* target.h (invalid_conversion, invalid_unary_op,
[official-gcc/alias-decl.git] / gcc / dwarf2out.c
blobf4d36e7da15679ca3ee70666f5a048f3dbf755ec
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 int flags;
126 if (EH_TABLES_CAN_BE_READ_ONLY)
128 int fde_encoding;
129 int per_encoding;
130 int lsda_encoding;
132 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
133 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
134 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
135 flags = (! flag_pic
136 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
137 && (fde_encoding & 0x70) != DW_EH_PE_aligned
138 && (per_encoding & 0x70) != DW_EH_PE_absptr
139 && (per_encoding & 0x70) != DW_EH_PE_aligned
140 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
141 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
142 ? 0 : SECTION_WRITE;
144 else
145 flags = SECTION_WRITE;
146 named_section_flags (EH_FRAME_SECTION_NAME, flags);
147 #endif
150 /* Version of targetm.eh_frame_section for systems using collect2. */
151 void
152 collect2_eh_frame_section (void)
154 tree label = get_file_function_name ('F');
156 data_section ();
157 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
158 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
159 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
162 /* Default version of targetm.eh_frame_section. */
163 void
164 default_eh_frame_section (void)
166 #ifdef EH_FRAME_SECTION_NAME
167 named_section_eh_frame_section ();
168 #else
169 collect2_eh_frame_section ();
170 #endif
173 DEF_VEC_P(rtx);
174 DEF_VEC_ALLOC_P(rtx,gc);
176 /* Array of RTXes referenced by the debugging information, which therefore
177 must be kept around forever. */
178 static GTY(()) VEC(rtx,gc) *used_rtx_array;
180 /* A pointer to the base of a list of incomplete types which might be
181 completed at some later time. incomplete_types_list needs to be a
182 VEC(tree,gc) because we want to tell the garbage collector about
183 it. */
184 static GTY(()) VEC(tree,gc) *incomplete_types;
186 /* A pointer to the base of a table of references to declaration
187 scopes. This table is a display which tracks the nesting
188 of declaration scopes at the current scope and containing
189 scopes. This table is used to find the proper place to
190 define type declaration DIE's. */
191 static GTY(()) VEC(tree,gc) *decl_scope_table;
193 /* How to start an assembler comment. */
194 #ifndef ASM_COMMENT_START
195 #define ASM_COMMENT_START ";#"
196 #endif
198 typedef struct dw_cfi_struct *dw_cfi_ref;
199 typedef struct dw_fde_struct *dw_fde_ref;
200 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
202 /* Call frames are described using a sequence of Call Frame
203 Information instructions. The register number, offset
204 and address fields are provided as possible operands;
205 their use is selected by the opcode field. */
207 enum dw_cfi_oprnd_type {
208 dw_cfi_oprnd_unused,
209 dw_cfi_oprnd_reg_num,
210 dw_cfi_oprnd_offset,
211 dw_cfi_oprnd_addr,
212 dw_cfi_oprnd_loc
215 typedef union dw_cfi_oprnd_struct GTY(())
217 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
218 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
219 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
220 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
222 dw_cfi_oprnd;
224 typedef struct dw_cfi_struct GTY(())
226 dw_cfi_ref dw_cfi_next;
227 enum dwarf_call_frame_info dw_cfi_opc;
228 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
229 dw_cfi_oprnd1;
230 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
231 dw_cfi_oprnd2;
233 dw_cfi_node;
235 /* This is how we define the location of the CFA. We use to handle it
236 as REG + OFFSET all the time, but now it can be more complex.
237 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
238 Instead of passing around REG and OFFSET, we pass a copy
239 of this structure. */
240 typedef struct cfa_loc GTY(())
242 unsigned long reg;
243 HOST_WIDE_INT offset;
244 HOST_WIDE_INT base_offset;
245 int indirect; /* 1 if CFA is accessed via a dereference. */
246 } dw_cfa_location;
248 /* All call frame descriptions (FDE's) in the GCC generated DWARF
249 refer to a single Common Information Entry (CIE), defined at
250 the beginning of the .debug_frame section. This use of a single
251 CIE obviates the need to keep track of multiple CIE's
252 in the DWARF generation routines below. */
254 typedef struct dw_fde_struct GTY(())
256 tree decl;
257 const char *dw_fde_begin;
258 const char *dw_fde_current_label;
259 const char *dw_fde_end;
260 const char *dw_fde_hot_section_label;
261 const char *dw_fde_hot_section_end_label;
262 const char *dw_fde_unlikely_section_label;
263 const char *dw_fde_unlikely_section_end_label;
264 bool dw_fde_switched_sections;
265 dw_cfi_ref dw_fde_cfi;
266 unsigned funcdef_number;
267 unsigned all_throwers_are_sibcalls : 1;
268 unsigned nothrow : 1;
269 unsigned uses_eh_lsda : 1;
271 dw_fde_node;
273 /* Maximum size (in bytes) of an artificially generated label. */
274 #define MAX_ARTIFICIAL_LABEL_BYTES 30
276 /* The size of addresses as they appear in the Dwarf 2 data.
277 Some architectures use word addresses to refer to code locations,
278 but Dwarf 2 info always uses byte addresses. On such machines,
279 Dwarf 2 addresses need to be larger than the architecture's
280 pointers. */
281 #ifndef DWARF2_ADDR_SIZE
282 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
283 #endif
285 /* The size in bytes of a DWARF field indicating an offset or length
286 relative to a debug info section, specified to be 4 bytes in the
287 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
288 as PTR_SIZE. */
290 #ifndef DWARF_OFFSET_SIZE
291 #define DWARF_OFFSET_SIZE 4
292 #endif
294 /* According to the (draft) DWARF 3 specification, the initial length
295 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
296 bytes are 0xffffffff, followed by the length stored in the next 8
297 bytes.
299 However, the SGI/MIPS ABI uses an initial length which is equal to
300 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
302 #ifndef DWARF_INITIAL_LENGTH_SIZE
303 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
304 #endif
306 #define DWARF_VERSION 2
308 /* Round SIZE up to the nearest BOUNDARY. */
309 #define DWARF_ROUND(SIZE,BOUNDARY) \
310 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
312 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
313 #ifndef DWARF_CIE_DATA_ALIGNMENT
314 #ifdef STACK_GROWS_DOWNWARD
315 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
316 #else
317 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
318 #endif
319 #endif
321 /* A pointer to the base of a table that contains frame description
322 information for each routine. */
323 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
325 /* Number of elements currently allocated for fde_table. */
326 static GTY(()) unsigned fde_table_allocated;
328 /* Number of elements in fde_table currently in use. */
329 static GTY(()) unsigned fde_table_in_use;
331 /* Size (in elements) of increments by which we may expand the
332 fde_table. */
333 #define FDE_TABLE_INCREMENT 256
335 /* A list of call frame insns for the CIE. */
336 static GTY(()) dw_cfi_ref cie_cfi_head;
338 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
339 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
340 attribute that accelerates the lookup of the FDE associated
341 with the subprogram. This variable holds the table index of the FDE
342 associated with the current function (body) definition. */
343 static unsigned current_funcdef_fde;
344 #endif
346 struct indirect_string_node GTY(())
348 const char *str;
349 unsigned int refcount;
350 unsigned int form;
351 char *label;
354 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
356 static GTY(()) int dw2_string_counter;
357 static GTY(()) unsigned long dwarf2out_cfi_label_num;
359 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
361 /* Forward declarations for functions defined in this file. */
363 static char *stripattributes (const char *);
364 static const char *dwarf_cfi_name (unsigned);
365 static dw_cfi_ref new_cfi (void);
366 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
367 static void add_fde_cfi (const char *, dw_cfi_ref);
368 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
369 static void lookup_cfa (dw_cfa_location *);
370 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
371 static void initial_return_save (rtx);
372 static HOST_WIDE_INT stack_adjust_offset (rtx);
373 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
374 static void output_call_frame_info (int);
375 static void dwarf2out_stack_adjust (rtx, bool);
376 static void flush_queued_reg_saves (void);
377 static bool clobbers_queued_reg_save (rtx);
378 static void dwarf2out_frame_debug_expr (rtx, const char *);
380 /* Support for complex CFA locations. */
381 static void output_cfa_loc (dw_cfi_ref);
382 static void get_cfa_from_loc_descr (dw_cfa_location *,
383 struct dw_loc_descr_struct *);
384 static struct dw_loc_descr_struct *build_cfa_loc
385 (dw_cfa_location *);
386 static void def_cfa_1 (const char *, dw_cfa_location *);
388 /* How to start an assembler comment. */
389 #ifndef ASM_COMMENT_START
390 #define ASM_COMMENT_START ";#"
391 #endif
393 /* Data and reference forms for relocatable data. */
394 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
395 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
397 #ifndef DEBUG_FRAME_SECTION
398 #define DEBUG_FRAME_SECTION ".debug_frame"
399 #endif
401 #ifndef FUNC_BEGIN_LABEL
402 #define FUNC_BEGIN_LABEL "LFB"
403 #endif
405 #ifndef FUNC_END_LABEL
406 #define FUNC_END_LABEL "LFE"
407 #endif
409 #ifndef FRAME_BEGIN_LABEL
410 #define FRAME_BEGIN_LABEL "Lframe"
411 #endif
412 #define CIE_AFTER_SIZE_LABEL "LSCIE"
413 #define CIE_END_LABEL "LECIE"
414 #define FDE_LABEL "LSFDE"
415 #define FDE_AFTER_SIZE_LABEL "LASFDE"
416 #define FDE_END_LABEL "LEFDE"
417 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
418 #define LINE_NUMBER_END_LABEL "LELT"
419 #define LN_PROLOG_AS_LABEL "LASLTP"
420 #define LN_PROLOG_END_LABEL "LELTP"
421 #define DIE_LABEL_PREFIX "DW"
423 /* The DWARF 2 CFA column which tracks the return address. Normally this
424 is the column for PC, or the first column after all of the hard
425 registers. */
426 #ifndef DWARF_FRAME_RETURN_COLUMN
427 #ifdef PC_REGNUM
428 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
429 #else
430 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
431 #endif
432 #endif
434 /* The mapping from gcc register number to DWARF 2 CFA column number. By
435 default, we just provide columns for all registers. */
436 #ifndef DWARF_FRAME_REGNUM
437 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
438 #endif
440 /* The offset from the incoming value of %sp to the top of the stack frame
441 for the current function. */
442 #ifndef INCOMING_FRAME_SP_OFFSET
443 #define INCOMING_FRAME_SP_OFFSET 0
444 #endif
446 /* Hook used by __throw. */
449 expand_builtin_dwarf_sp_column (void)
451 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
454 /* Return a pointer to a copy of the section string name S with all
455 attributes stripped off, and an asterisk prepended (for assemble_name). */
457 static inline char *
458 stripattributes (const char *s)
460 char *stripped = xmalloc (strlen (s) + 2);
461 char *p = stripped;
463 *p++ = '*';
465 while (*s && *s != ',')
466 *p++ = *s++;
468 *p = '\0';
469 return stripped;
472 /* Generate code to initialize the register size table. */
474 void
475 expand_builtin_init_dwarf_reg_sizes (tree address)
477 int i;
478 enum machine_mode mode = TYPE_MODE (char_type_node);
479 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
480 rtx mem = gen_rtx_MEM (BLKmode, addr);
481 bool wrote_return_column = false;
483 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
484 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
486 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
487 enum machine_mode save_mode = reg_raw_mode[i];
488 HOST_WIDE_INT size;
490 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
491 save_mode = choose_hard_reg_mode (i, 1, true);
492 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
494 if (save_mode == VOIDmode)
495 continue;
496 wrote_return_column = true;
498 size = GET_MODE_SIZE (save_mode);
499 if (offset < 0)
500 continue;
502 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
505 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
506 gcc_assert (wrote_return_column);
507 i = DWARF_ALT_FRAME_RETURN_COLUMN;
508 wrote_return_column = false;
509 #else
510 i = DWARF_FRAME_RETURN_COLUMN;
511 #endif
513 if (! wrote_return_column)
515 enum machine_mode save_mode = Pmode;
516 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
517 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
518 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
522 /* Convert a DWARF call frame info. operation to its string name */
524 static const char *
525 dwarf_cfi_name (unsigned int cfi_opc)
527 switch (cfi_opc)
529 case DW_CFA_advance_loc:
530 return "DW_CFA_advance_loc";
531 case DW_CFA_offset:
532 return "DW_CFA_offset";
533 case DW_CFA_restore:
534 return "DW_CFA_restore";
535 case DW_CFA_nop:
536 return "DW_CFA_nop";
537 case DW_CFA_set_loc:
538 return "DW_CFA_set_loc";
539 case DW_CFA_advance_loc1:
540 return "DW_CFA_advance_loc1";
541 case DW_CFA_advance_loc2:
542 return "DW_CFA_advance_loc2";
543 case DW_CFA_advance_loc4:
544 return "DW_CFA_advance_loc4";
545 case DW_CFA_offset_extended:
546 return "DW_CFA_offset_extended";
547 case DW_CFA_restore_extended:
548 return "DW_CFA_restore_extended";
549 case DW_CFA_undefined:
550 return "DW_CFA_undefined";
551 case DW_CFA_same_value:
552 return "DW_CFA_same_value";
553 case DW_CFA_register:
554 return "DW_CFA_register";
555 case DW_CFA_remember_state:
556 return "DW_CFA_remember_state";
557 case DW_CFA_restore_state:
558 return "DW_CFA_restore_state";
559 case DW_CFA_def_cfa:
560 return "DW_CFA_def_cfa";
561 case DW_CFA_def_cfa_register:
562 return "DW_CFA_def_cfa_register";
563 case DW_CFA_def_cfa_offset:
564 return "DW_CFA_def_cfa_offset";
566 /* DWARF 3 */
567 case DW_CFA_def_cfa_expression:
568 return "DW_CFA_def_cfa_expression";
569 case DW_CFA_expression:
570 return "DW_CFA_expression";
571 case DW_CFA_offset_extended_sf:
572 return "DW_CFA_offset_extended_sf";
573 case DW_CFA_def_cfa_sf:
574 return "DW_CFA_def_cfa_sf";
575 case DW_CFA_def_cfa_offset_sf:
576 return "DW_CFA_def_cfa_offset_sf";
578 /* SGI/MIPS specific */
579 case DW_CFA_MIPS_advance_loc8:
580 return "DW_CFA_MIPS_advance_loc8";
582 /* GNU extensions */
583 case DW_CFA_GNU_window_save:
584 return "DW_CFA_GNU_window_save";
585 case DW_CFA_GNU_args_size:
586 return "DW_CFA_GNU_args_size";
587 case DW_CFA_GNU_negative_offset_extended:
588 return "DW_CFA_GNU_negative_offset_extended";
590 default:
591 return "DW_CFA_<unknown>";
595 /* Return a pointer to a newly allocated Call Frame Instruction. */
597 static inline dw_cfi_ref
598 new_cfi (void)
600 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
602 cfi->dw_cfi_next = NULL;
603 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
604 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
606 return cfi;
609 /* Add a Call Frame Instruction to list of instructions. */
611 static inline void
612 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
614 dw_cfi_ref *p;
616 /* Find the end of the chain. */
617 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
620 *p = cfi;
623 /* Generate a new label for the CFI info to refer to. */
625 char *
626 dwarf2out_cfi_label (void)
628 static char label[20];
630 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
631 ASM_OUTPUT_LABEL (asm_out_file, label);
632 return label;
635 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
636 or to the CIE if LABEL is NULL. */
638 static void
639 add_fde_cfi (const char *label, dw_cfi_ref cfi)
641 if (label)
643 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
645 if (*label == 0)
646 label = dwarf2out_cfi_label ();
648 if (fde->dw_fde_current_label == NULL
649 || strcmp (label, fde->dw_fde_current_label) != 0)
651 dw_cfi_ref xcfi;
653 fde->dw_fde_current_label = label = xstrdup (label);
655 /* Set the location counter to the new label. */
656 xcfi = new_cfi ();
657 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
658 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
659 add_cfi (&fde->dw_fde_cfi, xcfi);
662 add_cfi (&fde->dw_fde_cfi, cfi);
665 else
666 add_cfi (&cie_cfi_head, cfi);
669 /* Subroutine of lookup_cfa. */
671 static inline void
672 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
674 switch (cfi->dw_cfi_opc)
676 case DW_CFA_def_cfa_offset:
677 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
678 break;
679 case DW_CFA_def_cfa_register:
680 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
681 break;
682 case DW_CFA_def_cfa:
683 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
684 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
685 break;
686 case DW_CFA_def_cfa_expression:
687 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
688 break;
689 default:
690 break;
694 /* Find the previous value for the CFA. */
696 static void
697 lookup_cfa (dw_cfa_location *loc)
699 dw_cfi_ref cfi;
701 loc->reg = (unsigned long) -1;
702 loc->offset = 0;
703 loc->indirect = 0;
704 loc->base_offset = 0;
706 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
707 lookup_cfa_1 (cfi, loc);
709 if (fde_table_in_use)
711 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
712 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
713 lookup_cfa_1 (cfi, loc);
717 /* The current rule for calculating the DWARF2 canonical frame address. */
718 static dw_cfa_location cfa;
720 /* The register used for saving registers to the stack, and its offset
721 from the CFA. */
722 static dw_cfa_location cfa_store;
724 /* The running total of the size of arguments pushed onto the stack. */
725 static HOST_WIDE_INT args_size;
727 /* The last args_size we actually output. */
728 static HOST_WIDE_INT old_args_size;
730 /* Entry point to update the canonical frame address (CFA).
731 LABEL is passed to add_fde_cfi. The value of CFA is now to be
732 calculated from REG+OFFSET. */
734 void
735 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
737 dw_cfa_location loc;
738 loc.indirect = 0;
739 loc.base_offset = 0;
740 loc.reg = reg;
741 loc.offset = offset;
742 def_cfa_1 (label, &loc);
745 /* This routine does the actual work. The CFA is now calculated from
746 the dw_cfa_location structure. */
748 static void
749 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
751 dw_cfi_ref cfi;
752 dw_cfa_location old_cfa, loc;
754 cfa = *loc_p;
755 loc = *loc_p;
757 if (cfa_store.reg == loc.reg && loc.indirect == 0)
758 cfa_store.offset = loc.offset;
760 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
761 lookup_cfa (&old_cfa);
763 /* If nothing changed, no need to issue any call frame instructions. */
764 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
765 && loc.indirect == old_cfa.indirect
766 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
767 return;
769 cfi = new_cfi ();
771 if (loc.reg == old_cfa.reg && !loc.indirect)
773 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
774 indicating the CFA register did not change but the offset
775 did. */
776 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
777 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
780 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
781 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
782 && !loc.indirect)
784 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
785 indicating the CFA register has changed to <register> but the
786 offset has not changed. */
787 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
788 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
790 #endif
792 else if (loc.indirect == 0)
794 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
795 indicating the CFA register has changed to <register> with
796 the specified offset. */
797 cfi->dw_cfi_opc = DW_CFA_def_cfa;
798 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
799 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
801 else
803 /* Construct a DW_CFA_def_cfa_expression instruction to
804 calculate the CFA using a full location expression since no
805 register-offset pair is available. */
806 struct dw_loc_descr_struct *loc_list;
808 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
809 loc_list = build_cfa_loc (&loc);
810 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
813 add_fde_cfi (label, cfi);
816 /* Add the CFI for saving a register. REG is the CFA column number.
817 LABEL is passed to add_fde_cfi.
818 If SREG is -1, the register is saved at OFFSET from the CFA;
819 otherwise it is saved in SREG. */
821 static void
822 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
824 dw_cfi_ref cfi = new_cfi ();
826 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
828 if (sreg == INVALID_REGNUM)
830 if (reg & ~0x3f)
831 /* The register number won't fit in 6 bits, so we have to use
832 the long form. */
833 cfi->dw_cfi_opc = DW_CFA_offset_extended;
834 else
835 cfi->dw_cfi_opc = DW_CFA_offset;
837 #ifdef ENABLE_CHECKING
839 /* If we get an offset that is not a multiple of
840 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
841 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
842 description. */
843 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
845 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
847 #endif
848 offset /= DWARF_CIE_DATA_ALIGNMENT;
849 if (offset < 0)
850 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
852 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
854 else if (sreg == reg)
855 cfi->dw_cfi_opc = DW_CFA_same_value;
856 else
858 cfi->dw_cfi_opc = DW_CFA_register;
859 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
862 add_fde_cfi (label, cfi);
865 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
866 This CFI tells the unwinder that it needs to restore the window registers
867 from the previous frame's window save area.
869 ??? Perhaps we should note in the CIE where windows are saved (instead of
870 assuming 0(cfa)) and what registers are in the window. */
872 void
873 dwarf2out_window_save (const char *label)
875 dw_cfi_ref cfi = new_cfi ();
877 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
878 add_fde_cfi (label, cfi);
881 /* Add a CFI to update the running total of the size of arguments
882 pushed onto the stack. */
884 void
885 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
887 dw_cfi_ref cfi;
889 if (size == old_args_size)
890 return;
892 old_args_size = size;
894 cfi = new_cfi ();
895 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
896 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
897 add_fde_cfi (label, cfi);
900 /* Entry point for saving a register to the stack. REG is the GCC register
901 number. LABEL and OFFSET are passed to reg_save. */
903 void
904 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
906 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
909 /* Entry point for saving the return address in the stack.
910 LABEL and OFFSET are passed to reg_save. */
912 void
913 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
915 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
918 /* Entry point for saving the return address in a register.
919 LABEL and SREG are passed to reg_save. */
921 void
922 dwarf2out_return_reg (const char *label, unsigned int sreg)
924 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
927 /* Record the initial position of the return address. RTL is
928 INCOMING_RETURN_ADDR_RTX. */
930 static void
931 initial_return_save (rtx rtl)
933 unsigned int reg = INVALID_REGNUM;
934 HOST_WIDE_INT offset = 0;
936 switch (GET_CODE (rtl))
938 case REG:
939 /* RA is in a register. */
940 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
941 break;
943 case MEM:
944 /* RA is on the stack. */
945 rtl = XEXP (rtl, 0);
946 switch (GET_CODE (rtl))
948 case REG:
949 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
950 offset = 0;
951 break;
953 case PLUS:
954 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
955 offset = INTVAL (XEXP (rtl, 1));
956 break;
958 case MINUS:
959 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
960 offset = -INTVAL (XEXP (rtl, 1));
961 break;
963 default:
964 gcc_unreachable ();
967 break;
969 case PLUS:
970 /* The return address is at some offset from any value we can
971 actually load. For instance, on the SPARC it is in %i7+8. Just
972 ignore the offset for now; it doesn't matter for unwinding frames. */
973 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
974 initial_return_save (XEXP (rtl, 0));
975 return;
977 default:
978 gcc_unreachable ();
981 if (reg != DWARF_FRAME_RETURN_COLUMN)
982 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
985 /* Given a SET, calculate the amount of stack adjustment it
986 contains. */
988 static HOST_WIDE_INT
989 stack_adjust_offset (rtx pattern)
991 rtx src = SET_SRC (pattern);
992 rtx dest = SET_DEST (pattern);
993 HOST_WIDE_INT offset = 0;
994 enum rtx_code code;
996 if (dest == stack_pointer_rtx)
998 /* (set (reg sp) (plus (reg sp) (const_int))) */
999 code = GET_CODE (src);
1000 if (! (code == PLUS || code == MINUS)
1001 || XEXP (src, 0) != stack_pointer_rtx
1002 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1003 return 0;
1005 offset = INTVAL (XEXP (src, 1));
1006 if (code == PLUS)
1007 offset = -offset;
1009 else if (MEM_P (dest))
1011 /* (set (mem (pre_dec (reg sp))) (foo)) */
1012 src = XEXP (dest, 0);
1013 code = GET_CODE (src);
1015 switch (code)
1017 case PRE_MODIFY:
1018 case POST_MODIFY:
1019 if (XEXP (src, 0) == stack_pointer_rtx)
1021 rtx val = XEXP (XEXP (src, 1), 1);
1022 /* We handle only adjustments by constant amount. */
1023 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1024 && GET_CODE (val) == CONST_INT);
1025 offset = -INTVAL (val);
1026 break;
1028 return 0;
1030 case PRE_DEC:
1031 case POST_DEC:
1032 if (XEXP (src, 0) == stack_pointer_rtx)
1034 offset = GET_MODE_SIZE (GET_MODE (dest));
1035 break;
1037 return 0;
1039 case PRE_INC:
1040 case POST_INC:
1041 if (XEXP (src, 0) == stack_pointer_rtx)
1043 offset = -GET_MODE_SIZE (GET_MODE (dest));
1044 break;
1046 return 0;
1048 default:
1049 return 0;
1052 else
1053 return 0;
1055 return offset;
1058 /* Check INSN to see if it looks like a push or a stack adjustment, and
1059 make a note of it if it does. EH uses this information to find out how
1060 much extra space it needs to pop off the stack. */
1062 static void
1063 dwarf2out_stack_adjust (rtx insn, bool after_p)
1065 HOST_WIDE_INT offset;
1066 const char *label;
1067 int i;
1069 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1070 with this function. Proper support would require all frame-related
1071 insns to be marked, and to be able to handle saving state around
1072 epilogues textually in the middle of the function. */
1073 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1074 return;
1076 /* If only calls can throw, and we have a frame pointer,
1077 save up adjustments until we see the CALL_INSN. */
1078 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1080 if (CALL_P (insn) && !after_p)
1082 /* Extract the size of the args from the CALL rtx itself. */
1083 insn = PATTERN (insn);
1084 if (GET_CODE (insn) == PARALLEL)
1085 insn = XVECEXP (insn, 0, 0);
1086 if (GET_CODE (insn) == SET)
1087 insn = SET_SRC (insn);
1088 gcc_assert (GET_CODE (insn) == CALL);
1089 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1091 return;
1094 if (CALL_P (insn) && !after_p)
1096 if (!flag_asynchronous_unwind_tables)
1097 dwarf2out_args_size ("", args_size);
1098 return;
1100 else if (BARRIER_P (insn))
1102 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1103 the compiler will have already emitted a stack adjustment, but
1104 doesn't bother for calls to noreturn functions. */
1105 #ifdef STACK_GROWS_DOWNWARD
1106 offset = -args_size;
1107 #else
1108 offset = args_size;
1109 #endif
1111 else if (GET_CODE (PATTERN (insn)) == SET)
1112 offset = stack_adjust_offset (PATTERN (insn));
1113 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1114 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1116 /* There may be stack adjustments inside compound insns. Search
1117 for them. */
1118 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1119 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1120 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1122 else
1123 return;
1125 if (offset == 0)
1126 return;
1128 if (cfa.reg == STACK_POINTER_REGNUM)
1129 cfa.offset += offset;
1131 #ifndef STACK_GROWS_DOWNWARD
1132 offset = -offset;
1133 #endif
1135 args_size += offset;
1136 if (args_size < 0)
1137 args_size = 0;
1139 label = dwarf2out_cfi_label ();
1140 def_cfa_1 (label, &cfa);
1141 if (flag_asynchronous_unwind_tables)
1142 dwarf2out_args_size (label, args_size);
1145 #endif
1147 /* We delay emitting a register save until either (a) we reach the end
1148 of the prologue or (b) the register is clobbered. This clusters
1149 register saves so that there are fewer pc advances. */
1151 struct queued_reg_save GTY(())
1153 struct queued_reg_save *next;
1154 rtx reg;
1155 HOST_WIDE_INT cfa_offset;
1156 rtx saved_reg;
1159 static GTY(()) struct queued_reg_save *queued_reg_saves;
1161 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1162 struct reg_saved_in_data GTY(()) {
1163 rtx orig_reg;
1164 rtx saved_in_reg;
1167 /* A list of registers saved in other registers.
1168 The list intentionally has a small maximum capacity of 4; if your
1169 port needs more than that, you might consider implementing a
1170 more efficient data structure. */
1171 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1172 static GTY(()) size_t num_regs_saved_in_regs;
1174 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1175 static const char *last_reg_save_label;
1177 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1178 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1180 static void
1181 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1183 struct queued_reg_save *q;
1185 /* Duplicates waste space, but it's also necessary to remove them
1186 for correctness, since the queue gets output in reverse
1187 order. */
1188 for (q = queued_reg_saves; q != NULL; q = q->next)
1189 if (REGNO (q->reg) == REGNO (reg))
1190 break;
1192 if (q == NULL)
1194 q = ggc_alloc (sizeof (*q));
1195 q->next = queued_reg_saves;
1196 queued_reg_saves = q;
1199 q->reg = reg;
1200 q->cfa_offset = offset;
1201 q->saved_reg = sreg;
1203 last_reg_save_label = label;
1206 /* Output all the entries in QUEUED_REG_SAVES. */
1208 static void
1209 flush_queued_reg_saves (void)
1211 struct queued_reg_save *q;
1213 for (q = queued_reg_saves; q; q = q->next)
1215 size_t i;
1216 unsigned int reg, sreg;
1218 for (i = 0; i < num_regs_saved_in_regs; i++)
1219 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1220 break;
1221 if (q->saved_reg && i == num_regs_saved_in_regs)
1223 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1224 num_regs_saved_in_regs++;
1226 if (i != num_regs_saved_in_regs)
1228 regs_saved_in_regs[i].orig_reg = q->reg;
1229 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1232 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1233 if (q->saved_reg)
1234 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1235 else
1236 sreg = INVALID_REGNUM;
1237 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1240 queued_reg_saves = NULL;
1241 last_reg_save_label = NULL;
1244 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1245 location for? Or, does it clobber a register which we've previously
1246 said that some other register is saved in, and for which we now
1247 have a new location for? */
1249 static bool
1250 clobbers_queued_reg_save (rtx insn)
1252 struct queued_reg_save *q;
1254 for (q = queued_reg_saves; q; q = q->next)
1256 size_t i;
1257 if (modified_in_p (q->reg, insn))
1258 return true;
1259 for (i = 0; i < num_regs_saved_in_regs; i++)
1260 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1261 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1262 return true;
1265 return false;
1268 /* What register, if any, is currently saved in REG? */
1270 static rtx
1271 reg_saved_in (rtx reg)
1273 unsigned int regn = REGNO (reg);
1274 size_t i;
1275 struct queued_reg_save *q;
1277 for (q = queued_reg_saves; q; q = q->next)
1278 if (q->saved_reg && regn == REGNO (q->saved_reg))
1279 return q->reg;
1281 for (i = 0; i < num_regs_saved_in_regs; i++)
1282 if (regs_saved_in_regs[i].saved_in_reg
1283 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1284 return regs_saved_in_regs[i].orig_reg;
1286 return NULL_RTX;
1290 /* A temporary register holding an integral value used in adjusting SP
1291 or setting up the store_reg. The "offset" field holds the integer
1292 value, not an offset. */
1293 static dw_cfa_location cfa_temp;
1295 /* Record call frame debugging information for an expression EXPR,
1296 which either sets SP or FP (adjusting how we calculate the frame
1297 address) or saves a register to the stack or another register.
1298 LABEL indicates the address of EXPR.
1300 This function encodes a state machine mapping rtxes to actions on
1301 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1302 users need not read the source code.
1304 The High-Level Picture
1306 Changes in the register we use to calculate the CFA: Currently we
1307 assume that if you copy the CFA register into another register, we
1308 should take the other one as the new CFA register; this seems to
1309 work pretty well. If it's wrong for some target, it's simple
1310 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1312 Changes in the register we use for saving registers to the stack:
1313 This is usually SP, but not always. Again, we deduce that if you
1314 copy SP into another register (and SP is not the CFA register),
1315 then the new register is the one we will be using for register
1316 saves. This also seems to work.
1318 Register saves: There's not much guesswork about this one; if
1319 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1320 register save, and the register used to calculate the destination
1321 had better be the one we think we're using for this purpose.
1322 It's also assumed that a copy from a call-saved register to another
1323 register is saving that register if RTX_FRAME_RELATED_P is set on
1324 that instruction. If the copy is from a call-saved register to
1325 the *same* register, that means that the register is now the same
1326 value as in the caller.
1328 Except: If the register being saved is the CFA register, and the
1329 offset is nonzero, we are saving the CFA, so we assume we have to
1330 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1331 the intent is to save the value of SP from the previous frame.
1333 In addition, if a register has previously been saved to a different
1334 register,
1336 Invariants / Summaries of Rules
1338 cfa current rule for calculating the CFA. It usually
1339 consists of a register and an offset.
1340 cfa_store register used by prologue code to save things to the stack
1341 cfa_store.offset is the offset from the value of
1342 cfa_store.reg to the actual CFA
1343 cfa_temp register holding an integral value. cfa_temp.offset
1344 stores the value, which will be used to adjust the
1345 stack pointer. cfa_temp is also used like cfa_store,
1346 to track stores to the stack via fp or a temp reg.
1348 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1349 with cfa.reg as the first operand changes the cfa.reg and its
1350 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1351 cfa_temp.offset.
1353 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1354 expression yielding a constant. This sets cfa_temp.reg
1355 and cfa_temp.offset.
1357 Rule 5: Create a new register cfa_store used to save items to the
1358 stack.
1360 Rules 10-14: Save a register to the stack. Define offset as the
1361 difference of the original location and cfa_store's
1362 location (or cfa_temp's location if cfa_temp is used).
1364 The Rules
1366 "{a,b}" indicates a choice of a xor b.
1367 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1369 Rule 1:
1370 (set <reg1> <reg2>:cfa.reg)
1371 effects: cfa.reg = <reg1>
1372 cfa.offset unchanged
1373 cfa_temp.reg = <reg1>
1374 cfa_temp.offset = cfa.offset
1376 Rule 2:
1377 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1378 {<const_int>,<reg>:cfa_temp.reg}))
1379 effects: cfa.reg = sp if fp used
1380 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1381 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1382 if cfa_store.reg==sp
1384 Rule 3:
1385 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1386 effects: cfa.reg = fp
1387 cfa_offset += +/- <const_int>
1389 Rule 4:
1390 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1391 constraints: <reg1> != fp
1392 <reg1> != sp
1393 effects: cfa.reg = <reg1>
1394 cfa_temp.reg = <reg1>
1395 cfa_temp.offset = cfa.offset
1397 Rule 5:
1398 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1399 constraints: <reg1> != fp
1400 <reg1> != sp
1401 effects: cfa_store.reg = <reg1>
1402 cfa_store.offset = cfa.offset - cfa_temp.offset
1404 Rule 6:
1405 (set <reg> <const_int>)
1406 effects: cfa_temp.reg = <reg>
1407 cfa_temp.offset = <const_int>
1409 Rule 7:
1410 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1411 effects: cfa_temp.reg = <reg1>
1412 cfa_temp.offset |= <const_int>
1414 Rule 8:
1415 (set <reg> (high <exp>))
1416 effects: none
1418 Rule 9:
1419 (set <reg> (lo_sum <exp> <const_int>))
1420 effects: cfa_temp.reg = <reg>
1421 cfa_temp.offset = <const_int>
1423 Rule 10:
1424 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1425 effects: cfa_store.offset -= <const_int>
1426 cfa.offset = cfa_store.offset if cfa.reg == sp
1427 cfa.reg = sp
1428 cfa.base_offset = -cfa_store.offset
1430 Rule 11:
1431 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1432 effects: cfa_store.offset += -/+ mode_size(mem)
1433 cfa.offset = cfa_store.offset if cfa.reg == sp
1434 cfa.reg = sp
1435 cfa.base_offset = -cfa_store.offset
1437 Rule 12:
1438 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1440 <reg2>)
1441 effects: cfa.reg = <reg1>
1442 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1444 Rule 13:
1445 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1446 effects: cfa.reg = <reg1>
1447 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1449 Rule 14:
1450 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1451 effects: cfa.reg = <reg1>
1452 cfa.base_offset = -cfa_temp.offset
1453 cfa_temp.offset -= mode_size(mem)
1455   Rule 15:
1456   (set <reg> {unspec, unspec_volatile})
1457   effects: target-dependent */
1459 static void
1460 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1462 rtx src, dest;
1463 HOST_WIDE_INT offset;
1465 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1466 the PARALLEL independently. The first element is always processed if
1467 it is a SET. This is for backward compatibility. Other elements
1468 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1469 flag is set in them. */
1470 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1472 int par_index;
1473 int limit = XVECLEN (expr, 0);
1475 for (par_index = 0; par_index < limit; par_index++)
1476 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1477 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1478 || par_index == 0))
1479 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1481 return;
1484 gcc_assert (GET_CODE (expr) == SET);
1486 src = SET_SRC (expr);
1487 dest = SET_DEST (expr);
1489 if (REG_P (src))
1491 rtx rsi = reg_saved_in (src);
1492 if (rsi)
1493 src = rsi;
1496 switch (GET_CODE (dest))
1498 case REG:
1499 switch (GET_CODE (src))
1501 /* Setting FP from SP. */
1502 case REG:
1503 if (cfa.reg == (unsigned) REGNO (src))
1505 /* Rule 1 */
1506 /* Update the CFA rule wrt SP or FP. Make sure src is
1507 relative to the current CFA register.
1509 We used to require that dest be either SP or FP, but the
1510 ARM copies SP to a temporary register, and from there to
1511 FP. So we just rely on the backends to only set
1512 RTX_FRAME_RELATED_P on appropriate insns. */
1513 cfa.reg = REGNO (dest);
1514 cfa_temp.reg = cfa.reg;
1515 cfa_temp.offset = cfa.offset;
1517 else
1519 /* Saving a register in a register. */
1520 gcc_assert (call_used_regs [REGNO (dest)]
1521 && (!fixed_regs [REGNO (dest)]
1522 /* For the SPARC and its register window. */
1523 || DWARF_FRAME_REGNUM (REGNO (src))
1524 == DWARF_FRAME_RETURN_COLUMN));
1525 queue_reg_save (label, src, dest, 0);
1527 break;
1529 case PLUS:
1530 case MINUS:
1531 case LO_SUM:
1532 if (dest == stack_pointer_rtx)
1534 /* Rule 2 */
1535 /* Adjusting SP. */
1536 switch (GET_CODE (XEXP (src, 1)))
1538 case CONST_INT:
1539 offset = INTVAL (XEXP (src, 1));
1540 break;
1541 case REG:
1542 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1543 == cfa_temp.reg);
1544 offset = cfa_temp.offset;
1545 break;
1546 default:
1547 gcc_unreachable ();
1550 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1552 /* Restoring SP from FP in the epilogue. */
1553 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1554 cfa.reg = STACK_POINTER_REGNUM;
1556 else if (GET_CODE (src) == LO_SUM)
1557 /* Assume we've set the source reg of the LO_SUM from sp. */
1559 else
1560 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1562 if (GET_CODE (src) != MINUS)
1563 offset = -offset;
1564 if (cfa.reg == STACK_POINTER_REGNUM)
1565 cfa.offset += offset;
1566 if (cfa_store.reg == STACK_POINTER_REGNUM)
1567 cfa_store.offset += offset;
1569 else if (dest == hard_frame_pointer_rtx)
1571 /* Rule 3 */
1572 /* Either setting the FP from an offset of the SP,
1573 or adjusting the FP */
1574 gcc_assert (frame_pointer_needed);
1576 gcc_assert (REG_P (XEXP (src, 0))
1577 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1578 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1579 offset = INTVAL (XEXP (src, 1));
1580 if (GET_CODE (src) != MINUS)
1581 offset = -offset;
1582 cfa.offset += offset;
1583 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1585 else
1587 gcc_assert (GET_CODE (src) != MINUS);
1589 /* Rule 4 */
1590 if (REG_P (XEXP (src, 0))
1591 && REGNO (XEXP (src, 0)) == cfa.reg
1592 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1594 /* Setting a temporary CFA register that will be copied
1595 into the FP later on. */
1596 offset = - INTVAL (XEXP (src, 1));
1597 cfa.offset += offset;
1598 cfa.reg = REGNO (dest);
1599 /* Or used to save regs to the stack. */
1600 cfa_temp.reg = cfa.reg;
1601 cfa_temp.offset = cfa.offset;
1604 /* Rule 5 */
1605 else if (REG_P (XEXP (src, 0))
1606 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1607 && XEXP (src, 1) == stack_pointer_rtx)
1609 /* Setting a scratch register that we will use instead
1610 of SP for saving registers to the stack. */
1611 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1612 cfa_store.reg = REGNO (dest);
1613 cfa_store.offset = cfa.offset - cfa_temp.offset;
1616 /* Rule 9 */
1617 else if (GET_CODE (src) == LO_SUM
1618 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1620 cfa_temp.reg = REGNO (dest);
1621 cfa_temp.offset = INTVAL (XEXP (src, 1));
1623 else
1624 gcc_unreachable ();
1626 break;
1628 /* Rule 6 */
1629 case CONST_INT:
1630 cfa_temp.reg = REGNO (dest);
1631 cfa_temp.offset = INTVAL (src);
1632 break;
1634 /* Rule 7 */
1635 case IOR:
1636 gcc_assert (REG_P (XEXP (src, 0))
1637 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1638 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1640 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1641 cfa_temp.reg = REGNO (dest);
1642 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1643 break;
1645 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1646 which will fill in all of the bits. */
1647 /* Rule 8 */
1648 case HIGH:
1649 break;
1651 /* Rule 15 */
1652 case UNSPEC:
1653 case UNSPEC_VOLATILE:
1654 gcc_assert (targetm.dwarf_handle_frame_unspec);
1655 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1656 break;
1658 default:
1659 gcc_unreachable ();
1662 def_cfa_1 (label, &cfa);
1663 break;
1665 case MEM:
1666 gcc_assert (REG_P (src));
1668 /* Saving a register to the stack. Make sure dest is relative to the
1669 CFA register. */
1670 switch (GET_CODE (XEXP (dest, 0)))
1672 /* Rule 10 */
1673 /* With a push. */
1674 case PRE_MODIFY:
1675 /* We can't handle variable size modifications. */
1676 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1677 == CONST_INT);
1678 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1680 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1681 && cfa_store.reg == STACK_POINTER_REGNUM);
1683 cfa_store.offset += offset;
1684 if (cfa.reg == STACK_POINTER_REGNUM)
1685 cfa.offset = cfa_store.offset;
1687 offset = -cfa_store.offset;
1688 break;
1690 /* Rule 11 */
1691 case PRE_INC:
1692 case PRE_DEC:
1693 offset = GET_MODE_SIZE (GET_MODE (dest));
1694 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1695 offset = -offset;
1697 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1698 && cfa_store.reg == STACK_POINTER_REGNUM);
1700 cfa_store.offset += offset;
1701 if (cfa.reg == STACK_POINTER_REGNUM)
1702 cfa.offset = cfa_store.offset;
1704 offset = -cfa_store.offset;
1705 break;
1707 /* Rule 12 */
1708 /* With an offset. */
1709 case PLUS:
1710 case MINUS:
1711 case LO_SUM:
1713 int regno;
1715 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1716 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1717 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1718 offset = -offset;
1720 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1722 if (cfa_store.reg == (unsigned) regno)
1723 offset -= cfa_store.offset;
1724 else
1726 gcc_assert (cfa_temp.reg == (unsigned) regno);
1727 offset -= cfa_temp.offset;
1730 break;
1732 /* Rule 13 */
1733 /* Without an offset. */
1734 case REG:
1736 int regno = REGNO (XEXP (dest, 0));
1738 if (cfa_store.reg == (unsigned) regno)
1739 offset = -cfa_store.offset;
1740 else
1742 gcc_assert (cfa_temp.reg == (unsigned) regno);
1743 offset = -cfa_temp.offset;
1746 break;
1748 /* Rule 14 */
1749 case POST_INC:
1750 gcc_assert (cfa_temp.reg
1751 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1752 offset = -cfa_temp.offset;
1753 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1754 break;
1756 default:
1757 gcc_unreachable ();
1760 if (REGNO (src) != STACK_POINTER_REGNUM
1761 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1762 && (unsigned) REGNO (src) == cfa.reg)
1764 /* We're storing the current CFA reg into the stack. */
1766 if (cfa.offset == 0)
1768 /* If the source register is exactly the CFA, assume
1769 we're saving SP like any other register; this happens
1770 on the ARM. */
1771 def_cfa_1 (label, &cfa);
1772 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1773 break;
1775 else
1777 /* Otherwise, we'll need to look in the stack to
1778 calculate the CFA. */
1779 rtx x = XEXP (dest, 0);
1781 if (!REG_P (x))
1782 x = XEXP (x, 0);
1783 gcc_assert (REG_P (x));
1785 cfa.reg = REGNO (x);
1786 cfa.base_offset = offset;
1787 cfa.indirect = 1;
1788 def_cfa_1 (label, &cfa);
1789 break;
1793 def_cfa_1 (label, &cfa);
1794 queue_reg_save (label, src, NULL_RTX, offset);
1795 break;
1797 default:
1798 gcc_unreachable ();
1802 /* Record call frame debugging information for INSN, which either
1803 sets SP or FP (adjusting how we calculate the frame address) or saves a
1804 register to the stack. If INSN is NULL_RTX, initialize our state.
