* config/bfin/bfin.h (TARGET_CPU_CPP_BUILTINS): Define
[official-gcc/alias-decl.git] / gcc / function.c
blob015ad131f8b7cb1901d74b562a2f7bdd868fbf0a
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
69 #ifndef LOCAL_ALIGNMENT
70 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
71 #endif
73 #ifndef STACK_ALIGNMENT_NEEDED
74 #define STACK_ALIGNMENT_NEEDED 1
75 #endif
77 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
79 /* Some systems use __main in a way incompatible with its use in gcc, in these
80 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
81 give the same symbol without quotes for an alternative entry point. You
82 must define both, or neither. */
83 #ifndef NAME__MAIN
84 #define NAME__MAIN "__main"
85 #endif
87 /* Round a value to the lowest integer less than it that is a multiple of
88 the required alignment. Avoid using division in case the value is
89 negative. Assume the alignment is a power of two. */
90 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
92 /* Similar, but round to the next highest integer that meets the
93 alignment. */
94 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
96 /* Nonzero if function being compiled doesn't contain any calls
97 (ignoring the prologue and epilogue). This is set prior to
98 local register allocation and is valid for the remaining
99 compiler passes. */
100 int current_function_is_leaf;
102 /* Nonzero if function being compiled doesn't modify the stack pointer
103 (ignoring the prologue and epilogue). This is only valid after
104 pass_stack_ptr_mod has run. */
105 int current_function_sp_is_unchanging;
107 /* Nonzero if the function being compiled is a leaf function which only
108 uses leaf registers. This is valid after reload (specifically after
109 sched2) and is useful only if the port defines LEAF_REGISTERS. */
110 int current_function_uses_only_leaf_regs;
112 /* Nonzero once virtual register instantiation has been done.
113 assign_stack_local uses frame_pointer_rtx when this is nonzero.
114 calls.c:emit_library_call_value_1 uses it to set up
115 post-instantiation libcalls. */
116 int virtuals_instantiated;
118 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
119 static GTY(()) int funcdef_no;
121 /* These variables hold pointers to functions to create and destroy
122 target specific, per-function data structures. */
123 struct machine_function * (*init_machine_status) (void);
125 /* The currently compiled function. */
126 struct function *cfun = 0;
128 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
129 static VEC(int,heap) *prologue;
130 static VEC(int,heap) *epilogue;
132 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
133 in this function. */
134 static VEC(int,heap) *sibcall_epilogue;
136 /* In order to evaluate some expressions, such as function calls returning
137 structures in memory, we need to temporarily allocate stack locations.
138 We record each allocated temporary in the following structure.
140 Associated with each temporary slot is a nesting level. When we pop up
141 one level, all temporaries associated with the previous level are freed.
142 Normally, all temporaries are freed after the execution of the statement
143 in which they were created. However, if we are inside a ({...}) grouping,
144 the result may be in a temporary and hence must be preserved. If the
145 result could be in a temporary, we preserve it if we can determine which
146 one it is in. If we cannot determine which temporary may contain the
147 result, all temporaries are preserved. A temporary is preserved by
148 pretending it was allocated at the previous nesting level.
150 Automatic variables are also assigned temporary slots, at the nesting
151 level where they are defined. They are marked a "kept" so that
152 free_temp_slots will not free them. */
154 struct temp_slot GTY(())
156 /* Points to next temporary slot. */
157 struct temp_slot *next;
158 /* Points to previous temporary slot. */
159 struct temp_slot *prev;
161 /* The rtx to used to reference the slot. */
162 rtx slot;
163 /* The rtx used to represent the address if not the address of the
164 slot above. May be an EXPR_LIST if multiple addresses exist. */
165 rtx address;
166 /* The alignment (in bits) of the slot. */
167 unsigned int align;
168 /* The size, in units, of the slot. */
169 HOST_WIDE_INT size;
170 /* The type of the object in the slot, or zero if it doesn't correspond
171 to a type. We use this to determine whether a slot can be reused.
172 It can be reused if objects of the type of the new slot will always
173 conflict with objects of the type of the old slot. */
174 tree type;
175 /* Nonzero if this temporary is currently in use. */
176 char in_use;
177 /* Nonzero if this temporary has its address taken. */
178 char addr_taken;
179 /* Nesting level at which this slot is being used. */
180 int level;
181 /* Nonzero if this should survive a call to free_temp_slots. */
182 int keep;
183 /* The offset of the slot from the frame_pointer, including extra space
184 for alignment. This info is for combine_temp_slots. */
185 HOST_WIDE_INT base_offset;
186 /* The size of the slot, including extra space for alignment. This
187 info is for combine_temp_slots. */
188 HOST_WIDE_INT full_size;
191 /* Forward declarations. */
193 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
194 struct function *);
195 static struct temp_slot *find_temp_slot_from_address (rtx);
196 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
197 static void pad_below (struct args_size *, enum machine_mode, tree);
198 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
205 static int contains (const_rtx, VEC(int,heap) **);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (tree);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
217 /* Pointer to chain of `struct function' for containing functions. */
218 struct function *outer_function_chain;
220 /* Given a function decl for a containing function,
221 return the `struct function' for it. */
223 struct function *
224 find_function_data (tree decl)
226 struct function *p;
228 for (p = outer_function_chain; p; p = p->outer)
229 if (p->decl == decl)
230 return p;
232 gcc_unreachable ();
235 /* Save the current context for compilation of a nested function.
236 This is called from language-specific code. The caller should use
237 the enter_nested langhook to save any language-specific state,
238 since this function knows only about language-independent
239 variables. */
241 void
242 push_function_context_to (tree context ATTRIBUTE_UNUSED)
244 struct function *p;
246 if (cfun == 0)
247 init_dummy_function_start ();
248 p = cfun;
250 p->outer = outer_function_chain;
251 outer_function_chain = p;
253 lang_hooks.function.enter_nested (p);
255 cfun = 0;
258 void
259 push_function_context (void)
261 push_function_context_to (current_function_decl);
264 /* Restore the last saved context, at the end of a nested function.
265 This function is called from language-specific code. */
267 void
268 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
270 struct function *p = outer_function_chain;
272 cfun = p;
273 outer_function_chain = p->outer;
275 current_function_decl = p->decl;
277 lang_hooks.function.leave_nested (p);
279 /* Reset variables that have known state during rtx generation. */
280 virtuals_instantiated = 0;
281 generating_concat_p = 1;
284 void
285 pop_function_context (void)
287 pop_function_context_from (current_function_decl);
290 /* Clear out all parts of the state in F that can safely be discarded
291 after the function has been parsed, but not compiled, to let
292 garbage collection reclaim the memory. */
294 void
295 free_after_parsing (struct function *f)
297 /* f->expr->forced_labels is used by code generation. */
298 /* f->emit->regno_reg_rtx is used by code generation. */
299 /* f->varasm is used by code generation. */
300 /* f->eh->eh_return_stub_label is used by code generation. */
302 lang_hooks.function.final (f);
305 /* Clear out all parts of the state in F that can safely be discarded
306 after the function has been compiled, to let garbage collection
307 reclaim the memory. */
309 void
310 free_after_compilation (struct function *f)
312 VEC_free (int, heap, prologue);
313 VEC_free (int, heap, epilogue);
314 VEC_free (int, heap, sibcall_epilogue);
316 f->eh = NULL;
317 f->expr = NULL;
318 f->emit = NULL;
319 f->varasm = NULL;
320 f->machine = NULL;
321 f->cfg = NULL;
323 f->x_avail_temp_slots = NULL;
324 f->x_used_temp_slots = NULL;
325 f->arg_offset_rtx = NULL;
326 f->return_rtx = NULL;
327 f->internal_arg_pointer = NULL;
328 f->x_nonlocal_goto_handler_labels = NULL;
329 f->x_return_label = NULL;
330 f->x_naked_return_label = NULL;
331 f->x_stack_slot_list = NULL;
332 f->x_stack_check_probe_note = NULL;
333 f->x_arg_pointer_save_area = NULL;
334 f->x_parm_birth_insn = NULL;
335 f->epilogue_delay_list = NULL;
338 /* Allocate fixed slots in the stack frame of the current function. */
340 /* Return size needed for stack frame based on slots so far allocated in
341 function F.
342 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
343 the caller may have to do that. */
345 static HOST_WIDE_INT
346 get_func_frame_size (struct function *f)
348 if (FRAME_GROWS_DOWNWARD)
349 return -f->x_frame_offset;
350 else
351 return f->x_frame_offset;
354 /* Return size needed for stack frame based on slots so far allocated.
355 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
356 the caller may have to do that. */
358 HOST_WIDE_INT
359 get_frame_size (void)
361 return get_func_frame_size (cfun);
364 /* Issue an error message and return TRUE if frame OFFSET overflows in
365 the signed target pointer arithmetics for function FUNC. Otherwise
366 return FALSE. */
368 bool
369 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
371 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
373 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
374 /* Leave room for the fixed part of the frame. */
375 - 64 * UNITS_PER_WORD)
377 error ("%Jtotal size of local objects too large", func);
378 return TRUE;
381 return FALSE;
384 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
385 with machine mode MODE.
387 ALIGN controls the amount of alignment for the address of the slot:
388 0 means according to MODE,
389 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
390 -2 means use BITS_PER_UNIT,
391 positive specifies alignment boundary in bits.
393 We do not round to stack_boundary here.
395 FUNCTION specifies the function to allocate in. */
397 static rtx
398 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
399 struct function *function)
401 rtx x, addr;
402 int bigend_correction = 0;
403 unsigned int alignment;
404 int frame_off, frame_alignment, frame_phase;
406 if (align == 0)
408 tree type;
410 if (mode == BLKmode)
411 alignment = BIGGEST_ALIGNMENT;
412 else
413 alignment = GET_MODE_ALIGNMENT (mode);
415 /* Allow the target to (possibly) increase the alignment of this
416 stack slot. */
417 type = lang_hooks.types.type_for_mode (mode, 0);
418 if (type)
419 alignment = LOCAL_ALIGNMENT (type, alignment);
421 alignment /= BITS_PER_UNIT;
423 else if (align == -1)
425 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
426 size = CEIL_ROUND (size, alignment);
428 else if (align == -2)
429 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
430 else
431 alignment = align / BITS_PER_UNIT;
433 if (FRAME_GROWS_DOWNWARD)
434 function->x_frame_offset -= size;
436 /* Ignore alignment we can't do with expected alignment of the boundary. */
437 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
438 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
440 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
441 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
443 /* Calculate how many bytes the start of local variables is off from
444 stack alignment. */
445 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
446 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
447 frame_phase = frame_off ? frame_alignment - frame_off : 0;
449 /* Round the frame offset to the specified alignment. The default is
450 to always honor requests to align the stack but a port may choose to
451 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
452 if (STACK_ALIGNMENT_NEEDED
453 || mode != BLKmode
454 || size != 0)
456 /* We must be careful here, since FRAME_OFFSET might be negative and
457 division with a negative dividend isn't as well defined as we might
458 like. So we instead assume that ALIGNMENT is a power of two and
459 use logical operations which are unambiguous. */
460 if (FRAME_GROWS_DOWNWARD)
461 function->x_frame_offset
462 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
463 (unsigned HOST_WIDE_INT) alignment)
464 + frame_phase);
465 else
466 function->x_frame_offset
467 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
468 (unsigned HOST_WIDE_INT) alignment)
469 + frame_phase);
472 /* On a big-endian machine, if we are allocating more space than we will use,
473 use the least significant bytes of those that are allocated. */
474 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
475 bigend_correction = size - GET_MODE_SIZE (mode);
477 /* If we have already instantiated virtual registers, return the actual
478 address relative to the frame pointer. */
479 if (function == cfun && virtuals_instantiated)
480 addr = plus_constant (frame_pointer_rtx,
481 trunc_int_for_mode
482 (frame_offset + bigend_correction
483 + STARTING_FRAME_OFFSET, Pmode));
484 else
485 addr = plus_constant (virtual_stack_vars_rtx,
486 trunc_int_for_mode
487 (function->x_frame_offset + bigend_correction,
488 Pmode));
490 if (!FRAME_GROWS_DOWNWARD)
491 function->x_frame_offset += size;
493 x = gen_rtx_MEM (mode, addr);
494 MEM_NOTRAP_P (x) = 1;
496 function->x_stack_slot_list
497 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
499 if (frame_offset_overflow (function->x_frame_offset, function->decl))
500 function->x_frame_offset = 0;
502 return x;
505 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
506 current function. */
509 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
511 return assign_stack_local_1 (mode, size, align, cfun);
515 /* Removes temporary slot TEMP from LIST. */
517 static void
518 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
520 if (temp->next)
521 temp->next->prev = temp->prev;
522 if (temp->prev)
523 temp->prev->next = temp->next;
524 else
525 *list = temp->next;
527 temp->prev = temp->next = NULL;
530 /* Inserts temporary slot TEMP to LIST. */
532 static void
533 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
535 temp->next = *list;
536 if (*list)
537 (*list)->prev = temp;
538 temp->prev = NULL;
539 *list = temp;
542 /* Returns the list of used temp slots at LEVEL. */
544 static struct temp_slot **
545 temp_slots_at_level (int level)
547 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
548 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
550 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
553 /* Returns the maximal temporary slot level. */
555 static int
556 max_slot_level (void)
558 if (!used_temp_slots)
559 return -1;
561 return VEC_length (temp_slot_p, used_temp_slots) - 1;
564 /* Moves temporary slot TEMP to LEVEL. */
566 static void
567 move_slot_to_level (struct temp_slot *temp, int level)
569 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
570 insert_slot_to_list (temp, temp_slots_at_level (level));
571 temp->level = level;
574 /* Make temporary slot TEMP available. */
576 static void
577 make_slot_available (struct temp_slot *temp)
579 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
580 insert_slot_to_list (temp, &avail_temp_slots);
581 temp->in_use = 0;
582 temp->level = -1;
585 /* Allocate a temporary stack slot and record it for possible later
586 reuse.
588 MODE is the machine mode to be given to the returned rtx.
590 SIZE is the size in units of the space required. We do no rounding here
591 since assign_stack_local will do any required rounding.
593 KEEP is 1 if this slot is to be retained after a call to
594 free_temp_slots. Automatic variables for a block are allocated
595 with this flag. KEEP values of 2 or 3 were needed respectively
596 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
597 or for SAVE_EXPRs, but they are now unused.
599 TYPE is the type that will be used for the stack slot. */
602 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
603 int keep, tree type)
605 unsigned int align;
606 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
607 rtx slot;
609 /* If SIZE is -1 it means that somebody tried to allocate a temporary
610 of a variable size. */
611 gcc_assert (size != -1);
613 /* These are now unused. */
614 gcc_assert (keep <= 1);
616 if (mode == BLKmode)
617 align = BIGGEST_ALIGNMENT;
618 else
619 align = GET_MODE_ALIGNMENT (mode);
621 if (! type)
622 type = lang_hooks.types.type_for_mode (mode, 0);
624 if (type)
625 align = LOCAL_ALIGNMENT (type, align);
627 /* Try to find an available, already-allocated temporary of the proper
628 mode which meets the size and alignment requirements. Choose the
629 smallest one with the closest alignment.
631 If assign_stack_temp is called outside of the tree->rtl expansion,
632 we cannot reuse the stack slots (that may still refer to
633 VIRTUAL_STACK_VARS_REGNUM). */
634 if (!virtuals_instantiated)
636 for (p = avail_temp_slots; p; p = p->next)
638 if (p->align >= align && p->size >= size
639 && GET_MODE (p->slot) == mode
640 && objects_must_conflict_p (p->type, type)
641 && (best_p == 0 || best_p->size > p->size
642 || (best_p->size == p->size && best_p->align > p->align)))
644 if (p->align == align && p->size == size)
646 selected = p;
647 cut_slot_from_list (selected, &avail_temp_slots);
648 best_p = 0;
649 break;
651 best_p = p;
656 /* Make our best, if any, the one to use. */
657 if (best_p)
659 selected = best_p;
660 cut_slot_from_list (selected, &avail_temp_slots);
662 /* If there are enough aligned bytes left over, make them into a new
663 temp_slot so that the extra bytes don't get wasted. Do this only
664 for BLKmode slots, so that we can be sure of the alignment. */
665 if (GET_MODE (best_p->slot) == BLKmode)
667 int alignment = best_p->align / BITS_PER_UNIT;
668 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
670 if (best_p->size - rounded_size >= alignment)
672 p = ggc_alloc (sizeof (struct temp_slot));
673 p->in_use = p->addr_taken = 0;
674 p->size = best_p->size - rounded_size;
675 p->base_offset = best_p->base_offset + rounded_size;
676 p->full_size = best_p->full_size - rounded_size;
677 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
678 p->align = best_p->align;
679 p->address = 0;
680 p->type = best_p->type;
681 insert_slot_to_list (p, &avail_temp_slots);
683 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
684 stack_slot_list);
686 best_p->size = rounded_size;
687 best_p->full_size = rounded_size;
692 /* If we still didn't find one, make a new temporary. */
693 if (selected == 0)
695 HOST_WIDE_INT frame_offset_old = frame_offset;
697 p = ggc_alloc (sizeof (struct temp_slot));
699 /* We are passing an explicit alignment request to assign_stack_local.
700 One side effect of that is assign_stack_local will not round SIZE
701 to ensure the frame offset remains suitably aligned.
703 So for requests which depended on the rounding of SIZE, we go ahead
704 and round it now. We also make sure ALIGNMENT is at least
705 BIGGEST_ALIGNMENT. */
706 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
707 p->slot = assign_stack_local (mode,
708 (mode == BLKmode
709 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
710 : size),
711 align);
713 p->align = align;
715 /* The following slot size computation is necessary because we don't
716 know the actual size of the temporary slot until assign_stack_local
717 has performed all the frame alignment and size rounding for the
718 requested temporary. Note that extra space added for alignment
719 can be either above or below this stack slot depending on which
720 way the frame grows. We include the extra space if and only if it
721 is above this slot. */
722 if (FRAME_GROWS_DOWNWARD)
723 p->size = frame_offset_old - frame_offset;
724 else
725 p->size = size;
727 /* Now define the fields used by combine_temp_slots. */
728 if (FRAME_GROWS_DOWNWARD)
730 p->base_offset = frame_offset;
731 p->full_size = frame_offset_old - frame_offset;
733 else
735 p->base_offset = frame_offset_old;
736 p->full_size = frame_offset - frame_offset_old;
738 p->address = 0;
740 selected = p;
743 p = selected;
744 p->in_use = 1;
745 p->addr_taken = 0;
746 p->type = type;
747 p->level = temp_slot_level;
748 p->keep = keep;
750 pp = temp_slots_at_level (p->level);
751 insert_slot_to_list (p, pp);
753 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
754 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
755 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
757 /* If we know the alias set for the memory that will be used, use
758 it. If there's no TYPE, then we don't know anything about the
759 alias set for the memory. */
760 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
761 set_mem_align (slot, align);
763 /* If a type is specified, set the relevant flags. */
764 if (type != 0)
766 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
767 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
768 || TREE_CODE (type) == COMPLEX_TYPE));
770 MEM_NOTRAP_P (slot) = 1;
772 return slot;
775 /* Allocate a temporary stack slot and record it for possible later
776 reuse. First three arguments are same as in preceding function. */
779 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
781 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
784 /* Assign a temporary.
