPE say what the purpose of this reload is.
896 The return value is the reload-number for this reload.
898 If both IN and OUT are nonzero, in some rare cases we might
899 want to make two separate reloads. (Actually we never do this now.)
900 Therefore, the reload-number for OUT is stored in
901 output_reloadnum when we return; the return value applies to IN.
902 Usually (presently always), when IN and OUT are nonzero,
903 the two reload-numbers are equal, but the caller should be careful to
904 distinguish them. */
907 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
908 enum reg_class rclass, enum machine_mode inmode,
909 enum machine_mode outmode, int strict_low, int optional,
910 int opnum, enum reload_type type)
912 int i;
913 int dont_share = 0;
914 int dont_remove_subreg = 0;
915 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
916 int secondary_in_reload = -1, secondary_out_reload = -1;
917 enum insn_code secondary_in_icode = CODE_FOR_nothing;
918 enum insn_code secondary_out_icode = CODE_FOR_nothing;
920 /* INMODE and/or OUTMODE could be VOIDmode if no mode
921 has been specified for the operand. In that case,
922 use the operand's mode as the mode to reload. */
923 if (inmode == VOIDmode && in != 0)
924 inmode = GET_MODE (in);
925 if (outmode == VOIDmode && out != 0)
926 outmode = GET_MODE (out);
928 /* If find_reloads and friends until now missed to replace a pseudo
929 with a constant of reg_equiv_constant something went wrong
930 beforehand.
931 Note that it can't simply be done here if we missed it earlier
932 since the constant might need to be pushed into the literal pool
933 and the resulting memref would probably need further
934 reloading. */
935 if (in != 0 && REG_P (in))
937 int regno = REGNO (in);
939 gcc_assert (regno < FIRST_PSEUDO_REGISTER
940 || reg_renumber[regno] >= 0
941 || reg_equiv_constant[regno] == NULL_RTX);
944 /* reg_equiv_constant only contains constants which are obviously
945 not appropriate as destination. So if we would need to replace
946 the destination pseudo with a constant we are in real
947 trouble. */
948 if (out != 0 && REG_P (out))
950 int regno = REGNO (out);
952 gcc_assert (regno < FIRST_PSEUDO_REGISTER
953 || reg_renumber[regno] >= 0
954 || reg_equiv_constant[regno] == NULL_RTX);
957 /* If we have a read-write operand with an address side-effect,
958 change either IN or OUT so the side-effect happens only once. */
959 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
960 switch (GET_CODE (XEXP (in, 0)))
962 case POST_INC: case POST_DEC: case POST_MODIFY:
963 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
964 break;
966 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
967 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
968 break;
970 default:
971 break;
974 /* If we are reloading a (SUBREG constant ...), really reload just the
975 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
976 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
977 a pseudo and hence will become a MEM) with M1 wider than M2 and the
978 register is a pseudo, also reload the inside expression.
979 For machines that extend byte loads, do this for any SUBREG of a pseudo
980 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
981 M2 is an integral mode that gets extended when loaded.
982 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
983 either M1 is not valid for R or M2 is wider than a word but we only
984 need one word to store an M2-sized quantity in R.
985 (However, if OUT is nonzero, we need to reload the reg *and*
986 the subreg, so do nothing here, and let following statement handle it.)
988 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
989 we can't handle it here because CONST_INT does not indicate a mode.
991 Similarly, we must reload the inside expression if we have a
992 STRICT_LOW_PART (presumably, in == out in this case).
994 Also reload the inner expression if it does not require a secondary
995 reload but the SUBREG does.
997 Finally, reload the inner expression if it is a register that is in
998 the class whose registers cannot be referenced in a different size
999 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1000 cannot reload just the inside since we might end up with the wrong
1001 register class. But if it is inside a STRICT_LOW_PART, we have
1002 no choice, so we hope we do get the right register class there. */
1004 if (in != 0 && GET_CODE (in) == SUBREG
1005 && (subreg_lowpart_p (in) || strict_low)
1006 #ifdef CANNOT_CHANGE_MODE_CLASS
1007 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1008 #endif
1009 && (CONSTANT_P (SUBREG_REG (in))
1010 || GET_CODE (SUBREG_REG (in)) == PLUS
1011 || strict_low
1012 || (((REG_P (SUBREG_REG (in))
1013 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1014 || MEM_P (SUBREG_REG (in)))
1015 && ((GET_MODE_SIZE (inmode)
1016 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1017 #ifdef LOAD_EXTEND_OP
1018 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1019 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1020 <= UNITS_PER_WORD)
1021 && (GET_MODE_SIZE (inmode)
1022 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1023 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1024 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1025 #endif
1026 #ifdef WORD_REGISTER_OPERATIONS
1027 || ((GET_MODE_SIZE (inmode)
1028 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1029 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1030 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1031 / UNITS_PER_WORD)))
1032 #endif
1034 || (REG_P (SUBREG_REG (in))
1035 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1036 /* The case where out is nonzero
1037 is handled differently in the following statement. */
1038 && (out == 0 || subreg_lowpart_p (in))
1039 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1040 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1041 > UNITS_PER_WORD)
1042 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1043 / UNITS_PER_WORD)
1044 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1045 [GET_MODE (SUBREG_REG (in))]))
1046 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1047 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1048 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1049 SUBREG_REG (in))
1050 == NO_REGS))
1051 #ifdef CANNOT_CHANGE_MODE_CLASS
1052 || (REG_P (SUBREG_REG (in))
1053 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1054 && REG_CANNOT_CHANGE_MODE_P
1055 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1056 #endif
1059 in_subreg_loc = inloc;
1060 inloc = &SUBREG_REG (in);
1061 in = *inloc;
1062 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1063 if (MEM_P (in))
1064 /* This is supposed to happen only for paradoxical subregs made by
1065 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1066 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1067 #endif
1068 inmode = GET_MODE (in);
1071 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1072 either M1 is not valid for R or M2 is wider than a word but we only
1073 need one word to store an M2-sized quantity in R.
1075 However, we must reload the inner reg *as well as* the subreg in
1076 that case. */
1078 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1079 code above. This can happen if SUBREG_BYTE != 0. */
1081 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1083 enum reg_class in_class = rclass;
1085 if (REG_P (SUBREG_REG (in)))
1086 in_class
1087 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1088 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1089 GET_MODE (SUBREG_REG (in)),
1090 SUBREG_BYTE (in),
1091 GET_MODE (in)),
1092 REGNO (SUBREG_REG (in)));
1094 /* This relies on the fact that emit_reload_insns outputs the
1095 instructions for input reloads of type RELOAD_OTHER in the same
1096 order as the reloads. Thus if the outer reload is also of type
1097 RELOAD_OTHER, we are guaranteed that this inner reload will be
1098 output before the outer reload. */
1099 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1100 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1101 dont_remove_subreg = 1;
1104 /* Similarly for paradoxical and problematical SUBREGs on the output.
1105 Note that there is no reason we need worry about the previous value
1106 of SUBREG_REG (out); even if wider than out,
1107 storing in a subreg is entitled to clobber it all
1108 (except in the case of STRICT_LOW_PART,
1109 and in that case the constraint should label it input-output.) */
1110 if (out != 0 && GET_CODE (out) == SUBREG
1111 && (subreg_lowpart_p (out) || strict_low)
1112 #ifdef CANNOT_CHANGE_MODE_CLASS
1113 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1114 #endif
1115 && (CONSTANT_P (SUBREG_REG (out))
1116 || strict_low
1117 || (((REG_P (SUBREG_REG (out))
1118 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1119 || MEM_P (SUBREG_REG (out)))
1120 && ((GET_MODE_SIZE (outmode)
1121 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1122 #ifdef WORD_REGISTER_OPERATIONS
1123 || ((GET_MODE_SIZE (outmode)
1124 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1125 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1126 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1127 / UNITS_PER_WORD)))
1128 #endif
1130 || (REG_P (SUBREG_REG (out))
1131 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1132 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1133 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1134 > UNITS_PER_WORD)
1135 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1136 / UNITS_PER_WORD)
1137 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1138 [GET_MODE (SUBREG_REG (out))]))
1139 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1140 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1141 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1142 SUBREG_REG (out))
1143 == NO_REGS))
1144 #ifdef CANNOT_CHANGE_MODE_CLASS
1145 || (REG_P (SUBREG_REG (out))
1146 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1147 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1148 GET_MODE (SUBREG_REG (out)),
1149 outmode))
1150 #endif
1153 out_subreg_loc = outloc;
1154 outloc = &SUBREG_REG (out);
1155 out = *outloc;
1156 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1157 gcc_assert (!MEM_P (out)
1158 || GET_MODE_SIZE (GET_MODE (out))
1159 <= GET_MODE_SIZE (outmode));
1160 #endif
1161 outmode = GET_MODE (out);
1164 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1165 either M1 is not valid for R or M2 is wider than a word but we only
1166 need one word to store an M2-sized quantity in R.
1168 However, we must reload the inner reg *as well as* the subreg in
1169 that case. In this case, the inner reg is an in-out reload. */
1171 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1173 /* This relies on the fact that emit_reload_insns outputs the
1174 instructions for output reloads of type RELOAD_OTHER in reverse
1175 order of the reloads. Thus if the outer reload is also of type
1176 RELOAD_OTHER, we are guaranteed that this inner reload will be
1177 output after the outer reload. */
1178 dont_remove_subreg = 1;
1179 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1180 &SUBREG_REG (out),
1181 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1182 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1183 GET_MODE (SUBREG_REG (out)),
1184 SUBREG_BYTE (out),
1185 GET_MODE (out)),
1186 REGNO (SUBREG_REG (out))),
1187 VOIDmode, VOIDmode, 0, 0,
1188 opnum, RELOAD_OTHER);
1191 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1192 if (in != 0 && out != 0 && MEM_P (out)
1193 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1194 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1195 dont_share = 1;
1197 /* If IN is a SUBREG of a hard register, make a new REG. This
1198 simplifies some of the cases below. */
1200 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1201 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1202 && ! dont_remove_subreg)
1203 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1205 /* Similarly for OUT. */
1206 if (out != 0 && GET_CODE (out) == SUBREG
1207 && REG_P (SUBREG_REG (out))
1208 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1209 && ! dont_remove_subreg)
1210 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1212 /* Narrow down the class of register wanted if that is
1213 desirable on this machine for efficiency. */
1215 enum reg_class preferred_class = rclass;
1217 if (in != 0)
1218 preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1220 /* Output reloads may need analogous treatment, different in detail. */
1221 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1222 if (out != 0)
1223 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1224 #endif
1226 /* Discard what the target said if we cannot do it. */
1227 if (preferred_class != NO_REGS
1228 || (optional && type == RELOAD_FOR_OUTPUT))
1229 rclass = preferred_class;
1232 /* Make sure we use a class that can handle the actual pseudo
1233 inside any subreg. For example, on the 386, QImode regs
1234 can appear within SImode subregs. Although GENERAL_REGS
1235 can handle SImode, QImode needs a smaller class. */
1236 #ifdef LIMIT_RELOAD_CLASS
1237 if (in_subreg_loc)
1238 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1239 else if (in != 0 && GET_CODE (in) == SUBREG)
1240 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1242 if (out_subreg_loc)
1243 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1244 if (out != 0 && GET_CODE (out) == SUBREG)
1245 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1246 #endif
1248 /* Verify that this class is at least possible for the mode that
1249 is specified. */
1250 if (this_insn_is_asm)
1252 enum machine_mode mode;
1253 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1254 mode = inmode;
1255 else
1256 mode = outmode;
1257 if (mode == VOIDmode)
1259 error_for_asm (this_insn, "cannot reload integer constant "
1260 "operand in %<asm%>");
1261 mode = word_mode;
1262 if (in != 0)
1263 inmode = word_mode;
1264 if (out != 0)
1265 outmode = word_mode;
1267 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1268 if (HARD_REGNO_MODE_OK (i, mode)
1269 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1270 break;
1271 if (i == FIRST_PSEUDO_REGISTER)
1273 error_for_asm (this_insn, "impossible register constraint "
1274 "in %<asm%>");
1275 /* Avoid further trouble with this insn. */
1276 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1277 /* We used to continue here setting class to ALL_REGS, but it triggers
1278 sanity check on i386 for:
1279 void foo(long double d)
1281 asm("" :: "a" (d));
1283 Returning zero here ought to be safe as we take care in
1284 find_reloads to not process the reloads when instruction was
1285 replaced by USE. */
1287 return 0;
1291 /* Optional output reloads are always OK even if we have no register class,
1292 since the function of these reloads is only to have spill_reg_store etc.
1293 set, so that the storing insn can be deleted later. */
1294 gcc_assert (rclass != NO_REGS
1295 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1297 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1299 if (i == n_reloads)
1301 /* See if we need a secondary reload register to move between CLASS
1302 and IN or CLASS and OUT. Get the icode and push any required reloads
1303 needed for each of them if so. */
1305 if (in != 0)
1306 secondary_in_reload
1307 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1308 &secondary_in_icode, NULL);
1309 if (out != 0 && GET_CODE (out) != SCRATCH)
1310 secondary_out_reload
1311 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1312 type, &secondary_out_icode, NULL);
1314 /* We found no existing reload suitable for re-use.
1315 So add an additional reload. */
1317 #ifdef SECONDARY_MEMORY_NEEDED
1318 /* If a memory location is needed for the copy, make one. */
1319 if (in != 0
1320 && (REG_P (in)
1321 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1322 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1323 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1324 rclass, inmode))
1325 get_secondary_mem (in, inmode, opnum, type);
1326 #endif
1328 i = n_reloads;
1329 rld[i].in = in;
1330 rld[i].out = out;
1331 rld[i].rclass = rclass;
1332 rld[i].inmode = inmode;
1333 rld[i].outmode = outmode;
1334 rld[i].reg_rtx = 0;
1335 rld[i].optional = optional;
1336 rld[i].inc = 0;
1337 rld[i].nocombine = 0;
1338 rld[i].in_reg = inloc ? *inloc : 0;
1339 rld[i].out_reg = outloc ? *outloc : 0;
1340 rld[i].opnum = opnum;
1341 rld[i].when_needed = type;
1342 rld[i].secondary_in_reload = secondary_in_reload;
1343 rld[i].secondary_out_reload = secondary_out_reload;
1344 rld[i].secondary_in_icode = secondary_in_icode;
1345 rld[i].secondary_out_icode = secondary_out_icode;
1346 rld[i].secondary_p = 0;
1348 n_reloads++;
1350 #ifdef SECONDARY_MEMORY_NEEDED
1351 if (out != 0
1352 && (REG_P (out)
1353 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1354 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1355 && SECONDARY_MEMORY_NEEDED (rclass,
1356 REGNO_REG_CLASS (reg_or_subregno (out)),
1357 outmode))
1358 get_secondary_mem (out, outmode, opnum, type);
1359 #endif
1361 else
1363 /* We are reusing an existing reload,
1364 but we may have additional information for it.
1365 For example, we may now have both IN and OUT
1366 while the old one may have just one of them. */
1368 /* The modes can be different. If they are, we want to reload in
1369 the larger mode, so that the value is valid for both modes. */
1370 if (inmode != VOIDmode
1371 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1372 rld[i].inmode = inmode;
1373 if (outmode != VOIDmode
1374 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1375 rld[i].outmode = outmode;
1376 if (in != 0)
1378 rtx in_reg = inloc ? *inloc : 0;
1379 /* If we merge reloads for two distinct rtl expressions that
1380 are identical in content, there might be duplicate address
1381 reloads. Remove the extra set now, so that if we later find
1382 that we can inherit this reload, we can get rid of the
1383 address reloads altogether.
1385 Do not do this if both reloads are optional since the result
1386 would be an optional reload which could potentially leave
1387 unresolved address replacements.
1389 It is not sufficient to call transfer_replacements since
1390 choose_reload_regs will remove the replacements for address
1391 reloads of inherited reloads which results in the same
1392 problem. */
1393 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1394 && ! (rld[i].optional && optional))
1396 /* We must keep the address reload with the lower operand
1397 number alive. */
1398 if (opnum > rld[i].opnum)
1400 remove_address_replacements (in);
1401 in = rld[i].in;
1402 in_reg = rld[i].in_reg;
1404 else
1405 remove_address_replacements (rld[i].in);
1407 /* When emitting reloads we don't necessarily look at the in-
1408 and outmode, but also directly at the operands (in and out).
1409 So we can't simply overwrite them with whatever we have found
1410 for this (to-be-merged) reload, we have to "merge" that too.
1411 Reusing another reload already verified that we deal with the
1412 same operands, just possibly in different modes. So we
1413 overwrite the operands only when the new mode is larger.
1414 See also PR33613. */
1415 if (!rld[i].in
1416 || GET_MODE_SIZE (GET_MODE (in))
1417 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1418 rld[i].in = in;
1419 if (!rld[i].in_reg
1420 || (in_reg
1421 && GET_MODE_SIZE (GET_MODE (in_reg))
1422 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1423 rld[i].in_reg = in_reg;
1425 if (out != 0)
1427 if (!rld[i].out
1428 || (out
1429 && GET_MODE_SIZE (GET_MODE (out))
1430 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1431 rld[i].out = out;
1432 if (outloc
1433 && (!rld[i].out_reg
1434 || GET_MODE_SIZE (GET_MODE (*outloc))
1435 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1436 rld[i].out_reg = *outloc;
1438 if (reg_class_subset_p (rclass, rld[i].rclass))
1439 rld[i].rclass = rclass;
1440 rld[i].optional &= optional;
1441 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1442 opnum, rld[i].opnum))
1443 rld[i].when_needed = RELOAD_OTHER;
1444 rld[i].opnum = MIN (rld[i].opnum, opnum);
1447 /* If the ostensible rtx being reloaded differs from the rtx found
1448 in the location to substitute, this reload is not safe to combine
1449 because we cannot reliably tell whether it appears in the insn. */
1451 if (in != 0 && in != *inloc)
1452 rld[i].nocombine = 1;
1454 #if 0
1455 /* This was replaced by changes in find_reloads_address_1 and the new
1456 function inc_for_reload, which go with a new meaning of reload_inc. */
1458 /* If this is an IN/OUT reload in an insn that sets the CC,
1459 it must be for an autoincrement. It doesn't work to store
1460 the incremented value after the insn because that would clobber the CC.
1461 So we must do the increment of the value reloaded from,
1462 increment it, store it back, then decrement again. */
1463 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1465 out = 0;
1466 rld[i].out = 0;
1467 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1468 /* If we did not find a nonzero amount-to-increment-by,
1469 that contradicts the belief that IN is being incremented
1470 in an address in this insn. */
1471 gcc_assert (rld[i].inc != 0);
1473 #endif
1475 /* If we will replace IN and OUT with the reload-reg,
1476 record where they are located so that substitution need
1477 not do a tree walk. */
1479 if (replace_reloads)
1481 if (inloc != 0)
1483 struct replacement *r = &replacements[n_replacements++];
1484 r->what = i;
1485 r->subreg_loc = in_subreg_loc;
1486 r->where = inloc;
1487 r->mode = inmode;
1489 if (outloc != 0 && outloc != inloc)
1491 struct replacement *r = &replacements[n_replacements++];
1492 r->what = i;
1493 r->where = outloc;
1494 r->subreg_loc = out_subreg_loc;
1495 r->mode = outmode;
1499 /* If this reload is just being introduced and it has both
1500 an incoming quantity and an outgoing quantity that are
1501 supposed to be made to match, see if either one of the two
1502 can serve as the place to reload into.
1504 If one of them is acceptable, set rld[i].reg_rtx
1505 to that one. */
1507 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1509 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1510 inmode, outmode,
1511 rld[i].rclass, i,
1512 earlyclobber_operand_p (out));
1514 /* If the outgoing register already contains the same value
1515 as the incoming one, we can dispense with loading it.
1516 The easiest way to tell the caller that is to give a phony
1517 value for the incoming operand (same as outgoing one). */
1518 if (rld[i].reg_rtx == out
1519 && (REG_P (in) || CONSTANT_P (in))
1520 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1521 static_reload_reg_p, i, inmode))
1522 rld[i].in = out;
1525 /* If this is an input reload and the operand contains a register that
1526 dies in this insn and is used nowhere else, see if it is the right class
1527 to be used for this reload. Use it if so. (This occurs most commonly
1528 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1529 this if it is also an output reload that mentions the register unless
1530 the output is a SUBREG that clobbers an entire register.
1532 Note that the operand might be one of the spill regs, if it is a
1533 pseudo reg and we are in a block where spilling has not taken place.
1534 But if there is no spilling in this block, that is OK.
1535 An explicitly used hard reg cannot be a spill reg. */
1537 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1539 rtx note;
1540 int regno;
1541 enum machine_mode rel_mode = inmode;
1543 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1544 rel_mode = outmode;
1546 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1547 if (REG_NOTE_KIND (note) == REG_DEAD
1548 && REG_P (XEXP (note, 0))
1549 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1550 && reg_mentioned_p (XEXP (note, 0), in)
1551 /* Check that a former pseudo is valid; see find_dummy_reload. */
1552 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1553 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1554 ORIGINAL_REGNO (XEXP (note, 0)))
1555 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1556 && ! refers_to_regno_for_reload_p (regno,
1557 end_hard_regno (rel_mode,
1558 regno),
1559 PATTERN (this_insn), inloc)
1560 /* If this is also an output reload, IN cannot be used as
1561 the reload register if it is set in this insn unless IN
1562 is also OUT. */
1563 && (out == 0 || in == out
1564 || ! hard_reg_set_here_p (regno,
1565 end_hard_regno (rel_mode, regno),
1566 PATTERN (this_insn)))
1567 /* ??? Why is this code so different from the previous?
1568 Is there any simple coherent way to describe the two together?
1569 What's going on here. */
1570 && (in != out
1571 || (GET_CODE (in) == SUBREG
1572 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1573 / UNITS_PER_WORD)
1574 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1575 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1576 /* Make sure the operand fits in the reg that dies. */
1577 && (GET_MODE_SIZE (rel_mode)
1578 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1579 && HARD_REGNO_MODE_OK (regno, inmode)
1580 && HARD_REGNO_MODE_OK (regno, outmode))
1582 unsigned int offs;
1583 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1584 hard_regno_nregs[regno][outmode]);
1586 for (offs = 0; offs < nregs; offs++)
1587 if (fixed_regs[regno + offs]
1588 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1589 regno + offs))
1590 break;
1592 if (offs == nregs
1593 && (! (refers_to_regno_for_reload_p
1594 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1595 || can_reload_into (in, regno, inmode)))
1597 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1598 break;
1603 if (out)
1604 output_reloadnum = i;
1606 return i;
1609 /* Record an additional place we must replace a value
1610 for which we have already recorded a reload.
1611 RELOADNUM is the value returned by push_reload
1612 when the reload was recorded.
1613 This is used in insn patterns that use match_dup. */
1615 static void
1616 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1618 if (replace_reloads)
1620 struct replacement *r = &replacements[n_replacements++];
1621 r->what = reloadnum;
1622 r->where = loc;
1623 r->subreg_loc = 0;
1624 r->mode = mode;
1628 /* Duplicate any replacement we have recorded to apply at
1629 location ORIG_LOC to also be performed at DUP_LOC.
1630 This is used in insn patterns that use match_dup. */
1632 static void
1633 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1635 int i, n = n_replacements;
1637 for (i = 0; i < n; i++)
1639 struct replacement *r = &replacements[i];
1640 if (r->where == orig_loc)
1641 push_replacement (dup_loc, r->what, r->mode);
1645 /* Transfer all replacements that used to be in reload FROM to be in
1646 reload TO. */
1648 void
1649 transfer_replacements (int to, int from)
1651 int i;
1653 for (i = 0; i < n_replacements; i++)
1654 if (replacements[i].what == from)
1655 replacements[i].what = to;
1658 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1659 or a subpart of it. If we have any replacements registered for IN_RTX,
1660 cancel the reloads that were supposed to load them.