1806 If AFTER_P is false, we're being called before the insn is emitted,
1807 otherwise after. Call instructions get invoked twice. */
1809 void
1810 dwarf2out_frame_debug (rtx insn, bool after_p)
1812 const char *label;
1813 rtx src;
1815 if (insn == NULL_RTX)
1817 size_t i;
1819 /* Flush any queued register saves. */
1820 flush_queued_reg_saves ();
1822 /* Set up state for generating call frame debug info. */
1823 lookup_cfa (&cfa);
1824 gcc_assert (cfa.reg
1825 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1827 cfa.reg = STACK_POINTER_REGNUM;
1828 cfa_store = cfa;
1829 cfa_temp.reg = -1;
1830 cfa_temp.offset = 0;
1832 for (i = 0; i < num_regs_saved_in_regs; i++)
1834 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1835 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1837 num_regs_saved_in_regs = 0;
1838 return;
1841 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1842 flush_queued_reg_saves ();
1844 if (! RTX_FRAME_RELATED_P (insn))
1846 if (!ACCUMULATE_OUTGOING_ARGS)
1847 dwarf2out_stack_adjust (insn, after_p);
1848 return;
1851 label = dwarf2out_cfi_label ();
1852 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1853 if (src)
1854 insn = XEXP (src, 0);
1855 else
1856 insn = PATTERN (insn);
1858 dwarf2out_frame_debug_expr (insn, label);
1861 #endif
1863 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1864 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1865 (enum dwarf_call_frame_info cfi);
1867 static enum dw_cfi_oprnd_type
1868 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1870 switch (cfi)
1872 case DW_CFA_nop:
1873 case DW_CFA_GNU_window_save:
1874 return dw_cfi_oprnd_unused;
1876 case DW_CFA_set_loc:
1877 case DW_CFA_advance_loc1:
1878 case DW_CFA_advance_loc2:
1879 case DW_CFA_advance_loc4:
1880 case DW_CFA_MIPS_advance_loc8:
1881 return dw_cfi_oprnd_addr;
1883 case DW_CFA_offset:
1884 case DW_CFA_offset_extended:
1885 case DW_CFA_def_cfa:
1886 case DW_CFA_offset_extended_sf:
1887 case DW_CFA_def_cfa_sf:
1888 case DW_CFA_restore_extended:
1889 case DW_CFA_undefined:
1890 case DW_CFA_same_value:
1891 case DW_CFA_def_cfa_register:
1892 case DW_CFA_register:
1893 return dw_cfi_oprnd_reg_num;
1895 case DW_CFA_def_cfa_offset:
1896 case DW_CFA_GNU_args_size:
1897 case DW_CFA_def_cfa_offset_sf:
1898 return dw_cfi_oprnd_offset;
1900 case DW_CFA_def_cfa_expression:
1901 case DW_CFA_expression:
1902 return dw_cfi_oprnd_loc;
1904 default:
1905 gcc_unreachable ();
1909 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1910 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1911 (enum dwarf_call_frame_info cfi);
1913 static enum dw_cfi_oprnd_type
1914 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1916 switch (cfi)
1918 case DW_CFA_def_cfa:
1919 case DW_CFA_def_cfa_sf:
1920 case DW_CFA_offset:
1921 case DW_CFA_offset_extended_sf:
1922 case DW_CFA_offset_extended:
1923 return dw_cfi_oprnd_offset;
1925 case DW_CFA_register:
1926 return dw_cfi_oprnd_reg_num;
1928 default:
1929 return dw_cfi_oprnd_unused;
1933 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1935 /* Map register numbers held in the call frame info that gcc has
1936 collected using DWARF_FRAME_REGNUM to those that should be output in
1937 .debug_frame and .eh_frame. */
1938 #ifndef DWARF2_FRAME_REG_OUT
1939 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1940 #endif
1942 /* Output a Call Frame Information opcode and its operand(s). */
1944 static void
1945 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1947 unsigned long r;
1948 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1949 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1950 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1951 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1952 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1953 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1955 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1956 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1957 "DW_CFA_offset, column 0x%lx", r);
1958 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1960 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1962 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1963 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1964 "DW_CFA_restore, column 0x%lx", r);
1966 else
1968 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1969 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1971 switch (cfi->dw_cfi_opc)
1973 case DW_CFA_set_loc:
1974 if (for_eh)
1975 dw2_asm_output_encoded_addr_rtx (
1976 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1977 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1978 NULL);
1979 else
1980 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1981 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1982 break;
1984 case DW_CFA_advance_loc1:
1985 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1986 fde->dw_fde_current_label, NULL);
1987 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1988 break;
1990 case DW_CFA_advance_loc2:
1991 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1992 fde->dw_fde_current_label, NULL);
1993 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1994 break;
1996 case DW_CFA_advance_loc4:
1997 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1998 fde->dw_fde_current_label, NULL);
1999 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2000 break;
2002 case DW_CFA_MIPS_advance_loc8:
2003 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2004 fde->dw_fde_current_label, NULL);
2005 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2006 break;
2008 case DW_CFA_offset_extended:
2009 case DW_CFA_def_cfa:
2010 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2011 dw2_asm_output_data_uleb128 (r, NULL);
2012 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2013 break;
2015 case DW_CFA_offset_extended_sf:
2016 case DW_CFA_def_cfa_sf:
2017 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2018 dw2_asm_output_data_uleb128 (r, NULL);
2019 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2020 break;
2022 case DW_CFA_restore_extended:
2023 case DW_CFA_undefined:
2024 case DW_CFA_same_value:
2025 case DW_CFA_def_cfa_register:
2026 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2027 dw2_asm_output_data_uleb128 (r, NULL);
2028 break;
2030 case DW_CFA_register:
2031 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2032 dw2_asm_output_data_uleb128 (r, NULL);
2033 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2034 dw2_asm_output_data_uleb128 (r, NULL);
2035 break;
2037 case DW_CFA_def_cfa_offset:
2038 case DW_CFA_GNU_args_size:
2039 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2040 break;
2042 case DW_CFA_def_cfa_offset_sf:
2043 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2044 break;
2046 case DW_CFA_GNU_window_save:
2047 break;
2049 case DW_CFA_def_cfa_expression:
2050 case DW_CFA_expression:
2051 output_cfa_loc (cfi);
2052 break;
2054 case DW_CFA_GNU_negative_offset_extended:
2055 /* Obsoleted by DW_CFA_offset_extended_sf. */
2056 gcc_unreachable ();
2058 default:
2059 break;
2064 /* Output the call frame information used to record information
2065 that relates to calculating the frame pointer, and records the
2066 location of saved registers. */
2068 static void
2069 output_call_frame_info (int for_eh)
2071 unsigned int i;
2072 dw_fde_ref fde;
2073 dw_cfi_ref cfi;
2074 char l1[20], l2[20], section_start_label[20];
2075 bool any_lsda_needed = false;
2076 char augmentation[6];
2077 int augmentation_size;
2078 int fde_encoding = DW_EH_PE_absptr;
2079 int per_encoding = DW_EH_PE_absptr;
2080 int lsda_encoding = DW_EH_PE_absptr;
2081 int return_reg;
2083 /* Don't emit a CIE if there won't be any FDEs. */
2084 if (fde_table_in_use == 0)
2085 return;
2087 /* If we make FDEs linkonce, we may have to emit an empty label for
2088 an FDE that wouldn't otherwise be emitted. We want to avoid
2089 having an FDE kept around when the function it refers to is
2090 discarded. Example where this matters: a primary function
2091 template in C++ requires EH information, but an explicit
2092 specialization doesn't. */
2093 if (TARGET_USES_WEAK_UNWIND_INFO
2094 && ! flag_asynchronous_unwind_tables
2095 && for_eh)
2096 for (i = 0; i < fde_table_in_use; i++)
2097 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2098 && !fde_table[i].uses_eh_lsda
2099 && ! DECL_WEAK (fde_table[i].decl))
2100 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2101 for_eh, /* empty */ 1);
2103 /* If we don't have any functions we'll want to unwind out of, don't
2104 emit any EH unwind information. Note that if exceptions aren't
2105 enabled, we won't have collected nothrow information, and if we
2106 asked for asynchronous tables, we always want this info. */
2107 if (for_eh)
2109 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2111 for (i = 0; i < fde_table_in_use; i++)
2112 if (fde_table[i].uses_eh_lsda)
2113 any_eh_needed = any_lsda_needed = true;
2114 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2115 any_eh_needed = true;
2116 else if (! fde_table[i].nothrow
2117 && ! fde_table[i].all_throwers_are_sibcalls)
2118 any_eh_needed = true;
2120 if (! any_eh_needed)
2121 return;
2124 /* We're going to be generating comments, so turn on app. */
2125 if (flag_debug_asm)
2126 app_enable ();
2128 if (for_eh)
2129 targetm.asm_out.eh_frame_section ();
2130 else
2131 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2133 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2134 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2136 /* Output the CIE. */
2137 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2138 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2139 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2140 "Length of Common Information Entry");
2141 ASM_OUTPUT_LABEL (asm_out_file, l1);
2143 /* Now that the CIE pointer is PC-relative for EH,
2144 use 0 to identify the CIE. */
2145 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2146 (for_eh ? 0 : DW_CIE_ID),
2147 "CIE Identifier Tag");
2149 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2151 augmentation[0] = 0;
2152 augmentation_size = 0;
2153 if (for_eh)
2155 char *p;
2157 /* Augmentation:
2158 z Indicates that a uleb128 is present to size the
2159 augmentation section.
2160 L Indicates the encoding (and thus presence) of
2161 an LSDA pointer in the FDE augmentation.
2162 R Indicates a non-default pointer encoding for
2163 FDE code pointers.
2164 P Indicates the presence of an encoding + language
2165 personality routine in the CIE augmentation. */
2167 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2168 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2169 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2171 p = augmentation + 1;
2172 if (eh_personality_libfunc)
2174 *p++ = 'P';
2175 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2177 if (any_lsda_needed)
2179 *p++ = 'L';
2180 augmentation_size += 1;
2182 if (fde_encoding != DW_EH_PE_absptr)
2184 *p++ = 'R';
2185 augmentation_size += 1;
2187 if (p > augmentation + 1)
2189 augmentation[0] = 'z';
2190 *p = '\0';
2193 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2194 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2196 int offset = ( 4 /* Length */
2197 + 4 /* CIE Id */
2198 + 1 /* CIE version */
2199 + strlen (augmentation) + 1 /* Augmentation */
2200 + size_of_uleb128 (1) /* Code alignment */
2201 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2202 + 1 /* RA column */
2203 + 1 /* Augmentation size */
2204 + 1 /* Personality encoding */ );
2205 int pad = -offset & (PTR_SIZE - 1);
2207 augmentation_size += pad;
2209 /* Augmentations should be small, so there's scarce need to
2210 iterate for a solution. Die if we exceed one uleb128 byte. */
2211 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2215 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2216 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2217 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2218 "CIE Data Alignment Factor");
2220 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2221 if (DW_CIE_VERSION == 1)
2222 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2223 else
2224 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2226 if (augmentation[0])
2228 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2229 if (eh_personality_libfunc)
2231 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2232 eh_data_format_name (per_encoding));
2233 dw2_asm_output_encoded_addr_rtx (per_encoding,
2234 eh_personality_libfunc, NULL);
2237 if (any_lsda_needed)
2238 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2239 eh_data_format_name (lsda_encoding));
2241 if (fde_encoding != DW_EH_PE_absptr)
2242 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2243 eh_data_format_name (fde_encoding));
2246 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2247 output_cfi (cfi, NULL, for_eh);
2249 /* Pad the CIE out to an address sized boundary. */
2250 ASM_OUTPUT_ALIGN (asm_out_file,
2251 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2252 ASM_OUTPUT_LABEL (asm_out_file, l2);
2254 /* Loop through all of the FDE's. */
2255 for (i = 0; i < fde_table_in_use; i++)
2257 fde = &fde_table[i];
2259 /* Don't emit EH unwind info for leaf functions that don't need it. */
2260 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2261 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2262 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2263 && !fde->uses_eh_lsda)
2264 continue;
2266 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2267 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2268 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2269 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2270 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2271 "FDE Length");
2272 ASM_OUTPUT_LABEL (asm_out_file, l1);
2274 if (for_eh)
2275 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2276 else
2277 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2278 "FDE CIE offset");
2280 if (for_eh)
2282 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2283 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2284 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2285 sym_ref,
2286 "FDE initial location");
2287 if (fde->dw_fde_switched_sections)
2289 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2290 fde->dw_fde_unlikely_section_label);
2291 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2292 fde->dw_fde_hot_section_label);
2293 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2294 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2295 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3,
2296 "FDE initial location");
2297 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2298 fde->dw_fde_hot_section_end_label,
2299 fde->dw_fde_hot_section_label,
2300 "FDE address range");
2301 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2,
2302 "FDE initial location");
2303 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2304 fde->dw_fde_unlikely_section_end_label,
2305 fde->dw_fde_unlikely_section_label,
2306 "FDE address range");
2308 else
2309 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2310 fde->dw_fde_end, fde->dw_fde_begin,
2311 "FDE address range");
2313 else
2315 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2316 "FDE initial location");
2317 if (fde->dw_fde_switched_sections)
2319 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2320 fde->dw_fde_hot_section_label,
2321 "FDE initial location");
2322 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2323 fde->dw_fde_hot_section_end_label,
2324 fde->dw_fde_hot_section_label,
2325 "FDE address range");
2326 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2327 fde->dw_fde_unlikely_section_label,
2328 "FDE initial location");
2329 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2330 fde->dw_fde_unlikely_section_end_label,
2331 fde->dw_fde_unlikely_section_label,
2332 "FDE address range");
2334 else
2335 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2336 fde->dw_fde_end, fde->dw_fde_begin,
2337 "FDE address range");
2340 if (augmentation[0])
2342 if (any_lsda_needed)
2344 int size = size_of_encoded_value (lsda_encoding);
2346 if (lsda_encoding == DW_EH_PE_aligned)
2348 int offset = ( 4 /* Length */
2349 + 4 /* CIE offset */
2350 + 2 * size_of_encoded_value (fde_encoding)
2351 + 1 /* Augmentation size */ );
2352 int pad = -offset & (PTR_SIZE - 1);
2354 size += pad;
2355 gcc_assert (size_of_uleb128 (size) == 1);
2358 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2360 if (fde->uses_eh_lsda)
2362 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2363 fde->funcdef_number);
2364 dw2_asm_output_encoded_addr_rtx (
2365 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2366 "Language Specific Data Area");
2368 else
2370 if (lsda_encoding == DW_EH_PE_aligned)
2371 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2372 dw2_asm_output_data
2373 (size_of_encoded_value (lsda_encoding), 0,
2374 "Language Specific Data Area (none)");
2377 else
2378 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2381 /* Loop through the Call Frame Instructions associated with
2382 this FDE. */
2383 fde->dw_fde_current_label = fde->dw_fde_begin;
2384 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2385 output_cfi (cfi, fde, for_eh);
2387 /* Pad the FDE out to an address sized boundary. */
2388 ASM_OUTPUT_ALIGN (asm_out_file,
2389 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2390 ASM_OUTPUT_LABEL (asm_out_file, l2);
2393 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2394 dw2_asm_output_data (4, 0, "End of Table");
2395 #ifdef MIPS_DEBUGGING_INFO
2396 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2397 get a value of 0. Putting .align 0 after the label fixes it. */
2398 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2399 #endif
2401 /* Turn off app to make assembly quicker. */
2402 if (flag_debug_asm)
2403 app_disable ();
2406 /* Output a marker (i.e. a label) for the beginning of a function, before
2407 the prologue. */
2409 void
2410 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2411 const char *file ATTRIBUTE_UNUSED)
2413 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2414 char * dup_label;
2415 dw_fde_ref fde;
2417 current_function_func_begin_label = NULL;
2419 #ifdef TARGET_UNWIND_INFO
2420 /* ??? current_function_func_begin_label is also used by except.c
2421 for call-site information. We must emit this label if it might
2422 be used. */
2423 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2424 && ! dwarf2out_do_frame ())
2425 return;
2426 #else
2427 if (! dwarf2out_do_frame ())
2428 return;
2429 #endif
2431 function_section (current_function_decl);
2432 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2433 current_function_funcdef_no);
2434 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2435 current_function_funcdef_no);
2436 dup_label = xstrdup (label);
2437 current_function_func_begin_label = dup_label;
2439 #ifdef TARGET_UNWIND_INFO
2440 /* We can elide the fde allocation if we're not emitting debug info. */
2441 if (! dwarf2out_do_frame ())
2442 return;
2443 #endif
2445 /* Expand the fde table if necessary. */
2446 if (fde_table_in_use == fde_table_allocated)
2448 fde_table_allocated += FDE_TABLE_INCREMENT;
2449 fde_table = ggc_realloc (fde_table,
2450 fde_table_allocated * sizeof (dw_fde_node));
2451 memset (fde_table + fde_table_in_use, 0,
2452 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2455 /* Record the FDE associated with this function. */
2456 current_funcdef_fde = fde_table_in_use;
2458 /* Add the new FDE at the end of the fde_table. */
2459 fde = &fde_table[fde_table_in_use++];
2460 fde->decl = current_function_decl;
2461 fde->dw_fde_begin = dup_label;
2462 fde->dw_fde_current_label = NULL;
2463 fde->dw_fde_hot_section_label = NULL;
2464 fde->dw_fde_hot_section_end_label = NULL;
2465 fde->dw_fde_unlikely_section_label = NULL;
2466 fde->dw_fde_unlikely_section_end_label = NULL;
2467 fde->dw_fde_switched_sections = false;
2468 fde->dw_fde_end = NULL;
2469 fde->dw_fde_cfi = NULL;
2470 fde->funcdef_number = current_function_funcdef_no;
2471 fde->nothrow = TREE_NOTHROW (current_function_decl);
2472 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2473 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2475 args_size = old_args_size = 0;
2477 /* We only want to output line number information for the genuine dwarf2
2478 prologue case, not the eh frame case. */
2479 #ifdef DWARF2_DEBUGGING_INFO
2480 if (file)
2481 dwarf2out_source_line (line, file);
2482 #endif
2485 /* Output a marker (i.e. a label) for the absolute end of the generated code
2486 for a function definition. This gets called *after* the epilogue code has
2487 been generated. */
2489 void
2490 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2491 const char *file ATTRIBUTE_UNUSED)
2493 dw_fde_ref fde;
2494 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2496 /* Output a label to mark the endpoint of the code generated for this
2497 function. */
2498 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2499 current_function_funcdef_no);
2500 ASM_OUTPUT_LABEL (asm_out_file, label);
2501 fde = &fde_table[fde_table_in_use - 1];
2502 fde->dw_fde_end = xstrdup (label);
2505 void
2506 dwarf2out_frame_init (void)
2508 /* Allocate the initial hunk of the fde_table. */
2509 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2510 fde_table_allocated = FDE_TABLE_INCREMENT;
2511 fde_table_in_use = 0;
2513 /* Generate the CFA instructions common to all FDE's. Do it now for the
2514 sake of lookup_cfa. */
2516 #ifdef DWARF2_UNWIND_INFO
2517 /* On entry, the Canonical Frame Address is at SP. */
2518 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2519 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2520 #endif
2523 void
2524 dwarf2out_frame_finish (void)
2526 /* Output call frame information. */
2527 if (write_symbols == DWARF2_DEBUG
2528 || write_symbols == VMS_AND_DWARF2_DEBUG
2529 #ifdef DWARF2_FRAME_INFO
2530 || DWARF2_FRAME_INFO
2531 #endif
2533 output_call_frame_info (0);
2535 #ifndef TARGET_UNWIND_INFO
2536 /* Output another copy for the unwinder. */
2537 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2538 output_call_frame_info (1);
2539 #endif
2541 #endif
2543 /* And now, the subset of the debugging information support code necessary
2544 for emitting location expressions. */
2546 /* We need some way to distinguish DW_OP_addr with a direct symbol
2547 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2548 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2551 typedef struct dw_val_struct *dw_val_ref;
2552 typedef struct die_struct *dw_die_ref;
2553 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2554 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2556 /* Each DIE may have a series of attribute/value pairs. Values
2557 can take on several forms. The forms that are used in this
2558 implementation are listed below. */
2560 enum dw_val_class
2562 dw_val_class_addr,
2563 dw_val_class_offset,
2564 dw_val_class_loc,
2565 dw_val_class_loc_list,
2566 dw_val_class_range_list,
2567 dw_val_class_const,
2568 dw_val_class_unsigned_const,
2569 dw_val_class_long_long,
2570 dw_val_class_vec,
2571 dw_val_class_flag,
2572 dw_val_class_die_ref,
2573 dw_val_class_fde_ref,
2574 dw_val_class_lbl_id,
2575 dw_val_class_lbl_offset,
2576 dw_val_class_str
2579 /* Describe a double word constant value. */
2580 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2582 typedef struct dw_long_long_struct GTY(())
2584 unsigned long hi;
2585 unsigned long low;
2587 dw_long_long_const;
2589 /* Describe a floating point constant value, or a vector constant value. */
2591 typedef struct dw_vec_struct GTY(())
2593 unsigned char * GTY((length ("%h.length"))) array;
2594 unsigned length;
2595 unsigned elt_size;
2597 dw_vec_const;
2599 /* The dw_val_node describes an attribute's value, as it is
2600 represented internally. */
2602 typedef struct dw_val_struct GTY(())
2604 enum dw_val_class val_class;
2605 union dw_val_struct_union
2607 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2608 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2609 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2610 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2611 HOST_WIDE_INT GTY ((default)) val_int;
2612 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2613 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2614 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2615 struct dw_val_die_union
2617 dw_die_ref die;
2618 int external;
2619 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2620 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2621 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2622 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2623 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2625 GTY ((desc ("%1.val_class"))) v;
2627 dw_val_node;
2629 /* Locations in memory are described using a sequence of stack machine
2630 operations. */
2632 typedef struct dw_loc_descr_struct GTY(())
2634 dw_loc_descr_ref dw_loc_next;
2635 enum dwarf_location_atom dw_loc_opc;
2636 dw_val_node dw_loc_oprnd1;
2637 dw_val_node dw_loc_oprnd2;
2638 int dw_loc_addr;
2640 dw_loc_descr_node;
2642 /* Location lists are ranges + location descriptions for that range,
2643 so you can track variables that are in different places over
2644 their entire life. */
2645 typedef struct dw_loc_list_struct GTY(())
2647 dw_loc_list_ref dw_loc_next;
2648 const char *begin; /* Label for begin address of range */
2649 const char *end; /* Label for end address of range */
2650 char *ll_symbol; /* Label for beginning of location list.
2651 Only on head of list */
2652 const char *section; /* Section this loclist is relative to */
2653 dw_loc_descr_ref expr;
2654 } dw_loc_list_node;
2656 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2658 static const char *dwarf_stack_op_name (unsigned);
2659 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2660 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2661 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2662 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2663 static unsigned long size_of_locs (dw_loc_descr_ref);
2664 static void output_loc_operands (dw_loc_descr_ref);
2665 static void output_loc_sequence (dw_loc_descr_ref);
2667 /* Convert a DWARF stack opcode into its string name. */
2669 static const char *
2670 dwarf_stack_op_name (unsigned int op)
2672 switch (op)
2674 case DW_OP_addr:
2675 case INTERNAL_DW_OP_tls_addr:
2676 return "DW_OP_addr";
2677 case DW_OP_deref:
2678 return "DW_OP_deref";
2679 case DW_OP_const1u:
2680 return "DW_OP_const1u";
2681 case DW_OP_const1s:
2682 return "DW_OP_const1s";
2683 case DW_OP_const2u:
2684 return "DW_OP_const2u";
2685 case DW_OP_const2s:
2686 return "DW_OP_const2s";
2687 case DW_OP_const4u:
2688 return "DW_OP_const4u";
2689 case DW_OP_const4s:
2690 return "DW_OP_const4s";
2691 case DW_OP_const8u:
2692 return "DW_OP_const8u";
2693 case DW_OP_const8s:
2694 return "DW_OP_const8s";
2695 case DW_OP_constu:
2696 return "DW_OP_constu";
2697 case DW_OP_consts:
2698 return "DW_OP_consts";
2699 case DW_OP_dup:
2700 return "DW_OP_dup";
2701 case DW_OP_drop:
2702 return "DW_OP_drop";
2703 case DW_OP_over:
2704 return "DW_OP_over";
2705 case DW_OP_pick:
2706 return "DW_OP_pick";
2707 case DW_OP_swap:
2708 return "DW_OP_swap";
2709 case DW_OP_rot:
2710 return "DW_OP_rot";
2711 case DW_OP_xderef:
2712 return "DW_OP_xderef";
2713 case DW_OP_abs:
2714 return "DW_OP_abs";
2715 case DW_OP_and:
2716 return "DW_OP_and";
2717 case DW_OP_div:
2718 return "DW_OP_div";
2719 case DW_OP_minus:
2720 return "DW_OP_minus";
2721 case DW_OP_mod:
2722 return "DW_OP_mod";
2723 case DW_OP_mul:
2724 return "DW_OP_mul";
2725 case DW_OP_neg:
2726 return "DW_OP_neg";
2727 case DW_OP_not:
2728 return "DW_OP_not";
2729 case DW_OP_or:
2730 return "DW_OP_or";
2731 case DW_OP_plus:
2732 return "DW_OP_plus";
2733 case DW_OP_plus_uconst:
2734 return "DW_OP_plus_uconst";
2735 case DW_OP_shl:
2736 return "DW_OP_shl";
2737 case DW_OP_shr:
2738 return "DW_OP_shr";
2739 case DW_OP_shra:
2740 return "DW_OP_shra";
2741 case DW_OP_xor:
2742 return "DW_OP_xor";
2743 case DW_OP_bra:
2744 return "DW_OP_bra";
2745 case DW_OP_eq:
2746 return "DW_OP_eq";
2747 case DW_OP_ge:
2748 return "DW_OP_ge";
2749 case DW_OP_gt:
2750 return "DW_OP_gt";
2751 case DW_OP_le:
2752 return "DW_OP_le";
2753 case DW_OP_lt:
2754 return "DW_OP_lt";
2755 case DW_OP_ne:
2756 return "DW_OP_ne";
2757 case DW_OP_skip:
2758 return "DW_OP_skip";
2759 case DW_OP_lit0:
2760 return "DW_OP_lit0";
2761 case DW_OP_lit1:
2762 return "DW_OP_lit1";
2763 case DW_OP_lit2:
2764 return "DW_OP_lit2";
2765 case DW_OP_lit3:
2766 return "DW_OP_lit3";
2767 case DW_OP_lit4:
2768 return "DW_OP_lit4";
2769 case DW_OP_lit5:
2770 return "DW_OP_lit5";
2771 case DW_OP_lit6:
2772 return "DW_OP_lit6";
2773 case DW_OP_lit7:
2774 return "DW_OP_lit7";
2775 case DW_OP_lit8:
2776 return "DW_OP_lit8";
2777 case DW_OP_lit9:
2778 return "DW_OP_lit9";
2779 case DW_OP_lit10:
2780 return "DW_OP_lit10";
2781 case DW_OP_lit11:
2782 return "DW_OP_lit11";
2783 case DW_OP_lit12:
2784 return "DW_OP_lit12";
2785 case DW_OP_lit13:
2786 return "DW_OP_lit13";
2787 case DW_OP_lit14:
2788 return "DW_OP_lit14";
2789 case DW_OP_lit15:
2790 return "DW_OP_lit15";
2791 case DW_OP_lit16:
2792 return "DW_OP_lit16";
2793 case DW_OP_lit17:
2794 return "DW_OP_lit17";
2795 case DW_OP_lit18:
2796 return "DW_OP_lit18";
2797 case DW_OP_lit19:
2798 return "DW_OP_lit19";
2799 case DW_OP_lit20:
2800 return "DW_OP_lit20";
2801 case DW_OP_lit21:
2802 return "DW_OP_lit21";
2803 case DW_OP_lit22:
2804 return "DW_OP_lit22";
2805 case DW_OP_lit23:
2806 return "DW_OP_lit23";
2807 case DW_OP_lit24:
2808 return "DW_OP_lit24";
2809 case DW_OP_lit25:
2810 return "DW_OP_lit25";
2811 case DW_OP_lit26:
2812 return "DW_OP_lit26";
2813 case DW_OP_lit27:
2814 return "DW_OP_lit27";
2815 case DW_OP_lit28:
2816 return "DW_OP_lit28";
2817 case DW_OP_lit29:
2818 return "DW_OP_lit29";
2819 case DW_OP_lit30:
2820 return "DW_OP_lit30";
2821 case DW_OP_lit31:
2822 return "DW_OP_lit31";
2823 case DW_OP_reg0:
2824 return "DW_OP_reg0";
2825 case DW_OP_reg1:
2826 return "DW_OP_reg1";
2827 case DW_OP_reg2:
2828 return "DW_OP_reg2";
2829 case DW_OP_reg3:
2830 return "DW_OP_reg3";
2831 case DW_OP_reg4:
2832 return "DW_OP_reg4";
2833 case DW_OP_reg5:
2834 return "DW_OP_reg5";
2835 case DW_OP_reg6:
2836 return "DW_OP_reg6";
2837 case DW_OP_reg7:
2838 return "DW_OP_reg7";
2839 case DW_OP_reg8:
2840 return "DW_OP_reg8";
2841 case DW_OP_reg9:
2842 return "DW_OP_reg9";
2843 case DW_OP_reg10:
2844 return "DW_OP_reg10";
2845 case DW_OP_reg11:
2846 return "DW_OP_reg11";
2847 case DW_OP_reg12:
2848 return "DW_OP_reg12";
2849 case DW_OP_reg13:
2850 return "DW_OP_reg13";
2851 case DW_OP_reg14:
2852 return "DW_OP_reg14";
2853 case DW_OP_reg15:
2854 return "DW_OP_reg15";
2855 case DW_OP_reg16:
2856 return "DW_OP_reg16";
2857 case DW_OP_reg17:
2858 return "DW_OP_reg17";
2859 case DW_OP_reg18:
2860 return "DW_OP_reg18";
2861 case DW_OP_reg19:
2862 return "DW_OP_reg19";
2863 case DW_OP_reg20:
2864 return "DW_OP_reg20";
2865 case DW_OP_reg21:
2866 return "DW_OP_reg21";
2867 case DW_OP_reg22:
2868 return "DW_OP_reg22";
2869 case DW_OP_reg23:
2870 return "DW_OP_reg23";
2871 case DW_OP_reg24:
2872 return "DW_OP_reg24";
2873 case DW_OP_reg25:
2874 return "DW_OP_reg25";
2875 case DW_OP_reg26:
2876 return "DW_OP_reg26";
2877 case DW_OP_reg27:
2878 return "DW_OP_reg27";
2879 case DW_OP_reg28:
2880 return "DW_OP_reg28";
2881 case DW_OP_reg29:
2882 return "DW_OP_reg29";
2883 case DW_OP_reg30:
2884 return "DW_OP_reg30";
2885 case DW_OP_reg31:
2886 return "DW_OP_reg31";
2887 case DW_OP_breg0:
2888 return "DW_OP_breg0";
2889 case DW_OP_breg1:
2890 return "DW_OP_breg1";
2891 case DW_OP_breg2:
2892 return "DW_OP_breg2";
2893 case DW_OP_breg3:
2894 return "DW_OP_breg3";
2895 case DW_OP_breg4:
2896 return "DW_OP_breg4";
2897 case DW_OP_breg5:
2898 return "DW_OP_breg5";
2899 case DW_OP_breg6:
2900 return "DW_OP_breg6";
2901 case DW_OP_breg7:
2902 return "DW_OP_breg7";
2903 case DW_OP_breg8:
2904 return "DW_OP_breg8";
2905 case DW_OP_breg9:
2906 return "DW_OP_breg9";
2907 case DW_OP_breg10:
2908 return "DW_OP_breg10";
2909 case DW_OP_breg11:
2910 return "DW_OP_breg11";
2911 case DW_OP_breg12:
2912 return "DW_OP_breg12";
2913 case DW_OP_breg13:
2914 return "DW_OP_breg13";
2915 case DW_OP_breg14:
2916 return "DW_OP_breg14";
2917 case DW_OP_breg15:
2918 return "DW_OP_breg15";
2919 case DW_OP_breg16:
2920 return "DW_OP_breg16";
2921 case DW_OP_breg17:
2922 return "DW_OP_breg17";
2923 case DW_OP_breg18:
2924 return "DW_OP_breg18";
2925 case DW_OP_breg19:
2926 return "DW_OP_breg19";
2927 case DW_OP_breg20:
2928 return "DW_OP_breg20";
2929 case DW_OP_breg21:
2930 return "DW_OP_breg21";
2931 case DW_OP_breg22:
2932 return "DW_OP_breg22";
2933 case DW_OP_breg23:
2934 return "DW_OP_breg23";
2935 case DW_OP_breg24:
2936 return "DW_OP_breg24";
2937 case DW_OP_breg25:
2938 return "DW_OP_breg25";
2939 case DW_OP_breg26:
2940 return "DW_OP_breg26";
2941 case DW_OP_breg27:
2942 return "DW_OP_breg27";
2943 case DW_OP_breg28:
2944 return "DW_OP_breg28";
2945 case DW_OP_breg29:
2946 return "DW_OP_breg29";
2947 case DW_OP_breg30:
2948 return "DW_OP_breg30";
2949 case DW_OP_breg31:
2950 return "DW_OP_breg31";
2951 case DW_OP_regx:
2952 return "DW_OP_regx";
2953 case DW_OP_fbreg:
2954 return "DW_OP_fbreg";
2955 case DW_OP_bregx:
2956 return "DW_OP_bregx";
2957 case DW_OP_piece:
2958 return "DW_OP_piece";
2959 case DW_OP_deref_size:
2960 return "DW_OP_deref_size";
2961 case DW_OP_xderef_size:
2962 return "DW_OP_xderef_size";
2963 case DW_OP_nop:
2964 return "DW_OP_nop";
2965 case DW_OP_push_object_address:
2966 return "DW_OP_push_object_address";
2967 case DW_OP_call2:
2968 return "DW_OP_call2";
2969 case DW_OP_call4:
2970 return "DW_OP_call4";
2971 case DW_OP_call_ref:
2972 return "DW_OP_call_ref";
2973 case DW_OP_GNU_push_tls_address:
2974 return "DW_OP_GNU_push_tls_address";
2975 default:
2976 return "OP_<unknown>";
2980 /* Return a pointer to a newly allocated location description. Location
2981 descriptions are simple expression terms that can be strung
2982 together to form more complicated location (address) descriptions. */
2984 static inline dw_loc_descr_ref
2985 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2986 unsigned HOST_WIDE_INT oprnd2)
2988 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2990 descr->dw_loc_opc = op;
2991 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2992 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2993 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2994 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2996 return descr;
2999 /* Add a location description term to a location description expression. */
3001 static inline void
3002 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3004 dw_loc_descr_ref *d;
3006 /* Find the end of the chain. */
3007 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3010 *d = descr;
3013 /* Return the size of a location descriptor. */
3015 static unsigned long
3016 size_of_loc_descr (dw_loc_descr_ref loc)
3018 unsigned long size = 1;
3020 switch (loc->dw_loc_opc)
3022 case DW_OP_addr:
3023 case INTERNAL_DW_OP_tls_addr:
3024 size += DWARF2_ADDR_SIZE;
3025 break;
3026 case DW_OP_const1u:
3027 case DW_OP_const1s:
3028 size += 1;
3029 break;
3030 case DW_OP_const2u:
3031 case DW_OP_const2s:
3032 size += 2;
3033 break;
3034 case DW_OP_const4u:
3035 case DW_OP_const4s:
3036 size += 4;
3037 break;
3038 case DW_OP_const8u:
3039 case DW_OP_const8s:
3040 size += 8;
3041 break;
3042 case DW_OP_constu:
3043 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3044 break;
3045 case DW_OP_consts:
3046 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3047 break;
3048 case DW_OP_pick:
3049 size += 1;
3050 break;
3051 case DW_OP_plus_uconst:
3052 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3053 break;
3054 case DW_OP_skip:
3055 case DW_OP_bra:
3056 size += 2;
3057 break;
3058 case DW_OP_breg0:
3059 case DW_OP_breg1:
3060 case DW_OP_breg2:
3061 case DW_OP_breg3:
3062 case DW_OP_breg4:
3063 case DW_OP_breg5:
3064 case DW_OP_breg6:
3065 case DW_OP_breg7:
3066 case DW_OP_breg8:
3067 case DW_OP_breg9:
3068 case DW_OP_breg10:
3069 case DW_OP_breg11:
3070 case DW_OP_breg12:
3071 case DW_OP_breg13:
3072 case DW_OP_breg14:
3073 case DW_OP_breg15:
3074 case DW_OP_breg16:
3075 case DW_OP_breg17:
3076 case DW_OP_breg18:
3077 case DW_OP_breg19:
3078 case DW_OP_breg20:
3079 case DW_OP_breg21:
3080 case DW_OP_breg22:
3081 case DW_OP_breg23:
3082 case DW_OP_breg24:
3083 case DW_OP_breg25:
3084 case DW_OP_breg26:
3085 case DW_OP_breg27:
3086 case DW_OP_breg28:
3087 case DW_OP_breg29:
3088 case DW_OP_breg30:
3089 case DW_OP_breg31:
3090 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3091 break;
3092 case DW_OP_regx:
3093 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3094 break;
3095 case DW_OP_fbreg:
3096 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3097 break;
3098 case DW_OP_bregx:
3099 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3100 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3101 break;
3102 case DW_OP_piece:
3103 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3104 break;
3105 case DW_OP_deref_size:
3106 case DW_OP_xderef_size:
3107 size += 1;
3108 break;
3109 case DW_OP_call2:
3110 size += 2;
3111 break;
3112 case DW_OP_call4:
3113 size += 4;
3114 break;
3115 case DW_OP_call_ref:
3116 size += DWARF2_ADDR_SIZE;
3117 break;
3118 default:
3119 break;
3122 return size;
3125 /* Return the size of a series of location descriptors. */
3127 static unsigned long
3128 size_of_locs (dw_loc_descr_ref loc)
3130 unsigned long size;
3132 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3134 loc->dw_loc_addr = size;
3135 size += size_of_loc_descr (loc);
3138 return size;
3141 /* Output location description stack opcode's operands (if any). */
3143 static void
3144 output_loc_operands (dw_loc_descr_ref loc)
3146 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3147 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3149 switch (loc->dw_loc_opc)
3151 #ifdef DWARF2_DEBUGGING_INFO
3152 case DW_OP_addr:
3153 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3154 break;
3155 case DW_OP_const2u:
3156 case DW_OP_const2s:
3157 dw2_asm_output_data (2, val1->v.val_int, NULL);
3158 break;
3159 case DW_OP_const4u:
3160 case DW_OP_const4s:
3161 dw2_asm_output_data (4, val1->v.val_int, NULL);
3162 break;
3163 case DW_OP_const8u:
3164 case DW_OP_const8s:
3165 gcc_assert (HOST_BITS_PER_LONG >= 64);
3166 dw2_asm_output_data (8, val1->v.val_int, NULL);
3167 break;
3168 case DW_OP_skip:
3169 case DW_OP_bra:
3171 int offset;
3173 gcc_assert (val1->val_class == dw_val_class_loc);
3174 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3176 dw2_asm_output_data (2, offset, NULL);
3178 break;
3179 #else
3180 case DW_OP_addr:
3181 case DW_OP_const2u:
3182 case DW_OP_const2s:
3183 case DW_OP_const4u:
3184 case DW_OP_const4s:
3185 case DW_OP_const8u:
3186 case DW_OP_const8s:
3187 case DW_OP_skip:
3188 case DW_OP_bra:
3189 /* We currently don't make any attempt to make sure these are
3190 aligned properly like we do for the main unwind info, so
3191 don't support emitting things larger than a byte if we're
3192 only doing unwinding. */
3193 gcc_unreachable ();
3194 #endif
3195 case DW_OP_const1u:
3196 case DW_OP_const1s:
3197 dw2_asm_output_data (1, val1->v.val_int, NULL);
3198 break;
3199 case DW_OP_constu:
3200 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3201 break;
3202 case DW_OP_consts:
3203 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3204 break;
3205 case DW_OP_pick:
3206 dw2_asm_output_data (1, val1->v.val_int, NULL);
3207 break;
3208 case DW_OP_plus_uconst:
3209 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3210 break;
3211 case DW_OP_breg0:
3212 case DW_OP_breg1:
3213 case DW_OP_breg2:
3214 case DW_OP_breg3:
3215 case DW_OP_breg4:
3216 case DW_OP_breg5:
3217 case DW_OP_breg6:
3218 case DW_OP_breg7:
3219 case DW_OP_breg8:
3220 case DW_OP_breg9:
3221 case DW_OP_breg10:
3222 case DW_OP_breg11:
3223 case DW_OP_breg12:
3224 case DW_OP_breg13:
3225 case DW_OP_breg14:
3226 case DW_OP_breg15:
3227 case DW_OP_breg16:
3228 case DW_OP_breg17:
3229 case DW_OP_breg18:
3230 case DW_OP_breg19:
3231 case DW_OP_breg20:
3232 case DW_OP_breg21:
3233 case DW_OP_breg22:
3234 case DW_OP_breg23:
3235 case DW_OP_breg24:
3236 case DW_OP_breg25:
3237 case DW_OP_breg26:
3238 case DW_OP_breg27:
3239 case DW_OP_breg28:
3240 case DW_OP_breg29:
3241 case DW_OP_breg30:
3242 case DW_OP_breg31:
3243 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3244 break;
3245 case DW_OP_regx:
3246 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3247 break;
3248 case DW_OP_fbreg:
3249 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3250 break;
3251 case DW_OP_bregx:
3252 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3253 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3254 break;
3255 case DW_OP_piece:
3256 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3257 break;
3258 case DW_OP_deref_size:
3259 case DW_OP_xderef_size:
3260 dw2_asm_output_data (1, val1->v.val_int, NULL);
3261 break;
3263 case INTERNAL_DW_OP_tls_addr:
3264 if (targetm.asm_out.output_dwarf_dtprel)
3266 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3267 DWARF2_ADDR_SIZE,
3268 val1->v.val_addr);
3269 fputc ('\n', asm_out_file);
3271 else
3272 gcc_unreachable ();
3273 break;
3275 default:
3276 /* Other codes have no operands. */
3277 break;
3281 /* Output a sequence of location operations. */
3283 static void
3284 output_loc_sequence (dw_loc_descr_ref loc)
3286 for (; loc != NULL; loc = loc->dw_loc_next)
3288 /* Output the opcode. */
3289 dw2_asm_output_data (1, loc->dw_loc_opc,
3290 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3292 /* Output the operand(s) (if any). */
3293 output_loc_operands (loc);
3297 /* This routine will generate the correct assembly data for a location
3298 description based on a cfi entry with a complex address. */
3300 static void
3301 output_cfa_loc (dw_cfi_ref cfi)
3303 dw_loc_descr_ref loc;
3304 unsigned long size;
3306 /* Output the size of the block. */
3307 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3308 size = size_of_locs (loc);
3309 dw2_asm_output_data_uleb128 (size, NULL);
3311 /* Now output the operations themselves. */
3312 output_loc_sequence (loc);
3315 /* This function builds a dwarf location descriptor sequence from
3316 a dw_cfa_location. */
3318 static struct dw_loc_descr_struct *
3319 build_cfa_loc (dw_cfa_location *cfa)
3321 struct dw_loc_descr_struct *head, *tmp;
3323 gcc_assert (cfa->indirect);
3325 if (cfa->base_offset)
3327 if (cfa->reg <= 31)
3328 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3329 else
3330 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3332 else if (cfa->reg <= 31)
3333 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3334 else
3335 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3337 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3338 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3339 add_loc_descr (&head, tmp);
3340 if (cfa->offset != 0)
3342 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3343 add_loc_descr (&head, tmp);
3346 return head;
3349 /* This function fills in aa dw_cfa_location structure from a dwarf location
3350 descriptor sequence. */
3352 static void
3353 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3355 struct dw_loc_descr_struct *ptr;
3356 cfa->offset = 0;
3357 cfa->base_offset = 0;
3358 cfa->indirect = 0;
3359 cfa->reg = -1;
3361 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3363 enum dwarf_location_atom op = ptr->dw_loc_opc;
3365 switch (op)
3367 case DW_OP_reg0:
3368 case DW_OP_reg1:
3369 case DW_OP_reg2:
3370 case DW_OP_reg3:
3371 case DW_OP_reg4:
3372 case DW_OP_reg5:
3373 case DW_OP_reg6:
3374 case DW_OP_reg7:
3375 case DW_OP_reg8:
3376 case DW_OP_reg9:
3377 case DW_OP_reg10:
3378 case DW_OP_reg11:
3379 case DW_OP_reg12:
3380 case DW_OP_reg13:
3381 case DW_OP_reg14:
3382 case DW_OP_reg15:
3383 case DW_OP_reg16:
3384 case DW_OP_reg17:
3385 case DW_OP_reg18:
3386 case DW_OP_reg19:
3387 case DW_OP_reg20:
3388 case DW_OP_reg21:
3389 case DW_OP_reg22:
3390 case DW_OP_reg23:
3391 case DW_OP_reg24:
3392 case DW_OP_reg25:
3393 case DW_OP_reg26:
3394 case DW_OP_reg27:
3395 case DW_OP_reg28:
3396 case DW_OP_reg29:
3397 case DW_OP_reg30:
3398 case DW_OP_reg31:
3399 cfa->reg = op - DW_OP_reg0;
3400 break;
3401 case DW_OP_regx:
3402 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3403 break;
3404 case DW_OP_breg0:
3405 case DW_OP_breg1:
3406 case DW_OP_breg2:
3407 case DW_OP_breg3:
3408 case DW_OP_breg4:
3409 case DW_OP_breg5:
3410 case DW_OP_breg6:
3411 case DW_OP_breg7:
3412 case DW_OP_breg8:
3413 case DW_OP_breg9:
3414 case DW_OP_breg10:
3415 case DW_OP_breg11:
3416 case DW_OP_breg12:
3417 case DW_OP_breg13:
3418 case DW_OP_breg14:
3419 case DW_OP_breg15:
3420 case DW_OP_breg16:
3421 case DW_OP_breg17:
3422 case DW_OP_breg18:
3423 case DW_OP_breg19:
3424 case DW_OP_breg20:
3425 case DW_OP_breg21:
3426 case DW_OP_breg22:
3427 case DW_OP_breg23:
3428 case DW_OP_breg24:
3429 case DW_OP_breg25:
3430 case DW_OP_breg26:
3431 case DW_OP_breg27:
3432 case DW_OP_breg28:
3433 case DW_OP_breg29:
3434 case DW_OP_breg30:
3435 case DW_OP_breg31:
3436 cfa->reg = op - DW_OP_breg0;
3437 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3438 break;
3439 case DW_OP_bregx:
3440 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3441 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3442 break;
3443 case DW_OP_deref:
3444 cfa->indirect = 1;
3445 break;
3446 case DW_OP_plus_uconst:
3447 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3448 break;
3449 default:
3450 internal_error ("DW_LOC_OP %s not implemented\n",
3451 dwarf_stack_op_name (ptr->dw_loc_opc));
3455 #endif /* .debug_frame support */
3457 /* And now, the support for symbolic debugging information. */
3458 #ifdef DWARF2_DEBUGGING_INFO
3460 /* .debug_str support. */
3461 static int output_indirect_string (void **, void *);
3463 static void dwarf2out_init (const char *);
3464 static void dwarf2out_finish (const char *);
3465 static void dwarf2out_define (unsigned int, const char *);
3466 static void dwarf2out_undef (unsigned int, const char *);
3467 static void dwarf2out_start_source_file (unsigned, const char *);
3468 static void dwarf2out_end_source_file (unsigned);
3469 static void dwarf2out_begin_block (unsigned, unsigned);
3470 static void dwarf2out_end_block (unsigned, unsigned);
3471 static bool dwarf2out_ignore_block (tree);
3472 static void dwarf2out_global_decl (tree);
3473 static void dwarf2out_type_decl (tree, int);
3474 static void dwarf2out_imported_module_or_decl (tree, tree);
3475 static void dwarf2out_abstract_function (tree);
3476 static void dwarf2out_var_location (rtx);
3477 static void dwarf2out_begin_function (tree);
3478 static void dwarf2out_switch_text_section (void);
3480 /* The debug hooks structure. */
3482 const struct gcc_debug_hooks dwarf2_debug_hooks =
3484 dwarf2out_init,
3485 dwarf2out_finish,
3486 dwarf2out_define,
3487 dwarf2out_undef,
3488 dwarf2out_start_source_file,
3489 dwarf2out_end_source_file,
3490 dwarf2out_begin_block,
3491 dwarf2out_end_block,
3492 dwarf2out_ignore_block,
3493 dwarf2out_source_line,
3494 dwarf2out_begin_prologue,
3495 debug_nothing_int_charstar, /* end_prologue */
3496 dwarf2out_end_epilogue,
3497 dwarf2out_begin_function,
3498 debug_nothing_int, /* end_function */
3499 dwarf2out_decl, /* function_decl */
3500 dwarf2out_global_decl,
3501 dwarf2out_type_decl, /* type_decl */
3502 dwarf2out_imported_module_or_decl,
3503 debug_nothing_tree, /* deferred_inline_function */
3504 /* The DWARF 2 backend tries to reduce debugging bloat by not
3505 emitting the abstract description of inline functions until
3506 something tries to reference them. */
3507 dwarf2out_abstract_function, /* outlining_inline_function */
3508 debug_nothing_rtx, /* label */
3509 debug_nothing_int, /* handle_pch */
3510 dwarf2out_var_location,
3511 dwarf2out_switch_text_section,
3512 1 /* start_end_main_source_file */
3514 #endif
3516 /* NOTE: In the comments in this file, many references are made to
3517 "Debugging Information Entries". This term is abbreviated as `DIE'
3518 throughout the remainder of this file. */
3520 /* An internal representation of the DWARF output is built, and then
3521 walked to generate the DWARF debugging info. The walk of the internal
3522 representation is done after the entire program has been compiled.