785 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
786 and so that should be used in error messages. In either case, we
787 allocate of the given type.
788 KEEP is as for assign_stack_temp.
789 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
790 it is 0 if a register is OK.
791 DONT_PROMOTE is 1 if we should not promote values in register
792 to wider modes. */
795 assign_temp (tree type_or_decl, int keep, int memory_required,
796 int dont_promote ATTRIBUTE_UNUSED)
798 tree type, decl;
799 enum machine_mode mode;
800 #ifdef PROMOTE_MODE
801 int unsignedp;
802 #endif
804 if (DECL_P (type_or_decl))
805 decl = type_or_decl, type = TREE_TYPE (decl);
806 else
807 decl = NULL, type = type_or_decl;
809 mode = TYPE_MODE (type);
810 #ifdef PROMOTE_MODE
811 unsignedp = TYPE_UNSIGNED (type);
812 #endif
814 if (mode == BLKmode || memory_required)
816 HOST_WIDE_INT size = int_size_in_bytes (type);
817 rtx tmp;
819 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
820 problems with allocating the stack space. */
821 if (size == 0)
822 size = 1;
824 /* Unfortunately, we don't yet know how to allocate variable-sized
825 temporaries. However, sometimes we can find a fixed upper limit on
826 the size, so try that instead. */
827 else if (size == -1)
828 size = max_int_size_in_bytes (type);
830 /* The size of the temporary may be too large to fit into an integer. */
831 /* ??? Not sure this should happen except for user silliness, so limit
832 this to things that aren't compiler-generated temporaries. The
833 rest of the time we'll die in assign_stack_temp_for_type. */
834 if (decl && size == -1
835 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
837 error ("size of variable %q+D is too large", decl);
838 size = 1;
841 tmp = assign_stack_temp_for_type (mode, size, keep, type);
842 return tmp;
845 #ifdef PROMOTE_MODE
846 if (! dont_promote)
847 mode = promote_mode (type, mode, &unsignedp, 0);
848 #endif
850 return gen_reg_rtx (mode);
853 /* Combine temporary stack slots which are adjacent on the stack.
855 This allows for better use of already allocated stack space. This is only
856 done for BLKmode slots because we can be sure that we won't have alignment
857 problems in this case. */
859 static void
860 combine_temp_slots (void)
862 struct temp_slot *p, *q, *next, *next_q;
863 int num_slots;
865 /* We can't combine slots, because the information about which slot
866 is in which alias set will be lost. */
867 if (flag_strict_aliasing)
868 return;
870 /* If there are a lot of temp slots, don't do anything unless
871 high levels of optimization. */
872 if (! flag_expensive_optimizations)
873 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
874 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
875 return;
877 for (p = avail_temp_slots; p; p = next)
879 int delete_p = 0;
881 next = p->next;
883 if (GET_MODE (p->slot) != BLKmode)
884 continue;
886 for (q = p->next; q; q = next_q)
888 int delete_q = 0;
890 next_q = q->next;
892 if (GET_MODE (q->slot) != BLKmode)
893 continue;
895 if (p->base_offset + p->full_size == q->base_offset)
897 /* Q comes after P; combine Q into P. */
898 p->size += q->size;
899 p->full_size += q->full_size;
900 delete_q = 1;
902 else if (q->base_offset + q->full_size == p->base_offset)
904 /* P comes after Q; combine P into Q. */
905 q->size += p->size;
906 q->full_size += p->full_size;
907 delete_p = 1;
908 break;
910 if (delete_q)
911 cut_slot_from_list (q, &avail_temp_slots);
914 /* Either delete P or advance past it. */
915 if (delete_p)
916 cut_slot_from_list (p, &avail_temp_slots);
920 /* Find the temp slot corresponding to the object at address X. */
922 static struct temp_slot *
923 find_temp_slot_from_address (rtx x)
925 struct temp_slot *p;
926 rtx next;
927 int i;
929 for (i = max_slot_level (); i >= 0; i--)
930 for (p = *temp_slots_at_level (i); p; p = p->next)
932 if (XEXP (p->slot, 0) == x
933 || p->address == x
934 || (GET_CODE (x) == PLUS
935 && XEXP (x, 0) == virtual_stack_vars_rtx
936 && GET_CODE (XEXP (x, 1)) == CONST_INT
937 && INTVAL (XEXP (x, 1)) >= p->base_offset
938 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
939 return p;
941 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
942 for (next = p->address; next; next = XEXP (next, 1))
943 if (XEXP (next, 0) == x)
944 return p;
947 /* If we have a sum involving a register, see if it points to a temp
948 slot. */
949 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
950 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
951 return p;
952 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
953 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
954 return p;
956 return 0;
959 /* Indicate that NEW is an alternate way of referring to the temp slot
960 that previously was known by OLD. */
962 void
963 update_temp_slot_address (rtx old, rtx new)
965 struct temp_slot *p;
967 if (rtx_equal_p (old, new))
968 return;
970 p = find_temp_slot_from_address (old);
972 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
973 is a register, see if one operand of the PLUS is a temporary
974 location. If so, NEW points into it. Otherwise, if both OLD and
975 NEW are a PLUS and if there is a register in common between them.
976 If so, try a recursive call on those values. */
977 if (p == 0)
979 if (GET_CODE (old) != PLUS)
980 return;
982 if (REG_P (new))
984 update_temp_slot_address (XEXP (old, 0), new);
985 update_temp_slot_address (XEXP (old, 1), new);
986 return;
988 else if (GET_CODE (new) != PLUS)
989 return;
991 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
992 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
993 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
994 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
995 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
996 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
997 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
998 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1000 return;
1003 /* Otherwise add an alias for the temp's address. */
1004 else if (p->address == 0)
1005 p->address = new;
1006 else
1008 if (GET_CODE (p->address) != EXPR_LIST)
1009 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1011 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1015 /* If X could be a reference to a temporary slot, mark the fact that its
1016 address was taken. */
1018 void
1019 mark_temp_addr_taken (rtx x)
1021 struct temp_slot *p;
1023 if (x == 0)
1024 return;
1026 /* If X is not in memory or is at a constant address, it cannot be in
1027 a temporary slot. */
1028 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1029 return;
1031 p = find_temp_slot_from_address (XEXP (x, 0));
1032 if (p != 0)
1033 p->addr_taken = 1;
1036 /* If X could be a reference to a temporary slot, mark that slot as
1037 belonging to the to one level higher than the current level. If X
1038 matched one of our slots, just mark that one. Otherwise, we can't
1039 easily predict which it is, so upgrade all of them. Kept slots
1040 need not be touched.
1042 This is called when an ({...}) construct occurs and a statement
1043 returns a value in memory. */
1045 void
1046 preserve_temp_slots (rtx x)
1048 struct temp_slot *p = 0, *next;
1050 /* If there is no result, we still might have some objects whose address
1051 were taken, so we need to make sure they stay around. */
1052 if (x == 0)
1054 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1056 next = p->next;
1058 if (p->addr_taken)
1059 move_slot_to_level (p, temp_slot_level - 1);
1062 return;
1065 /* If X is a register that is being used as a pointer, see if we have
1066 a temporary slot we know it points to. To be consistent with
1067 the code below, we really should preserve all non-kept slots
1068 if we can't find a match, but that seems to be much too costly. */
1069 if (REG_P (x) && REG_POINTER (x))
1070 p = find_temp_slot_from_address (x);
1072 /* If X is not in memory or is at a constant address, it cannot be in
1073 a temporary slot, but it can contain something whose address was
1074 taken. */
1075 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1077 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1079 next = p->next;
1081 if (p->addr_taken)
1082 move_slot_to_level (p, temp_slot_level - 1);
1085 return;
1088 /* First see if we can find a match. */
1089 if (p == 0)
1090 p = find_temp_slot_from_address (XEXP (x, 0));
1092 if (p != 0)
1094 /* Move everything at our level whose address was taken to our new
1095 level in case we used its address. */
1096 struct temp_slot *q;
1098 if (p->level == temp_slot_level)
1100 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1102 next = q->next;
1104 if (p != q && q->addr_taken)
1105 move_slot_to_level (q, temp_slot_level - 1);
1108 move_slot_to_level (p, temp_slot_level - 1);
1109 p->addr_taken = 0;
1111 return;
1114 /* Otherwise, preserve all non-kept slots at this level. */
1115 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1117 next = p->next;
1119 if (!p->keep)
1120 move_slot_to_level (p, temp_slot_level - 1);
1124 /* Free all temporaries used so far. This is normally called at the
1125 end of generating code for a statement. */
1127 void
1128 free_temp_slots (void)
1130 struct temp_slot *p, *next;
1132 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1134 next = p->next;
1136 if (!p->keep)
1137 make_slot_available (p);
1140 combine_temp_slots ();
1143 /* Push deeper into the nesting level for stack temporaries. */
1145 void
1146 push_temp_slots (void)
1148 temp_slot_level++;
1151 /* Pop a temporary nesting level. All slots in use in the current level
1152 are freed. */
1154 void
1155 pop_temp_slots (void)
1157 struct temp_slot *p, *next;
1159 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1161 next = p->next;
1162 make_slot_available (p);
1165 combine_temp_slots ();
1167 temp_slot_level--;
1170 /* Initialize temporary slots. */
1172 void
1173 init_temp_slots (void)
1175 /* We have not allocated any temporaries yet. */
1176 avail_temp_slots = 0;
1177 used_temp_slots = 0;
1178 temp_slot_level = 0;
1181 /* These routines are responsible for converting virtual register references
1182 to the actual hard register references once RTL generation is complete.
1184 The following four variables are used for communication between the
1185 routines. They contain the offsets of the virtual registers from their
1186 respective hard registers. */
1188 static int in_arg_offset;
1189 static int var_offset;
1190 static int dynamic_offset;
1191 static int out_arg_offset;
1192 static int cfa_offset;
1194 /* In most machines, the stack pointer register is equivalent to the bottom
1195 of the stack. */
1197 #ifndef STACK_POINTER_OFFSET
1198 #define STACK_POINTER_OFFSET 0
1199 #endif
1201 /* If not defined, pick an appropriate default for the offset of dynamically
1202 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1203 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1205 #ifndef STACK_DYNAMIC_OFFSET
1207 /* The bottom of the stack points to the actual arguments. If
1208 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1209 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1210 stack space for register parameters is not pushed by the caller, but
1211 rather part of the fixed stack areas and hence not included in
1212 `current_function_outgoing_args_size'. Nevertheless, we must allow
1213 for it when allocating stack dynamic objects. */
1215 #if defined(REG_PARM_STACK_SPACE)
1216 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1217 ((ACCUMULATE_OUTGOING_ARGS \
1218 ? (current_function_outgoing_args_size \
1219 + (OUTGOING_REG_PARM_STACK_SPACE ? 0 : REG_PARM_STACK_SPACE (FNDECL))) \
1220 : 0) + (STACK_POINTER_OFFSET))
1221 #else
1222 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1223 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1224 + (STACK_POINTER_OFFSET))
1225 #endif
1226 #endif
1229 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1230 is a virtual register, return the equivalent hard register and set the
1231 offset indirectly through the pointer. Otherwise, return 0. */
1233 static rtx
1234 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1236 rtx new;
1237 HOST_WIDE_INT offset;
1239 if (x == virtual_incoming_args_rtx)
1240 new = arg_pointer_rtx, offset = in_arg_offset;
1241 else if (x == virtual_stack_vars_rtx)
1242 new = frame_pointer_rtx, offset = var_offset;
1243 else if (x == virtual_stack_dynamic_rtx)
1244 new = stack_pointer_rtx, offset = dynamic_offset;
1245 else if (x == virtual_outgoing_args_rtx)
1246 new = stack_pointer_rtx, offset = out_arg_offset;
1247 else if (x == virtual_cfa_rtx)
1249 #ifdef FRAME_POINTER_CFA_OFFSET
1250 new = frame_pointer_rtx;
1251 #else
1252 new = arg_pointer_rtx;
1253 #endif
1254 offset = cfa_offset;
1256 else
1257 return NULL_RTX;
1259 *poffset = offset;
1260 return new;
1263 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1264 Instantiate any virtual registers present inside of *LOC. The expression
1265 is simplified, as much as possible, but is not to be considered "valid"
1266 in any sense implied by the target. If any change is made, set CHANGED
1267 to true. */
1269 static int
1270 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1272 HOST_WIDE_INT offset;
1273 bool *changed = (bool *) data;
1274 rtx x, new;
1276 x = *loc;
1277 if (x == 0)
1278 return 0;
1280 switch (GET_CODE (x))
1282 case REG:
1283 new = instantiate_new_reg (x, &offset);
1284 if (new)
1286 *loc = plus_constant (new, offset);
1287 if (changed)
1288 *changed = true;
1290 return -1;
1292 case PLUS:
1293 new = instantiate_new_reg (XEXP (x, 0), &offset);
1294 if (new)
1296 new = plus_constant (new, offset);
1297 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1298 if (changed)
1299 *changed = true;
1300 return -1;
1303 /* FIXME -- from old code */
1304 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1305 we can commute the PLUS and SUBREG because pointers into the
1306 frame are well-behaved. */
1307 break;
1309 default:
1310 break;
1313 return 0;
1316 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1317 matches the predicate for insn CODE operand OPERAND. */
1319 static int
1320 safe_insn_predicate (int code, int operand, rtx x)
1322 const struct insn_operand_data *op_data;
1324 if (code < 0)
1325 return true;
1327 op_data = &insn_data[code].operand[operand];
1328 if (op_data->predicate == NULL)
1329 return true;
1331 return op_data->predicate (x, op_data->mode);
1334 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1335 registers present inside of insn. The result will be a valid insn. */
1337 static void
1338 instantiate_virtual_regs_in_insn (rtx insn)
1340 HOST_WIDE_INT offset;
1341 int insn_code, i;
1342 bool any_change = false;
1343 rtx set, new, x, seq;
1345 /* There are some special cases to be handled first. */
1346 set = single_set (insn);
1347 if (set)
1349 /* We're allowed to assign to a virtual register. This is interpreted
1350 to mean that the underlying register gets assigned the inverse
1351 transformation. This is used, for example, in the handling of
1352 non-local gotos. */
1353 new = instantiate_new_reg (SET_DEST (set), &offset);
1354 if (new)
1356 start_sequence ();
1358 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1359 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1360 GEN_INT (-offset));
1361 x = force_operand (x, new);
1362 if (x != new)
1363 emit_move_insn (new, x);
1365 seq = get_insns ();
1366 end_sequence ();
1368 emit_insn_before (seq, insn);
1369 delete_insn (insn);
1370 return;
1373 /* Handle a straight copy from a virtual register by generating a
1374 new add insn. The difference between this and falling through
1375 to the generic case is avoiding a new pseudo and eliminating a
1376 move insn in the initial rtl stream. */
1377 new = instantiate_new_reg (SET_SRC (set), &offset);
1378 if (new && offset != 0
1379 && REG_P (SET_DEST (set))
1380 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1382 start_sequence ();
1384 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1385 new, GEN_INT (offset), SET_DEST (set),
1386 1, OPTAB_LIB_WIDEN);
1387 if (x != SET_DEST (set))
1388 emit_move_insn (SET_DEST (set), x);
1390 seq = get_insns ();
1391 end_sequence ();
1393 emit_insn_before (seq, insn);
1394 delete_insn (insn);
1395 return;
1398 extract_insn (insn);
1399 insn_code = INSN_CODE (insn);
1401 /* Handle a plus involving a virtual register by determining if the
1402 operands remain valid if they're modified in place. */
1403 if (GET_CODE (SET_SRC (set)) == PLUS
1404 && recog_data.n_operands >= 3
1405 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1406 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1407 && GET_CODE (recog_data.operand[2]) == CONST_INT
1408 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1410 offset += INTVAL (recog_data.operand[2]);
1412 /* If the sum is zero, then replace with a plain move. */
1413 if (offset == 0
1414 && REG_P (SET_DEST (set))
1415 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1417 start_sequence ();
1418 emit_move_insn (SET_DEST (set), new);
1419 seq = get_insns ();
1420 end_sequence ();
1422 emit_insn_before (seq, insn);
1423 delete_insn (insn);
1424 return;
1427 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1429 /* Using validate_change and apply_change_group here leaves
1430 recog_data in an invalid state. Since we know exactly what
1431 we want to check, do those two by hand. */
1432 if (safe_insn_predicate (insn_code, 1, new)
1433 && safe_insn_predicate (insn_code, 2, x))
1435 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1436 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1437 any_change = true;
1439 /* Fall through into the regular operand fixup loop in
1440 order to take care of operands other than 1 and 2. */
1444 else
1446 extract_insn (insn);
1447 insn_code = INSN_CODE (insn);
1450 /* In the general case, we expect virtual registers to appear only in
1451 operands, and then only as either bare registers or inside memories. */
1452 for (i = 0; i < recog_data.n_operands; ++i)
1454 x = recog_data.operand[i];
1455 switch (GET_CODE (x))
1457 case MEM:
1459 rtx addr = XEXP (x, 0);
1460 bool changed = false;
1462 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1463 if (!changed)
1464 continue;
1466 start_sequence ();
1467 x = replace_equiv_address (x, addr);
1468 seq = get_insns ();
1469 end_sequence ();
1470 if (seq)
1471 emit_insn_before (seq, insn);
1473 break;
1475 case REG:
1476 new = instantiate_new_reg (x, &offset);
1477 if (new == NULL)
1478 continue;
1479 if (offset == 0)
1480 x = new;
1481 else
1483 start_sequence ();
1485 /* Careful, special mode predicates may have stuff in
1486 insn_data[insn_code].operand[i].mode that isn't useful
1487 to us for computing a new value. */
1488 /* ??? Recognize address_operand and/or "p" constraints
1489 to see if (plus new offset) is a valid before we put
1490 this through expand_simple_binop. */
1491 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1492 GEN_INT (offset), NULL_RTX,
1493 1, OPTAB_LIB_WIDEN);
1494 seq = get_insns ();
1495 end_sequence ();
1496 emit_insn_before (seq, insn);
1498 break;
1500 case SUBREG:
1501 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1502 if (new == NULL)
1503 continue;
1504 if (offset != 0)
1506 start_sequence ();
1507 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1508 GEN_INT (offset), NULL_RTX,
1509 1, OPTAB_LIB_WIDEN);
1510 seq = get_insns ();
1511 end_sequence ();
1512 emit_insn_before (seq, insn);
1514 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1515 GET_MODE (new), SUBREG_BYTE (x));
1516 break;
1518 default:
1519 continue;
1522 /* At this point, X contains the new value for the operand.