1661 Return nonzero if we canceled any reloads. */
1663 remove_address_replacements (rtx in_rtx)
1665 int i, j;
1666 char reload_flags[MAX_RELOADS];
1667 int something_changed = 0;
1669 memset (reload_flags, 0, sizeof reload_flags);
1670 for (i = 0, j = 0; i < n_replacements; i++)
1672 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1673 reload_flags[replacements[i].what] |= 1;
1674 else
1676 replacements[j++] = replacements[i];
1677 reload_flags[replacements[i].what] |= 2;
1680 /* Note that the following store must be done before the recursive calls. */
1681 n_replacements = j;
1683 for (i = n_reloads - 1; i >= 0; i--)
1685 if (reload_flags[i] == 1)
1687 deallocate_reload_reg (i);
1688 remove_address_replacements (rld[i].in);
1689 rld[i].in = 0;
1690 something_changed = 1;
1693 return something_changed;
1696 /* If there is only one output reload, and it is not for an earlyclobber
1697 operand, try to combine it with a (logically unrelated) input reload
1698 to reduce the number of reload registers needed.
1700 This is safe if the input reload does not appear in
1701 the value being output-reloaded, because this implies
1702 it is not needed any more once the original insn completes.
1704 If that doesn't work, see we can use any of the registers that
1705 die in this insn as a reload register. We can if it is of the right
1706 class and does not appear in the value being output-reloaded. */
1708 static void
1709 combine_reloads (void)
1711 int i, regno;
1712 int output_reload = -1;
1713 int secondary_out = -1;
1714 rtx note;
1716 /* Find the output reload; return unless there is exactly one
1717 and that one is mandatory. */
1719 for (i = 0; i < n_reloads; i++)
1720 if (rld[i].out != 0)
1722 if (output_reload >= 0)
1723 return;
1724 output_reload = i;
1727 if (output_reload < 0 || rld[output_reload].optional)
1728 return;
1730 /* An input-output reload isn't combinable. */
1732 if (rld[output_reload].in != 0)
1733 return;
1735 /* If this reload is for an earlyclobber operand, we can't do anything. */
1736 if (earlyclobber_operand_p (rld[output_reload].out))
1737 return;
1739 /* If there is a reload for part of the address of this operand, we would
1740 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1741 its life to the point where doing this combine would not lower the
1742 number of spill registers needed. */
1743 for (i = 0; i < n_reloads; i++)
1744 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1745 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1746 && rld[i].opnum == rld[output_reload].opnum)
1747 return;
1749 /* Check each input reload; can we combine it? */
1751 for (i = 0; i < n_reloads; i++)
1752 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1753 /* Life span of this reload must not extend past main insn. */
1754 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1755 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1756 && rld[i].when_needed != RELOAD_OTHER
1757 && (CLASS_MAX_NREGS (rld[i].rclass, rld[i].inmode)
1758 == CLASS_MAX_NREGS (rld[output_reload].rclass,
1759 rld[output_reload].outmode))
1760 && rld[i].inc == 0
1761 && rld[i].reg_rtx == 0
1762 #ifdef SECONDARY_MEMORY_NEEDED
1763 /* Don't combine two reloads with different secondary
1764 memory locations. */
1765 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1766 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1767 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1768 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1769 #endif
1770 && (SMALL_REGISTER_CLASSES
1771 ? (rld[i].rclass == rld[output_reload].rclass)
1772 : (reg_class_subset_p (rld[i].rclass,
1773 rld[output_reload].rclass)
1774 || reg_class_subset_p (rld[output_reload].rclass,
1775 rld[i].rclass)))
1776 && (MATCHES (rld[i].in, rld[output_reload].out)
1777 /* Args reversed because the first arg seems to be
1778 the one that we imagine being modified
1779 while the second is the one that might be affected. */
1780 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1781 rld[i].in)
1782 /* However, if the input is a register that appears inside
1783 the output, then we also can't share.
1784 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1785 If the same reload reg is used for both reg 69 and the
1786 result to be stored in memory, then that result
1787 will clobber the address of the memory ref. */
1788 && ! (REG_P (rld[i].in)
1789 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1790 rld[output_reload].out))))
1791 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1792 rld[i].when_needed != RELOAD_FOR_INPUT)
1793 && (reg_class_size[(int) rld[i].rclass]
1794 || SMALL_REGISTER_CLASSES)
1795 /* We will allow making things slightly worse by combining an
1796 input and an output, but no worse than that. */
1797 && (rld[i].when_needed == RELOAD_FOR_INPUT
1798 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1800 int j;
1802 /* We have found a reload to combine with! */
1803 rld[i].out = rld[output_reload].out;
1804 rld[i].out_reg = rld[output_reload].out_reg;
1805 rld[i].outmode = rld[output_reload].outmode;
1806 /* Mark the old output reload as inoperative. */
1807 rld[output_reload].out = 0;
1808 /* The combined reload is needed for the entire insn. */
1809 rld[i].when_needed = RELOAD_OTHER;
1810 /* If the output reload had a secondary reload, copy it. */
1811 if (rld[output_reload].secondary_out_reload != -1)
1813 rld[i].secondary_out_reload
1814 = rld[output_reload].secondary_out_reload;
1815 rld[i].secondary_out_icode
1816 = rld[output_reload].secondary_out_icode;
1819 #ifdef SECONDARY_MEMORY_NEEDED
1820 /* Copy any secondary MEM. */
1821 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1822 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1823 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1824 #endif
1825 /* If required, minimize the register class. */
1826 if (reg_class_subset_p (rld[output_reload].rclass,
1827 rld[i].rclass))
1828 rld[i].rclass = rld[output_reload].rclass;
1830 /* Transfer all replacements from the old reload to the combined. */
1831 for (j = 0; j < n_replacements; j++)
1832 if (replacements[j].what == output_reload)
1833 replacements[j].what = i;
1835 return;
1838 /* If this insn has only one operand that is modified or written (assumed
1839 to be the first), it must be the one corresponding to this reload. It
1840 is safe to use anything that dies in this insn for that output provided
1841 that it does not occur in the output (we already know it isn't an
1842 earlyclobber. If this is an asm insn, give up. */
1844 if (INSN_CODE (this_insn) == -1)
1845 return;
1847 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1848 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1849 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1850 return;
1852 /* See if some hard register that dies in this insn and is not used in
1853 the output is the right class. Only works if the register we pick
1854 up can fully hold our output reload. */
1855 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1856 if (REG_NOTE_KIND (note) == REG_DEAD
1857 && REG_P (XEXP (note, 0))
1858 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1859 rld[output_reload].out)
1860 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1861 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1862 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1863 regno)
1864 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1865 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1866 /* Ensure that a secondary or tertiary reload for this output
1867 won't want this register. */
1868 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1869 || (!(TEST_HARD_REG_BIT
1870 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1871 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1872 || !(TEST_HARD_REG_BIT
1873 (reg_class_contents[(int) rld[secondary_out].rclass],
1874 regno)))))
1875 && !fixed_regs[regno]
1876 /* Check that a former pseudo is valid; see find_dummy_reload. */
1877 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1878 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1879 ORIGINAL_REGNO (XEXP (note, 0)))
1880 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1882 rld[output_reload].reg_rtx
1883 = gen_rtx_REG (rld[output_reload].outmode, regno);
1884 return;
1888 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1889 See if one of IN and OUT is a register that may be used;
1890 this is desirable since a spill-register won't be needed.
1891 If so, return the register rtx that proves acceptable.
1893 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1894 RCLASS is the register class required for the reload.
1896 If FOR_REAL is >= 0, it is the number of the reload,
1897 and in some cases when it can be discovered that OUT doesn't need
1898 to be computed, clear out rld[FOR_REAL].out.
1900 If FOR_REAL is -1, this should not be done, because this call
1901 is just to see if a register can be found, not to find and install it.
1903 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1904 puts an additional constraint on being able to use IN for OUT since
1905 IN must not appear elsewhere in the insn (it is assumed that IN itself
1906 is safe from the earlyclobber). */
1908 static rtx
1909 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1910 enum machine_mode inmode, enum machine_mode outmode,
1911 enum reg_class rclass, int for_real, int earlyclobber)
1913 rtx in = real_in;
1914 rtx out = real_out;
1915 int in_offset = 0;
1916 int out_offset = 0;
1917 rtx value = 0;
1919 /* If operands exceed a word, we can't use either of them
1920 unless they have the same size. */
1921 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1922 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1923 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1924 return 0;
1926 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1927 respectively refers to a hard register. */
1929 /* Find the inside of any subregs. */
1930 while (GET_CODE (out) == SUBREG)
1932 if (REG_P (SUBREG_REG (out))
1933 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1934 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1935 GET_MODE (SUBREG_REG (out)),
1936 SUBREG_BYTE (out),
1937 GET_MODE (out));
1938 out = SUBREG_REG (out);
1940 while (GET_CODE (in) == SUBREG)
1942 if (REG_P (SUBREG_REG (in))
1943 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1944 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1945 GET_MODE (SUBREG_REG (in)),
1946 SUBREG_BYTE (in),
1947 GET_MODE (in));
1948 in = SUBREG_REG (in);
1951 /* Narrow down the reg class, the same way push_reload will;
1952 otherwise we might find a dummy now, but push_reload won't. */
1954 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1955 if (preferred_class != NO_REGS)
1956 rclass = preferred_class;
1959 /* See if OUT will do. */
1960 if (REG_P (out)
1961 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1963 unsigned int regno = REGNO (out) + out_offset;
1964 unsigned int nwords = hard_regno_nregs[regno][outmode];
1965 rtx saved_rtx;
1967 /* When we consider whether the insn uses OUT,
1968 ignore references within IN. They don't prevent us
1969 from copying IN into OUT, because those refs would
1970 move into the insn that reloads IN.
1972 However, we only ignore IN in its role as this reload.
1973 If the insn uses IN elsewhere and it contains OUT,
1974 that counts. We can't be sure it's the "same" operand
1975 so it might not go through this reload. */
1976 saved_rtx = *inloc;
1977 *inloc = const0_rtx;
1979 if (regno < FIRST_PSEUDO_REGISTER
1980 && HARD_REGNO_MODE_OK (regno, outmode)
1981 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1982 PATTERN (this_insn), outloc))
1984 unsigned int i;
1986 for (i = 0; i < nwords; i++)
1987 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1988 regno + i))
1989 break;
1991 if (i == nwords)
1993 if (REG_P (real_out))
1994 value = real_out;
1995 else
1996 value = gen_rtx_REG (outmode, regno);
2000 *inloc = saved_rtx;
2003 /* Consider using IN if OUT was not acceptable
2004 or if OUT dies in this insn (like the quotient in a divmod insn).
2005 We can't use IN unless it is dies in this insn,
2006 which means we must know accurately which hard regs are live.
2007 Also, the result can't go in IN if IN is used within OUT,
2008 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2009 if (hard_regs_live_known
2010 && REG_P (in)
2011 && REGNO (in) < FIRST_PSEUDO_REGISTER
2012 && (value == 0
2013 || find_reg_note (this_insn, REG_UNUSED, real_out))
2014 && find_reg_note (this_insn, REG_DEAD, real_in)
2015 && !fixed_regs[REGNO (in)]
2016 && HARD_REGNO_MODE_OK (REGNO (in),
2017 /* The only case where out and real_out might
2018 have different modes is where real_out
2019 is a subreg, and in that case, out
2020 has a real mode. */
2021 (GET_MODE (out) != VOIDmode
2022 ? GET_MODE (out) : outmode))
2023 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2024 /* However only do this if we can be sure that this input
2025 operand doesn't correspond with an uninitialized pseudo.
2026 global can assign some hardreg to it that is the same as
2027 the one assigned to a different, also live pseudo (as it
2028 can ignore the conflict). We must never introduce writes
2029 to such hardregs, as they would clobber the other live
2030 pseudo. See PR 20973. */
2031 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
2032 ORIGINAL_REGNO (in))
2033 /* Similarly, only do this if we can be sure that the death
2034 note is still valid. global can assign some hardreg to
2035 the pseudo referenced in the note and simultaneously a
2036 subword of this hardreg to a different, also live pseudo,
2037 because only another subword of the hardreg is actually
2038 used in the insn. This cannot happen if the pseudo has
2039 been assigned exactly one hardreg. See PR 33732. */
2040 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2042 unsigned int regno = REGNO (in) + in_offset;
2043 unsigned int nwords = hard_regno_nregs[regno][inmode];
2045 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2046 && ! hard_reg_set_here_p (regno, regno + nwords,
2047 PATTERN (this_insn))
2048 && (! earlyclobber
2049 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2050 PATTERN (this_insn), inloc)))
2052 unsigned int i;
2054 for (i = 0; i < nwords; i++)
2055 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2056 regno + i))
2057 break;
2059 if (i == nwords)
2061 /* If we were going to use OUT as the reload reg
2062 and changed our mind, it means OUT is a dummy that
2063 dies here. So don't bother copying value to it. */
2064 if (for_real >= 0 && value == real_out)
2065 rld[for_real].out = 0;
2066 if (REG_P (real_in))
2067 value = real_in;
2068 else
2069 value = gen_rtx_REG (inmode, regno);
2074 return value;
2077 /* This page contains subroutines used mainly for determining
2078 whether the IN or an OUT of a reload can serve as the
2079 reload register. */
2081 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2084 earlyclobber_operand_p (rtx x)
2086 int i;
2088 for (i = 0; i < n_earlyclobbers; i++)
2089 if (reload_earlyclobbers[i] == x)
2090 return 1;
2092 return 0;
2095 /* Return 1 if expression X alters a hard reg in the range
2096 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2097 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2098 X should be the body of an instruction. */
2100 static int
2101 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2103 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2105 rtx op0 = SET_DEST (x);
2107 while (GET_CODE (op0) == SUBREG)
2108 op0 = SUBREG_REG (op0);
2109 if (REG_P (op0))
2111 unsigned int r = REGNO (op0);
2113 /* See if this reg overlaps range under consideration. */
2114 if (r < end_regno
2115 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2116 return 1;
2119 else if (GET_CODE (x) == PARALLEL)
2121 int i = XVECLEN (x, 0) - 1;
2123 for (; i >= 0; i--)
2124 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2125 return 1;
2128 return 0;
2131 /* Return 1 if ADDR is a valid memory address for mode MODE,
2132 and check that each pseudo reg has the proper kind of
2133 hard reg. */
2136 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2138 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2139 return 0;
2141 win:
2142 return 1;
2145 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2146 if they are the same hard reg, and has special hacks for
2147 autoincrement and autodecrement.
2148 This is specifically intended for find_reloads to use
2149 in determining whether two operands match.
2150 X is the operand whose number is the lower of the two.
2152 The value is 2 if Y contains a pre-increment that matches
2153 a non-incrementing address in X. */
2155 /* ??? To be completely correct, we should arrange to pass
2156 for X the output operand and for Y the input operand.
2157 For now, we assume that the output operand has the lower number
2158 because that is natural in (SET output (... input ...)). */
2161 operands_match_p (rtx x, rtx y)
2163 int i;
2164 RTX_CODE code = GET_CODE (x);
2165 const char *fmt;
2166 int success_2;
2168 if (x == y)
2169 return 1;
2170 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2171 && (REG_P (y) || (GET_CODE (y) == SUBREG
2172 && REG_P (SUBREG_REG (y)))))
2174 int j;
2176 if (code == SUBREG)
2178 i = REGNO (SUBREG_REG (x));
2179 if (i >= FIRST_PSEUDO_REGISTER)
2180 goto slow;
2181 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2182 GET_MODE (SUBREG_REG (x)),
2183 SUBREG_BYTE (x),
2184 GET_MODE (x));
2186 else
2187 i = REGNO (x);
2189 if (GET_CODE (y) == SUBREG)
2191 j = REGNO (SUBREG_REG (y));
2192 if (j >= FIRST_PSEUDO_REGISTER)
2193 goto slow;
2194 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2195 GET_MODE (SUBREG_REG (y)),
2196 SUBREG_BYTE (y),
2197 GET_MODE (y));
2199 else
2200 j = REGNO (y);
2202 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2203 multiple hard register group of scalar integer registers, so that
2204 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2205 register. */
2206 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2207 && SCALAR_INT_MODE_P (GET_MODE (x))
2208 && i < FIRST_PSEUDO_REGISTER)
2209 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2210 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2211 && SCALAR_INT_MODE_P (GET_MODE (y))
2212 && j < FIRST_PSEUDO_REGISTER)
2213 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2215 return i == j;
2217 /* If two operands must match, because they are really a single
2218 operand of an assembler insn, then two postincrements are invalid
2219 because the assembler insn would increment only once.
2220 On the other hand, a postincrement matches ordinary indexing
2221 if the postincrement is the output operand. */
2222 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2223 return operands_match_p (XEXP (x, 0), y);
2224 /* Two preincrements are invalid
2225 because the assembler insn would increment only once.
2226 On the other hand, a preincrement matches ordinary indexing
2227 if the preincrement is the input operand.
2228 In this case, return 2, since some callers need to do special
2229 things when this happens. */
2230 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2231 || GET_CODE (y) == PRE_MODIFY)
2232 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2234 slow:
2236 /* Now we have disposed of all the cases in which different rtx codes
2237 can match. */
2238 if (code != GET_CODE (y))
2239 return 0;
2241 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2242 if (GET_MODE (x) != GET_MODE (y))
2243 return 0;
2245 switch (code)
2247 case CONST_INT:
2248 case CONST_DOUBLE:
2249 case CONST_FIXED:
2250 return 0;
2252 case LABEL_REF:
2253 return XEXP (x, 0) == XEXP (y, 0);
2254 case SYMBOL_REF:
2255 return XSTR (x, 0) == XSTR (y, 0);
2257 default:
2258 break;
2261 /* Compare the elements. If any pair of corresponding elements
2262 fail to match, return 0 for the whole things. */
2264 success_2 = 0;
2265 fmt = GET_RTX_FORMAT (code);
2266 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2268 int val, j;
2269 switch (fmt[i])
2271 case 'w':
2272 if (XWINT (x, i) != XWINT (y, i))
2273 return 0;
2274 break;
2276 case 'i':
2277 if (XINT (x, i) != XINT (y, i))
2278 return 0;
2279 break;
2281 case 'e':
2282 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2283 if (val == 0)
2284 return 0;
2285 /* If any subexpression returns 2,
2286 we should return 2 if we are successful. */
2287 if (val == 2)
2288 success_2 = 1;
2289 break;
2291 case '0':
2292 break;
2294 case 'E':
2295 if (XVECLEN (x, i) != XVECLEN (y, i))
2296 return 0;
2297 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2299 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2300 if (val == 0)
2301 return 0;
2302 if (val == 2)
2303 success_2 = 1;
2305 break;
2307 /* It is believed that rtx's at this level will never
2308 contain anything but integers and other rtx's,
2309 except for within LABEL_REFs and SYMBOL_REFs. */
2310 default:
2311 gcc_unreachable ();
2314 return 1 + success_2;
2317 /* Describe the range of registers or memory referenced by X.
2318 If X is a register, set REG_FLAG and put the first register
2319 number into START and the last plus one into END.
2320 If X is a memory reference, put a base address into BASE
2321 and a range of integer offsets into START and END.
2322 If X is pushing on the stack, we can assume it causes no trouble,
2323 so we set the SAFE field. */
2325 static struct decomposition
2326 decompose (rtx x)
2328 struct decomposition val;
2329 int all_const = 0;
2331 memset (&val, 0, sizeof (val));
2333 switch (GET_CODE (x))
2335 case MEM:
2337 rtx base = NULL_RTX, offset = 0;
2338 rtx addr = XEXP (x, 0);
2340 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2341 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2343 val.base = XEXP (addr, 0);
2344 val.start = -GET_MODE_SIZE (GET_MODE (x));
2345 val.end = GET_MODE_SIZE (GET_MODE (x));
2346 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2347 return val;
2350 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2352 if (GET_CODE (XEXP (addr, 1)) == PLUS
2353 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2354 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2356 val.base = XEXP (addr, 0);
2357 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2358 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2359 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2360 return val;
2364 if (GET_CODE (addr) == CONST)
2366 addr = XEXP (addr, 0);
2367 all_const = 1;
2369 if (GET_CODE (addr) == PLUS)
2371 if (CONSTANT_P (XEXP (addr, 0)))
2373 base = XEXP (addr, 1);
2374 offset = XEXP (addr, 0);
2376 else if (CONSTANT_P (XEXP (addr, 1)))
2378 base = XEXP (addr, 0);
2379 offset = XEXP (addr, 1);
2383 if (offset == 0)
2385 base = addr;
2386 offset = const0_rtx;
2388 if (GET_CODE (offset) == CONST)
2389 offset = XEXP (offset, 0);
2390 if (GET_CODE (offset) == PLUS)
2392 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2394 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2395 offset = XEXP (offset, 0);
2397 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2399 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2400 offset = XEXP (offset, 1);
2402 else
2404 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2405 offset = const0_rtx;
2408 else if (GET_CODE (offset) != CONST_INT)
2410 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2411 offset = const0_rtx;
2414 if (all_const && GET_CODE (base) == PLUS)
2415 base = gen_rtx_CONST (GET_MODE (base), base);
2417 gcc_assert (GET_CODE (offset) == CONST_INT);
2419 val.start = INTVAL (offset);
2420 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2421 val.base = base;
2423 break;
2425 case REG:
2426 val.reg_flag = 1;
2427 val.start = true_regnum (x);
2428 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2430 /* A pseudo with no hard reg. */
2431 val.start = REGNO (x);
2432 val.end = val.start + 1;
2434 else
2435 /* A hard reg. */
2436 val.end = end_hard_regno (GET_MODE (x), val.start);
2437 break;
2439 case SUBREG:
2440 if (!REG_P (SUBREG_REG (x)))
2441 /* This could be more precise, but it's good enough. */
2442 return decompose (SUBREG_REG (x));
2443 val.reg_flag = 1;
2444 val.start = true_regnum (x);
2445 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2446 return decompose (SUBREG_REG (x));
2447 else
2448 /* A hard reg. */
2449 val.end = val.start + subreg_nregs (x);
2450 break;
2452 case SCRATCH:
2453 /* This hasn't been assigned yet, so it can't conflict yet. */
2454 val.safe = 1;
2455 break;
2457 default:
2458 gcc_assert (CONSTANT_P (x));
2459 val.safe = 1;
2460 break;
2462 return val;
2465 /* Return 1 if altering Y will not modify the value of X.
2466 Y is also described by YDATA, which should be decompose (Y). */
2468 static int
2469 immune_p (rtx x, rtx y, struct decomposition ydata)
2471 struct decomposition xdata;
2473 if (ydata.reg_flag)
2474 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2475 if (ydata.safe)
2476 return 1;
2478 gcc_assert (MEM_P (y));
2479 /* If Y is memory and X is not, Y can't affect X. */
2480 if (!MEM_P (x))
2481 return 1;
2483 xdata = decompose (x);
2485 if (! rtx_equal_p (xdata.base, ydata.base))
2487 /* If bases are distinct symbolic constants, there is no overlap. */
2488 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2489 return 1;
2490 /* Constants and stack slots never overlap. */
2491 if (CONSTANT_P (xdata.base)
2492 && (ydata.base == frame_pointer_rtx
2493 || ydata.base == hard_frame_pointer_rtx
2494 || ydata.base == stack_pointer_rtx))
2495 return 1;
2496 if (CONSTANT_P (ydata.base)
2497 && (xdata.base == frame_pointer_rtx
2498 || xdata.base == hard_frame_pointer_rtx
2499 || xdata.base == stack_pointer_rtx))
2500 return 1;
2501 /* If either base is variable, we don't know anything. */
2502 return 0;
2505 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2508 /* Similar, but calls decompose. */
2511 safe_from_earlyclobber (rtx op, rtx clobber)
2513 struct decomposition early_data;
2515 early_data = decompose (clobber);
2516 return immune_p (op, clobber, early_data);
2519 /* Main entry point of this file: search the body of INSN
2520 for values that need reloading and record them with push_reload.
2521 REPLACE nonzero means record also where the values occur
2522 so that subst_reloads can be used.
2524 IND_LEVELS says how many levels of indirection are supported by this
2525 machine; a value of zero means that a memory reference is not a valid
2526 memory address.
2528 LIVE_KNOWN says we have valid information about which hard
2529 regs are live at each point in the program; this is true when
2530 we are called from global_alloc but false when stupid register
2531 allocation has been done.
2533 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2534 which is nonnegative if the reg has been commandeered for reloading into.