3523 The types below are used to describe the internal representation. */
3525 /* Various DIE's use offsets relative to the beginning of the
3526 .debug_info section to refer to each other. */
3528 typedef long int dw_offset;
3530 /* Define typedefs here to avoid circular dependencies. */
3532 typedef struct dw_attr_struct *dw_attr_ref;
3533 typedef struct dw_line_info_struct *dw_line_info_ref;
3534 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3535 typedef struct pubname_struct *pubname_ref;
3536 typedef struct dw_ranges_struct *dw_ranges_ref;
3538 /* Each entry in the line_info_table maintains the file and
3539 line number associated with the label generated for that
3540 entry. The label gives the PC value associated with
3541 the line number entry. */
3543 typedef struct dw_line_info_struct GTY(())
3545 unsigned long dw_file_num;
3546 unsigned long dw_line_num;
3548 dw_line_info_entry;
3550 /* Line information for functions in separate sections; each one gets its
3551 own sequence. */
3552 typedef struct dw_separate_line_info_struct GTY(())
3554 unsigned long dw_file_num;
3555 unsigned long dw_line_num;
3556 unsigned long function;
3558 dw_separate_line_info_entry;
3560 /* Each DIE attribute has a field specifying the attribute kind,
3561 a link to the next attribute in the chain, and an attribute value.
3562 Attributes are typically linked below the DIE they modify. */
3564 typedef struct dw_attr_struct GTY(())
3566 enum dwarf_attribute dw_attr;
3567 dw_attr_ref dw_attr_next;
3568 dw_val_node dw_attr_val;
3570 dw_attr_node;
3572 /* The Debugging Information Entry (DIE) structure */
3574 typedef struct die_struct GTY(())
3576 enum dwarf_tag die_tag;
3577 char *die_symbol;
3578 dw_attr_ref die_attr;
3579 dw_die_ref die_parent;
3580 dw_die_ref die_child;
3581 dw_die_ref die_sib;
3582 dw_die_ref die_definition; /* ref from a specification to its definition */
3583 dw_offset die_offset;
3584 unsigned long die_abbrev;
3585 int die_mark;
3586 unsigned int decl_id;
3588 die_node;
3590 /* The pubname structure */
3592 typedef struct pubname_struct GTY(())
3594 dw_die_ref die;
3595 char *name;
3597 pubname_entry;
3599 struct dw_ranges_struct GTY(())
3601 int block_num;
3604 /* The limbo die list structure. */
3605 typedef struct limbo_die_struct GTY(())
3607 dw_die_ref die;
3608 tree created_for;
3609 struct limbo_die_struct *next;
3611 limbo_die_node;
3613 /* How to start an assembler comment. */
3614 #ifndef ASM_COMMENT_START
3615 #define ASM_COMMENT_START ";#"
3616 #endif
3618 /* Define a macro which returns nonzero for a TYPE_DECL which was
3619 implicitly generated for a tagged type.
3621 Note that unlike the gcc front end (which generates a NULL named
3622 TYPE_DECL node for each complete tagged type, each array type, and
3623 each function type node created) the g++ front end generates a
3624 _named_ TYPE_DECL node for each tagged type node created.
3625 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3626 generate a DW_TAG_typedef DIE for them. */
3628 #define TYPE_DECL_IS_STUB(decl) \
3629 (DECL_NAME (decl) == NULL_TREE \
3630 || (DECL_ARTIFICIAL (decl) \
3631 && is_tagged_type (TREE_TYPE (decl)) \
3632 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3633 /* This is necessary for stub decls that \
3634 appear in nested inline functions. */ \
3635 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3636 && (decl_ultimate_origin (decl) \
3637 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3639 /* Information concerning the compilation unit's programming
3640 language, and compiler version. */
3642 /* Fixed size portion of the DWARF compilation unit header. */
3643 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3644 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3646 /* Fixed size portion of public names info. */
3647 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3649 /* Fixed size portion of the address range info. */
3650 #define DWARF_ARANGES_HEADER_SIZE \
3651 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3652 DWARF2_ADDR_SIZE * 2) \
3653 - DWARF_INITIAL_LENGTH_SIZE)
3655 /* Size of padding portion in the address range info. It must be
3656 aligned to twice the pointer size. */
3657 #define DWARF_ARANGES_PAD_SIZE \
3658 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3659 DWARF2_ADDR_SIZE * 2) \
3660 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3662 /* Use assembler line directives if available. */
3663 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3664 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3665 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3666 #else
3667 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3668 #endif
3669 #endif
3671 /* Minimum line offset in a special line info. opcode.
3672 This value was chosen to give a reasonable range of values. */
3673 #define DWARF_LINE_BASE -10
3675 /* First special line opcode - leave room for the standard opcodes. */
3676 #define DWARF_LINE_OPCODE_BASE 10
3678 /* Range of line offsets in a special line info. opcode. */
3679 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3681 /* Flag that indicates the initial value of the is_stmt_start flag.
3682 In the present implementation, we do not mark any lines as
3683 the beginning of a source statement, because that information
3684 is not made available by the GCC front-end. */
3685 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3687 #ifdef DWARF2_DEBUGGING_INFO
3688 /* This location is used by calc_die_sizes() to keep track
3689 the offset of each DIE within the .debug_info section. */
3690 static unsigned long next_die_offset;
3691 #endif
3693 /* Record the root of the DIE's built for the current compilation unit. */
3694 static GTY(()) dw_die_ref comp_unit_die;
3696 /* A list of DIEs with a NULL parent waiting to be relocated. */
3697 static GTY(()) limbo_die_node *limbo_die_list;
3699 /* Filenames referenced by this compilation unit. */
3700 static GTY(()) varray_type file_table;
3701 static GTY(()) varray_type file_table_emitted;
3702 static GTY(()) size_t file_table_last_lookup_index;
3704 /* A hash table of references to DIE's that describe declarations.
3705 The key is a DECL_UID() which is a unique number identifying each decl. */
3706 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3708 /* Node of the variable location list. */
3709 struct var_loc_node GTY ((chain_next ("%h.next")))
3711 rtx GTY (()) var_loc_note;
3712 const char * GTY (()) label;
3713 const char * GTY (()) section_label;
3714 struct var_loc_node * GTY (()) next;
3717 /* Variable location list. */
3718 struct var_loc_list_def GTY (())
3720 struct var_loc_node * GTY (()) first;
3722 /* Do not mark the last element of the chained list because
3723 it is marked through the chain. */
3724 struct var_loc_node * GTY ((skip ("%h"))) last;
3726 /* DECL_UID of the variable decl. */
3727 unsigned int decl_id;
3729 typedef struct var_loc_list_def var_loc_list;
3732 /* Table of decl location linked lists. */
3733 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3735 /* A pointer to the base of a list of references to DIE's that
3736 are uniquely identified by their tag, presence/absence of
3737 children DIE's, and list of attribute/value pairs. */
3738 static GTY((length ("abbrev_die_table_allocated")))
3739 dw_die_ref *abbrev_die_table;
3741 /* Number of elements currently allocated for abbrev_die_table. */
3742 static GTY(()) unsigned abbrev_die_table_allocated;
3744 /* Number of elements in type_die_table currently in use. */
3745 static GTY(()) unsigned abbrev_die_table_in_use;
3747 /* Size (in elements) of increments by which we may expand the
3748 abbrev_die_table. */
3749 #define ABBREV_DIE_TABLE_INCREMENT 256
3751 /* A pointer to the base of a table that contains line information
3752 for each source code line in .text in the compilation unit. */
3753 static GTY((length ("line_info_table_allocated")))
3754 dw_line_info_ref line_info_table;
3756 /* Number of elements currently allocated for line_info_table. */
3757 static GTY(()) unsigned line_info_table_allocated;
3759 /* Number of elements in line_info_table currently in use. */
3760 static GTY(()) unsigned line_info_table_in_use;
3762 /* A pointer to the base of a table that contains line information
3763 for each source code line outside of .text in the compilation unit. */
3764 static GTY ((length ("separate_line_info_table_allocated")))
3765 dw_separate_line_info_ref separate_line_info_table;
3767 /* Number of elements currently allocated for separate_line_info_table. */
3768 static GTY(()) unsigned separate_line_info_table_allocated;
3770 /* Number of elements in separate_line_info_table currently in use. */
3771 static GTY(()) unsigned separate_line_info_table_in_use;
3773 /* Size (in elements) of increments by which we may expand the
3774 line_info_table. */
3775 #define LINE_INFO_TABLE_INCREMENT 1024
3777 /* A pointer to the base of a table that contains a list of publicly
3778 accessible names. */
3779 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3781 /* Number of elements currently allocated for pubname_table. */
3782 static GTY(()) unsigned pubname_table_allocated;
3784 /* Number of elements in pubname_table currently in use. */
3785 static GTY(()) unsigned pubname_table_in_use;
3787 /* Size (in elements) of increments by which we may expand the
3788 pubname_table. */
3789 #define PUBNAME_TABLE_INCREMENT 64
3791 /* Array of dies for which we should generate .debug_arange info. */
3792 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3794 /* Number of elements currently allocated for arange_table. */
3795 static GTY(()) unsigned arange_table_allocated;
3797 /* Number of elements in arange_table currently in use. */
3798 static GTY(()) unsigned arange_table_in_use;
3800 /* Size (in elements) of increments by which we may expand the
3801 arange_table. */
3802 #define ARANGE_TABLE_INCREMENT 64
3804 /* Array of dies for which we should generate .debug_ranges info. */
3805 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3807 /* Number of elements currently allocated for ranges_table. */
3808 static GTY(()) unsigned ranges_table_allocated;
3810 /* Number of elements in ranges_table currently in use. */
3811 static GTY(()) unsigned ranges_table_in_use;
3813 /* Size (in elements) of increments by which we may expand the
3814 ranges_table. */
3815 #define RANGES_TABLE_INCREMENT 64
3817 /* Whether we have location lists that need outputting */
3818 static GTY(()) unsigned have_location_lists;
3820 /* Unique label counter. */
3821 static GTY(()) unsigned int loclabel_num;
3823 #ifdef DWARF2_DEBUGGING_INFO
3824 /* Record whether the function being analyzed contains inlined functions. */
3825 static int current_function_has_inlines;
3826 #endif
3827 #if 0 && defined (MIPS_DEBUGGING_INFO)
3828 static int comp_unit_has_inlines;
3829 #endif
3831 /* Number of file tables emitted in maybe_emit_file(). */
3832 static GTY(()) int emitcount = 0;
3834 /* Number of internal labels generated by gen_internal_sym(). */
3835 static GTY(()) int label_num;
3837 #ifdef DWARF2_DEBUGGING_INFO
3839 /* Forward declarations for functions defined in this file. */
3841 static int is_pseudo_reg (rtx);
3842 static tree type_main_variant (tree);
3843 static int is_tagged_type (tree);
3844 static const char *dwarf_tag_name (unsigned);
3845 static const char *dwarf_attr_name (unsigned);
3846 static const char *dwarf_form_name (unsigned);
3847 static tree decl_ultimate_origin (tree);
3848 static tree block_ultimate_origin (tree);
3849 static tree decl_class_context (tree);
3850 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3851 static inline enum dw_val_class AT_class (dw_attr_ref);
3852 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3853 static inline unsigned AT_flag (dw_attr_ref);
3854 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3855 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3856 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3857 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3858 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3859 unsigned long);
3860 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3861 unsigned int, unsigned char *);
3862 static hashval_t debug_str_do_hash (const void *);
3863 static int debug_str_eq (const void *, const void *);
3864 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3865 static inline const char *AT_string (dw_attr_ref);
3866 static int AT_string_form (dw_attr_ref);
3867 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3868 static void add_AT_specification (dw_die_ref, dw_die_ref);
3869 static inline dw_die_ref AT_ref (dw_attr_ref);
3870 static inline int AT_ref_external (dw_attr_ref);
3871 static inline void set_AT_ref_external (dw_attr_ref, int);
3872 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3873 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3874 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3875 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3876 dw_loc_list_ref);
3877 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3878 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3879 static inline rtx AT_addr (dw_attr_ref);
3880 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3881 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3882 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3883 unsigned HOST_WIDE_INT);
3884 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3885 unsigned long);
3886 static inline const char *AT_lbl (dw_attr_ref);
3887 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3888 static const char *get_AT_low_pc (dw_die_ref);
3889 static const char *get_AT_hi_pc (dw_die_ref);
3890 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3891 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3892 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3893 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3894 static bool is_c_family (void);
3895 static bool is_cxx (void);
3896 static bool is_java (void);
3897 static bool is_fortran (void);
3898 static bool is_ada (void);
3899 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3900 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3901 static inline void free_die (dw_die_ref);
3902 static void remove_children (dw_die_ref);
3903 static void add_child_die (dw_die_ref, dw_die_ref);
3904 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3905 static dw_die_ref lookup_type_die (tree);
3906 static void equate_type_number_to_die (tree, dw_die_ref);
3907 static hashval_t decl_die_table_hash (const void *);
3908 static int decl_die_table_eq (const void *, const void *);
3909 static dw_die_ref lookup_decl_die (tree);
3910 static hashval_t decl_loc_table_hash (const void *);
3911 static int decl_loc_table_eq (const void *, const void *);
3912 static var_loc_list *lookup_decl_loc (tree);
3913 static void equate_decl_number_to_die (tree, dw_die_ref);
3914 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3915 static void print_spaces (FILE *);
3916 static void print_die (dw_die_ref, FILE *);
3917 static void print_dwarf_line_table (FILE *);
3918 static void reverse_die_lists (dw_die_ref);
3919 static void reverse_all_dies (dw_die_ref);
3920 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3921 static dw_die_ref pop_compile_unit (dw_die_ref);
3922 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3923 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3924 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3925 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3926 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3927 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3928 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3929 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3930 static void compute_section_prefix (dw_die_ref);
3931 static int is_type_die (dw_die_ref);
3932 static int is_comdat_die (dw_die_ref);
3933 static int is_symbol_die (dw_die_ref);
3934 static void assign_symbol_names (dw_die_ref);
3935 static void break_out_includes (dw_die_ref);
3936 static hashval_t htab_cu_hash (const void *);
3937 static int htab_cu_eq (const void *, const void *);
3938 static void htab_cu_del (void *);
3939 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3940 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3941 static void add_sibling_attributes (dw_die_ref);
3942 static void build_abbrev_table (dw_die_ref);
3943 static void output_location_lists (dw_die_ref);
3944 static int constant_size (long unsigned);
3945 static unsigned long size_of_die (dw_die_ref);
3946 static void calc_die_sizes (dw_die_ref);
3947 static void mark_dies (dw_die_ref);
3948 static void unmark_dies (dw_die_ref);
3949 static void unmark_all_dies (dw_die_ref);
3950 static unsigned long size_of_pubnames (void);
3951 static unsigned long size_of_aranges (void);
3952 static enum dwarf_form value_format (dw_attr_ref);
3953 static void output_value_format (dw_attr_ref);
3954 static void output_abbrev_section (void);
3955 static void output_die_symbol (dw_die_ref);
3956 static void output_die (dw_die_ref);
3957 static void output_compilation_unit_header (void);
3958 static void output_comp_unit (dw_die_ref, int);
3959 static const char *dwarf2_name (tree, int);
3960 static void add_pubname (tree, dw_die_ref);
3961 static void output_pubnames (void);
3962 static void add_arange (tree, dw_die_ref);
3963 static void output_aranges (void);
3964 static unsigned int add_ranges (tree);
3965 static void output_ranges (void);
3966 static void output_line_info (void);
3967 static void output_file_names (void);
3968 static dw_die_ref base_type_die (tree);
3969 static tree root_type (tree);
3970 static int is_base_type (tree);
3971 static bool is_subrange_type (tree);
3972 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3973 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3974 static int type_is_enum (tree);
3975 static unsigned int dbx_reg_number (rtx);
3976 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
3977 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3978 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3979 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3980 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3981 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3982 static int is_based_loc (rtx);
3983 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3984 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3985 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3986 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
3987 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
3988 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3989 static tree field_type (tree);
3990 static unsigned int simple_type_align_in_bits (tree);
3991 static unsigned int simple_decl_align_in_bits (tree);
3992 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3993 static HOST_WIDE_INT field_byte_offset (tree);
3994 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3995 dw_loc_descr_ref);
3996 static void add_data_member_location_attribute (dw_die_ref, tree);
3997 static void add_const_value_attribute (dw_die_ref, rtx);
3998 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3999 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4000 static void insert_float (rtx, unsigned char *);
4001 static rtx rtl_for_decl_location (tree);
4002 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4003 enum dwarf_attribute);
4004 static void tree_add_const_value_attribute (dw_die_ref, tree);
4005 static void add_name_attribute (dw_die_ref, const char *);
4006 static void add_comp_dir_attribute (dw_die_ref);
4007 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4008 static void add_subscript_info (dw_die_ref, tree);
4009 static void add_byte_size_attribute (dw_die_ref, tree);
4010 static void add_bit_offset_attribute (dw_die_ref, tree);
4011 static void add_bit_size_attribute (dw_die_ref, tree);
4012 static void add_prototyped_attribute (dw_die_ref, tree);
4013 static void add_abstract_origin_attribute (dw_die_ref, tree);
4014 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4015 static void add_src_coords_attributes (dw_die_ref, tree);
4016 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4017 static void push_decl_scope (tree);
4018 static void pop_decl_scope (void);
4019 static dw_die_ref scope_die_for (tree, dw_die_ref);
4020 static inline int local_scope_p (dw_die_ref);
4021 static inline int class_or_namespace_scope_p (dw_die_ref);
4022 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4023 static void add_calling_convention_attribute (dw_die_ref, tree);
4024 static const char *type_tag (tree);
4025 static tree member_declared_type (tree);
4026 #if 0
4027 static const char *decl_start_label (tree);
4028 #endif
4029 static void gen_array_type_die (tree, dw_die_ref);
4030 #if 0
4031 static void gen_entry_point_die (tree, dw_die_ref);
4032 #endif
4033 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4034 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4035 static void gen_inlined_union_type_die (tree, dw_die_ref);
4036 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4037 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4038 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4039 static void gen_formal_types_die (tree, dw_die_ref);
4040 static void gen_subprogram_die (tree, dw_die_ref);
4041 static void gen_variable_die (tree, dw_die_ref);
4042 static void gen_label_die (tree, dw_die_ref);
4043 static void gen_lexical_block_die (tree, dw_die_ref, int);
4044 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4045 static void gen_field_die (tree, dw_die_ref);
4046 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4047 static dw_die_ref gen_compile_unit_die (const char *);
4048 static void gen_string_type_die (tree, dw_die_ref);
4049 static void gen_inheritance_die (tree, tree, dw_die_ref);
4050 static void gen_member_die (tree, dw_die_ref);
4051 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4052 static void gen_subroutine_type_die (tree, dw_die_ref);
4053 static void gen_typedef_die (tree, dw_die_ref);
4054 static void gen_type_die (tree, dw_die_ref);
4055 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4056 static void gen_block_die (tree, dw_die_ref, int);
4057 static void decls_for_scope (tree, dw_die_ref, int);
4058 static int is_redundant_typedef (tree);
4059 static void gen_namespace_die (tree);
4060 static void gen_decl_die (tree, dw_die_ref);
4061 static dw_die_ref force_decl_die (tree);
4062 static dw_die_ref force_type_die (tree);
4063 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4064 static void declare_in_namespace (tree, dw_die_ref);
4065 static unsigned lookup_filename (const char *);
4066 static void init_file_table (void);
4067 static void retry_incomplete_types (void);
4068 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4069 static void splice_child_die (dw_die_ref, dw_die_ref);
4070 static int file_info_cmp (const void *, const void *);
4071 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4072 const char *, const char *, unsigned);
4073 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4074 const char *, const char *,
4075 const char *);
4076 static void output_loc_list (dw_loc_list_ref);
4077 static char *gen_internal_sym (const char *);
4079 static void prune_unmark_dies (dw_die_ref);
4080 static void prune_unused_types_mark (dw_die_ref, int);
4081 static void prune_unused_types_walk (dw_die_ref);
4082 static void prune_unused_types_walk_attribs (dw_die_ref);
4083 static void prune_unused_types_prune (dw_die_ref);
4084 static void prune_unused_types (void);
4085 static int maybe_emit_file (int);
4087 /* Section names used to hold DWARF debugging information. */
4088 #ifndef DEBUG_INFO_SECTION
4089 #define DEBUG_INFO_SECTION ".debug_info"
4090 #endif
4091 #ifndef DEBUG_ABBREV_SECTION
4092 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4093 #endif
4094 #ifndef DEBUG_ARANGES_SECTION
4095 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4096 #endif
4097 #ifndef DEBUG_MACINFO_SECTION
4098 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4099 #endif
4100 #ifndef DEBUG_LINE_SECTION
4101 #define DEBUG_LINE_SECTION ".debug_line"
4102 #endif
4103 #ifndef DEBUG_LOC_SECTION
4104 #define DEBUG_LOC_SECTION ".debug_loc"
4105 #endif
4106 #ifndef DEBUG_PUBNAMES_SECTION
4107 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4108 #endif
4109 #ifndef DEBUG_STR_SECTION
4110 #define DEBUG_STR_SECTION ".debug_str"
4111 #endif
4112 #ifndef DEBUG_RANGES_SECTION
4113 #define DEBUG_RANGES_SECTION ".debug_ranges"
4114 #endif
4116 /* Standard ELF section names for compiled code and data. */
4117 #ifndef TEXT_SECTION_NAME
4118 #define TEXT_SECTION_NAME ".text"
4119 #endif
4121 /* Section flags for .debug_str section. */
4122 #define DEBUG_STR_SECTION_FLAGS \
4123 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4124 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4125 : SECTION_DEBUG)
4127 /* Labels we insert at beginning sections we can reference instead of
4128 the section names themselves. */
4130 #ifndef TEXT_SECTION_LABEL
4131 #define TEXT_SECTION_LABEL "Ltext"
4132 #endif
4133 #ifndef COLD_TEXT_SECTION_LABEL
4134 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4135 #endif
4136 #ifndef DEBUG_LINE_SECTION_LABEL
4137 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4138 #endif
4139 #ifndef DEBUG_INFO_SECTION_LABEL
4140 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4141 #endif
4142 #ifndef DEBUG_ABBREV_SECTION_LABEL
4143 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4144 #endif
4145 #ifndef DEBUG_LOC_SECTION_LABEL
4146 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4147 #endif
4148 #ifndef DEBUG_RANGES_SECTION_LABEL
4149 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4150 #endif
4151 #ifndef DEBUG_MACINFO_SECTION_LABEL
4152 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4153 #endif
4155 /* Definitions of defaults for formats and names of various special
4156 (artificial) labels which may be generated within this file (when the -g
4157 options is used and DWARF2_DEBUGGING_INFO is in effect.
4158 If necessary, these may be overridden from within the tm.h file, but
4159 typically, overriding these defaults is unnecessary. */
4161 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4162 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4163 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4164 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4165 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4166 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4167 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4168 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4169 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4170 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4172 #ifndef TEXT_END_LABEL
4173 #define TEXT_END_LABEL "Letext"
4174 #endif
4175 #ifndef COLD_END_LABEL
4176 #define COLD_END_LABEL "Letext_cold"
4177 #endif
4178 #ifndef BLOCK_BEGIN_LABEL
4179 #define BLOCK_BEGIN_LABEL "LBB"
4180 #endif
4181 #ifndef BLOCK_END_LABEL
4182 #define BLOCK_END_LABEL "LBE"
4183 #endif
4184 #ifndef LINE_CODE_LABEL
4185 #define LINE_CODE_LABEL "LM"
4186 #endif
4187 #ifndef SEPARATE_LINE_CODE_LABEL
4188 #define SEPARATE_LINE_CODE_LABEL "LSM"
4189 #endif
4191 /* We allow a language front-end to designate a function that is to be
4192 called to "demangle" any name before it is put into a DIE. */
4194 static const char *(*demangle_name_func) (const char *);
4196 void
4197 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4199 demangle_name_func = func;
4202 /* Test if rtl node points to a pseudo register. */
4204 static inline int
4205 is_pseudo_reg (rtx rtl)
4207 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4208 || (GET_CODE (rtl) == SUBREG
4209 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4212 /* Return a reference to a type, with its const and volatile qualifiers
4213 removed. */
4215 static inline tree
4216 type_main_variant (tree type)
4218 type = TYPE_MAIN_VARIANT (type);
4220 /* ??? There really should be only one main variant among any group of
4221 variants of a given type (and all of the MAIN_VARIANT values for all
4222 members of the group should point to that one type) but sometimes the C
4223 front-end messes this up for array types, so we work around that bug
4224 here. */
4225 if (TREE_CODE (type) == ARRAY_TYPE)
4226 while (type != TYPE_MAIN_VARIANT (type))
4227 type = TYPE_MAIN_VARIANT (type);
4229 return type;
4232 /* Return nonzero if the given type node represents a tagged type. */
4234 static inline int
4235 is_tagged_type (tree type)
4237 enum tree_code code = TREE_CODE (type);
4239 return (code == RECORD_TYPE || code == UNION_TYPE
4240 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4243 /* Convert a DIE tag into its string name. */
4245 static const char *
4246 dwarf_tag_name (unsigned int tag)
4248 switch (tag)
4250 case DW_TAG_padding:
4251 return "DW_TAG_padding";
4252 case DW_TAG_array_type:
4253 return "DW_TAG_array_type";
4254 case DW_TAG_class_type:
4255 return "DW_TAG_class_type";
4256 case DW_TAG_entry_point:
4257 return "DW_TAG_entry_point";
4258 case DW_TAG_enumeration_type:
4259 return "DW_TAG_enumeration_type";
4260 case DW_TAG_formal_parameter:
4261 return "DW_TAG_formal_parameter";
4262 case DW_TAG_imported_declaration:
4263 return "DW_TAG_imported_declaration";
4264 case DW_TAG_label:
4265 return "DW_TAG_label";
4266 case DW_TAG_lexical_block:
4267 return "DW_TAG_lexical_block";
4268 case DW_TAG_member:
4269 return "DW_TAG_member";
4270 case DW_TAG_pointer_type:
4271 return "DW_TAG_pointer_type";
4272 case DW_TAG_reference_type:
4273 return "DW_TAG_reference_type";
4274 case DW_TAG_compile_unit:
4275 return "DW_TAG_compile_unit";
4276 case DW_TAG_string_type:
4277 return "DW_TAG_string_type";
4278 case DW_TAG_structure_type:
4279 return "DW_TAG_structure_type";
4280 case DW_TAG_subroutine_type:
4281 return "DW_TAG_subroutine_type";
4282 case DW_TAG_typedef:
4283 return "DW_TAG_typedef";
4284 case DW_TAG_union_type:
4285 return "DW_TAG_union_type";
4286 case DW_TAG_unspecified_parameters:
4287 return "DW_TAG_unspecified_parameters";
4288 case DW_TAG_variant:
4289 return "DW_TAG_variant";
4290 case DW_TAG_common_block:
4291 return "DW_TAG_common_block";
4292 case DW_TAG_common_inclusion:
4293 return "DW_TAG_common_inclusion";
4294 case DW_TAG_inheritance:
4295 return "DW_TAG_inheritance";
4296 case DW_TAG_inlined_subroutine:
4297 return "DW_TAG_inlined_subroutine";
4298 case DW_TAG_module:
4299 return "DW_TAG_module";
4300 case DW_TAG_ptr_to_member_type:
4301 return "DW_TAG_ptr_to_member_type";
4302 case DW_TAG_set_type:
4303 return "DW_TAG_set_type";
4304 case DW_TAG_subrange_type:
4305 return "DW_TAG_subrange_type";
4306 case DW_TAG_with_stmt:
4307 return "DW_TAG_with_stmt";
4308 case DW_TAG_access_declaration:
4309 return "DW_TAG_access_declaration";
4310 case DW_TAG_base_type:
4311 return "DW_TAG_base_type";
4312 case DW_TAG_catch_block:
4313 return "DW_TAG_catch_block";
4314 case DW_TAG_const_type:
4315 return "DW_TAG_const_type";
4316 case DW_TAG_constant:
4317 return "DW_TAG_constant";
4318 case DW_TAG_enumerator:
4319 return "DW_TAG_enumerator";
4320 case DW_TAG_file_type:
4321 return "DW_TAG_file_type";
4322 case DW_TAG_friend:
4323 return "DW_TAG_friend";
4324 case DW_TAG_namelist:
4325 return "DW_TAG_namelist";
4326 case DW_TAG_namelist_item:
4327 return "DW_TAG_namelist_item";
4328 case DW_TAG_namespace:
4329 return "DW_TAG_namespace";
4330 case DW_TAG_packed_type:
4331 return "DW_TAG_packed_type";
4332 case DW_TAG_subprogram:
4333 return "DW_TAG_subprogram";
4334 case DW_TAG_template_type_param:
4335 return "DW_TAG_template_type_param";
4336 case DW_TAG_template_value_param:
4337 return "DW_TAG_template_value_param";
4338 case DW_TAG_thrown_type:
4339 return "DW_TAG_thrown_type";
4340 case DW_TAG_try_block:
4341 return "DW_TAG_try_block";
4342 case DW_TAG_variant_part:
4343 return "DW_TAG_variant_part";
4344 case DW_TAG_variable:
4345 return "DW_TAG_variable";
4346 case DW_TAG_volatile_type:
4347 return "DW_TAG_volatile_type";
4348 case DW_TAG_imported_module:
4349 return "DW_TAG_imported_module";
4350 case DW_TAG_MIPS_loop:
4351 return "DW_TAG_MIPS_loop";
4352 case DW_TAG_format_label:
4353 return "DW_TAG_format_label";
4354 case DW_TAG_function_template:
4355 return "DW_TAG_function_template";
4356 case DW_TAG_class_template:
4357 return "DW_TAG_class_template";
4358 case DW_TAG_GNU_BINCL:
4359 return "DW_TAG_GNU_BINCL";
4360 case DW_TAG_GNU_EINCL:
4361 return "DW_TAG_GNU_EINCL";
4362 default:
4363 return "DW_TAG_<unknown>";
4367 /* Convert a DWARF attribute code into its string name. */
4369 static const char *
4370 dwarf_attr_name (unsigned int attr)
4372 switch (attr)
4374 case DW_AT_sibling:
4375 return "DW_AT_sibling";
4376 case DW_AT_location:
4377 return "DW_AT_location";
4378 case DW_AT_name:
4379 return "DW_AT_name";
4380 case DW_AT_ordering:
4381 return "DW_AT_ordering";
4382 case DW_AT_subscr_data:
4383 return "DW_AT_subscr_data";
4384 case DW_AT_byte_size:
4385 return "DW_AT_byte_size";
4386 case DW_AT_bit_offset:
4387 return "DW_AT_bit_offset";
4388 case DW_AT_bit_size:
4389 return "DW_AT_bit_size";
4390 case DW_AT_element_list:
4391 return "DW_AT_element_list";
4392 case DW_AT_stmt_list:
4393 return "DW_AT_stmt_list";
4394 case DW_AT_low_pc:
4395 return "DW_AT_low_pc";
4396 case DW_AT_high_pc:
4397 return "DW_AT_high_pc";
4398 case DW_AT_language:
4399 return "DW_AT_language";
4400 case DW_AT_member:
4401 return "DW_AT_member";
4402 case DW_AT_discr:
4403 return "DW_AT_discr";
4404 case DW_AT_discr_value:
4405 return "DW_AT_discr_value";
4406 case DW_AT_visibility:
4407 return "DW_AT_visibility";
4408 case DW_AT_import:
4409 return "DW_AT_import";
4410 case DW_AT_string_length:
4411 return "DW_AT_string_length";
4412 case DW_AT_common_reference:
4413 return "DW_AT_common_reference";
4414 case DW_AT_comp_dir:
4415 return "DW_AT_comp_dir";
4416 case DW_AT_const_value:
4417 return "DW_AT_const_value";
4418 case DW_AT_containing_type:
4419 return "DW_AT_containing_type";
4420 case DW_AT_default_value:
4421 return "DW_AT_default_value";
4422 case DW_AT_inline:
4423 return "DW_AT_inline";
4424 case DW_AT_is_optional:
4425 return "DW_AT_is_optional";
4426 case DW_AT_lower_bound:
4427 return "DW_AT_lower_bound";
4428 case DW_AT_producer:
4429 return "DW_AT_producer";
4430 case DW_AT_prototyped:
4431 return "DW_AT_prototyped";
4432 case DW_AT_return_addr:
4433 return "DW_AT_return_addr";
4434 case DW_AT_start_scope:
4435 return "DW_AT_start_scope";
4436 case DW_AT_stride_size:
4437 return "DW_AT_stride_size";
4438 case DW_AT_upper_bound:
4439 return "DW_AT_upper_bound";
4440 case DW_AT_abstract_origin:
4441 return "DW_AT_abstract_origin";
4442 case DW_AT_accessibility:
4443 return "DW_AT_accessibility";
4444 case DW_AT_address_class:
4445 return "DW_AT_address_class";
4446 case DW_AT_artificial:
4447 return "DW_AT_artificial";
4448 case DW_AT_base_types:
4449 return "DW_AT_base_types";
4450 case DW_AT_calling_convention:
4451 return "DW_AT_calling_convention";
4452 case DW_AT_count:
4453 return "DW_AT_count";
4454 case DW_AT_data_member_location:
4455 return "DW_AT_data_member_location";
4456 case DW_AT_decl_column:
4457 return "DW_AT_decl_column";
4458 case DW_AT_decl_file:
4459 return "DW_AT_decl_file";
4460 case DW_AT_decl_line:
4461 return "DW_AT_decl_line";
4462 case DW_AT_declaration:
4463 return "DW_AT_declaration";
4464 case DW_AT_discr_list:
4465 return "DW_AT_discr_list";
4466 case DW_AT_encoding:
4467 return "DW_AT_encoding";
4468 case DW_AT_external:
4469 return "DW_AT_external";
4470 case DW_AT_frame_base:
4471 return "DW_AT_frame_base";
4472 case DW_AT_friend:
4473 return "DW_AT_friend";
4474 case DW_AT_identifier_case:
4475 return "DW_AT_identifier_case";
4476 case DW_AT_macro_info:
4477 return "DW_AT_macro_info";
4478 case DW_AT_namelist_items:
4479 return "DW_AT_namelist_items";
4480 case DW_AT_priority:
4481 return "DW_AT_priority";
4482 case DW_AT_segment:
4483 return "DW_AT_segment";
4484 case DW_AT_specification:
4485 return "DW_AT_specification";
4486 case DW_AT_static_link:
4487 return "DW_AT_static_link";
4488 case DW_AT_type:
4489 return "DW_AT_type";
4490 case DW_AT_use_location:
4491 return "DW_AT_use_location";
4492 case DW_AT_variable_parameter:
4493 return "DW_AT_variable_parameter";
4494 case DW_AT_virtuality:
4495 return "DW_AT_virtuality";
4496 case DW_AT_vtable_elem_location:
4497 return "DW_AT_vtable_elem_location";
4499 case DW_AT_allocated:
4500 return "DW_AT_allocated";
4501 case DW_AT_associated:
4502 return "DW_AT_associated";
4503 case DW_AT_data_location:
4504 return "DW_AT_data_location";
4505 case DW_AT_stride:
4506 return "DW_AT_stride";
4507 case DW_AT_entry_pc:
4508 return "DW_AT_entry_pc";
4509 case DW_AT_use_UTF8:
4510 return "DW_AT_use_UTF8";
4511 case DW_AT_extension:
4512 return "DW_AT_extension";
4513 case DW_AT_ranges:
4514 return "DW_AT_ranges";
4515 case DW_AT_trampoline:
4516 return "DW_AT_trampoline";
4517 case DW_AT_call_column:
4518 return "DW_AT_call_column";
4519 case DW_AT_call_file:
4520 return "DW_AT_call_file";
4521 case DW_AT_call_line:
4522 return "DW_AT_call_line";
4524 case DW_AT_MIPS_fde:
4525 return "DW_AT_MIPS_fde";
4526 case DW_AT_MIPS_loop_begin:
4527 return "DW_AT_MIPS_loop_begin";
4528 case DW_AT_MIPS_tail_loop_begin:
4529 return "DW_AT_MIPS_tail_loop_begin";
4530 case DW_AT_MIPS_epilog_begin:
4531 return "DW_AT_MIPS_epilog_begin";
4532 case DW_AT_MIPS_loop_unroll_factor:
4533 return "DW_AT_MIPS_loop_unroll_factor";
4534 case DW_AT_MIPS_software_pipeline_depth:
4535 return "DW_AT_MIPS_software_pipeline_depth";
4536 case DW_AT_MIPS_linkage_name:
4537 return "DW_AT_MIPS_linkage_name";
4538 case DW_AT_MIPS_stride:
4539 return "DW_AT_MIPS_stride";
4540 case DW_AT_MIPS_abstract_name:
4541 return "DW_AT_MIPS_abstract_name";
4542 case DW_AT_MIPS_clone_origin:
4543 return "DW_AT_MIPS_clone_origin";
4544 case DW_AT_MIPS_has_inlines:
4545 return "DW_AT_MIPS_has_inlines";
4547 case DW_AT_sf_names:
4548 return "DW_AT_sf_names";
4549 case DW_AT_src_info:
4550 return "DW_AT_src_info";
4551 case DW_AT_mac_info:
4552 return "DW_AT_mac_info";
4553 case DW_AT_src_coords:
4554 return "DW_AT_src_coords";
4555 case DW_AT_body_begin:
4556 return "DW_AT_body_begin";
4557 case DW_AT_body_end:
4558 return "DW_AT_body_end";
4559 case DW_AT_GNU_vector:
4560 return "DW_AT_GNU_vector";
4562 case DW_AT_VMS_rtnbeg_pd_address:
4563 return "DW_AT_VMS_rtnbeg_pd_address";
4565 default:
4566 return "DW_AT_<unknown>";
4570 /* Convert a DWARF value form code into its string name. */
4572 static const char *
4573 dwarf_form_name (unsigned int form)
4575 switch (form)
4577 case DW_FORM_addr:
4578 return "DW_FORM_addr";
4579 case DW_FORM_block2:
4580 return "DW_FORM_block2";
4581 case DW_FORM_block4:
4582 return "DW_FORM_block4";
4583 case DW_FORM_data2:
4584 return "DW_FORM_data2";
4585 case DW_FORM_data4:
4586 return "DW_FORM_data4";
4587 case DW_FORM_data8:
4588 return "DW_FORM_data8";
4589 case DW_FORM_string:
4590 return "DW_FORM_string";
4591 case DW_FORM_block:
4592 return "DW_FORM_block";
4593 case DW_FORM_block1:
4594 return "DW_FORM_block1";
4595 case DW_FORM_data1:
4596 return "DW_FORM_data1";
4597 case DW_FORM_flag:
4598 return "DW_FORM_flag";
4599 case DW_FORM_sdata:
4600 return "DW_FORM_sdata";
4601 case DW_FORM_strp:
4602 return "DW_FORM_strp";
4603 case DW_FORM_udata:
4604 return "DW_FORM_udata";
4605 case DW_FORM_ref_addr:
4606 return "DW_FORM_ref_addr";
4607 case DW_FORM_ref1:
4608 return "DW_FORM_ref1";
4609 case DW_FORM_ref2:
4610 return "DW_FORM_ref2";
4611 case DW_FORM_ref4:
4612 return "DW_FORM_ref4";
4613 case DW_FORM_ref8:
4614 return "DW_FORM_ref8";
4615 case DW_FORM_ref_udata:
4616 return "DW_FORM_ref_udata";
4617 case DW_FORM_indirect:
4618 return "DW_FORM_indirect";
4619 default:
4620 return "DW_FORM_<unknown>";
4624 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4625 instance of an inlined instance of a decl which is local to an inline
4626 function, so we have to trace all of the way back through the origin chain
4627 to find out what sort of node actually served as the original seed for the
4628 given block. */
4630 static tree
4631 decl_ultimate_origin (tree decl)
4633 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4634 nodes in the function to point to themselves; ignore that if
4635 we're trying to output the abstract instance of this function. */
4636 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4637 return NULL_TREE;
4639 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4640 most distant ancestor, this should never happen. */
4641 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4643 return DECL_ABSTRACT_ORIGIN (decl);
4646 /* Determine the "ultimate origin" of a block. The block may be an inlined
4647 instance of an inlined instance of a block which is local to an inline
4648 function, so we have to trace all of the way back through the origin chain
4649 to find out what sort of node actually served as the original seed for the
4650 given block. */
4652 static tree
4653 block_ultimate_origin (tree block)
4655 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4657 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4658 nodes in the function to point to themselves; ignore that if
4659 we're trying to output the abstract instance of this function. */
4660 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4661 return NULL_TREE;
4663 if (immediate_origin == NULL_TREE)
4664 return NULL_TREE;
4665 else
4667 tree ret_val;
4668 tree lookahead = immediate_origin;
4672 ret_val = lookahead;
4673 lookahead = (TREE_CODE (ret_val) == BLOCK
4674 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4676 while (lookahead != NULL && lookahead != ret_val);
4678 /* The block's abstract origin chain may not be the *ultimate* origin of
4679 the block. It could lead to a DECL that has an abstract origin set.