1523 Validate the new value vs the insn predicate. Note that
1524 asm insns will have insn_code -1 here. */
1525 if (!safe_insn_predicate (insn_code, i, x))
1527 start_sequence ();
1528 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1529 seq = get_insns ();
1530 end_sequence ();
1531 if (seq)
1532 emit_insn_before (seq, insn);
1535 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1536 any_change = true;
1539 if (any_change)
1541 /* Propagate operand changes into the duplicates. */
1542 for (i = 0; i < recog_data.n_dups; ++i)
1543 *recog_data.dup_loc[i]
1544 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1546 /* Force re-recognition of the instruction for validation. */
1547 INSN_CODE (insn) = -1;
1550 if (asm_noperands (PATTERN (insn)) >= 0)
1552 if (!check_asm_operands (PATTERN (insn)))
1554 error_for_asm (insn, "impossible constraint in %<asm%>");
1555 delete_insn (insn);
1558 else
1560 if (recog_memoized (insn) < 0)
1561 fatal_insn_not_found (insn);
1565 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1566 do any instantiation required. */
1568 static void
1569 instantiate_decl (rtx x)
1571 rtx addr;
1573 if (x == 0)
1574 return;
1576 /* If this is a CONCAT, recurse for the pieces. */
1577 if (GET_CODE (x) == CONCAT)
1579 instantiate_decl (XEXP (x, 0));
1580 instantiate_decl (XEXP (x, 1));
1581 return;
1584 /* If this is not a MEM, no need to do anything. Similarly if the
1585 address is a constant or a register that is not a virtual register. */
1586 if (!MEM_P (x))
1587 return;
1589 addr = XEXP (x, 0);
1590 if (CONSTANT_P (addr)
1591 || (REG_P (addr)
1592 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1593 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1594 return;
1596 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1599 /* Helper for instantiate_decls called via walk_tree: Process all decls
1600 in the given DECL_VALUE_EXPR. */
1602 static tree
1603 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1605 tree t = *tp;
1606 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1608 *walk_subtrees = 0;
1609 if (DECL_P (t) && DECL_RTL_SET_P (t))
1610 instantiate_decl (DECL_RTL (t));
1612 return NULL;
1615 /* Subroutine of instantiate_decls: Process all decls in the given
1616 BLOCK node and all its subblocks. */
1618 static void
1619 instantiate_decls_1 (tree let)
1621 tree t;
1623 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1625 if (DECL_RTL_SET_P (t))
1626 instantiate_decl (DECL_RTL (t));
1627 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1629 tree v = DECL_VALUE_EXPR (t);
1630 walk_tree (&v, instantiate_expr, NULL, NULL);
1634 /* Process all subblocks. */
1635 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1636 instantiate_decls_1 (t);
1639 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1640 all virtual registers in their DECL_RTL's. */
1642 static void
1643 instantiate_decls (tree fndecl)
1645 tree decl;
1647 /* Process all parameters of the function. */
1648 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1650 instantiate_decl (DECL_RTL (decl));
1651 instantiate_decl (DECL_INCOMING_RTL (decl));
1652 if (DECL_HAS_VALUE_EXPR_P (decl))
1654 tree v = DECL_VALUE_EXPR (decl);
1655 walk_tree (&v, instantiate_expr, NULL, NULL);
1659 /* Now process all variables defined in the function or its subblocks. */
1660 instantiate_decls_1 (DECL_INITIAL (fndecl));
1663 /* Pass through the INSNS of function FNDECL and convert virtual register
1664 references to hard register references. */
1666 static unsigned int
1667 instantiate_virtual_regs (void)
1669 rtx insn;
1671 /* Compute the offsets to use for this function. */
1672 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1673 var_offset = STARTING_FRAME_OFFSET;
1674 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1675 out_arg_offset = STACK_POINTER_OFFSET;
1676 #ifdef FRAME_POINTER_CFA_OFFSET
1677 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1678 #else
1679 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1680 #endif
1682 /* Initialize recognition, indicating that volatile is OK. */
1683 init_recog ();
1685 /* Scan through all the insns, instantiating every virtual register still
1686 present. */
1687 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1688 if (INSN_P (insn))
1690 /* These patterns in the instruction stream can never be recognized.
1691 Fortunately, they shouldn't contain virtual registers either. */
1692 if (GET_CODE (PATTERN (insn)) == USE
1693 || GET_CODE (PATTERN (insn)) == CLOBBER
1694 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1695 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1696 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1697 continue;
1699 instantiate_virtual_regs_in_insn (insn);
1701 if (INSN_DELETED_P (insn))
1702 continue;
1704 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1706 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1707 if (GET_CODE (insn) == CALL_INSN)
1708 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1709 instantiate_virtual_regs_in_rtx, NULL);
1712 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1713 instantiate_decls (current_function_decl);
1715 /* Indicate that, from now on, assign_stack_local should use
1716 frame_pointer_rtx. */
1717 virtuals_instantiated = 1;
1718 return 0;
1721 struct tree_opt_pass pass_instantiate_virtual_regs =
1723 "vregs", /* name */
1724 NULL, /* gate */
1725 instantiate_virtual_regs, /* execute */
1726 NULL, /* sub */
1727 NULL, /* next */
1728 0, /* static_pass_number */
1729 0, /* tv_id */
1730 0, /* properties_required */
1731 0, /* properties_provided */
1732 0, /* properties_destroyed */
1733 0, /* todo_flags_start */
1734 TODO_dump_func, /* todo_flags_finish */
1735 0 /* letter */
1739 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1740 This means a type for which function calls must pass an address to the
1741 function or get an address back from the function.
1742 EXP may be a type node or an expression (whose type is tested). */
1745 aggregate_value_p (const_tree exp, const_tree fntype)
1747 int i, regno, nregs;
1748 rtx reg;
1750 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1752 /* DECL node associated with FNTYPE when relevant, which we might need to
1753 check for by-invisible-reference returns, typically for CALL_EXPR input
1754 EXPressions. */
1755 const_tree fndecl = NULL_TREE;
1757 if (fntype)
1758 switch (TREE_CODE (fntype))
1760 case CALL_EXPR:
1761 fndecl = get_callee_fndecl (fntype);
1762 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1763 break;
1764 case FUNCTION_DECL:
1765 fndecl = fntype;
1766 fntype = TREE_TYPE (fndecl);
1767 break;
1768 case FUNCTION_TYPE:
1769 case METHOD_TYPE:
1770 break;
1771 case IDENTIFIER_NODE:
1772 fntype = 0;
1773 break;
1774 default:
1775 /* We don't expect other rtl types here. */
1776 gcc_unreachable ();
1779 if (TREE_CODE (type) == VOID_TYPE)
1780 return 0;
1782 /* If the front end has decided that this needs to be passed by
1783 reference, do so. */
1784 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1785 && DECL_BY_REFERENCE (exp))
1786 return 1;
1788 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1789 called function RESULT_DECL, meaning the function returns in memory by
1790 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1791 on the function type, which used to be the way to request such a return
1792 mechanism but might now be causing troubles at gimplification time if
1793 temporaries with the function type need to be created. */
1794 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1795 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1796 return 1;
1798 if (targetm.calls.return_in_memory (type, fntype))
1799 return 1;
1800 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1801 and thus can't be returned in registers. */
1802 if (TREE_ADDRESSABLE (type))
1803 return 1;
1804 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1805 return 1;
1806 /* Make sure we have suitable call-clobbered regs to return
1807 the value in; if not, we must return it in memory. */
1808 reg = hard_function_value (type, 0, fntype, 0);
1810 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1811 it is OK. */
1812 if (!REG_P (reg))
1813 return 0;
1815 regno = REGNO (reg);
1816 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1817 for (i = 0; i < nregs; i++)
1818 if (! call_used_regs[regno + i])
1819 return 1;
1820 return 0;
1823 /* Return true if we should assign DECL a pseudo register; false if it
1824 should live on the local stack. */
1826 bool
1827 use_register_for_decl (const_tree decl)
1829 /* Honor volatile. */
1830 if (TREE_SIDE_EFFECTS (decl))
1831 return false;
1833 /* Honor addressability. */
1834 if (TREE_ADDRESSABLE (decl))
1835 return false;
1837 /* Only register-like things go in registers. */
1838 if (DECL_MODE (decl) == BLKmode)
1839 return false;
1841 /* If -ffloat-store specified, don't put explicit float variables
1842 into registers. */
1843 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1844 propagates values across these stores, and it probably shouldn't. */
1845 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1846 return false;
1848 /* If we're not interested in tracking debugging information for
1849 this decl, then we can certainly put it in a register. */
1850 if (DECL_IGNORED_P (decl))
1851 return true;
1853 return (optimize || DECL_REGISTER (decl));
1856 /* Return true if TYPE should be passed by invisible reference. */
1858 bool
1859 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1860 tree type, bool named_arg)
1862 if (type)
1864 /* If this type contains non-trivial constructors, then it is
1865 forbidden for the middle-end to create any new copies. */
1866 if (TREE_ADDRESSABLE (type))
1867 return true;
1869 /* GCC post 3.4 passes *all* variable sized types by reference. */
1870 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1871 return true;
1874 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1877 /* Return true if TYPE, which is passed by reference, should be callee
1878 copied instead of caller copied. */
1880 bool
1881 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1882 tree type, bool named_arg)
1884 if (type && TREE_ADDRESSABLE (type))
1885 return false;
1886 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1889 /* Structures to communicate between the subroutines of assign_parms.
1890 The first holds data persistent across all parameters, the second
1891 is cleared out for each parameter. */
1893 struct assign_parm_data_all
1895 CUMULATIVE_ARGS args_so_far;
1896 struct args_size stack_args_size;
1897 tree function_result_decl;
1898 tree orig_fnargs;
1899 rtx first_conversion_insn;
1900 rtx last_conversion_insn;
1901 HOST_WIDE_INT pretend_args_size;
1902 HOST_WIDE_INT extra_pretend_bytes;
1903 int reg_parm_stack_space;
1906 struct assign_parm_data_one
1908 tree nominal_type;
1909 tree passed_type;
1910 rtx entry_parm;
1911 rtx stack_parm;
1912 enum machine_mode nominal_mode;
1913 enum machine_mode passed_mode;
1914 enum machine_mode promoted_mode;
1915 struct locate_and_pad_arg_data locate;
1916 int partial;
1917 BOOL_BITFIELD named_arg : 1;
1918 BOOL_BITFIELD passed_pointer : 1;
1919 BOOL_BITFIELD on_stack : 1;
1920 BOOL_BITFIELD loaded_in_reg : 1;
1923 /* A subroutine of assign_parms. Initialize ALL. */
1925 static void
1926 assign_parms_initialize_all (struct assign_parm_data_all *all)
1928 tree fntype;
1930 memset (all, 0, sizeof (*all));
1932 fntype = TREE_TYPE (current_function_decl);
1934 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1935 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1936 #else
1937 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1938 current_function_decl, -1);
1939 #endif
1941 #ifdef REG_PARM_STACK_SPACE
1942 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1943 #endif
1946 /* If ARGS contains entries with complex types, split the entry into two
1947 entries of the component type. Return a new list of substitutions are
1948 needed, else the old list. */
1950 static tree
1951 split_complex_args (tree args)
1953 tree p;
1955 /* Before allocating memory, check for the common case of no complex. */
1956 for (p = args; p; p = TREE_CHAIN (p))
1958 tree type = TREE_TYPE (p);
1959 if (TREE_CODE (type) == COMPLEX_TYPE
1960 && targetm.calls.split_complex_arg (type))
1961 goto found;
1963 return args;
1965 found:
1966 args = copy_list (args);
1968 for (p = args; p; p = TREE_CHAIN (p))
1970 tree type = TREE_TYPE (p);
1971 if (TREE_CODE (type) == COMPLEX_TYPE
1972 && targetm.calls.split_complex_arg (type))
1974 tree decl;
1975 tree subtype = TREE_TYPE (type);
1976 bool addressable = TREE_ADDRESSABLE (p);
1978 /* Rewrite the PARM_DECL's type with its component. */
1979 TREE_TYPE (p) = subtype;
1980 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1981 DECL_MODE (p) = VOIDmode;
1982 DECL_SIZE (p) = NULL;
1983 DECL_SIZE_UNIT (p) = NULL;
1984 /* If this arg must go in memory, put it in a pseudo here.
1985 We can't allow it to go in memory as per normal parms,
1986 because the usual place might not have the imag part
1987 adjacent to the real part. */
1988 DECL_ARTIFICIAL (p) = addressable;
1989 DECL_IGNORED_P (p) = addressable;
1990 TREE_ADDRESSABLE (p) = 0;
1991 layout_decl (p, 0);
1993 /* Build a second synthetic decl. */
1994 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1995 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1996 DECL_ARTIFICIAL (decl) = addressable;
1997 DECL_IGNORED_P (decl) = addressable;
1998 layout_decl (decl, 0);
2000 /* Splice it in; skip the new decl. */
2001 TREE_CHAIN (decl) = TREE_CHAIN (p);
2002 TREE_CHAIN (p) = decl;
2003 p = decl;
2007 return args;
2010 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2011 the hidden struct return argument, and (abi willing) complex args.
2012 Return the new parameter list. */
2014 static tree
2015 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2017 tree fndecl = current_function_decl;
2018 tree fntype = TREE_TYPE (fndecl);
2019 tree fnargs = DECL_ARGUMENTS (fndecl);
2021 /* If struct value address is treated as the first argument, make it so. */
2022 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2023 && ! current_function_returns_pcc_struct
2024 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2026 tree type = build_pointer_type (TREE_TYPE (fntype));
2027 tree decl;
2029 decl = build_decl (PARM_DECL, NULL_TREE, type);
2030 DECL_ARG_TYPE (decl) = type;
2031 DECL_ARTIFICIAL (decl) = 1;
2032 DECL_IGNORED_P (decl) = 1;
2034 TREE_CHAIN (decl) = fnargs;
2035 fnargs = decl;
2036 all->function_result_decl = decl;
2039 all->orig_fnargs = fnargs;
2041 /* If the target wants to split complex arguments into scalars, do so. */
2042 if (targetm.calls.split_complex_arg)
2043 fnargs = split_complex_args (fnargs);
2045 return fnargs;
2048 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2049 data for the parameter. Incorporate ABI specifics such as pass-by-
2050 reference and type promotion. */
2052 static void
2053 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2054 struct assign_parm_data_one *data)
2056 tree nominal_type, passed_type;
2057 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2059 memset (data, 0, sizeof (*data));
2061 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2062 if (!current_function_stdarg)
2063 data->named_arg = 1; /* No varadic parms. */
2064 else if (TREE_CHAIN (parm))
2065 data->named_arg = 1; /* Not the last non-varadic parm. */
2066 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2067 data->named_arg = 1; /* Only varadic ones are unnamed. */
2068 else
2069 data->named_arg = 0; /* Treat as varadic. */
2071 nominal_type = TREE_TYPE (parm);
2072 passed_type = DECL_ARG_TYPE (parm);
2074 /* Look out for errors propagating this far. Also, if the parameter's
2075 type is void then its value doesn't matter. */
2076 if (TREE_TYPE (parm) == error_mark_node
2077 /* This can happen after weird syntax errors
2078 or if an enum type is defined among the parms. */
2079 || TREE_CODE (parm) != PARM_DECL
2080 || passed_type == NULL
2081 || VOID_TYPE_P (nominal_type))
2083 nominal_type = passed_type = void_type_node;
2084 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2085 goto egress;
2088 /* Find mode of arg as it is passed, and mode of arg as it should be
2089 during execution of this function. */
2090 passed_mode = TYPE_MODE (passed_type);
2091 nominal_mode = TYPE_MODE (nominal_type);
2093 /* If the parm is to be passed as a transparent union, use the type of
2094 the first field for the tests below. We have already verified that
2095 the modes are the same. */
2096 if (TREE_CODE (passed_type) == UNION_TYPE
2097 && TYPE_TRANSPARENT_UNION (passed_type))
2098 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2100 /* See if this arg was passed by invisible reference. */
2101 if (pass_by_reference (&all->args_so_far, passed_mode,
2102 passed_type, data->named_arg))
2104 passed_type = nominal_type = build_pointer_type (passed_type);
2105 data->passed_pointer = true;
2106 passed_mode = nominal_mode = Pmode;
2109 /* Find mode as it is passed by the ABI. */
2110 promoted_mode = passed_mode;
2111 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2113 int unsignedp = TYPE_UNSIGNED (passed_type);
2114 promoted_mode = promote_mode (passed_type, promoted_mode,
2115 &unsignedp, 1);
2118 egress:
2119 data->nominal_type = nominal_type;
2120 data->passed_type = passed_type;
2121 data->nominal_mode = nominal_mode;
2122 data->passed_mode = passed_mode;
2123 data->promoted_mode = promoted_mode;
2126 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2128 static void
2129 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2130 struct assign_parm_data_one *data, bool no_rtl)
2132 int varargs_pretend_bytes = 0;
2134 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2135 data->promoted_mode,
2136 data->passed_type,
2137 &varargs_pretend_bytes, no_rtl);
2139 /* If the back-end has requested extra stack space, record how much is
2140 needed. Do not change pretend_args_size otherwise since it may be
2141 nonzero from an earlier partial argument. */
2142 if (varargs_pretend_bytes > 0)
2143 all->pretend_args_size = varargs_pretend_bytes;
2146 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2147 the incoming location of the current parameter. */
2149 static void
2150 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2151 struct assign_parm_data_one *data)
2153 HOST_WIDE_INT pretend_bytes = 0;
2154 rtx entry_parm;
2155 bool in_regs;
2157 if (data->promoted_mode == VOIDmode)
2159 data->entry_parm = data->stack_parm = const0_rtx;
2160 return;
2163 #ifdef FUNCTION_INCOMING_ARG
2164 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2165 data->passed_type, data->named_arg);
2166 #else
2167 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2168 data->passed_type, data->named_arg);
2169 #endif
2171 if (entry_parm == 0)
2172 data->promoted_mode = data->passed_mode;
2174 /* Determine parm's home in the stack, in case it arrives in the stack
2175 or we should pretend it did. Compute the stack position and rtx where
2176 the argument arrives and its size.