2535 It is copied into STATIC_RELOAD_REG_P and referenced from there
2536 by various subroutines.
2538 Return TRUE if some operands need to be changed, because of swapping
2539 commutative operands, reg_equiv_address substitution, or whatever. */
2542 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2543 short *reload_reg_p)
2545 int insn_code_number;
2546 int i, j;
2547 int noperands;
2548 /* These start out as the constraints for the insn
2549 and they are chewed up as we consider alternatives. */
2550 const char *constraints[MAX_RECOG_OPERANDS];
2551 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2552 a register. */
2553 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2554 char pref_or_nothing[MAX_RECOG_OPERANDS];
2555 /* Nonzero for a MEM operand whose entire address needs a reload.
2556 May be -1 to indicate the entire address may or may not need a reload. */
2557 int address_reloaded[MAX_RECOG_OPERANDS];
2558 /* Nonzero for an address operand that needs to be completely reloaded.
2559 May be -1 to indicate the entire operand may or may not need a reload. */
2560 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2561 /* Value of enum reload_type to use for operand. */
2562 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2563 /* Value of enum reload_type to use within address of operand. */
2564 enum reload_type address_type[MAX_RECOG_OPERANDS];
2565 /* Save the usage of each operand. */
2566 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2567 int no_input_reloads = 0, no_output_reloads = 0;
2568 int n_alternatives;
2569 enum reg_class this_alternative[MAX_RECOG_OPERANDS];
2570 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2571 char this_alternative_win[MAX_RECOG_OPERANDS];
2572 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2573 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2574 int this_alternative_matches[MAX_RECOG_OPERANDS];
2575 int swapped;
2576 int goal_alternative[MAX_RECOG_OPERANDS];
2577 int this_alternative_number;
2578 int goal_alternative_number = 0;
2579 int operand_reloadnum[MAX_RECOG_OPERANDS];
2580 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2581 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2582 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2583 char goal_alternative_win[MAX_RECOG_OPERANDS];
2584 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2585 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2586 int goal_alternative_swapped;
2587 int best;
2588 int commutative;
2589 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2590 rtx substed_operand[MAX_RECOG_OPERANDS];
2591 rtx body = PATTERN (insn);
2592 rtx set = single_set (insn);
2593 int goal_earlyclobber = 0, this_earlyclobber;
2594 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2595 int retval = 0;
2597 this_insn = insn;
2598 n_reloads = 0;
2599 n_replacements = 0;
2600 n_earlyclobbers = 0;
2601 replace_reloads = replace;
2602 hard_regs_live_known = live_known;
2603 static_reload_reg_p = reload_reg_p;
2605 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2606 neither are insns that SET cc0. Insns that use CC0 are not allowed
2607 to have any input reloads. */
2608 if (JUMP_P (insn) || CALL_P (insn))
2609 no_output_reloads = 1;
2611 #ifdef HAVE_cc0
2612 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2613 no_input_reloads = 1;
2614 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2615 no_output_reloads = 1;
2616 #endif
2618 #ifdef SECONDARY_MEMORY_NEEDED
2619 /* The eliminated forms of any secondary memory locations are per-insn, so
2620 clear them out here. */
2622 if (secondary_memlocs_elim_used)
2624 memset (secondary_memlocs_elim, 0,
2625 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2626 secondary_memlocs_elim_used = 0;
2628 #endif
2630 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2631 is cheap to move between them. If it is not, there may not be an insn
2632 to do the copy, so we may need a reload. */
2633 if (GET_CODE (body) == SET
2634 && REG_P (SET_DEST (body))
2635 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2636 && REG_P (SET_SRC (body))
2637 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2638 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2639 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2640 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2641 return 0;
2643 extract_insn (insn);
2645 noperands = reload_n_operands = recog_data.n_operands;
2646 n_alternatives = recog_data.n_alternatives;
2648 /* Just return "no reloads" if insn has no operands with constraints. */
2649 if (noperands == 0 || n_alternatives == 0)
2650 return 0;
2652 insn_code_number = INSN_CODE (insn);
2653 this_insn_is_asm = insn_code_number < 0;
2655 memcpy (operand_mode, recog_data.operand_mode,
2656 noperands * sizeof (enum machine_mode));
2657 memcpy (constraints, recog_data.constraints,
2658 noperands * sizeof (const char *));
2660 commutative = -1;
2662 /* If we will need to know, later, whether some pair of operands
2663 are the same, we must compare them now and save the result.
2664 Reloading the base and index registers will clobber them
2665 and afterward they will fail to match. */
2667 for (i = 0; i < noperands; i++)
2669 const char *p;
2670 int c;
2671 char *end;
2673 substed_operand[i] = recog_data.operand[i];
2674 p = constraints[i];
2676 modified[i] = RELOAD_READ;
2678 /* Scan this operand's constraint to see if it is an output operand,
2679 an in-out operand, is commutative, or should match another. */
2681 while ((c = *p))
2683 p += CONSTRAINT_LEN (c, p);
2684 switch (c)
2686 case '=':
2687 modified[i] = RELOAD_WRITE;
2688 break;
2689 case '+':
2690 modified[i] = RELOAD_READ_WRITE;
2691 break;
2692 case '%':
2694 /* The last operand should not be marked commutative. */
2695 gcc_assert (i != noperands - 1);
2697 /* We currently only support one commutative pair of
2698 operands. Some existing asm code currently uses more
2699 than one pair. Previously, that would usually work,
2700 but sometimes it would crash the compiler. We
2701 continue supporting that case as well as we can by
2702 silently ignoring all but the first pair. In the
2703 future we may handle it correctly. */
2704 if (commutative < 0)
2705 commutative = i;
2706 else
2707 gcc_assert (this_insn_is_asm);
2709 break;
2710 /* Use of ISDIGIT is tempting here, but it may get expensive because
2711 of locale support we don't want. */
2712 case '0': case '1': case '2': case '3': case '4':
2713 case '5': case '6': case '7': case '8': case '9':
2715 c = strtoul (p - 1, &end, 10);
2716 p = end;
2718 operands_match[c][i]
2719 = operands_match_p (recog_data.operand[c],
2720 recog_data.operand[i]);
2722 /* An operand may not match itself. */
2723 gcc_assert (c != i);
2725 /* If C can be commuted with C+1, and C might need to match I,
2726 then C+1 might also need to match I. */
2727 if (commutative >= 0)
2729 if (c == commutative || c == commutative + 1)
2731 int other = c + (c == commutative ? 1 : -1);
2732 operands_match[other][i]
2733 = operands_match_p (recog_data.operand[other],
2734 recog_data.operand[i]);
2736 if (i == commutative || i == commutative + 1)
2738 int other = i + (i == commutative ? 1 : -1);
2739 operands_match[c][other]
2740 = operands_match_p (recog_data.operand[c],
2741 recog_data.operand[other]);
2743 /* Note that C is supposed to be less than I.
2744 No need to consider altering both C and I because in
2745 that case we would alter one into the other. */
2752 /* Examine each operand that is a memory reference or memory address
2753 and reload parts of the addresses into index registers.
2754 Also here any references to pseudo regs that didn't get hard regs
2755 but are equivalent to constants get replaced in the insn itself
2756 with those constants. Nobody will ever see them again.
2758 Finally, set up the preferred classes of each operand. */
2760 for (i = 0; i < noperands; i++)
2762 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2764 address_reloaded[i] = 0;
2765 address_operand_reloaded[i] = 0;
2766 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2767 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2768 : RELOAD_OTHER);
2769 address_type[i]
2770 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2771 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2772 : RELOAD_OTHER);
2774 if (*constraints[i] == 0)
2775 /* Ignore things like match_operator operands. */
2777 else if (constraints[i][0] == 'p'
2778 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2780 address_operand_reloaded[i]
2781 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2782 recog_data.operand[i],
2783 recog_data.operand_loc[i],
2784 i, operand_type[i], ind_levels, insn);
2786 /* If we now have a simple operand where we used to have a
2787 PLUS or MULT, re-recognize and try again. */
2788 if ((OBJECT_P (*recog_data.operand_loc[i])
2789 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2790 && (GET_CODE (recog_data.operand[i]) == MULT
2791 || GET_CODE (recog_data.operand[i]) == PLUS))
2793 INSN_CODE (insn) = -1;
2794 retval = find_reloads (insn, replace, ind_levels, live_known,
2795 reload_reg_p);
2796 return retval;
2799 recog_data.operand[i] = *recog_data.operand_loc[i];
2800 substed_operand[i] = recog_data.operand[i];
2802 /* Address operands are reloaded in their existing mode,
2803 no matter what is specified in the machine description. */
2804 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2806 else if (code == MEM)
2808 address_reloaded[i]
2809 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2810 recog_data.operand_loc[i],
2811 XEXP (recog_data.operand[i], 0),
2812 &XEXP (recog_data.operand[i], 0),
2813 i, address_type[i], ind_levels, insn);
2814 recog_data.operand[i] = *recog_data.operand_loc[i];
2815 substed_operand[i] = recog_data.operand[i];
2817 else if (code == SUBREG)
2819 rtx reg = SUBREG_REG (recog_data.operand[i]);
2820 rtx op
2821 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2822 ind_levels,
2823 set != 0
2824 && &SET_DEST (set) == recog_data.operand_loc[i],
2825 insn,
2826 &address_reloaded[i]);
2828 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2829 that didn't get a hard register, emit a USE with a REG_EQUAL
2830 note in front so that we might inherit a previous, possibly
2831 wider reload. */
2833 if (replace
2834 && MEM_P (op)
2835 && REG_P (reg)
2836 && (GET_MODE_SIZE (GET_MODE (reg))
2837 >= GET_MODE_SIZE (GET_MODE (op)))
2838 && reg_equiv_constant[REGNO (reg)] == 0)
2839 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2840 insn),
2841 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2843 substed_operand[i] = recog_data.operand[i] = op;
2845 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2846 /* We can get a PLUS as an "operand" as a result of register
2847 elimination. See eliminate_regs and gen_reload. We handle
2848 a unary operator by reloading the operand. */
2849 substed_operand[i] = recog_data.operand[i]
2850 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2851 ind_levels, 0, insn,
2852 &address_reloaded[i]);
2853 else if (code == REG)
2855 /* This is equivalent to calling find_reloads_toplev.
2856 The code is duplicated for speed.
2857 When we find a pseudo always equivalent to a constant,
2858 we replace it by the constant. We must be sure, however,
2859 that we don't try to replace it in the insn in which it
2860 is being set. */
2861 int regno = REGNO (recog_data.operand[i]);
2862 if (reg_equiv_constant[regno] != 0
2863 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2865 /* Record the existing mode so that the check if constants are
2866 allowed will work when operand_mode isn't specified. */
2868 if (operand_mode[i] == VOIDmode)
2869 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2871 substed_operand[i] = recog_data.operand[i]
2872 = reg_equiv_constant[regno];
2874 if (reg_equiv_memory_loc[regno] != 0
2875 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2876 /* We need not give a valid is_set_dest argument since the case
2877 of a constant equivalence was checked above. */
2878 substed_operand[i] = recog_data.operand[i]
2879 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2880 ind_levels, 0, insn,
2881 &address_reloaded[i]);
2883 /* If the operand is still a register (we didn't replace it with an
2884 equivalent), get the preferred class to reload it into. */
2885 code = GET_CODE (recog_data.operand[i]);
2886 preferred_class[i]
2887 = ((code == REG && REGNO (recog_data.operand[i])
2888 >= FIRST_PSEUDO_REGISTER)
2889 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2890 : NO_REGS);
2891 pref_or_nothing[i]
2892 = (code == REG
2893 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2894 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2897 /* If this is simply a copy from operand 1 to operand 0, merge the
2898 preferred classes for the operands. */
2899 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2900 && recog_data.operand[1] == SET_SRC (set))
2902 preferred_class[0] = preferred_class[1]
2903 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2904 pref_or_nothing[0] |= pref_or_nothing[1];
2905 pref_or_nothing[1] |= pref_or_nothing[0];
2908 /* Now see what we need for pseudo-regs that didn't get hard regs
2909 or got the wrong kind of hard reg. For this, we must consider
2910 all the operands together against the register constraints. */
2912 best = MAX_RECOG_OPERANDS * 2 + 600;
2914 swapped = 0;
2915 goal_alternative_swapped = 0;
2916 try_swapped:
2918 /* The constraints are made of several alternatives.
2919 Each operand's constraint looks like foo,bar,... with commas
2920 separating the alternatives. The first alternatives for all
2921 operands go together, the second alternatives go together, etc.
2923 First loop over alternatives. */
2925 for (this_alternative_number = 0;
2926 this_alternative_number < n_alternatives;
2927 this_alternative_number++)
2929 /* Loop over operands for one constraint alternative. */
2930 /* LOSERS counts those that don't fit this alternative
2931 and would require loading. */
2932 int losers = 0;
2933 /* BAD is set to 1 if it some operand can't fit this alternative
2934 even after reloading. */
2935 int bad = 0;
2936 /* REJECT is a count of how undesirable this alternative says it is
2937 if any reloading is required. If the alternative matches exactly
2938 then REJECT is ignored, but otherwise it gets this much
2939 counted against it in addition to the reloading needed. Each
2940 ? counts three times here since we want the disparaging caused by
2941 a bad register class to only count 1/3 as much. */
2942 int reject = 0;
2944 if (!recog_data.alternative_enabled_p[this_alternative_number])
2946 int i;
2948 for (i = 0; i < recog_data.n_operands; i++)
2949 constraints[i] = skip_alternative (constraints[i]);
2951 continue;
2954 this_earlyclobber = 0;
2956 for (i = 0; i < noperands; i++)
2958 const char *p = constraints[i];
2959 char *end;
2960 int len;
2961 int win = 0;
2962 int did_match = 0;
2963 /* 0 => this operand can be reloaded somehow for this alternative. */
2964 int badop = 1;
2965 /* 0 => this operand can be reloaded if the alternative allows regs. */
2966 int winreg = 0;
2967 int c;
2968 int m;
2969 rtx operand = recog_data.operand[i];
2970 int offset = 0;
2971 /* Nonzero means this is a MEM that must be reloaded into a reg
2972 regardless of what the constraint says. */
2973 int force_reload = 0;
2974 int offmemok = 0;
2975 /* Nonzero if a constant forced into memory would be OK for this
2976 operand. */
2977 int constmemok = 0;
2978 int earlyclobber = 0;
2980 /* If the predicate accepts a unary operator, it means that
2981 we need to reload the operand, but do not do this for
2982 match_operator and friends. */
2983 if (UNARY_P (operand) && *p != 0)
2984 operand = XEXP (operand, 0);
2986 /* If the operand is a SUBREG, extract
2987 the REG or MEM (or maybe even a constant) within.
2988 (Constants can occur as a result of reg_equiv_constant.) */
2990 while (GET_CODE (operand) == SUBREG)
2992 /* Offset only matters when operand is a REG and
2993 it is a hard reg. This is because it is passed
2994 to reg_fits_class_p if it is a REG and all pseudos
2995 return 0 from that function. */
2996 if (REG_P (SUBREG_REG (operand))
2997 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2999 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3000 GET_MODE (SUBREG_REG (operand)),
3001 SUBREG_BYTE (operand),
3002 GET_MODE (operand)) < 0)
3003 force_reload = 1;
3004 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3005 GET_MODE (SUBREG_REG (operand)),
3006 SUBREG_BYTE (operand),
3007 GET_MODE (operand));
3009 operand = SUBREG_REG (operand);
3010 /* Force reload if this is a constant or PLUS or if there may
3011 be a problem accessing OPERAND in the outer mode. */
3012 if (CONSTANT_P (operand)
3013 || GET_CODE (operand) == PLUS
3014 /* We must force a reload of paradoxical SUBREGs
3015 of a MEM because the alignment of the inner value
3016 may not be enough to do the outer reference. On
3017 big-endian machines, it may also reference outside
3018 the object.
3020 On machines that extend byte operations and we have a
3021 SUBREG where both the inner and outer modes are no wider
3022 than a word and the inner mode is narrower, is integral,
3023 and gets extended when loaded from memory, combine.c has
3024 made assumptions about the behavior of the machine in such
3025 register access. If the data is, in fact, in memory we
3026 must always load using the size assumed to be in the
3027 register and let the insn do the different-sized
3028 accesses.
3030 This is doubly true if WORD_REGISTER_OPERATIONS. In
3031 this case eliminate_regs has left non-paradoxical
3032 subregs for push_reload to see. Make sure it does
3033 by forcing the reload.
3035 ??? When is it right at this stage to have a subreg
3036 of a mem that is _not_ to be handled specially? IMO
3037 those should have been reduced to just a mem. */
3038 || ((MEM_P (operand)
3039 || (REG_P (operand)
3040 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3041 #ifndef WORD_REGISTER_OPERATIONS
3042 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3043 < BIGGEST_ALIGNMENT)
3044 && (GET_MODE_SIZE (operand_mode[i])
3045 > GET_MODE_SIZE (GET_MODE (operand))))
3046 || BYTES_BIG_ENDIAN
3047 #ifdef LOAD_EXTEND_OP
3048 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3049 && (GET_MODE_SIZE (GET_MODE (operand))
3050 <= UNITS_PER_WORD)
3051 && (GET_MODE_SIZE (operand_mode[i])
3052 > GET_MODE_SIZE (GET_MODE (operand)))
3053 && INTEGRAL_MODE_P (GET_MODE (operand))
3054 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3055 #endif
3057 #endif
3060 force_reload = 1;
3063 this_alternative[i] = NO_REGS;
3064 this_alternative_win[i] = 0;
3065 this_alternative_match_win[i] = 0;
3066 this_alternative_offmemok[i] = 0;
3067 this_alternative_earlyclobber[i] = 0;
3068 this_alternative_matches[i] = -1;
3070 /* An empty constraint or empty alternative
3071 allows anything which matched the pattern. */
3072 if (*p == 0 || *p == ',')
3073 win = 1, badop = 0;
3075 /* Scan this alternative's specs for this operand;
3076 set WIN if the operand fits any letter in this alternative.
3077 Otherwise, clear BADOP if this operand could
3078 fit some letter after reloads,
3079 or set WINREG if this operand could fit after reloads
3080 provided the constraint allows some registers. */
3083 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3085 case '\0':
3086 len = 0;
3087 break;
3088 case ',':
3089 c = '\0';
3090 break;
3092 case '=': case '+': case '*':
3093 break;
3095 case '%':
3096 /* We only support one commutative marker, the first
3097 one. We already set commutative above. */
3098 break;
3100 case '?':
3101 reject += 6;
3102 break;
3104 case '!':
3105 reject = 600;
3106 break;
3108 case '#':
3109 /* Ignore rest of this alternative as far as
3110 reloading is concerned. */
3112 p++;
3113 while (*p && *p != ',');
3114 len = 0;
3115 break;
3117 case '0': case '1': case '2': case '3': case '4':
3118 case '5': case '6': case '7': case '8': case '9':
3119 m = strtoul (p, &end, 10);
3120 p = end;
3121 len = 0;
3123 this_alternative_matches[i] = m;
3124 /* We are supposed to match a previous operand.
3125 If we do, we win if that one did.
3126 If we do not, count both of the operands as losers.
3127 (This is too conservative, since most of the time
3128 only a single reload insn will be needed to make
3129 the two operands win. As a result, this alternative
3130 may be rejected when it is actually desirable.) */
3131 if ((swapped && (m != commutative || i != commutative + 1))
3132 /* If we are matching as if two operands were swapped,
3133 also pretend that operands_match had been computed
3134 with swapped.
3135 But if I is the second of those and C is the first,
3136 don't exchange them, because operands_match is valid
3137 only on one side of its diagonal. */
3138 ? (operands_match
3139 [(m == commutative || m == commutative + 1)
3140 ? 2 * commutative + 1 - m : m]
3141 [(i == commutative || i == commutative + 1)
3142 ? 2 * commutative + 1 - i : i])
3143 : operands_match[m][i])
3145 /* If we are matching a non-offsettable address where an
3146 offsettable address was expected, then we must reject
3147 this combination, because we can't reload it. */
3148 if (this_alternative_offmemok[m]
3149 && MEM_P (recog_data.operand[m])
3150 && this_alternative[m] == NO_REGS
3151 && ! this_alternative_win[m])
3152 bad = 1;
3154 did_match = this_alternative_win[m];
3156 else
3158 /* Operands don't match. */
3159 rtx value;
3160 int loc1, loc2;
3161 /* Retroactively mark the operand we had to match
3162 as a loser, if it wasn't already. */
3163 if (this_alternative_win[m])
3164 losers++;
3165 this_alternative_win[m] = 0;
3166 if (this_alternative[m] == NO_REGS)
3167 bad = 1;
3168 /* But count the pair only once in the total badness of
3169 this alternative, if the pair can be a dummy reload.