4680 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4681 will give us if it has one). Note that DECL's abstract origins are
4682 supposed to be the most distant ancestor (or so decl_ultimate_origin
4683 claims), so we don't need to loop following the DECL origins. */
4684 if (DECL_P (ret_val))
4685 return DECL_ORIGIN (ret_val);
4687 return ret_val;
4691 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4692 of a virtual function may refer to a base class, so we check the 'this'
4693 parameter. */
4695 static tree
4696 decl_class_context (tree decl)
4698 tree context = NULL_TREE;
4700 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4701 context = DECL_CONTEXT (decl);
4702 else
4703 context = TYPE_MAIN_VARIANT
4704 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4706 if (context && !TYPE_P (context))
4707 context = NULL_TREE;
4709 return context;
4712 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4713 addition order, and correct that in reverse_all_dies. */
4715 static inline void
4716 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4718 if (die != NULL && attr != NULL)
4720 attr->dw_attr_next = die->die_attr;
4721 die->die_attr = attr;
4725 static inline enum dw_val_class
4726 AT_class (dw_attr_ref a)
4728 return a->dw_attr_val.val_class;
4731 /* Add a flag value attribute to a DIE. */
4733 static inline void
4734 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4736 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4738 attr->dw_attr_next = NULL;
4739 attr->dw_attr = attr_kind;
4740 attr->dw_attr_val.val_class = dw_val_class_flag;
4741 attr->dw_attr_val.v.val_flag = flag;
4742 add_dwarf_attr (die, attr);
4745 static inline unsigned
4746 AT_flag (dw_attr_ref a)
4748 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4749 return a->dw_attr_val.v.val_flag;
4752 /* Add a signed integer attribute value to a DIE. */
4754 static inline void
4755 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4757 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4759 attr->dw_attr_next = NULL;
4760 attr->dw_attr = attr_kind;
4761 attr->dw_attr_val.val_class = dw_val_class_const;
4762 attr->dw_attr_val.v.val_int = int_val;
4763 add_dwarf_attr (die, attr);
4766 static inline HOST_WIDE_INT
4767 AT_int (dw_attr_ref a)
4769 gcc_assert (a && AT_class (a) == dw_val_class_const);
4770 return a->dw_attr_val.v.val_int;
4773 /* Add an unsigned integer attribute value to a DIE. */
4775 static inline void
4776 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4777 unsigned HOST_WIDE_INT unsigned_val)
4779 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4781 attr->dw_attr_next = NULL;
4782 attr->dw_attr = attr_kind;
4783 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4784 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4785 add_dwarf_attr (die, attr);
4788 static inline unsigned HOST_WIDE_INT
4789 AT_unsigned (dw_attr_ref a)
4791 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4792 return a->dw_attr_val.v.val_unsigned;
4795 /* Add an unsigned double integer attribute value to a DIE. */
4797 static inline void
4798 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4799 long unsigned int val_hi, long unsigned int val_low)
4801 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4803 attr->dw_attr_next = NULL;
4804 attr->dw_attr = attr_kind;
4805 attr->dw_attr_val.val_class = dw_val_class_long_long;
4806 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4807 attr->dw_attr_val.v.val_long_long.low = val_low;
4808 add_dwarf_attr (die, attr);
4811 /* Add a floating point attribute value to a DIE and return it. */
4813 static inline void
4814 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4815 unsigned int length, unsigned int elt_size, unsigned char *array)
4817 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4819 attr->dw_attr_next = NULL;
4820 attr->dw_attr = attr_kind;
4821 attr->dw_attr_val.val_class = dw_val_class_vec;
4822 attr->dw_attr_val.v.val_vec.length = length;
4823 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4824 attr->dw_attr_val.v.val_vec.array = array;
4825 add_dwarf_attr (die, attr);
4828 /* Hash and equality functions for debug_str_hash. */
4830 static hashval_t
4831 debug_str_do_hash (const void *x)
4833 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4836 static int
4837 debug_str_eq (const void *x1, const void *x2)
4839 return strcmp ((((const struct indirect_string_node *)x1)->str),
4840 (const char *)x2) == 0;
4843 /* Add a string attribute value to a DIE. */
4845 static inline void
4846 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4848 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4849 struct indirect_string_node *node;
4850 void **slot;
4852 if (! debug_str_hash)
4853 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4854 debug_str_eq, NULL);
4856 slot = htab_find_slot_with_hash (debug_str_hash, str,
4857 htab_hash_string (str), INSERT);
4858 if (*slot == NULL)
4859 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4860 node = (struct indirect_string_node *) *slot;
4861 node->str = ggc_strdup (str);
4862 node->refcount++;
4864 attr->dw_attr_next = NULL;
4865 attr->dw_attr = attr_kind;
4866 attr->dw_attr_val.val_class = dw_val_class_str;
4867 attr->dw_attr_val.v.val_str = node;
4868 add_dwarf_attr (die, attr);
4871 static inline const char *
4872 AT_string (dw_attr_ref a)
4874 gcc_assert (a && AT_class (a) == dw_val_class_str);
4875 return a->dw_attr_val.v.val_str->str;
4878 /* Find out whether a string should be output inline in DIE
4879 or out-of-line in .debug_str section. */
4881 static int
4882 AT_string_form (dw_attr_ref a)
4884 struct indirect_string_node *node;
4885 unsigned int len;
4886 char label[32];
4888 gcc_assert (a && AT_class (a) == dw_val_class_str);
4890 node = a->dw_attr_val.v.val_str;
4891 if (node->form)
4892 return node->form;
4894 len = strlen (node->str) + 1;
4896 /* If the string is shorter or equal to the size of the reference, it is
4897 always better to put it inline. */
4898 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4899 return node->form = DW_FORM_string;
4901 /* If we cannot expect the linker to merge strings in .debug_str
4902 section, only put it into .debug_str if it is worth even in this
4903 single module. */
4904 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4905 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4906 return node->form = DW_FORM_string;
4908 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4909 ++dw2_string_counter;
4910 node->label = xstrdup (label);
4912 return node->form = DW_FORM_strp;
4915 /* Add a DIE reference attribute value to a DIE. */
4917 static inline void
4918 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4920 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4922 attr->dw_attr_next = NULL;
4923 attr->dw_attr = attr_kind;
4924 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4925 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4926 attr->dw_attr_val.v.val_die_ref.external = 0;
4927 add_dwarf_attr (die, attr);
4930 /* Add an AT_specification attribute to a DIE, and also make the back
4931 pointer from the specification to the definition. */
4933 static inline void
4934 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4936 add_AT_die_ref (die, DW_AT_specification, targ_die);
4937 gcc_assert (!targ_die->die_definition);
4938 targ_die->die_definition = die;
4941 static inline dw_die_ref
4942 AT_ref (dw_attr_ref a)
4944 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4945 return a->dw_attr_val.v.val_die_ref.die;
4948 static inline int
4949 AT_ref_external (dw_attr_ref a)
4951 if (a && AT_class (a) == dw_val_class_die_ref)
4952 return a->dw_attr_val.v.val_die_ref.external;
4954 return 0;
4957 static inline void
4958 set_AT_ref_external (dw_attr_ref a, int i)
4960 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4961 a->dw_attr_val.v.val_die_ref.external = i;
4964 /* Add an FDE reference attribute value to a DIE. */
4966 static inline void
4967 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4969 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4971 attr->dw_attr_next = NULL;
4972 attr->dw_attr = attr_kind;
4973 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4974 attr->dw_attr_val.v.val_fde_index = targ_fde;
4975 add_dwarf_attr (die, attr);
4978 /* Add a location description attribute value to a DIE. */
4980 static inline void
4981 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4983 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4985 attr->dw_attr_next = NULL;
4986 attr->dw_attr = attr_kind;
4987 attr->dw_attr_val.val_class = dw_val_class_loc;
4988 attr->dw_attr_val.v.val_loc = loc;
4989 add_dwarf_attr (die, attr);
4992 static inline dw_loc_descr_ref
4993 AT_loc (dw_attr_ref a)
4995 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4996 return a->dw_attr_val.v.val_loc;
4999 static inline void
5000 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5002 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5004 attr->dw_attr_next = NULL;
5005 attr->dw_attr = attr_kind;
5006 attr->dw_attr_val.val_class = dw_val_class_loc_list;
5007 attr->dw_attr_val.v.val_loc_list = loc_list;
5008 add_dwarf_attr (die, attr);
5009 have_location_lists = 1;
5012 static inline dw_loc_list_ref
5013 AT_loc_list (dw_attr_ref a)
5015 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5016 return a->dw_attr_val.v.val_loc_list;
5019 /* Add an address constant attribute value to a DIE. */
5021 static inline void
5022 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5024 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5026 attr->dw_attr_next = NULL;
5027 attr->dw_attr = attr_kind;
5028 attr->dw_attr_val.val_class = dw_val_class_addr;
5029 attr->dw_attr_val.v.val_addr = addr;
5030 add_dwarf_attr (die, attr);
5033 static inline rtx
5034 AT_addr (dw_attr_ref a)
5036 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5037 return a->dw_attr_val.v.val_addr;
5040 /* Add a label identifier attribute value to a DIE. */
5042 static inline void
5043 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5045 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5047 attr->dw_attr_next = NULL;
5048 attr->dw_attr = attr_kind;
5049 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5050 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5051 add_dwarf_attr (die, attr);
5054 /* Add a section offset attribute value to a DIE. */
5056 static inline void
5057 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5059 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5061 attr->dw_attr_next = NULL;
5062 attr->dw_attr = attr_kind;
5063 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5064 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5065 add_dwarf_attr (die, attr);
5068 /* Add an offset attribute value to a DIE. */
5070 static inline void
5071 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5072 unsigned HOST_WIDE_INT offset)
5074 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5076 attr->dw_attr_next = NULL;
5077 attr->dw_attr = attr_kind;
5078 attr->dw_attr_val.val_class = dw_val_class_offset;
5079 attr->dw_attr_val.v.val_offset = offset;
5080 add_dwarf_attr (die, attr);
5083 /* Add an range_list attribute value to a DIE. */
5085 static void
5086 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5087 long unsigned int offset)
5089 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5091 attr->dw_attr_next = NULL;
5092 attr->dw_attr = attr_kind;
5093 attr->dw_attr_val.val_class = dw_val_class_range_list;
5094 attr->dw_attr_val.v.val_offset = offset;
5095 add_dwarf_attr (die, attr);
5098 static inline const char *
5099 AT_lbl (dw_attr_ref a)
5101 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5102 || AT_class (a) == dw_val_class_lbl_offset));
5103 return a->dw_attr_val.v.val_lbl_id;
5106 /* Get the attribute of type attr_kind. */
5108 static dw_attr_ref
5109 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5111 dw_attr_ref a;
5112 dw_die_ref spec = NULL;
5114 if (die != NULL)
5116 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5117 if (a->dw_attr == attr_kind)
5118 return a;
5119 else if (a->dw_attr == DW_AT_specification
5120 || a->dw_attr == DW_AT_abstract_origin)
5121 spec = AT_ref (a);
5123 if (spec)
5124 return get_AT (spec, attr_kind);
5127 return NULL;
5130 /* Return the "low pc" attribute value, typically associated with a subprogram
5131 DIE. Return null if the "low pc" attribute is either not present, or if it
5132 cannot be represented as an assembler label identifier. */
5134 static inline const char *
5135 get_AT_low_pc (dw_die_ref die)
5137 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5139 return a ? AT_lbl (a) : NULL;
5142 /* Return the "high pc" attribute value, typically associated with a subprogram
5143 DIE. Return null if the "high pc" attribute is either not present, or if it
5144 cannot be represented as an assembler label identifier. */
5146 static inline const char *
5147 get_AT_hi_pc (dw_die_ref die)
5149 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5151 return a ? AT_lbl (a) : NULL;
5154 /* Return the value of the string attribute designated by ATTR_KIND, or
5155 NULL if it is not present. */
5157 static inline const char *
5158 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5160 dw_attr_ref a = get_AT (die, attr_kind);
5162 return a ? AT_string (a) : NULL;
5165 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5166 if it is not present. */
5168 static inline int
5169 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5171 dw_attr_ref a = get_AT (die, attr_kind);
5173 return a ? AT_flag (a) : 0;
5176 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5177 if it is not present. */
5179 static inline unsigned
5180 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5182 dw_attr_ref a = get_AT (die, attr_kind);
5184 return a ? AT_unsigned (a) : 0;
5187 static inline dw_die_ref
5188 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5190 dw_attr_ref a = get_AT (die, attr_kind);
5192 return a ? AT_ref (a) : NULL;
5195 /* Return TRUE if the language is C or C++. */
5197 static inline bool
5198 is_c_family (void)
5200 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5202 return (lang == DW_LANG_C || lang == DW_LANG_C89
5203 || lang == DW_LANG_C_plus_plus);
5206 /* Return TRUE if the language is C++. */
5208 static inline bool
5209 is_cxx (void)
5211 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5212 == DW_LANG_C_plus_plus);
5215 /* Return TRUE if the language is Fortran. */
5217 static inline bool
5218 is_fortran (void)
5220 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5222 return (lang == DW_LANG_Fortran77
5223 || lang == DW_LANG_Fortran90
5224 || lang == DW_LANG_Fortran95);
5227 /* Return TRUE if the language is Java. */
5229 static inline bool
5230 is_java (void)
5232 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5234 return lang == DW_LANG_Java;
5237 /* Return TRUE if the language is Ada. */
5239 static inline bool
5240 is_ada (void)
5242 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5244 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5247 /* Free up the memory used by A. */
5249 static inline void free_AT (dw_attr_ref);
5250 static inline void
5251 free_AT (dw_attr_ref a)
5253 if (AT_class (a) == dw_val_class_str)
5254 if (a->dw_attr_val.v.val_str->refcount)
5255 a->dw_attr_val.v.val_str->refcount--;
5258 /* Remove the specified attribute if present. */
5260 static void
5261 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5263 dw_attr_ref *p;
5264 dw_attr_ref removed = NULL;
5266 if (die != NULL)
5268 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5269 if ((*p)->dw_attr == attr_kind)
5271 removed = *p;
5272 *p = (*p)->dw_attr_next;
5273 break;
5276 if (removed != 0)
5277 free_AT (removed);
5281 /* Remove child die whose die_tag is specified tag. */
5283 static void
5284 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5286 dw_die_ref current, prev, next;
5287 current = die->die_child;
5288 prev = NULL;
5289 while (current != NULL)
5291 if (current->die_tag == tag)
5293 next = current->die_sib;
5294 if (prev == NULL)
5295 die->die_child = next;
5296 else
5297 prev->die_sib = next;
5298 free_die (current);
5299 current = next;
5301 else
5303 prev = current;
5304 current = current->die_sib;
5309 /* Free up the memory used by DIE. */
5311 static inline void
5312 free_die (dw_die_ref die)
5314 remove_children (die);
5317 /* Discard the children of this DIE. */
5319 static void
5320 remove_children (dw_die_ref die)
5322 dw_die_ref child_die = die->die_child;
5324 die->die_child = NULL;
5326 while (child_die != NULL)
5328 dw_die_ref tmp_die = child_die;
5329 dw_attr_ref a;
5331 child_die = child_die->die_sib;
5333 for (a = tmp_die->die_attr; a != NULL;)
5335 dw_attr_ref tmp_a = a;
5337 a = a->dw_attr_next;
5338 free_AT (tmp_a);
5341 free_die (tmp_die);
5345 /* Add a child DIE below its parent. We build the lists up in reverse
5346 addition order, and correct that in reverse_all_dies. */
5348 static inline void
5349 add_child_die (dw_die_ref die, dw_die_ref child_die)
5351 if (die != NULL && child_die != NULL)
5353 gcc_assert (die != child_die);
5355 child_die->die_parent = die;
5356 child_die->die_sib = die->die_child;
5357 die->die_child = child_die;
5361 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5362 is the specification, to the front of PARENT's list of children. */
5364 static void
5365 splice_child_die (dw_die_ref parent, dw_die_ref child)
5367 dw_die_ref *p;
5369 /* We want the declaration DIE from inside the class, not the
5370 specification DIE at toplevel. */
5371 if (child->die_parent != parent)
5373 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5375 if (tmp)
5376 child = tmp;
5379 gcc_assert (child->die_parent == parent
5380 || (child->die_parent
5381 == get_AT_ref (parent, DW_AT_specification)));
5383 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5384 if (*p == child)
5386 *p = child->die_sib;
5387 break;
5390 child->die_parent = parent;
5391 child->die_sib = parent->die_child;
5392 parent->die_child = child;
5395 /* Return a pointer to a newly created DIE node. */
5397 static inline dw_die_ref
5398 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5400 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5402 die->die_tag = tag_value;
5404 if (parent_die != NULL)
5405 add_child_die (parent_die, die);
5406 else
5408 limbo_die_node *limbo_node;
5410 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5411 limbo_node->die = die;
5412 limbo_node->created_for = t;
5413 limbo_node->next = limbo_die_list;
5414 limbo_die_list = limbo_node;
5417 return die;
5420 /* Return the DIE associated with the given type specifier. */
5422 static inline dw_die_ref
5423 lookup_type_die (tree type)
5425 return TYPE_SYMTAB_DIE (type);
5428 /* Equate a DIE to a given type specifier. */
5430 static inline void
5431 equate_type_number_to_die (tree type, dw_die_ref type_die)
5433 TYPE_SYMTAB_DIE (type) = type_die;
5436 /* Returns a hash value for X (which really is a die_struct). */
5438 static hashval_t
5439 decl_die_table_hash (const void *x)
5441 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5444 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5446 static int
5447 decl_die_table_eq (const void *x, const void *y)
5449 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5452 /* Return the DIE associated with a given declaration. */
5454 static inline dw_die_ref
5455 lookup_decl_die (tree decl)
5457 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5460 /* Returns a hash value for X (which really is a var_loc_list). */
5462 static hashval_t
5463 decl_loc_table_hash (const void *x)
5465 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5468 /* Return nonzero if decl_id of var_loc_list X is the same as
5469 UID of decl *Y. */
5471 static int
5472 decl_loc_table_eq (const void *x, const void *y)
5474 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5477 /* Return the var_loc list associated with a given declaration. */
5479 static inline var_loc_list *
5480 lookup_decl_loc (tree decl)
5482 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5485 /* Equate a DIE to a particular declaration. */
5487 static void
5488 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5490 unsigned int decl_id = DECL_UID (decl);
5491 void **slot;
5493 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5494 *slot = decl_die;
5495 decl_die->decl_id = decl_id;
5498 /* Add a variable location node to the linked list for DECL. */
5500 static void
5501 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5503 unsigned int decl_id = DECL_UID (decl);
5504 var_loc_list *temp;
5505 void **slot;
5507 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5508 if (*slot == NULL)
5510 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5511 temp->decl_id = decl_id;
5512 *slot = temp;
5514 else
5515 temp = *slot;
5517 if (temp->last)
5519 /* If the current location is the same as the end of the list,
5520 we have nothing to do. */
5521 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5522 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5524 /* Add LOC to the end of list and update LAST. */
5525 temp->last->next = loc;
5526 temp->last = loc;
5529 /* Do not add empty location to the beginning of the list. */
5530 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5532 temp->first = loc;
5533 temp->last = loc;
5537 /* Keep track of the number of spaces used to indent the
5538 output of the debugging routines that print the structure of
5539 the DIE internal representation. */
5540 static int print_indent;
5542 /* Indent the line the number of spaces given by print_indent. */
5544 static inline void
5545 print_spaces (FILE *outfile)
5547 fprintf (outfile, "%*s", print_indent, "");
5550 /* Print the information associated with a given DIE, and its children.
5551 This routine is a debugging aid only. */
5553 static void
5554 print_die (dw_die_ref die, FILE *outfile)
5556 dw_attr_ref a;
5557 dw_die_ref c;
5559 print_spaces (outfile);
5560 fprintf (outfile, "DIE %4lu: %s\n",
5561 die->die_offset, dwarf_tag_name (die->die_tag));
5562 print_spaces (outfile);
5563 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5564 fprintf (outfile, " offset: %lu\n", die->die_offset);
5566 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5568 print_spaces (outfile);
5569 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5571 switch (AT_class (a))
5573 case dw_val_class_addr:
5574 fprintf (outfile, "address");
5575 break;
5576 case dw_val_class_offset:
5577 fprintf (outfile, "offset");
5578 break;
5579 case dw_val_class_loc:
5580 fprintf (outfile, "location descriptor");
5581 break;
5582 case dw_val_class_loc_list:
5583 fprintf (outfile, "location list -> label:%s",
5584 AT_loc_list (a)->ll_symbol);
5585 break;
5586 case dw_val_class_range_list:
5587 fprintf (outfile, "range list");
5588 break;
5589 case dw_val_class_const:
5590 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5591 break;
5592 case dw_val_class_unsigned_const:
5593 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5594 break;
5595 case dw_val_class_long_long:
5596 fprintf (outfile, "constant (%lu,%lu)",
5597 a->dw_attr_val.v.val_long_long.hi,
5598 a->dw_attr_val.v.val_long_long.low);
5599 break;
5600 case dw_val_class_vec:
5601 fprintf (outfile, "floating-point or vector constant");
5602 break;
5603 case dw_val_class_flag:
5604 fprintf (outfile, "%u", AT_flag (a));
5605 break;
5606 case dw_val_class_die_ref:
5607 if (AT_ref (a) != NULL)
5609 if (AT_ref (a)->die_symbol)
5610 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5611 else
5612 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5614 else
5615 fprintf (outfile, "die -> <null>");
5616 break;
5617 case dw_val_class_lbl_id:
5618 case dw_val_class_lbl_offset:
5619 fprintf (outfile, "label: %s", AT_lbl (a));
5620 break;
5621 case dw_val_class_str:
5622 if (AT_string (a) != NULL)
5623 fprintf (outfile, "\"%s\"", AT_string (a));
5624 else
5625 fprintf (outfile, "<null>");
5626 break;
5627 default:
5628 break;
5631 fprintf (outfile, "\n");
5634 if (die->die_child != NULL)
5636 print_indent += 4;
5637 for (c = die->die_child; c != NULL; c = c->die_sib)
5638 print_die (c, outfile);
5640 print_indent -= 4;
5642 if (print_indent == 0)
5643 fprintf (outfile, "\n");
5646 /* Print the contents of the source code line number correspondence table.
5647 This routine is a debugging aid only. */
5649 static void
5650 print_dwarf_line_table (FILE *outfile)
5652 unsigned i;
5653 dw_line_info_ref line_info;
5655 fprintf (outfile, "\n\nDWARF source line information\n");
5656 for (i = 1; i < line_info_table_in_use; i++)
5658 line_info = &line_info_table[i];
5659 fprintf (outfile, "%5d: ", i);
5660 fprintf (outfile, "%-20s",
5661 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5662 fprintf (outfile, "%6ld", line_info->dw_line_num);
5663 fprintf (outfile, "\n");
5666 fprintf (outfile, "\n\n");
5669 /* Print the information collected for a given DIE. */
5671 void
5672 debug_dwarf_die (dw_die_ref die)
5674 print_die (die, stderr);
5677 /* Print all DWARF information collected for the compilation unit.
5678 This routine is a debugging aid only. */
5680 void
5681 debug_dwarf (void)
5683 print_indent = 0;
5684 print_die (comp_unit_die, stderr);
5685 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5686 print_dwarf_line_table (stderr);
5689 /* We build up the lists of children and attributes by pushing new ones
5690 onto the beginning of the list. Reverse the lists for DIE so that
5691 they are in order of addition. */
5693 static void
5694 reverse_die_lists (dw_die_ref die)
5696 dw_die_ref c, cp, cn;
5697 dw_attr_ref a, ap, an;
5699 for (a = die->die_attr, ap = 0; a; a = an)
5701 an = a->dw_attr_next;
5702 a->dw_attr_next = ap;
5703 ap = a;
5706 die->die_attr = ap;
5708 for (c = die->die_child, cp = 0; c; c = cn)
5710 cn = c->die_sib;
5711 c->die_sib = cp;
5712 cp = c;
5715 die->die_child = cp;
5718 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5719 reverse all dies in add_sibling_attributes, which runs through all the dies,
5720 it would reverse all the dies. Now, however, since we don't call
5721 reverse_die_lists in add_sibling_attributes, we need a routine to
5722 recursively reverse all the dies. This is that routine. */
5724 static void
5725 reverse_all_dies (dw_die_ref die)
5727 dw_die_ref c;
5729 reverse_die_lists (die);
5731 for (c = die->die_child; c; c = c->die_sib)
5732 reverse_all_dies (c);
5735 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5736 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5737 DIE that marks the start of the DIEs for this include file. */
5739 static dw_die_ref
5740 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5742 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5743 dw_die_ref new_unit = gen_compile_unit_die (filename);
5745 new_unit->die_sib = old_unit;
5746 return new_unit;
5749 /* Close an include-file CU and reopen the enclosing one. */
5751 static dw_die_ref
5752 pop_compile_unit (dw_die_ref old_unit)
5754 dw_die_ref new_unit = old_unit->die_sib;
5756 old_unit->die_sib = NULL;
5757 return new_unit;
5760 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5761 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5763 /* Calculate the checksum of a location expression. */
5765 static inline void
5766 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5768 CHECKSUM (loc->dw_loc_opc);
5769 CHECKSUM (loc->dw_loc_oprnd1);
5770 CHECKSUM (loc->dw_loc_oprnd2);
5773 /* Calculate the checksum of an attribute. */
5775 static void
5776 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5778 dw_loc_descr_ref loc;
5779 rtx r;
5781 CHECKSUM (at->dw_attr);
5783 /* We don't care about differences in file numbering. */
5784 if (at->dw_attr == DW_AT_decl_file
5785 /* Or that this was compiled with a different compiler snapshot; if
5786 the output is the same, that's what matters. */
5787 || at->dw_attr == DW_AT_producer)
5788 return;
5790 switch (AT_class (at))
5792 case dw_val_class_const:
5793 CHECKSUM (at->dw_attr_val.v.val_int);
5794 break;
5795 case dw_val_class_unsigned_const:
5796 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5797 break;
5798 case dw_val_class_long_long:
5799 CHECKSUM (at->dw_attr_val.v.val_long_long);
5800 break;
5801 case dw_val_class_vec:
5802 CHECKSUM (at->dw_attr_val.v.val_vec);
5803 break;
5804 case dw_val_class_flag:
5805 CHECKSUM (at->dw_attr_val.v.val_flag);
5806 break;
5807 case dw_val_class_str:
5808 CHECKSUM_STRING (AT_string (at));
5809 break;
5811 case dw_val_class_addr:
5812 r = AT_addr (at);
5813 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5814 CHECKSUM_STRING (XSTR (r, 0));
5815 break;
5817 case dw_val_class_offset:
5818 CHECKSUM (at->dw_attr_val.v.val_offset);
5819 break;
5821 case dw_val_class_loc:
5822 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5823 loc_checksum (loc, ctx);
5824 break;
5826 case dw_val_class_die_ref:
5827 die_checksum (AT_ref (at), ctx, mark);
5828 break;
5830 case dw_val_class_fde_ref:
5831 case dw_val_class_lbl_id:
5832 case dw_val_class_lbl_offset:
5833 break;
5835 default:
5836 break;
5840 /* Calculate the checksum of a DIE. */
5842 static void
5843 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5845 dw_die_ref c;
5846 dw_attr_ref a;
5848 /* To avoid infinite recursion. */
5849 if (die->die_mark)
5851 CHECKSUM (die->die_mark);
5852 return;
5854 die->die_mark = ++(*mark);
5856 CHECKSUM (die->die_tag);
5858 for (a = die->die_attr; a; a = a->dw_attr_next)
5859 attr_checksum (a, ctx, mark);
5861 for (c = die->die_child; c; c = c->die_sib)
5862 die_checksum (c, ctx, mark);
5865 #undef CHECKSUM
5866 #undef CHECKSUM_STRING
5868 /* Do the location expressions look same? */
5869 static inline int
5870 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5872 return loc1->dw_loc_opc == loc2->dw_loc_opc
5873 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5874 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5877 /* Do the values look the same? */
5878 static int
5879 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5881 dw_loc_descr_ref loc1, loc2;
5882 rtx r1, r2;
5884 if (v1->val_class != v2->val_class)
5885 return 0;
5887 switch (v1->val_class)
5889 case dw_val_class_const:
5890 return v1->v.val_int == v2->v.val_int;
5891 case dw_val_class_unsigned_const:
5892 return v1->v.val_unsigned == v2->v.val_unsigned;
5893 case dw_val_class_long_long:
5894 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5895 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5896 case dw_val_class_vec:
5897 if (v1->v.val_vec.length != v2->v.val_vec.length
5898 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5899 return 0;
5900 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5901 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5902 return 0;
5903 return 1;
5904 case dw_val_class_flag:
5905 return v1->v.val_flag == v2->v.val_flag;
5906 case dw_val_class_str:
5907 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5909 case dw_val_class_addr:
5910 r1 = v1->v.val_addr;
5911 r2 = v2->v.val_addr;
5912 if (GET_CODE (r1) != GET_CODE (r2))
5913 return 0;
5914 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5915 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5917 case dw_val_class_offset:
5918 return v1->v.val_offset == v2->v.val_offset;
5920 case dw_val_class_loc:
5921 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5922 loc1 && loc2;
5923 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5924 if (!same_loc_p (loc1, loc2, mark))
5925 return 0;
5926 return !loc1 && !loc2;
5928 case dw_val_class_die_ref:
5929 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5931 case dw_val_class_fde_ref:
5932 case dw_val_class_lbl_id:
5933 case dw_val_class_lbl_offset:
5934 return 1;
5936 default:
5937 return 1;
5941 /* Do the attributes look the same? */
5943 static int
5944 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5946 if (at1->dw_attr != at2->dw_attr)
5947 return 0;
5949 /* We don't care about differences in file numbering. */
5950 if (at1->dw_attr == DW_AT_decl_file
5951 /* Or that this was compiled with a different compiler snapshot; if
5952 the output is the same, that's what matters. */
5953 || at1->dw_attr == DW_AT_producer)
5954 return 1;
5956 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5959 /* Do the dies look the same? */
5961 static int
5962 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5964 dw_die_ref c1, c2;
5965 dw_attr_ref a1, a2;
5967 /* To avoid infinite recursion. */
5968 if (die1->die_mark)
5969 return die1->die_mark == die2->die_mark;
5970 die1->die_mark = die2->die_mark = ++(*mark);
5972 if (die1->die_tag != die2->die_tag)
5973 return 0;
5975 for (a1 = die1->die_attr, a2 = die2->die_attr;
5976 a1 && a2;
5977 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5978 if (!same_attr_p (a1, a2, mark))
5979 return 0;
5980 if (a1 || a2)
5981 return 0;
5983 for (c1 = die1->die_child, c2 = die2->die_child;
5984 c1 && c2;
5985 c1 = c1->die_sib, c2 = c2->die_sib)
5986 if (!same_die_p (c1, c2, mark))
5987 return 0;
5988 if (c1 || c2)
5989 return 0;
5991 return 1;
5994 /* Do the dies look the same? Wrapper around same_die_p. */
5996 static int
5997 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5999 int mark = 0;
6000 int ret = same_die_p (die1, die2, &mark);
6002 unmark_all_dies (die1);
6003 unmark_all_dies (die2);
6005 return ret;
6008 /* The prefix to attach to symbols on DIEs in the current comdat debug
6009 info section. */
6010 static char *comdat_symbol_id;
6012 /* The index of the current symbol within the current comdat CU. */
6013 static unsigned int comdat_symbol_number;
6015 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6016 children, and set comdat_symbol_id accordingly. */
6018 static void
6019 compute_section_prefix (dw_die_ref unit_die)
6021 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6022 const char *base = die_name ? lbasename (die_name) : "anonymous";
6023 char *name = alloca (strlen (base) + 64);
6024 char *p;
6025 int i, mark;
6026 unsigned char checksum[16];
6027 struct md5_ctx ctx;
6029 /* Compute the checksum of the DIE, then append part of it as hex digits to
6030 the name filename of the unit. */
6032 md5_init_ctx (&ctx);
6033 mark = 0;
6034 die_checksum (unit_die, &ctx, &mark);
6035 unmark_all_dies (unit_die);
6036 md5_finish_ctx (&ctx, checksum);
6038 sprintf (name, "%s.", base);
6039 clean_symbol_name (name);
6041 p = name + strlen (name);
6042 for (i = 0; i < 4; i++)
6044 sprintf (p, "%.2x", checksum[i]);
6045 p += 2;
6048 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6049 comdat_symbol_number = 0;
6052 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6054 static int
6055 is_type_die (dw_die_ref die)
6057 switch (die->die_tag)
6059 case DW_TAG_array_type:
6060 case DW_TAG_class_type:
6061 case DW_TAG_enumeration_type:
6062 case DW_TAG_pointer_type:
6063 case DW_TAG_reference_type:
6064 case DW_TAG_string_type:
6065 case DW_TAG_structure_type:
6066 case DW_TAG_subroutine_type:
6067 case DW_TAG_union_type:
6068 case DW_TAG_ptr_to_member_type:
6069 case DW_TAG_set_type:
6070 case DW_TAG_subrange_type:
6071 case DW_TAG_base_type:
6072 case DW_TAG_const_type:
6073 case DW_TAG_file_type:
6074 case DW_TAG_packed_type:
6075 case DW_TAG_volatile_type:
6076 case DW_TAG_typedef:
6077 return 1;
6078 default:
6079 return 0;
6083 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6084 Basically, we want to choose the bits that are likely to be shared between
6085 compilations (types) and leave out the bits that are specific to individual
6086 compilations (functions). */
6088 static int
6089 is_comdat_die (dw_die_ref c)
6091 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6092 we do for stabs. The advantage is a greater likelihood of sharing between
6093 objects that don't include headers in the same order (and therefore would
6094 put the base types in a different comdat). jason 8/28/00 */
6096 if (c->die_tag == DW_TAG_base_type)
6097 return 0;
6099 if (c->die_tag == DW_TAG_pointer_type
6100 || c->die_tag == DW_TAG_reference_type
6101 || c->die_tag == DW_TAG_const_type
6102 || c->die_tag == DW_TAG_volatile_type)
6104 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6106 return t ? is_comdat_die (t) : 0;
6109 return is_type_die (c);
6112 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6113 compilation unit. */
6115 static int
6116 is_symbol_die (dw_die_ref c)
6118 return (is_type_die (c)
6119 || (get_AT (c, DW_AT_declaration)
6120 && !get_AT (c, DW_AT_specification)));
6123 static char *
6124 gen_internal_sym (const char *prefix)
6126 char buf[256];
6128 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6129 return xstrdup (buf);
6132 /* Assign symbols to all worthy DIEs under DIE. */
6134 static void
6135 assign_symbol_names (dw_die_ref die)
6137 dw_die_ref c;
6139 if (is_symbol_die (die))
6141 if (comdat_symbol_id)
6143 char *p = alloca (strlen (comdat_symbol_id) + 64);
6145 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6146 comdat_symbol_id, comdat_symbol_number++);
6147 die->die_symbol = xstrdup (p);
6149 else
6150 die->die_symbol = gen_internal_sym ("LDIE");
6153 for (c = die->die_child; c != NULL; c = c->die_sib)
6154 assign_symbol_names (c);
6157 struct cu_hash_table_entry
6159 dw_die_ref cu;
6160 unsigned min_comdat_num, max_comdat_num;
6161 struct cu_hash_table_entry *next;
6164 /* Routines to manipulate hash table of CUs. */
6165 static hashval_t
6166 htab_cu_hash (const void *of)
6168 const struct cu_hash_table_entry *entry = of;
6170 return htab_hash_string (entry->cu->die_symbol);
6173 static int
6174 htab_cu_eq (const void *of1, const void *of2)
6176 const struct cu_hash_table_entry *entry1 = of1;
6177 const struct die_struct *entry2 = of2;
6179 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6182 static void
6183 htab_cu_del (void *what)
6185 struct cu_hash_table_entry *next, *entry = what;
6187 while (entry)
6189 next = entry->next;
6190 free (entry);
6191 entry = next;
6195 /* Check whether we have already seen this CU and set up SYM_NUM
6196 accordingly. */
6197 static int
6198 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6200 struct cu_hash_table_entry dummy;
6201 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6203 dummy.max_comdat_num = 0;
6205 slot = (struct cu_hash_table_entry **)
6206 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6207 INSERT);
6208 entry = *slot;
6210 for (; entry; last = entry, entry = entry->next)
6212 if (same_die_p_wrap (cu, entry->cu))
6213 break;
6216 if (entry)
6218 *sym_num = entry->min_comdat_num;
6219 return 1;
6222 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6223 entry->cu = cu;
6224 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6225 entry->next = *slot;
6226 *slot = entry;
6228 return 0;
6231 /* Record SYM_NUM to record of CU in HTABLE. */
6232 static void
6233 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6235 struct cu_hash_table_entry **slot, *entry;
6237 slot = (struct cu_hash_table_entry **)
6238 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6239 NO_INSERT);
6240 entry = *slot;
6242 entry->max_comdat_num = sym_num;
6245 /* Traverse the DIE (which is always comp_unit_die), and set up
6246 additional compilation units for each of the include files we see
6247 bracketed by BINCL/EINCL. */
6249 static void
6250 break_out_includes (dw_die_ref die)
6252 dw_die_ref *ptr;
6253 dw_die_ref unit = NULL;
6254 limbo_die_node *node, **pnode;
6255 htab_t cu_hash_table;
6257 for (ptr = &(die->die_child); *ptr;)
6259 dw_die_ref c = *ptr;
6261 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6262 || (unit && is_comdat_die (c)))
6264 /* This DIE is for a secondary CU; remove it from the main one. */
6265 *ptr = c->die_sib;
6267 if (c->die_tag == DW_TAG_GNU_BINCL)
6269 unit = push_new_compile_unit (unit, c);
6270 free_die (c);
6272 else if (c->die_tag == DW_TAG_GNU_EINCL)
6274 unit = pop_compile_unit (unit);
6275 free_die (c);
6277 else
6278 add_child_die (unit, c);
6280 else
6282 /* Leave this DIE in the main CU. */
6283 ptr = &(c->die_sib);
6284 continue;
6288 #if 0
6289 /* We can only use this in debugging, since the frontend doesn't check
6290 to make sure that we leave every include file we enter. */
6291 gcc_assert (!unit);
6292 #endif
6294 assign_symbol_names (die);
6295 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6296 for (node = limbo_die_list, pnode = &limbo_die_list;
6297 node;
6298 node = node->next)
6300 int is_dupl;
6302 compute_section_prefix (node->die);
6303 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6304 &comdat_symbol_number);
6305 assign_symbol_names (node->die);
6306 if (is_dupl)
6307 *pnode = node->next;
6308 else
6310 pnode = &node->next;
6311 record_comdat_symbol_number (node->die, cu_hash_table,
6312 comdat_symbol_number);
6315 htab_delete (cu_hash_table);
6318 /* Traverse the DIE and add a sibling attribute if it may have the
6319 effect of speeding up access to siblings. To save some space,
6320 avoid generating sibling attributes for DIE's without children. */
6322 static void
6323 add_sibling_attributes (dw_die_ref die)
6325 dw_die_ref c;
6327 if (die->die_tag != DW_TAG_compile_unit
6328 && die->die_sib && die->die_child != NULL)
6329 /* Add the sibling link to the front of the attribute list. */
6330 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6332 for (c = die->die_child; c != NULL; c = c->die_sib)
6333 add_sibling_attributes (c);
6336 /* Output all location lists for the DIE and its children. */
6338 static void
6339 output_location_lists (dw_die_ref die)
6341 dw_die_ref c;
6342 dw_attr_ref d_attr;
6344 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6345 if (AT_class (d_attr) == dw_val_class_loc_list)
6346 output_loc_list (AT_loc_list (d_attr));
6348 for (c = die->die_child; c != NULL; c = c->die_sib)
6349 output_location_lists (c);
6353 /* The format of each DIE (and its attribute value pairs) is encoded in an
6354 abbreviation table. This routine builds the abbreviation table and assigns
6355 a unique abbreviation id for each abbreviation entry. The children of each
6356 die are visited recursively. */
6358 static void
6359 build_abbrev_table (dw_die_ref die)
6361 unsigned long abbrev_id;
6362 unsigned int n_alloc;
6363 dw_die_ref c;
6364 dw_attr_ref d_attr, a_attr;
6366 /* Scan the DIE references, and mark as external any that refer to
6367 DIEs from other CUs (i.e. those which are not marked). */
6368 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6369 if (AT_class (d_attr) == dw_val_class_die_ref
6370 && AT_ref (d_attr)->die_mark == 0)
6372 gcc_assert (AT_ref (d_attr)->die_symbol);
6374 set_AT_ref_external (d_attr, 1);
6377 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6379 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6381 if (abbrev->die_tag == die->die_tag)
6383 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6385 a_attr = abbrev->die_attr;
6386 d_attr = die->die_attr;
6388 while (a_attr != NULL && d_attr != NULL)
6390 if ((a_attr->dw_attr != d_attr->dw_attr)
6391 || (value_format (a_attr) != value_format (d_attr)))
6392 break;
6394 a_attr = a_attr->dw_attr_next;
6395 d_attr = d_attr->dw_attr_next;
6398 if (a_attr == NULL && d_attr == NULL)
6399 break;
6404 if (abbrev_id >= abbrev_die_table_in_use)
6406 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6408 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6409 abbrev_die_table = ggc_realloc (abbrev_die_table,
6410 sizeof (dw_die_ref) * n_alloc);
6412 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6413 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6414 abbrev_die_table_allocated = n_alloc;
6417 ++abbrev_die_table_in_use;
6418 abbrev_die_table[abbrev_id] = die;
6421 die->die_abbrev = abbrev_id;
6422 for (c = die->die_child; c != NULL; c = c->die_sib)
6423 build_abbrev_table (c);
6426 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6428 static int
6429 constant_size (long unsigned int value)
6431 int log;
6433 if (value == 0)
6434 log = 0;
6435 else
6436 log = floor_log2 (value);
6438 log = log / 8;
6439 log = 1 << (floor_log2 (log) + 1);
6441 return log;
6444 /* Return the size of a DIE as it is represented in the
6445 .debug_info section. */
6447 static unsigned long
6448 size_of_die (dw_die_ref die)
6450 unsigned long size = 0;
6451 dw_attr_ref a;
6453 size += size_of_uleb128 (die->die_abbrev);
6454 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6456 switch (AT_class (a))
6458 case dw_val_class_addr:
6459 size += DWARF2_ADDR_SIZE;
6460 break;
6461 case dw_val_class_offset:
6462 size += DWARF_OFFSET_SIZE;
6463 break;
6464 case dw_val_class_loc:
6466 unsigned long lsize = size_of_locs (AT_loc (a));
6468 /* Block length. */
6469 size += constant_size (lsize);
6470 size += lsize;
6472 break;
6473 case dw_val_class_loc_list:
6474 size += DWARF_OFFSET_SIZE;
6475 break;
6476 case dw_val_class_range_list:
6477 size += DWARF_OFFSET_SIZE;
6478 break;
6479 case dw_val_class_const:
6480 size += size_of_sleb128 (AT_int (a));
6481 break;
6482 case dw_val_class_unsigned_const:
6483 size += constant_size (AT_unsigned (a));
6484 break;
6485 case dw_val_class_long_long:
6486 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6487 break;
6488 case dw_val_class_vec:
6489 size += 1 + (a->dw_attr_val.v.val_vec.length
6490 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6491 break;
6492 case dw_val_class_flag:
6493 size += 1;
6494 break;
6495 case dw_val_class_die_ref:
6496 if (AT_ref_external (a))
6497 size += DWARF2_ADDR_SIZE;
6498 else
6499 size += DWARF_OFFSET_SIZE;
6500 break;
6501 case dw_val_class_fde_ref:
6502 size += DWARF_OFFSET_SIZE;
6503 break;
6504 case dw_val_class_lbl_id:
6505 size += DWARF2_ADDR_SIZE;
6506 break;
6507 case dw_val_class_lbl_offset:
6508 size += DWARF_OFFSET_SIZE;
6509 break;
6510 case dw_val_class_str:
6511 if (AT_string_form (a) == DW_FORM_strp)
6512 size += DWARF_OFFSET_SIZE;
6513 else
6514 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6515 break;
6516 default:
6517 gcc_unreachable ();
6521 return size;
6524 /* Size the debugging information associated with a given DIE. Visits the
6525 DIE's children recursively. Updates the global variable next_die_offset, on
6526 each time through. Uses the current value of next_die_offset to update the
6527 die_offset field in each DIE. */
6529 static void
6530 calc_die_sizes (dw_die_ref die)
6532 dw_die_ref c;
6534 die->die_offset = next_die_offset;
6535 next_die_offset += size_of_die (die);
6537 for (c = die->die_child; c != NULL; c = c->die_sib)
6538 calc_die_sizes (c);
6540 if (die->die_child != NULL)
6541 /* Count the null byte used to terminate sibling lists. */
6542 next_die_offset += 1;
6545 /* Set the marks for a die and its children. We do this so
6546 that we know whether or not a reference needs to use FORM_ref_addr; only
6547 DIEs in the same CU will be marked. We used to clear out the offset
6548 and use that as the flag, but ran into ordering problems. */
6550 static void
6551 mark_dies (dw_die_ref die)
6553 dw_die_ref c;
6555 gcc_assert (!die->die_mark);
6557 die->die_mark = 1;
6558 for (c = die->die_child; c; c = c->die_sib)
6559 mark_dies (c);
6562 /* Clear the marks for a die and its children. */
6564 static void
6565 unmark_dies (dw_die_ref die)
6567 dw_die_ref c;
6569 gcc_assert (die->die_mark);
6571 die->die_mark = 0;
6572 for (c = die->die_child; c; c = c->die_sib)
6573 unmark_dies (c);
6576 /* Clear the marks for a die, its children and referred dies. */
6578 static void
6579 unmark_all_dies (dw_die_ref die)
6581 dw_die_ref c;
6582 dw_attr_ref a;
6584 if (!die->die_mark)
6585 return;
6586 die->die_mark = 0;
6588 for (c = die->die_child; c; c = c->die_sib)
6589 unmark_all_dies (c);
6591 for (a = die->die_attr; a; a = a->dw_attr_next)
6592 if (AT_class (a) == dw_val_class_die_ref)
6593 unmark_all_dies (AT_ref (a));
6596 /* Return the size of the .debug_pubnames table generated for the
6597 compilation unit. */
6599 static unsigned long
6600 size_of_pubnames (void)
6602 unsigned long size;
6603 unsigned i;
6605 size = DWARF_PUBNAMES_HEADER_SIZE;
6606 for (i = 0; i < pubname_table_in_use; i++)
6608 pubname_ref p = &pubname_table[i];
6609 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6612 size += DWARF_OFFSET_SIZE;
6613 return size;
6616 /* Return the size of the information in the .debug_aranges section. */
6618 static unsigned long
6619 size_of_aranges (void)
6621 unsigned long size;
6623 size = DWARF_ARANGES_HEADER_SIZE;
6625 /* Count the address/length pair for this compilation unit. */
6626 size += 2 * DWARF2_ADDR_SIZE;
6627 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6629 /* Count the two zero words used to terminated the address range table. */
6630 size += 2 * DWARF2_ADDR_SIZE;
6631 return size;
6634 /* Select the encoding of an attribute value. */
6636 static enum dwarf_form
6637 value_format (dw_attr_ref a)
6639 switch (a->dw_attr_val.val_class)
6641 case dw_val_class_addr:
6642 return DW_FORM_addr;
6643 case dw_val_class_range_list:
6644 case dw_val_class_offset:
6645 switch (DWARF_OFFSET_SIZE)
6647 case 4:
6648 return DW_FORM_data4;
6649 case 8:
6650 return DW_FORM_data8;
6651 default:
6652 gcc_unreachable ();
6654 case dw_val_class_loc_list:
6655 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6656 .debug_loc section */
6657 return DW_FORM_data4;
6658 case dw_val_class_loc:
6659 switch (constant_size (size_of_locs (AT_loc (a))))
6661 case 1:
6662 return DW_FORM_block1;
6663 case 2:
6664 return DW_FORM_block2;
6665 default:
6666 gcc_unreachable ();
6668 case dw_val_class_const:
6669 return DW_FORM_sdata;
6670 case dw_val_class_unsigned_const:
6671 switch (constant_size (AT_unsigned (a)))
6673 case 1:
6674 return DW_FORM_data1;
6675 case 2:
6676 return DW_FORM_data2;
6677 case 4:
6678 return DW_FORM_data4;
6679 case 8:
6680 return DW_FORM_data8;
6681 default:
6682 gcc_unreachable ();
6684 case dw_val_class_long_long:
6685 return DW_FORM_block1;
6686 case dw_val_class_vec:
6687 return DW_FORM_block1;
6688 case dw_val_class_flag:
6689 return DW_FORM_flag;
6690 case dw_val_class_die_ref:
6691 if (AT_ref_external (a))
6692 return DW_FORM_ref_addr;
6693 else
6694 return DW_FORM_ref;
6695 case dw_val_class_fde_ref:
6696 return DW_FORM_data;
6697 case dw_val_class_lbl_id:
6698 return DW_FORM_addr;
6699 case dw_val_class_lbl_offset:
6700 return DW_FORM_data;
6701 case dw_val_class_str:
6702 return AT_string_form (a);
6704 default:
6705 gcc_unreachable ();
6709 /* Output the encoding of an attribute value. */
6711 static void
6712 output_value_format (dw_attr_ref a)
6714 enum dwarf_form form = value_format (a);
6716 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6719 /* Output the .debug_abbrev section which defines the DIE abbreviation
6720 table. */
6722 static void
6723 output_abbrev_section (void)
6725 unsigned long abbrev_id;
6727 dw_attr_ref a_attr;
6729 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6731 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6733 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6734 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6735 dwarf_tag_name (abbrev->die_tag));
6737 if (abbrev->die_child != NULL)
6738 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6739 else
6740 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6742 for (a_attr = abbrev->die_attr; a_attr != NULL;
6743 a_attr = a_attr->dw_attr_next)
6745 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6746 dwarf_attr_name (a_attr->dw_attr));
6747 output_value_format (a_attr);
6750 dw2_asm_output_data (1, 0, NULL);
6751 dw2_asm_output_data (1, 0, NULL);
6754 /* Terminate the table. */
6755 dw2_asm_output_data (1, 0, NULL);
6758 /* Output a symbol we can use to refer to this DIE from another CU. */
6760 static inline void
6761 output_die_symbol (dw_die_ref die)
6763 char *sym = die->die_symbol;
6765 if (sym == 0)
6766 return;
6768 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6769 /* We make these global, not weak; if the target doesn't support
6770 .linkonce, it doesn't support combining the sections, so debugging
6771 will break. */
6772 targetm.asm_out.globalize_label (asm_out_file, sym);
6774 ASM_OUTPUT_LABEL (asm_out_file, sym);
6777 /* Return a new location list, given the begin and end range, and the
6778 expression. gensym tells us whether to generate a new internal symbol for
6779 this location list node, which is done for the head of the list only. */
6781 static inline dw_loc_list_ref
6782 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6783 const char *section, unsigned int gensym)
6785 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6787 retlist->begin = begin;
6788 retlist->end = end;
6789 retlist->expr = expr;
6790 retlist->section = section;
6791 if (gensym)
6792 retlist->ll_symbol = gen_internal_sym ("LLST");
6794 return retlist;
6797 /* Add a location description expression to a location list. */
6799 static inline void
6800 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6801 const char *begin, const char *end,
6802 const char *section)
6804 dw_loc_list_ref *d;
6806 /* Find the end of the chain. */
6807 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6810 /* Add a new location list node to the list. */
6811 *d = new_loc_list (descr, begin, end, section, 0);
6814 static void
6815 dwarf2out_switch_text_section (void)
6817 dw_fde_ref fde;
6819 gcc_assert (cfun);
6821 fde = &fde_table[fde_table_in_use - 1];
6822 fde->dw_fde_switched_sections = true;
6823 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6824 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6825 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6826 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6827 separate_line_info_table_in_use++;
6830 /* Output the location list given to us. */
6832 static void
6833 output_loc_list (dw_loc_list_ref list_head)
6835 dw_loc_list_ref curr = list_head;
6837 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6839 /* Walk the location list, and output each range + expression. */
6840 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6842 unsigned long size;
6843 if (separate_line_info_table_in_use == 0)
6845 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6846 "Location list begin address (%s)",
6847 list_head->ll_symbol);
6848 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6849 "Location list end address (%s)",
6850 list_head->ll_symbol);
6852 else
6854 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6855 "Location list begin address (%s)",
6856 list_head->ll_symbol);
6857 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6858 "Location list end address (%s)",
6859 list_head->ll_symbol);
6861 size = size_of_locs (curr->expr);
6863 /* Output the block length for this list of location operations. */
6864 gcc_assert (size <= 0xffff);
6865 dw2_asm_output_data (2, size, "%s", "Location expression size");
6867 output_loc_sequence (curr->expr);
6870 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6871 "Location list terminator begin (%s)",
6872 list_head->ll_symbol);
6873 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6874 "Location list terminator end (%s)",
6875 list_head->ll_symbol);
6878 /* Output the DIE and its attributes. Called recursively to generate
6879 the definitions of each child DIE. */
6881 static void
6882 output_die (dw_die_ref die)
6884 dw_attr_ref a;
6885 dw_die_ref c;
6886 unsigned long size;
6888 /* If someone in another CU might refer to us, set up a symbol for
6889 them to point to. */
6890 if (die->die_symbol)
6891 output_die_symbol (die);
6893 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6894 die->die_offset, dwarf_tag_name (die->die_tag));
6896 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6898 const char *name = dwarf_attr_name (a->dw_attr);
6900 switch (AT_class (a))
6902 case dw_val_class_addr:
6903 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6904 break;
6906 case dw_val_class_offset:
6907 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6908 "%s", name);
6909 break;
6911 case dw_val_class_range_list:
6913 char *p = strchr (ranges_section_label, '\0');
6915 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6916 a->dw_attr_val.v.val_offset);
6917 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6918 "%s", name);
6919 *p = '\0';
6921 break;
6923 case dw_val_class_loc:
6924 size = size_of_locs (AT_loc (a));
6926 /* Output the block length for this list of location operations. */
6927 dw2_asm_output_data (constant_size (size), size, "%s", name);
6929 output_loc_sequence (AT_loc (a));
6930 break;
6932 case dw_val_class_const:
6933 /* ??? It would be slightly more efficient to use a scheme like is
6934 used for unsigned constants below, but gdb 4.x does not sign
6935 extend. Gdb 5.x does sign extend. */
6936 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6937 break;
6939 case dw_val_class_unsigned_const:
6940 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6941 AT_unsigned (a), "%s", name);
6942 break;
6944 case dw_val_class_long_long:
6946 unsigned HOST_WIDE_INT first, second;
6948 dw2_asm_output_data (1,
6949 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6950 "%s", name);
6952 if (WORDS_BIG_ENDIAN)
6954 first = a->dw_attr_val.v.val_long_long.hi;
6955 second = a->dw_attr_val.v.val_long_long.low;
6957 else
6959 first = a->dw_attr_val.v.val_long_long.low;
6960 second = a->dw_attr_val.v.val_long_long.hi;
6963 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6964 first, "long long constant");
6965 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6966 second, NULL);
6968 break;
6970 case dw_val_class_vec:
6972 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6973 unsigned int len = a->dw_attr_val.v.val_vec.length;
6974 unsigned int i;
6975 unsigned char *p;
6977 dw2_asm_output_data (1, len * elt_size, "%s", name);
6978 if (elt_size > sizeof (HOST_WIDE_INT))
6980 elt_size /= 2;
6981 len *= 2;
6983 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6984 i < len;
6985 i++, p += elt_size)
6986 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6987 "fp or vector constant word %u", i);
6988 break;
6991 case dw_val_class_flag:
6992 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6993 break;
6995 case dw_val_class_loc_list:
6997 char *sym = AT_loc_list (a)->ll_symbol;
6999 gcc_assert (sym);
7000 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
7002 break;
7004 case dw_val_class_die_ref:
7005 if (AT_ref_external (a))
7007 char *sym = AT_ref (a)->die_symbol;
7009 gcc_assert (sym);
7010 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
7012 else
7014 gcc_assert (AT_ref (a)->die_offset);
7015 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7016 "%s", name);
7018 break;
7020 case dw_val_class_fde_ref:
7022 char l1[20];
7024 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7025 a->dw_attr_val.v.val_fde_index * 2);
7026 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7028 break;
7030 case dw_val_class_lbl_id:
7031 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7032 break;
7034 case dw_val_class_lbl_offset:
7035 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7036 break;
7038 case dw_val_class_str:
7039 if (AT_string_form (a) == DW_FORM_strp)
7040 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7041 a->dw_attr_val.v.val_str->label,
7042 "%s: \"%s\"", name, AT_string (a));
7043 else
7044 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7045 break;
7047 default:
7048 gcc_unreachable ();
7052 for (c = die->die_child; c != NULL; c = c->die_sib)
7053 output_die (c);
7055 /* Add null byte to terminate sibling list. */
7056 if (die->die_child != NULL)
7057 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7058 die->die_offset);
7061 /* Output the compilation unit that appears at the beginning of the
7062 .debug_info section, and precedes the DIE descriptions. */
7064 static void
7065 output_compilation_unit_header (void)
7067 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7068 dw2_asm_output_data (4, 0xffffffff,
7069 "Initial length escape value indicating 64-bit DWARF extension");
7070 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7071 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7072 "Length of Compilation Unit Info");
7073 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7074 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7075 "Offset Into Abbrev. Section");
7076 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7079 /* Output the compilation unit DIE and its children. */
7081 static void
7082 output_comp_unit (dw_die_ref die, int output_if_empty)
7084 const char *secname;
7085 char *oldsym, *tmp;
7087 /* Unless we are outputting main CU, we may throw away empty ones. */
7088 if (!output_if_empty && die->die_child == NULL)
7089 return;
7091 /* Even if there are no children of this DIE, we must output the information
7092 about the compilation unit. Otherwise, on an empty translation unit, we
7093 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7094 will then complain when examining the file. First mark all the DIEs in
7095 this CU so we know which get local refs. */
7096 mark_dies (die);
7098 build_abbrev_table (die);
7100 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7101 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7102 calc_die_sizes (die);
7104 oldsym = die->die_symbol;
7105 if (oldsym)
7107 tmp = alloca (strlen (oldsym) + 24);
7109 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7110 secname = tmp;
7111 die->die_symbol = NULL;
7113 else
7114 secname = (const char *) DEBUG_INFO_SECTION;
7116 /* Output debugging information. */
7117 named_section_flags (secname, SECTION_DEBUG);
7118 output_compilation_unit_header ();
7119 output_die (die);
7121 /* Leave the marks on the main CU, so we can check them in
7122 output_pubnames. */
7123 if (oldsym)
7125 unmark_dies (die);
7126 die->die_symbol = oldsym;
7130 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7131 output of lang_hooks.decl_printable_name for C++ looks like
7132 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7134 static const char *
7135 dwarf2_name (tree decl, int scope)
7137 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7140 /* Add a new entry to .debug_pubnames if appropriate. */
7142 static void
7143 add_pubname (tree decl, dw_die_ref die)
7145 pubname_ref p;
7147 if (! TREE_PUBLIC (decl))
7148 return;
7150 if (pubname_table_in_use == pubname_table_allocated)
7152 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7153 pubname_table
7154 = ggc_realloc (pubname_table,
7155 (pubname_table_allocated * sizeof (pubname_entry)));
7156 memset (pubname_table + pubname_table_in_use, 0,
7157 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7160 p = &pubname_table[pubname_table_in_use++];
7161 p->die = die;
7162 p->name = xstrdup (dwarf2_name (decl, 1));
7165 /* Output the public names table used to speed up access to externally
7166 visible names. For now, only generate entries for externally
7167 visible procedures. */
7169 static void
7170 output_pubnames (void)
7172 unsigned i;
7173 unsigned long pubnames_length = size_of_pubnames ();
7175 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7176 dw2_asm_output_data (4, 0xffffffff,
7177 "Initial length escape value indicating 64-bit DWARF extension");
7178 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7179 "Length of Public Names Info");
7180 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7181 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7182 "Offset of Compilation Unit Info");
7183 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7184 "Compilation Unit Length");
7186 for (i = 0; i < pubname_table_in_use; i++)
7188 pubname_ref pub = &pubname_table[i];
7190 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7191 gcc_assert (pub->die->die_mark);
7193 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7194 "DIE offset");
7196 dw2_asm_output_nstring (pub->name, -1, "external name");
7199 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7202 /* Add a new entry to .debug_aranges if appropriate. */
7204 static void
7205 add_arange (tree decl, dw_die_ref die)
7207 if (! DECL_SECTION_NAME (decl))
7208 return;
7210 if (arange_table_in_use == arange_table_allocated)
7212 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7213 arange_table = ggc_realloc (arange_table,
7214 (arange_table_allocated
7215 * sizeof (dw_die_ref)));
7216 memset (arange_table + arange_table_in_use, 0,
7217 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7220 arange_table[arange_table_in_use++] = die;
7223 /* Output the information that goes into the .debug_aranges table.