2178 There is one complexity here: If this was a parameter that would
2179 have been passed in registers, but wasn't only because it is
2180 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2181 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2182 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2183 as it was the previous time. */
2184 in_regs = entry_parm != 0;
2185 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2186 in_regs = true;
2187 #endif
2188 if (!in_regs && !data->named_arg)
2190 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2192 rtx tem;
2193 #ifdef FUNCTION_INCOMING_ARG
2194 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2195 data->passed_type, true);
2196 #else
2197 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2198 data->passed_type, true);
2199 #endif
2200 in_regs = tem != NULL;
2204 /* If this parameter was passed both in registers and in the stack, use
2205 the copy on the stack. */
2206 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2207 data->passed_type))
2208 entry_parm = 0;
2210 if (entry_parm)
2212 int partial;
2214 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2215 data->promoted_mode,
2216 data->passed_type,
2217 data->named_arg);
2218 data->partial = partial;
2220 /* The caller might already have allocated stack space for the
2221 register parameters. */
2222 if (partial != 0 && all->reg_parm_stack_space == 0)
2224 /* Part of this argument is passed in registers and part
2225 is passed on the stack. Ask the prologue code to extend
2226 the stack part so that we can recreate the full value.
2228 PRETEND_BYTES is the size of the registers we need to store.
2229 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2230 stack space that the prologue should allocate.
2232 Internally, gcc assumes that the argument pointer is aligned
2233 to STACK_BOUNDARY bits. This is used both for alignment
2234 optimizations (see init_emit) and to locate arguments that are
2235 aligned to more than PARM_BOUNDARY bits. We must preserve this
2236 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2237 a stack boundary. */
2239 /* We assume at most one partial arg, and it must be the first
2240 argument on the stack. */
2241 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2243 pretend_bytes = partial;
2244 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2246 /* We want to align relative to the actual stack pointer, so
2247 don't include this in the stack size until later. */
2248 all->extra_pretend_bytes = all->pretend_args_size;
2252 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2253 entry_parm ? data->partial : 0, current_function_decl,
2254 &all->stack_args_size, &data->locate);
2256 /* Adjust offsets to include the pretend args. */
2257 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2258 data->locate.slot_offset.constant += pretend_bytes;
2259 data->locate.offset.constant += pretend_bytes;
2261 data->entry_parm = entry_parm;
2264 /* A subroutine of assign_parms. If there is actually space on the stack
2265 for this parm, count it in stack_args_size and return true. */
2267 static bool
2268 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2269 struct assign_parm_data_one *data)
2271 /* Trivially true if we've no incoming register. */
2272 if (data->entry_parm == NULL)
2274 /* Also true if we're partially in registers and partially not,
2275 since we've arranged to drop the entire argument on the stack. */
2276 else if (data->partial != 0)
2278 /* Also true if the target says that it's passed in both registers
2279 and on the stack. */
2280 else if (GET_CODE (data->entry_parm) == PARALLEL
2281 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2283 /* Also true if the target says that there's stack allocated for
2284 all register parameters. */
2285 else if (all->reg_parm_stack_space > 0)
2287 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2288 else
2289 return false;
2291 all->stack_args_size.constant += data->locate.size.constant;
2292 if (data->locate.size.var)
2293 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2295 return true;
2298 /* A subroutine of assign_parms. Given that this parameter is allocated
2299 stack space by the ABI, find it. */
2301 static void
2302 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2304 rtx offset_rtx, stack_parm;
2305 unsigned int align, boundary;
2307 /* If we're passing this arg using a reg, make its stack home the
2308 aligned stack slot. */
2309 if (data->entry_parm)
2310 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2311 else
2312 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2314 stack_parm = current_function_internal_arg_pointer;
2315 if (offset_rtx != const0_rtx)
2316 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2317 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2319 set_mem_attributes (stack_parm, parm, 1);
2321 boundary = data->locate.boundary;
2322 align = BITS_PER_UNIT;
2324 /* If we're padding upward, we know that the alignment of the slot
2325 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2326 intentionally forcing upward padding. Otherwise we have to come
2327 up with a guess at the alignment based on OFFSET_RTX. */
2328 if (data->locate.where_pad != downward || data->entry_parm)
2329 align = boundary;
2330 else if (GET_CODE (offset_rtx) == CONST_INT)
2332 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2333 align = align & -align;
2335 set_mem_align (stack_parm, align);
2337 if (data->entry_parm)
2338 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2340 data->stack_parm = stack_parm;
2343 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2344 always valid and contiguous. */
2346 static void
2347 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2349 rtx entry_parm = data->entry_parm;
2350 rtx stack_parm = data->stack_parm;
2352 /* If this parm was passed part in regs and part in memory, pretend it
2353 arrived entirely in memory by pushing the register-part onto the stack.
2354 In the special case of a DImode or DFmode that is split, we could put
2355 it together in a pseudoreg directly, but for now that's not worth
2356 bothering with. */
2357 if (data->partial != 0)
2359 /* Handle calls that pass values in multiple non-contiguous
2360 locations. The Irix 6 ABI has examples of this. */
2361 if (GET_CODE (entry_parm) == PARALLEL)
2362 emit_group_store (validize_mem (stack_parm), entry_parm,
2363 data->passed_type,
2364 int_size_in_bytes (data->passed_type));
2365 else
2367 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2368 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2369 data->partial / UNITS_PER_WORD);
2372 entry_parm = stack_parm;
2375 /* If we didn't decide this parm came in a register, by default it came
2376 on the stack. */
2377 else if (entry_parm == NULL)
2378 entry_parm = stack_parm;
2380 /* When an argument is passed in multiple locations, we can't make use
2381 of this information, but we can save some copying if the whole argument
2382 is passed in a single register. */
2383 else if (GET_CODE (entry_parm) == PARALLEL
2384 && data->nominal_mode != BLKmode
2385 && data->passed_mode != BLKmode)
2387 size_t i, len = XVECLEN (entry_parm, 0);
2389 for (i = 0; i < len; i++)
2390 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2391 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2392 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2393 == data->passed_mode)
2394 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2396 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2397 break;
2401 data->entry_parm = entry_parm;
2404 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2405 always valid and properly aligned. */
2407 static void
2408 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2410 rtx stack_parm = data->stack_parm;
2412 /* If we can't trust the parm stack slot to be aligned enough for its
2413 ultimate type, don't use that slot after entry. We'll make another
2414 stack slot, if we need one. */
2415 if (stack_parm
2416 && ((STRICT_ALIGNMENT
2417 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2418 || (data->nominal_type
2419 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2420 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2421 stack_parm = NULL;
2423 /* If parm was passed in memory, and we need to convert it on entry,
2424 don't store it back in that same slot. */
2425 else if (data->entry_parm == stack_parm
2426 && data->nominal_mode != BLKmode
2427 && data->nominal_mode != data->passed_mode)
2428 stack_parm = NULL;
2430 /* If stack protection is in effect for this function, don't leave any
2431 pointers in their passed stack slots. */
2432 else if (cfun->stack_protect_guard
2433 && (flag_stack_protect == 2
2434 || data->passed_pointer
2435 || POINTER_TYPE_P (data->nominal_type)))
2436 stack_parm = NULL;
2438 data->stack_parm = stack_parm;
2441 /* A subroutine of assign_parms. Return true if the current parameter
2442 should be stored as a BLKmode in the current frame. */
2444 static bool
2445 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2447 if (data->nominal_mode == BLKmode)
2448 return true;
2449 if (GET_CODE (data->entry_parm) == PARALLEL)
2450 return true;
2452 #ifdef BLOCK_REG_PADDING
2453 /* Only assign_parm_setup_block knows how to deal with register arguments
2454 that are padded at the least significant end. */
2455 if (REG_P (data->entry_parm)
2456 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2457 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2458 == (BYTES_BIG_ENDIAN ? upward : downward)))
2459 return true;
2460 #endif
2462 return false;
2465 /* A subroutine of assign_parms. Arrange for the parameter to be
2466 present and valid in DATA->STACK_RTL. */
2468 static void
2469 assign_parm_setup_block (struct assign_parm_data_all *all,
2470 tree parm, struct assign_parm_data_one *data)
2472 rtx entry_parm = data->entry_parm;
2473 rtx stack_parm = data->stack_parm;
2474 HOST_WIDE_INT size;
2475 HOST_WIDE_INT size_stored;
2476 rtx orig_entry_parm = entry_parm;
2478 if (GET_CODE (entry_parm) == PARALLEL)
2479 entry_parm = emit_group_move_into_temps (entry_parm);
2481 /* If we've a non-block object that's nevertheless passed in parts,
2482 reconstitute it in register operations rather than on the stack. */
2483 if (GET_CODE (entry_parm) == PARALLEL
2484 && data->nominal_mode != BLKmode)
2486 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2488 if ((XVECLEN (entry_parm, 0) > 1
2489 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2490 && use_register_for_decl (parm))
2492 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2494 push_to_sequence2 (all->first_conversion_insn,
2495 all->last_conversion_insn);
2497 /* For values returned in multiple registers, handle possible
2498 incompatible calls to emit_group_store.
2500 For example, the following would be invalid, and would have to
2501 be fixed by the conditional below:
2503 emit_group_store ((reg:SF), (parallel:DF))
2504 emit_group_store ((reg:SI), (parallel:DI))
2506 An example of this are doubles in e500 v2:
2507 (parallel:DF (expr_list (reg:SI) (const_int 0))
2508 (expr_list (reg:SI) (const_int 4))). */
2509 if (data->nominal_mode != data->passed_mode)
2511 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2512 emit_group_store (t, entry_parm, NULL_TREE,
2513 GET_MODE_SIZE (GET_MODE (entry_parm)));
2514 convert_move (parmreg, t, 0);
2516 else
2517 emit_group_store (parmreg, entry_parm, data->nominal_type,
2518 int_size_in_bytes (data->nominal_type));
2520 all->first_conversion_insn = get_insns ();
2521 all->last_conversion_insn = get_last_insn ();
2522 end_sequence ();
2524 SET_DECL_RTL (parm, parmreg);
2525 return;
2529 size = int_size_in_bytes (data->passed_type);
2530 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2531 if (stack_parm == 0)
2533 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2534 stack_parm = assign_stack_local (BLKmode, size_stored,
2535 DECL_ALIGN (parm));
2536 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2537 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2538 set_mem_attributes (stack_parm, parm, 1);
2541 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2542 calls that pass values in multiple non-contiguous locations. */
2543 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2545 rtx mem;
2547 /* Note that we will be storing an integral number of words.
2548 So we have to be careful to ensure that we allocate an
2549 integral number of words. We do this above when we call
2550 assign_stack_local if space was not allocated in the argument
2551 list. If it was, this will not work if PARM_BOUNDARY is not
2552 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2553 if it becomes a problem. Exception is when BLKmode arrives
2554 with arguments not conforming to word_mode. */
2556 if (data->stack_parm == 0)
2558 else if (GET_CODE (entry_parm) == PARALLEL)
2560 else
2561 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2563 mem = validize_mem (stack_parm);
2565 /* Handle values in multiple non-contiguous locations. */
2566 if (GET_CODE (entry_parm) == PARALLEL)
2568 push_to_sequence2 (all->first_conversion_insn,
2569 all->last_conversion_insn);
2570 emit_group_store (mem, entry_parm, data->passed_type, size);
2571 all->first_conversion_insn = get_insns ();
2572 all->last_conversion_insn = get_last_insn ();
2573 end_sequence ();
2576 else if (size == 0)
2579 /* If SIZE is that of a mode no bigger than a word, just use
2580 that mode's store operation. */
2581 else if (size <= UNITS_PER_WORD)
2583 enum machine_mode mode
2584 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2586 if (mode != BLKmode
2587 #ifdef BLOCK_REG_PADDING
2588 && (size == UNITS_PER_WORD
2589 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2590 != (BYTES_BIG_ENDIAN ? upward : downward)))
2591 #endif
2594 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2595 emit_move_insn (change_address (mem, mode, 0), reg);
2598 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2599 machine must be aligned to the left before storing
2600 to memory. Note that the previous test doesn't
2601 handle all cases (e.g. SIZE == 3). */
2602 else if (size != UNITS_PER_WORD
2603 #ifdef BLOCK_REG_PADDING
2604 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2605 == downward)
2606 #else
2607 && BYTES_BIG_ENDIAN
2608 #endif
2611 rtx tem, x;
2612 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2613 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2615 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2616 build_int_cst (NULL_TREE, by),
2617 NULL_RTX, 1);
2618 tem = change_address (mem, word_mode, 0);
2619 emit_move_insn (tem, x);
2621 else
2622 move_block_from_reg (REGNO (entry_parm), mem,
2623 size_stored / UNITS_PER_WORD);
2625 else
2626 move_block_from_reg (REGNO (entry_parm), mem,
2627 size_stored / UNITS_PER_WORD);
2629 else if (data->stack_parm == 0)
2631 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2632 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2633 BLOCK_OP_NORMAL);
2634 all->first_conversion_insn = get_insns ();
2635 all->last_conversion_insn = get_last_insn ();
2636 end_sequence ();
2639 data->stack_parm = stack_parm;
2640 SET_DECL_RTL (parm, stack_parm);
2643 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2644 parameter. Get it there. Perform all ABI specified conversions. */
2646 static void
2647 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2648 struct assign_parm_data_one *data)
2650 rtx parmreg;
2651 enum machine_mode promoted_nominal_mode;
2652 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2653 bool did_conversion = false;
2655 /* Store the parm in a pseudoregister during the function, but we may
2656 need to do it in a wider mode. */
2658 /* This is not really promoting for a call. However we need to be
2659 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2660 promoted_nominal_mode
2661 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2663 parmreg = gen_reg_rtx (promoted_nominal_mode);
2665 if (!DECL_ARTIFICIAL (parm))
2666 mark_user_reg (parmreg);
2668 /* If this was an item that we received a pointer to,
2669 set DECL_RTL appropriately. */
2670 if (data->passed_pointer)
2672 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2673 set_mem_attributes (x, parm, 1);
2674 SET_DECL_RTL (parm, x);
2676 else
2677 SET_DECL_RTL (parm, parmreg);
2679 /* Copy the value into the register. */
2680 if (data->nominal_mode != data->passed_mode
2681 || promoted_nominal_mode != data->promoted_mode)
2683 int save_tree_used;
2685 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2686 mode, by the caller. We now have to convert it to
2687 NOMINAL_MODE, if different. However, PARMREG may be in
2688 a different mode than NOMINAL_MODE if it is being stored
2689 promoted.
2691 If ENTRY_PARM is a hard register, it might be in a register
2692 not valid for operating in its mode (e.g., an odd-numbered
2693 register for a DFmode). In that case, moves are the only
2694 thing valid, so we can't do a convert from there. This
2695 occurs when the calling sequence allow such misaligned
2696 usages.