3170 The pointers in operand_loc are not swapped; swap
3171 them by hand if necessary. */
3172 if (swapped && i == commutative)
3173 loc1 = commutative + 1;
3174 else if (swapped && i == commutative + 1)
3175 loc1 = commutative;
3176 else
3177 loc1 = i;
3178 if (swapped && m == commutative)
3179 loc2 = commutative + 1;
3180 else if (swapped && m == commutative + 1)
3181 loc2 = commutative;
3182 else
3183 loc2 = m;
3184 value
3185 = find_dummy_reload (recog_data.operand[i],
3186 recog_data.operand[m],
3187 recog_data.operand_loc[loc1],
3188 recog_data.operand_loc[loc2],
3189 operand_mode[i], operand_mode[m],
3190 this_alternative[m], -1,
3191 this_alternative_earlyclobber[m]);
3193 if (value != 0)
3194 losers--;
3196 /* This can be fixed with reloads if the operand
3197 we are supposed to match can be fixed with reloads. */
3198 badop = 0;
3199 this_alternative[i] = this_alternative[m];
3201 /* If we have to reload this operand and some previous
3202 operand also had to match the same thing as this
3203 operand, we don't know how to do that. So reject this
3204 alternative. */
3205 if (! did_match || force_reload)
3206 for (j = 0; j < i; j++)
3207 if (this_alternative_matches[j]
3208 == this_alternative_matches[i])
3209 badop = 1;
3210 break;
3212 case 'p':
3213 /* All necessary reloads for an address_operand
3214 were handled in find_reloads_address. */
3215 this_alternative[i] = base_reg_class (VOIDmode, ADDRESS,
3216 SCRATCH);
3217 win = 1;
3218 badop = 0;
3219 break;
3221 case TARGET_MEM_CONSTRAINT:
3222 if (force_reload)
3223 break;
3224 if (MEM_P (operand)
3225 || (REG_P (operand)
3226 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3227 && reg_renumber[REGNO (operand)] < 0))
3228 win = 1;
3229 if (CONST_POOL_OK_P (operand))
3230 badop = 0;
3231 constmemok = 1;
3232 break;
3234 case '<':
3235 if (MEM_P (operand)
3236 && ! address_reloaded[i]
3237 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3238 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3239 win = 1;
3240 break;
3242 case '>':
3243 if (MEM_P (operand)
3244 && ! address_reloaded[i]
3245 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3246 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3247 win = 1;
3248 break;
3250 /* Memory operand whose address is not offsettable. */
3251 case 'V':
3252 if (force_reload)
3253 break;
3254 if (MEM_P (operand)
3255 && ! (ind_levels ? offsettable_memref_p (operand)
3256 : offsettable_nonstrict_memref_p (operand))
3257 /* Certain mem addresses will become offsettable
3258 after they themselves are reloaded. This is important;
3259 we don't want our own handling of unoffsettables
3260 to override the handling of reg_equiv_address. */
3261 && !(REG_P (XEXP (operand, 0))
3262 && (ind_levels == 0
3263 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3264 win = 1;
3265 break;
3267 /* Memory operand whose address is offsettable. */
3268 case 'o':
3269 if (force_reload)
3270 break;
3271 if ((MEM_P (operand)
3272 /* If IND_LEVELS, find_reloads_address won't reload a
3273 pseudo that didn't get a hard reg, so we have to
3274 reject that case. */
3275 && ((ind_levels ? offsettable_memref_p (operand)
3276 : offsettable_nonstrict_memref_p (operand))
3277 /* A reloaded address is offsettable because it is now
3278 just a simple register indirect. */
3279 || address_reloaded[i] == 1))
3280 || (REG_P (operand)
3281 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3282 && reg_renumber[REGNO (operand)] < 0
3283 /* If reg_equiv_address is nonzero, we will be
3284 loading it into a register; hence it will be
3285 offsettable, but we cannot say that reg_equiv_mem
3286 is offsettable without checking. */
3287 && ((reg_equiv_mem[REGNO (operand)] != 0
3288 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3289 || (reg_equiv_address[REGNO (operand)] != 0))))
3290 win = 1;
3291 if (CONST_POOL_OK_P (operand)
3292 || MEM_P (operand))
3293 badop = 0;
3294 constmemok = 1;
3295 offmemok = 1;
3296 break;
3298 case '&':
3299 /* Output operand that is stored before the need for the
3300 input operands (and their index registers) is over. */
3301 earlyclobber = 1, this_earlyclobber = 1;
3302 break;
3304 case 'E':
3305 case 'F':
3306 if (GET_CODE (operand) == CONST_DOUBLE
3307 || (GET_CODE (operand) == CONST_VECTOR
3308 && (GET_MODE_CLASS (GET_MODE (operand))
3309 == MODE_VECTOR_FLOAT)))
3310 win = 1;
3311 break;
3313 case 'G':
3314 case 'H':
3315 if (GET_CODE (operand) == CONST_DOUBLE
3316 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3317 win = 1;
3318 break;
3320 case 's':
3321 if (GET_CODE (operand) == CONST_INT
3322 || (GET_CODE (operand) == CONST_DOUBLE
3323 && GET_MODE (operand) == VOIDmode))
3324 break;
3325 case 'i':
3326 if (CONSTANT_P (operand)
3327 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3328 win = 1;
3329 break;
3331 case 'n':
3332 if (GET_CODE (operand) == CONST_INT
3333 || (GET_CODE (operand) == CONST_DOUBLE
3334 && GET_MODE (operand) == VOIDmode))
3335 win = 1;
3336 break;
3338 case 'I':
3339 case 'J':
3340 case 'K':
3341 case 'L':
3342 case 'M':
3343 case 'N':
3344 case 'O':
3345 case 'P':
3346 if (GET_CODE (operand) == CONST_INT
3347 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3348 win = 1;
3349 break;
3351 case 'X':
3352 force_reload = 0;
3353 win = 1;
3354 break;
3356 case 'g':
3357 if (! force_reload
3358 /* A PLUS is never a valid operand, but reload can make
3359 it from a register when eliminating registers. */
3360 && GET_CODE (operand) != PLUS
3361 /* A SCRATCH is not a valid operand. */
3362 && GET_CODE (operand) != SCRATCH
3363 && (! CONSTANT_P (operand)
3364 || ! flag_pic
3365 || LEGITIMATE_PIC_OPERAND_P (operand))
3366 && (GENERAL_REGS == ALL_REGS
3367 || !REG_P (operand)
3368 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3369 && reg_renumber[REGNO (operand)] < 0)))
3370 win = 1;
3371 /* Drop through into 'r' case. */
3373 case 'r':
3374 this_alternative[i]
3375 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3376 goto reg;
3378 default:
3379 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3381 #ifdef EXTRA_CONSTRAINT_STR
3382 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3384 if (force_reload)
3385 break;
3386 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3387 win = 1;
3388 /* If the address was already reloaded,
3389 we win as well. */
3390 else if (MEM_P (operand)
3391 && address_reloaded[i] == 1)
3392 win = 1;
3393 /* Likewise if the address will be reloaded because
3394 reg_equiv_address is nonzero. For reg_equiv_mem
3395 we have to check. */
3396 else if (REG_P (operand)
3397 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3398 && reg_renumber[REGNO (operand)] < 0
3399 && ((reg_equiv_mem[REGNO (operand)] != 0
3400 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3401 || (reg_equiv_address[REGNO (operand)] != 0)))
3402 win = 1;
3404 /* If we didn't already win, we can reload
3405 constants via force_const_mem, and other
3406 MEMs by reloading the address like for 'o'. */
3407 if (CONST_POOL_OK_P (operand)
3408 || MEM_P (operand))
3409 badop = 0;
3410 constmemok = 1;
3411 offmemok = 1;
3412 break;
3414 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3416 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3417 win = 1;
3419 /* If we didn't already win, we can reload
3420 the address into a base register. */
3421 this_alternative[i] = base_reg_class (VOIDmode,
3422 ADDRESS,
3423 SCRATCH);
3424 badop = 0;
3425 break;
3428 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3429 win = 1;
3430 #endif
3431 break;
3434 this_alternative[i]
3435 = (reg_class_subunion
3436 [this_alternative[i]]
3437 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3438 reg:
3439 if (GET_MODE (operand) == BLKmode)
3440 break;
3441 winreg = 1;
3442 if (REG_P (operand)
3443 && reg_fits_class_p (operand, this_alternative[i],
3444 offset, GET_MODE (recog_data.operand[i])))
3445 win = 1;
3446 break;
3448 while ((p += len), c);
3450 constraints[i] = p;
3452 /* If this operand could be handled with a reg,
3453 and some reg is allowed, then this operand can be handled. */
3454 if (winreg && this_alternative[i] != NO_REGS)
3455 badop = 0;
3457 /* Record which operands fit this alternative. */
3458 this_alternative_earlyclobber[i] = earlyclobber;
3459 if (win && ! force_reload)
3460 this_alternative_win[i] = 1;
3461 else if (did_match && ! force_reload)
3462 this_alternative_match_win[i] = 1;
3463 else
3465 int const_to_mem = 0;
3467 this_alternative_offmemok[i] = offmemok;
3468 losers++;
3469 if (badop)
3470 bad = 1;
3471 /* Alternative loses if it has no regs for a reg operand. */
3472 if (REG_P (operand)
3473 && this_alternative[i] == NO_REGS
3474 && this_alternative_matches[i] < 0)
3475 bad = 1;
3477 /* If this is a constant that is reloaded into the desired
3478 class by copying it to memory first, count that as another
3479 reload. This is consistent with other code and is
3480 required to avoid choosing another alternative when
3481 the constant is moved into memory by this function on
3482 an early reload pass. Note that the test here is
3483 precisely the same as in the code below that calls
3484 force_const_mem. */
3485 if (CONST_POOL_OK_P (operand)
3486 && ((PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
3487 == NO_REGS)
3488 || no_input_reloads)
3489 && operand_mode[i] != VOIDmode)
3491 const_to_mem = 1;
3492 if (this_alternative[i] != NO_REGS)
3493 losers++;
3496 /* Alternative loses if it requires a type of reload not
3497 permitted for this insn. We can always reload SCRATCH
3498 and objects with a REG_UNUSED note. */
3499 if (GET_CODE (operand) != SCRATCH
3500 && modified[i] != RELOAD_READ && no_output_reloads
3501 && ! find_reg_note (insn, REG_UNUSED, operand))
3502 bad = 1;
3503 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3504 && ! const_to_mem)
3505 bad = 1;
3507 /* If we can't reload this value at all, reject this
3508 alternative. Note that we could also lose due to
3509 LIMIT_RELOAD_CLASS, but we don't check that
3510 here. */
3512 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3514 if (PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
3515 == NO_REGS)
3516 reject = 600;
3518 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3519 if (operand_type[i] == RELOAD_FOR_OUTPUT
3520 && (PREFERRED_OUTPUT_RELOAD_CLASS (operand,
3521 this_alternative[i])
3522 == NO_REGS))
3523 reject = 600;
3524 #endif
3527 /* We prefer to reload pseudos over reloading other things,
3528 since such reloads may be able to be eliminated later.
3529 If we are reloading a SCRATCH, we won't be generating any
3530 insns, just using a register, so it is also preferred.
3531 So bump REJECT in other cases. Don't do this in the
3532 case where we are forcing a constant into memory and
3533 it will then win since we don't want to have a different
3534 alternative match then. */
3535 if (! (REG_P (operand)
3536 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3537 && GET_CODE (operand) != SCRATCH
3538 && ! (const_to_mem && constmemok))
3539 reject += 2;
3541 /* Input reloads can be inherited more often than output
3542 reloads can be removed, so penalize output reloads. */
3543 if (operand_type[i] != RELOAD_FOR_INPUT
3544 && GET_CODE (operand) != SCRATCH)
3545 reject++;
3548 /* If this operand is a pseudo register that didn't get a hard
3549 reg and this alternative accepts some register, see if the
3550 class that we want is a subset of the preferred class for this
3551 register. If not, but it intersects that class, use the
3552 preferred class instead. If it does not intersect the preferred
3553 class, show that usage of this alternative should be discouraged;
3554 it will be discouraged more still if the register is `preferred
3555 or nothing'. We do this because it increases the chance of
3556 reusing our spill register in a later insn and avoiding a pair
3557 of memory stores and loads.
3559 Don't bother with this if this alternative will accept this
3560 operand.
3562 Don't do this for a multiword operand, since it is only a
3563 small win and has the risk of requiring more spill registers,
3564 which could cause a large loss.
3566 Don't do this if the preferred class has only one register
3567 because we might otherwise exhaust the class. */
3569 if (! win && ! did_match
3570 && this_alternative[i] != NO_REGS
3571 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3572 && reg_class_size [(int) preferred_class[i]] > 0
3573 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3575 if (! reg_class_subset_p (this_alternative[i],
3576 preferred_class[i]))
3578 /* Since we don't have a way of forming the intersection,
3579 we just do something special if the preferred class
3580 is a subset of the class we have; that's the most
3581 common case anyway. */
3582 if (reg_class_subset_p (preferred_class[i],
3583 this_alternative[i]))
3584 this_alternative[i] = preferred_class[i];
3585 else
3586 reject += (2 + 2 * pref_or_nothing[i]);
3591 /* Now see if any output operands that are marked "earlyclobber"
3592 in this alternative conflict with any input operands
3593 or any memory addresses. */
3595 for (i = 0; i < noperands; i++)
3596 if (this_alternative_earlyclobber[i]
3597 && (this_alternative_win[i] || this_alternative_match_win[i]))
3599 struct decomposition early_data;
3601 early_data = decompose (recog_data.operand[i]);
3603 gcc_assert (modified[i] != RELOAD_READ);
3605 if (this_alternative[i] == NO_REGS)
3607 this_alternative_earlyclobber[i] = 0;
3608 gcc_assert (this_insn_is_asm);
3609 error_for_asm (this_insn,
3610 "%<&%> constraint used with no register class");
3613 for (j = 0; j < noperands; j++)
3614 /* Is this an input operand or a memory ref? */
3615 if ((MEM_P (recog_data.operand[j])
3616 || modified[j] != RELOAD_WRITE)
3617 && j != i
3618 /* Ignore things like match_operator operands. */
3619 && *recog_data.constraints[j] != 0
3620 /* Don't count an input operand that is constrained to match
3621 the early clobber operand. */
3622 && ! (this_alternative_matches[j] == i
3623 && rtx_equal_p (recog_data.operand[i],
3624 recog_data.operand[j]))
3625 /* Is it altered by storing the earlyclobber operand? */
3626 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3627 early_data))
3629 /* If the output is in a non-empty few-regs class,
3630 it's costly to reload it, so reload the input instead. */
3631 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3632 && (REG_P (recog_data.operand[j])
3633 || GET_CODE (recog_data.operand[j]) == SUBREG))
3635 losers++;
3636 this_alternative_win[j] = 0;
3637 this_alternative_match_win[j] = 0;
3639 else
3640 break;
3642 /* If an earlyclobber operand conflicts with something,
3643 it must be reloaded, so request this and count the cost. */
3644 if (j != noperands)
3646 losers++;
3647 this_alternative_win[i] = 0;
3648 this_alternative_match_win[j] = 0;
3649 for (j = 0; j < noperands; j++)
3650 if (this_alternative_matches[j] == i
3651 && this_alternative_match_win[j])
3653 this_alternative_win[j] = 0;
3654 this_alternative_match_win[j] = 0;
3655 losers++;
3660 /* If one alternative accepts all the operands, no reload required,
3661 choose that alternative; don't consider the remaining ones. */
3662 if (losers == 0)
3664 /* Unswap these so that they are never swapped at `finish'. */
3665 if (commutative >= 0)
3667 recog_data.operand[commutative] = substed_operand[commutative];
3668 recog_data.operand[commutative + 1]
3669 = substed_operand[commutative + 1];
3671 for (i = 0; i < noperands; i++)
3673 goal_alternative_win[i] = this_alternative_win[i];
3674 goal_alternative_match_win[i] = this_alternative_match_win[i];
3675 goal_alternative[i] = this_alternative[i];
3676 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3677 goal_alternative_matches[i] = this_alternative_matches[i];
3678 goal_alternative_earlyclobber[i]
3679 = this_alternative_earlyclobber[i];
3681 goal_alternative_number = this_alternative_number;
3682 goal_alternative_swapped = swapped;
3683 goal_earlyclobber = this_earlyclobber;
3684 goto finish;
3687 /* REJECT, set by the ! and ? constraint characters and when a register
3688 would be reloaded into a non-preferred class, discourages the use of
3689 this alternative for a reload goal. REJECT is incremented by six
3690 for each ? and two for each non-preferred class. */
3691 losers = losers * 6 + reject;
3693 /* If this alternative can be made to work by reloading,
3694 and it needs less reloading than the others checked so far,
3695 record it as the chosen goal for reloading. */
3696 if (! bad && best > losers)
3698 for (i = 0; i < noperands; i++)
3700 goal_alternative[i] = this_alternative[i];
3701 goal_alternative_win[i] = this_alternative_win[i];
3702 goal_alternative_match_win[i] = this_alternative_match_win[i];
3703 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3704 goal_alternative_matches[i] = this_alternative_matches[i];
3705 goal_alternative_earlyclobber[i]
3706 = this_alternative_earlyclobber[i];
3708 goal_alternative_swapped = swapped;
3709 best = losers;
3710 goal_alternative_number = this_alternative_number;
3711 goal_earlyclobber = this_earlyclobber;
3715 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3716 then we need to try each alternative twice,
3717 the second time matching those two operands
3718 as if we had exchanged them.
3719 To do this, really exchange them in operands.
3721 If we have just tried the alternatives the second time,
3722 return operands to normal and drop through. */
3724 if (commutative >= 0)
3726 swapped = !swapped;
3727 if (swapped)
3729 enum reg_class tclass;
3730 int t;
3732 recog_data.operand[commutative] = substed_operand[commutative + 1];
3733 recog_data.operand[commutative + 1] = substed_operand[commutative];
3734 /* Swap the duplicates too. */
3735 for (i = 0; i < recog_data.n_dups; i++)
3736 if (recog_data.dup_num[i] == commutative
3737 || recog_data.dup_num[i] == commutative + 1)
3738 *recog_data.dup_loc[i]
3739 = recog_data.operand[(int) recog_data.dup_num[i]];
3741 tclass = preferred_class[commutative];
3742 preferred_class[commutative] = preferred_class[commutative + 1];
3743 preferred_class[commutative + 1] = tclass;
3745 t = pref_or_nothing[commutative];
3746 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3747 pref_or_nothing[commutative + 1] = t;
3749 t = address_reloaded[commutative];
3750 address_reloaded[commutative] = address_reloaded[commutative + 1];
3751 address_reloaded[commutative + 1] = t;
3753 memcpy (constraints, recog_data.constraints,
3754 noperands * sizeof (const char *));
3755 goto try_swapped;
3757 else
3759 recog_data.operand[commutative] = substed_operand[commutative];
3760 recog_data.operand[commutative + 1]
3761 = substed_operand[commutative + 1];
3762 /* Unswap the duplicates too. */
3763 for (i = 0; i < recog_data.n_dups; i++)
3764 if (recog_data.dup_num[i] == commutative
3765 || recog_data.dup_num[i] == commutative + 1)
3766 *recog_data.dup_loc[i]
3767 = recog_data.operand[(int) recog_data.dup_num[i]];
3771 /* The operands don't meet the constraints.
3772 goal_alternative describes the alternative
3773 that we could reach by reloading the fewest operands.
3774 Reload so as to fit it. */
3776 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3778 /* No alternative works with reloads?? */
3779 if (insn_code_number >= 0)
3780 fatal_insn ("unable to generate reloads for:", insn);
3781 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3782 /* Avoid further trouble with this insn. */
3783 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3784 n_reloads = 0;
3785 return 0;
3788 /* Jump to `finish' from above if all operands are valid already.
3789 In that case, goal_alternative_win is all 1. */
3790 finish:
3792 /* Right now, for any pair of operands I and J that are required to match,
3793 with I < J,
3794 goal_alternative_matches[J] is I.
3795 Set up goal_alternative_matched as the inverse function:
3796 goal_alternative_matched[I] = J. */
3798 for (i = 0; i < noperands; i++)
3799 goal_alternative_matched[i] = -1;
3801 for (i = 0; i < noperands; i++)
3802 if (! goal_alternative_win[i]
3803 && goal_alternative_matches[i] >= 0)
3804 goal_alternative_matched[goal_alternative_matches[i]] = i;
3806 for (i = 0; i < noperands; i++)
3807 goal_alternative_win[i] |= goal_alternative_match_win[i];
3809 /* If the best alternative is with operands 1 and 2 swapped,
3810 consider them swapped before reporting the reloads. Update the
3811 operand numbers of any reloads already pushed. */
3813 if (goal_alternative_swapped)
3815 rtx tem;
3817 tem = substed_operand[commutative];
3818 substed_operand[commutative] = substed_operand[commutative + 1];
3819 substed_operand[commutative + 1] = tem;
3820 tem = recog_data.operand[commutative];
3821 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3822 recog_data.operand[commutative + 1] = tem;
3823 tem = *recog_data.operand_loc[commutative];
3824 *recog_data.operand_loc[commutative]
3825 = *recog_data.operand_loc[commutative + 1];
3826 *recog_data.operand_loc[commutative + 1] = tem;
3828 for (i = 0; i < n_reloads; i++)
3830 if (rld[i].opnum == commutative)
3831 rld[i].opnum = commutative + 1;
3832 else if (rld[i].opnum == commutative + 1)
3833 rld[i].opnum = commutative;
3837 for (i = 0; i < noperands; i++)
3839 operand_reloadnum[i] = -1;
3841 /* If this is an earlyclobber operand, we need to widen the scope.
3842 The reload must remain valid from the start of the insn being
3843 reloaded until after the operand is stored into its destination.
3844 We approximate this with RELOAD_OTHER even though we know that we
3845 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3847 One special case that is worth checking is when we have an
3848 output that is earlyclobber but isn't used past the insn (typically
3849 a SCRATCH). In this case, we only need have the reload live
3850 through the insn itself, but not for any of our input or output
3851 reloads.
3852 But we must not accidentally narrow the scope of an existing
3853 RELOAD_OTHER reload - leave these alone.
3855 In any case, anything needed to address this operand can remain
3856 however they were previously categorized. */
3858 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3859 operand_type[i]
3860 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3861 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3864 /* Any constants that aren't allowed and can't be reloaded
3865 into registers are here changed into memory references. */
3866 for (i = 0; i < noperands; i++)
3867 if (! goal_alternative_win[i])
3869 rtx op = recog_data.operand[i];
3870 rtx subreg = NULL_RTX;
3871 rtx plus = NULL_RTX;
3872 enum machine_mode mode = operand_mode[i];
3874 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3875 push_reload so we have to let them pass here. */
3876 if (GET_CODE (op) == SUBREG)
3878 subreg = op;
3879 op = SUBREG_REG (op);
3880 mode = GET_MODE (op);
3883 if (GET_CODE (op) == PLUS)
3885 plus = op;
3886 op = XEXP (op, 1);
3889 if (CONST_POOL_OK_P (op)
3890 && ((PREFERRED_RELOAD_CLASS (op,
3891 (enum reg_class) goal_alternative[i])
3892 == NO_REGS)
3893 || no_input_reloads)
3894 && mode != VOIDmode)
3896 int this_address_reloaded;
3897 rtx tem = force_const_mem (mode, op);
3899 /* If we stripped a SUBREG or a PLUS above add it back. */
3900 if (plus != NULL_RTX)
3901 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3903 if (subreg != NULL_RTX)
3904 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3906 this_address_reloaded = 0;
3907 substed_operand[i] = recog_data.operand[i]
3908 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3909 0, insn, &this_address_reloaded);
3911 /* If the alternative accepts constant pool refs directly
3912 there will be no reload needed at all. */
3913 if (plus == NULL_RTX
3914 && subreg == NULL_RTX
3915 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3916 ? substed_operand[i]
3917 : NULL,
3918 recog_data.constraints[i],
3919 goal_alternative_number))
3920 goal_alternative_win[i] = 1;
3924 /* Record the values of the earlyclobber operands for the caller. */
3925 if (goal_earlyclobber)
3926 for (i = 0; i < noperands; i++)
3927 if (goal_alternative_earlyclobber[i])
3928 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3930 /* Now record reloads for all the operands that need them. */
3931 for (i = 0; i < noperands; i++)
3932 if (! goal_alternative_win[i])
3934 /* Operands that match previous ones have already been handled. */
3935 if (goal_alternative_matches[i] >= 0)
3937 /* Handle an operand with a nonoffsettable address
3938 appearing where an offsettable address will do
3939 by reloading the address into a base register.
3941 ??? We can also do this when the operand is a register and
3942 reg_equiv_mem is not offsettable, but this is a bit tricky,
3943 so we don't bother with it. It may not be worth doing. */
3944 else if (goal_alternative_matched[i] == -1
3945 && goal_alternative_offmemok[i]
3946 && MEM_P (recog_data.operand[i]))
3948 /* If the address to be reloaded is a VOIDmode constant,
3949 use Pmode as mode of the reload register, as would have
3950 been done by find_reloads_address. */
3951 enum machine_mode address_mode;
3952 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3953 if (address_mode == VOIDmode)
3954 address_mode = Pmode;
3956 operand_reloadnum[i]
3957 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3958 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3959 base_reg_class (VOIDmode, MEM, SCRATCH),
3960 address_mode,
3961 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3962 rld[operand_reloadnum[i]].inc
3963 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3965 /* If this operand is an output, we will have made any
3966 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3967 now we are treating part of the operand as an input, so
3968 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3970 if (modified[i] == RELOAD_WRITE)
3972 for (j = 0; j < n_reloads; j++)
3974 if (rld[j].opnum == i)
3976 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3977 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3978 else if (rld[j].when_needed
3979 == RELOAD_FOR_OUTADDR_ADDRESS)
3980 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3985 else if (goal_alternative_matched[i] == -1)
3987 operand_reloadnum[i]
3988 = push_reload ((modified[i] != RELOAD_WRITE
3989 ? recog_data.operand[i] : 0),
3990 (modified[i] != RELOAD_READ
3991 ? recog_data.operand[i] : 0),
3992 (modified[i] != RELOAD_WRITE
3993 ? recog_data.operand_loc[i] : 0),
3994 (modified[i] != RELOAD_READ
3995 ? recog_data.operand_loc[i] : 0),
3996 (enum reg_class) goal_alternative[i],
3997 (modified[i] == RELOAD_WRITE
3998 ? VOIDmode : operand_mode[i]),
3999 (modified[i] == RELOAD_READ
4000 ? VOIDmode : operand_mode[i]),
4001 (insn_code_number < 0 ? 0
4002 : insn_data[insn_code_number].operand[i].strict_low),
4003 0, i, operand_type[i]);
4005 /* In a matching pair of operands, one must be input only
4006 and the other must be output only.