7224 Namely, define the beginning and ending address range of the
7225 text section generated for this compilation unit. */
7227 static void
7228 output_aranges (void)
7230 unsigned i;
7231 unsigned long aranges_length = size_of_aranges ();
7233 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7234 dw2_asm_output_data (4, 0xffffffff,
7235 "Initial length escape value indicating 64-bit DWARF extension");
7236 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7237 "Length of Address Ranges Info");
7238 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7239 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7240 "Offset of Compilation Unit Info");
7241 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7242 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7244 /* We need to align to twice the pointer size here. */
7245 if (DWARF_ARANGES_PAD_SIZE)
7247 /* Pad using a 2 byte words so that padding is correct for any
7248 pointer size. */
7249 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7250 2 * DWARF2_ADDR_SIZE);
7251 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7252 dw2_asm_output_data (2, 0, NULL);
7255 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7256 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7257 text_section_label, "Length");
7258 if (flag_reorder_blocks_and_partition)
7260 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7261 "Address");
7262 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7263 cold_text_section_label, "Length");
7266 for (i = 0; i < arange_table_in_use; i++)
7268 dw_die_ref die = arange_table[i];
7270 /* We shouldn't see aranges for DIEs outside of the main CU. */
7271 gcc_assert (die->die_mark);
7273 if (die->die_tag == DW_TAG_subprogram)
7275 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7276 "Address");
7277 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7278 get_AT_low_pc (die), "Length");
7280 else
7282 /* A static variable; extract the symbol from DW_AT_location.
7283 Note that this code isn't currently hit, as we only emit
7284 aranges for functions (jason 9/23/99). */
7285 dw_attr_ref a = get_AT (die, DW_AT_location);
7286 dw_loc_descr_ref loc;
7288 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7290 loc = AT_loc (a);
7291 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7293 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7294 loc->dw_loc_oprnd1.v.val_addr, "Address");
7295 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7296 get_AT_unsigned (die, DW_AT_byte_size),
7297 "Length");
7301 /* Output the terminator words. */
7302 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7303 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7306 /* Add a new entry to .debug_ranges. Return the offset at which it
7307 was placed. */
7309 static unsigned int
7310 add_ranges (tree block)
7312 unsigned int in_use = ranges_table_in_use;
7314 if (in_use == ranges_table_allocated)
7316 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7317 ranges_table
7318 = ggc_realloc (ranges_table, (ranges_table_allocated
7319 * sizeof (struct dw_ranges_struct)));
7320 memset (ranges_table + ranges_table_in_use, 0,
7321 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7324 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7325 ranges_table_in_use = in_use + 1;
7327 return in_use * 2 * DWARF2_ADDR_SIZE;
7330 static void
7331 output_ranges (void)
7333 unsigned i;
7334 static const char *const start_fmt = "Offset 0x%x";
7335 const char *fmt = start_fmt;
7337 for (i = 0; i < ranges_table_in_use; i++)
7339 int block_num = ranges_table[i].block_num;
7341 if (block_num)
7343 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7344 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7346 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7347 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7349 /* If all code is in the text section, then the compilation
7350 unit base address defaults to DW_AT_low_pc, which is the
7351 base of the text section. */
7352 if (separate_line_info_table_in_use == 0)
7354 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7355 text_section_label,
7356 fmt, i * 2 * DWARF2_ADDR_SIZE);
7357 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7358 text_section_label, NULL);
7361 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7362 compilation unit base address to zero, which allows us to
7363 use absolute addresses, and not worry about whether the
7364 target supports cross-section arithmetic. */
7365 else
7367 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7368 fmt, i * 2 * DWARF2_ADDR_SIZE);
7369 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7372 fmt = NULL;
7374 else
7376 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7377 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7378 fmt = start_fmt;
7383 /* Data structure containing information about input files. */
7384 struct file_info
7386 char *path; /* Complete file name. */
7387 char *fname; /* File name part. */
7388 int length; /* Length of entire string. */
7389 int file_idx; /* Index in input file table. */
7390 int dir_idx; /* Index in directory table. */
7393 /* Data structure containing information about directories with source
7394 files. */
7395 struct dir_info
7397 char *path; /* Path including directory name. */
7398 int length; /* Path length. */
7399 int prefix; /* Index of directory entry which is a prefix. */
7400 int count; /* Number of files in this directory. */
7401 int dir_idx; /* Index of directory used as base. */
7402 int used; /* Used in the end? */
7405 /* Callback function for file_info comparison. We sort by looking at
7406 the directories in the path. */
7408 static int
7409 file_info_cmp (const void *p1, const void *p2)
7411 const struct file_info *s1 = p1;
7412 const struct file_info *s2 = p2;
7413 unsigned char *cp1;
7414 unsigned char *cp2;
7416 /* Take care of file names without directories. We need to make sure that
7417 we return consistent values to qsort since some will get confused if
7418 we return the same value when identical operands are passed in opposite
7419 orders. So if neither has a directory, return 0 and otherwise return
7420 1 or -1 depending on which one has the directory. */
7421 if ((s1->path == s1->fname || s2->path == s2->fname))
7422 return (s2->path == s2->fname) - (s1->path == s1->fname);
7424 cp1 = (unsigned char *) s1->path;
7425 cp2 = (unsigned char *) s2->path;
7427 while (1)
7429 ++cp1;
7430 ++cp2;
7431 /* Reached the end of the first path? If so, handle like above. */
7432 if ((cp1 == (unsigned char *) s1->fname)
7433 || (cp2 == (unsigned char *) s2->fname))
7434 return ((cp2 == (unsigned char *) s2->fname)
7435 - (cp1 == (unsigned char *) s1->fname));
7437 /* Character of current path component the same? */
7438 else if (*cp1 != *cp2)
7439 return *cp1 - *cp2;
7443 /* Output the directory table and the file name table. We try to minimize
7444 the total amount of memory needed. A heuristic is used to avoid large
7445 slowdowns with many input files. */
7447 static void
7448 output_file_names (void)
7450 struct file_info *files;
7451 struct dir_info *dirs;
7452 int *saved;
7453 int *savehere;
7454 int *backmap;
7455 size_t ndirs;
7456 int idx_offset;
7457 size_t i;
7458 int idx;
7460 /* Handle the case where file_table is empty. */
7461 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7463 dw2_asm_output_data (1, 0, "End directory table");
7464 dw2_asm_output_data (1, 0, "End file name table");
7465 return;
7468 /* Allocate the various arrays we need. */
7469 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7470 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7472 /* Sort the file names. */
7473 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7475 char *f;
7477 /* Skip all leading "./". */
7478 f = VARRAY_CHAR_PTR (file_table, i);
7479 while (f[0] == '.' && f[1] == '/')
7480 f += 2;
7482 /* Create a new array entry. */
7483 files[i].path = f;
7484 files[i].length = strlen (f);
7485 files[i].file_idx = i;
7487 /* Search for the file name part. */
7488 f = strrchr (f, '/');
7489 files[i].fname = f == NULL ? files[i].path : f + 1;
7492 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7493 sizeof (files[0]), file_info_cmp);
7495 /* Find all the different directories used. */
7496 dirs[0].path = files[1].path;
7497 dirs[0].length = files[1].fname - files[1].path;
7498 dirs[0].prefix = -1;
7499 dirs[0].count = 1;
7500 dirs[0].dir_idx = 0;
7501 dirs[0].used = 0;
7502 files[1].dir_idx = 0;
7503 ndirs = 1;
7505 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7506 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7507 && memcmp (dirs[ndirs - 1].path, files[i].path,
7508 dirs[ndirs - 1].length) == 0)
7510 /* Same directory as last entry. */
7511 files[i].dir_idx = ndirs - 1;
7512 ++dirs[ndirs - 1].count;
7514 else
7516 size_t j;
7518 /* This is a new directory. */
7519 dirs[ndirs].path = files[i].path;
7520 dirs[ndirs].length = files[i].fname - files[i].path;
7521 dirs[ndirs].count = 1;
7522 dirs[ndirs].dir_idx = ndirs;
7523 dirs[ndirs].used = 0;
7524 files[i].dir_idx = ndirs;
7526 /* Search for a prefix. */
7527 dirs[ndirs].prefix = -1;
7528 for (j = 0; j < ndirs; j++)
7529 if (dirs[j].length < dirs[ndirs].length
7530 && dirs[j].length > 1
7531 && (dirs[ndirs].prefix == -1
7532 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7533 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7534 dirs[ndirs].prefix = j;
7536 ++ndirs;
7539 /* Now to the actual work. We have to find a subset of the directories which
7540 allow expressing the file name using references to the directory table
7541 with the least amount of characters. We do not do an exhaustive search
7542 where we would have to check out every combination of every single
7543 possible prefix. Instead we use a heuristic which provides nearly optimal
7544 results in most cases and never is much off. */
7545 saved = alloca (ndirs * sizeof (int));
7546 savehere = alloca (ndirs * sizeof (int));
7548 memset (saved, '\0', ndirs * sizeof (saved[0]));
7549 for (i = 0; i < ndirs; i++)
7551 size_t j;
7552 int total;
7554 /* We can always save some space for the current directory. But this
7555 does not mean it will be enough to justify adding the directory. */
7556 savehere[i] = dirs[i].length;
7557 total = (savehere[i] - saved[i]) * dirs[i].count;
7559 for (j = i + 1; j < ndirs; j++)
7561 savehere[j] = 0;
7562 if (saved[j] < dirs[i].length)
7564 /* Determine whether the dirs[i] path is a prefix of the
7565 dirs[j] path. */
7566 int k;
7568 k = dirs[j].prefix;
7569 while (k != -1 && k != (int) i)
7570 k = dirs[k].prefix;
7572 if (k == (int) i)
7574 /* Yes it is. We can possibly safe some memory but
7575 writing the filenames in dirs[j] relative to
7576 dirs[i]. */
7577 savehere[j] = dirs[i].length;
7578 total += (savehere[j] - saved[j]) * dirs[j].count;
7583 /* Check whether we can safe enough to justify adding the dirs[i]
7584 directory. */
7585 if (total > dirs[i].length + 1)
7587 /* It's worthwhile adding. */
7588 for (j = i; j < ndirs; j++)
7589 if (savehere[j] > 0)
7591 /* Remember how much we saved for this directory so far. */
7592 saved[j] = savehere[j];
7594 /* Remember the prefix directory. */
7595 dirs[j].dir_idx = i;
7600 /* We have to emit them in the order they appear in the file_table array
7601 since the index is used in the debug info generation. To do this
7602 efficiently we generate a back-mapping of the indices first. */
7603 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7604 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7606 backmap[files[i].file_idx] = i;
7608 /* Mark this directory as used. */
7609 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7612 /* That was it. We are ready to emit the information. First emit the
7613 directory name table. We have to make sure the first actually emitted
7614 directory name has index one; zero is reserved for the current working
7615 directory. Make sure we do not confuse these indices with the one for the
7616 constructed table (even though most of the time they are identical). */
7617 idx = 1;
7618 idx_offset = dirs[0].length > 0 ? 1 : 0;
7619 for (i = 1 - idx_offset; i < ndirs; i++)
7620 if (dirs[i].used != 0)
7622 dirs[i].used = idx++;
7623 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7624 "Directory Entry: 0x%x", dirs[i].used);
7627 dw2_asm_output_data (1, 0, "End directory table");
7629 /* Correct the index for the current working directory entry if it
7630 exists. */
7631 if (idx_offset == 0)
7632 dirs[0].used = 0;
7634 /* Now write all the file names. */
7635 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7637 int file_idx = backmap[i];
7638 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7640 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7641 "File Entry: 0x%lx", (unsigned long) i);
7643 /* Include directory index. */
7644 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7646 /* Modification time. */
7647 dw2_asm_output_data_uleb128 (0, NULL);
7649 /* File length in bytes. */
7650 dw2_asm_output_data_uleb128 (0, NULL);
7653 dw2_asm_output_data (1, 0, "End file name table");
7657 /* Output the source line number correspondence information. This
7658 information goes into the .debug_line section. */
7660 static void
7661 output_line_info (void)
7663 char l1[20], l2[20], p1[20], p2[20];
7664 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7665 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7666 unsigned opc;
7667 unsigned n_op_args;
7668 unsigned long lt_index;
7669 unsigned long current_line;
7670 long line_offset;
7671 long line_delta;
7672 unsigned long current_file;
7673 unsigned long function;
7675 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7676 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7677 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7678 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7680 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7681 dw2_asm_output_data (4, 0xffffffff,
7682 "Initial length escape value indicating 64-bit DWARF extension");
7683 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7684 "Length of Source Line Info");
7685 ASM_OUTPUT_LABEL (asm_out_file, l1);
7687 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7688 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7689 ASM_OUTPUT_LABEL (asm_out_file, p1);
7691 /* Define the architecture-dependent minimum instruction length (in
7692 bytes). In this implementation of DWARF, this field is used for
7693 information purposes only. Since GCC generates assembly language,
7694 we have no a priori knowledge of how many instruction bytes are
7695 generated for each source line, and therefore can use only the
7696 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7697 commands. Accordingly, we fix this as `1', which is "correct
7698 enough" for all architectures, and don't let the target override. */
7699 dw2_asm_output_data (1, 1,
7700 "Minimum Instruction Length");
7702 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7703 "Default is_stmt_start flag");
7704 dw2_asm_output_data (1, DWARF_LINE_BASE,
7705 "Line Base Value (Special Opcodes)");
7706 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7707 "Line Range Value (Special Opcodes)");
7708 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7709 "Special Opcode Base");
7711 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7713 switch (opc)
7715 case DW_LNS_advance_pc:
7716 case DW_LNS_advance_line:
7717 case DW_LNS_set_file:
7718 case DW_LNS_set_column:
7719 case DW_LNS_fixed_advance_pc:
7720 n_op_args = 1;
7721 break;
7722 default:
7723 n_op_args = 0;
7724 break;
7727 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7728 opc, n_op_args);
7731 /* Write out the information about the files we use. */
7732 output_file_names ();
7733 ASM_OUTPUT_LABEL (asm_out_file, p2);
7735 /* We used to set the address register to the first location in the text
7736 section here, but that didn't accomplish anything since we already
7737 have a line note for the opening brace of the first function. */
7739 /* Generate the line number to PC correspondence table, encoded as
7740 a series of state machine operations. */
7741 current_file = 1;
7742 current_line = 1;
7744 if (cfun
7745 && (last_text_section == in_unlikely_executed_text
7746 || (last_text_section == in_named
7747 && last_text_section_name == cfun->unlikely_text_section_name)))
7748 strcpy (prev_line_label, cfun->cold_section_label);
7749 else
7750 strcpy (prev_line_label, text_section_label);
7751 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7753 dw_line_info_ref line_info = &line_info_table[lt_index];
7755 #if 0
7756 /* Disable this optimization for now; GDB wants to see two line notes
7757 at the beginning of a function so it can find the end of the
7758 prologue. */
7760 /* Don't emit anything for redundant notes. Just updating the
7761 address doesn't accomplish anything, because we already assume
7762 that anything after the last address is this line. */
7763 if (line_info->dw_line_num == current_line
7764 && line_info->dw_file_num == current_file)
7765 continue;
7766 #endif
7768 /* Emit debug info for the address of the current line.
7770 Unfortunately, we have little choice here currently, and must always
7771 use the most general form. GCC does not know the address delta
7772 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7773 attributes which will give an upper bound on the address range. We
7774 could perhaps use length attributes to determine when it is safe to
7775 use DW_LNS_fixed_advance_pc. */
7777 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7778 if (0)
7780 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7781 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7782 "DW_LNS_fixed_advance_pc");
7783 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7785 else
7787 /* This can handle any delta. This takes
7788 4+DWARF2_ADDR_SIZE bytes. */
7789 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7790 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7791 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7792 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7795 strcpy (prev_line_label, line_label);
7797 /* Emit debug info for the source file of the current line, if
7798 different from the previous line. */
7799 if (line_info->dw_file_num != current_file)
7801 current_file = line_info->dw_file_num;
7802 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7803 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7804 VARRAY_CHAR_PTR (file_table,
7805 current_file));
7808 /* Emit debug info for the current line number, choosing the encoding
7809 that uses the least amount of space. */
7810 if (line_info->dw_line_num != current_line)
7812 line_offset = line_info->dw_line_num - current_line;
7813 line_delta = line_offset - DWARF_LINE_BASE;
7814 current_line = line_info->dw_line_num;
7815 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7816 /* This can handle deltas from -10 to 234, using the current
7817 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7818 takes 1 byte. */
7819 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7820 "line %lu", current_line);
7821 else
7823 /* This can handle any delta. This takes at least 4 bytes,
7824 depending on the value being encoded. */
7825 dw2_asm_output_data (1, DW_LNS_advance_line,
7826 "advance to line %lu", current_line);
7827 dw2_asm_output_data_sleb128 (line_offset, NULL);
7828 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7831 else
7832 /* We still need to start a new row, so output a copy insn. */
7833 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7836 /* Emit debug info for the address of the end of the function. */
7837 if (0)
7839 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7840 "DW_LNS_fixed_advance_pc");
7841 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7843 else
7845 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7846 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7847 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7848 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7851 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7852 dw2_asm_output_data_uleb128 (1, NULL);
7853 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7855 function = 0;
7856 current_file = 1;
7857 current_line = 1;
7858 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7860 dw_separate_line_info_ref line_info
7861 = &separate_line_info_table[lt_index];
7863 #if 0
7864 /* Don't emit anything for redundant notes. */
7865 if (line_info->dw_line_num == current_line
7866 && line_info->dw_file_num == current_file
7867 && line_info->function == function)
7868 goto cont;
7869 #endif
7871 /* Emit debug info for the address of the current line. If this is
7872 a new function, or the first line of a function, then we need
7873 to handle it differently. */
7874 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7875 lt_index);
7876 if (function != line_info->function)
7878 function = line_info->function;
7880 /* Set the address register to the first line in the function. */
7881 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7882 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7883 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7884 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7886 else
7888 /* ??? See the DW_LNS_advance_pc comment above. */
7889 if (0)
7891 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7892 "DW_LNS_fixed_advance_pc");
7893 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7895 else
7897 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7898 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7899 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7900 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7904 strcpy (prev_line_label, line_label);
7906 /* Emit debug info for the source file of the current line, if
7907 different from the previous line. */
7908 if (line_info->dw_file_num != current_file)
7910 current_file = line_info->dw_file_num;
7911 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7912 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7913 VARRAY_CHAR_PTR (file_table,
7914 current_file));
7917 /* Emit debug info for the current line number, choosing the encoding
7918 that uses the least amount of space. */
7919 if (line_info->dw_line_num != current_line)
7921 line_offset = line_info->dw_line_num - current_line;
7922 line_delta = line_offset - DWARF_LINE_BASE;
7923 current_line = line_info->dw_line_num;
7924 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7925 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7926 "line %lu", current_line);
7927 else
7929 dw2_asm_output_data (1, DW_LNS_advance_line,
7930 "advance to line %lu", current_line);
7931 dw2_asm_output_data_sleb128 (line_offset, NULL);
7932 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7935 else
7936 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7938 #if 0
7939 cont:
7940 #endif
7942 lt_index++;
7944 /* If we're done with a function, end its sequence. */
7945 if (lt_index == separate_line_info_table_in_use
7946 || separate_line_info_table[lt_index].function != function)
7948 current_file = 1;
7949 current_line = 1;
7951 /* Emit debug info for the address of the end of the function. */
7952 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7953 if (0)
7955 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7956 "DW_LNS_fixed_advance_pc");
7957 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7959 else
7961 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7962 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7963 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7964 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7967 /* Output the marker for the end of this sequence. */
7968 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7969 dw2_asm_output_data_uleb128 (1, NULL);
7970 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7974 /* Output the marker for the end of the line number info. */
7975 ASM_OUTPUT_LABEL (asm_out_file, l2);
7978 /* Given a pointer to a tree node for some base type, return a pointer to
7979 a DIE that describes the given type.
7981 This routine must only be called for GCC type nodes that correspond to
7982 Dwarf base (fundamental) types. */
7984 static dw_die_ref
7985 base_type_die (tree type)
7987 dw_die_ref base_type_result;
7988 const char *type_name;
7989 enum dwarf_type encoding;
7990 tree name = TYPE_NAME (type);
7992 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7993 return 0;
7995 if (name)
7997 if (TREE_CODE (name) == TYPE_DECL)
7998 name = DECL_NAME (name);
8000 type_name = IDENTIFIER_POINTER (name);
8002 else
8003 type_name = "__unknown__";
8005 switch (TREE_CODE (type))
8007 case INTEGER_TYPE:
8008 /* Carefully distinguish the C character types, without messing
8009 up if the language is not C. Note that we check only for the names
8010 that contain spaces; other names might occur by coincidence in other
8011 languages. */
8012 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
8013 && (type == char_type_node
8014 || ! strcmp (type_name, "signed char")
8015 || ! strcmp (type_name, "unsigned char"))))
8017 if (TYPE_UNSIGNED (type))
8018 encoding = DW_ATE_unsigned;
8019 else
8020 encoding = DW_ATE_signed;
8021 break;
8023 /* else fall through. */
8025 case CHAR_TYPE:
8026 /* GNU Pascal/Ada CHAR type. Not used in C. */
8027 if (TYPE_UNSIGNED (type))
8028 encoding = DW_ATE_unsigned_char;
8029 else
8030 encoding = DW_ATE_signed_char;
8031 break;
8033 case REAL_TYPE:
8034 encoding = DW_ATE_float;
8035 break;
8037 /* Dwarf2 doesn't know anything about complex ints, so use
8038 a user defined type for it. */
8039 case COMPLEX_TYPE:
8040 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8041 encoding = DW_ATE_complex_float;
8042 else
8043 encoding = DW_ATE_lo_user;
8044 break;
8046 case BOOLEAN_TYPE:
8047 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8048 encoding = DW_ATE_boolean;
8049 break;
8051 default:
8052 /* No other TREE_CODEs are Dwarf fundamental types. */
8053 gcc_unreachable ();
8056 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8057 if (demangle_name_func)
8058 type_name = (*demangle_name_func) (type_name);
8060 add_AT_string (base_type_result, DW_AT_name, type_name);
8061 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8062 int_size_in_bytes (type));
8063 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8065 return base_type_result;
8068 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8069 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8070 a given type is generally the same as the given type, except that if the
8071 given type is a pointer or reference type, then the root type of the given
8072 type is the root type of the "basis" type for the pointer or reference
8073 type. (This definition of the "root" type is recursive.) Also, the root
8074 type of a `const' qualified type or a `volatile' qualified type is the
8075 root type of the given type without the qualifiers. */
8077 static tree
8078 root_type (tree type)
8080 if (TREE_CODE (type) == ERROR_MARK)
8081 return error_mark_node;
8083 switch (TREE_CODE (type))
8085 case ERROR_MARK:
8086 return error_mark_node;
8088 case POINTER_TYPE:
8089 case REFERENCE_TYPE:
8090 return type_main_variant (root_type (TREE_TYPE (type)));
8092 default:
8093 return type_main_variant (type);
8097 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8098 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8100 static inline int
8101 is_base_type (tree type)
8103 switch (TREE_CODE (type))
8105 case ERROR_MARK:
8106 case VOID_TYPE:
8107 case INTEGER_TYPE:
8108 case REAL_TYPE:
8109 case COMPLEX_TYPE:
8110 case BOOLEAN_TYPE:
8111 case CHAR_TYPE:
8112 return 1;
8114 case ARRAY_TYPE:
8115 case RECORD_TYPE:
8116 case UNION_TYPE:
8117 case QUAL_UNION_TYPE:
8118 case ENUMERAL_TYPE:
8119 case FUNCTION_TYPE:
8120 case METHOD_TYPE:
8121 case POINTER_TYPE:
8122 case REFERENCE_TYPE:
8123 case OFFSET_TYPE:
8124 case LANG_TYPE:
8125 case VECTOR_TYPE:
8126 return 0;
8128 default:
8129 gcc_unreachable ();
8132 return 0;
8135 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8136 node, return the size in bits for the type if it is a constant, or else
8137 return the alignment for the type if the type's size is not constant, or
8138 else return BITS_PER_WORD if the type actually turns out to be an
8139 ERROR_MARK node. */
8141 static inline unsigned HOST_WIDE_INT
8142 simple_type_size_in_bits (tree type)
8144 if (TREE_CODE (type) == ERROR_MARK)
8145 return BITS_PER_WORD;
8146 else if (TYPE_SIZE (type) == NULL_TREE)
8147 return 0;
8148 else if (host_integerp (TYPE_SIZE (type), 1))
8149 return tree_low_cst (TYPE_SIZE (type), 1);
8150 else
8151 return TYPE_ALIGN (type);
8154 /* Return true if the debug information for the given type should be
8155 emitted as a subrange type. */
8157 static inline bool
8158 is_subrange_type (tree type)
8160 tree subtype = TREE_TYPE (type);
8162 /* Subrange types are identified by the fact that they are integer
8163 types, and that they have a subtype which is either an integer type
8164 or an enumeral type. */
8166 if (TREE_CODE (type) != INTEGER_TYPE
8167 || subtype == NULL_TREE)
8168 return false;
8170 if (TREE_CODE (subtype) != INTEGER_TYPE
8171 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8172 return false;
8174 if (TREE_CODE (type) == TREE_CODE (subtype)
8175 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8176 && TYPE_MIN_VALUE (type) != NULL
8177 && TYPE_MIN_VALUE (subtype) != NULL
8178 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8179 && TYPE_MAX_VALUE (type) != NULL
8180 && TYPE_MAX_VALUE (subtype) != NULL
8181 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8183 /* The type and its subtype have the same representation. If in
8184 addition the two types also have the same name, then the given
8185 type is not a subrange type, but rather a plain base type. */
8186 /* FIXME: brobecker/2004-03-22:
8187 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8188 therefore be sufficient to check the TYPE_SIZE node pointers
8189 rather than checking the actual size. Unfortunately, we have
8190 found some cases, such as in the Ada "integer" type, where
8191 this is not the case. Until this problem is solved, we need to
8192 keep checking the actual size. */
8193 tree type_name = TYPE_NAME (type);
8194 tree subtype_name = TYPE_NAME (subtype);
8196 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8197 type_name = DECL_NAME (type_name);
8199 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8200 subtype_name = DECL_NAME (subtype_name);
8202 if (type_name == subtype_name)
8203 return false;
8206 return true;
8209 /* Given a pointer to a tree node for a subrange type, return a pointer
8210 to a DIE that describes the given type. */
8212 static dw_die_ref
8213 subrange_type_die (tree type, dw_die_ref context_die)
8215 dw_die_ref subtype_die;
8216 dw_die_ref subrange_die;
8217 tree name = TYPE_NAME (type);
8218 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8219 tree subtype = TREE_TYPE (type);
8221 if (context_die == NULL)
8222 context_die = comp_unit_die;
8224 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8225 subtype_die = gen_enumeration_type_die (subtype, context_die);
8226 else
8227 subtype_die = base_type_die (subtype);
8229 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8231 if (name != NULL)
8233 if (TREE_CODE (name) == TYPE_DECL)
8234 name = DECL_NAME (name);
8235 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8238 if (int_size_in_bytes (subtype) != size_in_bytes)
8240 /* The size of the subrange type and its base type do not match,
8241 so we need to generate a size attribute for the subrange type. */
8242 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8245 if (TYPE_MIN_VALUE (type) != NULL)
8246 add_bound_info (subrange_die, DW_AT_lower_bound,
8247 TYPE_MIN_VALUE (type));
8248 if (TYPE_MAX_VALUE (type) != NULL)
8249 add_bound_info (subrange_die, DW_AT_upper_bound,
8250 TYPE_MAX_VALUE (type));
8251 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8253 return subrange_die;
8256 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8257 entry that chains various modifiers in front of the given type. */
8259 static dw_die_ref
8260 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8261 dw_die_ref context_die)
8263 enum tree_code code = TREE_CODE (type);
8264 dw_die_ref mod_type_die = NULL;
8265 dw_die_ref sub_die = NULL;
8266 tree item_type = NULL;
8268 if (code != ERROR_MARK)
8270 tree qualified_type;
8272 /* See if we already have the appropriately qualified variant of
8273 this type. */
8274 qualified_type
8275 = get_qualified_type (type,
8276 ((is_const_type ? TYPE_QUAL_CONST : 0)
8277 | (is_volatile_type
8278 ? TYPE_QUAL_VOLATILE : 0)));
8280 /* If we do, then we can just use its DIE, if it exists. */
8281 if (qualified_type)
8283 mod_type_die = lookup_type_die (qualified_type);
8284 if (mod_type_die)
8285 return mod_type_die;
8288 /* Handle C typedef types. */
8289 if (qualified_type && TYPE_NAME (qualified_type)
8290 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8291 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8293 tree type_name = TYPE_NAME (qualified_type);
8294 tree dtype = TREE_TYPE (type_name);
8296 if (qualified_type == dtype)
8298 /* For a named type, use the typedef. */
8299 gen_type_die (qualified_type, context_die);
8300 mod_type_die = lookup_type_die (qualified_type);
8302 else if (is_const_type < TYPE_READONLY (dtype)
8303 || is_volatile_type < TYPE_VOLATILE (dtype))
8304 /* cv-unqualified version of named type. Just use the unnamed
8305 type to which it refers. */
8306 mod_type_die
8307 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8308 is_const_type, is_volatile_type,
8309 context_die);
8311 /* Else cv-qualified version of named type; fall through. */
8314 if (mod_type_die)
8315 /* OK. */
8317 else if (is_const_type)
8319 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8320 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8322 else if (is_volatile_type)
8324 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8325 sub_die = modified_type_die (type, 0, 0, context_die);
8327 else if (code == POINTER_TYPE)
8329 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8330 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8331 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8332 #if 0
8333 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8334 #endif
8335 item_type = TREE_TYPE (type);
8337 else if (code == REFERENCE_TYPE)
8339 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8340 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8341 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8342 #if 0
8343 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8344 #endif
8345 item_type = TREE_TYPE (type);
8347 else if (is_subrange_type (type))
8348 mod_type_die = subrange_type_die (type, context_die);
8349 else if (is_base_type (type))
8350 mod_type_die = base_type_die (type);
8351 else
8353 gen_type_die (type, context_die);
8355 /* We have to get the type_main_variant here (and pass that to the
8356 `lookup_type_die' routine) because the ..._TYPE node we have
8357 might simply be a *copy* of some original type node (where the
8358 copy was created to help us keep track of typedef names) and
8359 that copy might have a different TYPE_UID from the original
8360 ..._TYPE node. */
8361 if (TREE_CODE (type) != VECTOR_TYPE)
8362 mod_type_die = lookup_type_die (type_main_variant (type));
8363 else
8364 /* Vectors have the debugging information in the type,
8365 not the main variant. */
8366 mod_type_die = lookup_type_die (type);
8367 gcc_assert (mod_type_die);
8370 /* We want to equate the qualified type to the die below. */
8371 type = qualified_type;
8374 if (type)
8375 equate_type_number_to_die (type, mod_type_die);
8376 if (item_type)
8377 /* We must do this after the equate_type_number_to_die call, in case
8378 this is a recursive type. This ensures that the modified_type_die
8379 recursion will terminate even if the type is recursive. Recursive
8380 types are possible in Ada. */
8381 sub_die = modified_type_die (item_type,
8382 TYPE_READONLY (item_type),
8383 TYPE_VOLATILE (item_type),
8384 context_die);
8386 if (sub_die != NULL)
8387 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8389 return mod_type_die;
8392 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8393 an enumerated type. */
8395 static inline int
8396 type_is_enum (tree type)
8398 return TREE_CODE (type) == ENUMERAL_TYPE;
8401 /* Return the DBX register number described by a given RTL node. */
8403 static unsigned int
8404 dbx_reg_number (rtx rtl)
8406 unsigned regno = REGNO (rtl);
8408 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8410 return DBX_REGISTER_NUMBER (regno);
8413 /* Optionally add a DW_OP_piece term to a location description expression.
8414 DW_OP_piece is only added if the location description expression already
8415 doesn't end with DW_OP_piece. */
8417 static void
8418 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8420 dw_loc_descr_ref loc;
8422 if (*list_head != NULL)
8424 /* Find the end of the chain. */
8425 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8428 if (loc->dw_loc_opc != DW_OP_piece)
8429 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8433 /* Return a location descriptor that designates a machine register or
8434 zero if there is none. */
8436 static dw_loc_descr_ref
8437 reg_loc_descriptor (rtx rtl)
8439 unsigned reg;
8440 rtx regs;
8442 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8443 return 0;
8445 reg = dbx_reg_number (rtl);
8446 regs = targetm.dwarf_register_span (rtl);
8448 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8449 || regs)
8450 return multiple_reg_loc_descriptor (rtl, regs);
8451 else
8452 return one_reg_loc_descriptor (reg);
8455 /* Return a location descriptor that designates a machine register for
8456 a given hard register number. */
8458 static dw_loc_descr_ref
8459 one_reg_loc_descriptor (unsigned int regno)
8461 if (regno <= 31)
8462 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8463 else
8464 return new_loc_descr (DW_OP_regx, regno, 0);
8467 /* Given an RTL of a register, return a location descriptor that
8468 designates a value that spans more than one register. */
8470 static dw_loc_descr_ref
8471 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8473 int nregs, size, i;
8474 unsigned reg;
8475 dw_loc_descr_ref loc_result = NULL;
8477 reg = dbx_reg_number (rtl);
8478 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8480 /* Simple, contiguous registers. */
8481 if (regs == NULL_RTX)
8483 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8485 loc_result = NULL;
8486 while (nregs--)
8488 dw_loc_descr_ref t;
8490 t = one_reg_loc_descriptor (reg);
8491 add_loc_descr (&loc_result, t);
8492 add_loc_descr_op_piece (&loc_result, size);
8493 ++reg;
8495 return loc_result;
8498 /* Now onto stupid register sets in non contiguous locations. */
8500 gcc_assert (GET_CODE (regs) == PARALLEL);
8502 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8503 loc_result = NULL;
8505 for (i = 0; i < XVECLEN (regs, 0); ++i)
8507 dw_loc_descr_ref t;
8509 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8510 add_loc_descr (&loc_result, t);
8511 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8512 add_loc_descr_op_piece (&loc_result, size);
8514 return loc_result;
8517 /* Return a location descriptor that designates a constant. */
8519 static dw_loc_descr_ref
8520 int_loc_descriptor (HOST_WIDE_INT i)
8522 enum dwarf_location_atom op;
8524 /* Pick the smallest representation of a constant, rather than just
8525 defaulting to the LEB encoding. */
8526 if (i >= 0)
8528 if (i <= 31)
8529 op = DW_OP_lit0 + i;
8530 else if (i <= 0xff)
8531 op = DW_OP_const1u;
8532 else if (i <= 0xffff)
8533 op = DW_OP_const2u;
8534 else if (HOST_BITS_PER_WIDE_INT == 32
8535 || i <= 0xffffffff)
8536 op = DW_OP_const4u;
8537 else
8538 op = DW_OP_constu;
8540 else
8542 if (i >= -0x80)
8543 op = DW_OP_const1s;
8544 else if (i >= -0x8000)
8545 op = DW_OP_const2s;
8546 else if (HOST_BITS_PER_WIDE_INT == 32
8547 || i >= -0x80000000)
8548 op = DW_OP_const4s;
8549 else
8550 op = DW_OP_consts;
8553 return new_loc_descr (op, i, 0);
8556 /* Return a location descriptor that designates a base+offset location. */
8558 static dw_loc_descr_ref
8559 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8561 dw_loc_descr_ref loc_result;
8562 /* For the "frame base", we use the frame pointer or stack pointer
8563 registers, since the RTL for local variables is relative to one of
8564 them. */
8565 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8566 ? HARD_FRAME_POINTER_REGNUM
8567 : STACK_POINTER_REGNUM);
8569 if (reg == fp_reg && can_use_fbreg)
8570 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8571 else if (reg <= 31)
8572 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8573 else
8574 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8576 return loc_result;
8579 /* Return true if this RTL expression describes a base+offset calculation. */
8581 static inline int
8582 is_based_loc (rtx rtl)
8584 return (GET_CODE (rtl) == PLUS
8585 && ((REG_P (XEXP (rtl, 0))
8586 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8587 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8590 /* The following routine converts the RTL for a variable or parameter
8591 (resident in memory) into an equivalent Dwarf representation of a
8592 mechanism for getting the address of that same variable onto the top of a
8593 hypothetical "address evaluation" stack.
8595 When creating memory location descriptors, we are effectively transforming
8596 the RTL for a memory-resident object into its Dwarf postfix expression
8597 equivalent. This routine recursively descends an RTL tree, turning
8598 it into Dwarf postfix code as it goes.
8600 MODE is the mode of the memory reference, needed to handle some
8601 autoincrement addressing modes.
8603 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8604 list for RTL. We can't use it when we are emitting location list for
8605 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8606 which describes how frame base changes when !frame_pointer_needed.
8608 Return 0 if we can't represent the location. */
8610 static dw_loc_descr_ref
8611 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8613 dw_loc_descr_ref mem_loc_result = NULL;
8614 enum dwarf_location_atom op;
8616 /* Note that for a dynamically sized array, the location we will generate a
8617 description of here will be the lowest numbered location which is
8618 actually within the array. That's *not* necessarily the same as the
8619 zeroth element of the array. */
8621 rtl = targetm.delegitimize_address (rtl);
8623 switch (GET_CODE (rtl))
8625 case POST_INC:
8626 case POST_DEC:
8627 case POST_MODIFY:
8628 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8629 just fall into the SUBREG code. */
8631 /* ... fall through ... */
8633 case SUBREG:
8634 /* The case of a subreg may arise when we have a local (register)
8635 variable or a formal (register) parameter which doesn't quite fill
8636 up an entire register. For now, just assume that it is
8637 legitimate to make the Dwarf info refer to the whole register which
8638 contains the given subreg. */
8639 rtl = SUBREG_REG (rtl);
8641 /* ... fall through ... */
8643 case REG:
8644 /* Whenever a register number forms a part of the description of the
8645 method for calculating the (dynamic) address of a memory resident
8646 object, DWARF rules require the register number be referred to as
8647 a "base register". This distinction is not based in any way upon
8648 what category of register the hardware believes the given register
8649 belongs to. This is strictly DWARF terminology we're dealing with
8650 here. Note that in cases where the location of a memory-resident
8651 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8652 OP_CONST (0)) the actual DWARF location descriptor that we generate
8653 may just be OP_BASEREG (basereg). This may look deceptively like
8654 the object in question was allocated to a register (rather than in
8655 memory) so DWARF consumers need to be aware of the subtle
8656 distinction between OP_REG and OP_BASEREG. */
8657 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8658 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8659 can_use_fbreg);
8660 break;
8662 case MEM:
8663 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8664 can_use_fbreg);
8665 if (mem_loc_result != 0)
8666 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8667 break;
8669 case LO_SUM:
8670 rtl = XEXP (rtl, 1);
8672 /* ... fall through ... */
8674 case LABEL_REF:
8675 /* Some ports can transform a symbol ref into a label ref, because
8676 the symbol ref is too far away and has to be dumped into a constant
8677 pool. */
8678 case CONST:
8679 case SYMBOL_REF:
8680 /* Alternatively, the symbol in the constant pool might be referenced
8681 by a different symbol. */
8682 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8684 bool marked;
8685 rtx tmp = get_pool_constant_mark (rtl, &marked);
8687 if (GET_CODE (tmp) == SYMBOL_REF)
8689 rtl = tmp;
8690 if (CONSTANT_POOL_ADDRESS_P (tmp))
8691 get_pool_constant_mark (tmp, &marked);
8692 else
8693 marked = true;
8696 /* If all references to this pool constant were optimized away,
8697 it was not output and thus we can't represent it.