2698 In addition, the conversion may involve a call, which could
2699 clobber parameters which haven't been copied to pseudo
2700 registers yet. Therefore, we must first copy the parm to
2701 a pseudo reg here, and save the conversion until after all
2702 parameters have been moved. */
2704 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2706 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2708 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2709 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2711 if (GET_CODE (tempreg) == SUBREG
2712 && GET_MODE (tempreg) == data->nominal_mode
2713 && REG_P (SUBREG_REG (tempreg))
2714 && data->nominal_mode == data->passed_mode
2715 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2716 && GET_MODE_SIZE (GET_MODE (tempreg))
2717 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2719 /* The argument is already sign/zero extended, so note it
2720 into the subreg. */
2721 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2722 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2725 /* TREE_USED gets set erroneously during expand_assignment. */
2726 save_tree_used = TREE_USED (parm);
2727 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2728 TREE_USED (parm) = save_tree_used;
2729 all->first_conversion_insn = get_insns ();
2730 all->last_conversion_insn = get_last_insn ();
2731 end_sequence ();
2733 did_conversion = true;
2735 else
2736 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2738 /* If we were passed a pointer but the actual value can safely live
2739 in a register, put it in one. */
2740 if (data->passed_pointer
2741 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2742 /* If by-reference argument was promoted, demote it. */
2743 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2744 || use_register_for_decl (parm)))
2746 /* We can't use nominal_mode, because it will have been set to
2747 Pmode above. We must use the actual mode of the parm. */
2748 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2749 mark_user_reg (parmreg);
2751 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2753 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2754 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2756 push_to_sequence2 (all->first_conversion_insn,
2757 all->last_conversion_insn);
2758 emit_move_insn (tempreg, DECL_RTL (parm));
2759 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2760 emit_move_insn (parmreg, tempreg);
2761 all->first_conversion_insn = get_insns ();
2762 all->last_conversion_insn = get_last_insn ();
2763 end_sequence ();
2765 did_conversion = true;
2767 else
2768 emit_move_insn (parmreg, DECL_RTL (parm));
2770 SET_DECL_RTL (parm, parmreg);
2772 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2773 now the parm. */
2774 data->stack_parm = NULL;
2777 /* Mark the register as eliminable if we did no conversion and it was
2778 copied from memory at a fixed offset, and the arg pointer was not
2779 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2780 offset formed an invalid address, such memory-equivalences as we
2781 make here would screw up life analysis for it. */
2782 if (data->nominal_mode == data->passed_mode
2783 && !did_conversion
2784 && data->stack_parm != 0
2785 && MEM_P (data->stack_parm)
2786 && data->locate.offset.var == 0
2787 && reg_mentioned_p (virtual_incoming_args_rtx,
2788 XEXP (data->stack_parm, 0)))
2790 rtx linsn = get_last_insn ();
2791 rtx sinsn, set;
2793 /* Mark complex types separately. */
2794 if (GET_CODE (parmreg) == CONCAT)
2796 enum machine_mode submode
2797 = GET_MODE_INNER (GET_MODE (parmreg));
2798 int regnor = REGNO (XEXP (parmreg, 0));
2799 int regnoi = REGNO (XEXP (parmreg, 1));
2800 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2801 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2802 GET_MODE_SIZE (submode));
2804 /* Scan backwards for the set of the real and
2805 imaginary parts. */
2806 for (sinsn = linsn; sinsn != 0;
2807 sinsn = prev_nonnote_insn (sinsn))
2809 set = single_set (sinsn);
2810 if (set == 0)
2811 continue;
2813 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2814 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2815 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2816 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2819 else if ((set = single_set (linsn)) != 0
2820 && SET_DEST (set) == parmreg)
2821 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2824 /* For pointer data type, suggest pointer register. */
2825 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2826 mark_reg_pointer (parmreg,
2827 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2830 /* A subroutine of assign_parms. Allocate stack space to hold the current
2831 parameter. Get it there. Perform all ABI specified conversions. */
2833 static void
2834 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2835 struct assign_parm_data_one *data)
2837 /* Value must be stored in the stack slot STACK_PARM during function
2838 execution. */
2839 bool to_conversion = false;
2841 if (data->promoted_mode != data->nominal_mode)
2843 /* Conversion is required. */
2844 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2846 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2848 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2849 to_conversion = true;
2851 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2852 TYPE_UNSIGNED (TREE_TYPE (parm)));
2854 if (data->stack_parm)
2855 /* ??? This may need a big-endian conversion on sparc64. */
2856 data->stack_parm
2857 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2860 if (data->entry_parm != data->stack_parm)
2862 rtx src, dest;
2864 if (data->stack_parm == 0)
2866 data->stack_parm
2867 = assign_stack_local (GET_MODE (data->entry_parm),
2868 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2869 TYPE_ALIGN (data->passed_type));
2870 set_mem_attributes (data->stack_parm, parm, 1);
2873 dest = validize_mem (data->stack_parm);
2874 src = validize_mem (data->entry_parm);
2876 if (MEM_P (src))
2878 /* Use a block move to handle potentially misaligned entry_parm. */
2879 if (!to_conversion)
2880 push_to_sequence2 (all->first_conversion_insn,
2881 all->last_conversion_insn);
2882 to_conversion = true;
2884 emit_block_move (dest, src,
2885 GEN_INT (int_size_in_bytes (data->passed_type)),
2886 BLOCK_OP_NORMAL);
2888 else
2889 emit_move_insn (dest, src);
2892 if (to_conversion)
2894 all->first_conversion_insn = get_insns ();
2895 all->last_conversion_insn = get_last_insn ();
2896 end_sequence ();
2899 SET_DECL_RTL (parm, data->stack_parm);
2902 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2903 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2905 static void
2906 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2908 tree parm;
2909 tree orig_fnargs = all->orig_fnargs;
2911 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2913 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2914 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2916 rtx tmp, real, imag;
2917 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2919 real = DECL_RTL (fnargs);
2920 imag = DECL_RTL (TREE_CHAIN (fnargs));
2921 if (inner != GET_MODE (real))
2923 real = gen_lowpart_SUBREG (inner, real);
2924 imag = gen_lowpart_SUBREG (inner, imag);
2927 if (TREE_ADDRESSABLE (parm))
2929 rtx rmem, imem;
2930 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2932 /* split_complex_arg put the real and imag parts in
2933 pseudos. Move them to memory. */
2934 tmp = assign_stack_local (DECL_MODE (parm), size,
2935 TYPE_ALIGN (TREE_TYPE (parm)));
2936 set_mem_attributes (tmp, parm, 1);
2937 rmem = adjust_address_nv (tmp, inner, 0);
2938 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2939 push_to_sequence2 (all->first_conversion_insn,
2940 all->last_conversion_insn);
2941 emit_move_insn (rmem, real);
2942 emit_move_insn (imem, imag);
2943 all->first_conversion_insn = get_insns ();
2944 all->last_conversion_insn = get_last_insn ();
2945 end_sequence ();
2947 else
2948 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2949 SET_DECL_RTL (parm, tmp);
2951 real = DECL_INCOMING_RTL (fnargs);
2952 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2953 if (inner != GET_MODE (real))
2955 real = gen_lowpart_SUBREG (inner, real);
2956 imag = gen_lowpart_SUBREG (inner, imag);
2958 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2959 set_decl_incoming_rtl (parm, tmp);
2960 fnargs = TREE_CHAIN (fnargs);
2962 else
2964 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2965 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2967 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2968 instead of the copy of decl, i.e. FNARGS. */
2969 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2970 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2973 fnargs = TREE_CHAIN (fnargs);
2977 /* Assign RTL expressions to the function's parameters. This may involve
2978 copying them into registers and using those registers as the DECL_RTL. */
2980 static void
2981 assign_parms (tree fndecl)
2983 struct assign_parm_data_all all;
2984 tree fnargs, parm;
2986 current_function_internal_arg_pointer
2987 = targetm.calls.internal_arg_pointer ();
2989 assign_parms_initialize_all (&all);
2990 fnargs = assign_parms_augmented_arg_list (&all);
2992 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2994 struct assign_parm_data_one data;
2996 /* Extract the type of PARM; adjust it according to ABI. */
2997 assign_parm_find_data_types (&all, parm, &data);
2999 /* Early out for errors and void parameters. */
3000 if (data.passed_mode == VOIDmode)
3002 SET_DECL_RTL (parm, const0_rtx);
3003 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3004 continue;
3007 if (current_function_stdarg && !TREE_CHAIN (parm))
3008 assign_parms_setup_varargs (&all, &data, false);
3010 /* Find out where the parameter arrives in this function. */
3011 assign_parm_find_entry_rtl (&all, &data);
3013 /* Find out where stack space for this parameter might be. */
3014 if (assign_parm_is_stack_parm (&all, &data))
3016 assign_parm_find_stack_rtl (parm, &data);
3017 assign_parm_adjust_entry_rtl (&data);
3020 /* Record permanently how this parm was passed. */
3021 set_decl_incoming_rtl (parm, data.entry_parm);
3023 /* Update info on where next arg arrives in registers. */
3024 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3025 data.passed_type, data.named_arg);
3027 assign_parm_adjust_stack_rtl (&data);
3029 if (assign_parm_setup_block_p (&data))
3030 assign_parm_setup_block (&all, parm, &data);
3031 else if (data.passed_pointer || use_register_for_decl (parm))
3032 assign_parm_setup_reg (&all, parm, &data);
3033 else
3034 assign_parm_setup_stack (&all, parm, &data);
3037 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3038 assign_parms_unsplit_complex (&all, fnargs);
3040 /* Output all parameter conversion instructions (possibly including calls)
3041 now that all parameters have been copied out of hard registers. */
3042 emit_insn (all.first_conversion_insn);
3044 /* If we are receiving a struct value address as the first argument, set up
3045 the RTL for the function result. As this might require code to convert
3046 the transmitted address to Pmode, we do this here to ensure that possible
3047 preliminary conversions of the address have been emitted already. */
3048 if (all.function_result_decl)
3050 tree result = DECL_RESULT (current_function_decl);
3051 rtx addr = DECL_RTL (all.function_result_decl);
3052 rtx x;
3054 if (DECL_BY_REFERENCE (result))
3055 x = addr;
3056 else
3058 addr = convert_memory_address (Pmode, addr);
3059 x = gen_rtx_MEM (DECL_MODE (result), addr);
3060 set_mem_attributes (x, result, 1);
3062 SET_DECL_RTL (result, x);
3065 /* We have aligned all the args, so add space for the pretend args. */
3066 current_function_pretend_args_size = all.pretend_args_size;
3067 all.stack_args_size.constant += all.extra_pretend_bytes;
3068 current_function_args_size = all.stack_args_size.constant;
3070 /* Adjust function incoming argument size for alignment and
3071 minimum length. */
3073 #ifdef REG_PARM_STACK_SPACE
3074 current_function_args_size = MAX (current_function_args_size,
3075 REG_PARM_STACK_SPACE (fndecl));
3076 #endif
3078 current_function_args_size = CEIL_ROUND (current_function_args_size,
3079 PARM_BOUNDARY / BITS_PER_UNIT);
3081 #ifdef ARGS_GROW_DOWNWARD
3082 current_function_arg_offset_rtx
3083 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3084 : expand_expr (size_diffop (all.stack_args_size.var,
3085 size_int (-all.stack_args_size.constant)),
3086 NULL_RTX, VOIDmode, 0));
3087 #else
3088 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3089 #endif
3091 /* See how many bytes, if any, of its args a function should try to pop
3092 on return. */
3094 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3095 current_function_args_size);
3097 /* For stdarg.h function, save info about
3098 regs and stack space used by the named args. */
3100 current_function_args_info = all.args_so_far;
3102 /* Set the rtx used for the function return value. Put this in its
3103 own variable so any optimizers that need this information don't have
3104 to include tree.h. Do this here so it gets done when an inlined
3105 function gets output. */
3107 current_function_return_rtx
3108 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3109 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3111 /* If scalar return value was computed in a pseudo-reg, or was a named
3112 return value that got dumped to the stack, copy that to the hard
3113 return register. */
3114 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3116 tree decl_result = DECL_RESULT (fndecl);
3117 rtx decl_rtl = DECL_RTL (decl_result);
3119 if (REG_P (decl_rtl)
3120 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3121 : DECL_REGISTER (decl_result))
3123 rtx real_decl_rtl;
3125 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3126 fndecl, true);
3127 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3128 /* The delay slot scheduler assumes that current_function_return_rtx
3129 holds the hard register containing the return value, not a
3130 temporary pseudo. */
3131 current_function_return_rtx = real_decl_rtl;
3136 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3137 For all seen types, gimplify their sizes. */
3139 static tree
3140 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3142 tree t = *tp;
3144 *walk_subtrees = 0;
3145 if (TYPE_P (t))
3147 if (POINTER_TYPE_P (t))
3148 *walk_subtrees = 1;
3149 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3150 && !TYPE_SIZES_GIMPLIFIED (t))
3152 gimplify_type_sizes (t, (tree *) data);
3153 *walk_subtrees = 1;
3157 return NULL;
3160 /* Gimplify the parameter list for current_function_decl. This involves
3161 evaluating SAVE_EXPRs of variable sized parameters and generating code
3162 to implement callee-copies reference parameters. Returns a list of
3163 statements to add to the beginning of the function, or NULL if nothing
3164 to do. */
3166 tree
3167 gimplify_parameters (void)
3169 struct assign_parm_data_all all;
3170 tree fnargs, parm, stmts = NULL;
3172 assign_parms_initialize_all (&all);
3173 fnargs = assign_parms_augmented_arg_list (&all);
3175 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3177 struct assign_parm_data_one data;
3179 /* Extract the type of PARM; adjust it according to ABI. */
3180 assign_parm_find_data_types (&all, parm, &data);
3182 /* Early out for errors and void parameters. */
3183 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3184 continue;
3186 /* Update info on where next arg arrives in registers. */
3187 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3188 data.passed_type, data.named_arg);
3190 /* ??? Once upon a time variable_size stuffed parameter list
3191 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3192 turned out to be less than manageable in the gimple world.
3193 Now we have to hunt them down ourselves. */
3194 walk_tree_without_duplicates (&data.passed_type,
3195 gimplify_parm_type, &stmts);
3197 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3199 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3200 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3203 if (data.passed_pointer)
3205 tree type = TREE_TYPE (data.passed_type);
3206 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3207 type, data.named_arg))
3209 tree local, t;
3211 /* For constant sized objects, this is trivial; for
3212 variable-sized objects, we have to play games. */
3213 if (TREE_CONSTANT (DECL_SIZE (parm)))
3215 local = create_tmp_var (type, get_name (parm));
3216 DECL_IGNORED_P (local) = 0;
3218 else
3220 tree ptr_type, addr;
3222 ptr_type = build_pointer_type (type);
3223 addr = create_tmp_var (ptr_type, get_name (parm));
3224 DECL_IGNORED_P (addr) = 0;
3225 local = build_fold_indirect_ref (addr);
3227 t = built_in_decls[BUILT_IN_ALLOCA];
3228 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3229 t = fold_convert (ptr_type, t);
3230 t = build_gimple_modify_stmt (addr, t);
3231 gimplify_and_add (t, &stmts);
3234 t = build_gimple_modify_stmt (local, parm);
3235 gimplify_and_add (t, &stmts);
3237 SET_DECL_VALUE_EXPR (parm, local);
3238 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3243 return stmts;
3246 /* Compute the size and offset from the start of the stacked arguments for a
3247 parm passed in mode PASSED_MODE and with type TYPE.
3249 INITIAL_OFFSET_PTR points to the current offset into the stacked
3250 arguments.
3252 The starting offset and size for this parm are returned in
3253 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3254 nonzero, the offset is that of stack slot, which is returned in
3255 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3256 padding required from the initial offset ptr to the stack slot.
3258 IN_REGS is nonzero if the argument will be passed in registers. It will
3259 never be set if REG_PARM_STACK_SPACE is not defined.
3261 FNDECL is the function in which the argument was defined.
3263 There are two types of rounding that are done. The first, controlled by
3264 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3265 list to be aligned to the specific boundary (in bits). This rounding
3266 affects the initial and starting offsets, but not the argument size.
3268 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3269 optionally rounds the size of the parm to PARM_BOUNDARY. The
3270 initial offset is not affected by this rounding, while the size always
3271 is and the starting offset may be. */
3273 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3274 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3275 callers pass in the total size of args so far as
3276 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3278 void
3279 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3280 int partial, tree fndecl ATTRIBUTE_UNUSED,
3281 struct args_size *initial_offset_ptr,
3282 struct locate_and_pad_arg_data *locate)
3284 tree sizetree;
3285 enum direction where_pad;
3286 unsigned int boundary;
3287 int reg_parm_stack_space = 0;
3288 int part_size_in_regs;
3290 #ifdef REG_PARM_STACK_SPACE
3291 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3293 /* If we have found a stack parm before we reach the end of the
3294 area reserved for registers, skip that area. */
3295 if (! in_regs)
3297 if (reg_parm_stack_space > 0)
3299 if (initial_offset_ptr->var)
3301 initial_offset_ptr->var
3302 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3303 ssize_int (reg_parm_stack_space));
3304 initial_offset_ptr->constant = 0;
3306 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3307 initial_offset_ptr->constant = reg_parm_stack_space;
3310 #endif /* REG_PARM_STACK_SPACE */
3312 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3314 sizetree
3315 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3316 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3317 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3318 locate->where_pad = where_pad;
3319 locate->boundary = boundary;
3321 /* Remember if the outgoing parameter requires extra alignment on the
3322 calling function side. */
3323 if (boundary > PREFERRED_STACK_BOUNDARY)
3324 boundary = PREFERRED_STACK_BOUNDARY;
3325 if (cfun->stack_alignment_needed < boundary)
3326 cfun->stack_alignment_needed = boundary;
3328 #ifdef ARGS_GROW_DOWNWARD
3329 locate->slot_offset.constant = -initial_offset_ptr->constant;
3330 if (initial_offset_ptr->var)
3331 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3332 initial_offset_ptr->var);
3335 tree s2 = sizetree;
3336 if (where_pad != none
3337 && (!host_integerp (sizetree, 1)
3338 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3339 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3340 SUB_PARM_SIZE (locate->slot_offset, s2);
3343 locate->slot_offset.constant += part_size_in_regs;
3345 if (!in_regs
3346 #ifdef REG_PARM_STACK_SPACE
3347 || REG_PARM_STACK_SPACE (fndecl) > 0
3348 #endif
3350 pad_to_arg_alignment (&locate->slot_offset, boundary,
3351 &locate->alignment_pad);
3353 locate->size.constant = (-initial_offset_ptr->constant
3354 - locate->slot_offset.constant);
3355 if (initial_offset_ptr->var)
3356 locate->size.var = size_binop (MINUS_EXPR,
3357 size_binop (MINUS_EXPR,
3358 ssize_int (0),
3359 initial_offset_ptr->var),
3360 locate->slot_offset.var);
3362 /* Pad_below needs the pre-rounded size to know how much to pad
3363 below. */
3364 locate->offset = locate->slot_offset;
3365 if (where_pad == downward)
3366 pad_below (&locate->offset, passed_mode, sizetree);
3368 #else /* !ARGS_GROW_DOWNWARD */
3369 if (!in_regs
3370 #ifdef REG_PARM_STACK_SPACE
3371 || REG_PARM_STACK_SPACE (fndecl) > 0
3372 #endif
3374 pad_to_arg_alignment (initial_offset_ptr, boundary,
3375 &locate->alignment_pad);
3376 locate->slot_offset = *initial_offset_ptr;
3378 #ifdef PUSH_ROUNDING
3379 if (passed_mode != BLKmode)
3380 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3381 #endif
3383 /* Pad_below needs the pre-rounded size to know how much to pad below
3384 so this must be done before rounding up. */
3385 locate->offset = locate->slot_offset;
3386 if (where_pad == downward)
3387 pad_below (&locate->offset, passed_mode, sizetree);
3389 if (where_pad != none
3390 && (!host_integerp (sizetree, 1)
3391 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3392 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3394 ADD_PARM_SIZE (locate->size, sizetree);
3396 locate->size.constant -= part_size_in_regs;
3397 #endif /* ARGS_GROW_DOWNWARD */
3400 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3401 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3403 static void
3404 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3405 struct args_size *alignment_pad)
3407 tree save_var = NULL_TREE;
3408 HOST_WIDE_INT save_constant = 0;
3409 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3410 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3412 #ifdef SPARC_STACK_BOUNDARY_HACK
3413 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3414 the real alignment of %sp. However, when it does this, the
3415 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3416 if (SPARC_STACK_BOUNDARY_HACK)
3417 sp_offset = 0;
3418 #endif
3420 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3422 save_var = offset_ptr->var;
3423 save_constant = offset_ptr->constant;
3426 alignment_pad->var = NULL_TREE;
3427 alignment_pad->constant = 0;
3429 if (boundary > BITS_PER_UNIT)
3431 if (offset_ptr->var)
3433 tree sp_offset_tree = ssize_int (sp_offset);
3434 tree offset = size_binop (PLUS_EXPR,
3435 ARGS_SIZE_TREE (*offset_ptr),
3436 sp_offset_tree);
3437 #ifdef ARGS_GROW_DOWNWARD
3438 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3439 #else
3440 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3441 #endif
3443 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3444 /* ARGS_SIZE_TREE includes constant term. */
3445 offset_ptr->constant = 0;
3446 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3447 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3448 save_var);
3450 else
3452 offset_ptr->constant = -sp_offset +
3453 #ifdef ARGS_GROW_DOWNWARD
3454 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3455 #else
3456 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3457 #endif