4007 Pass the input operand as IN and the other as OUT. */
4008 else if (modified[i] == RELOAD_READ
4009 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4011 operand_reloadnum[i]
4012 = push_reload (recog_data.operand[i],
4013 recog_data.operand[goal_alternative_matched[i]],
4014 recog_data.operand_loc[i],
4015 recog_data.operand_loc[goal_alternative_matched[i]],
4016 (enum reg_class) goal_alternative[i],
4017 operand_mode[i],
4018 operand_mode[goal_alternative_matched[i]],
4019 0, 0, i, RELOAD_OTHER);
4020 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4022 else if (modified[i] == RELOAD_WRITE
4023 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4025 operand_reloadnum[goal_alternative_matched[i]]
4026 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4027 recog_data.operand[i],
4028 recog_data.operand_loc[goal_alternative_matched[i]],
4029 recog_data.operand_loc[i],
4030 (enum reg_class) goal_alternative[i],
4031 operand_mode[goal_alternative_matched[i]],
4032 operand_mode[i],
4033 0, 0, i, RELOAD_OTHER);
4034 operand_reloadnum[i] = output_reloadnum;
4036 else
4038 gcc_assert (insn_code_number < 0);
4039 error_for_asm (insn, "inconsistent operand constraints "
4040 "in an %<asm%>");
4041 /* Avoid further trouble with this insn. */
4042 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4043 n_reloads = 0;
4044 return 0;
4047 else if (goal_alternative_matched[i] < 0
4048 && goal_alternative_matches[i] < 0
4049 && address_operand_reloaded[i] != 1
4050 && optimize)
4052 /* For each non-matching operand that's a MEM or a pseudo-register
4053 that didn't get a hard register, make an optional reload.
4054 This may get done even if the insn needs no reloads otherwise. */
4056 rtx operand = recog_data.operand[i];
4058 while (GET_CODE (operand) == SUBREG)
4059 operand = SUBREG_REG (operand);
4060 if ((MEM_P (operand)
4061 || (REG_P (operand)
4062 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4063 /* If this is only for an output, the optional reload would not
4064 actually cause us to use a register now, just note that
4065 something is stored here. */
4066 && ((enum reg_class) goal_alternative[i] != NO_REGS
4067 || modified[i] == RELOAD_WRITE)
4068 && ! no_input_reloads
4069 /* An optional output reload might allow to delete INSN later.
4070 We mustn't make in-out reloads on insns that are not permitted
4071 output reloads.
4072 If this is an asm, we can't delete it; we must not even call
4073 push_reload for an optional output reload in this case,
4074 because we can't be sure that the constraint allows a register,
4075 and push_reload verifies the constraints for asms. */
4076 && (modified[i] == RELOAD_READ
4077 || (! no_output_reloads && ! this_insn_is_asm)))
4078 operand_reloadnum[i]
4079 = push_reload ((modified[i] != RELOAD_WRITE
4080 ? recog_data.operand[i] : 0),
4081 (modified[i] != RELOAD_READ
4082 ? recog_data.operand[i] : 0),
4083 (modified[i] != RELOAD_WRITE
4084 ? recog_data.operand_loc[i] : 0),
4085 (modified[i] != RELOAD_READ
4086 ? recog_data.operand_loc[i] : 0),
4087 (enum reg_class) goal_alternative[i],
4088 (modified[i] == RELOAD_WRITE
4089 ? VOIDmode : operand_mode[i]),
4090 (modified[i] == RELOAD_READ
4091 ? VOIDmode : operand_mode[i]),
4092 (insn_code_number < 0 ? 0
4093 : insn_data[insn_code_number].operand[i].strict_low),
4094 1, i, operand_type[i]);
4095 /* If a memory reference remains (either as a MEM or a pseudo that
4096 did not get a hard register), yet we can't make an optional
4097 reload, check if this is actually a pseudo register reference;
4098 we then need to emit a USE and/or a CLOBBER so that reload
4099 inheritance will do the right thing. */
4100 else if (replace
4101 && (MEM_P (operand)
4102 || (REG_P (operand)
4103 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4104 && reg_renumber [REGNO (operand)] < 0)))
4106 operand = *recog_data.operand_loc[i];
4108 while (GET_CODE (operand) == SUBREG)
4109 operand = SUBREG_REG (operand);
4110 if (REG_P (operand))
4112 if (modified[i] != RELOAD_WRITE)
4113 /* We mark the USE with QImode so that we recognize
4114 it as one that can be safely deleted at the end
4115 of reload. */
4116 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4117 insn), QImode);
4118 if (modified[i] != RELOAD_READ)
4119 emit_insn_after (gen_clobber (operand), insn);
4123 else if (goal_alternative_matches[i] >= 0
4124 && goal_alternative_win[goal_alternative_matches[i]]
4125 && modified[i] == RELOAD_READ
4126 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4127 && ! no_input_reloads && ! no_output_reloads
4128 && optimize)
4130 /* Similarly, make an optional reload for a pair of matching
4131 objects that are in MEM or a pseudo that didn't get a hard reg. */
4133 rtx operand = recog_data.operand[i];
4135 while (GET_CODE (operand) == SUBREG)
4136 operand = SUBREG_REG (operand);
4137 if ((MEM_P (operand)
4138 || (REG_P (operand)
4139 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4140 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4141 != NO_REGS))
4142 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4143 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4144 recog_data.operand[i],
4145 recog_data.operand_loc[goal_alternative_matches[i]],
4146 recog_data.operand_loc[i],
4147 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4148 operand_mode[goal_alternative_matches[i]],
4149 operand_mode[i],
4150 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4153 /* Perform whatever substitutions on the operands we are supposed
4154 to make due to commutativity or replacement of registers
4155 with equivalent constants or memory slots. */
4157 for (i = 0; i < noperands; i++)
4159 /* We only do this on the last pass through reload, because it is
4160 possible for some data (like reg_equiv_address) to be changed during
4161 later passes. Moreover, we lose the opportunity to get a useful
4162 reload_{in,out}_reg when we do these replacements. */
4164 if (replace)
4166 rtx substitution = substed_operand[i];
4168 *recog_data.operand_loc[i] = substitution;
4170 /* If we're replacing an operand with a LABEL_REF, we need to
4171 make sure that there's a REG_LABEL_OPERAND note attached to
4172 this instruction. */
4173 if (GET_CODE (substitution) == LABEL_REF
4174 && !find_reg_note (insn, REG_LABEL_OPERAND,
4175 XEXP (substitution, 0))
4176 /* For a JUMP_P, if it was a branch target it must have
4177 already been recorded as such. */
4178 && (!JUMP_P (insn)
4179 || !label_is_jump_target_p (XEXP (substitution, 0),
4180 insn)))
4181 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4183 else
4184 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4187 /* If this insn pattern contains any MATCH_DUP's, make sure that
4188 they will be substituted if the operands they match are substituted.
4189 Also do now any substitutions we already did on the operands.
4191 Don't do this if we aren't making replacements because we might be
4192 propagating things allocated by frame pointer elimination into places
4193 it doesn't expect. */
4195 if (insn_code_number >= 0 && replace)
4196 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4198 int opno = recog_data.dup_num[i];
4199 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4200 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4203 #if 0
4204 /* This loses because reloading of prior insns can invalidate the equivalence
4205 (or at least find_equiv_reg isn't smart enough to find it any more),
4206 causing this insn to need more reload regs than it needed before.
4207 It may be too late to make the reload regs available.
4208 Now this optimization is done safely in choose_reload_regs. */
4210 /* For each reload of a reg into some other class of reg,
4211 search for an existing equivalent reg (same value now) in the right class.
4212 We can use it as long as we don't need to change its contents. */
4213 for (i = 0; i < n_reloads; i++)
4214 if (rld[i].reg_rtx == 0
4215 && rld[i].in != 0
4216 && REG_P (rld[i].in)
4217 && rld[i].out == 0)
4219 rld[i].reg_rtx
4220 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4221 static_reload_reg_p, 0, rld[i].inmode);
4222 /* Prevent generation of insn to load the value
4223 because the one we found already has the value. */
4224 if (rld[i].reg_rtx)
4225 rld[i].in = rld[i].reg_rtx;
4227 #endif
4229 /* If we detected error and replaced asm instruction by USE, forget about the
4230 reloads. */
4231 if (GET_CODE (PATTERN (insn)) == USE
4232 && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
4233 n_reloads = 0;
4235 /* Perhaps an output reload can be combined with another
4236 to reduce needs by one. */
4237 if (!goal_earlyclobber)
4238 combine_reloads ();
4240 /* If we have a pair of reloads for parts of an address, they are reloading
4241 the same object, the operands themselves were not reloaded, and they
4242 are for two operands that are supposed to match, merge the reloads and
4243 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4245 for (i = 0; i < n_reloads; i++)
4247 int k;
4249 for (j = i + 1; j < n_reloads; j++)
4250 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4251 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4252 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4253 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4254 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4255 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4256 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4257 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4258 && rtx_equal_p (rld[i].in, rld[j].in)
4259 && (operand_reloadnum[rld[i].opnum] < 0
4260 || rld[operand_reloadnum[rld[i].opnum]].optional)
4261 && (operand_reloadnum[rld[j].opnum] < 0
4262 || rld[operand_reloadnum[rld[j].opnum]].optional)
4263 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4264 || (goal_alternative_matches[rld[j].opnum]
4265 == rld[i].opnum)))
4267 for (k = 0; k < n_replacements; k++)
4268 if (replacements[k].what == j)
4269 replacements[k].what = i;
4271 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4272 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4273 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4274 else
4275 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4276 rld[j].in = 0;
4280 /* Scan all the reloads and update their type.
4281 If a reload is for the address of an operand and we didn't reload
4282 that operand, change the type. Similarly, change the operand number
4283 of a reload when two operands match. If a reload is optional, treat it
4284 as though the operand isn't reloaded.
4286 ??? This latter case is somewhat odd because if we do the optional
4287 reload, it means the object is hanging around. Thus we need only
4288 do the address reload if the optional reload was NOT done.
4290 Change secondary reloads to be the address type of their operand, not
4291 the normal type.
4293 If an operand's reload is now RELOAD_OTHER, change any
4294 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4295 RELOAD_FOR_OTHER_ADDRESS. */
4297 for (i = 0; i < n_reloads; i++)
4299 if (rld[i].secondary_p
4300 && rld[i].when_needed == operand_type[rld[i].opnum])
4301 rld[i].when_needed = address_type[rld[i].opnum];
4303 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4304 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4305 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4306 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4307 && (operand_reloadnum[rld[i].opnum] < 0
4308 || rld[operand_reloadnum[rld[i].opnum]].optional))
4310 /* If we have a secondary reload to go along with this reload,
4311 change its type to RELOAD_FOR_OPADDR_ADDR. */
4313 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4314 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4315 && rld[i].secondary_in_reload != -1)
4317 int secondary_in_reload = rld[i].secondary_in_reload;
4319 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4321 /* If there's a tertiary reload we have to change it also. */
4322 if (secondary_in_reload > 0
4323 && rld[secondary_in_reload].secondary_in_reload != -1)
4324 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4325 = RELOAD_FOR_OPADDR_ADDR;
4328 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4329 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4330 && rld[i].secondary_out_reload != -1)
4332 int secondary_out_reload = rld[i].secondary_out_reload;
4334 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4336 /* If there's a tertiary reload we have to change it also. */
4337 if (secondary_out_reload
4338 && rld[secondary_out_reload].secondary_out_reload != -1)
4339 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4340 = RELOAD_FOR_OPADDR_ADDR;
4343 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4344 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4345 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4346 else
4347 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4350 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4351 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4352 && operand_reloadnum[rld[i].opnum] >= 0
4353 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4354 == RELOAD_OTHER))
4355 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4357 if (goal_alternative_matches[rld[i].opnum] >= 0)
4358 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4361 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4362 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4363 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4365 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4366 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4367 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4368 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4369 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4370 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4371 This is complicated by the fact that a single operand can have more
4372 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4373 choose_reload_regs without affecting code quality, and cases that
4374 actually fail are extremely rare, so it turns out to be better to fix
4375 the problem here by not generating cases that choose_reload_regs will
4376 fail for. */
4377 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4378 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4379 a single operand.
4380 We can reduce the register pressure by exploiting that a
4381 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4382 does not conflict with any of them, if it is only used for the first of
4383 the RELOAD_FOR_X_ADDRESS reloads. */
4385 int first_op_addr_num = -2;
4386 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4387 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4388 int need_change = 0;
4389 /* We use last_op_addr_reload and the contents of the above arrays
4390 first as flags - -2 means no instance encountered, -1 means exactly
4391 one instance encountered.
4392 If more than one instance has been encountered, we store the reload
4393 number of the first reload of the kind in question; reload numbers
4394 are known to be non-negative. */
4395 for (i = 0; i < noperands; i++)
4396 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4397 for (i = n_reloads - 1; i >= 0; i--)
4399 switch (rld[i].when_needed)
4401 case RELOAD_FOR_OPERAND_ADDRESS:
4402 if (++first_op_addr_num >= 0)
4404 first_op_addr_num = i;
4405 need_change = 1;
4407 break;
4408 case RELOAD_FOR_INPUT_ADDRESS:
4409 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4411 first_inpaddr_num[rld[i].opnum] = i;
4412 need_change = 1;
4414 break;
4415 case RELOAD_FOR_OUTPUT_ADDRESS:
4416 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4418 first_outpaddr_num[rld[i].opnum] = i;
4419 need_change = 1;
4421 break;
4422 default:
4423 break;
4427 if (need_change)
4429 for (i = 0; i < n_reloads; i++)
4431 int first_num;
4432 enum reload_type type;
4434 switch (rld[i].when_needed)
4436 case RELOAD_FOR_OPADDR_ADDR:
4437 first_num = first_op_addr_num;
4438 type = RELOAD_FOR_OPERAND_ADDRESS;
4439 break;
4440 case RELOAD_FOR_INPADDR_ADDRESS:
4441 first_num = first_inpaddr_num[rld[i].opnum];
4442 type = RELOAD_FOR_INPUT_ADDRESS;
4443 break;
4444 case RELOAD_FOR_OUTADDR_ADDRESS:
4445 first_num = first_outpaddr_num[rld[i].opnum];
4446 type = RELOAD_FOR_OUTPUT_ADDRESS;
4447 break;
4448 default:
4449 continue;
4451 if (first_num < 0)
4452 continue;
4453 else if (i > first_num)
4454 rld[i].when_needed = type;
4455 else
4457 /* Check if the only TYPE reload that uses reload I is
4458 reload FIRST_NUM. */
4459 for (j = n_reloads - 1; j > first_num; j--)
4461 if (rld[j].when_needed == type
4462 && (rld[i].secondary_p
4463 ? rld[j].secondary_in_reload == i
4464 : reg_mentioned_p (rld[i].in, rld[j].in)))
4466 rld[i].when_needed = type;
4467 break;
4475 /* See if we have any reloads that are now allowed to be merged
4476 because we've changed when the reload is needed to
4477 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4478 check for the most common cases. */
4480 for (i = 0; i < n_reloads; i++)
4481 if (rld[i].in != 0 && rld[i].out == 0
4482 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4483 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4484 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4485 for (j = 0; j < n_reloads; j++)
4486 if (i != j && rld[j].in != 0 && rld[j].out == 0
4487 && rld[j].when_needed == rld[i].when_needed
4488 && MATCHES (rld[i].in, rld[j].in)
4489 && rld[i].rclass == rld[j].rclass
4490 && !rld[i].nocombine && !rld[j].nocombine
4491 && rld[i].reg_rtx == rld[j].reg_rtx)
4493 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4494 transfer_replacements (i, j);
4495 rld[j].in = 0;
4498 #ifdef HAVE_cc0
4499 /* If we made any reloads for addresses, see if they violate a
4500 "no input reloads" requirement for this insn. But loads that we
4501 do after the insn (such as for output addresses) are fine. */
4502 if (no_input_reloads)
4503 for (i = 0; i < n_reloads; i++)
4504 gcc_assert (rld[i].in == 0
4505 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4506 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4507 #endif
4509 /* Compute reload_mode and reload_nregs. */
4510 for (i = 0; i < n_reloads; i++)
4512 rld[i].mode
4513 = (rld[i].inmode == VOIDmode
4514 || (GET_MODE_SIZE (rld[i].outmode)
4515 > GET_MODE_SIZE (rld[i].inmode)))
4516 ? rld[i].outmode : rld[i].inmode;
4518 rld[i].nregs = CLASS_MAX_NREGS (rld[i].rclass, rld[i].mode);
4521 /* Special case a simple move with an input reload and a
4522 destination of a hard reg, if the hard reg is ok, use it. */
4523 for (i = 0; i < n_reloads; i++)
4524 if (rld[i].when_needed == RELOAD_FOR_INPUT
4525 && GET_CODE (PATTERN (insn)) == SET
4526 && REG_P (SET_DEST (PATTERN (insn)))
4527 && (SET_SRC (PATTERN (insn)) == rld[i].in
4528 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4529 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4531 rtx dest = SET_DEST (PATTERN (insn));
4532 unsigned int regno = REGNO (dest);
4534 if (regno < FIRST_PSEUDO_REGISTER
4535 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4536 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4538 int nr = hard_regno_nregs[regno][rld[i].mode];
4539 int ok = 1, nri;
4541 for (nri = 1; nri < nr; nri ++)
4542 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4543 ok = 0;
4545 if (ok)
4546 rld[i].reg_rtx = dest;
4550 return retval;
4553 /* Return true if alternative number ALTNUM in constraint-string
4554 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4555 MEM gives the reference if it didn't need any reloads, otherwise it
4556 is null. */
4558 static bool
4559 alternative_allows_const_pool_ref (rtx mem, const char *constraint, int altnum)
4561 int c;
4563 /* Skip alternatives before the one requested. */
4564 while (altnum > 0)
4566 while (*constraint++ != ',');
4567 altnum--;
4569 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4570 If one of them is present, this alternative accepts the result of
4571 passing a constant-pool reference through find_reloads_toplev.
4573 The same is true of extra memory constraints if the address
4574 was reloaded into a register. However, the target may elect
4575 to disallow the original constant address, forcing it to be
4576 reloaded into a register instead. */
4577 for (; (c = *constraint) && c != ',' && c != '#';
4578 constraint += CONSTRAINT_LEN (c, constraint))
4580 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4581 return true;
4582 #ifdef EXTRA_CONSTRAINT_STR
4583 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4584 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4585 return true;
4586 #endif
4588 return false;
4591 /* Scan X for memory references and scan the addresses for reloading.
4592 Also checks for references to "constant" regs that we want to eliminate
4593 and replaces them with the values they stand for.
4594 We may alter X destructively if it contains a reference to such.
4595 If X is just a constant reg, we return the equivalent value
4596 instead of X.
4598 IND_LEVELS says how many levels of indirect addressing this machine
4599 supports.
4601 OPNUM and TYPE identify the purpose of the reload.
4603 IS_SET_DEST is true if X is the destination of a SET, which is not
4604 appropriate to be replaced by a constant.
4606 INSN, if nonzero, is the insn in which we do the reload. It is used
4607 to determine if we may generate output reloads, and where to put USEs
4608 for pseudos that we have to replace with stack slots.
4610 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4611 result of find_reloads_address. */
4613 static rtx
4614 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4615 int ind_levels, int is_set_dest, rtx insn,
4616 int *address_reloaded)
4618 RTX_CODE code = GET_CODE (x);
4620 const char *fmt = GET_RTX_FORMAT (code);
4621 int i;
4622 int copied;
4624 if (code == REG)
4626 /* This code is duplicated for speed in find_reloads. */
4627 int regno = REGNO (x);
4628 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4629 x = reg_equiv_constant[regno];
4630 #if 0
4631 /* This creates (subreg (mem...)) which would cause an unnecessary
4632 reload of the mem. */
4633 else if (reg_equiv_mem[regno] != 0)
4634 x = reg_equiv_mem[regno];
4635 #endif
4636 else if (reg_equiv_memory_loc[regno]
4637 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4639 rtx mem = make_memloc (x, regno);
4640 if (reg_equiv_address[regno]
4641 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4643 /* If this is not a toplevel operand, find_reloads doesn't see
4644 this substitution. We have to emit a USE of the pseudo so
4645 that delete_output_reload can see it. */
4646 if (replace_reloads && recog_data.operand[opnum] != x)
4647 /* We mark the USE with QImode so that we recognize it
4648 as one that can be safely deleted at the end of
4649 reload. */
4650 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4651 QImode);
4652 x = mem;
4653 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4654 opnum, type, ind_levels, insn);
4655 if (!rtx_equal_p (x, mem))
4656 push_reg_equiv_alt_mem (regno, x);
4657 if (address_reloaded)
4658 *address_reloaded = i;
4661 return x;
4663 if (code == MEM)
4665 rtx tem = x;
4667 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4668 opnum, type, ind_levels, insn);
4669 if (address_reloaded)
4670 *address_reloaded = i;
4672 return tem;
4675 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4677 /* Check for SUBREG containing a REG that's equivalent to a
4678 constant. If the constant has a known value, truncate it
4679 right now. Similarly if we are extracting a single-word of a
4680 multi-word constant. If the constant is symbolic, allow it
4681 to be substituted normally. push_reload will strip the
4682 subreg later. The constant must not be VOIDmode, because we
4683 will lose the mode of the register (this should never happen
4684 because one of the cases above should handle it). */
4686 int regno = REGNO (SUBREG_REG (x));
4687 rtx tem;
4689 if (regno >= FIRST_PSEUDO_REGISTER
4690 && reg_renumber[regno] < 0
4691 && reg_equiv_constant[regno] != 0)
4693 tem =
4694 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4695 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4696 gcc_assert (tem);
4697 if (CONSTANT_P (tem) && !LEGITIMATE_CONSTANT_P (tem))
4699 tem = force_const_mem (GET_MODE (x), tem);
4700 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4701 &XEXP (tem, 0), opnum, type,
4702 ind_levels, insn);
4703 if (address_reloaded)
4704 *address_reloaded = i;
4706 return tem;
4709 /* If the subreg contains a reg that will be converted to a mem,
4710 convert the subreg to a narrower memref now.
4711 Otherwise, we would get (subreg (mem ...) ...),
4712 which would force reload of the mem.
4714 We also need to do this if there is an equivalent MEM that is
4715 not offsettable. In that case, alter_subreg would produce an
4716 invalid address on big-endian machines.
4718 For machines that extend byte loads, we must not reload using
4719 a wider mode if we have a paradoxical SUBREG. find_reloads will
4720 force a reload in that case. So we should not do anything here. */
4722 if (regno >= FIRST_PSEUDO_REGISTER
4723 #ifdef LOAD_EXTEND_OP
4724 && (GET_MODE_SIZE (GET_MODE (x))
4725 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4726 #endif
4727 && (reg_equiv_address[regno] != 0
4728 || (reg_equiv_mem[regno] != 0
4729 && (! strict_memory_address_p (GET_MODE (x),
4730 XEXP (reg_equiv_mem[regno], 0))
4731 || ! offsettable_memref_p (reg_equiv_mem[regno])
4732 || num_not_at_initial_offset))))
4733 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4734 insn);
4737 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4739 if (fmt[i] == 'e')
4741 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4742 ind_levels, is_set_dest, insn,
4743 address_reloaded);
4744 /* If we have replaced a reg with it's equivalent memory loc -
4745 that can still be handled here e.g. if it's in a paradoxical
4746 subreg - we must make the change in a copy, rather than using
4747 a destructive change. This way, find_reloads can still elect
4748 not to do the change. */
4749 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4751 x = shallow_copy_rtx (x);
4752 copied = 1;
4754 XEXP (x, i) = new_part;
4757 return x;
4760 /* Return a mem ref for the memory equivalent of reg REGNO.
4761 This mem ref is not shared with anything. */
4763 static rtx
4764 make_memloc (rtx ad, int regno)
4766 /* We must rerun eliminate_regs, in case the elimination
4767 offsets have changed. */
4768 rtx tem
4769 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], VOIDmode, NULL_RTX),
4772 /* If TEM might contain a pseudo, we must copy it to avoid
4773 modifying it when we do the substitution for the reload. */
4774 if (rtx_varies_p (tem, 0))
4775 tem = copy_rtx (tem);
4777 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4778 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4780 /* Copy the result if it's still the same as the equivalence, to avoid
4781 modifying it when we do the substitution for the reload. */
4782 if (tem == reg_equiv_memory_loc[regno])
4783 tem = copy_rtx (tem);
4784 return tem;
4787 /* Returns true if AD could be turned into a valid memory reference
4788 to mode MODE by reloading the part pointed to by PART into a
4789 register. */
4791 static int
4792 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4794 int retv;
4795 rtx tem = *part;
4796 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4798 *part = reg;
4799 retv = memory_address_p (mode, ad);
4800 *part = tem;
4802 return retv;
4805 /* Record all reloads needed for handling memory address AD
4806 which appears in *LOC in a memory reference to mode MODE
4807 which itself is found in location *MEMREFLOC.