8698 FIXME: might try to use DW_OP_const_value here, though
8699 DW_OP_piece complicates it. */
8700 if (!marked)
8701 return 0;
8704 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8705 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8706 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8707 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8708 break;
8710 case PRE_MODIFY:
8711 /* Extract the PLUS expression nested inside and fall into
8712 PLUS code below. */
8713 rtl = XEXP (rtl, 1);
8714 goto plus;
8716 case PRE_INC:
8717 case PRE_DEC:
8718 /* Turn these into a PLUS expression and fall into the PLUS code
8719 below. */
8720 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8721 GEN_INT (GET_CODE (rtl) == PRE_INC
8722 ? GET_MODE_UNIT_SIZE (mode)
8723 : -GET_MODE_UNIT_SIZE (mode)));
8725 /* ... fall through ... */
8727 case PLUS:
8728 plus:
8729 if (is_based_loc (rtl))
8730 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8731 INTVAL (XEXP (rtl, 1)),
8732 can_use_fbreg);
8733 else
8735 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8736 can_use_fbreg);
8737 if (mem_loc_result == 0)
8738 break;
8740 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8741 && INTVAL (XEXP (rtl, 1)) >= 0)
8742 add_loc_descr (&mem_loc_result,
8743 new_loc_descr (DW_OP_plus_uconst,
8744 INTVAL (XEXP (rtl, 1)), 0));
8745 else
8747 add_loc_descr (&mem_loc_result,
8748 mem_loc_descriptor (XEXP (rtl, 1), mode,
8749 can_use_fbreg));
8750 add_loc_descr (&mem_loc_result,
8751 new_loc_descr (DW_OP_plus, 0, 0));
8754 break;
8756 /* If a pseudo-reg is optimized away, it is possible for it to
8757 be replaced with a MEM containing a multiply or shift. */
8758 case MULT:
8759 op = DW_OP_mul;
8760 goto do_binop;
8762 case ASHIFT:
8763 op = DW_OP_shl;
8764 goto do_binop;
8766 case ASHIFTRT:
8767 op = DW_OP_shra;
8768 goto do_binop;
8770 case LSHIFTRT:
8771 op = DW_OP_shr;
8772 goto do_binop;
8774 do_binop:
8776 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8777 can_use_fbreg);
8778 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8779 can_use_fbreg);
8781 if (op0 == 0 || op1 == 0)
8782 break;
8784 mem_loc_result = op0;
8785 add_loc_descr (&mem_loc_result, op1);
8786 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8787 break;
8790 case CONST_INT:
8791 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8792 break;
8794 default:
8795 gcc_unreachable ();
8798 return mem_loc_result;
8801 /* Return a descriptor that describes the concatenation of two locations.
8802 This is typically a complex variable. */
8804 static dw_loc_descr_ref
8805 concat_loc_descriptor (rtx x0, rtx x1)
8807 dw_loc_descr_ref cc_loc_result = NULL;
8808 dw_loc_descr_ref x0_ref = loc_descriptor (x0, false);
8809 dw_loc_descr_ref x1_ref = loc_descriptor (x1, false);
8811 if (x0_ref == 0 || x1_ref == 0)
8812 return 0;
8814 cc_loc_result = x0_ref;
8815 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8817 add_loc_descr (&cc_loc_result, x1_ref);
8818 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8820 return cc_loc_result;
8823 /* Output a proper Dwarf location descriptor for a variable or parameter
8824 which is either allocated in a register or in a memory location. For a
8825 register, we just generate an OP_REG and the register number. For a
8826 memory location we provide a Dwarf postfix expression describing how to
8827 generate the (dynamic) address of the object onto the address stack.
8829 If we don't know how to describe it, return 0. */
8831 static dw_loc_descr_ref
8832 loc_descriptor (rtx rtl, bool can_use_fbreg)
8834 dw_loc_descr_ref loc_result = NULL;
8836 switch (GET_CODE (rtl))
8838 case SUBREG:
8839 /* The case of a subreg may arise when we have a local (register)
8840 variable or a formal (register) parameter which doesn't quite fill
8841 up an entire register. For now, just assume that it is
8842 legitimate to make the Dwarf info refer to the whole register which
8843 contains the given subreg. */
8844 rtl = SUBREG_REG (rtl);
8846 /* ... fall through ... */
8848 case REG:
8849 loc_result = reg_loc_descriptor (rtl);
8850 break;
8852 case MEM:
8853 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8854 can_use_fbreg);
8855 break;
8857 case CONCAT:
8858 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8859 break;
8861 case VAR_LOCATION:
8862 /* Single part. */
8863 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8865 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8866 break;
8869 rtl = XEXP (rtl, 1);
8870 /* FALLTHRU */
8872 case PARALLEL:
8874 rtvec par_elems = XVEC (rtl, 0);
8875 int num_elem = GET_NUM_ELEM (par_elems);
8876 enum machine_mode mode;
8877 int i;
8879 /* Create the first one, so we have something to add to. */
8880 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8881 can_use_fbreg);
8882 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8883 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8884 for (i = 1; i < num_elem; i++)
8886 dw_loc_descr_ref temp;
8888 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8889 can_use_fbreg);
8890 add_loc_descr (&loc_result, temp);
8891 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8892 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8895 break;
8897 default:
8898 gcc_unreachable ();
8901 return loc_result;
8904 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8905 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8906 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8907 top-level invocation, and we require the address of LOC; is 0 if we require
8908 the value of LOC. */
8910 static dw_loc_descr_ref
8911 loc_descriptor_from_tree_1 (tree loc, int want_address)
8913 dw_loc_descr_ref ret, ret1;
8914 int have_address = 0;
8915 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8916 enum dwarf_location_atom op;
8918 /* ??? Most of the time we do not take proper care for sign/zero
8919 extending the values properly. Hopefully this won't be a real
8920 problem... */
8922 switch (TREE_CODE (loc))
8924 case ERROR_MARK:
8925 return 0;
8927 case PLACEHOLDER_EXPR:
8928 /* This case involves extracting fields from an object to determine the
8929 position of other fields. We don't try to encode this here. The
8930 only user of this is Ada, which encodes the needed information using
8931 the names of types. */
8932 return 0;
8934 case CALL_EXPR:
8935 return 0;
8937 case PREINCREMENT_EXPR:
8938 case PREDECREMENT_EXPR:
8939 case POSTINCREMENT_EXPR:
8940 case POSTDECREMENT_EXPR:
8941 /* There are no opcodes for these operations. */
8942 return 0;
8944 case ADDR_EXPR:
8945 /* If we already want an address, there's nothing we can do. */
8946 if (want_address)
8947 return 0;
8949 /* Otherwise, process the argument and look for the address. */
8950 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
8952 case VAR_DECL:
8953 if (DECL_THREAD_LOCAL (loc))
8955 rtx rtl;
8957 /* If this is not defined, we have no way to emit the data. */
8958 if (!targetm.asm_out.output_dwarf_dtprel)
8959 return 0;
8961 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8962 look up addresses of objects in the current module. */
8963 if (DECL_EXTERNAL (loc))
8964 return 0;
8966 rtl = rtl_for_decl_location (loc);
8967 if (rtl == NULL_RTX)
8968 return 0;
8970 if (!MEM_P (rtl))
8971 return 0;
8972 rtl = XEXP (rtl, 0);
8973 if (! CONSTANT_P (rtl))
8974 return 0;
8976 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8977 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8978 ret->dw_loc_oprnd1.v.val_addr = rtl;
8980 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8981 add_loc_descr (&ret, ret1);
8983 have_address = 1;
8984 break;
8986 /* FALLTHRU */
8988 case PARM_DECL:
8989 if (DECL_HAS_VALUE_EXPR_P (loc))
8990 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
8991 want_address);
8992 /* FALLTHRU */
8994 case RESULT_DECL:
8996 rtx rtl = rtl_for_decl_location (loc);
8998 if (rtl == NULL_RTX)
8999 return 0;
9000 else if (GET_CODE (rtl) == CONST_INT)
9002 HOST_WIDE_INT val = INTVAL (rtl);
9003 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9004 val &= GET_MODE_MASK (DECL_MODE (loc));
9005 ret = int_loc_descriptor (val);
9007 else if (GET_CODE (rtl) == CONST_STRING)
9008 return 0;
9009 else if (CONSTANT_P (rtl))
9011 ret = new_loc_descr (DW_OP_addr, 0, 0);
9012 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9013 ret->dw_loc_oprnd1.v.val_addr = rtl;
9015 else
9017 enum machine_mode mode;
9019 /* Certain constructs can only be represented at top-level. */
9020 if (want_address == 2)
9021 return loc_descriptor (rtl, false);
9023 mode = GET_MODE (rtl);
9024 if (MEM_P (rtl))
9026 rtl = XEXP (rtl, 0);
9027 have_address = 1;
9029 ret = mem_loc_descriptor (rtl, mode, false);
9032 break;
9034 case INDIRECT_REF:
9035 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9036 have_address = 1;
9037 break;
9039 case COMPOUND_EXPR:
9040 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9042 case NOP_EXPR:
9043 case CONVERT_EXPR:
9044 case NON_LVALUE_EXPR:
9045 case VIEW_CONVERT_EXPR:
9046 case SAVE_EXPR:
9047 case MODIFY_EXPR:
9048 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9050 case COMPONENT_REF:
9051 case BIT_FIELD_REF:
9052 case ARRAY_REF:
9053 case ARRAY_RANGE_REF:
9055 tree obj, offset;
9056 HOST_WIDE_INT bitsize, bitpos, bytepos;
9057 enum machine_mode mode;
9058 int volatilep;
9060 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9061 &unsignedp, &volatilep, false);
9063 if (obj == loc)
9064 return 0;
9066 ret = loc_descriptor_from_tree_1 (obj, 1);
9067 if (ret == 0
9068 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9069 return 0;
9071 if (offset != NULL_TREE)
9073 /* Variable offset. */
9074 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9075 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9078 bytepos = bitpos / BITS_PER_UNIT;
9079 if (bytepos > 0)
9080 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9081 else if (bytepos < 0)
9083 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9084 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9087 have_address = 1;
9088 break;
9091 case INTEGER_CST:
9092 if (host_integerp (loc, 0))
9093 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9094 else
9095 return 0;
9096 break;
9098 case CONSTRUCTOR:
9100 /* Get an RTL for this, if something has been emitted. */
9101 rtx rtl = lookup_constant_def (loc);
9102 enum machine_mode mode;
9104 if (!rtl || !MEM_P (rtl))
9105 return 0;
9106 mode = GET_MODE (rtl);
9107 rtl = XEXP (rtl, 0);
9108 ret = mem_loc_descriptor (rtl, mode, false);
9109 have_address = 1;
9110 break;
9113 case TRUTH_AND_EXPR:
9114 case TRUTH_ANDIF_EXPR:
9115 case BIT_AND_EXPR:
9116 op = DW_OP_and;
9117 goto do_binop;
9119 case TRUTH_XOR_EXPR:
9120 case BIT_XOR_EXPR:
9121 op = DW_OP_xor;
9122 goto do_binop;
9124 case TRUTH_OR_EXPR:
9125 case TRUTH_ORIF_EXPR:
9126 case BIT_IOR_EXPR:
9127 op = DW_OP_or;
9128 goto do_binop;
9130 case FLOOR_DIV_EXPR:
9131 case CEIL_DIV_EXPR:
9132 case ROUND_DIV_EXPR:
9133 case TRUNC_DIV_EXPR:
9134 op = DW_OP_div;
9135 goto do_binop;
9137 case MINUS_EXPR:
9138 op = DW_OP_minus;
9139 goto do_binop;
9141 case FLOOR_MOD_EXPR:
9142 case CEIL_MOD_EXPR:
9143 case ROUND_MOD_EXPR:
9144 case TRUNC_MOD_EXPR:
9145 op = DW_OP_mod;
9146 goto do_binop;
9148 case MULT_EXPR:
9149 op = DW_OP_mul;
9150 goto do_binop;
9152 case LSHIFT_EXPR:
9153 op = DW_OP_shl;
9154 goto do_binop;
9156 case RSHIFT_EXPR:
9157 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9158 goto do_binop;
9160 case PLUS_EXPR:
9161 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9162 && host_integerp (TREE_OPERAND (loc, 1), 0))
9164 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9165 if (ret == 0)
9166 return 0;
9168 add_loc_descr (&ret,
9169 new_loc_descr (DW_OP_plus_uconst,
9170 tree_low_cst (TREE_OPERAND (loc, 1),
9172 0));
9173 break;
9176 op = DW_OP_plus;
9177 goto do_binop;
9179 case LE_EXPR:
9180 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9181 return 0;
9183 op = DW_OP_le;
9184 goto do_binop;
9186 case GE_EXPR:
9187 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9188 return 0;
9190 op = DW_OP_ge;
9191 goto do_binop;
9193 case LT_EXPR:
9194 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9195 return 0;
9197 op = DW_OP_lt;
9198 goto do_binop;
9200 case GT_EXPR:
9201 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9202 return 0;
9204 op = DW_OP_gt;
9205 goto do_binop;
9207 case EQ_EXPR:
9208 op = DW_OP_eq;
9209 goto do_binop;
9211 case NE_EXPR:
9212 op = DW_OP_ne;
9213 goto do_binop;
9215 do_binop:
9216 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9217 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9218 if (ret == 0 || ret1 == 0)
9219 return 0;
9221 add_loc_descr (&ret, ret1);
9222 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9223 break;
9225 case TRUTH_NOT_EXPR:
9226 case BIT_NOT_EXPR:
9227 op = DW_OP_not;
9228 goto do_unop;
9230 case ABS_EXPR:
9231 op = DW_OP_abs;
9232 goto do_unop;
9234 case NEGATE_EXPR:
9235 op = DW_OP_neg;
9236 goto do_unop;
9238 do_unop:
9239 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9240 if (ret == 0)
9241 return 0;
9243 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9244 break;
9246 case MIN_EXPR:
9247 case MAX_EXPR:
9249 const enum tree_code code =
9250 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9252 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9253 build2 (code, integer_type_node,
9254 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9255 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9258 /* ... fall through ... */
9260 case COND_EXPR:
9262 dw_loc_descr_ref lhs
9263 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9264 dw_loc_descr_ref rhs
9265 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9266 dw_loc_descr_ref bra_node, jump_node, tmp;
9268 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9269 if (ret == 0 || lhs == 0 || rhs == 0)
9270 return 0;
9272 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9273 add_loc_descr (&ret, bra_node);
9275 add_loc_descr (&ret, rhs);
9276 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9277 add_loc_descr (&ret, jump_node);
9279 add_loc_descr (&ret, lhs);
9280 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9281 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9283 /* ??? Need a node to point the skip at. Use a nop. */
9284 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9285 add_loc_descr (&ret, tmp);
9286 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9287 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9289 break;
9291 case FIX_TRUNC_EXPR:
9292 case FIX_CEIL_EXPR:
9293 case FIX_FLOOR_EXPR:
9294 case FIX_ROUND_EXPR:
9295 return 0;
9297 default:
9298 /* Leave front-end specific codes as simply unknown. This comes
9299 up, for instance, with the C STMT_EXPR. */
9300 if ((unsigned int) TREE_CODE (loc)
9301 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9302 return 0;
9304 #ifdef ENABLE_CHECKING
9305 /* Otherwise this is a generic code; we should just lists all of
9306 these explicitly. We forgot one. */
9307 gcc_unreachable ();
9308 #else
9309 /* In a release build, we want to degrade gracefully: better to
9310 generate incomplete debugging information than to crash. */
9311 return NULL;
9312 #endif
9315 /* Show if we can't fill the request for an address. */
9316 if (want_address && !have_address)
9317 return 0;
9319 /* If we've got an address and don't want one, dereference. */
9320 if (!want_address && have_address)
9322 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9324 if (size > DWARF2_ADDR_SIZE || size == -1)
9325 return 0;
9326 else if (size == DWARF2_ADDR_SIZE)
9327 op = DW_OP_deref;
9328 else
9329 op = DW_OP_deref_size;
9331 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9334 return ret;
9337 static inline dw_loc_descr_ref
9338 loc_descriptor_from_tree (tree loc)
9340 return loc_descriptor_from_tree_1 (loc, 2);
9343 /* Given a value, round it up to the lowest multiple of `boundary'
9344 which is not less than the value itself. */
9346 static inline HOST_WIDE_INT
9347 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9349 return (((value + boundary - 1) / boundary) * boundary);
9352 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9353 pointer to the declared type for the relevant field variable, or return
9354 `integer_type_node' if the given node turns out to be an
9355 ERROR_MARK node. */
9357 static inline tree
9358 field_type (tree decl)
9360 tree type;
9362 if (TREE_CODE (decl) == ERROR_MARK)
9363 return integer_type_node;
9365 type = DECL_BIT_FIELD_TYPE (decl);
9366 if (type == NULL_TREE)
9367 type = TREE_TYPE (decl);
9369 return type;
9372 /* Given a pointer to a tree node, return the alignment in bits for
9373 it, or else return BITS_PER_WORD if the node actually turns out to
9374 be an ERROR_MARK node. */
9376 static inline unsigned
9377 simple_type_align_in_bits (tree type)
9379 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9382 static inline unsigned
9383 simple_decl_align_in_bits (tree decl)
9385 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9388 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9389 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9390 or return 0 if we are unable to determine what that offset is, either
9391 because the argument turns out to be a pointer to an ERROR_MARK node, or
9392 because the offset is actually variable. (We can't handle the latter case
9393 just yet). */
9395 static HOST_WIDE_INT
9396 field_byte_offset (tree decl)
9398 unsigned int type_align_in_bits;
9399 unsigned int decl_align_in_bits;
9400 unsigned HOST_WIDE_INT type_size_in_bits;
9401 HOST_WIDE_INT object_offset_in_bits;
9402 tree type;
9403 tree field_size_tree;
9404 HOST_WIDE_INT bitpos_int;
9405 HOST_WIDE_INT deepest_bitpos;
9406 unsigned HOST_WIDE_INT field_size_in_bits;
9408 if (TREE_CODE (decl) == ERROR_MARK)
9409 return 0;
9411 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9413 type = field_type (decl);
9414 field_size_tree = DECL_SIZE (decl);
9416 /* The size could be unspecified if there was an error, or for
9417 a flexible array member. */
9418 if (! field_size_tree)
9419 field_size_tree = bitsize_zero_node;
9421 /* We cannot yet cope with fields whose positions are variable, so
9422 for now, when we see such things, we simply return 0. Someday, we may
9423 be able to handle such cases, but it will be damn difficult. */
9424 if (! host_integerp (bit_position (decl), 0))
9425 return 0;
9427 bitpos_int = int_bit_position (decl);
9429 /* If we don't know the size of the field, pretend it's a full word. */
9430 if (host_integerp (field_size_tree, 1))
9431 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9432 else
9433 field_size_in_bits = BITS_PER_WORD;
9435 type_size_in_bits = simple_type_size_in_bits (type);
9436 type_align_in_bits = simple_type_align_in_bits (type);
9437 decl_align_in_bits = simple_decl_align_in_bits (decl);
9439 /* The GCC front-end doesn't make any attempt to keep track of the starting
9440 bit offset (relative to the start of the containing structure type) of the
9441 hypothetical "containing object" for a bit-field. Thus, when computing
9442 the byte offset value for the start of the "containing object" of a
9443 bit-field, we must deduce this information on our own. This can be rather
9444 tricky to do in some cases. For example, handling the following structure
9445 type definition when compiling for an i386/i486 target (which only aligns
9446 long long's to 32-bit boundaries) can be very tricky:
9448 struct S { int field1; long long field2:31; };
9450 Fortunately, there is a simple rule-of-thumb which can be used in such
9451 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9452 structure shown above. It decides to do this based upon one simple rule
9453 for bit-field allocation. GCC allocates each "containing object" for each
9454 bit-field at the first (i.e. lowest addressed) legitimate alignment
9455 boundary (based upon the required minimum alignment for the declared type
9456 of the field) which it can possibly use, subject to the condition that
9457 there is still enough available space remaining in the containing object
9458 (when allocated at the selected point) to fully accommodate all of the
9459 bits of the bit-field itself.
9461 This simple rule makes it obvious why GCC allocates 8 bytes for each
9462 object of the structure type shown above. When looking for a place to
9463 allocate the "containing object" for `field2', the compiler simply tries
9464 to allocate a 64-bit "containing object" at each successive 32-bit
9465 boundary (starting at zero) until it finds a place to allocate that 64-
9466 bit field such that at least 31 contiguous (and previously unallocated)
9467 bits remain within that selected 64 bit field. (As it turns out, for the
9468 example above, the compiler finds it is OK to allocate the "containing
9469 object" 64-bit field at bit-offset zero within the structure type.)
9471 Here we attempt to work backwards from the limited set of facts we're
9472 given, and we try to deduce from those facts, where GCC must have believed
9473 that the containing object started (within the structure type). The value
9474 we deduce is then used (by the callers of this routine) to generate
9475 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9476 and, in the case of DW_AT_location, regular fields as well). */
9478 /* Figure out the bit-distance from the start of the structure to the
9479 "deepest" bit of the bit-field. */
9480 deepest_bitpos = bitpos_int + field_size_in_bits;
9482 /* This is the tricky part. Use some fancy footwork to deduce where the
9483 lowest addressed bit of the containing object must be. */
9484 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9486 /* Round up to type_align by default. This works best for bitfields. */
9487 object_offset_in_bits += type_align_in_bits - 1;
9488 object_offset_in_bits /= type_align_in_bits;
9489 object_offset_in_bits *= type_align_in_bits;
9491 if (object_offset_in_bits > bitpos_int)
9493 /* Sigh, the decl must be packed. */
9494 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9496 /* Round up to decl_align instead. */
9497 object_offset_in_bits += decl_align_in_bits - 1;
9498 object_offset_in_bits /= decl_align_in_bits;
9499 object_offset_in_bits *= decl_align_in_bits;
9502 return object_offset_in_bits / BITS_PER_UNIT;
9505 /* The following routines define various Dwarf attributes and any data
9506 associated with them. */
9508 /* Add a location description attribute value to a DIE.
9510 This emits location attributes suitable for whole variables and
9511 whole parameters. Note that the location attributes for struct fields are
9512 generated by the routine `data_member_location_attribute' below. */
9514 static inline void
9515 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9516 dw_loc_descr_ref descr)
9518 if (descr != 0)
9519 add_AT_loc (die, attr_kind, descr);
9522 /* Attach the specialized form of location attribute used for data members of
9523 struct and union types. In the special case of a FIELD_DECL node which
9524 represents a bit-field, the "offset" part of this special location
9525 descriptor must indicate the distance in bytes from the lowest-addressed
9526 byte of the containing struct or union type to the lowest-addressed byte of
9527 the "containing object" for the bit-field. (See the `field_byte_offset'
9528 function above).
9530 For any given bit-field, the "containing object" is a hypothetical object
9531 (of some integral or enum type) within which the given bit-field lives. The
9532 type of this hypothetical "containing object" is always the same as the
9533 declared type of the individual bit-field itself (for GCC anyway... the
9534 DWARF spec doesn't actually mandate this). Note that it is the size (in
9535 bytes) of the hypothetical "containing object" which will be given in the
9536 DW_AT_byte_size attribute for this bit-field. (See the
9537 `byte_size_attribute' function below.) It is also used when calculating the
9538 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9539 function below.) */
9541 static void
9542 add_data_member_location_attribute (dw_die_ref die, tree decl)
9544 HOST_WIDE_INT offset;
9545 dw_loc_descr_ref loc_descr = 0;
9547 if (TREE_CODE (decl) == TREE_BINFO)
9549 /* We're working on the TAG_inheritance for a base class. */
9550 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9552 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9553 aren't at a fixed offset from all (sub)objects of the same
9554 type. We need to extract the appropriate offset from our
9555 vtable. The following dwarf expression means
9557 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9559 This is specific to the V3 ABI, of course. */
9561 dw_loc_descr_ref tmp;
9563 /* Make a copy of the object address. */
9564 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9565 add_loc_descr (&loc_descr, tmp);
9567 /* Extract the vtable address. */
9568 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9569 add_loc_descr (&loc_descr, tmp);
9571 /* Calculate the address of the offset. */
9572 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9573 gcc_assert (offset < 0);
9575 tmp = int_loc_descriptor (-offset);
9576 add_loc_descr (&loc_descr, tmp);
9577 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9578 add_loc_descr (&loc_descr, tmp);
9580 /* Extract the offset. */
9581 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9582 add_loc_descr (&loc_descr, tmp);
9584 /* Add it to the object address. */
9585 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9586 add_loc_descr (&loc_descr, tmp);
9588 else
9589 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9591 else
9592 offset = field_byte_offset (decl);
9594 if (! loc_descr)
9596 enum dwarf_location_atom op;
9598 /* The DWARF2 standard says that we should assume that the structure
9599 address is already on the stack, so we can specify a structure field
9600 address by using DW_OP_plus_uconst. */
9602 #ifdef MIPS_DEBUGGING_INFO
9603 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9604 operator correctly. It works only if we leave the offset on the
9605 stack. */
9606 op = DW_OP_constu;
9607 #else
9608 op = DW_OP_plus_uconst;
9609 #endif
9611 loc_descr = new_loc_descr (op, offset, 0);
9614 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9617 /* Writes integer values to dw_vec_const array. */
9619 static void
9620 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9622 while (size != 0)
9624 *dest++ = val & 0xff;
9625 val >>= 8;
9626 --size;
9630 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9632 static HOST_WIDE_INT
9633 extract_int (const unsigned char *src, unsigned int size)
9635 HOST_WIDE_INT val = 0;
9637 src += size;
9638 while (size != 0)
9640 val <<= 8;
9641 val |= *--src & 0xff;
9642 --size;
9644 return val;
9647 /* Writes floating point values to dw_vec_const array. */
9649 static void
9650 insert_float (rtx rtl, unsigned char *array)
9652 REAL_VALUE_TYPE rv;
9653 long val[4];
9654 int i;
9656 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9657 real_to_target (val, &rv, GET_MODE (rtl));
9659 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9660 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9662 insert_int (val[i], 4, array);
9663 array += 4;
9667 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9668 does not have a "location" either in memory or in a register. These
9669 things can arise in GNU C when a constant is passed as an actual parameter
9670 to an inlined function. They can also arise in C++ where declared
9671 constants do not necessarily get memory "homes". */
9673 static void
9674 add_const_value_attribute (dw_die_ref die, rtx rtl)
9676 switch (GET_CODE (rtl))
9678 case CONST_INT:
9680 HOST_WIDE_INT val = INTVAL (rtl);
9682 if (val < 0)
9683 add_AT_int (die, DW_AT_const_value, val);
9684 else
9685 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9687 break;
9689 case CONST_DOUBLE:
9690 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9691 floating-point constant. A CONST_DOUBLE is used whenever the
9692 constant requires more than one word in order to be adequately
9693 represented. We output CONST_DOUBLEs as blocks. */
9695 enum machine_mode mode = GET_MODE (rtl);
9697 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9699 unsigned int length = GET_MODE_SIZE (mode);
9700 unsigned char *array = ggc_alloc (length);
9702 insert_float (rtl, array);
9703 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9705 else
9707 /* ??? We really should be using HOST_WIDE_INT throughout. */
9708 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9710 add_AT_long_long (die, DW_AT_const_value,
9711 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9714 break;
9716 case CONST_VECTOR:
9718 enum machine_mode mode = GET_MODE (rtl);
9719 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9720 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9721 unsigned char *array = ggc_alloc (length * elt_size);
9722 unsigned int i;
9723 unsigned char *p;
9725 switch (GET_MODE_CLASS (mode))
9727 case MODE_VECTOR_INT:
9728 for (i = 0, p = array; i < length; i++, p += elt_size)
9730 rtx elt = CONST_VECTOR_ELT (rtl, i);
9731 HOST_WIDE_INT lo, hi;
9733 switch (GET_CODE (elt))
9735 case CONST_INT:
9736 lo = INTVAL (elt);
9737 hi = -(lo < 0);
9738 break;
9740 case CONST_DOUBLE:
9741 lo = CONST_DOUBLE_LOW (elt);
9742 hi = CONST_DOUBLE_HIGH (elt);
9743 break;
9745 default:
9746 gcc_unreachable ();
9749 if (elt_size <= sizeof (HOST_WIDE_INT))
9750 insert_int (lo, elt_size, p);
9751 else
9753 unsigned char *p0 = p;
9754 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9756 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9757 if (WORDS_BIG_ENDIAN)
9759 p0 = p1;
9760 p1 = p;
9762 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9763 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9766 break;
9768 case MODE_VECTOR_FLOAT:
9769 for (i = 0, p = array; i < length; i++, p += elt_size)
9771 rtx elt = CONST_VECTOR_ELT (rtl, i);
9772 insert_float (elt, p);
9774 break;
9776 default:
9777 gcc_unreachable ();
9780 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9782 break;
9784 case CONST_STRING:
9785 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9786 break;
9788 case SYMBOL_REF:
9789 case LABEL_REF:
9790 case CONST:
9791 add_AT_addr (die, DW_AT_const_value, rtl);
9792 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9793 break;
9795 case PLUS:
9796 /* In cases where an inlined instance of an inline function is passed
9797 the address of an `auto' variable (which is local to the caller) we
9798 can get a situation where the DECL_RTL of the artificial local
9799 variable (for the inlining) which acts as a stand-in for the
9800 corresponding formal parameter (of the inline function) will look
9801 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9802 exactly a compile-time constant expression, but it isn't the address
9803 of the (artificial) local variable either. Rather, it represents the
9804 *value* which the artificial local variable always has during its
9805 lifetime. We currently have no way to represent such quasi-constant
9806 values in Dwarf, so for now we just punt and generate nothing. */
9807 break;
9809 default:
9810 /* No other kinds of rtx should be possible here. */
9811 gcc_unreachable ();
9816 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9817 for use in a later add_const_value_attribute call. */
9819 static rtx
9820 rtl_for_decl_init (tree init, tree type)
9822 rtx rtl = NULL_RTX;
9824 /* If a variable is initialized with a string constant without embedded
9825 zeros, build CONST_STRING. */
9826 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9828 tree enttype = TREE_TYPE (type);
9829 tree domain = TYPE_DOMAIN (type);
9830 enum machine_mode mode = TYPE_MODE (enttype);
9832 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9833 && domain
9834 && integer_zerop (TYPE_MIN_VALUE (domain))
9835 && compare_tree_int (TYPE_MAX_VALUE (domain),
9836 TREE_STRING_LENGTH (init) - 1) == 0
9837 && ((size_t) TREE_STRING_LENGTH (init)
9838 == strlen (TREE_STRING_POINTER (init)) + 1))
9839 rtl = gen_rtx_CONST_STRING (VOIDmode,
9840 ggc_strdup (TREE_STRING_POINTER (init)));
9842 /* If the initializer is something that we know will expand into an
9843 immediate RTL constant, expand it now. Expanding anything else
9844 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9845 /* Aggregate, vector, and complex types may contain constructors that may
9846 result in code being generated when expand_expr is called, so we can't
9847 handle them here. Integer and float are useful and safe types to handle
9848 here. */
9849 else if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
9850 && initializer_constant_valid_p (init, type) == null_pointer_node)
9852 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9854 /* If expand_expr returns a MEM, it wasn't immediate. */
9855 gcc_assert (!rtl || !MEM_P (rtl));
9858 return rtl;
9861 /* Generate RTL for the variable DECL to represent its location. */
9863 static rtx
9864 rtl_for_decl_location (tree decl)
9866 rtx rtl;
9868 /* Here we have to decide where we are going to say the parameter "lives"
9869 (as far as the debugger is concerned). We only have a couple of
9870 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9872 DECL_RTL normally indicates where the parameter lives during most of the
9873 activation of the function. If optimization is enabled however, this
9874 could be either NULL or else a pseudo-reg. Both of those cases indicate
9875 that the parameter doesn't really live anywhere (as far as the code
9876 generation parts of GCC are concerned) during most of the function's
9877 activation. That will happen (for example) if the parameter is never
9878 referenced within the function.
9880 We could just generate a location descriptor here for all non-NULL
9881 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9882 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9883 where DECL_RTL is NULL or is a pseudo-reg.
9885 Note however that we can only get away with using DECL_INCOMING_RTL as
9886 a backup substitute for DECL_RTL in certain limited cases. In cases
9887 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9888 we can be sure that the parameter was passed using the same type as it is
9889 declared to have within the function, and that its DECL_INCOMING_RTL
9890 points us to a place where a value of that type is passed.
9892 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9893 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9894 because in these cases DECL_INCOMING_RTL points us to a value of some
9895 type which is *different* from the type of the parameter itself. Thus,
9896 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9897 such cases, the debugger would end up (for example) trying to fetch a
9898 `float' from a place which actually contains the first part of a
9899 `double'. That would lead to really incorrect and confusing
9900 output at debug-time.
9902 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9903 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9904 are a couple of exceptions however. On little-endian machines we can
9905 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9906 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9907 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9908 when (on a little-endian machine) a non-prototyped function has a
9909 parameter declared to be of type `short' or `char'. In such cases,
9910 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9911 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9912 passed `int' value. If the debugger then uses that address to fetch
9913 a `short' or a `char' (on a little-endian machine) the result will be
9914 the correct data, so we allow for such exceptional cases below.
9916 Note that our goal here is to describe the place where the given formal
9917 parameter lives during most of the function's activation (i.e. between the
9918 end of the prologue and the start of the epilogue). We'll do that as best
9919 as we can. Note however that if the given formal parameter is modified
9920 sometime during the execution of the function, then a stack backtrace (at
9921 debug-time) will show the function as having been called with the *new*
9922 value rather than the value which was originally passed in. This happens
9923 rarely enough that it is not a major problem, but it *is* a problem, and
9924 I'd like to fix it.
9926 A future version of dwarf2out.c may generate two additional attributes for
9927 any given DW_TAG_formal_parameter DIE which will describe the "passed
9928 type" and the "passed location" for the given formal parameter in addition
9929 to the attributes we now generate to indicate the "declared type" and the
9930 "active location" for each parameter. This additional set of attributes
9931 could be used by debuggers for stack backtraces. Separately, note that
9932 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9933 This happens (for example) for inlined-instances of inline function formal
9934 parameters which are never referenced. This really shouldn't be
9935 happening. All PARM_DECL nodes should get valid non-NULL
9936 DECL_INCOMING_RTL values. FIXME. */
9938 /* Use DECL_RTL as the "location" unless we find something better. */
9939 rtl = DECL_RTL_IF_SET (decl);
9941 /* When generating abstract instances, ignore everything except
9942 constants, symbols living in memory, and symbols living in
9943 fixed registers. */
9944 if (! reload_completed)
9946 if (rtl
9947 && (CONSTANT_P (rtl)
9948 || (MEM_P (rtl)
9949 && CONSTANT_P (XEXP (rtl, 0)))
9950 || (REG_P (rtl)
9951 && TREE_CODE (decl) == VAR_DECL
9952 && TREE_STATIC (decl))))
9954 rtl = targetm.delegitimize_address (rtl);
9955 return rtl;
9957 rtl = NULL_RTX;
9959 else if (TREE_CODE (decl) == PARM_DECL)
9961 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9963 tree declared_type = TREE_TYPE (decl);
9964 tree passed_type = DECL_ARG_TYPE (decl);
9965 enum machine_mode dmode = TYPE_MODE (declared_type);
9966 enum machine_mode pmode = TYPE_MODE (passed_type);
9968 /* This decl represents a formal parameter which was optimized out.
9969 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9970 all cases where (rtl == NULL_RTX) just below. */
9971 if (dmode == pmode)
9972 rtl = DECL_INCOMING_RTL (decl);
9973 else if (SCALAR_INT_MODE_P (dmode)
9974 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
9975 && DECL_INCOMING_RTL (decl))
9977 rtx inc = DECL_INCOMING_RTL (decl);
9978 if (REG_P (inc))
9979 rtl = inc;
9980 else if (MEM_P (inc))
9982 if (BYTES_BIG_ENDIAN)
9983 rtl = adjust_address_nv (inc, dmode,
9984 GET_MODE_SIZE (pmode)
9985 - GET_MODE_SIZE (dmode));
9986 else
9987 rtl = inc;
9992 /* If the parm was passed in registers, but lives on the stack, then
9993 make a big endian correction if the mode of the type of the
9994 parameter is not the same as the mode of the rtl. */
9995 /* ??? This is the same series of checks that are made in dbxout.c before
9996 we reach the big endian correction code there. It isn't clear if all
9997 of these checks are necessary here, but keeping them all is the safe
9998 thing to do. */
9999 else if (MEM_P (rtl)
10000 && XEXP (rtl, 0) != const0_rtx
10001 && ! CONSTANT_P (XEXP (rtl, 0))
10002 /* Not passed in memory. */
10003 && !MEM_P (DECL_INCOMING_RTL (decl))
10004 /* Not passed by invisible reference. */
10005 && (!REG_P (XEXP (rtl, 0))
10006 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10007 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10008 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10009 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10010 #endif
10012 /* Big endian correction check. */
10013 && BYTES_BIG_ENDIAN
10014 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10015 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10016 < UNITS_PER_WORD))
10018 int offset = (UNITS_PER_WORD
10019 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10021 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10022 plus_constant (XEXP (rtl, 0), offset));
10025 else if (TREE_CODE (decl) == VAR_DECL
10026 && rtl
10027 && MEM_P (rtl)
10028 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10029 && BYTES_BIG_ENDIAN)
10031 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10032 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10034 /* If a variable is declared "register" yet is smaller than
10035 a register, then if we store the variable to memory, it
10036 looks like we're storing a register-sized value, when in
10037 fact we are not. We need to adjust the offset of the
10038 storage location to reflect the actual value's bytes,
10039 else gdb will not be able to display it. */
10040 if (rsize > dsize)
10041 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10042 plus_constant (XEXP (rtl, 0), rsize-dsize));
10045 if (rtl != NULL_RTX)
10047 rtl = eliminate_regs (rtl, 0, NULL_RTX);
10048 #ifdef LEAF_REG_REMAP
10049 if (current_function_uses_only_leaf_regs)
10050 leaf_renumber_regs_insn (rtl);
10051 #endif
10054 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10055 and will have been substituted directly into all expressions that use it.
10056 C does not have such a concept, but C++ and other languages do. */
10057 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10058 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10060 if (rtl)
10061 rtl = targetm.delegitimize_address (rtl);
10063 /* If we don't look past the constant pool, we risk emitting a
10064 reference to a constant pool entry that isn't referenced from
10065 code, and thus is not emitted. */
10066 if (rtl)
10067 rtl = avoid_constant_pool_reference (rtl);
10069 return rtl;
10072 /* Return true if DECL's containing function has a frame base attribute.
10073 Return false otherwise. */
10075 static bool
10076 containing_function_has_frame_base (tree decl)
10078 tree declcontext = decl_function_context (decl);
10079 dw_die_ref context;
10080 dw_attr_ref attr;
10082 if (!declcontext)
10083 return false;
10085 context = lookup_decl_die (declcontext);
10086 if (!context)
10087 return false;
10089 for (attr = context->die_attr; attr; attr = attr->dw_attr_next)
10090 if (attr->dw_attr == DW_AT_frame_base)
10091 return true;
10092 return false;
10095 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10096 data attribute for a variable or a parameter. We generate the
10097 DW_AT_const_value attribute only in those cases where the given variable
10098 or parameter does not have a true "location" either in memory or in a
10099 register. This can happen (for example) when a constant is passed as an
10100 actual argument in a call to an inline function. (It's possible that
10101 these things can crop up in other ways also.) Note that one type of
10102 constant value which can be passed into an inlined function is a constant
10103 pointer. This can happen for example if an actual argument in an inlined
10104 function call evaluates to a compile-time constant address. */
10106 static void
10107 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10108 enum dwarf_attribute attr)
10110 rtx rtl;
10111 dw_loc_descr_ref descr;
10112 var_loc_list *loc_list;
10113 bool can_use_fb;
10114 struct var_loc_node *node;
10115 if (TREE_CODE (decl) == ERROR_MARK)
10116 return;
10118 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10119 || TREE_CODE (decl) == RESULT_DECL);
10121 can_use_fb = containing_function_has_frame_base (decl);
10123 /* See if we possibly have multiple locations for this variable. */
10124 loc_list = lookup_decl_loc (decl);
10126 /* If it truly has multiple locations, the first and last node will
10127 differ. */
10128 if (loc_list && loc_list->first != loc_list->last)
10130 const char *secname;
10131 const char *endname;
10132 dw_loc_list_ref list;
10133 rtx varloc;
10135 /* We need to figure out what section we should use as the base
10136 for the address ranges where a given location is valid.
10137 1. If this particular DECL has a section associated with it,
10138 use that.
10139 2. If this function has a section associated with it, use
10140 that.
10141 3. Otherwise, use the text section.
10142 XXX: If you split a variable across multiple sections, this
10143 won't notice. */
10145 if (DECL_SECTION_NAME (decl))
10147 tree sectree = DECL_SECTION_NAME (decl);
10148 secname = TREE_STRING_POINTER (sectree);
10150 else if (current_function_decl
10151 && DECL_SECTION_NAME (current_function_decl))
10153 tree sectree = DECL_SECTION_NAME (current_function_decl);
10154 secname = TREE_STRING_POINTER (sectree);
10156 else if (cfun
10157 && (last_text_section == in_unlikely_executed_text
10158 || (last_text_section == in_named
10159 && last_text_section_name ==
10160 cfun->unlikely_text_section_name)))
10161 secname = cfun->cold_section_label;
10162 else
10163 secname = text_section_label;
10165 /* Now that we know what section we are using for a base,
10166 actually construct the list of locations.
10167 The first location information is what is passed to the
10168 function that creates the location list, and the remaining
10169 locations just get added on to that list.
10170 Note that we only know the start address for a location
10171 (IE location changes), so to build the range, we use
10172 the range [current location start, next location start].
10173 This means we have to special case the last node, and generate
10174 a range of [last location start, end of function label]. */
10176 node = loc_list->first;
10177 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10178 list = new_loc_list (loc_descriptor (varloc, can_use_fb),
10179 node->label, node->next->label, secname, 1);
10180 node = node->next;
10182 for (; node->next; node = node->next)
10183 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10185 /* The variable has a location between NODE->LABEL and
10186 NODE->NEXT->LABEL. */
10187 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10188 add_loc_descr_to_loc_list (&list,
10189 loc_descriptor (varloc,
10190 can_use_fb),
10191 node->label, node->next->label, secname);
10194 /* If the variable has a location at the last label
10195 it keeps its location until the end of function. */
10196 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10198 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10200 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10201 if (!current_function_decl)
10202 endname = text_end_label;
10203 else
10205 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10206 current_function_funcdef_no);
10207 endname = ggc_strdup (label_id);
10209 add_loc_descr_to_loc_list (&list,
10210 loc_descriptor (varloc,
10211 can_use_fb),
10212 node->label, endname, secname);
10215 /* Finally, add the location list to the DIE, and we are done. */
10216 add_AT_loc_list (die, attr, list);
10217 return;
10220 /* Try to get some constant RTL for this decl, and use that as the value of
10221 the location. */
10223 rtl = rtl_for_decl_location (decl);
10224 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10226 add_const_value_attribute (die, rtl);
10227 return;
10230 /* We couldn't get any rtl, and we had no >1 element location list, so try
10231 directly generating the location description from the tree. */
10232 descr = loc_descriptor_from_tree (decl);
10233 if (descr)
10235 add_AT_location_description (die, attr, descr);
10236 return;
10239 /* Lastly, if we have tried to generate the location otherwise, and it
10240 didn't work out (we wouldn't be here if we did), and we have a one entry
10241 location list, try generating a location from that. */
10242 if (loc_list && loc_list->first)
10244 node = loc_list->first;
10245 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note),
10246 can_use_fb);
10247 if (descr)
10248 add_AT_location_description (die, attr, descr);
10252 /* If we don't have a copy of this variable in memory for some reason (such
10253 as a C++ member constant that doesn't have an out-of-line definition),
10254 we should tell the debugger about the constant value. */
10256 static void
10257 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10259 tree init = DECL_INITIAL (decl);
10260 tree type = TREE_TYPE (decl);
10261 rtx rtl;
10263 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10264 /* OK */;
10265 else
10266 return;
10268 rtl = rtl_for_decl_init (init, type);
10269 if (rtl)
10270 add_const_value_attribute (var_die, rtl);
10273 /* Generate a DW_AT_name attribute given some string value to be included as
10274 the value of the attribute. */
10276 static void
10277 add_name_attribute (dw_die_ref die, const char *name_string)
10279 if (name_string != NULL && *name_string != 0)
10281 if (demangle_name_func)
10282 name_string = (*demangle_name_func) (name_string);
10284 add_AT_string (die, DW_AT_name, name_string);
10288 /* Generate a DW_AT_comp_dir attribute for DIE. */
10290 static void
10291 add_comp_dir_attribute (dw_die_ref die)
10293 const char *wd = get_src_pwd ();
10294 if (wd != NULL)
10295 add_AT_string (die, DW_AT_comp_dir, wd);
10298 /* Given a tree node describing an array bound (either lower or upper) output
10299 a representation for that bound. */
10301 static void
10302 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10304 switch (TREE_CODE (bound))
10306 case ERROR_MARK:
10307 return;
10309 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10310 case INTEGER_CST:
10311 if (! host_integerp (bound, 0)
10312 || (bound_attr == DW_AT_lower_bound
10313 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10314 || (is_fortran () && integer_onep (bound)))))
10315 /* Use the default. */
10317 else
10318 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10319 break;
10321 case CONVERT_EXPR:
10322 case NOP_EXPR:
10323 case NON_LVALUE_EXPR:
10324 case VIEW_CONVERT_EXPR:
10325 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10326 break;
10328 case SAVE_EXPR:
10329 break;
10331 case VAR_DECL:
10332 case PARM_DECL:
10333 case RESULT_DECL:
10335 dw_die_ref decl_die = lookup_decl_die (bound);
10337 /* ??? Can this happen, or should the variable have been bound
10338 first? Probably it can, since I imagine that we try to create
10339 the types of parameters in the order in which they exist in
10340 the list, and won't have created a forward reference to a
10341 later parameter. */
10342 if (decl_die != NULL)
10343 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10344 break;
10347 default:
10349 /* Otherwise try to create a stack operation procedure to
10350 evaluate the value of the array bound. */
10352 dw_die_ref ctx, decl_die;
10353 dw_loc_descr_ref loc;
10355 loc = loc_descriptor_from_tree (bound);
10356 if (loc == NULL)
10357 break;
10359 if (current_function_decl == 0)
10360 ctx = comp_unit_die;
10361 else
10362 ctx = lookup_decl_die (current_function_decl);
10364 decl_die = new_die (DW_TAG_variable, ctx, bound);
10365 add_AT_flag (decl_die, DW_AT_artificial, 1);
10366 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10367 add_AT_loc (decl_die, DW_AT_location, loc);
10369 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10370 break;
10375 /* Note that the block of subscript information for an array type also
10376 includes information about the element type of type given array type. */
10378 static void
10379 add_subscript_info (dw_die_ref type_die, tree type)
10381 #ifndef MIPS_DEBUGGING_INFO
10382 unsigned dimension_number;
10383 #endif
10384 tree lower, upper;
10385 dw_die_ref subrange_die;
10387 /* The GNU compilers represent multidimensional array types as sequences of
10388 one dimensional array types whose element types are themselves array
10389 types. Here we squish that down, so that each multidimensional array
10390 type gets only one array_type DIE in the Dwarf debugging info. The draft
10391 Dwarf specification say that we are allowed to do this kind of
10392 compression in C (because there is no difference between an array or
10393 arrays and a multidimensional array in C) but for other source languages
10394 (e.g. Ada) we probably shouldn't do this. */
10396 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10397 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10398 We work around this by disabling this feature. See also
10399 gen_array_type_die. */
10400 #ifndef MIPS_DEBUGGING_INFO
10401 for (dimension_number = 0;
10402 TREE_CODE (type) == ARRAY_TYPE;
10403 type = TREE_TYPE (type), dimension_number++)
10404 #endif
10406 tree domain = TYPE_DOMAIN (type);
10408 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10409 and (in GNU C only) variable bounds. Handle all three forms
10410 here. */
10411 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10412 if (domain)
10414 /* We have an array type with specified bounds. */
10415 lower = TYPE_MIN_VALUE (domain);
10416 upper = TYPE_MAX_VALUE (domain);
10418 /* Define the index type. */
10419 if (TREE_TYPE (domain))
10421 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10422 TREE_TYPE field. We can't emit debug info for this
10423 because it is an unnamed integral type. */
10424 if (TREE_CODE (domain) == INTEGER_TYPE
10425 && TYPE_NAME (domain) == NULL_TREE
10426 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10427 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10429 else
10430 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10431 type_die);
10434 /* ??? If upper is NULL, the array has unspecified length,
10435 but it does have a lower bound. This happens with Fortran
10436 dimension arr(N:*)
10437 Since the debugger is definitely going to need to know N
10438 to produce useful results, go ahead and output the lower
10439 bound solo, and hope the debugger can cope. */
10441 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10442 if (upper)
10443 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10446 /* Otherwise we have an array type with an unspecified length. The
10447 DWARF-2 spec does not say how to handle this; let's just leave out the
10448 bounds. */
10452 static void
10453 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10455 unsigned size;
10457 switch (TREE_CODE (tree_node))
10459 case ERROR_MARK:
10460 size = 0;
10461 break;
10462 case ENUMERAL_TYPE:
10463 case RECORD_TYPE:
10464 case UNION_TYPE:
10465 case QUAL_UNION_TYPE:
10466 size = int_size_in_bytes (tree_node);
10467 break;
10468 case FIELD_DECL:
10469 /* For a data member of a struct or union, the DW_AT_byte_size is
10470 generally given as the number of bytes normally allocated for an
10471 object of the *declared* type of the member itself. This is true
10472 even for bit-fields. */
10473 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10474 break;
10475 default:
10476 gcc_unreachable ();
10479 /* Note that `size' might be -1 when we get to this point. If it is, that
10480 indicates that the byte size of the entity in question is variable. We
10481 have no good way of expressing this fact in Dwarf at the present time,
10482 so just let the -1 pass on through. */
10483 add_AT_unsigned (die, DW_AT_byte_size, size);
10486 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10487 which specifies the distance in bits from the highest order bit of the
10488 "containing object" for the bit-field to the highest order bit of the
10489 bit-field itself.