3458 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3459 alignment_pad->constant = offset_ptr->constant - save_constant;
3464 static void
3465 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3467 if (passed_mode != BLKmode)
3469 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3470 offset_ptr->constant
3471 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3472 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3473 - GET_MODE_SIZE (passed_mode));
3475 else
3477 if (TREE_CODE (sizetree) != INTEGER_CST
3478 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3480 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3481 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3482 /* Add it in. */
3483 ADD_PARM_SIZE (*offset_ptr, s2);
3484 SUB_PARM_SIZE (*offset_ptr, sizetree);
3490 /* True if register REGNO was alive at a place where `setjmp' was
3491 called and was set more than once or is an argument. Such regs may
3492 be clobbered by `longjmp'. */
3494 static bool
3495 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3497 /* There appear to be cases where some local vars never reach the
3498 backend but have bogus regnos. */
3499 if (regno >= max_reg_num ())
3500 return false;
3502 return ((REG_N_SETS (regno) > 1
3503 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3504 && REGNO_REG_SET_P (setjmp_crosses, regno));
3507 /* Walk the tree of blocks describing the binding levels within a
3508 function and warn about variables the might be killed by setjmp or
3509 vfork. This is done after calling flow_analysis before register
3510 allocation since that will clobber the pseudo-regs to hard
3511 regs. */
3513 static void
3514 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3516 tree decl, sub;
3518 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3520 if (TREE_CODE (decl) == VAR_DECL
3521 && DECL_RTL_SET_P (decl)
3522 && REG_P (DECL_RTL (decl))
3523 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3524 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3525 " %<longjmp%> or %<vfork%>", decl);
3528 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3529 setjmp_vars_warning (setjmp_crosses, sub);
3532 /* Do the appropriate part of setjmp_vars_warning
3533 but for arguments instead of local variables. */
3535 static void
3536 setjmp_args_warning (bitmap setjmp_crosses)
3538 tree decl;
3539 for (decl = DECL_ARGUMENTS (current_function_decl);
3540 decl; decl = TREE_CHAIN (decl))
3541 if (DECL_RTL (decl) != 0
3542 && REG_P (DECL_RTL (decl))
3543 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3544 warning (OPT_Wclobbered,
3545 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3546 decl);
3549 /* Generate warning messages for variables live across setjmp. */
3551 void
3552 generate_setjmp_warnings (void)
3554 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3556 if (n_basic_blocks == NUM_FIXED_BLOCKS
3557 || bitmap_empty_p (setjmp_crosses))
3558 return;
3560 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3561 setjmp_args_warning (setjmp_crosses);
3565 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3566 and create duplicate blocks. */
3567 /* ??? Need an option to either create block fragments or to create
3568 abstract origin duplicates of a source block. It really depends
3569 on what optimization has been performed. */
3571 void
3572 reorder_blocks (void)
3574 tree block = DECL_INITIAL (current_function_decl);
3575 VEC(tree,heap) *block_stack;
3577 if (block == NULL_TREE)
3578 return;
3580 block_stack = VEC_alloc (tree, heap, 10);
3582 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3583 clear_block_marks (block);
3585 /* Prune the old trees away, so that they don't get in the way. */
3586 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3587 BLOCK_CHAIN (block) = NULL_TREE;
3589 /* Recreate the block tree from the note nesting. */
3590 reorder_blocks_1 (get_insns (), block, &block_stack);
3591 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3593 VEC_free (tree, heap, block_stack);
3596 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3598 void
3599 clear_block_marks (tree block)
3601 while (block)
3603 TREE_ASM_WRITTEN (block) = 0;
3604 clear_block_marks (BLOCK_SUBBLOCKS (block));
3605 block = BLOCK_CHAIN (block);
3609 static void
3610 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3612 rtx insn;
3614 for (insn = insns; insn; insn = NEXT_INSN (insn))
3616 if (NOTE_P (insn))
3618 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3620 tree block = NOTE_BLOCK (insn);
3621 tree origin;
3623 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3624 ? BLOCK_FRAGMENT_ORIGIN (block)
3625 : block);
3627 /* If we have seen this block before, that means it now
3628 spans multiple address regions. Create a new fragment. */
3629 if (TREE_ASM_WRITTEN (block))
3631 tree new_block = copy_node (block);
3633 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3634 BLOCK_FRAGMENT_CHAIN (new_block)
3635 = BLOCK_FRAGMENT_CHAIN (origin);
3636 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3638 NOTE_BLOCK (insn) = new_block;
3639 block = new_block;
3642 BLOCK_SUBBLOCKS (block) = 0;
3643 TREE_ASM_WRITTEN (block) = 1;
3644 /* When there's only one block for the entire function,
3645 current_block == block and we mustn't do this, it
3646 will cause infinite recursion. */
3647 if (block != current_block)
3649 if (block != origin)
3650 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3652 BLOCK_SUPERCONTEXT (block) = current_block;
3653 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3654 BLOCK_SUBBLOCKS (current_block) = block;
3655 current_block = origin;
3657 VEC_safe_push (tree, heap, *p_block_stack, block);
3659 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3661 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3662 BLOCK_SUBBLOCKS (current_block)
3663 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3664 current_block = BLOCK_SUPERCONTEXT (current_block);
3670 /* Reverse the order of elements in the chain T of blocks,
3671 and return the new head of the chain (old last element). */
3673 tree
3674 blocks_nreverse (tree t)
3676 tree prev = 0, decl, next;
3677 for (decl = t; decl; decl = next)
3679 next = BLOCK_CHAIN (decl);
3680 BLOCK_CHAIN (decl) = prev;
3681 prev = decl;
3683 return prev;
3686 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3687 non-NULL, list them all into VECTOR, in a depth-first preorder
3688 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3689 blocks. */
3691 static int
3692 all_blocks (tree block, tree *vector)
3694 int n_blocks = 0;
3696 while (block)
3698 TREE_ASM_WRITTEN (block) = 0;
3700 /* Record this block. */
3701 if (vector)
3702 vector[n_blocks] = block;
3704 ++n_blocks;
3706 /* Record the subblocks, and their subblocks... */
3707 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3708 vector ? vector + n_blocks : 0);
3709 block = BLOCK_CHAIN (block);
3712 return n_blocks;
3715 /* Return a vector containing all the blocks rooted at BLOCK. The
3716 number of elements in the vector is stored in N_BLOCKS_P. The
3717 vector is dynamically allocated; it is the caller's responsibility
3718 to call `free' on the pointer returned. */
3720 static tree *
3721 get_block_vector (tree block, int *n_blocks_p)
3723 tree *block_vector;
3725 *n_blocks_p = all_blocks (block, NULL);
3726 block_vector = XNEWVEC (tree, *n_blocks_p);
3727 all_blocks (block, block_vector);
3729 return block_vector;
3732 static GTY(()) int next_block_index = 2;
3734 /* Set BLOCK_NUMBER for all the blocks in FN. */
3736 void
3737 number_blocks (tree fn)
3739 int i;
3740 int n_blocks;
3741 tree *block_vector;
3743 /* For SDB and XCOFF debugging output, we start numbering the blocks
3744 from 1 within each function, rather than keeping a running
3745 count. */
3746 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3747 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3748 next_block_index = 1;
3749 #endif
3751 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3753 /* The top-level BLOCK isn't numbered at all. */
3754 for (i = 1; i < n_blocks; ++i)
3755 /* We number the blocks from two. */
3756 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3758 free (block_vector);
3760 return;
3763 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3765 tree
3766 debug_find_var_in_block_tree (tree var, tree block)
3768 tree t;
3770 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3771 if (t == var)
3772 return block;
3774 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3776 tree ret = debug_find_var_in_block_tree (var, t);
3777 if (ret)
3778 return ret;
3781 return NULL_TREE;
3785 /* Return value of funcdef and increase it. */
3787 get_next_funcdef_no (void)
3789 return funcdef_no++;
3792 /* Allocate a function structure for FNDECL and set its contents
3793 to the defaults. */
3795 void
3796 allocate_struct_function (tree fndecl)
3798 tree result;
3799 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3801 cfun = ggc_alloc_cleared (sizeof (struct function));
3803 cfun->stack_alignment_needed = STACK_BOUNDARY;
3804 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3806 current_function_funcdef_no = get_next_funcdef_no ();
3808 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3810 init_eh_for_function ();
3812 lang_hooks.function.init (cfun);
3813 if (init_machine_status)
3814 cfun->machine = (*init_machine_status) ();
3816 if (fndecl == NULL)
3817 return;
3819 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3820 cfun->decl = fndecl;
3822 result = DECL_RESULT (fndecl);
3823 if (aggregate_value_p (result, fndecl))
3825 #ifdef PCC_STATIC_STRUCT_RETURN
3826 current_function_returns_pcc_struct = 1;
3827 #endif
3828 current_function_returns_struct = 1;
3831 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3833 current_function_stdarg
3834 = (fntype
3835 && TYPE_ARG_TYPES (fntype) != 0
3836 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3837 != void_type_node));
3839 /* Assume all registers in stdarg functions need to be saved. */
3840 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3841 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3844 /* Reset cfun, and other non-struct-function variables to defaults as
3845 appropriate for emitting rtl at the start of a function. */
3847 static void
3848 prepare_function_start (tree fndecl)
3850 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3851 cfun = DECL_STRUCT_FUNCTION (fndecl);
3852 else
3853 allocate_struct_function (fndecl);
3854 init_emit ();
3855 init_varasm_status (cfun);
3856 init_expr ();
3858 cse_not_expected = ! optimize;
3860 /* Caller save not needed yet. */
3861 caller_save_needed = 0;
3863 /* We haven't done register allocation yet. */
3864 reg_renumber = 0;
3866 /* Indicate that we have not instantiated virtual registers yet. */
3867 virtuals_instantiated = 0;
3869 /* Indicate that we want CONCATs now. */
3870 generating_concat_p = 1;
3872 /* Indicate we have no need of a frame pointer yet. */
3873 frame_pointer_needed = 0;
3876 /* Initialize the rtl expansion mechanism so that we can do simple things
3877 like generate sequences. This is used to provide a context during global
3878 initialization of some passes. */
3879 void
3880 init_dummy_function_start (void)
3882 prepare_function_start (NULL);
3885 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3886 and initialize static variables for generating RTL for the statements
3887 of the function. */
3889 void
3890 init_function_start (tree subr)
3892 prepare_function_start (subr);
3894 /* Warn if this value is an aggregate type,
3895 regardless of which calling convention we are using for it. */
3896 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3897 warning (OPT_Waggregate_return, "function returns an aggregate");
3900 /* Make sure all values used by the optimization passes have sane
3901 defaults. */
3902 unsigned int
3903 init_function_for_compilation (void)
3905 reg_renumber = 0;
3907 /* No prologue/epilogue insns yet. Make sure that these vectors are
3908 empty. */
3909 gcc_assert (VEC_length (int, prologue) == 0);
3910 gcc_assert (VEC_length (int, epilogue) == 0);
3911 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3912 return 0;
3915 struct tree_opt_pass pass_init_function =
3917 NULL, /* name */
3918 NULL, /* gate */
3919 init_function_for_compilation, /* execute */
3920 NULL, /* sub */
3921 NULL, /* next */
3922 0, /* static_pass_number */
3923 0, /* tv_id */
3924 0, /* properties_required */
3925 0, /* properties_provided */
3926 0, /* properties_destroyed */
3927 0, /* todo_flags_start */
3928 0, /* todo_flags_finish */
3929 0 /* letter */
3933 void
3934 expand_main_function (void)
3936 #if (defined(INVOKE__main) \
3937 || (!defined(HAS_INIT_SECTION) \
3938 && !defined(INIT_SECTION_ASM_OP) \
3939 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3940 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3941 #endif
3944 /* Expand code to initialize the stack_protect_guard. This is invoked at
3945 the beginning of a function to be protected. */
3947 #ifndef HAVE_stack_protect_set
3948 # define HAVE_stack_protect_set 0
3949 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3950 #endif
3952 void
3953 stack_protect_prologue (void)
3955 tree guard_decl = targetm.stack_protect_guard ();
3956 rtx x, y;
3958 /* Avoid expand_expr here, because we don't want guard_decl pulled
3959 into registers unless absolutely necessary. And we know that
3960 cfun->stack_protect_guard is a local stack slot, so this skips
3961 all the fluff. */
3962 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3963 y = validize_mem (DECL_RTL (guard_decl));
3965 /* Allow the target to copy from Y to X without leaking Y into a
3966 register. */
3967 if (HAVE_stack_protect_set)
3969 rtx insn = gen_stack_protect_set (x, y);
3970 if (insn)
3972 emit_insn (insn);
3973 return;
3977 /* Otherwise do a straight move. */
3978 emit_move_insn (x, y);
3981 /* Expand code to verify the stack_protect_guard. This is invoked at
3982 the end of a function to be protected. */
3984 #ifndef HAVE_stack_protect_test
3985 # define HAVE_stack_protect_test 0
3986 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
3987 #endif
3989 void
3990 stack_protect_epilogue (void)
3992 tree guard_decl = targetm.stack_protect_guard ();
3993 rtx label = gen_label_rtx ();
3994 rtx x, y, tmp;
3996 /* Avoid expand_expr here, because we don't want guard_decl pulled
3997 into registers unless absolutely necessary. And we know that
3998 cfun->stack_protect_guard is a local stack slot, so this skips
3999 all the fluff. */
4000 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4001 y = validize_mem (DECL_RTL (guard_decl));
4003 /* Allow the target to compare Y with X without leaking either into
4004 a register. */
4005 switch (HAVE_stack_protect_test != 0)
4007 case 1:
4008 tmp = gen_stack_protect_test (x, y, label);
4009 if (tmp)
4011 emit_insn (tmp);
4012 break;
4014 /* FALLTHRU */
4016 default:
4017 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4018 break;
4021 /* The noreturn predictor has been moved to the tree level. The rtl-level
4022 predictors estimate this branch about 20%, which isn't enough to get
4023 things moved out of line. Since this is the only extant case of adding
4024 a noreturn function at the rtl level, it doesn't seem worth doing ought
4025 except adding the prediction by hand. */
4026 tmp = get_last_insn ();
4027 if (JUMP_P (tmp))
4028 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4030 expand_expr_stmt (targetm.stack_protect_fail ());
4031 emit_label (label);
4034 /* Start the RTL for a new function, and set variables used for
4035 emitting RTL.
4036 SUBR is the FUNCTION_DECL node.
4037 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4038 the function's parameters, which must be run at any return statement. */
4040 void
4041 expand_function_start (tree subr)
4043 /* Make sure volatile mem refs aren't considered
4044 valid operands of arithmetic insns. */
4045 init_recog_no_volatile ();
4047 current_function_profile
4048 = (profile_flag
4049 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4051 current_function_limit_stack
4052 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4054 /* Make the label for return statements to jump to. Do not special
4055 case machines with special return instructions -- they will be
4056 handled later during jump, ifcvt, or epilogue creation. */
4057 return_label = gen_label_rtx ();
4059 /* Initialize rtx used to return the value. */
4060 /* Do this before assign_parms so that we copy the struct value address
4061 before any library calls that assign parms might generate. */
4063 /* Decide whether to return the value in memory or in a register. */
4064 if (aggregate_value_p (DECL_RESULT (subr), subr))
4066 /* Returning something that won't go in a register. */
4067 rtx value_address = 0;
4069 #ifdef PCC_STATIC_STRUCT_RETURN
4070 if (current_function_returns_pcc_struct)
4072 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4073 value_address = assemble_static_space (size);
4075 else
4076 #endif
4078 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4079 /* Expect to be passed the address of a place to store the value.
4080 If it is passed as an argument, assign_parms will take care of
4081 it. */
4082 if (sv)
4084 value_address = gen_reg_rtx (Pmode);
4085 emit_move_insn (value_address, sv);
4088 if (value_address)
4090 rtx x = value_address;
4091 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4093 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4094 set_mem_attributes (x, DECL_RESULT (subr), 1);
4096 SET_DECL_RTL (DECL_RESULT (subr), x);
4099 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4100 /* If return mode is void, this decl rtl should not be used. */
4101 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4102 else
4104 /* Compute the return values into a pseudo reg, which we will copy
4105 into the true return register after the cleanups are done. */
4106 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4107 if (TYPE_MODE (return_type) != BLKmode
4108 && targetm.calls.return_in_msb (return_type))
4109 /* expand_function_end will insert the appropriate padding in
4110 this case. Use the return value's natural (unpadded) mode
4111 within the function proper. */
4112 SET_DECL_RTL (DECL_RESULT (subr),
4113 gen_reg_rtx (TYPE_MODE (return_type)));
4114 else
4116 /* In order to figure out what mode to use for the pseudo, we
4117 figure out what the mode of the eventual return register will
4118 actually be, and use that. */
4119 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4121 /* Structures that are returned in registers are not
4122 aggregate_value_p, so we may see a PARALLEL or a REG. */
4123 if (REG_P (hard_reg))
4124 SET_DECL_RTL (DECL_RESULT (subr),
4125 gen_reg_rtx (GET_MODE (hard_reg)));
4126 else
4128 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4129 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4133 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4134 result to the real return register(s). */
4135 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4138 /* Initialize rtx for parameters and local variables.
4139 In some cases this requires emitting insns. */
4140 assign_parms (subr);
4142 /* If function gets a static chain arg, store it. */
4143 if (cfun->static_chain_decl)
4145 tree parm = cfun->static_chain_decl;
4146 rtx local = gen_reg_rtx (Pmode);
4148 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4149 SET_DECL_RTL (parm, local);
4150 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4152 emit_move_insn (local, static_chain_incoming_rtx);
4155 /* If the function receives a non-local goto, then store the
4156 bits we need to restore the frame pointer. */
4157 if (cfun->nonlocal_goto_save_area)
4159 tree t_save;
4160 rtx r_save;
4162 /* ??? We need to do this save early. Unfortunately here is
4163 before the frame variable gets declared. Help out... */
4164 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4166 t_save = build4 (ARRAY_REF, ptr_type_node,
4167 cfun->nonlocal_goto_save_area,
4168 integer_zero_node, NULL_TREE, NULL_TREE);
4169 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4170 r_save = convert_memory_address (Pmode, r_save);
4172 emit_move_insn (r_save, virtual_stack_vars_rtx);
4173 update_nonlocal_goto_save_area ();
4176 /* The following was moved from init_function_start.
4177 The move is supposed to make sdb output more accurate. */
4178 /* Indicate the beginning of the function body,
4179 as opposed to parm setup. */
4180 emit_note (NOTE_INSN_FUNCTION_BEG);
4182 gcc_assert (NOTE_P (get_last_insn ()));
4184 parm_birth_insn = get_last_insn ();
4186 if (current_function_profile)
4188 #ifdef PROFILE_HOOK
4189 PROFILE_HOOK (current_function_funcdef_no);
4190 #endif
4193 /* After the display initializations is where the stack checking
4194 probe should go. */
4195 if(flag_stack_check)
4196 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4198 /* Make sure there is a line number after the function entry setup code. */
4199 force_next_line_note ();
4202 /* Undo the effects of init_dummy_function_start. */
4203 void
4204 expand_dummy_function_end (void)
4206 /* End any sequences that failed to be closed due to syntax errors. */
4207 while (in_sequence_p ())
4208 end_sequence ();
4210 /* Outside function body, can't compute type's actual size
4211 until next function's body starts. */
4213 free_after_parsing (cfun);
4214 free_after_compilation (cfun);
4215 cfun = 0;
4218 /* Call DOIT for each hard register used as a return value from
4219 the current function. */
4221 void
4222 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4224 rtx outgoing = current_function_return_rtx;
4226 if (! outgoing)
4227 return;
4229 if (REG_P (outgoing))
4230 (*doit) (outgoing, arg);
4231 else if (GET_CODE (outgoing) == PARALLEL)
4233 int i;
4235 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4237 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4239 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4240 (*doit) (x, arg);
4245 static void
4246 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4248 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4251 void
4252 clobber_return_register (void)
4254 diddle_return_value (do_clobber_return_reg, NULL);
4256 /* In case we do use pseudo to return value, clobber it too. */
4257 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4259 tree decl_result = DECL_RESULT (current_function_decl);
4260 rtx decl_rtl = DECL_RTL (decl_result);
4261 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4263 do_clobber_return_reg (decl_rtl, NULL);
4268 static void
4269 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4271 emit_insn (gen_rtx_USE (VOIDmode, reg));
4274 static void
4275 use_return_register (void)
4277 diddle_return_value (do_use_return_reg, NULL);
4280 /* Possibly warn about unused parameters. */
4281 void
4282 do_warn_unused_parameter (tree fn)
4284 tree decl;
4286 for (decl = DECL_ARGUMENTS (fn);
4287 decl; decl = TREE_CHAIN (decl))
4288 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4289 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4290 && !TREE_NO_WARNING (decl))
4291 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4294 static GTY(()) rtx initial_trampoline;
4296 /* Generate RTL for the end of the current function. */
4298 void
4299 expand_function_end (void)
4301 rtx clobber_after;
4303 /* If arg_pointer_save_area was referenced only from a nested
4304 function, we will not have initialized it yet. Do that now. */
4305 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4306 get_arg_pointer_save_area (cfun);
4308 /* If we are doing stack checking and this function makes calls,
4309 do a stack probe at the start of the function to ensure we have enough
4310 space for another stack frame. */
4311 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4313 rtx insn, seq;
4315 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4316 if (CALL_P (insn))
4318 start_sequence ();
4319 probe_stack_range (STACK_CHECK_PROTECT,
4320 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4321 seq = get_insns ();
4322 end_sequence ();
4323 emit_insn_before (seq, stack_check_probe_note);
4324 break;
4328 /* Possibly warn about unused parameters.