4808 Note that we take shortcuts assuming that no multi-reg machine mode
4809 occurs as part of an address.
4811 OPNUM and TYPE specify the purpose of this reload.
4813 IND_LEVELS says how many levels of indirect addressing this machine
4814 supports.
4816 INSN, if nonzero, is the insn in which we do the reload. It is used
4817 to determine if we may generate output reloads, and where to put USEs
4818 for pseudos that we have to replace with stack slots.
4820 Value is one if this address is reloaded or replaced as a whole; it is
4821 zero if the top level of this address was not reloaded or replaced, and
4822 it is -1 if it may or may not have been reloaded or replaced.
4824 Note that there is no verification that the address will be valid after
4825 this routine does its work. Instead, we rely on the fact that the address
4826 was valid when reload started. So we need only undo things that reload
4827 could have broken. These are wrong register types, pseudos not allocated
4828 to a hard register, and frame pointer elimination. */
4830 static int
4831 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4832 rtx *loc, int opnum, enum reload_type type,
4833 int ind_levels, rtx insn)
4835 int regno;
4836 int removed_and = 0;
4837 int op_index;
4838 rtx tem;
4840 /* If the address is a register, see if it is a legitimate address and
4841 reload if not. We first handle the cases where we need not reload
4842 or where we must reload in a non-standard way. */
4844 if (REG_P (ad))
4846 regno = REGNO (ad);
4848 if (reg_equiv_constant[regno] != 0)
4850 find_reloads_address_part (reg_equiv_constant[regno], loc,
4851 base_reg_class (mode, MEM, SCRATCH),
4852 GET_MODE (ad), opnum, type, ind_levels);
4853 return 1;
4856 tem = reg_equiv_memory_loc[regno];
4857 if (tem != 0)
4859 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4861 tem = make_memloc (ad, regno);
4862 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4864 rtx orig = tem;
4866 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4867 &XEXP (tem, 0), opnum,
4868 ADDR_TYPE (type), ind_levels, insn);
4869 if (!rtx_equal_p (tem, orig))
4870 push_reg_equiv_alt_mem (regno, tem);
4872 /* We can avoid a reload if the register's equivalent memory
4873 expression is valid as an indirect memory address.
4874 But not all addresses are valid in a mem used as an indirect
4875 address: only reg or reg+constant. */
4877 if (ind_levels > 0
4878 && strict_memory_address_p (mode, tem)
4879 && (REG_P (XEXP (tem, 0))
4880 || (GET_CODE (XEXP (tem, 0)) == PLUS
4881 && REG_P (XEXP (XEXP (tem, 0), 0))
4882 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4884 /* TEM is not the same as what we'll be replacing the
4885 pseudo with after reload, put a USE in front of INSN
4886 in the final reload pass. */
4887 if (replace_reloads
4888 && num_not_at_initial_offset
4889 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4891 *loc = tem;
4892 /* We mark the USE with QImode so that we
4893 recognize it as one that can be safely
4894 deleted at the end of reload. */
4895 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4896 insn), QImode);
4898 /* This doesn't really count as replacing the address
4899 as a whole, since it is still a memory access. */
4901 return 0;
4903 ad = tem;
4907 /* The only remaining case where we can avoid a reload is if this is a
4908 hard register that is valid as a base register and which is not the
4909 subject of a CLOBBER in this insn. */
4911 else if (regno < FIRST_PSEUDO_REGISTER
4912 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4913 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4914 return 0;
4916 /* If we do not have one of the cases above, we must do the reload. */
4917 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4918 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4919 return 1;
4922 if (strict_memory_address_p (mode, ad))
4924 /* The address appears valid, so reloads are not needed.
4925 But the address may contain an eliminable register.
4926 This can happen because a machine with indirect addressing
4927 may consider a pseudo register by itself a valid address even when
4928 it has failed to get a hard reg.
4929 So do a tree-walk to find and eliminate all such regs. */
4931 /* But first quickly dispose of a common case. */
4932 if (GET_CODE (ad) == PLUS
4933 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4934 && REG_P (XEXP (ad, 0))
4935 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4936 return 0;
4938 subst_reg_equivs_changed = 0;
4939 *loc = subst_reg_equivs (ad, insn);
4941 if (! subst_reg_equivs_changed)
4942 return 0;
4944 /* Check result for validity after substitution. */
4945 if (strict_memory_address_p (mode, ad))
4946 return 0;
4949 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4952 if (memrefloc)
4954 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4955 ind_levels, win);
4957 break;
4958 win:
4959 *memrefloc = copy_rtx (*memrefloc);
4960 XEXP (*memrefloc, 0) = ad;
4961 move_replacements (&ad, &XEXP (*memrefloc, 0));
4962 return -1;
4964 while (0);
4965 #endif
4967 /* The address is not valid. We have to figure out why. First see if
4968 we have an outer AND and remove it if so. Then analyze what's inside. */
4970 if (GET_CODE (ad) == AND)
4972 removed_and = 1;
4973 loc = &XEXP (ad, 0);
4974 ad = *loc;
4977 /* One possibility for why the address is invalid is that it is itself
4978 a MEM. This can happen when the frame pointer is being eliminated, a
4979 pseudo is not allocated to a hard register, and the offset between the
4980 frame and stack pointers is not its initial value. In that case the
4981 pseudo will have been replaced by a MEM referring to the
4982 stack pointer. */
4983 if (MEM_P (ad))
4985 /* First ensure that the address in this MEM is valid. Then, unless
4986 indirect addresses are valid, reload the MEM into a register. */
4987 tem = ad;
4988 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4989 opnum, ADDR_TYPE (type),
4990 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4992 /* If tem was changed, then we must create a new memory reference to
4993 hold it and store it back into memrefloc. */
4994 if (tem != ad && memrefloc)
4996 *memrefloc = copy_rtx (*memrefloc);
4997 copy_replacements (tem, XEXP (*memrefloc, 0));
4998 loc = &XEXP (*memrefloc, 0);
4999 if (removed_and)
5000 loc = &XEXP (*loc, 0);
5003 /* Check similar cases as for indirect addresses as above except
5004 that we can allow pseudos and a MEM since they should have been
5005 taken care of above. */
5007 if (ind_levels == 0
5008 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5009 || MEM_P (XEXP (tem, 0))
5010 || ! (REG_P (XEXP (tem, 0))
5011 || (GET_CODE (XEXP (tem, 0)) == PLUS
5012 && REG_P (XEXP (XEXP (tem, 0), 0))
5013 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
5015 /* Must use TEM here, not AD, since it is the one that will
5016 have any subexpressions reloaded, if needed. */
5017 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5018 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
5019 VOIDmode, 0,
5020 0, opnum, type);
5021 return ! removed_and;
5023 else
5024 return 0;
5027 /* If we have address of a stack slot but it's not valid because the
5028 displacement is too large, compute the sum in a register.
5029 Handle all base registers here, not just fp/ap/sp, because on some
5030 targets (namely SH) we can also get too large displacements from
5031 big-endian corrections. */
5032 else if (GET_CODE (ad) == PLUS
5033 && REG_P (XEXP (ad, 0))
5034 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5035 && GET_CODE (XEXP (ad, 1)) == CONST_INT
5036 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
5037 CONST_INT))
5040 /* Unshare the MEM rtx so we can safely alter it. */
5041 if (memrefloc)
5043 *memrefloc = copy_rtx (*memrefloc);
5044 loc = &XEXP (*memrefloc, 0);
5045 if (removed_and)
5046 loc = &XEXP (*loc, 0);
5049 if (double_reg_address_ok)
5051 /* Unshare the sum as well. */
5052 *loc = ad = copy_rtx (ad);
5054 /* Reload the displacement into an index reg.
5055 We assume the frame pointer or arg pointer is a base reg. */
5056 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5057 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5058 type, ind_levels);
5059 return 0;
5061 else
5063 /* If the sum of two regs is not necessarily valid,
5064 reload the sum into a base reg.
5065 That will at least work. */
5066 find_reloads_address_part (ad, loc,
5067 base_reg_class (mode, MEM, SCRATCH),
5068 Pmode, opnum, type, ind_levels);
5070 return ! removed_and;
5073 /* If we have an indexed stack slot, there are three possible reasons why
5074 it might be invalid: The index might need to be reloaded, the address
5075 might have been made by frame pointer elimination and hence have a
5076 constant out of range, or both reasons might apply.
5078 We can easily check for an index needing reload, but even if that is the
5079 case, we might also have an invalid constant. To avoid making the
5080 conservative assumption and requiring two reloads, we see if this address
5081 is valid when not interpreted strictly. If it is, the only problem is
5082 that the index needs a reload and find_reloads_address_1 will take care
5083 of it.
5085 Handle all base registers here, not just fp/ap/sp, because on some
5086 targets (namely SPARC) we can also get invalid addresses from preventive
5087 subreg big-endian corrections made by find_reloads_toplev. We
5088 can also get expressions involving LO_SUM (rather than PLUS) from
5089 find_reloads_subreg_address.
5091 If we decide to do something, it must be that `double_reg_address_ok'
5092 is true. We generate a reload of the base register + constant and
5093 rework the sum so that the reload register will be added to the index.
5094 This is safe because we know the address isn't shared.
5096 We check for the base register as both the first and second operand of
5097 the innermost PLUS and/or LO_SUM. */
5099 for (op_index = 0; op_index < 2; ++op_index)
5101 rtx operand, addend;
5102 enum rtx_code inner_code;
5104 if (GET_CODE (ad) != PLUS)
5105 continue;
5107 inner_code = GET_CODE (XEXP (ad, 0));
5108 if (!(GET_CODE (ad) == PLUS
5109 && GET_CODE (XEXP (ad, 1)) == CONST_INT
5110 && (inner_code == PLUS || inner_code == LO_SUM)))
5111 continue;
5113 operand = XEXP (XEXP (ad, 0), op_index);
5114 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5115 continue;
5117 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5119 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5120 GET_CODE (addend))
5121 || operand == frame_pointer_rtx
5122 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5123 || operand == hard_frame_pointer_rtx
5124 #endif
5125 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5126 || operand == arg_pointer_rtx
5127 #endif
5128 || operand == stack_pointer_rtx)
5129 && ! maybe_memory_address_p (mode, ad,
5130 &XEXP (XEXP (ad, 0), 1 - op_index)))
5132 rtx offset_reg;
5133 enum reg_class cls;
5135 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5137 /* Form the adjusted address. */
5138 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5139 ad = gen_rtx_PLUS (GET_MODE (ad),
5140 op_index == 0 ? offset_reg : addend,
5141 op_index == 0 ? addend : offset_reg);
5142 else
5143 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5144 op_index == 0 ? offset_reg : addend,
5145 op_index == 0 ? addend : offset_reg);
5146 *loc = ad;
5148 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5149 find_reloads_address_part (XEXP (ad, op_index),
5150 &XEXP (ad, op_index), cls,
5151 GET_MODE (ad), opnum, type, ind_levels);
5152 find_reloads_address_1 (mode,
5153 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5154 GET_CODE (XEXP (ad, op_index)),
5155 &XEXP (ad, 1 - op_index), opnum,
5156 type, 0, insn);
5158 return 0;
5162 /* See if address becomes valid when an eliminable register
5163 in a sum is replaced. */
5165 tem = ad;
5166 if (GET_CODE (ad) == PLUS)
5167 tem = subst_indexed_address (ad);
5168 if (tem != ad && strict_memory_address_p (mode, tem))
5170 /* Ok, we win that way. Replace any additional eliminable
5171 registers. */
5173 subst_reg_equivs_changed = 0;
5174 tem = subst_reg_equivs (tem, insn);
5176 /* Make sure that didn't make the address invalid again. */
5178 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5180 *loc = tem;
5181 return 0;
5185 /* If constants aren't valid addresses, reload the constant address
5186 into a register. */
5187 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5189 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5190 Unshare it so we can safely alter it. */
5191 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5192 && CONSTANT_POOL_ADDRESS_P (ad))
5194 *memrefloc = copy_rtx (*memrefloc);
5195 loc = &XEXP (*memrefloc, 0);
5196 if (removed_and)
5197 loc = &XEXP (*loc, 0);
5200 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5201 Pmode, opnum, type, ind_levels);
5202 return ! removed_and;
5205 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5206 ind_levels, insn);
5209 /* Find all pseudo regs appearing in AD
5210 that are eliminable in favor of equivalent values
5211 and do not have hard regs; replace them by their equivalents.
5212 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5213 front of it for pseudos that we have to replace with stack slots. */
5215 static rtx
5216 subst_reg_equivs (rtx ad, rtx insn)
5218 RTX_CODE code = GET_CODE (ad);
5219 int i;
5220 const char *fmt;
5222 switch (code)
5224 case HIGH:
5225 case CONST_INT:
5226 case CONST:
5227 case CONST_DOUBLE:
5228 case CONST_FIXED:
5229 case CONST_VECTOR:
5230 case SYMBOL_REF:
5231 case LABEL_REF:
5232 case PC:
5233 case CC0:
5234 return ad;
5236 case REG:
5238 int regno = REGNO (ad);
5240 if (reg_equiv_constant[regno] != 0)
5242 subst_reg_equivs_changed = 1;
5243 return reg_equiv_constant[regno];
5245 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5247 rtx mem = make_memloc (ad, regno);
5248 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5250 subst_reg_equivs_changed = 1;
5251 /* We mark the USE with QImode so that we recognize it
5252 as one that can be safely deleted at the end of
5253 reload. */
5254 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5255 QImode);
5256 return mem;
5260 return ad;
5262 case PLUS:
5263 /* Quickly dispose of a common case. */
5264 if (XEXP (ad, 0) == frame_pointer_rtx
5265 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5266 return ad;
5267 break;
5269 default:
5270 break;
5273 fmt = GET_RTX_FORMAT (code);
5274 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5275 if (fmt[i] == 'e')
5276 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5277 return ad;
5280 /* Compute the sum of X and Y, making canonicalizations assumed in an
5281 address, namely: sum constant integers, surround the sum of two
5282 constants with a CONST, put the constant as the second operand, and
5283 group the constant on the outermost sum.
5285 This routine assumes both inputs are already in canonical form. */
5288 form_sum (rtx x, rtx y)
5290 rtx tem;
5291 enum machine_mode mode = GET_MODE (x);
5293 if (mode == VOIDmode)
5294 mode = GET_MODE (y);
5296 if (mode == VOIDmode)
5297 mode = Pmode;
5299 if (GET_CODE (x) == CONST_INT)
5300 return plus_constant (y, INTVAL (x));
5301 else if (GET_CODE (y) == CONST_INT)
5302 return plus_constant (x, INTVAL (y));
5303 else if (CONSTANT_P (x))
5304 tem = x, x = y, y = tem;
5306 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5307 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5309 /* Note that if the operands of Y are specified in the opposite
5310 order in the recursive calls below, infinite recursion will occur. */
5311 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5312 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5314 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5315 constant will have been placed second. */
5316 if (CONSTANT_P (x) && CONSTANT_P (y))
5318 if (GET_CODE (x) == CONST)
5319 x = XEXP (x, 0);
5320 if (GET_CODE (y) == CONST)
5321 y = XEXP (y, 0);
5323 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5326 return gen_rtx_PLUS (mode, x, y);
5329 /* If ADDR is a sum containing a pseudo register that should be
5330 replaced with a constant (from reg_equiv_constant),
5331 return the result of doing so, and also apply the associative
5332 law so that the result is more likely to be a valid address.
5333 (But it is not guaranteed to be one.)
5335 Note that at most one register is replaced, even if more are
5336 replaceable. Also, we try to put the result into a canonical form
5337 so it is more likely to be a valid address.
5339 In all other cases, return ADDR. */
5341 static rtx
5342 subst_indexed_address (rtx addr)
5344 rtx op0 = 0, op1 = 0, op2 = 0;
5345 rtx tem;
5346 int regno;
5348 if (GET_CODE (addr) == PLUS)
5350 /* Try to find a register to replace. */
5351 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5352 if (REG_P (op0)
5353 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5354 && reg_renumber[regno] < 0
5355 && reg_equiv_constant[regno] != 0)
5356 op0 = reg_equiv_constant[regno];
5357 else if (REG_P (op1)
5358 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5359 && reg_renumber[regno] < 0
5360 && reg_equiv_constant[regno] != 0)
5361 op1 = reg_equiv_constant[regno];
5362 else if (GET_CODE (op0) == PLUS
5363 && (tem = subst_indexed_address (op0)) != op0)
5364 op0 = tem;
5365 else if (GET_CODE (op1) == PLUS
5366 && (tem = subst_indexed_address (op1)) != op1)
5367 op1 = tem;
5368 else
5369 return addr;
5371 /* Pick out up to three things to add. */
5372 if (GET_CODE (op1) == PLUS)
5373 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5374 else if (GET_CODE (op0) == PLUS)
5375 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5377 /* Compute the sum. */
5378 if (op2 != 0)
5379 op1 = form_sum (op1, op2);
5380 if (op1 != 0)
5381 op0 = form_sum (op0, op1);
5383 return op0;
5385 return addr;
5388 /* Update the REG_INC notes for an insn. It updates all REG_INC
5389 notes for the instruction which refer to REGNO the to refer
5390 to the reload number.
5392 INSN is the insn for which any REG_INC notes need updating.
5394 REGNO is the register number which has been reloaded.
5396 RELOADNUM is the reload number. */
5398 static void
5399 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5400 int reloadnum ATTRIBUTE_UNUSED)
5402 #ifdef AUTO_INC_DEC
5403 rtx link;
5405 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5406 if (REG_NOTE_KIND (link) == REG_INC
5407 && (int) REGNO (XEXP (link, 0)) == regno)
5408 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5409 #endif
5412 /* Record the pseudo registers we must reload into hard registers in a
5413 subexpression of a would-be memory address, X referring to a value
5414 in mode MODE. (This function is not called if the address we find
5415 is strictly valid.)
5417 CONTEXT = 1 means we are considering regs as index regs,
5418 = 0 means we are considering them as base regs.
5419 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5420 or an autoinc code.
5421 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5422 is the code of the index part of the address. Otherwise, pass SCRATCH
5423 for this argument.
5424 OPNUM and TYPE specify the purpose of any reloads made.
5426 IND_LEVELS says how many levels of indirect addressing are
5427 supported at this point in the address.
5429 INSN, if nonzero, is the insn in which we do the reload. It is used
5430 to determine if we may generate output reloads.
5432 We return nonzero if X, as a whole, is reloaded or replaced. */
5434 /* Note that we take shortcuts assuming that no multi-reg machine mode
5435 occurs as part of an address.
5436 Also, this is not fully machine-customizable; it works for machines
5437 such as VAXen and 68000's and 32000's, but other possible machines
5438 could have addressing modes that this does not handle right.
5439 If you add push_reload calls here, you need to make sure gen_reload
5440 handles those cases gracefully. */
5442 static int
5443 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5444 enum rtx_code outer_code, enum rtx_code index_code,
5445 rtx *loc, int opnum, enum reload_type type,
5446 int ind_levels, rtx insn)
5448 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5449 ((CONTEXT) == 0 \
5450 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5451 : REGNO_OK_FOR_INDEX_P (REGNO))
5453 enum reg_class context_reg_class;
5454 RTX_CODE code = GET_CODE (x);
5456 if (context == 1)
5457 context_reg_class = INDEX_REG_CLASS;
5458 else
5459 context_reg_class = base_reg_class (mode, outer_code, index_code);
5461 switch (code)
5463 case PLUS:
5465 rtx orig_op0 = XEXP (x, 0);
5466 rtx orig_op1 = XEXP (x, 1);
5467 RTX_CODE code0 = GET_CODE (orig_op0);
5468 RTX_CODE code1 = GET_CODE (orig_op1);
5469 rtx op0 = orig_op0;
5470 rtx op1 = orig_op1;
5472 if (GET_CODE (op0) == SUBREG)
5474 op0 = SUBREG_REG (op0);
5475 code0 = GET_CODE (op0);
5476 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5477 op0 = gen_rtx_REG (word_mode,
5478 (REGNO (op0) +
5479 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5480 GET_MODE (SUBREG_REG (orig_op0)),
5481 SUBREG_BYTE (orig_op0),
5482 GET_MODE (orig_op0))));
5485 if (GET_CODE (op1) == SUBREG)
5487 op1 = SUBREG_REG (op1);
5488 code1 = GET_CODE (op1);
5489 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5490 /* ??? Why is this given op1's mode and above for
5491 ??? op0 SUBREGs we use word_mode? */
5492 op1 = gen_rtx_REG (GET_MODE (op1),
5493 (REGNO (op1) +
5494 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5495 GET_MODE (SUBREG_REG (orig_op1)),
5496 SUBREG_BYTE (orig_op1),
5497 GET_MODE (orig_op1))));
5499 /* Plus in the index register may be created only as a result of
5500 register rematerialization for expression like &localvar*4. Reload it.
5501 It may be possible to combine the displacement on the outer level,
5502 but it is probably not worthwhile to do so. */
5503 if (context == 1)
5505 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5506 opnum, ADDR_TYPE (type), ind_levels, insn);
5507 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5508 context_reg_class,
5509 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5510 return 1;
5513 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5514 || code0 == ZERO_EXTEND || code1 == MEM)
5516 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5517 &XEXP (x, 0), opnum, type, ind_levels,
5518 insn);
5519 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5520 &XEXP (x, 1), opnum, type, ind_levels,
5521 insn);
5524 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5525 || code1 == ZERO_EXTEND || code0 == MEM)
5527 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5528 &XEXP (x, 0), opnum, type, ind_levels,
5529 insn);
5530 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5531 &XEXP (x, 1), opnum, type, ind_levels,
5532 insn);
5535 else if (code0 == CONST_INT || code0 == CONST
5536 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5537 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5538 &XEXP (x, 1), opnum, type, ind_levels,
5539 insn);
5541 else if (code1 == CONST_INT || code1 == CONST
5542 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5543 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5544 &XEXP (x, 0), opnum, type, ind_levels,
5545 insn);
5547 else if (code0 == REG && code1 == REG)
5549 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5550 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5551 return 0;
5552 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5553 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5554 return 0;
5555 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5556 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5557 &XEXP (x, 1), opnum, type, ind_levels,
5558 insn);
5559 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5560 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5561 &XEXP (x, 0), opnum, type, ind_levels,
5562 insn);
5563 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5564 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5565 &XEXP (x, 0), opnum, type, ind_levels,
5566 insn);
5567 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5568 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5569 &XEXP (x, 1), opnum, type, ind_levels,
5570 insn);
5571 else
5573 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5574 &XEXP (x, 0), opnum, type, ind_levels,
5575 insn);
5576 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5577 &XEXP (x, 1), opnum, type, ind_levels,
5578 insn);
5582 else if (code0 == REG)
5584 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5585 &XEXP (x, 0), opnum, type, ind_levels,
5586 insn);
5587 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5588 &XEXP (x, 1), opnum, type, ind_levels,
5589 insn);
5592 else if (code1 == REG)
5594 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5595 &XEXP (x, 1), opnum, type, ind_levels,
5596 insn);
5597 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5598 &XEXP (x, 0), opnum, type, ind_levels,
5599 insn);
5603 return 0;
5605 case POST_MODIFY:
5606 case PRE_MODIFY:
5608 rtx op0 = XEXP (x, 0);
5609 rtx op1 = XEXP (x, 1);
5610 enum rtx_code index_code;
5611 int regno;
5612 int reloadnum;
5614 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5615 return 0;
5617 /* Currently, we only support {PRE,POST}_MODIFY constructs
5618 where a base register is {inc,dec}remented by the contents
5619 of another register or by a constant value. Thus, these
5620 operands must match. */
5621 gcc_assert (op0 == XEXP (op1, 0));
5623 /* Require index register (or constant). Let's just handle the
5624 register case in the meantime... If the target allows
5625 auto-modify by a constant then we could try replacing a pseudo
5626 register with its equivalent constant where applicable.
5628 We also handle the case where the register was eliminated
5629 resulting in a PLUS subexpression.