10491 For any given bit-field, the "containing object" is a hypothetical object
10492 (of some integral or enum type) within which the given bit-field lives. The
10493 type of this hypothetical "containing object" is always the same as the
10494 declared type of the individual bit-field itself. The determination of the
10495 exact location of the "containing object" for a bit-field is rather
10496 complicated. It's handled by the `field_byte_offset' function (above).
10498 Note that it is the size (in bytes) of the hypothetical "containing object"
10499 which will be given in the DW_AT_byte_size attribute for this bit-field.
10500 (See `byte_size_attribute' above). */
10502 static inline void
10503 add_bit_offset_attribute (dw_die_ref die, tree decl)
10505 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10506 tree type = DECL_BIT_FIELD_TYPE (decl);
10507 HOST_WIDE_INT bitpos_int;
10508 HOST_WIDE_INT highest_order_object_bit_offset;
10509 HOST_WIDE_INT highest_order_field_bit_offset;
10510 HOST_WIDE_INT unsigned bit_offset;
10512 /* Must be a field and a bit field. */
10513 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10515 /* We can't yet handle bit-fields whose offsets are variable, so if we
10516 encounter such things, just return without generating any attribute
10517 whatsoever. Likewise for variable or too large size. */
10518 if (! host_integerp (bit_position (decl), 0)
10519 || ! host_integerp (DECL_SIZE (decl), 1))
10520 return;
10522 bitpos_int = int_bit_position (decl);
10524 /* Note that the bit offset is always the distance (in bits) from the
10525 highest-order bit of the "containing object" to the highest-order bit of
10526 the bit-field itself. Since the "high-order end" of any object or field
10527 is different on big-endian and little-endian machines, the computation
10528 below must take account of these differences. */
10529 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10530 highest_order_field_bit_offset = bitpos_int;
10532 if (! BYTES_BIG_ENDIAN)
10534 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10535 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10538 bit_offset
10539 = (! BYTES_BIG_ENDIAN
10540 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10541 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10543 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10546 /* For a FIELD_DECL node which represents a bit field, output an attribute
10547 which specifies the length in bits of the given field. */
10549 static inline void
10550 add_bit_size_attribute (dw_die_ref die, tree decl)
10552 /* Must be a field and a bit field. */
10553 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10554 && DECL_BIT_FIELD_TYPE (decl));
10556 if (host_integerp (DECL_SIZE (decl), 1))
10557 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10560 /* If the compiled language is ANSI C, then add a 'prototyped'
10561 attribute, if arg types are given for the parameters of a function. */
10563 static inline void
10564 add_prototyped_attribute (dw_die_ref die, tree func_type)
10566 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10567 && TYPE_ARG_TYPES (func_type) != NULL)
10568 add_AT_flag (die, DW_AT_prototyped, 1);
10571 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10572 by looking in either the type declaration or object declaration
10573 equate table. */
10575 static inline void
10576 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10578 dw_die_ref origin_die = NULL;
10580 if (TREE_CODE (origin) != FUNCTION_DECL)
10582 /* We may have gotten separated from the block for the inlined
10583 function, if we're in an exception handler or some such; make
10584 sure that the abstract function has been written out.
10586 Doing this for nested functions is wrong, however; functions are
10587 distinct units, and our context might not even be inline. */
10588 tree fn = origin;
10590 if (TYPE_P (fn))
10591 fn = TYPE_STUB_DECL (fn);
10593 fn = decl_function_context (fn);
10594 if (fn)
10595 dwarf2out_abstract_function (fn);
10598 if (DECL_P (origin))
10599 origin_die = lookup_decl_die (origin);
10600 else if (TYPE_P (origin))
10601 origin_die = lookup_type_die (origin);
10603 /* XXX: Functions that are never lowered don't always have correct block
10604 trees (in the case of java, they simply have no block tree, in some other
10605 languages). For these functions, there is nothing we can really do to
10606 output correct debug info for inlined functions in all cases. Rather
10607 than die, we'll just produce deficient debug info now, in that we will
10608 have variables without a proper abstract origin. In the future, when all
10609 functions are lowered, we should re-add a gcc_assert (origin_die)
10610 here. */
10612 if (origin_die)
10613 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10616 /* We do not currently support the pure_virtual attribute. */
10618 static inline void
10619 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10621 if (DECL_VINDEX (func_decl))
10623 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10625 if (host_integerp (DECL_VINDEX (func_decl), 0))
10626 add_AT_loc (die, DW_AT_vtable_elem_location,
10627 new_loc_descr (DW_OP_constu,
10628 tree_low_cst (DECL_VINDEX (func_decl), 0),
10629 0));
10631 /* GNU extension: Record what type this method came from originally. */
10632 if (debug_info_level > DINFO_LEVEL_TERSE)
10633 add_AT_die_ref (die, DW_AT_containing_type,
10634 lookup_type_die (DECL_CONTEXT (func_decl)));
10638 /* Add source coordinate attributes for the given decl. */
10640 static void
10641 add_src_coords_attributes (dw_die_ref die, tree decl)
10643 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10644 unsigned file_index = lookup_filename (s.file);
10646 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10647 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10650 /* Add a DW_AT_name attribute and source coordinate attribute for the
10651 given decl, but only if it actually has a name. */
10653 static void
10654 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10656 tree decl_name;
10658 decl_name = DECL_NAME (decl);
10659 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10661 add_name_attribute (die, dwarf2_name (decl, 0));
10662 if (! DECL_ARTIFICIAL (decl))
10663 add_src_coords_attributes (die, decl);
10665 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10666 && TREE_PUBLIC (decl)
10667 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10668 && !DECL_ABSTRACT (decl))
10669 add_AT_string (die, DW_AT_MIPS_linkage_name,
10670 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10673 #ifdef VMS_DEBUGGING_INFO
10674 /* Get the function's name, as described by its RTL. This may be different
10675 from the DECL_NAME name used in the source file. */
10676 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10678 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10679 XEXP (DECL_RTL (decl), 0));
10680 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10682 #endif
10685 /* Push a new declaration scope. */
10687 static void
10688 push_decl_scope (tree scope)
10690 VEC_safe_push (tree, gc, decl_scope_table, scope);
10693 /* Pop a declaration scope. */
10695 static inline void
10696 pop_decl_scope (void)
10698 VEC_pop (tree, decl_scope_table);
10701 /* Return the DIE for the scope that immediately contains this type.
10702 Non-named types get global scope. Named types nested in other
10703 types get their containing scope if it's open, or global scope
10704 otherwise. All other types (i.e. function-local named types) get
10705 the current active scope. */
10707 static dw_die_ref
10708 scope_die_for (tree t, dw_die_ref context_die)
10710 dw_die_ref scope_die = NULL;
10711 tree containing_scope;
10712 int i;
10714 /* Non-types always go in the current scope. */
10715 gcc_assert (TYPE_P (t));
10717 containing_scope = TYPE_CONTEXT (t);
10719 /* Use the containing namespace if it was passed in (for a declaration). */
10720 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10722 if (context_die == lookup_decl_die (containing_scope))
10723 /* OK */;
10724 else
10725 containing_scope = NULL_TREE;
10728 /* Ignore function type "scopes" from the C frontend. They mean that
10729 a tagged type is local to a parmlist of a function declarator, but
10730 that isn't useful to DWARF. */
10731 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10732 containing_scope = NULL_TREE;
10734 if (containing_scope == NULL_TREE)
10735 scope_die = comp_unit_die;
10736 else if (TYPE_P (containing_scope))
10738 /* For types, we can just look up the appropriate DIE. But
10739 first we check to see if we're in the middle of emitting it
10740 so we know where the new DIE should go. */
10741 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
10742 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
10743 break;
10745 if (i < 0)
10747 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10748 || TREE_ASM_WRITTEN (containing_scope));
10750 /* If none of the current dies are suitable, we get file scope. */
10751 scope_die = comp_unit_die;
10753 else
10754 scope_die = lookup_type_die (containing_scope);
10756 else
10757 scope_die = context_die;
10759 return scope_die;
10762 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10764 static inline int
10765 local_scope_p (dw_die_ref context_die)
10767 for (; context_die; context_die = context_die->die_parent)
10768 if (context_die->die_tag == DW_TAG_inlined_subroutine
10769 || context_die->die_tag == DW_TAG_subprogram)
10770 return 1;
10772 return 0;
10775 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10776 whether or not to treat a DIE in this context as a declaration. */
10778 static inline int
10779 class_or_namespace_scope_p (dw_die_ref context_die)
10781 return (context_die
10782 && (context_die->die_tag == DW_TAG_structure_type
10783 || context_die->die_tag == DW_TAG_union_type
10784 || context_die->die_tag == DW_TAG_namespace));
10787 /* Many forms of DIEs require a "type description" attribute. This
10788 routine locates the proper "type descriptor" die for the type given
10789 by 'type', and adds a DW_AT_type attribute below the given die. */
10791 static void
10792 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10793 int decl_volatile, dw_die_ref context_die)
10795 enum tree_code code = TREE_CODE (type);
10796 dw_die_ref type_die = NULL;
10798 /* ??? If this type is an unnamed subrange type of an integral or
10799 floating-point type, use the inner type. This is because we have no
10800 support for unnamed types in base_type_die. This can happen if this is
10801 an Ada subrange type. Correct solution is emit a subrange type die. */
10802 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10803 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10804 type = TREE_TYPE (type), code = TREE_CODE (type);
10806 if (code == ERROR_MARK
10807 /* Handle a special case. For functions whose return type is void, we
10808 generate *no* type attribute. (Note that no object may have type
10809 `void', so this only applies to function return types). */
10810 || code == VOID_TYPE)
10811 return;
10813 type_die = modified_type_die (type,
10814 decl_const || TYPE_READONLY (type),
10815 decl_volatile || TYPE_VOLATILE (type),
10816 context_die);
10818 if (type_die != NULL)
10819 add_AT_die_ref (object_die, DW_AT_type, type_die);
10822 /* Given an object die, add the calling convention attribute for the
10823 function call type. */
10824 static void
10825 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10827 enum dwarf_calling_convention value = DW_CC_normal;
10829 value = targetm.dwarf_calling_convention (type);
10831 /* Only add the attribute if the backend requests it, and
10832 is not DW_CC_normal. */
10833 if (value && (value != DW_CC_normal))
10834 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10837 /* Given a tree pointer to a struct, class, union, or enum type node, return
10838 a pointer to the (string) tag name for the given type, or zero if the type
10839 was declared without a tag. */
10841 static const char *
10842 type_tag (tree type)
10844 const char *name = 0;
10846 if (TYPE_NAME (type) != 0)
10848 tree t = 0;
10850 /* Find the IDENTIFIER_NODE for the type name. */
10851 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10852 t = TYPE_NAME (type);
10854 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10855 a TYPE_DECL node, regardless of whether or not a `typedef' was
10856 involved. */
10857 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10858 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10859 t = DECL_NAME (TYPE_NAME (type));
10861 /* Now get the name as a string, or invent one. */
10862 if (t != 0)
10863 name = IDENTIFIER_POINTER (t);
10866 return (name == 0 || *name == '\0') ? 0 : name;
10869 /* Return the type associated with a data member, make a special check
10870 for bit field types. */
10872 static inline tree
10873 member_declared_type (tree member)
10875 return (DECL_BIT_FIELD_TYPE (member)
10876 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10879 /* Get the decl's label, as described by its RTL. This may be different
10880 from the DECL_NAME name used in the source file. */
10882 #if 0
10883 static const char *
10884 decl_start_label (tree decl)
10886 rtx x;
10887 const char *fnname;
10889 x = DECL_RTL (decl);
10890 gcc_assert (MEM_P (x));
10892 x = XEXP (x, 0);
10893 gcc_assert (GET_CODE (x) == SYMBOL_REF);
10895 fnname = XSTR (x, 0);
10896 return fnname;
10898 #endif
10900 /* These routines generate the internal representation of the DIE's for
10901 the compilation unit. Debugging information is collected by walking
10902 the declaration trees passed in from dwarf2out_decl(). */
10904 static void
10905 gen_array_type_die (tree type, dw_die_ref context_die)
10907 dw_die_ref scope_die = scope_die_for (type, context_die);
10908 dw_die_ref array_die;
10909 tree element_type;
10911 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10912 the inner array type comes before the outer array type. Thus we must
10913 call gen_type_die before we call new_die. See below also. */
10914 #ifdef MIPS_DEBUGGING_INFO
10915 gen_type_die (TREE_TYPE (type), context_die);
10916 #endif
10918 array_die = new_die (DW_TAG_array_type, scope_die, type);
10919 add_name_attribute (array_die, type_tag (type));
10920 equate_type_number_to_die (type, array_die);
10922 if (TREE_CODE (type) == VECTOR_TYPE)
10924 /* The frontend feeds us a representation for the vector as a struct
10925 containing an array. Pull out the array type. */
10926 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10927 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10930 #if 0
10931 /* We default the array ordering. SDB will probably do
10932 the right things even if DW_AT_ordering is not present. It's not even
10933 an issue until we start to get into multidimensional arrays anyway. If
10934 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10935 then we'll have to put the DW_AT_ordering attribute back in. (But if
10936 and when we find out that we need to put these in, we will only do so
10937 for multidimensional arrays. */
10938 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10939 #endif
10941 #ifdef MIPS_DEBUGGING_INFO
10942 /* The SGI compilers handle arrays of unknown bound by setting
10943 AT_declaration and not emitting any subrange DIEs. */
10944 if (! TYPE_DOMAIN (type))
10945 add_AT_flag (array_die, DW_AT_declaration, 1);
10946 else
10947 #endif
10948 add_subscript_info (array_die, type);
10950 /* Add representation of the type of the elements of this array type. */
10951 element_type = TREE_TYPE (type);
10953 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10954 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10955 We work around this by disabling this feature. See also
10956 add_subscript_info. */
10957 #ifndef MIPS_DEBUGGING_INFO
10958 while (TREE_CODE (element_type) == ARRAY_TYPE)
10959 element_type = TREE_TYPE (element_type);
10961 gen_type_die (element_type, context_die);
10962 #endif
10964 add_type_attribute (array_die, element_type, 0, 0, context_die);
10967 #if 0
10968 static void
10969 gen_entry_point_die (tree decl, dw_die_ref context_die)
10971 tree origin = decl_ultimate_origin (decl);
10972 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10974 if (origin != NULL)
10975 add_abstract_origin_attribute (decl_die, origin);
10976 else
10978 add_name_and_src_coords_attributes (decl_die, decl);
10979 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10980 0, 0, context_die);
10983 if (DECL_ABSTRACT (decl))
10984 equate_decl_number_to_die (decl, decl_die);
10985 else
10986 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10988 #endif
10990 /* Walk through the list of incomplete types again, trying once more to
10991 emit full debugging info for them. */
10993 static void
10994 retry_incomplete_types (void)
10996 int i;
10998 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
10999 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11002 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11004 static void
11005 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11007 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11009 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11010 be incomplete and such types are not marked. */
11011 add_abstract_origin_attribute (type_die, type);
11014 /* Generate a DIE to represent an inlined instance of a structure type. */
11016 static void
11017 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11019 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11021 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11022 be incomplete and such types are not marked. */
11023 add_abstract_origin_attribute (type_die, type);
11026 /* Generate a DIE to represent an inlined instance of a union type. */
11028 static void
11029 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11031 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11033 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11034 be incomplete and such types are not marked. */
11035 add_abstract_origin_attribute (type_die, type);
11038 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11039 include all of the information about the enumeration values also. Each
11040 enumerated type name/value is listed as a child of the enumerated type
11041 DIE. */
11043 static dw_die_ref
11044 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11046 dw_die_ref type_die = lookup_type_die (type);
11048 if (type_die == NULL)
11050 type_die = new_die (DW_TAG_enumeration_type,
11051 scope_die_for (type, context_die), type);
11052 equate_type_number_to_die (type, type_die);
11053 add_name_attribute (type_die, type_tag (type));
11055 else if (! TYPE_SIZE (type))
11056 return type_die;
11057 else
11058 remove_AT (type_die, DW_AT_declaration);
11060 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11061 given enum type is incomplete, do not generate the DW_AT_byte_size
11062 attribute or the DW_AT_element_list attribute. */
11063 if (TYPE_SIZE (type))
11065 tree link;
11067 TREE_ASM_WRITTEN (type) = 1;
11068 add_byte_size_attribute (type_die, type);
11069 if (TYPE_STUB_DECL (type) != NULL_TREE)
11070 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11072 /* If the first reference to this type was as the return type of an
11073 inline function, then it may not have a parent. Fix this now. */
11074 if (type_die->die_parent == NULL)
11075 add_child_die (scope_die_for (type, context_die), type_die);
11077 for (link = TYPE_VALUES (type);
11078 link != NULL; link = TREE_CHAIN (link))
11080 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11081 tree value = TREE_VALUE (link);
11083 add_name_attribute (enum_die,
11084 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11086 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11087 /* DWARF2 does not provide a way of indicating whether or
11088 not enumeration constants are signed or unsigned. GDB
11089 always assumes the values are signed, so we output all
11090 values as if they were signed. That means that
11091 enumeration constants with very large unsigned values
11092 will appear to have negative values in the debugger. */
11093 add_AT_int (enum_die, DW_AT_const_value,
11094 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11097 else
11098 add_AT_flag (type_die, DW_AT_declaration, 1);
11100 return type_die;
11103 /* Generate a DIE to represent either a real live formal parameter decl or to
11104 represent just the type of some formal parameter position in some function
11105 type.
11107 Note that this routine is a bit unusual because its argument may be a
11108 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11109 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11110 node. If it's the former then this function is being called to output a
11111 DIE to represent a formal parameter object (or some inlining thereof). If
11112 it's the latter, then this function is only being called to output a
11113 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11114 argument type of some subprogram type. */
11116 static dw_die_ref
11117 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11119 dw_die_ref parm_die
11120 = new_die (DW_TAG_formal_parameter, context_die, node);
11121 tree origin;
11123 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11125 case tcc_declaration:
11126 origin = decl_ultimate_origin (node);
11127 if (origin != NULL)
11128 add_abstract_origin_attribute (parm_die, origin);
11129 else
11131 add_name_and_src_coords_attributes (parm_die, node);
11132 add_type_attribute (parm_die, TREE_TYPE (node),
11133 TREE_READONLY (node),
11134 TREE_THIS_VOLATILE (node),
11135 context_die);
11136 if (DECL_ARTIFICIAL (node))
11137 add_AT_flag (parm_die, DW_AT_artificial, 1);
11140 equate_decl_number_to_die (node, parm_die);
11141 if (! DECL_ABSTRACT (node))
11142 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11144 break;
11146 case tcc_type:
11147 /* We were called with some kind of a ..._TYPE node. */
11148 add_type_attribute (parm_die, node, 0, 0, context_die);
11149 break;
11151 default:
11152 gcc_unreachable ();
11155 return parm_die;
11158 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11159 at the end of an (ANSI prototyped) formal parameters list. */
11161 static void
11162 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11164 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11167 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11168 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11169 parameters as specified in some function type specification (except for
11170 those which appear as part of a function *definition*). */
11172 static void
11173 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11175 tree link;
11176 tree formal_type = NULL;
11177 tree first_parm_type;
11178 tree arg;
11180 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11182 arg = DECL_ARGUMENTS (function_or_method_type);
11183 function_or_method_type = TREE_TYPE (function_or_method_type);
11185 else
11186 arg = NULL_TREE;
11188 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11190 /* Make our first pass over the list of formal parameter types and output a
11191 DW_TAG_formal_parameter DIE for each one. */
11192 for (link = first_parm_type; link; )
11194 dw_die_ref parm_die;
11196 formal_type = TREE_VALUE (link);
11197 if (formal_type == void_type_node)
11198 break;
11200 /* Output a (nameless) DIE to represent the formal parameter itself. */
11201 parm_die = gen_formal_parameter_die (formal_type, context_die);
11202 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11203 && link == first_parm_type)
11204 || (arg && DECL_ARTIFICIAL (arg)))
11205 add_AT_flag (parm_die, DW_AT_artificial, 1);
11207 link = TREE_CHAIN (link);
11208 if (arg)
11209 arg = TREE_CHAIN (arg);
11212 /* If this function type has an ellipsis, add a
11213 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11214 if (formal_type != void_type_node)
11215 gen_unspecified_parameters_die (function_or_method_type, context_die);
11217 /* Make our second (and final) pass over the list of formal parameter types
11218 and output DIEs to represent those types (as necessary). */
11219 for (link = TYPE_ARG_TYPES (function_or_method_type);
11220 link && TREE_VALUE (link);
11221 link = TREE_CHAIN (link))
11222 gen_type_die (TREE_VALUE (link), context_die);
11225 /* We want to generate the DIE for TYPE so that we can generate the
11226 die for MEMBER, which has been defined; we will need to refer back
11227 to the member declaration nested within TYPE. If we're trying to
11228 generate minimal debug info for TYPE, processing TYPE won't do the
11229 trick; we need to attach the member declaration by hand. */
11231 static void
11232 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11234 gen_type_die (type, context_die);
11236 /* If we're trying to avoid duplicate debug info, we may not have
11237 emitted the member decl for this function. Emit it now. */
11238 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11239 && ! lookup_decl_die (member))
11241 dw_die_ref type_die;
11242 gcc_assert (!decl_ultimate_origin (member));
11244 push_decl_scope (type);
11245 type_die = lookup_type_die (type);
11246 if (TREE_CODE (member) == FUNCTION_DECL)
11247 gen_subprogram_die (member, type_die);
11248 else if (TREE_CODE (member) == FIELD_DECL)
11250 /* Ignore the nameless fields that are used to skip bits but handle
11251 C++ anonymous unions and structs. */
11252 if (DECL_NAME (member) != NULL_TREE
11253 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11254 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11256 gen_type_die (member_declared_type (member), type_die);
11257 gen_field_die (member, type_die);
11260 else
11261 gen_variable_die (member, type_die);
11263 pop_decl_scope ();
11267 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11268 may later generate inlined and/or out-of-line instances of. */
11270 static void
11271 dwarf2out_abstract_function (tree decl)
11273 dw_die_ref old_die;
11274 tree save_fn;
11275 tree context;
11276 int was_abstract = DECL_ABSTRACT (decl);
11278 /* Make sure we have the actual abstract inline, not a clone. */
11279 decl = DECL_ORIGIN (decl);
11281 old_die = lookup_decl_die (decl);
11282 if (old_die && get_AT (old_die, DW_AT_inline))
11283 /* We've already generated the abstract instance. */
11284 return;
11286 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11287 we don't get confused by DECL_ABSTRACT. */
11288 if (debug_info_level > DINFO_LEVEL_TERSE)
11290 context = decl_class_context (decl);
11291 if (context)
11292 gen_type_die_for_member
11293 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11296 /* Pretend we've just finished compiling this function. */
11297 save_fn = current_function_decl;
11298 current_function_decl = decl;
11300 set_decl_abstract_flags (decl, 1);
11301 dwarf2out_decl (decl);
11302 if (! was_abstract)
11303 set_decl_abstract_flags (decl, 0);
11305 current_function_decl = save_fn;
11308 /* Generate a DIE to represent a declared function (either file-scope or
11309 block-local). */
11311 static void
11312 gen_subprogram_die (tree decl, dw_die_ref context_die)
11314 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11315 tree origin = decl_ultimate_origin (decl);
11316 dw_die_ref subr_die;
11317 rtx fp_reg;
11318 tree fn_arg_types;
11319 tree outer_scope;
11320 dw_die_ref old_die = lookup_decl_die (decl);
11321 int declaration = (current_function_decl != decl
11322 || class_or_namespace_scope_p (context_die));
11324 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11325 started to generate the abstract instance of an inline, decided to output
11326 its containing class, and proceeded to emit the declaration of the inline
11327 from the member list for the class. If so, DECLARATION takes priority;
11328 we'll get back to the abstract instance when done with the class. */
11330 /* The class-scope declaration DIE must be the primary DIE. */
11331 if (origin && declaration && class_or_namespace_scope_p (context_die))
11333 origin = NULL;
11334 gcc_assert (!old_die);
11337 if (origin != NULL)
11339 gcc_assert (!declaration || local_scope_p (context_die));
11341 /* Fixup die_parent for the abstract instance of a nested
11342 inline function. */
11343 if (old_die && old_die->die_parent == NULL)
11344 add_child_die (context_die, old_die);
11346 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11347 add_abstract_origin_attribute (subr_die, origin);
11349 else if (old_die)
11351 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11352 unsigned file_index = lookup_filename (s.file);
11354 if (!get_AT_flag (old_die, DW_AT_declaration)
11355 /* We can have a normal definition following an inline one in the
11356 case of redefinition of GNU C extern inlines.
11357 It seems reasonable to use AT_specification in this case. */
11358 && !get_AT (old_die, DW_AT_inline))
11360 /* Detect and ignore this case, where we are trying to output
11361 something we have already output. */
11362 return;
11365 /* If the definition comes from the same place as the declaration,
11366 maybe use the old DIE. We always want the DIE for this function
11367 that has the *_pc attributes to be under comp_unit_die so the
11368 debugger can find it. We also need to do this for abstract
11369 instances of inlines, since the spec requires the out-of-line copy
11370 to have the same parent. For local class methods, this doesn't
11371 apply; we just use the old DIE. */
11372 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11373 && (DECL_ARTIFICIAL (decl)
11374 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11375 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11376 == (unsigned) s.line))))
11378 subr_die = old_die;
11380 /* Clear out the declaration attribute and the formal parameters.
11381 Do not remove all children, because it is possible that this
11382 declaration die was forced using force_decl_die(). In such
11383 cases die that forced declaration die (e.g. TAG_imported_module)
11384 is one of the children that we do not want to remove. */
11385 remove_AT (subr_die, DW_AT_declaration);
11386 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11388 else
11390 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11391 add_AT_specification (subr_die, old_die);
11392 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11393 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11394 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11395 != (unsigned) s.line)
11396 add_AT_unsigned
11397 (subr_die, DW_AT_decl_line, s.line);
11400 else
11402 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11404 if (TREE_PUBLIC (decl))
11405 add_AT_flag (subr_die, DW_AT_external, 1);
11407 add_name_and_src_coords_attributes (subr_die, decl);
11408 if (debug_info_level > DINFO_LEVEL_TERSE)
11410 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11411 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11412 0, 0, context_die);
11415 add_pure_or_virtual_attribute (subr_die, decl);
11416 if (DECL_ARTIFICIAL (decl))
11417 add_AT_flag (subr_die, DW_AT_artificial, 1);
11419 if (TREE_PROTECTED (decl))
11420 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11421 else if (TREE_PRIVATE (decl))
11422 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11425 if (declaration)
11427 if (!old_die || !get_AT (old_die, DW_AT_inline))
11429 add_AT_flag (subr_die, DW_AT_declaration, 1);
11431 /* The first time we see a member function, it is in the context of
11432 the class to which it belongs. We make sure of this by emitting
11433 the class first. The next time is the definition, which is
11434 handled above. The two may come from the same source text.
11436 Note that force_decl_die() forces function declaration die. It is
11437 later reused to represent definition. */
11438 equate_decl_number_to_die (decl, subr_die);
11441 else if (DECL_ABSTRACT (decl))
11443 if (DECL_DECLARED_INLINE_P (decl))
11445 if (cgraph_function_possibly_inlined_p (decl))
11446 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11447 else
11448 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11450 else
11452 if (cgraph_function_possibly_inlined_p (decl))
11453 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11454 else
11455 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11458 equate_decl_number_to_die (decl, subr_die);
11460 else if (!DECL_EXTERNAL (decl))
11462 if (!old_die || !get_AT (old_die, DW_AT_inline))
11463 equate_decl_number_to_die (decl, subr_die);
11465 if (!flag_reorder_blocks_and_partition)
11467 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11468 current_function_funcdef_no);
11469 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11470 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11471 current_function_funcdef_no);
11472 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11474 add_pubname (decl, subr_die);
11475 add_arange (decl, subr_die);
11477 else
11478 { /* Do nothing for now; maybe need to duplicate die, one for
11479 hot section and ond for cold section, then use the hot/cold
11480 section begin/end labels to generate the aranges... */
11482 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11483 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11484 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11485 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11487 add_pubname (decl, subr_die);
11488 add_arange (decl, subr_die);
11489 add_arange (decl, subr_die);
11493 #ifdef MIPS_DEBUGGING_INFO
11494 /* Add a reference to the FDE for this routine. */
11495 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11496 #endif
11498 /* Define the "frame base" location for this routine. We use the
11499 frame pointer or stack pointer registers, since the RTL for local
11500 variables is relative to one of them. */
11501 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11503 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11504 DW_AT_frame_base);
11506 else
11508 fp_reg
11509 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11510 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11513 if (cfun->static_chain_decl)
11514 add_AT_location_description (subr_die, DW_AT_static_link,
11515 loc_descriptor_from_tree (cfun->static_chain_decl));
11518 /* Now output descriptions of the arguments for this function. This gets
11519 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11520 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11521 `...' at the end of the formal parameter list. In order to find out if
11522 there was a trailing ellipsis or not, we must instead look at the type
11523 associated with the FUNCTION_DECL. This will be a node of type
11524 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11525 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11526 an ellipsis at the end. */
11528 /* In the case where we are describing a mere function declaration, all we
11529 need to do here (and all we *can* do here) is to describe the *types* of
11530 its formal parameters. */
11531 if (debug_info_level <= DINFO_LEVEL_TERSE)
11533 else if (declaration)
11534 gen_formal_types_die (decl, subr_die);
11535 else
11537 /* Generate DIEs to represent all known formal parameters. */
11538 tree arg_decls = DECL_ARGUMENTS (decl);
11539 tree parm;
11541 /* When generating DIEs, generate the unspecified_parameters DIE
11542 instead if we come across the arg "__builtin_va_alist" */
11543 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11544 if (TREE_CODE (parm) == PARM_DECL)
11546 if (DECL_NAME (parm)
11547 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11548 "__builtin_va_alist"))
11549 gen_unspecified_parameters_die (parm, subr_die);
11550 else
11551 gen_decl_die (parm, subr_die);
11554 /* Decide whether we need an unspecified_parameters DIE at the end.
11555 There are 2 more cases to do this for: 1) the ansi ... declaration -
11556 this is detectable when the end of the arg list is not a
11557 void_type_node 2) an unprototyped function declaration (not a
11558 definition). This just means that we have no info about the
11559 parameters at all. */
11560 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11561 if (fn_arg_types != NULL)
11563 /* This is the prototyped case, check for.... */
11564 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11565 gen_unspecified_parameters_die (decl, subr_die);
11567 else if (DECL_INITIAL (decl) == NULL_TREE)
11568 gen_unspecified_parameters_die (decl, subr_die);
11571 /* Output Dwarf info for all of the stuff within the body of the function
11572 (if it has one - it may be just a declaration). */
11573 outer_scope = DECL_INITIAL (decl);
11575 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11576 a function. This BLOCK actually represents the outermost binding contour
11577 for the function, i.e. the contour in which the function's formal
11578 parameters and labels get declared. Curiously, it appears that the front
11579 end doesn't actually put the PARM_DECL nodes for the current function onto
11580 the BLOCK_VARS list for this outer scope, but are strung off of the
11581 DECL_ARGUMENTS list for the function instead.
11583 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11584 the LABEL_DECL nodes for the function however, and we output DWARF info
11585 for those in decls_for_scope. Just within the `outer_scope' there will be
11586 a BLOCK node representing the function's outermost pair of curly braces,
11587 and any blocks used for the base and member initializers of a C++
11588 constructor function. */
11589 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11591 /* Emit a DW_TAG_variable DIE for a named return value. */
11592 if (DECL_NAME (DECL_RESULT (decl)))
11593 gen_decl_die (DECL_RESULT (decl), subr_die);
11595 current_function_has_inlines = 0;
11596 decls_for_scope (outer_scope, subr_die, 0);
11598 #if 0 && defined (MIPS_DEBUGGING_INFO)
11599 if (current_function_has_inlines)
11601 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11602 if (! comp_unit_has_inlines)
11604 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11605 comp_unit_has_inlines = 1;
11608 #endif
11610 /* Add the calling convention attribute if requested. */
11611 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11615 /* Generate a DIE to represent a declared data object. */
11617 static void
11618 gen_variable_die (tree decl, dw_die_ref context_die)
11620 tree origin = decl_ultimate_origin (decl);
11621 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11623 dw_die_ref old_die = lookup_decl_die (decl);
11624 int declaration = (DECL_EXTERNAL (decl)
11625 || class_or_namespace_scope_p (context_die));
11627 if (origin != NULL)
11628 add_abstract_origin_attribute (var_die, origin);
11630 /* Loop unrolling can create multiple blocks that refer to the same
11631 static variable, so we must test for the DW_AT_declaration flag.
11633 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11634 copy decls and set the DECL_ABSTRACT flag on them instead of
11635 sharing them.
11637 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11639 ??? The declare_in_namespace support causes us to get two DIEs for one
11640 variable, both of which are declarations. We want to avoid considering
11641 one to be a specification, so we must test that this DIE is not a
11642 declaration. */
11643 else if (old_die && TREE_STATIC (decl) && ! declaration
11644 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11646 /* This is a definition of a C++ class level static. */
11647 add_AT_specification (var_die, old_die);
11648 if (DECL_NAME (decl))
11650 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11651 unsigned file_index = lookup_filename (s.file);
11653 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11654 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11656 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11657 != (unsigned) s.line)
11659 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11662 else
11664 add_name_and_src_coords_attributes (var_die, decl);
11665 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11666 TREE_THIS_VOLATILE (decl), context_die);
11668 if (TREE_PUBLIC (decl))
11669 add_AT_flag (var_die, DW_AT_external, 1);
11671 if (DECL_ARTIFICIAL (decl))
11672 add_AT_flag (var_die, DW_AT_artificial, 1);
11674 if (TREE_PROTECTED (decl))
11675 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11676 else if (TREE_PRIVATE (decl))
11677 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11680 if (declaration)
11681 add_AT_flag (var_die, DW_AT_declaration, 1);
11683 if (DECL_ABSTRACT (decl) || declaration)
11684 equate_decl_number_to_die (decl, var_die);
11686 if (! declaration && ! DECL_ABSTRACT (decl))
11688 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11689 add_pubname (decl, var_die);
11691 else
11692 tree_add_const_value_attribute (var_die, decl);
11695 /* Generate a DIE to represent a label identifier. */
11697 static void
11698 gen_label_die (tree decl, dw_die_ref context_die)
11700 tree origin = decl_ultimate_origin (decl);
11701 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11702 rtx insn;
11703 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11705 if (origin != NULL)
11706 add_abstract_origin_attribute (lbl_die, origin);
11707 else
11708 add_name_and_src_coords_attributes (lbl_die, decl);
11710 if (DECL_ABSTRACT (decl))
11711 equate_decl_number_to_die (decl, lbl_die);
11712 else
11714 insn = DECL_RTL_IF_SET (decl);
11716 /* Deleted labels are programmer specified labels which have been
11717 eliminated because of various optimizations. We still emit them
11718 here so that it is possible to put breakpoints on them. */
11719 if (insn
11720 && (LABEL_P (insn)
11721 || ((NOTE_P (insn)
11722 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11724 /* When optimization is enabled (via -O) some parts of the compiler
11725 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11726 represent source-level labels which were explicitly declared by
11727 the user. This really shouldn't be happening though, so catch
11728 it if it ever does happen. */
11729 gcc_assert (!INSN_DELETED_P (insn));
11731 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11732 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11737 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
11738 Add low_pc and high_pc attributes to the DIE for a block STMT. */
11740 static inline void
11741 add_high_low_attributes (tree stmt, dw_die_ref die)
11743 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11745 if (BLOCK_FRAGMENT_CHAIN (stmt))
11747 tree chain;
11749 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
11751 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11754 add_ranges (chain);
11755 chain = BLOCK_FRAGMENT_CHAIN (chain);
11757 while (chain);
11758 add_ranges (NULL);
11760 else
11762 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11763 BLOCK_NUMBER (stmt));
11764 add_AT_lbl_id (die, DW_AT_low_pc, label);
11765 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11766 BLOCK_NUMBER (stmt));
11767 add_AT_lbl_id (die, DW_AT_high_pc, label);
11771 /* Generate a DIE for a lexical block. */
11773 static void
11774 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11776 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11778 if (! BLOCK_ABSTRACT (stmt))
11779 add_high_low_attributes (stmt, stmt_die);
11781 decls_for_scope (stmt, stmt_die, depth);
11784 /* Generate a DIE for an inlined subprogram. */
11786 static void
11787 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11789 tree decl = block_ultimate_origin (stmt);
11791 /* Emit info for the abstract instance first, if we haven't yet. We
11792 must emit this even if the block is abstract, otherwise when we
11793 emit the block below (or elsewhere), we may end up trying to emit
11794 a die whose origin die hasn't been emitted, and crashing. */
11795 dwarf2out_abstract_function (decl);
11797 if (! BLOCK_ABSTRACT (stmt))
11799 dw_die_ref subr_die
11800 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11802 add_abstract_origin_attribute (subr_die, decl);
11803 add_high_low_attributes (stmt, subr_die);
11805 decls_for_scope (stmt, subr_die, depth);
11806 current_function_has_inlines = 1;
11808 else
11809 /* We may get here if we're the outer block of function A that was
11810 inlined into function B that was inlined into function C. When
11811 generating debugging info for C, dwarf2out_abstract_function(B)
11812 would mark all inlined blocks as abstract, including this one.
11813 So, we wouldn't (and shouldn't) expect labels to be generated
11814 for this one. Instead, just emit debugging info for
11815 declarations within the block. This is particularly important
11816 in the case of initializers of arguments passed from B to us:
11817 if they're statement expressions containing declarations, we
11818 wouldn't generate dies for their abstract variables, and then,
11819 when generating dies for the real variables, we'd die (pun
11820 intended :-) */
11821 gen_lexical_block_die (stmt, context_die, depth);
11824 /* Generate a DIE for a field in a record, or structure. */
11826 static void
11827 gen_field_die (tree decl, dw_die_ref context_die)
11829 dw_die_ref decl_die;
11831 if (TREE_TYPE (decl) == error_mark_node)
11832 return;
11834 decl_die = new_die (DW_TAG_member, context_die, decl);
11835 add_name_and_src_coords_attributes (decl_die, decl);
11836 add_type_attribute (decl_die, member_declared_type (decl),
11837 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11838 context_die);
11840 if (DECL_BIT_FIELD_TYPE (decl))
11842 add_byte_size_attribute (decl_die, decl);
11843 add_bit_size_attribute (decl_die, decl);
11844 add_bit_offset_attribute (decl_die, decl);
11847 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11848 add_data_member_location_attribute (decl_die, decl);
11850 if (DECL_ARTIFICIAL (decl))
11851 add_AT_flag (decl_die, DW_AT_artificial, 1);
11853 if (TREE_PROTECTED (decl))
11854 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11855 else if (TREE_PRIVATE (decl))
11856 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11858 /* Equate decl number to die, so that we can look up this decl later on. */
11859 equate_decl_number_to_die (decl, decl_die);
11862 #if 0
11863 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11864 Use modified_type_die instead.
11865 We keep this code here just in case these types of DIEs may be needed to
11866 represent certain things in other languages (e.g. Pascal) someday. */
11868 static void
11869 gen_pointer_type_die (tree type, dw_die_ref context_die)
11871 dw_die_ref ptr_die
11872 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11874 equate_type_number_to_die (type, ptr_die);
11875 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11876 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11879 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11880 Use modified_type_die instead.
11881 We keep this code here just in case these types of DIEs may be needed to
11882 represent certain things in other languages (e.g. Pascal) someday. */
11884 static void
11885 gen_reference_type_die (tree type, dw_die_ref context_die)
11887 dw_die_ref ref_die
11888 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11890 equate_type_number_to_die (type, ref_die);
11891 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11892 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11894 #endif
11896 /* Generate a DIE for a pointer to a member type. */
11898 static void
11899 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11901 dw_die_ref ptr_die
11902 = new_die (DW_TAG_ptr_to_member_type,
11903 scope_die_for (type, context_die), type);
11905 equate_type_number_to_die (type, ptr_die);
11906 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11907 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11908 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11911 /* Generate the DIE for the compilation unit. */
11913 static dw_die_ref
11914 gen_compile_unit_die (const char *filename)
11916 dw_die_ref die;
11917 char producer[250];
11918 const char *language_string = lang_hooks.name;
11919 int language;
11921 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11923 if (filename)
11925 add_name_attribute (die, filename);
11926 /* Don't add cwd for <built-in>. */
11927 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11928 add_comp_dir_attribute (die);
11931 sprintf (producer, "%s %s", language_string, version_string);
11933 #ifdef MIPS_DEBUGGING_INFO
11934 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11935 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11936 not appear in the producer string, the debugger reaches the conclusion
11937 that the object file is stripped and has no debugging information.
11938 To get the MIPS/SGI debugger to believe that there is debugging
11939 information in the object file, we add a -g to the producer string. */
11940 if (debug_info_level > DINFO_LEVEL_TERSE)
11941 strcat (producer, " -g");
11942 #endif
11944 add_AT_string (die, DW_AT_producer, producer);
11946 if (strcmp (language_string, "GNU C++") == 0)
11947 language = DW_LANG_C_plus_plus;
11948 else if (strcmp (language_string, "GNU Ada") == 0)
11949 language = DW_LANG_Ada95;
11950 else if (strcmp (language_string, "GNU F77") == 0)
11951 language = DW_LANG_Fortran77;
11952 else if (strcmp (language_string, "GNU F95") == 0)
11953 language = DW_LANG_Fortran95;
11954 else if (strcmp (language_string, "GNU Pascal") == 0)
11955 language = DW_LANG_Pascal83;
11956 else if (strcmp (language_string, "GNU Java") == 0)
11957 language = DW_LANG_Java;
11958 else
11959 language = DW_LANG_C89;
11961 add_AT_unsigned (die, DW_AT_language, language);
11962 return die;
11965 /* Generate a DIE for a string type. */
11967 static void
11968 gen_string_type_die (tree type, dw_die_ref context_die)
11970 dw_die_ref type_die
11971 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11973 equate_type_number_to_die (type, type_die);
11975 /* ??? Fudge the string length attribute for now.