4329 When frontend does unit-at-a-time, the warning is already
4330 issued at finalization time. */
4331 if (warn_unused_parameter
4332 && !lang_hooks.callgraph.expand_function)
4333 do_warn_unused_parameter (current_function_decl);
4335 /* End any sequences that failed to be closed due to syntax errors. */
4336 while (in_sequence_p ())
4337 end_sequence ();
4339 clear_pending_stack_adjust ();
4340 do_pending_stack_adjust ();
4342 /* Output a linenumber for the end of the function.
4343 SDB depends on this. */
4344 force_next_line_note ();
4345 set_curr_insn_source_location (input_location);
4347 /* Before the return label (if any), clobber the return
4348 registers so that they are not propagated live to the rest of
4349 the function. This can only happen with functions that drop
4350 through; if there had been a return statement, there would
4351 have either been a return rtx, or a jump to the return label.
4353 We delay actual code generation after the current_function_value_rtx
4354 is computed. */
4355 clobber_after = get_last_insn ();
4357 /* Output the label for the actual return from the function. */
4358 emit_label (return_label);
4360 if (USING_SJLJ_EXCEPTIONS)
4362 /* Let except.c know where it should emit the call to unregister
4363 the function context for sjlj exceptions. */
4364 if (flag_exceptions)
4365 sjlj_emit_function_exit_after (get_last_insn ());
4367 else
4369 /* We want to ensure that instructions that may trap are not
4370 moved into the epilogue by scheduling, because we don't
4371 always emit unwind information for the epilogue. */
4372 if (flag_non_call_exceptions)
4373 emit_insn (gen_blockage ());
4376 /* If this is an implementation of throw, do what's necessary to
4377 communicate between __builtin_eh_return and the epilogue. */
4378 expand_eh_return ();
4380 /* If scalar return value was computed in a pseudo-reg, or was a named
4381 return value that got dumped to the stack, copy that to the hard
4382 return register. */
4383 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4385 tree decl_result = DECL_RESULT (current_function_decl);
4386 rtx decl_rtl = DECL_RTL (decl_result);
4388 if (REG_P (decl_rtl)
4389 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4390 : DECL_REGISTER (decl_result))
4392 rtx real_decl_rtl = current_function_return_rtx;
4394 /* This should be set in assign_parms. */
4395 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4397 /* If this is a BLKmode structure being returned in registers,
4398 then use the mode computed in expand_return. Note that if
4399 decl_rtl is memory, then its mode may have been changed,
4400 but that current_function_return_rtx has not. */
4401 if (GET_MODE (real_decl_rtl) == BLKmode)
4402 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4404 /* If a non-BLKmode return value should be padded at the least
4405 significant end of the register, shift it left by the appropriate
4406 amount. BLKmode results are handled using the group load/store
4407 machinery. */
4408 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4409 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4411 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4412 REGNO (real_decl_rtl)),
4413 decl_rtl);
4414 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4416 /* If a named return value dumped decl_return to memory, then
4417 we may need to re-do the PROMOTE_MODE signed/unsigned
4418 extension. */
4419 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4421 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4423 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4424 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4425 &unsignedp, 1);
4427 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4429 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4431 /* If expand_function_start has created a PARALLEL for decl_rtl,
4432 move the result to the real return registers. Otherwise, do
4433 a group load from decl_rtl for a named return. */
4434 if (GET_CODE (decl_rtl) == PARALLEL)
4435 emit_group_move (real_decl_rtl, decl_rtl);
4436 else
4437 emit_group_load (real_decl_rtl, decl_rtl,
4438 TREE_TYPE (decl_result),
4439 int_size_in_bytes (TREE_TYPE (decl_result)));
4441 /* In the case of complex integer modes smaller than a word, we'll
4442 need to generate some non-trivial bitfield insertions. Do that
4443 on a pseudo and not the hard register. */
4444 else if (GET_CODE (decl_rtl) == CONCAT
4445 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4446 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4448 int old_generating_concat_p;
4449 rtx tmp;
4451 old_generating_concat_p = generating_concat_p;
4452 generating_concat_p = 0;
4453 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4454 generating_concat_p = old_generating_concat_p;
4456 emit_move_insn (tmp, decl_rtl);
4457 emit_move_insn (real_decl_rtl, tmp);
4459 else
4460 emit_move_insn (real_decl_rtl, decl_rtl);
4464 /* If returning a structure, arrange to return the address of the value
4465 in a place where debuggers expect to find it.
4467 If returning a structure PCC style,
4468 the caller also depends on this value.
4469 And current_function_returns_pcc_struct is not necessarily set. */
4470 if (current_function_returns_struct
4471 || current_function_returns_pcc_struct)
4473 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4474 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4475 rtx outgoing;
4477 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4478 type = TREE_TYPE (type);
4479 else
4480 value_address = XEXP (value_address, 0);
4482 outgoing = targetm.calls.function_value (build_pointer_type (type),
4483 current_function_decl, true);
4485 /* Mark this as a function return value so integrate will delete the
4486 assignment and USE below when inlining this function. */
4487 REG_FUNCTION_VALUE_P (outgoing) = 1;
4489 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4490 value_address = convert_memory_address (GET_MODE (outgoing),
4491 value_address);
4493 emit_move_insn (outgoing, value_address);
4495 /* Show return register used to hold result (in this case the address
4496 of the result. */
4497 current_function_return_rtx = outgoing;
4500 /* Emit the actual code to clobber return register. */
4502 rtx seq;
4504 start_sequence ();
4505 clobber_return_register ();
4506 expand_naked_return ();
4507 seq = get_insns ();
4508 end_sequence ();
4510 emit_insn_after (seq, clobber_after);
4513 /* Output the label for the naked return from the function. */
4514 emit_label (naked_return_label);
4516 /* @@@ This is a kludge. We want to ensure that instructions that
4517 may trap are not moved into the epilogue by scheduling, because
4518 we don't always emit unwind information for the epilogue. */
4519 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4520 emit_insn (gen_blockage ());
4522 /* If stack protection is enabled for this function, check the guard. */
4523 if (cfun->stack_protect_guard)
4524 stack_protect_epilogue ();
4526 /* If we had calls to alloca, and this machine needs
4527 an accurate stack pointer to exit the function,
4528 insert some code to save and restore the stack pointer. */
4529 if (! EXIT_IGNORE_STACK
4530 && current_function_calls_alloca)
4532 rtx tem = 0;
4534 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4535 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4538 /* ??? This should no longer be necessary since stupid is no longer with
4539 us, but there are some parts of the compiler (eg reload_combine, and
4540 sh mach_dep_reorg) that still try and compute their own lifetime info
4541 instead of using the general framework. */
4542 use_return_register ();
4546 get_arg_pointer_save_area (struct function *f)
4548 rtx ret = f->x_arg_pointer_save_area;
4550 if (! ret)
4552 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4553 f->x_arg_pointer_save_area = ret;
4556 if (f == cfun && ! f->arg_pointer_save_area_init)
4558 rtx seq;
4560 /* Save the arg pointer at the beginning of the function. The
4561 generated stack slot may not be a valid memory address, so we
4562 have to check it and fix it if necessary. */
4563 start_sequence ();
4564 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4565 seq = get_insns ();
4566 end_sequence ();
4568 push_topmost_sequence ();
4569 emit_insn_after (seq, entry_of_function ());
4570 pop_topmost_sequence ();
4573 return ret;
4576 /* Extend a vector that records the INSN_UIDs of INSNS
4577 (a list of one or more insns). */
4579 static void
4580 record_insns (rtx insns, VEC(int,heap) **vecp)
4582 rtx tmp;
4584 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4585 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4588 /* Set the locator of the insn chain starting at INSN to LOC. */
4589 static void
4590 set_insn_locators (rtx insn, int loc)
4592 while (insn != NULL_RTX)
4594 if (INSN_P (insn))
4595 INSN_LOCATOR (insn) = loc;
4596 insn = NEXT_INSN (insn);
4600 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4601 be running after reorg, SEQUENCE rtl is possible. */
4603 static int
4604 contains (const_rtx insn, VEC(int,heap) **vec)
4606 int i, j;
4608 if (NONJUMP_INSN_P (insn)
4609 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4611 int count = 0;
4612 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4613 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4614 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4615 == VEC_index (int, *vec, j))
4616 count++;
4617 return count;
4619 else
4621 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4622 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4623 return 1;
4625 return 0;
4629 prologue_epilogue_contains (const_rtx insn)
4631 if (contains (insn, &prologue))
4632 return 1;
4633 if (contains (insn, &epilogue))
4634 return 1;
4635 return 0;
4639 sibcall_epilogue_contains (const_rtx insn)
4641 if (sibcall_epilogue)
4642 return contains (insn, &sibcall_epilogue);
4643 return 0;
4646 #ifdef HAVE_return
4647 /* Insert gen_return at the end of block BB. This also means updating
4648 block_for_insn appropriately. */
4650 static void
4651 emit_return_into_block (basic_block bb)
4653 emit_jump_insn_after (gen_return (), BB_END (bb));
4655 #endif /* HAVE_return */
4657 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4659 /* These functions convert the epilogue into a variant that does not
4660 modify the stack pointer. This is used in cases where a function
4661 returns an object whose size is not known until it is computed.
4662 The called function leaves the object on the stack, leaves the
4663 stack depressed, and returns a pointer to the object.
4665 What we need to do is track all modifications and references to the
4666 stack pointer, deleting the modifications and changing the
4667 references to point to the location the stack pointer would have
4668 pointed to had the modifications taken place.
4670 These functions need to be portable so we need to make as few
4671 assumptions about the epilogue as we can. However, the epilogue
4672 basically contains three things: instructions to reset the stack
4673 pointer, instructions to reload registers, possibly including the
4674 frame pointer, and an instruction to return to the caller.
4676 We must be sure of what a relevant epilogue insn is doing. We also
4677 make no attempt to validate the insns we make since if they are
4678 invalid, we probably can't do anything valid. The intent is that
4679 these routines get "smarter" as more and more machines start to use
4680 them and they try operating on different epilogues.
4682 We use the following structure to track what the part of the
4683 epilogue that we've already processed has done. We keep two copies
4684 of the SP equivalence, one for use during the insn we are
4685 processing and one for use in the next insn. The difference is
4686 because one part of a PARALLEL may adjust SP and the other may use
4687 it. */
4689 struct epi_info
4691 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4692 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4693 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4694 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4695 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4696 should be set to once we no longer need
4697 its value. */
4698 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4699 for registers. */
4702 static void handle_epilogue_set (rtx, struct epi_info *);
4703 static void update_epilogue_consts (rtx, const_rtx, void *);
4704 static void emit_equiv_load (struct epi_info *);
4706 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4707 no modifications to the stack pointer. Return the new list of insns. */
4709 static rtx
4710 keep_stack_depressed (rtx insns)
4712 int j;
4713 struct epi_info info;
4714 rtx insn, next;
4716 /* If the epilogue is just a single instruction, it must be OK as is. */
4717 if (NEXT_INSN (insns) == NULL_RTX)
4718 return insns;
4720 /* Otherwise, start a sequence, initialize the information we have, and
4721 process all the insns we were given. */
4722 start_sequence ();
4724 info.sp_equiv_reg = stack_pointer_rtx;
4725 info.sp_offset = 0;
4726 info.equiv_reg_src = 0;
4728 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4729 info.const_equiv[j] = 0;
4731 insn = insns;
4732 next = NULL_RTX;
4733 while (insn != NULL_RTX)
4735 next = NEXT_INSN (insn);
4737 if (!INSN_P (insn))
4739 add_insn (insn);
4740 insn = next;
4741 continue;
4744 /* If this insn references the register that SP is equivalent to and
4745 we have a pending load to that register, we must force out the load
4746 first and then indicate we no longer know what SP's equivalent is. */
4747 if (info.equiv_reg_src != 0
4748 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4750 emit_equiv_load (&info);
4751 info.sp_equiv_reg = 0;
4754 info.new_sp_equiv_reg = info.sp_equiv_reg;
4755 info.new_sp_offset = info.sp_offset;
4757 /* If this is a (RETURN) and the return address is on the stack,
4758 update the address and change to an indirect jump. */
4759 if (GET_CODE (PATTERN (insn)) == RETURN
4760 || (GET_CODE (PATTERN (insn)) == PARALLEL
4761 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4763 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4764 rtx base = 0;
4765 HOST_WIDE_INT offset = 0;
4766 rtx jump_insn, jump_set;
4768 /* If the return address is in a register, we can emit the insn
4769 unchanged. Otherwise, it must be a MEM and we see what the
4770 base register and offset are. In any case, we have to emit any
4771 pending load to the equivalent reg of SP, if any. */
4772 if (REG_P (retaddr))
4774 emit_equiv_load (&info);
4775 add_insn (insn);
4776 insn = next;
4777 continue;
4779 else
4781 rtx ret_ptr;
4782 gcc_assert (MEM_P (retaddr));
4784 ret_ptr = XEXP (retaddr, 0);
4786 if (REG_P (ret_ptr))
4788 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4789 offset = 0;
4791 else
4793 gcc_assert (GET_CODE (ret_ptr) == PLUS
4794 && REG_P (XEXP (ret_ptr, 0))
4795 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4796 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4797 offset = INTVAL (XEXP (ret_ptr, 1));
4801 /* If the base of the location containing the return pointer
4802 is SP, we must update it with the replacement address. Otherwise,
4803 just build the necessary MEM. */
4804 retaddr = plus_constant (base, offset);
4805 if (base == stack_pointer_rtx)
4806 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4807 plus_constant (info.sp_equiv_reg,
4808 info.sp_offset));
4810 retaddr = gen_rtx_MEM (Pmode, retaddr);
4811 MEM_NOTRAP_P (retaddr) = 1;
4813 /* If there is a pending load to the equivalent register for SP
4814 and we reference that register, we must load our address into
4815 a scratch register and then do that load. */
4816 if (info.equiv_reg_src
4817 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4819 unsigned int regno;
4820 rtx reg;
4822 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4823 if (HARD_REGNO_MODE_OK (regno, Pmode)
4824 && !fixed_regs[regno]
4825 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4826 && !REGNO_REG_SET_P
4827 (DF_LR_IN (EXIT_BLOCK_PTR), regno)
4828 && !refers_to_regno_p (regno,
4829 end_hard_regno (Pmode, regno),
4830 info.equiv_reg_src, NULL)
4831 && info.const_equiv[regno] == 0)
4832 break;
4834 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4836 reg = gen_rtx_REG (Pmode, regno);
4837 emit_move_insn (reg, retaddr);
4838 retaddr = reg;
4841 emit_equiv_load (&info);
4842 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4844 /* Show the SET in the above insn is a RETURN. */
4845 jump_set = single_set (jump_insn);
4846 gcc_assert (jump_set);
4847 SET_IS_RETURN_P (jump_set) = 1;
4850 /* If SP is not mentioned in the pattern and its equivalent register, if
4851 any, is not modified, just emit it. Otherwise, if neither is set,
4852 replace the reference to SP and emit the insn. If none of those are
4853 true, handle each SET individually. */
4854 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4855 && (info.sp_equiv_reg == stack_pointer_rtx
4856 || !reg_set_p (info.sp_equiv_reg, insn)))
4857 add_insn (insn);
4858 else if (! reg_set_p (stack_pointer_rtx, insn)
4859 && (info.sp_equiv_reg == stack_pointer_rtx
4860 || !reg_set_p (info.sp_equiv_reg, insn)))
4862 int changed;
4864 changed = validate_replace_rtx (stack_pointer_rtx,
4865 plus_constant (info.sp_equiv_reg,
4866 info.sp_offset),
4867 insn);
4868 gcc_assert (changed);
4870 add_insn (insn);
4872 else if (GET_CODE (PATTERN (insn)) == SET)
4873 handle_epilogue_set (PATTERN (insn), &info);
4874 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4876 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4877 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4878 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4880 else
4881 add_insn (insn);
4883 info.sp_equiv_reg = info.new_sp_equiv_reg;
4884 info.sp_offset = info.new_sp_offset;
4886 /* Now update any constants this insn sets. */
4887 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4888 insn = next;
4891 insns = get_insns ();
4892 end_sequence ();
4893 return insns;
4896 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4897 structure that contains information about what we've seen so far. We
4898 process this SET by either updating that data or by emitting one or
4899 more insns. */
4901 static void
4902 handle_epilogue_set (rtx set, struct epi_info *p)
4904 /* First handle the case where we are setting SP. Record what it is being
4905 set from, which we must be able to determine */
4906 if (reg_set_p (stack_pointer_rtx, set))
4908 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4910 if (GET_CODE (SET_SRC (set)) == PLUS)
4912 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4913 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4914 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4915 else
4917 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4918 && (REGNO (XEXP (SET_SRC (set), 1))
4919 < FIRST_PSEUDO_REGISTER)
4920 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4921 p->new_sp_offset
4922 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4925 else
4926 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4928 /* If we are adjusting SP, we adjust from the old data. */
4929 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4931 p->new_sp_equiv_reg = p->sp_equiv_reg;
4932 p->new_sp_offset += p->sp_offset;
4935 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4937 return;
4940 /* Next handle the case where we are setting SP's equivalent
4941 register. We must not already have a value to set it to. We
4942 could update, but there seems little point in handling that case.
4943 Note that we have to allow for the case where we are setting the
4944 register set in the previous part of a PARALLEL inside a single
4945 insn. But use the old offset for any updates within this insn.