5631 If we later decide to reload the whole PRE_MODIFY or
5632 POST_MODIFY, inc_for_reload might clobber the reload register
5633 before reading the index. The index register might therefore
5634 need to live longer than a TYPE reload normally would, so be
5635 conservative and class it as RELOAD_OTHER. */
5636 if ((REG_P (XEXP (op1, 1))
5637 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5638 || GET_CODE (XEXP (op1, 1)) == PLUS)
5639 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5640 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5641 ind_levels, insn);
5643 gcc_assert (REG_P (XEXP (op1, 0)));
5645 regno = REGNO (XEXP (op1, 0));
5646 index_code = GET_CODE (XEXP (op1, 1));
5648 /* A register that is incremented cannot be constant! */
5649 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5650 || reg_equiv_constant[regno] == 0);
5652 /* Handle a register that is equivalent to a memory location
5653 which cannot be addressed directly. */
5654 if (reg_equiv_memory_loc[regno] != 0
5655 && (reg_equiv_address[regno] != 0
5656 || num_not_at_initial_offset))
5658 rtx tem = make_memloc (XEXP (x, 0), regno);
5660 if (reg_equiv_address[regno]
5661 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5663 rtx orig = tem;
5665 /* First reload the memory location's address.
5666 We can't use ADDR_TYPE (type) here, because we need to
5667 write back the value after reading it, hence we actually
5668 need two registers. */
5669 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5670 &XEXP (tem, 0), opnum,
5671 RELOAD_OTHER,
5672 ind_levels, insn);
5674 if (!rtx_equal_p (tem, orig))
5675 push_reg_equiv_alt_mem (regno, tem);
5677 /* Then reload the memory location into a base
5678 register. */
5679 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5680 &XEXP (op1, 0),
5681 base_reg_class (mode, code,
5682 index_code),
5683 GET_MODE (x), GET_MODE (x), 0,
5684 0, opnum, RELOAD_OTHER);
5686 update_auto_inc_notes (this_insn, regno, reloadnum);
5687 return 0;
5691 if (reg_renumber[regno] >= 0)
5692 regno = reg_renumber[regno];
5694 /* We require a base register here... */
5695 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5697 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5698 &XEXP (op1, 0), &XEXP (x, 0),
5699 base_reg_class (mode, code, index_code),
5700 GET_MODE (x), GET_MODE (x), 0, 0,
5701 opnum, RELOAD_OTHER);
5703 update_auto_inc_notes (this_insn, regno, reloadnum);
5704 return 0;
5707 return 0;
5709 case POST_INC:
5710 case POST_DEC:
5711 case PRE_INC:
5712 case PRE_DEC:
5713 if (REG_P (XEXP (x, 0)))
5715 int regno = REGNO (XEXP (x, 0));
5716 int value = 0;
5717 rtx x_orig = x;
5719 /* A register that is incremented cannot be constant! */
5720 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5721 || reg_equiv_constant[regno] == 0);
5723 /* Handle a register that is equivalent to a memory location
5724 which cannot be addressed directly. */
5725 if (reg_equiv_memory_loc[regno] != 0
5726 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5728 rtx tem = make_memloc (XEXP (x, 0), regno);
5729 if (reg_equiv_address[regno]
5730 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5732 rtx orig = tem;
5734 /* First reload the memory location's address.
5735 We can't use ADDR_TYPE (type) here, because we need to
5736 write back the value after reading it, hence we actually
5737 need two registers. */
5738 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5739 &XEXP (tem, 0), opnum, type,
5740 ind_levels, insn);
5741 if (!rtx_equal_p (tem, orig))
5742 push_reg_equiv_alt_mem (regno, tem);
5743 /* Put this inside a new increment-expression. */
5744 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5745 /* Proceed to reload that, as if it contained a register. */
5749 /* If we have a hard register that is ok in this incdec context,
5750 don't make a reload. If the register isn't nice enough for
5751 autoincdec, we can reload it. But, if an autoincrement of a
5752 register that we here verified as playing nice, still outside
5753 isn't "valid", it must be that no autoincrement is "valid".
5754 If that is true and something made an autoincrement anyway,
5755 this must be a special context where one is allowed.
5756 (For example, a "push" instruction.)
5757 We can't improve this address, so leave it alone. */
5759 /* Otherwise, reload the autoincrement into a suitable hard reg
5760 and record how much to increment by. */
5762 if (reg_renumber[regno] >= 0)
5763 regno = reg_renumber[regno];
5764 if (regno >= FIRST_PSEUDO_REGISTER
5765 || !REG_OK_FOR_CONTEXT (context, regno, mode, code,
5766 index_code))
5768 int reloadnum;
5770 /* If we can output the register afterwards, do so, this
5771 saves the extra update.
5772 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5773 CALL_INSN - and it does not set CC0.
5774 But don't do this if we cannot directly address the
5775 memory location, since this will make it harder to
5776 reuse address reloads, and increases register pressure.
5777 Also don't do this if we can probably update x directly. */
5778 rtx equiv = (MEM_P (XEXP (x, 0))
5779 ? XEXP (x, 0)
5780 : reg_equiv_mem[regno]);
5781 int icode = (int) optab_handler (add_optab, Pmode)->insn_code;
5782 if (insn && NONJUMP_INSN_P (insn) && equiv
5783 && memory_operand (equiv, GET_MODE (equiv))
5784 #ifdef HAVE_cc0
5785 && ! sets_cc0_p (PATTERN (insn))
5786 #endif
5787 && ! (icode != CODE_FOR_nothing
5788 && ((*insn_data[icode].operand[0].predicate)
5789 (equiv, Pmode))
5790 && ((*insn_data[icode].operand[1].predicate)
5791 (equiv, Pmode))))
5793 /* We use the original pseudo for loc, so that
5794 emit_reload_insns() knows which pseudo this
5795 reload refers to and updates the pseudo rtx, not
5796 its equivalent memory location, as well as the
5797 corresponding entry in reg_last_reload_reg. */
5798 loc = &XEXP (x_orig, 0);
5799 x = XEXP (x, 0);
5800 reloadnum
5801 = push_reload (x, x, loc, loc,
5802 context_reg_class,
5803 GET_MODE (x), GET_MODE (x), 0, 0,
5804 opnum, RELOAD_OTHER);
5806 else
5808 reloadnum
5809 = push_reload (x, x, loc, (rtx*) 0,
5810 context_reg_class,
5811 GET_MODE (x), GET_MODE (x), 0, 0,
5812 opnum, type);
5813 rld[reloadnum].inc
5814 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5816 value = 1;
5819 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5820 reloadnum);
5822 return value;
5824 return 0;
5826 case TRUNCATE:
5827 case SIGN_EXTEND:
5828 case ZERO_EXTEND:
5829 /* Look for parts to reload in the inner expression and reload them
5830 too, in addition to this operation. Reloading all inner parts in
5831 addition to this one shouldn't be necessary, but at this point,
5832 we don't know if we can possibly omit any part that *can* be
5833 reloaded. Targets that are better off reloading just either part
5834 (or perhaps even a different part of an outer expression), should
5835 define LEGITIMIZE_RELOAD_ADDRESS. */
5836 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5837 context, code, SCRATCH, &XEXP (x, 0), opnum,
5838 type, ind_levels, insn);
5839 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5840 context_reg_class,
5841 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5842 return 1;
5844 case MEM:
5845 /* This is probably the result of a substitution, by eliminate_regs, of
5846 an equivalent address for a pseudo that was not allocated to a hard
5847 register. Verify that the specified address is valid and reload it
5848 into a register.
5850 Since we know we are going to reload this item, don't decrement for
5851 the indirection level.
5853 Note that this is actually conservative: it would be slightly more
5854 efficient to use the value of SPILL_INDIRECT_LEVELS from
5855 reload1.c here. */
5857 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5858 opnum, ADDR_TYPE (type), ind_levels, insn);
5859 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5860 context_reg_class,
5861 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5862 return 1;
5864 case REG:
5866 int regno = REGNO (x);
5868 if (reg_equiv_constant[regno] != 0)
5870 find_reloads_address_part (reg_equiv_constant[regno], loc,
5871 context_reg_class,
5872 GET_MODE (x), opnum, type, ind_levels);
5873 return 1;
5876 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5877 that feeds this insn. */
5878 if (reg_equiv_mem[regno] != 0)
5880 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5881 context_reg_class,
5882 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5883 return 1;
5885 #endif
5887 if (reg_equiv_memory_loc[regno]
5888 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5890 rtx tem = make_memloc (x, regno);
5891 if (reg_equiv_address[regno] != 0
5892 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5894 x = tem;
5895 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5896 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5897 ind_levels, insn);
5898 if (!rtx_equal_p (x, tem))
5899 push_reg_equiv_alt_mem (regno, x);
5903 if (reg_renumber[regno] >= 0)
5904 regno = reg_renumber[regno];
5906 if (regno >= FIRST_PSEUDO_REGISTER
5907 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5908 index_code))
5910 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5911 context_reg_class,
5912 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5913 return 1;
5916 /* If a register appearing in an address is the subject of a CLOBBER
5917 in this insn, reload it into some other register to be safe.
5918 The CLOBBER is supposed to make the register unavailable
5919 from before this insn to after it. */
5920 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5922 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5923 context_reg_class,
5924 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5925 return 1;
5928 return 0;
5930 case SUBREG:
5931 if (REG_P (SUBREG_REG (x)))
5933 /* If this is a SUBREG of a hard register and the resulting register
5934 is of the wrong class, reload the whole SUBREG. This avoids
5935 needless copies if SUBREG_REG is multi-word. */
5936 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5938 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5940 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5941 index_code))
5943 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5944 context_reg_class,
5945 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5946 return 1;
5949 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5950 is larger than the class size, then reload the whole SUBREG. */
5951 else
5953 enum reg_class rclass = context_reg_class;
5954 if ((unsigned) CLASS_MAX_NREGS (rclass, GET_MODE (SUBREG_REG (x)))
5955 > reg_class_size[rclass])
5957 x = find_reloads_subreg_address (x, 0, opnum,
5958 ADDR_TYPE (type),
5959 ind_levels, insn);
5960 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
5961 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5962 return 1;
5966 break;
5968 default:
5969 break;
5973 const char *fmt = GET_RTX_FORMAT (code);
5974 int i;
5976 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5978 if (fmt[i] == 'e')
5979 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5980 we get here. */
5981 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5982 &XEXP (x, i), opnum, type, ind_levels, insn);
5986 #undef REG_OK_FOR_CONTEXT
5987 return 0;
5990 /* X, which is found at *LOC, is a part of an address that needs to be
5991 reloaded into a register of class RCLASS. If X is a constant, or if
5992 X is a PLUS that contains a constant, check that the constant is a
5993 legitimate operand and that we are supposed to be able to load
5994 it into the register.
5996 If not, force the constant into memory and reload the MEM instead.
5998 MODE is the mode to use, in case X is an integer constant.
6000 OPNUM and TYPE describe the purpose of any reloads made.
6002 IND_LEVELS says how many levels of indirect addressing this machine
6003 supports. */
6005 static void
6006 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6007 enum machine_mode mode, int opnum,
6008 enum reload_type type, int ind_levels)
6010 if (CONSTANT_P (x)
6011 && (! LEGITIMATE_CONSTANT_P (x)
6012 || PREFERRED_RELOAD_CLASS (x, rclass) == NO_REGS))
6014 x = force_const_mem (mode, x);
6015 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6016 opnum, type, ind_levels, 0);
6019 else if (GET_CODE (x) == PLUS
6020 && CONSTANT_P (XEXP (x, 1))
6021 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
6022 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), rclass) == NO_REGS))
6024 rtx tem;
6026 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6027 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6028 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6029 opnum, type, ind_levels, 0);
6032 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6033 mode, VOIDmode, 0, 0, opnum, type);
6036 /* X, a subreg of a pseudo, is a part of an address that needs to be
6037 reloaded.
6039 If the pseudo is equivalent to a memory location that cannot be directly
6040 addressed, make the necessary address reloads.
6042 If address reloads have been necessary, or if the address is changed
6043 by register elimination, return the rtx of the memory location;
6044 otherwise, return X.
6046 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6047 memory location.
6049 OPNUM and TYPE identify the purpose of the reload.
6051 IND_LEVELS says how many levels of indirect addressing are
6052 supported at this point in the address.
6054 INSN, if nonzero, is the insn in which we do the reload. It is used
6055 to determine where to put USEs for pseudos that we have to replace with
6056 stack slots. */
6058 static rtx
6059 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6060 enum reload_type type, int ind_levels, rtx insn)
6062 int regno = REGNO (SUBREG_REG (x));
6064 if (reg_equiv_memory_loc[regno])
6066 /* If the address is not directly addressable, or if the address is not
6067 offsettable, then it must be replaced. */
6068 if (! force_replace
6069 && (reg_equiv_address[regno]
6070 || ! offsettable_memref_p (reg_equiv_mem[regno])))
6071 force_replace = 1;
6073 if (force_replace || num_not_at_initial_offset)
6075 rtx tem = make_memloc (SUBREG_REG (x), regno);
6077 /* If the address changes because of register elimination, then
6078 it must be replaced. */
6079 if (force_replace
6080 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6082 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6083 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6084 int offset;
6085 rtx orig = tem;
6086 int reloaded;
6088 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6089 hold the correct (negative) byte offset. */
6090 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6091 offset = inner_size - outer_size;
6092 else
6093 offset = SUBREG_BYTE (x);
6095 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6096 PUT_MODE (tem, GET_MODE (x));
6097 if (MEM_OFFSET (tem))
6098 set_mem_offset (tem, plus_constant (MEM_OFFSET (tem), offset));
6100 /* If this was a paradoxical subreg that we replaced, the
6101 resulting memory must be sufficiently aligned to allow
6102 us to widen the mode of the memory. */
6103 if (outer_size > inner_size)
6105 rtx base;
6107 base = XEXP (tem, 0);
6108 if (GET_CODE (base) == PLUS)
6110 if (GET_CODE (XEXP (base, 1)) == CONST_INT
6111 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6112 return x;
6113 base = XEXP (base, 0);
6115 if (!REG_P (base)
6116 || (REGNO_POINTER_ALIGN (REGNO (base))
6117 < outer_size * BITS_PER_UNIT))
6118 return x;
6121 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6122 XEXP (tem, 0), &XEXP (tem, 0),
6123 opnum, type, ind_levels, insn);
6124 /* ??? Do we need to handle nonzero offsets somehow? */
6125 if (!offset && !rtx_equal_p (tem, orig))
6126 push_reg_equiv_alt_mem (regno, tem);
6128 /* For some processors an address may be valid in the
6129 original mode but not in a smaller mode. For
6130 example, ARM accepts a scaled index register in
6131 SImode but not in HImode. Similarly, the address may
6132 have been valid before the subreg offset was added,
6133 but not afterwards. find_reloads_address
6134 assumes that we pass it a valid address, and doesn't
6135 force a reload. This will probably be fine if
6136 find_reloads_address finds some reloads. But if it
6137 doesn't find any, then we may have just converted a
6138 valid address into an invalid one. Check for that
6139 here. */
6140 if (reloaded == 0
6141 && !strict_memory_address_p (GET_MODE (tem),
6142 XEXP (tem, 0)))
6143 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6144 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6145 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6146 opnum, type);
6148 /* If this is not a toplevel operand, find_reloads doesn't see
6149 this substitution. We have to emit a USE of the pseudo so
6150 that delete_output_reload can see it. */
6151 if (replace_reloads && recog_data.operand[opnum] != x)
6152 /* We mark the USE with QImode so that we recognize it
6153 as one that can be safely deleted at the end of
6154 reload. */
6155 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6156 SUBREG_REG (x)),
6157 insn), QImode);
6158 x = tem;
6162 return x;
6165 /* Substitute into the current INSN the registers into which we have reloaded
6166 the things that need reloading. The array `replacements'
6167 contains the locations of all pointers that must be changed
6168 and says what to replace them with.
6170 Return the rtx that X translates into; usually X, but modified. */
6172 void
6173 subst_reloads (rtx insn)
6175 int i;
6177 for (i = 0; i < n_replacements; i++)
6179 struct replacement *r = &replacements[i];
6180 rtx reloadreg = rld[r->what].reg_rtx;
6181 if (reloadreg)
6183 #ifdef DEBUG_RELOAD
6184 /* This checking takes a very long time on some platforms
6185 causing the gcc.c-torture/compile/limits-fnargs.c test
6186 to time out during testing. See PR 31850.
6188 Internal consistency test. Check that we don't modify
6189 anything in the equivalence arrays. Whenever something from
6190 those arrays needs to be reloaded, it must be unshared before
6191 being substituted into; the equivalence must not be modified.
6192 Otherwise, if the equivalence is used after that, it will
6193 have been modified, and the thing substituted (probably a
6194 register) is likely overwritten and not a usable equivalence. */
6195 int check_regno;
6197 for (check_regno = 0; check_regno < max_regno; check_regno++)
6199 #define CHECK_MODF(ARRAY) \
6200 gcc_assert (!ARRAY[check_regno] \
6201 || !loc_mentioned_in_p (r->where, \
6202 ARRAY[check_regno]))
6204 CHECK_MODF (reg_equiv_constant);
6205 CHECK_MODF (reg_equiv_memory_loc);
6206 CHECK_MODF (reg_equiv_address);
6207 CHECK_MODF (reg_equiv_mem);
6208 #undef CHECK_MODF
6210 #endif /* DEBUG_RELOAD */
6212 /* If we're replacing a LABEL_REF with a register, there must
6213 already be an indication (to e.g. flow) which label this
6214 register refers to. */
6215 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6216 || !JUMP_P (insn)
6217 || find_reg_note (insn,
6218 REG_LABEL_OPERAND,
6219 XEXP (*r->where, 0))
6220 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6222 /* Encapsulate RELOADREG so its machine mode matches what
6223 used to be there. Note that gen_lowpart_common will
6224 do the wrong thing if RELOADREG is multi-word. RELOADREG
6225 will always be a REG here. */
6226 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6227 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6229 /* If we are putting this into a SUBREG and RELOADREG is a
6230 SUBREG, we would be making nested SUBREGs, so we have to fix
6231 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6233 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6235 if (GET_MODE (*r->subreg_loc)
6236 == GET_MODE (SUBREG_REG (reloadreg)))
6237 *r->subreg_loc = SUBREG_REG (reloadreg);
6238 else
6240 int final_offset =
6241 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6243 /* When working with SUBREGs the rule is that the byte
6244 offset must be a multiple of the SUBREG's mode. */
6245 final_offset = (final_offset /
6246 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6247 final_offset = (final_offset *
6248 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6250 *r->where = SUBREG_REG (reloadreg);
6251 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6254 else
6255 *r->where = reloadreg;
6257 /* If reload got no reg and isn't optional, something's wrong. */
6258 else
6259 gcc_assert (rld[r->what].optional);
6263 /* Make a copy of any replacements being done into X and move those
6264 copies to locations in Y, a copy of X. */
6266 void
6267 copy_replacements (rtx x, rtx y)
6269 /* We can't support X being a SUBREG because we might then need to know its
6270 location if something inside it was replaced. */
6271 gcc_assert (GET_CODE (x) != SUBREG);
6273 copy_replacements_1 (&x, &y, n_replacements);
6276 static void
6277 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6279 int i, j;
6280 rtx x, y;
6281 struct replacement *r;
6282 enum rtx_code code;
6283 const char *fmt;
6285 for (j = 0; j < orig_replacements; j++)
6287 if (replacements[j].subreg_loc == px)
6289 r = &replacements[n_replacements++];
6290 r->where = replacements[j].where;
6291 r->subreg_loc = py;
6292 r->what = replacements[j].what;
6293 r->mode = replacements[j].mode;
6295 else if (replacements[j].where == px)
6297 r = &replacements[n_replacements++];
6298 r->where = py;
6299 r->subreg_loc = 0;
6300 r->what = replacements[j].what;
6301 r->mode = replacements[j].mode;
6305 x = *px;
6306 y = *py;
6307 code = GET_CODE (x);
6308 fmt = GET_RTX_FORMAT (code);
6310 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6312 if (fmt[i] == 'e')
6313 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6314 else if (fmt[i] == 'E')
6315 for (j = XVECLEN (x, i); --j >= 0; )
6316 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6317 orig_replacements);
6321 /* Change any replacements being done to *X to be done to *Y. */
6323 void
6324 move_replacements (rtx *x, rtx *y)
6326 int i;
6328 for (i = 0; i < n_replacements; i++)
6329 if (replacements[i].subreg_loc == x)
6330 replacements[i].subreg_loc = y;
6331 else if (replacements[i].where == x)
6333 replacements[i].where = y;
6334 replacements[i].subreg_loc = 0;
6338 /* If LOC was scheduled to be replaced by something, return the replacement.
6339 Otherwise, return *LOC. */
6342 find_replacement (rtx *loc)
6344 struct replacement *r;
6346 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6348 rtx reloadreg = rld[r->what].reg_rtx;
6350 if (reloadreg && r->where == loc)
6352 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6353 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6355 return reloadreg;
6357 else if (reloadreg && r->subreg_loc == loc)
6359 /* RELOADREG must be either a REG or a SUBREG.
6361 ??? Is it actually still ever a SUBREG? If so, why? */
6363 if (REG_P (reloadreg))
6364 return gen_rtx_REG (GET_MODE (*loc),
6365 (REGNO (reloadreg) +
6366 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6367 GET_MODE (SUBREG_REG (*loc)),
6368 SUBREG_BYTE (*loc),
6369 GET_MODE (*loc))));
6370 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6371 return reloadreg;
6372 else
6374 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6376 /* When working with SUBREGs the rule is that the byte
6377 offset must be a multiple of the SUBREG's mode. */
6378 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6379 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6380 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6381 final_offset);
6386 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6387 what's inside and make a new rtl if so. */
6388 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6389 || GET_CODE (*loc) == MULT)
6391 rtx x = find_replacement (&XEXP (*loc, 0));
6392 rtx y = find_replacement (&XEXP (*loc, 1));
6394 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6395 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6398 return *loc;
6401 /* Return nonzero if register in range [REGNO, ENDREGNO)
6402 appears either explicitly or implicitly in X
6403 other than being stored into (except for earlyclobber operands).
6405 References contained within the substructure at LOC do not count.
6406 LOC may be zero, meaning don't ignore anything.
6408 This is similar to refers_to_regno_p in rtlanal.c except that we
6409 look at equivalences for pseudos that didn't get hard registers. */
6411 static int
6412 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6413 rtx x, rtx *loc)
6415 int i;
6416 unsigned int r;
6417 RTX_CODE code;
6418 const char *fmt;
6420 if (x == 0)
6421 return 0;
6423 repeat:
6424 code = GET_CODE (x);
6426 switch (code)
6428 case REG:
6429 r = REGNO (x);
6431 /* If this is a pseudo, a hard register must not have been allocated.
6432 X must therefore either be a constant or be in memory. */
6433 if (r >= FIRST_PSEUDO_REGISTER)
6435 if (reg_equiv_memory_loc[r])
6436 return refers_to_regno_for_reload_p (regno, endregno,
6437 reg_equiv_memory_loc[r],
6438 (rtx*) 0);
6440 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6441 return 0;
6444 return (endregno > r
6445 && regno < r + (r < FIRST_PSEUDO_REGISTER
6446 ? hard_regno_nregs[r][GET_MODE (x)]
6447 : 1));
6449 case SUBREG:
6450 /* If this is a SUBREG of a hard reg, we can see exactly which
6451 registers are being modified. Otherwise, handle normally. */
6452 if (REG_P (SUBREG_REG (x))
6453 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6455 unsigned int inner_regno = subreg_regno (x);
6456 unsigned int inner_endregno
6457 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6458 ? subreg_nregs (x) : 1);
6460 return endregno > inner_regno && regno < inner_endregno;
6462 break;
6464 case CLOBBER:
6465 case SET:
6466 if (&SET_DEST (x) != loc
6467 /* Note setting a SUBREG counts as referring to the REG it is in for
6468 a pseudo but not for hard registers since we can
6469 treat each word individually. */
6470 && ((GET_CODE (SET_DEST (x)) == SUBREG
6471 && loc != &SUBREG_REG (SET_DEST (x))
6472 && REG_P (SUBREG_REG (SET_DEST (x)))
6473 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6474 && refers_to_regno_for_reload_p (regno, endregno,
6475 SUBREG_REG (SET_DEST (x)),
6476 loc))
6477 /* If the output is an earlyclobber operand, this is
6478 a conflict. */
6479 || ((!REG_P (SET_DEST (x))
6480 || earlyclobber_operand_p (SET_DEST (x)))
6481 && refers_to_regno_for_reload_p (regno, endregno,
6482 SET_DEST (x), loc))))
6483 return 1;
6485 if (code == CLOBBER || loc == &SET_SRC (x))
6486 return 0;
6487 x = SET_SRC (x);
6488 goto repeat;
6490 default:
6491 break;
6494 /* X does not match, so try its subexpressions. */
6496 fmt = GET_RTX_FORMAT (code);
6497 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6499 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6501 if (i == 0)
6503 x = XEXP (x, 0);
6504 goto repeat;
6506 else
6507 if (refers_to_regno_for_reload_p (regno, endregno,
6508 XEXP (x, i), loc))
6509 return 1;
6511 else if (fmt[i] == 'E')
6513 int j;
6514 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6515 if (loc != &XVECEXP (x, i, j)
6516 && refers_to_regno_for_reload_p (regno, endregno,
6517 XVECEXP (x, i, j), loc))
6518 return 1;
6521 return 0;
6524 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6525 we check if any register number in X conflicts with the relevant register
6526 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6527 contains a MEM (we don't bother checking for memory addresses that can't
6528 conflict because we expect this to be a rare case.