4946 We must allow for the case where the register is being set in a
4947 different (usually wider) mode than Pmode). */
4948 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4950 gcc_assert (!p->equiv_reg_src
4951 && REG_P (p->new_sp_equiv_reg)
4952 && REG_P (SET_DEST (set))
4953 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4954 <= BITS_PER_WORD)
4955 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4956 p->equiv_reg_src
4957 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4958 plus_constant (p->sp_equiv_reg,
4959 p->sp_offset));
4962 /* Otherwise, replace any references to SP in the insn to its new value
4963 and emit the insn. */
4964 else
4966 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4967 plus_constant (p->sp_equiv_reg,
4968 p->sp_offset));
4969 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4970 plus_constant (p->sp_equiv_reg,
4971 p->sp_offset));
4972 emit_insn (set);
4976 /* Update the tracking information for registers set to constants. */
4978 static void
4979 update_epilogue_consts (rtx dest, const_rtx x, void *data)
4981 struct epi_info *p = (struct epi_info *) data;
4982 rtx new;
4984 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4985 return;
4987 /* If we are either clobbering a register or doing a partial set,
4988 show we don't know the value. */
4989 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4990 p->const_equiv[REGNO (dest)] = 0;
4992 /* If we are setting it to a constant, record that constant. */
4993 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4994 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4996 /* If this is a binary operation between a register we have been tracking
4997 and a constant, see if we can compute a new constant value. */
4998 else if (ARITHMETIC_P (SET_SRC (x))
4999 && REG_P (XEXP (SET_SRC (x), 0))
5000 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5001 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5002 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5003 && 0 != (new = simplify_binary_operation
5004 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5005 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5006 XEXP (SET_SRC (x), 1)))
5007 && GET_CODE (new) == CONST_INT)
5008 p->const_equiv[REGNO (dest)] = new;
5010 /* Otherwise, we can't do anything with this value. */
5011 else
5012 p->const_equiv[REGNO (dest)] = 0;
5015 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5017 static void
5018 emit_equiv_load (struct epi_info *p)
5020 if (p->equiv_reg_src != 0)
5022 rtx dest = p->sp_equiv_reg;
5024 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5025 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5026 REGNO (p->sp_equiv_reg));
5028 emit_move_insn (dest, p->equiv_reg_src);
5029 p->equiv_reg_src = 0;
5032 #endif
5034 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5035 this into place with notes indicating where the prologue ends and where
5036 the epilogue begins. Update the basic block information when possible. */
5038 static void
5039 thread_prologue_and_epilogue_insns (void)
5041 int inserted = 0;
5042 edge e;
5043 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5044 rtx seq;
5045 #endif
5046 #if defined (HAVE_epilogue) || defined(HAVE_return)
5047 rtx epilogue_end = NULL_RTX;
5048 #endif
5049 edge_iterator ei;
5051 #ifdef HAVE_prologue
5052 if (HAVE_prologue)
5054 start_sequence ();
5055 seq = gen_prologue ();
5056 emit_insn (seq);
5058 /* Insert an explicit USE for the frame pointer
5059 if the profiling is on and the frame pointer is required. */
5060 if (current_function_profile && frame_pointer_needed)
5061 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
5063 /* Retain a map of the prologue insns. */
5064 record_insns (seq, &prologue);
5065 emit_note (NOTE_INSN_PROLOGUE_END);
5067 #ifndef PROFILE_BEFORE_PROLOGUE
5068 /* Ensure that instructions are not moved into the prologue when
5069 profiling is on. The call to the profiling routine can be
5070 emitted within the live range of a call-clobbered register. */
5071 if (current_function_profile)
5072 emit_insn (gen_blockage ());
5073 #endif
5075 seq = get_insns ();
5076 end_sequence ();
5077 set_insn_locators (seq, prologue_locator);
5079 /* Can't deal with multiple successors of the entry block
5080 at the moment. Function should always have at least one
5081 entry point. */
5082 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5084 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5085 inserted = 1;
5087 #endif
5089 /* If the exit block has no non-fake predecessors, we don't need
5090 an epilogue. */
5091 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5092 if ((e->flags & EDGE_FAKE) == 0)
5093 break;
5094 if (e == NULL)
5095 goto epilogue_done;
5097 #ifdef HAVE_return
5098 if (optimize && HAVE_return)
5100 /* If we're allowed to generate a simple return instruction,
5101 then by definition we don't need a full epilogue. Examine
5102 the block that falls through to EXIT. If it does not
5103 contain any code, examine its predecessors and try to
5104 emit (conditional) return instructions. */
5106 basic_block last;
5107 rtx label;
5109 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5110 if (e->flags & EDGE_FALLTHRU)
5111 break;
5112 if (e == NULL)
5113 goto epilogue_done;
5114 last = e->src;
5116 /* Verify that there are no active instructions in the last block. */
5117 label = BB_END (last);
5118 while (label && !LABEL_P (label))
5120 if (active_insn_p (label))
5121 break;
5122 label = PREV_INSN (label);
5125 if (BB_HEAD (last) == label && LABEL_P (label))
5127 edge_iterator ei2;
5129 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5131 basic_block bb = e->src;
5132 rtx jump;
5134 if (bb == ENTRY_BLOCK_PTR)
5136 ei_next (&ei2);
5137 continue;
5140 jump = BB_END (bb);
5141 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5143 ei_next (&ei2);
5144 continue;
5147 /* If we have an unconditional jump, we can replace that
5148 with a simple return instruction. */
5149 if (simplejump_p (jump))
5151 emit_return_into_block (bb);
5152 delete_insn (jump);
5155 /* If we have a conditional jump, we can try to replace
5156 that with a conditional return instruction. */
5157 else if (condjump_p (jump))
5159 if (! redirect_jump (jump, 0, 0))
5161 ei_next (&ei2);
5162 continue;
5165 /* If this block has only one successor, it both jumps
5166 and falls through to the fallthru block, so we can't
5167 delete the edge. */
5168 if (single_succ_p (bb))
5170 ei_next (&ei2);
5171 continue;
5174 else
5176 ei_next (&ei2);
5177 continue;
5180 /* Fix up the CFG for the successful change we just made. */
5181 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5184 /* Emit a return insn for the exit fallthru block. Whether
5185 this is still reachable will be determined later. */
5187 emit_barrier_after (BB_END (last));
5188 emit_return_into_block (last);
5189 epilogue_end = BB_END (last);
5190 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5191 goto epilogue_done;
5194 #endif
5195 /* Find the edge that falls through to EXIT. Other edges may exist
5196 due to RETURN instructions, but those don't need epilogues.
5197 There really shouldn't be a mixture -- either all should have
5198 been converted or none, however... */
5200 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5201 if (e->flags & EDGE_FALLTHRU)
5202 break;
5203 if (e == NULL)
5204 goto epilogue_done;
5206 #ifdef HAVE_epilogue
5207 if (HAVE_epilogue)
5209 start_sequence ();
5210 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5212 seq = gen_epilogue ();
5214 #ifdef INCOMING_RETURN_ADDR_RTX
5215 /* If this function returns with the stack depressed and we can support
5216 it, massage the epilogue to actually do that. */
5217 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5218 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5219 seq = keep_stack_depressed (seq);
5220 #endif
5222 emit_jump_insn (seq);
5224 /* Retain a map of the epilogue insns. */
5225 record_insns (seq, &epilogue);
5226 set_insn_locators (seq, epilogue_locator);
5228 seq = get_insns ();
5229 end_sequence ();
5231 insert_insn_on_edge (seq, e);
5232 inserted = 1;
5234 else
5235 #endif
5237 basic_block cur_bb;
5239 if (! next_active_insn (BB_END (e->src)))
5240 goto epilogue_done;
5241 /* We have a fall-through edge to the exit block, the source is not
5242 at the end of the function, and there will be an assembler epilogue
5243 at the end of the function.
5244 We can't use force_nonfallthru here, because that would try to
5245 use return. Inserting a jump 'by hand' is extremely messy, so
5246 we take advantage of cfg_layout_finalize using
5247 fixup_fallthru_exit_predecessor. */
5248 cfg_layout_initialize (0);
5249 FOR_EACH_BB (cur_bb)
5250 if (cur_bb->index >= NUM_FIXED_BLOCKS
5251 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5252 cur_bb->aux = cur_bb->next_bb;
5253 cfg_layout_finalize ();
5255 epilogue_done:
5257 if (inserted)
5259 commit_edge_insertions ();
5261 /* The epilogue insns we inserted may cause the exit edge to no longer
5262 be fallthru. */
5263 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5265 if (((e->flags & EDGE_FALLTHRU) != 0)
5266 && returnjump_p (BB_END (e->src)))
5267 e->flags &= ~EDGE_FALLTHRU;
5271 #ifdef HAVE_sibcall_epilogue
5272 /* Emit sibling epilogues before any sibling call sites. */
5273 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5275 basic_block bb = e->src;
5276 rtx insn = BB_END (bb);
5278 if (!CALL_P (insn)
5279 || ! SIBLING_CALL_P (insn))
5281 ei_next (&ei);
5282 continue;
5285 start_sequence ();
5286 emit_insn (gen_sibcall_epilogue ());
5287 seq = get_insns ();
5288 end_sequence ();
5290 /* Retain a map of the epilogue insns. Used in life analysis to
5291 avoid getting rid of sibcall epilogue insns. Do this before we
5292 actually emit the sequence. */
5293 record_insns (seq, &sibcall_epilogue);
5294 set_insn_locators (seq, epilogue_locator);
5296 emit_insn_before (seq, insn);
5297 ei_next (&ei);
5299 #endif
5301 #ifdef HAVE_epilogue
5302 if (epilogue_end)
5304 rtx insn, next;
5306 /* Similarly, move any line notes that appear after the epilogue.
5307 There is no need, however, to be quite so anal about the existence
5308 of such a note. Also possibly move
5309 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5310 info generation. */
5311 for (insn = epilogue_end; insn; insn = next)
5313 next = NEXT_INSN (insn);
5314 if (NOTE_P (insn)
5315 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5316 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5319 #endif
5321 /* Threading the prologue and epilogue changes the artificial refs
5322 in the entry and exit blocks. */
5323 epilogue_completed = 1;
5324 df_update_entry_exit_and_calls ();
5327 /* Reposition the prologue-end and epilogue-begin notes after instruction
5328 scheduling and delayed branch scheduling. */
5330 void
5331 reposition_prologue_and_epilogue_notes (void)
5333 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5334 rtx insn, last, note;
5335 int len;
5337 if ((len = VEC_length (int, prologue)) > 0)
5339 last = 0, note = 0;
5341 /* Scan from the beginning until we reach the last prologue insn.
5342 We apparently can't depend on basic_block_{head,end} after
5343 reorg has run. */
5344 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5346 if (NOTE_P (insn))
5348 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5349 note = insn;
5351 else if (contains (insn, &prologue))
5353 last = insn;
5354 if (--len == 0)
5355 break;
5359 if (last)
5361 /* Find the prologue-end note if we haven't already, and
5362 move it to just after the last prologue insn. */
5363 if (note == 0)
5365 for (note = last; (note = NEXT_INSN (note));)
5366 if (NOTE_P (note)
5367 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5368 break;
5371 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5372 if (LABEL_P (last))
5373 last = NEXT_INSN (last);
5374 reorder_insns (note, note, last);
5378 if ((len = VEC_length (int, epilogue)) > 0)
5380 last = 0, note = 0;
5382 /* Scan from the end until we reach the first epilogue insn.
5383 We apparently can't depend on basic_block_{head,end} after
5384 reorg has run. */
5385 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5387 if (NOTE_P (insn))
5389 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5390 note = insn;
5392 else if (contains (insn, &epilogue))
5394 last = insn;
5395 if (--len == 0)
5396 break;
5400 if (last)
5402 /* Find the epilogue-begin note if we haven't already, and
5403 move it to just before the first epilogue insn. */
5404 if (note == 0)
5406 for (note = insn; (note = PREV_INSN (note));)
5407 if (NOTE_P (note)
5408 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5409 break;
5412 if (PREV_INSN (last) != note)
5413 reorder_insns (note, note, PREV_INSN (last));
5416 #endif /* HAVE_prologue or HAVE_epilogue */
5419 /* Returns the name of the current function. */
5420 const char *
5421 current_function_name (void)
5423 return lang_hooks.decl_printable_name (cfun->decl, 2);
5426 /* Returns the raw (mangled) name of the current function. */
5427 const char *
5428 current_function_assembler_name (void)
5430 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5434 static unsigned int
5435 rest_of_handle_check_leaf_regs (void)
5437 #ifdef LEAF_REGISTERS
5438 current_function_uses_only_leaf_regs
5439 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5440 #endif
5441 return 0;
5444 /* Insert a TYPE into the used types hash table of CFUN. */
5445 static void
5446 used_types_insert_helper (tree type, struct function *func)
5448 if (type != NULL && func != NULL)
5450 void **slot;
5452 if (func->used_types_hash == NULL)
5453 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5454 htab_eq_pointer, NULL);
5455 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5456 if (*slot == NULL)
5457 *slot = type;
5461 /* Given a type, insert it into the used hash table in cfun. */
5462 void
5463 used_types_insert (tree t)
5465 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5466 t = TREE_TYPE (t);
5467 t = TYPE_MAIN_VARIANT (t);
5468 if (debug_info_level > DINFO_LEVEL_NONE)
5469 used_types_insert_helper (t, cfun);
5472 struct tree_opt_pass pass_leaf_regs =
5474 NULL, /* name */
5475 NULL, /* gate */
5476 rest_of_handle_check_leaf_regs, /* execute */
5477 NULL, /* sub */
5478 NULL, /* next */
5479 0, /* static_pass_number */
5480 0, /* tv_id */
5481 0, /* properties_required */
5482 0, /* properties_provided */
5483 0, /* properties_destroyed */
5484 0, /* todo_flags_start */
5485 0, /* todo_flags_finish */
5486 0 /* letter */
5489 static unsigned int
5490 rest_of_handle_thread_prologue_and_epilogue (void)
5492 if (optimize)
5493 cleanup_cfg (CLEANUP_EXPENSIVE);
5494 /* On some machines, the prologue and epilogue code, or parts thereof,
5495 can be represented as RTL. Doing so lets us schedule insns between
5496 it and the rest of the code and also allows delayed branch
5497 scheduling to operate in the epilogue. */
5499 thread_prologue_and_epilogue_insns ();
5500 return 0;
5503 struct tree_opt_pass pass_thread_prologue_and_epilogue =
5505 "pro_and_epilogue", /* name */
5506 NULL, /* gate */
5507 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5508 NULL, /* sub */
5509 NULL, /* next */
5510 0, /* static_pass_number */
5511 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5512 0, /* properties_required */
5513 0, /* properties_provided */
5514 0, /* properties_destroyed */
5515 TODO_verify_flow, /* todo_flags_start */
5516 TODO_dump_func |
5517 TODO_df_verify |
5518 TODO_df_finish |
5519 TODO_ggc_collect, /* todo_flags_finish */
5520 'w' /* letter */
5524 /* This mini-pass fixes fall-out from SSA in asm statements that have
5525 in-out constraints. Say you start with
5527 orig = inout;
5528 asm ("": "+mr" (inout));
5529 use (orig);
5531 which is transformed very early to use explicit output and match operands:
5533 orig = inout;
5534 asm ("": "=mr" (inout) : "0" (inout));
5535 use (orig);
5537 Or, after SSA and copyprop,
5539 asm ("": "=mr" (inout_2) : "0" (inout_1));
5540 use (inout_1);
5542 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5543 they represent two separate values, so they will get different pseudo
5544 registers during expansion. Then, since the two operands need to match
5545 per the constraints, but use different pseudo registers, reload can
5546 only register a reload for these operands. But reloads can only be
5547 satisfied by hardregs, not by memory, so we need a register for this
5548 reload, just because we are presented with non-matching operands.
5549 So, even though we allow memory for this operand, no memory can be
5550 used for it, just because the two operands don't match. This can
5551 cause reload failures on register-starved targets.
5553 So it's a symptom of reload not being able to use memory for reloads
5554 or, alternatively it's also a symptom of both operands not coming into
5555 reload as matching (in which case the pseudo could go to memory just
5556 fine, as the alternative allows it, and no reload would be necessary).
5557 We fix the latter problem here, by transforming
5559 asm ("": "=mr" (inout_2) : "0" (inout_1));
5561 back to
5563 inout_2 = inout_1;
5564 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5566 static void
5567 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5569 int i;
5570 bool changed = false;
5571 rtx op = SET_SRC (p_sets[0]);
5572 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5573 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5575 for (i = 0; i < ninputs; i++)
5577 rtx input, output, insns;
5578 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5579 char *end;
5580 int match;
5582 match = strtoul (constraint, &end, 10);
5583 if (end == constraint)
5584 continue;
5586 gcc_assert (match < noutputs);
5587 output = SET_DEST (p_sets[match]);
5588 input = RTVEC_ELT (inputs, i);
5589 if (rtx_equal_p (output, input)
5590 || (GET_MODE (input) != VOIDmode
5591 && GET_MODE (input) != GET_MODE (output)))
5592 continue;
5594 start_sequence ();
5595 emit_move_insn (copy_rtx (output), input);
5596 RTVEC_ELT (inputs, i) = copy_rtx (output);
5597 insns = get_insns ();
5598 end_sequence ();
5600 emit_insn_before (insns, insn);
5601 changed = true;
5604 if (changed)
5605 df_insn_rescan (insn);
5608 static unsigned
5609 rest_of_match_asm_constraints (void)
5611 basic_block bb;
5612 rtx insn, pat, *p_sets;
5613 int noutputs;
5615 if (!cfun->has_asm_statement)
5616 return 0;
5618 df_set_flags (DF_DEFER_INSN_RESCAN);
5619 FOR_EACH_BB (bb)
5621 FOR_BB_INSNS (bb, insn)
5623 if (!INSN_P (insn))
5624 continue;
5626 pat = PATTERN (insn);
5627 if (GET_CODE (pat) == PARALLEL)
5628 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5629 else if (GET_CODE (pat) == SET)
5630 p_sets = &PATTERN (insn), noutputs = 1;
5631 else
5632 continue;
5634 if (GET_CODE (*p_sets) == SET
5635 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5636 match_asm_constraints_1 (insn, p_sets, noutputs);
5640 return TODO_df_finish;
5643 struct tree_opt_pass pass_match_asm_constraints =
5645 "asmcons", /* name */
5646 NULL, /* gate */
5647 rest_of_match_asm_constraints, /* execute */
5648 NULL, /* sub */
5649 NULL, /* next */
5650 0, /* static_pass_number */
5651 0, /* tv_id */
5652 0, /* properties_required */
5653 0, /* properties_provided */
5654 0, /* properties_destroyed */
5655 0, /* todo_flags_start */
5656 TODO_dump_func, /* todo_flags_finish */
5657 0 /* letter */
5661 #include "gt-function.h"