6530 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6531 that we look at equivalences for pseudos that didn't get hard registers. */
6534 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6536 int regno, endregno;
6538 /* Overly conservative. */
6539 if (GET_CODE (x) == STRICT_LOW_PART
6540 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6541 x = XEXP (x, 0);
6543 /* If either argument is a constant, then modifying X can not affect IN. */
6544 if (CONSTANT_P (x) || CONSTANT_P (in))
6545 return 0;
6546 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6547 return refers_to_mem_for_reload_p (in);
6548 else if (GET_CODE (x) == SUBREG)
6550 regno = REGNO (SUBREG_REG (x));
6551 if (regno < FIRST_PSEUDO_REGISTER)
6552 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6553 GET_MODE (SUBREG_REG (x)),
6554 SUBREG_BYTE (x),
6555 GET_MODE (x));
6556 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6557 ? subreg_nregs (x) : 1);
6559 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6561 else if (REG_P (x))
6563 regno = REGNO (x);
6565 /* If this is a pseudo, it must not have been assigned a hard register.
6566 Therefore, it must either be in memory or be a constant. */
6568 if (regno >= FIRST_PSEUDO_REGISTER)
6570 if (reg_equiv_memory_loc[regno])
6571 return refers_to_mem_for_reload_p (in);
6572 gcc_assert (reg_equiv_constant[regno]);
6573 return 0;
6576 endregno = END_HARD_REGNO (x);
6578 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6580 else if (MEM_P (x))
6581 return refers_to_mem_for_reload_p (in);
6582 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6583 || GET_CODE (x) == CC0)
6584 return reg_mentioned_p (x, in);
6585 else
6587 gcc_assert (GET_CODE (x) == PLUS);
6589 /* We actually want to know if X is mentioned somewhere inside IN.
6590 We must not say that (plus (sp) (const_int 124)) is in
6591 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6592 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6593 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6594 while (MEM_P (in))
6595 in = XEXP (in, 0);
6596 if (REG_P (in))
6597 return 0;
6598 else if (GET_CODE (in) == PLUS)
6599 return (rtx_equal_p (x, in)
6600 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6601 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6602 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6603 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6606 gcc_unreachable ();
6609 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6610 registers. */
6612 static int
6613 refers_to_mem_for_reload_p (rtx x)
6615 const char *fmt;
6616 int i;
6618 if (MEM_P (x))
6619 return 1;
6621 if (REG_P (x))
6622 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6623 && reg_equiv_memory_loc[REGNO (x)]);
6625 fmt = GET_RTX_FORMAT (GET_CODE (x));
6626 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6627 if (fmt[i] == 'e'
6628 && (MEM_P (XEXP (x, i))
6629 || refers_to_mem_for_reload_p (XEXP (x, i))))
6630 return 1;
6632 return 0;
6635 /* Check the insns before INSN to see if there is a suitable register
6636 containing the same value as GOAL.
6637 If OTHER is -1, look for a register in class RCLASS.
6638 Otherwise, just see if register number OTHER shares GOAL's value.
6640 Return an rtx for the register found, or zero if none is found.
6642 If RELOAD_REG_P is (short *)1,
6643 we reject any hard reg that appears in reload_reg_rtx
6644 because such a hard reg is also needed coming into this insn.
6646 If RELOAD_REG_P is any other nonzero value,
6647 it is a vector indexed by hard reg number
6648 and we reject any hard reg whose element in the vector is nonnegative
6649 as well as any that appears in reload_reg_rtx.
6651 If GOAL is zero, then GOALREG is a register number; we look
6652 for an equivalent for that register.
6654 MODE is the machine mode of the value we want an equivalence for.
6655 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6657 This function is used by jump.c as well as in the reload pass.
6659 If GOAL is the sum of the stack pointer and a constant, we treat it
6660 as if it were a constant except that sp is required to be unchanging. */
6663 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6664 short *reload_reg_p, int goalreg, enum machine_mode mode)
6666 rtx p = insn;
6667 rtx goaltry, valtry, value, where;
6668 rtx pat;
6669 int regno = -1;
6670 int valueno;
6671 int goal_mem = 0;
6672 int goal_const = 0;
6673 int goal_mem_addr_varies = 0;
6674 int need_stable_sp = 0;
6675 int nregs;
6676 int valuenregs;
6677 int num = 0;
6679 if (goal == 0)
6680 regno = goalreg;
6681 else if (REG_P (goal))
6682 regno = REGNO (goal);
6683 else if (MEM_P (goal))
6685 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6686 if (MEM_VOLATILE_P (goal))
6687 return 0;
6688 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6689 return 0;
6690 /* An address with side effects must be reexecuted. */
6691 switch (code)
6693 case POST_INC:
6694 case PRE_INC:
6695 case POST_DEC:
6696 case PRE_DEC:
6697 case POST_MODIFY:
6698 case PRE_MODIFY:
6699 return 0;
6700 default:
6701 break;
6703 goal_mem = 1;
6705 else if (CONSTANT_P (goal))
6706 goal_const = 1;
6707 else if (GET_CODE (goal) == PLUS
6708 && XEXP (goal, 0) == stack_pointer_rtx
6709 && CONSTANT_P (XEXP (goal, 1)))
6710 goal_const = need_stable_sp = 1;
6711 else if (GET_CODE (goal) == PLUS
6712 && XEXP (goal, 0) == frame_pointer_rtx
6713 && CONSTANT_P (XEXP (goal, 1)))
6714 goal_const = 1;
6715 else
6716 return 0;
6718 num = 0;
6719 /* Scan insns back from INSN, looking for one that copies
6720 a value into or out of GOAL.
6721 Stop and give up if we reach a label. */
6723 while (1)
6725 p = PREV_INSN (p);
6726 num++;
6727 if (p == 0 || LABEL_P (p)
6728 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6729 return 0;
6731 if (NONJUMP_INSN_P (p)
6732 /* If we don't want spill regs ... */
6733 && (! (reload_reg_p != 0
6734 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6735 /* ... then ignore insns introduced by reload; they aren't
6736 useful and can cause results in reload_as_needed to be
6737 different from what they were when calculating the need for
6738 spills. If we notice an input-reload insn here, we will
6739 reject it below, but it might hide a usable equivalent.
6740 That makes bad code. It may even fail: perhaps no reg was
6741 spilled for this insn because it was assumed we would find
6742 that equivalent. */
6743 || INSN_UID (p) < reload_first_uid))
6745 rtx tem;
6746 pat = single_set (p);
6748 /* First check for something that sets some reg equal to GOAL. */
6749 if (pat != 0
6750 && ((regno >= 0
6751 && true_regnum (SET_SRC (pat)) == regno
6752 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6754 (regno >= 0
6755 && true_regnum (SET_DEST (pat)) == regno
6756 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6758 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6759 /* When looking for stack pointer + const,
6760 make sure we don't use a stack adjust. */
6761 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6762 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6763 || (goal_mem
6764 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6765 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6766 || (goal_mem
6767 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6768 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6769 /* If we are looking for a constant,
6770 and something equivalent to that constant was copied
6771 into a reg, we can use that reg. */
6772 || (goal_const && REG_NOTES (p) != 0
6773 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6774 && ((rtx_equal_p (XEXP (tem, 0), goal)
6775 && (valueno
6776 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6777 || (REG_P (SET_DEST (pat))
6778 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6779 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6780 && GET_CODE (goal) == CONST_INT
6781 && 0 != (goaltry
6782 = operand_subword (XEXP (tem, 0), 0, 0,
6783 VOIDmode))
6784 && rtx_equal_p (goal, goaltry)
6785 && (valtry
6786 = operand_subword (SET_DEST (pat), 0, 0,
6787 VOIDmode))
6788 && (valueno = true_regnum (valtry)) >= 0)))
6789 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6790 NULL_RTX))
6791 && REG_P (SET_DEST (pat))
6792 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6793 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6794 && GET_CODE (goal) == CONST_INT
6795 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6796 VOIDmode))
6797 && rtx_equal_p (goal, goaltry)
6798 && (valtry
6799 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6800 && (valueno = true_regnum (valtry)) >= 0)))
6802 if (other >= 0)
6804 if (valueno != other)
6805 continue;
6807 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6808 continue;
6809 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6810 mode, valueno))
6811 continue;
6812 value = valtry;
6813 where = p;
6814 break;
6819 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6820 (or copying VALUE into GOAL, if GOAL is also a register).
6821 Now verify that VALUE is really valid. */
6823 /* VALUENO is the register number of VALUE; a hard register. */
6825 /* Don't try to re-use something that is killed in this insn. We want
6826 to be able to trust REG_UNUSED notes. */
6827 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6828 return 0;
6830 /* If we propose to get the value from the stack pointer or if GOAL is
6831 a MEM based on the stack pointer, we need a stable SP. */
6832 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6833 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6834 goal)))
6835 need_stable_sp = 1;
6837 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6838 if (GET_MODE (value) != mode)
6839 return 0;
6841 /* Reject VALUE if it was loaded from GOAL
6842 and is also a register that appears in the address of GOAL. */
6844 if (goal_mem && value == SET_DEST (single_set (where))
6845 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6846 goal, (rtx*) 0))
6847 return 0;
6849 /* Reject registers that overlap GOAL. */
6851 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6852 nregs = hard_regno_nregs[regno][mode];
6853 else
6854 nregs = 1;
6855 valuenregs = hard_regno_nregs[valueno][mode];
6857 if (!goal_mem && !goal_const
6858 && regno + nregs > valueno && regno < valueno + valuenregs)
6859 return 0;
6861 /* Reject VALUE if it is one of the regs reserved for reloads.
6862 Reload1 knows how to reuse them anyway, and it would get
6863 confused if we allocated one without its knowledge.
6864 (Now that insns introduced by reload are ignored above,
6865 this case shouldn't happen, but I'm not positive.) */
6867 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6869 int i;
6870 for (i = 0; i < valuenregs; ++i)
6871 if (reload_reg_p[valueno + i] >= 0)
6872 return 0;
6875 /* Reject VALUE if it is a register being used for an input reload
6876 even if it is not one of those reserved. */
6878 if (reload_reg_p != 0)
6880 int i;
6881 for (i = 0; i < n_reloads; i++)
6882 if (rld[i].reg_rtx != 0 && rld[i].in)
6884 int regno1 = REGNO (rld[i].reg_rtx);
6885 int nregs1 = hard_regno_nregs[regno1]
6886 [GET_MODE (rld[i].reg_rtx)];
6887 if (regno1 < valueno + valuenregs
6888 && regno1 + nregs1 > valueno)
6889 return 0;
6893 if (goal_mem)
6894 /* We must treat frame pointer as varying here,
6895 since it can vary--in a nonlocal goto as generated by expand_goto. */
6896 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6898 /* Now verify that the values of GOAL and VALUE remain unaltered
6899 until INSN is reached. */
6901 p = insn;
6902 while (1)
6904 p = PREV_INSN (p);
6905 if (p == where)
6906 return value;
6908 /* Don't trust the conversion past a function call
6909 if either of the two is in a call-clobbered register, or memory. */
6910 if (CALL_P (p))
6912 int i;
6914 if (goal_mem || need_stable_sp)
6915 return 0;
6917 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6918 for (i = 0; i < nregs; ++i)
6919 if (call_used_regs[regno + i]
6920 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6921 return 0;
6923 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6924 for (i = 0; i < valuenregs; ++i)
6925 if (call_used_regs[valueno + i]
6926 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6927 return 0;
6930 if (INSN_P (p))
6932 pat = PATTERN (p);
6934 /* Watch out for unspec_volatile, and volatile asms. */
6935 if (volatile_insn_p (pat))
6936 return 0;
6938 /* If this insn P stores in either GOAL or VALUE, return 0.
6939 If GOAL is a memory ref and this insn writes memory, return 0.
6940 If GOAL is a memory ref and its address is not constant,
6941 and this insn P changes a register used in GOAL, return 0. */
6943 if (GET_CODE (pat) == COND_EXEC)
6944 pat = COND_EXEC_CODE (pat);
6945 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6947 rtx dest = SET_DEST (pat);
6948 while (GET_CODE (dest) == SUBREG
6949 || GET_CODE (dest) == ZERO_EXTRACT
6950 || GET_CODE (dest) == STRICT_LOW_PART)
6951 dest = XEXP (dest, 0);
6952 if (REG_P (dest))
6954 int xregno = REGNO (dest);
6955 int xnregs;
6956 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6957 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6958 else
6959 xnregs = 1;
6960 if (xregno < regno + nregs && xregno + xnregs > regno)
6961 return 0;
6962 if (xregno < valueno + valuenregs
6963 && xregno + xnregs > valueno)
6964 return 0;
6965 if (goal_mem_addr_varies
6966 && reg_overlap_mentioned_for_reload_p (dest, goal))
6967 return 0;
6968 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6969 return 0;
6971 else if (goal_mem && MEM_P (dest)
6972 && ! push_operand (dest, GET_MODE (dest)))
6973 return 0;
6974 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6975 && reg_equiv_memory_loc[regno] != 0)
6976 return 0;
6977 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6978 return 0;
6980 else if (GET_CODE (pat) == PARALLEL)
6982 int i;
6983 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6985 rtx v1 = XVECEXP (pat, 0, i);
6986 if (GET_CODE (v1) == COND_EXEC)
6987 v1 = COND_EXEC_CODE (v1);
6988 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6990 rtx dest = SET_DEST (v1);
6991 while (GET_CODE (dest) == SUBREG
6992 || GET_CODE (dest) == ZERO_EXTRACT
6993 || GET_CODE (dest) == STRICT_LOW_PART)
6994 dest = XEXP (dest, 0);
6995 if (REG_P (dest))
6997 int xregno = REGNO (dest);
6998 int xnregs;
6999 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7000 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7001 else
7002 xnregs = 1;
7003 if (xregno < regno + nregs
7004 && xregno + xnregs > regno)
7005 return 0;
7006 if (xregno < valueno + valuenregs
7007 && xregno + xnregs > valueno)
7008 return 0;
7009 if (goal_mem_addr_varies
7010 && reg_overlap_mentioned_for_reload_p (dest,
7011 goal))
7012 return 0;
7013 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7014 return 0;
7016 else if (goal_mem && MEM_P (dest)
7017 && ! push_operand (dest, GET_MODE (dest)))
7018 return 0;
7019 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7020 && reg_equiv_memory_loc[regno] != 0)
7021 return 0;
7022 else if (need_stable_sp
7023 && push_operand (dest, GET_MODE (dest)))
7024 return 0;
7029 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7031 rtx link;
7033 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7034 link = XEXP (link, 1))
7036 pat = XEXP (link, 0);
7037 if (GET_CODE (pat) == CLOBBER)
7039 rtx dest = SET_DEST (pat);
7041 if (REG_P (dest))
7043 int xregno = REGNO (dest);
7044 int xnregs
7045 = hard_regno_nregs[xregno][GET_MODE (dest)];
7047 if (xregno < regno + nregs
7048 && xregno + xnregs > regno)
7049 return 0;
7050 else if (xregno < valueno + valuenregs
7051 && xregno + xnregs > valueno)
7052 return 0;
7053 else if (goal_mem_addr_varies
7054 && reg_overlap_mentioned_for_reload_p (dest,
7055 goal))
7056 return 0;
7059 else if (goal_mem && MEM_P (dest)
7060 && ! push_operand (dest, GET_MODE (dest)))
7061 return 0;
7062 else if (need_stable_sp
7063 && push_operand (dest, GET_MODE (dest)))
7064 return 0;
7069 #ifdef AUTO_INC_DEC
7070 /* If this insn auto-increments or auto-decrements
7071 either regno or valueno, return 0 now.
7072 If GOAL is a memory ref and its address is not constant,
7073 and this insn P increments a register used in GOAL, return 0. */
7075 rtx link;
7077 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7078 if (REG_NOTE_KIND (link) == REG_INC
7079 && REG_P (XEXP (link, 0)))
7081 int incno = REGNO (XEXP (link, 0));
7082 if (incno < regno + nregs && incno >= regno)
7083 return 0;
7084 if (incno < valueno + valuenregs && incno >= valueno)
7085 return 0;
7086 if (goal_mem_addr_varies
7087 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7088 goal))
7089 return 0;
7092 #endif
7097 /* Find a place where INCED appears in an increment or decrement operator
7098 within X, and return the amount INCED is incremented or decremented by.
7099 The value is always positive. */
7101 static int
7102 find_inc_amount (rtx x, rtx inced)
7104 enum rtx_code code = GET_CODE (x);
7105 const char *fmt;
7106 int i;
7108 if (code == MEM)
7110 rtx addr = XEXP (x, 0);
7111 if ((GET_CODE (addr) == PRE_DEC
7112 || GET_CODE (addr) == POST_DEC
7113 || GET_CODE (addr) == PRE_INC
7114 || GET_CODE (addr) == POST_INC)
7115 && XEXP (addr, 0) == inced)
7116 return GET_MODE_SIZE (GET_MODE (x));
7117 else if ((GET_CODE (addr) == PRE_MODIFY
7118 || GET_CODE (addr) == POST_MODIFY)
7119 && GET_CODE (XEXP (addr, 1)) == PLUS
7120 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7121 && XEXP (addr, 0) == inced
7122 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
7124 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7125 return i < 0 ? -i : i;
7129 fmt = GET_RTX_FORMAT (code);
7130 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7132 if (fmt[i] == 'e')
7134 int tem = find_inc_amount (XEXP (x, i), inced);
7135 if (tem != 0)
7136 return tem;
7138 if (fmt[i] == 'E')
7140 int j;
7141 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7143 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7144 if (tem != 0)
7145 return tem;
7150 return 0;
7153 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7154 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7156 #ifdef AUTO_INC_DEC
7157 static int
7158 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7159 rtx insn)
7161 rtx link;
7163 gcc_assert (insn);
7165 if (! INSN_P (insn))
7166 return 0;
7168 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7169 if (REG_NOTE_KIND (link) == REG_INC)
7171 unsigned int test = (int) REGNO (XEXP (link, 0));
7172 if (test >= regno && test < endregno)
7173 return 1;
7175 return 0;
7177 #else
7179 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7181 #endif
7183 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7184 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7185 REG_INC. REGNO must refer to a hard register. */
7188 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7189 int sets)
7191 unsigned int nregs, endregno;
7193 /* regno must be a hard register. */
7194 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7196 nregs = hard_regno_nregs[regno][mode];
7197 endregno = regno + nregs;
7199 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7200 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7201 && REG_P (XEXP (PATTERN (insn), 0)))
7203 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7205 return test >= regno && test < endregno;
7208 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7209 return 1;
7211 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7213 int i = XVECLEN (PATTERN (insn), 0) - 1;
7215 for (; i >= 0; i--)
7217 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7218 if ((GET_CODE (elt) == CLOBBER
7219 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7220 && REG_P (XEXP (elt, 0)))
7222 unsigned int test = REGNO (XEXP (elt, 0));
7224 if (test >= regno && test < endregno)
7225 return 1;
7227 if (sets == 2
7228 && reg_inc_found_and_valid_p (regno, endregno, elt))
7229 return 1;
7233 return 0;
7236 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7238 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7240 int regno;
7242 if (GET_MODE (reloadreg) == mode)
7243 return reloadreg;
7245 regno = REGNO (reloadreg);
7247 if (WORDS_BIG_ENDIAN)
7248 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7249 - (int) hard_regno_nregs[regno][mode];
7251 return gen_rtx_REG (mode, regno);
7254 static const char *const reload_when_needed_name[] =
7256 "RELOAD_FOR_INPUT",
7257 "RELOAD_FOR_OUTPUT",
7258 "RELOAD_FOR_INSN",
7259 "RELOAD_FOR_INPUT_ADDRESS",
7260 "RELOAD_FOR_INPADDR_ADDRESS",
7261 "RELOAD_FOR_OUTPUT_ADDRESS",
7262 "RELOAD_FOR_OUTADDR_ADDRESS",
7263 "RELOAD_FOR_OPERAND_ADDRESS",
7264 "RELOAD_FOR_OPADDR_ADDR",
7265 "RELOAD_OTHER",
7266 "RELOAD_FOR_OTHER_ADDRESS"
7269 /* These functions are used to print the variables set by 'find_reloads' */
7271 void
7272 debug_reload_to_stream (FILE *f)
7274 int r;
7275 const char *prefix;
7277 if (! f)
7278 f = stderr;
7279 for (r = 0; r < n_reloads; r++)
7281 fprintf (f, "Reload %d: ", r);
7283 if (rld[r].in != 0)
7285 fprintf (f, "reload_in (%s) = ",
7286 GET_MODE_NAME (rld[r].inmode));
7287 print_inline_rtx (f, rld[r].in, 24);
7288 fprintf (f, "\n\t");
7291 if (rld[r].out != 0)
7293 fprintf (f, "reload_out (%s) = ",
7294 GET_MODE_NAME (rld[r].outmode));
7295 print_inline_rtx (f, rld[r].out, 24);
7296 fprintf (f, "\n\t");
7299 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7301 fprintf (f, "%s (opnum = %d)",
7302 reload_when_needed_name[(int) rld[r].when_needed],
7303 rld[r].opnum);
7305 if (rld[r].optional)
7306 fprintf (f, ", optional");
7308 if (rld[r].nongroup)
7309 fprintf (f, ", nongroup");
7311 if (rld[r].inc != 0)
7312 fprintf (f, ", inc by %d", rld[r].inc);
7314 if (rld[r].nocombine)
7315 fprintf (f, ", can't combine");
7317 if (rld[r].secondary_p)
7318 fprintf (f, ", secondary_reload_p");
7320 if (rld[r].in_reg != 0)
7322 fprintf (f, "\n\treload_in_reg: ");
7323 print_inline_rtx (f, rld[r].in_reg, 24);
7326 if (rld[r].out_reg != 0)
7328 fprintf (f, "\n\treload_out_reg: ");
7329 print_inline_rtx (f, rld[r].out_reg, 24);
7332 if (rld[r].reg_rtx != 0)
7334 fprintf (f, "\n\treload_reg_rtx: ");
7335 print_inline_rtx (f, rld[r].reg_rtx, 24);
7338 prefix = "\n\t";
7339 if (rld[r].secondary_in_reload != -1)
7341 fprintf (f, "%ssecondary_in_reload = %d",
7342 prefix, rld[r].secondary_in_reload);
7343 prefix = ", ";
7346 if (rld[r].secondary_out_reload != -1)
7347 fprintf (f, "%ssecondary_out_reload = %d\n",
7348 prefix, rld[r].secondary_out_reload);
7350 prefix = "\n\t";
7351 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7353 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7354 insn_data[rld[r].secondary_in_icode].name);
7355 prefix = ", ";
7358 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7359 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7360 insn_data[rld[r].secondary_out_icode].name);
7362 fprintf (f, "\n");
7366 void
7367 debug_reload (void)
7369 debug_reload_to_stream (stderr);