11976 TODO: add string length info. */
11977 #if 0
11978 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11979 bound_representation (upper_bound, 0, 'u');
11980 #endif
11983 /* Generate the DIE for a base class. */
11985 static void
11986 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11988 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11990 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11991 add_data_member_location_attribute (die, binfo);
11993 if (BINFO_VIRTUAL_P (binfo))
11994 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11996 if (access == access_public_node)
11997 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11998 else if (access == access_protected_node)
11999 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12002 /* Generate a DIE for a class member. */
12004 static void
12005 gen_member_die (tree type, dw_die_ref context_die)
12007 tree member;
12008 tree binfo = TYPE_BINFO (type);
12009 dw_die_ref child;
12011 /* If this is not an incomplete type, output descriptions of each of its
12012 members. Note that as we output the DIEs necessary to represent the
12013 members of this record or union type, we will also be trying to output
12014 DIEs to represent the *types* of those members. However the `type'
12015 function (above) will specifically avoid generating type DIEs for member
12016 types *within* the list of member DIEs for this (containing) type except
12017 for those types (of members) which are explicitly marked as also being
12018 members of this (containing) type themselves. The g++ front- end can
12019 force any given type to be treated as a member of some other (containing)
12020 type by setting the TYPE_CONTEXT of the given (member) type to point to
12021 the TREE node representing the appropriate (containing) type. */
12023 /* First output info about the base classes. */
12024 if (binfo)
12026 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12027 int i;
12028 tree base;
12030 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12031 gen_inheritance_die (base,
12032 (accesses ? VEC_index (tree, accesses, i)
12033 : access_public_node), context_die);
12036 /* Now output info about the data members and type members. */
12037 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12039 /* If we thought we were generating minimal debug info for TYPE
12040 and then changed our minds, some of the member declarations
12041 may have already been defined. Don't define them again, but
12042 do put them in the right order. */
12044 child = lookup_decl_die (member);
12045 if (child)
12046 splice_child_die (context_die, child);
12047 else
12048 gen_decl_die (member, context_die);
12051 /* Now output info about the function members (if any). */
12052 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12054 /* Don't include clones in the member list. */
12055 if (DECL_ABSTRACT_ORIGIN (member))
12056 continue;
12058 child = lookup_decl_die (member);
12059 if (child)
12060 splice_child_die (context_die, child);
12061 else
12062 gen_decl_die (member, context_die);
12066 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12067 is set, we pretend that the type was never defined, so we only get the
12068 member DIEs needed by later specification DIEs. */
12070 static void
12071 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12073 dw_die_ref type_die = lookup_type_die (type);
12074 dw_die_ref scope_die = 0;
12075 int nested = 0;
12076 int complete = (TYPE_SIZE (type)
12077 && (! TYPE_STUB_DECL (type)
12078 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12079 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12081 if (type_die && ! complete)
12082 return;
12084 if (TYPE_CONTEXT (type) != NULL_TREE
12085 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12086 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12087 nested = 1;
12089 scope_die = scope_die_for (type, context_die);
12091 if (! type_die || (nested && scope_die == comp_unit_die))
12092 /* First occurrence of type or toplevel definition of nested class. */
12094 dw_die_ref old_die = type_die;
12096 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12097 ? DW_TAG_structure_type : DW_TAG_union_type,
12098 scope_die, type);
12099 equate_type_number_to_die (type, type_die);
12100 if (old_die)
12101 add_AT_specification (type_die, old_die);
12102 else
12103 add_name_attribute (type_die, type_tag (type));
12105 else
12106 remove_AT (type_die, DW_AT_declaration);
12108 /* If this type has been completed, then give it a byte_size attribute and
12109 then give a list of members. */
12110 if (complete && !ns_decl)
12112 /* Prevent infinite recursion in cases where the type of some member of
12113 this type is expressed in terms of this type itself. */
12114 TREE_ASM_WRITTEN (type) = 1;
12115 add_byte_size_attribute (type_die, type);
12116 if (TYPE_STUB_DECL (type) != NULL_TREE)
12117 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12119 /* If the first reference to this type was as the return type of an
12120 inline function, then it may not have a parent. Fix this now. */
12121 if (type_die->die_parent == NULL)
12122 add_child_die (scope_die, type_die);
12124 push_decl_scope (type);
12125 gen_member_die (type, type_die);
12126 pop_decl_scope ();
12128 /* GNU extension: Record what type our vtable lives in. */
12129 if (TYPE_VFIELD (type))
12131 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12133 gen_type_die (vtype, context_die);
12134 add_AT_die_ref (type_die, DW_AT_containing_type,
12135 lookup_type_die (vtype));
12138 else
12140 add_AT_flag (type_die, DW_AT_declaration, 1);
12142 /* We don't need to do this for function-local types. */
12143 if (TYPE_STUB_DECL (type)
12144 && ! decl_function_context (TYPE_STUB_DECL (type)))
12145 VEC_safe_push (tree, gc, incomplete_types, type);
12149 /* Generate a DIE for a subroutine _type_. */
12151 static void
12152 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12154 tree return_type = TREE_TYPE (type);
12155 dw_die_ref subr_die
12156 = new_die (DW_TAG_subroutine_type,
12157 scope_die_for (type, context_die), type);
12159 equate_type_number_to_die (type, subr_die);
12160 add_prototyped_attribute (subr_die, type);
12161 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12162 gen_formal_types_die (type, subr_die);
12165 /* Generate a DIE for a type definition. */
12167 static void
12168 gen_typedef_die (tree decl, dw_die_ref context_die)
12170 dw_die_ref type_die;
12171 tree origin;
12173 if (TREE_ASM_WRITTEN (decl))
12174 return;
12176 TREE_ASM_WRITTEN (decl) = 1;
12177 type_die = new_die (DW_TAG_typedef, context_die, decl);
12178 origin = decl_ultimate_origin (decl);
12179 if (origin != NULL)
12180 add_abstract_origin_attribute (type_die, origin);
12181 else
12183 tree type;
12185 add_name_and_src_coords_attributes (type_die, decl);
12186 if (DECL_ORIGINAL_TYPE (decl))
12188 type = DECL_ORIGINAL_TYPE (decl);
12190 gcc_assert (type != TREE_TYPE (decl));
12191 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12193 else
12194 type = TREE_TYPE (decl);
12196 add_type_attribute (type_die, type, TREE_READONLY (decl),
12197 TREE_THIS_VOLATILE (decl), context_die);
12200 if (DECL_ABSTRACT (decl))
12201 equate_decl_number_to_die (decl, type_die);
12204 /* Generate a type description DIE. */
12206 static void
12207 gen_type_die (tree type, dw_die_ref context_die)
12209 int need_pop;
12211 if (type == NULL_TREE || type == error_mark_node)
12212 return;
12214 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12215 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12217 if (TREE_ASM_WRITTEN (type))
12218 return;
12220 /* Prevent broken recursion; we can't hand off to the same type. */
12221 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12223 TREE_ASM_WRITTEN (type) = 1;
12224 gen_decl_die (TYPE_NAME (type), context_die);
12225 return;
12228 /* We are going to output a DIE to represent the unqualified version
12229 of this type (i.e. without any const or volatile qualifiers) so
12230 get the main variant (i.e. the unqualified version) of this type
12231 now. (Vectors are special because the debugging info is in the
12232 cloned type itself). */
12233 if (TREE_CODE (type) != VECTOR_TYPE)
12234 type = type_main_variant (type);
12236 if (TREE_ASM_WRITTEN (type))
12237 return;
12239 switch (TREE_CODE (type))
12241 case ERROR_MARK:
12242 break;
12244 case POINTER_TYPE:
12245 case REFERENCE_TYPE:
12246 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12247 ensures that the gen_type_die recursion will terminate even if the
12248 type is recursive. Recursive types are possible in Ada. */
12249 /* ??? We could perhaps do this for all types before the switch
12250 statement. */
12251 TREE_ASM_WRITTEN (type) = 1;
12253 /* For these types, all that is required is that we output a DIE (or a
12254 set of DIEs) to represent the "basis" type. */
12255 gen_type_die (TREE_TYPE (type), context_die);
12256 break;
12258 case OFFSET_TYPE:
12259 /* This code is used for C++ pointer-to-data-member types.
12260 Output a description of the relevant class type. */
12261 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12263 /* Output a description of the type of the object pointed to. */
12264 gen_type_die (TREE_TYPE (type), context_die);
12266 /* Now output a DIE to represent this pointer-to-data-member type
12267 itself. */
12268 gen_ptr_to_mbr_type_die (type, context_die);
12269 break;
12271 case FUNCTION_TYPE:
12272 /* Force out return type (in case it wasn't forced out already). */
12273 gen_type_die (TREE_TYPE (type), context_die);
12274 gen_subroutine_type_die (type, context_die);
12275 break;
12277 case METHOD_TYPE:
12278 /* Force out return type (in case it wasn't forced out already). */
12279 gen_type_die (TREE_TYPE (type), context_die);
12280 gen_subroutine_type_die (type, context_die);
12281 break;
12283 case ARRAY_TYPE:
12284 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12286 gen_type_die (TREE_TYPE (type), context_die);
12287 gen_string_type_die (type, context_die);
12289 else
12290 gen_array_type_die (type, context_die);
12291 break;
12293 case VECTOR_TYPE:
12294 gen_array_type_die (type, context_die);
12295 break;
12297 case ENUMERAL_TYPE:
12298 case RECORD_TYPE:
12299 case UNION_TYPE:
12300 case QUAL_UNION_TYPE:
12301 /* If this is a nested type whose containing class hasn't been written
12302 out yet, writing it out will cover this one, too. This does not apply
12303 to instantiations of member class templates; they need to be added to
12304 the containing class as they are generated. FIXME: This hurts the
12305 idea of combining type decls from multiple TUs, since we can't predict
12306 what set of template instantiations we'll get. */
12307 if (TYPE_CONTEXT (type)
12308 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12309 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12311 gen_type_die (TYPE_CONTEXT (type), context_die);
12313 if (TREE_ASM_WRITTEN (type))
12314 return;
12316 /* If that failed, attach ourselves to the stub. */
12317 push_decl_scope (TYPE_CONTEXT (type));
12318 context_die = lookup_type_die (TYPE_CONTEXT (type));
12319 need_pop = 1;
12321 else
12323 declare_in_namespace (type, context_die);
12324 need_pop = 0;
12327 if (TREE_CODE (type) == ENUMERAL_TYPE)
12328 gen_enumeration_type_die (type, context_die);
12329 else
12330 gen_struct_or_union_type_die (type, context_die);
12332 if (need_pop)
12333 pop_decl_scope ();
12335 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12336 it up if it is ever completed. gen_*_type_die will set it for us
12337 when appropriate. */
12338 return;
12340 case VOID_TYPE:
12341 case INTEGER_TYPE:
12342 case REAL_TYPE:
12343 case COMPLEX_TYPE:
12344 case BOOLEAN_TYPE:
12345 case CHAR_TYPE:
12346 /* No DIEs needed for fundamental types. */
12347 break;
12349 case LANG_TYPE:
12350 /* No Dwarf representation currently defined. */
12351 break;
12353 default:
12354 gcc_unreachable ();
12357 TREE_ASM_WRITTEN (type) = 1;
12360 /* Generate a DIE for a tagged type instantiation. */
12362 static void
12363 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12365 if (type == NULL_TREE || type == error_mark_node)
12366 return;
12368 /* We are going to output a DIE to represent the unqualified version of
12369 this type (i.e. without any const or volatile qualifiers) so make sure
12370 that we have the main variant (i.e. the unqualified version) of this
12371 type now. */
12372 gcc_assert (type == type_main_variant (type));
12374 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12375 an instance of an unresolved type. */
12377 switch (TREE_CODE (type))
12379 case ERROR_MARK:
12380 break;
12382 case ENUMERAL_TYPE:
12383 gen_inlined_enumeration_type_die (type, context_die);
12384 break;
12386 case RECORD_TYPE:
12387 gen_inlined_structure_type_die (type, context_die);
12388 break;
12390 case UNION_TYPE:
12391 case QUAL_UNION_TYPE:
12392 gen_inlined_union_type_die (type, context_die);
12393 break;
12395 default:
12396 gcc_unreachable ();
12400 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12401 things which are local to the given block. */
12403 static void
12404 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12406 int must_output_die = 0;
12407 tree origin;
12408 tree decl;
12409 enum tree_code origin_code;
12411 /* Ignore blocks that are NULL. */
12412 if (stmt == NULL_TREE)
12413 return;
12415 /* If the block is one fragment of a non-contiguous block, do not
12416 process the variables, since they will have been done by the
12417 origin block. Do process subblocks. */
12418 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12420 tree sub;
12422 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12423 gen_block_die (sub, context_die, depth + 1);
12425 return;
12428 /* Determine the "ultimate origin" of this block. This block may be an
12429 inlined instance of an inlined instance of inline function, so we have
12430 to trace all of the way back through the origin chain to find out what
12431 sort of node actually served as the original seed for the creation of
12432 the current block. */
12433 origin = block_ultimate_origin (stmt);
12434 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12436 /* Determine if we need to output any Dwarf DIEs at all to represent this
12437 block. */
12438 if (origin_code == FUNCTION_DECL)
12439 /* The outer scopes for inlinings *must* always be represented. We
12440 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12441 must_output_die = 1;
12442 else
12444 /* In the case where the current block represents an inlining of the
12445 "body block" of an inline function, we must *NOT* output any DIE for
12446 this block because we have already output a DIE to represent the whole
12447 inlined function scope and the "body block" of any function doesn't
12448 really represent a different scope according to ANSI C rules. So we
12449 check here to make sure that this block does not represent a "body
12450 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12451 if (! is_body_block (origin ? origin : stmt))
12453 /* Determine if this block directly contains any "significant"
12454 local declarations which we will need to output DIEs for. */
12455 if (debug_info_level > DINFO_LEVEL_TERSE)
12456 /* We are not in terse mode so *any* local declaration counts
12457 as being a "significant" one. */
12458 must_output_die = (BLOCK_VARS (stmt) != NULL
12459 && (TREE_USED (stmt)
12460 || TREE_ASM_WRITTEN (stmt)
12461 || BLOCK_ABSTRACT (stmt)));
12462 else
12463 /* We are in terse mode, so only local (nested) function
12464 definitions count as "significant" local declarations. */
12465 for (decl = BLOCK_VARS (stmt);
12466 decl != NULL; decl = TREE_CHAIN (decl))
12467 if (TREE_CODE (decl) == FUNCTION_DECL
12468 && DECL_INITIAL (decl))
12470 must_output_die = 1;
12471 break;
12476 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12477 DIE for any block which contains no significant local declarations at
12478 all. Rather, in such cases we just call `decls_for_scope' so that any
12479 needed Dwarf info for any sub-blocks will get properly generated. Note
12480 that in terse mode, our definition of what constitutes a "significant"
12481 local declaration gets restricted to include only inlined function
12482 instances and local (nested) function definitions. */
12483 if (must_output_die)
12485 if (origin_code == FUNCTION_DECL)
12486 gen_inlined_subroutine_die (stmt, context_die, depth);
12487 else
12488 gen_lexical_block_die (stmt, context_die, depth);
12490 else
12491 decls_for_scope (stmt, context_die, depth);
12494 /* Generate all of the decls declared within a given scope and (recursively)
12495 all of its sub-blocks. */
12497 static void
12498 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12500 tree decl;
12501 tree subblocks;
12503 /* Ignore NULL blocks. */
12504 if (stmt == NULL_TREE)
12505 return;
12507 if (TREE_USED (stmt))
12509 /* Output the DIEs to represent all of the data objects and typedefs
12510 declared directly within this block but not within any nested
12511 sub-blocks. Also, nested function and tag DIEs have been
12512 generated with a parent of NULL; fix that up now. */
12513 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12515 dw_die_ref die;
12517 if (TREE_CODE (decl) == FUNCTION_DECL)
12518 die = lookup_decl_die (decl);
12519 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12520 die = lookup_type_die (TREE_TYPE (decl));
12521 else
12522 die = NULL;
12524 if (die != NULL && die->die_parent == NULL)
12525 add_child_die (context_die, die);
12526 /* Do not produce debug information for static variables since
12527 these might be optimized out. We are called for these later
12528 in cgraph_varpool_analyze_pending_decls. */
12529 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12531 else
12532 gen_decl_die (decl, context_die);
12536 /* If we're at -g1, we're not interested in subblocks. */
12537 if (debug_info_level <= DINFO_LEVEL_TERSE)
12538 return;
12540 /* Output the DIEs to represent all sub-blocks (and the items declared
12541 therein) of this block. */
12542 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12543 subblocks != NULL;
12544 subblocks = BLOCK_CHAIN (subblocks))
12545 gen_block_die (subblocks, context_die, depth + 1);
12548 /* Is this a typedef we can avoid emitting? */
12550 static inline int
12551 is_redundant_typedef (tree decl)
12553 if (TYPE_DECL_IS_STUB (decl))
12554 return 1;
12556 if (DECL_ARTIFICIAL (decl)
12557 && DECL_CONTEXT (decl)
12558 && is_tagged_type (DECL_CONTEXT (decl))
12559 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12560 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12561 /* Also ignore the artificial member typedef for the class name. */
12562 return 1;
12564 return 0;
12567 /* Returns the DIE for decl. A DIE will always be returned. */
12569 static dw_die_ref
12570 force_decl_die (tree decl)
12572 dw_die_ref decl_die;
12573 unsigned saved_external_flag;
12574 tree save_fn = NULL_TREE;
12575 decl_die = lookup_decl_die (decl);
12576 if (!decl_die)
12578 dw_die_ref context_die;
12579 tree decl_context = DECL_CONTEXT (decl);
12580 if (decl_context)
12582 /* Find die that represents this context. */
12583 if (TYPE_P (decl_context))
12584 context_die = force_type_die (decl_context);
12585 else
12586 context_die = force_decl_die (decl_context);
12588 else
12589 context_die = comp_unit_die;
12591 switch (TREE_CODE (decl))
12593 case FUNCTION_DECL:
12594 /* Clear current_function_decl, so that gen_subprogram_die thinks
12595 that this is a declaration. At this point, we just want to force
12596 declaration die. */
12597 save_fn = current_function_decl;
12598 current_function_decl = NULL_TREE;
12599 gen_subprogram_die (decl, context_die);
12600 current_function_decl = save_fn;
12601 break;
12603 case VAR_DECL:
12604 /* Set external flag to force declaration die. Restore it after
12605 gen_decl_die() call. */
12606 saved_external_flag = DECL_EXTERNAL (decl);
12607 DECL_EXTERNAL (decl) = 1;
12608 gen_decl_die (decl, context_die);
12609 DECL_EXTERNAL (decl) = saved_external_flag;
12610 break;
12612 case NAMESPACE_DECL:
12613 dwarf2out_decl (decl);
12614 break;
12616 default:
12617 gcc_unreachable ();
12620 /* We should be able to find the DIE now. */
12621 if (!decl_die)
12622 decl_die = lookup_decl_die (decl);
12623 gcc_assert (decl_die);
12626 return decl_die;
12629 /* Returns the DIE for TYPE. A DIE is always returned. */
12631 static dw_die_ref
12632 force_type_die (tree type)
12634 dw_die_ref type_die;
12636 type_die = lookup_type_die (type);
12637 if (!type_die)
12639 dw_die_ref context_die;
12640 if (TYPE_CONTEXT (type))
12641 if (TYPE_P (TYPE_CONTEXT (type)))
12642 context_die = force_type_die (TYPE_CONTEXT (type));
12643 else
12644 context_die = force_decl_die (TYPE_CONTEXT (type));
12645 else
12646 context_die = comp_unit_die;
12648 gen_type_die (type, context_die);
12649 type_die = lookup_type_die (type);
12650 gcc_assert (type_die);
12652 return type_die;
12655 /* Force out any required namespaces to be able to output DECL,
12656 and return the new context_die for it, if it's changed. */
12658 static dw_die_ref
12659 setup_namespace_context (tree thing, dw_die_ref context_die)
12661 tree context = (DECL_P (thing)
12662 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12663 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12664 /* Force out the namespace. */
12665 context_die = force_decl_die (context);
12667 return context_die;
12670 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12671 type) within its namespace, if appropriate.
12673 For compatibility with older debuggers, namespace DIEs only contain
12674 declarations; all definitions are emitted at CU scope. */
12676 static void
12677 declare_in_namespace (tree thing, dw_die_ref context_die)
12679 dw_die_ref ns_context;
12681 if (debug_info_level <= DINFO_LEVEL_TERSE)
12682 return;
12684 /* If this decl is from an inlined function, then don't try to emit it in its
12685 namespace, as we will get confused. It would have already been emitted
12686 when the abstract instance of the inline function was emitted anyways. */
12687 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12688 return;
12690 ns_context = setup_namespace_context (thing, context_die);
12692 if (ns_context != context_die)
12694 if (DECL_P (thing))
12695 gen_decl_die (thing, ns_context);
12696 else
12697 gen_type_die (thing, ns_context);
12701 /* Generate a DIE for a namespace or namespace alias. */
12703 static void
12704 gen_namespace_die (tree decl)
12706 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12708 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12709 they are an alias of. */
12710 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12712 /* Output a real namespace. */
12713 dw_die_ref namespace_die
12714 = new_die (DW_TAG_namespace, context_die, decl);
12715 add_name_and_src_coords_attributes (namespace_die, decl);
12716 equate_decl_number_to_die (decl, namespace_die);
12718 else
12720 /* Output a namespace alias. */
12722 /* Force out the namespace we are an alias of, if necessary. */
12723 dw_die_ref origin_die
12724 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12726 /* Now create the namespace alias DIE. */
12727 dw_die_ref namespace_die
12728 = new_die (DW_TAG_imported_declaration, context_die, decl);
12729 add_name_and_src_coords_attributes (namespace_die, decl);
12730 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12731 equate_decl_number_to_die (decl, namespace_die);
12735 /* Generate Dwarf debug information for a decl described by DECL. */
12737 static void
12738 gen_decl_die (tree decl, dw_die_ref context_die)
12740 tree origin;
12742 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12743 return;
12745 switch (TREE_CODE (decl))
12747 case ERROR_MARK:
12748 break;
12750 case CONST_DECL:
12751 /* The individual enumerators of an enum type get output when we output
12752 the Dwarf representation of the relevant enum type itself. */
12753 break;
12755 case FUNCTION_DECL:
12756 /* Don't output any DIEs to represent mere function declarations,
12757 unless they are class members or explicit block externs. */
12758 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12759 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12760 break;
12762 #if 0
12763 /* FIXME */
12764 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12765 on local redeclarations of global functions. That seems broken. */
12766 if (current_function_decl != decl)
12767 /* This is only a declaration. */;
12768 #endif
12770 /* If we're emitting a clone, emit info for the abstract instance. */
12771 if (DECL_ORIGIN (decl) != decl)
12772 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12774 /* If we're emitting an out-of-line copy of an inline function,
12775 emit info for the abstract instance and set up to refer to it. */
12776 else if (cgraph_function_possibly_inlined_p (decl)
12777 && ! DECL_ABSTRACT (decl)
12778 && ! class_or_namespace_scope_p (context_die)
12779 /* dwarf2out_abstract_function won't emit a die if this is just
12780 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12781 that case, because that works only if we have a die. */
12782 && DECL_INITIAL (decl) != NULL_TREE)
12784 dwarf2out_abstract_function (decl);
12785 set_decl_origin_self (decl);
12788 /* Otherwise we're emitting the primary DIE for this decl. */
12789 else if (debug_info_level > DINFO_LEVEL_TERSE)
12791 /* Before we describe the FUNCTION_DECL itself, make sure that we
12792 have described its return type. */
12793 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12795 /* And its virtual context. */
12796 if (DECL_VINDEX (decl) != NULL_TREE)
12797 gen_type_die (DECL_CONTEXT (decl), context_die);
12799 /* And its containing type. */
12800 origin = decl_class_context (decl);
12801 if (origin != NULL_TREE)
12802 gen_type_die_for_member (origin, decl, context_die);
12804 /* And its containing namespace. */
12805 declare_in_namespace (decl, context_die);
12808 /* Now output a DIE to represent the function itself. */
12809 gen_subprogram_die (decl, context_die);
12810 break;
12812 case TYPE_DECL:
12813 /* If we are in terse mode, don't generate any DIEs to represent any
12814 actual typedefs. */
12815 if (debug_info_level <= DINFO_LEVEL_TERSE)
12816 break;
12818 /* In the special case of a TYPE_DECL node representing the declaration
12819 of some type tag, if the given TYPE_DECL is marked as having been
12820 instantiated from some other (original) TYPE_DECL node (e.g. one which
12821 was generated within the original definition of an inline function) we
12822 have to generate a special (abbreviated) DW_TAG_structure_type,
12823 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12824 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12826 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12827 break;
12830 if (is_redundant_typedef (decl))
12831 gen_type_die (TREE_TYPE (decl), context_die);
12832 else
12833 /* Output a DIE to represent the typedef itself. */
12834 gen_typedef_die (decl, context_die);
12835 break;
12837 case LABEL_DECL:
12838 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12839 gen_label_die (decl, context_die);
12840 break;
12842 case VAR_DECL:
12843 case RESULT_DECL:
12844 /* If we are in terse mode, don't generate any DIEs to represent any
12845 variable declarations or definitions. */
12846 if (debug_info_level <= DINFO_LEVEL_TERSE)
12847 break;
12849 /* Output any DIEs that are needed to specify the type of this data
12850 object. */
12851 gen_type_die (TREE_TYPE (decl), context_die);
12853 /* And its containing type. */
12854 origin = decl_class_context (decl);
12855 if (origin != NULL_TREE)
12856 gen_type_die_for_member (origin, decl, context_die);
12858 /* And its containing namespace. */
12859 declare_in_namespace (decl, context_die);
12861 /* Now output the DIE to represent the data object itself. This gets
12862 complicated because of the possibility that the VAR_DECL really
12863 represents an inlined instance of a formal parameter for an inline
12864 function. */
12865 origin = decl_ultimate_origin (decl);
12866 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12867 gen_formal_parameter_die (decl, context_die);
12868 else
12869 gen_variable_die (decl, context_die);
12870 break;
12872 case FIELD_DECL:
12873 /* Ignore the nameless fields that are used to skip bits but handle C++
12874 anonymous unions and structs. */
12875 if (DECL_NAME (decl) != NULL_TREE
12876 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12877 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12879 gen_type_die (member_declared_type (decl), context_die);
12880 gen_field_die (decl, context_die);
12882 break;
12884 case PARM_DECL:
12885 gen_type_die (TREE_TYPE (decl), context_die);
12886 gen_formal_parameter_die (decl, context_die);
12887 break;
12889 case NAMESPACE_DECL:
12890 gen_namespace_die (decl);
12891 break;
12893 default:
12894 /* Probably some frontend-internal decl. Assume we don't care. */
12895 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
12896 break;
12900 /* Add Ada "use" clause information for SGI Workshop debugger. */
12902 void
12903 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12905 unsigned int file_index;
12907 if (filename != NULL)
12909 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12910 tree context_list_decl
12911 = build_decl (LABEL_DECL, get_identifier (context_list),
12912 void_type_node);
12914 TREE_PUBLIC (context_list_decl) = TRUE;
12915 add_name_attribute (unit_die, context_list);
12916 file_index = lookup_filename (filename);
12917 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12918 add_pubname (context_list_decl, unit_die);
12922 /* Output debug information for global decl DECL. Called from toplev.c after
12923 compilation proper has finished. */
12925 static void
12926 dwarf2out_global_decl (tree decl)
12928 /* Output DWARF2 information for file-scope tentative data object
12929 declarations, file-scope (extern) function declarations (which had no
12930 corresponding body) and file-scope tagged type declarations and
12931 definitions which have not yet been forced out. */
12932 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12933 dwarf2out_decl (decl);
12936 /* Output debug information for type decl DECL. Called from toplev.c
12937 and from language front ends (to record built-in types). */
12938 static void
12939 dwarf2out_type_decl (tree decl, int local)
12941 if (!local)
12942 dwarf2out_decl (decl);
12945 /* Output debug information for imported module or decl. */
12947 static void
12948 dwarf2out_imported_module_or_decl (tree decl, tree context)
12950 dw_die_ref imported_die, at_import_die;
12951 dw_die_ref scope_die;
12952 unsigned file_index;
12953 expanded_location xloc;
12955 if (debug_info_level <= DINFO_LEVEL_TERSE)
12956 return;
12958 gcc_assert (decl);
12960 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12961 We need decl DIE for reference and scope die. First, get DIE for the decl
12962 itself. */
12964 /* Get the scope die for decl context. Use comp_unit_die for global module
12965 or decl. If die is not found for non globals, force new die. */
12966 if (!context)
12967 scope_die = comp_unit_die;
12968 else if (TYPE_P (context))
12969 scope_die = force_type_die (context);
12970 else
12971 scope_die = force_decl_die (context);
12973 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12974 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12975 at_import_die = force_type_die (TREE_TYPE (decl));
12976 else
12978 at_import_die = lookup_decl_die (decl);
12979 if (!at_import_die)
12981 /* If we're trying to avoid duplicate debug info, we may not have
12982 emitted the member decl for this field. Emit it now. */
12983 if (TREE_CODE (decl) == FIELD_DECL)
12985 tree type = DECL_CONTEXT (decl);
12986 dw_die_ref type_context_die;
12988 if (TYPE_CONTEXT (type))
12989 if (TYPE_P (TYPE_CONTEXT (type)))
12990 type_context_die = force_type_die (TYPE_CONTEXT (type));
12991 else
12992 type_context_die = force_decl_die (TYPE_CONTEXT (type));
12993 else
12994 type_context_die = comp_unit_die;
12995 gen_type_die_for_member (type, decl, type_context_die);
12997 at_import_die = force_decl_die (decl);
13001 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13002 if (TREE_CODE (decl) == NAMESPACE_DECL)
13003 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13004 else
13005 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13007 xloc = expand_location (input_location);
13008 file_index = lookup_filename (xloc.file);
13009 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
13010 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13011 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13014 /* Write the debugging output for DECL. */
13016 void
13017 dwarf2out_decl (tree decl)
13019 dw_die_ref context_die = comp_unit_die;
13021 switch (TREE_CODE (decl))
13023 case ERROR_MARK:
13024 return;
13026 case FUNCTION_DECL:
13027 /* What we would really like to do here is to filter out all mere
13028 file-scope declarations of file-scope functions which are never
13029 referenced later within this translation unit (and keep all of ones
13030 that *are* referenced later on) but we aren't clairvoyant, so we have
13031 no idea which functions will be referenced in the future (i.e. later
13032 on within the current translation unit). So here we just ignore all
13033 file-scope function declarations which are not also definitions. If
13034 and when the debugger needs to know something about these functions,
13035 it will have to hunt around and find the DWARF information associated
13036 with the definition of the function.
13038 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13039 nodes represent definitions and which ones represent mere
13040 declarations. We have to check DECL_INITIAL instead. That's because
13041 the C front-end supports some weird semantics for "extern inline"
13042 function definitions. These can get inlined within the current
13043 translation unit (an thus, we need to generate Dwarf info for their
13044 abstract instances so that the Dwarf info for the concrete inlined
13045 instances can have something to refer to) but the compiler never
13046 generates any out-of-lines instances of such things (despite the fact
13047 that they *are* definitions).
13049 The important point is that the C front-end marks these "extern
13050 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13051 them anyway. Note that the C++ front-end also plays some similar games
13052 for inline function definitions appearing within include files which
13053 also contain `#pragma interface' pragmas. */
13054 if (DECL_INITIAL (decl) == NULL_TREE)
13055 return;
13057 /* If we're a nested function, initially use a parent of NULL; if we're
13058 a plain function, this will be fixed up in decls_for_scope. If
13059 we're a method, it will be ignored, since we already have a DIE. */
13060 if (decl_function_context (decl)
13061 /* But if we're in terse mode, we don't care about scope. */
13062 && debug_info_level > DINFO_LEVEL_TERSE)
13063 context_die = NULL;
13064 break;
13066 case VAR_DECL:
13067 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13068 declaration and if the declaration was never even referenced from
13069 within this entire compilation unit. We suppress these DIEs in
13070 order to save space in the .debug section (by eliminating entries
13071 which are probably useless). Note that we must not suppress
13072 block-local extern declarations (whether used or not) because that
13073 would screw-up the debugger's name lookup mechanism and cause it to
13074 miss things which really ought to be in scope at a given point. */
13075 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13076 return;
13078 /* For local statics lookup proper context die. */
13079 if (TREE_STATIC (decl) && decl_function_context (decl))
13080 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13082 /* If we are in terse mode, don't generate any DIEs to represent any
13083 variable declarations or definitions. */
13084 if (debug_info_level <= DINFO_LEVEL_TERSE)
13085 return;
13086 break;
13088 case NAMESPACE_DECL:
13089 if (debug_info_level <= DINFO_LEVEL_TERSE)
13090 return;
13091 if (lookup_decl_die (decl) != NULL)
13092 return;
13093 break;
13095 case TYPE_DECL:
13096 /* Don't emit stubs for types unless they are needed by other DIEs. */
13097 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13098 return;
13100 /* Don't bother trying to generate any DIEs to represent any of the
13101 normal built-in types for the language we are compiling. */
13102 if (DECL_IS_BUILTIN (decl))
13104 /* OK, we need to generate one for `bool' so GDB knows what type
13105 comparisons have. */
13106 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
13107 == DW_LANG_C_plus_plus)
13108 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13109 && ! DECL_IGNORED_P (decl))
13110 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13112 return;
13115 /* If we are in terse mode, don't generate any DIEs for types. */
13116 if (debug_info_level <= DINFO_LEVEL_TERSE)
13117 return;
13119 /* If we're a function-scope tag, initially use a parent of NULL;
13120 this will be fixed up in decls_for_scope. */
13121 if (decl_function_context (decl))
13122 context_die = NULL;
13124 break;
13126 default:
13127 return;
13130 gen_decl_die (decl, context_die);
13133 /* Output a marker (i.e. a label) for the beginning of the generated code for
13134 a lexical block. */
13136 static void
13137 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13138 unsigned int blocknum)
13140 current_function_section (current_function_decl);
13141 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13144 /* Output a marker (i.e. a label) for the end of the generated code for a
13145 lexical block. */
13147 static void
13148 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13150 current_function_section (current_function_decl);
13151 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13154 /* Returns nonzero if it is appropriate not to emit any debugging
13155 information for BLOCK, because it doesn't contain any instructions.
13157 Don't allow this for blocks with nested functions or local classes
13158 as we would end up with orphans, and in the presence of scheduling
13159 we may end up calling them anyway. */
13161 static bool
13162 dwarf2out_ignore_block (tree block)
13164 tree decl;
13166 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13167 if (TREE_CODE (decl) == FUNCTION_DECL
13168 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13169 return 0;
13171 return 1;
13174 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13175 dwarf2out.c) and return its "index". The index of each (known) filename is
13176 just a unique number which is associated with only that one filename. We
13177 need such numbers for the sake of generating labels (in the .debug_sfnames
13178 section) and references to those files numbers (in the .debug_srcinfo
13179 and.debug_macinfo sections). If the filename given as an argument is not
13180 found in our current list, add it to the list and assign it the next
13181 available unique index number. In order to speed up searches, we remember
13182 the index of the filename was looked up last. This handles the majority of
13183 all searches. */
13185 static unsigned
13186 lookup_filename (const char *file_name)
13188 size_t i, n;
13189 char *save_file_name;
13191 /* Check to see if the file name that was searched on the previous
13192 call matches this file name. If so, return the index. */
13193 if (file_table_last_lookup_index != 0)
13195 const char *last
13196 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13197 if (strcmp (file_name, last) == 0)
13198 return file_table_last_lookup_index;
13201 /* Didn't match the previous lookup, search the table. */
13202 n = VARRAY_ACTIVE_SIZE (file_table);
13203 for (i = 1; i < n; i++)
13204 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13206 file_table_last_lookup_index = i;
13207 return i;
13210 /* Add the new entry to the end of the filename table. */
13211 file_table_last_lookup_index = n;
13212 save_file_name = (char *) ggc_strdup (file_name);
13213 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13214 VARRAY_PUSH_UINT (file_table_emitted, 0);
13216 /* If the assembler is emitting the file table, and we aren't eliminating
13217 unused debug types, then we must emit .file here. If we are eliminating
13218 unused debug types, then this will be done by the maybe_emit_file call in
13219 prune_unused_types_walk_attribs. */
13221 if (DWARF2_ASM_LINE_DEBUG_INFO && ! flag_eliminate_unused_debug_types)
13222 maybe_emit_file (i);
13224 return i;
13227 static int
13228 maybe_emit_file (int fileno)
13230 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13232 if (!VARRAY_UINT (file_table_emitted, fileno))
13234 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13235 fprintf (asm_out_file, "\t.file %u ",
13236 VARRAY_UINT (file_table_emitted, fileno));
13237 output_quoted_string (asm_out_file,
13238 VARRAY_CHAR_PTR (file_table, fileno));
13239 fputc ('\n', asm_out_file);
13241 return VARRAY_UINT (file_table_emitted, fileno);
13243 else
13244 return fileno;
13247 static void
13248 init_file_table (void)
13250 /* Allocate the initial hunk of the file_table. */
13251 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13252 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13254 /* Skip the first entry - file numbers begin at 1. */
13255 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13256 VARRAY_PUSH_UINT (file_table_emitted, 0);
13257 file_table_last_lookup_index = 0;
13260 /* Called by the final INSN scan whenever we see a var location. We
13261 use it to drop labels in the right places, and throw the location in
13262 our lookup table. */
13264 static void
13265 dwarf2out_var_location (rtx loc_note)
13267 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13268 struct var_loc_node *newloc;
13269 rtx prev_insn;
13270 static rtx last_insn;
13271 static const char *last_label;
13272 tree decl;
13274 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13275 return;
13276 prev_insn = PREV_INSN (loc_note);
13278 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13279 /* If the insn we processed last time is the previous insn
13280 and it is also a var location note, use the label we emitted
13281 last time. */
13282 if (last_insn != NULL_RTX
13283 && last_insn == prev_insn
13284 && NOTE_P (prev_insn)
13285 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13287 newloc->label = last_label;
13289 else
13291 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13292 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13293 loclabel_num++;
13294 newloc->label = ggc_strdup (loclabel);
13296 newloc->var_loc_note = loc_note;
13297 newloc->next = NULL;
13299 if (cfun
13300 && (last_text_section == in_unlikely_executed_text
13301 || (last_text_section == in_named
13302 && last_text_section_name == cfun->unlikely_text_section_name)))
13303 newloc->section_label = cfun->cold_section_label;
13304 else
13305 newloc->section_label = text_section_label;
13307 last_insn = loc_note;
13308 last_label = newloc->label;
13309 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13310 if (DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
13311 && DECL_P (DECL_DEBUG_EXPR (decl)))
13312 decl = DECL_DEBUG_EXPR (decl);
13313 add_var_loc_to_decl (decl, newloc);
13316 /* We need to reset the locations at the beginning of each
13317 function. We can't do this in the end_function hook, because the
13318 declarations that use the locations won't have been outputted when
13319 that hook is called. */
13321 static void
13322 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13324 htab_empty (decl_loc_table);
13327 /* Output a label to mark the beginning of a source code line entry
13328 and record information relating to this source line, in
13329 'line_info_table' for later output of the .debug_line section. */
13331 static void
13332 dwarf2out_source_line (unsigned int line, const char *filename)
13334 if (debug_info_level >= DINFO_LEVEL_NORMAL
13335 && line != 0)
13337 current_function_section (current_function_decl);
13339 /* If requested, emit something human-readable. */
13340 if (flag_debug_asm)
13341 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13342 filename, line);
13344 if (DWARF2_ASM_LINE_DEBUG_INFO)
13346 unsigned file_num = lookup_filename (filename);
13348 file_num = maybe_emit_file (file_num);
13350 /* Emit the .loc directive understood by GNU as. */
13351 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13353 /* Indicate that line number info exists. */
13354 line_info_table_in_use++;
13356 /* Indicate that multiple line number tables exist. */
13357 if (DECL_SECTION_NAME (current_function_decl))
13358 separate_line_info_table_in_use++;
13360 else if (DECL_SECTION_NAME (current_function_decl))
13362 dw_separate_line_info_ref line_info;
13363 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13364 separate_line_info_table_in_use);
13366 /* Expand the line info table if necessary. */
13367 if (separate_line_info_table_in_use
13368 == separate_line_info_table_allocated)
13370 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13371 separate_line_info_table
13372 = ggc_realloc (separate_line_info_table,
13373 separate_line_info_table_allocated
13374 * sizeof (dw_separate_line_info_entry));
13375 memset (separate_line_info_table
13376 + separate_line_info_table_in_use,
13378 (LINE_INFO_TABLE_INCREMENT
13379 * sizeof (dw_separate_line_info_entry)));
13382 /* Add the new entry at the end of the line_info_table. */
13383 line_info
13384 = &separate_line_info_table[separate_line_info_table_in_use++];
13385 line_info->dw_file_num = lookup_filename (filename);
13386 line_info->dw_line_num = line;
13387 line_info->function = current_function_funcdef_no;
13389 else
13391 dw_line_info_ref line_info;
13393 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13394 line_info_table_in_use);
13396 /* Expand the line info table if necessary. */
13397 if (line_info_table_in_use == line_info_table_allocated)
13399 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13400 line_info_table
13401 = ggc_realloc (line_info_table,
13402 (line_info_table_allocated
13403 * sizeof (dw_line_info_entry)));
13404 memset (line_info_table + line_info_table_in_use, 0,
13405 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13408 /* Add the new entry at the end of the line_info_table. */
13409 line_info = &line_info_table[line_info_table_in_use++];
13410 line_info->dw_file_num = lookup_filename (filename);
13411 line_info->dw_line_num = line;
13416 /* Record the beginning of a new source file. */
13418 static void
13419 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13421 if (flag_eliminate_dwarf2_dups)
13423 /* Record the beginning of the file for break_out_includes. */
13424 dw_die_ref bincl_die;
13426 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13427 add_AT_string (bincl_die, DW_AT_name, filename);
13430 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13432 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13433 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13434 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13435 lineno);
13436 maybe_emit_file (lookup_filename (filename));
13437 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13438 "Filename we just started");
13442 /* Record the end of a source file. */
13444 static void
13445 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13447 if (flag_eliminate_dwarf2_dups)
13448 /* Record the end of the file for break_out_includes. */
13449 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13451 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13453 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13454 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13458 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13459 the tail part of the directive line, i.e. the part which is past the
13460 initial whitespace, #, whitespace, directive-name, whitespace part. */
13462 static void
13463 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13464 const char *buffer ATTRIBUTE_UNUSED)
13466 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13468 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13469 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13470 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13471 dw2_asm_output_nstring (buffer, -1, "The macro");
13475 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13476 the tail part of the directive line, i.e. the part which is past the
13477 initial whitespace, #, whitespace, directive-name, whitespace part. */
13479 static void
13480 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13481 const char *buffer ATTRIBUTE_UNUSED)
13483 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13485 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13486 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13487 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13488 dw2_asm_output_nstring (buffer, -1, "The macro");
13492 /* Set up for Dwarf output at the start of compilation. */
13494 static void
13495 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13497 init_file_table ();
13499 /* Allocate the decl_die_table. */
13500 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13501 decl_die_table_eq, NULL);
13503 /* Allocate the decl_loc_table. */
13504 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13505 decl_loc_table_eq, NULL);
13507 /* Allocate the initial hunk of the decl_scope_table. */
13508 decl_scope_table = VEC_alloc (tree, gc, 256);
13510 /* Allocate the initial hunk of the abbrev_die_table. */
13511 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13512 * sizeof (dw_die_ref));
13513 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13514 /* Zero-th entry is allocated, but unused. */
13515 abbrev_die_table_in_use = 1;
13517 /* Allocate the initial hunk of the line_info_table. */
13518 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13519 * sizeof (dw_line_info_entry));
13520 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13522 /* Zero-th entry is allocated, but unused. */
13523 line_info_table_in_use = 1;
13525 /* Generate the initial DIE for the .debug section. Note that the (string)
13526 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13527 will (typically) be a relative pathname and that this pathname should be
13528 taken as being relative to the directory from which the compiler was
13529 invoked when the given (base) source file was compiled. We will fill
13530 in this value in dwarf2out_finish. */
13531 comp_unit_die = gen_compile_unit_die (NULL);
13533 incomplete_types = VEC_alloc (tree, gc, 64);
13535 used_rtx_array = VEC_alloc (rtx, gc, 32);
13537 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13538 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13539 DEBUG_ABBREV_SECTION_LABEL, 0);
13540 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13541 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13542 COLD_TEXT_SECTION_LABEL, 0);
13543 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13545 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13546 DEBUG_INFO_SECTION_LABEL, 0);
13547 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13548 DEBUG_LINE_SECTION_LABEL, 0);
13549 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13550 DEBUG_RANGES_SECTION_LABEL, 0);
13551 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13552 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13553 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13554 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13555 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13556 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13558 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13560 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13561 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13562 DEBUG_MACINFO_SECTION_LABEL, 0);
13563 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13566 text_section ();
13567 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13568 if (flag_reorder_blocks_and_partition)
13570 unlikely_text_section ();
13571 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13575 /* A helper function for dwarf2out_finish called through
13576 ht_forall. Emit one queued .debug_str string. */
13578 static int
13579 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13581 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13583 if (node->form == DW_FORM_strp)
13585 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13586 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13587 assemble_string (node->str, strlen (node->str) + 1);
13590 return 1;
13595 /* Clear the marks for a die and its children.
13596 Be cool if the mark isn't set. */
13598 static void
13599 prune_unmark_dies (dw_die_ref die)
13601 dw_die_ref c;
13602 die->die_mark = 0;
13603 for (c = die->die_child; c; c = c->die_sib)
13604 prune_unmark_dies (c);
13608 /* Given DIE that we're marking as used, find any other dies
13609 it references as attributes and mark them as used. */
13611 static void
13612 prune_unused_types_walk_attribs (dw_die_ref die)
13614 dw_attr_ref a;
13616 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13618 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13620 /* A reference to another DIE.
13621 Make sure that it will get emitted. */
13622 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13624 else if (a->dw_attr == DW_AT_decl_file)
13626 /* A reference to a file. Make sure the file name is emitted. */
13627 a->dw_attr_val.v.val_unsigned =
13628 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13634 /* Mark DIE as being used. If DOKIDS is true, then walk down
13635 to DIE's children. */
13637 static void
13638 prune_unused_types_mark (dw_die_ref die, int dokids)
13640 dw_die_ref c;
13642 if (die->die_mark == 0)
13644 /* We haven't done this node yet. Mark it as used. */
13645 die->die_mark = 1;
13647 /* We also have to mark its parents as used.
13648 (But we don't want to mark our parents' kids due to this.) */
13649 if (die->die_parent)
13650 prune_unused_types_mark (die->die_parent, 0);
13652 /* Mark any referenced nodes. */
13653 prune_unused_types_walk_attribs (die);
13655 /* If this node is a specification,
13656 also mark the definition, if it exists. */
13657 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13658 prune_unused_types_mark (die->die_definition, 1);
13661 if (dokids && die->die_mark != 2)
13663 /* We need to walk the children, but haven't done so yet.
13664 Remember that we've walked the kids. */
13665 die->die_mark = 2;
13667 /* Walk them. */
13668 for (c = die->die_child; c; c = c->die_sib)
13670 /* If this is an array type, we need to make sure our
13671 kids get marked, even if they're types. */
13672 if (die->die_tag == DW_TAG_array_type)
13673 prune_unused_types_mark (c, 1);
13674 else
13675 prune_unused_types_walk (c);
13681 /* Walk the tree DIE and mark types that we actually use. */
13683 static void
13684 prune_unused_types_walk (dw_die_ref die)
13686 dw_die_ref c;
13688 /* Don't do anything if this node is already marked. */
13689 if (die->die_mark)
13690 return;
13692 switch (die->die_tag) {
13693 case DW_TAG_const_type:
13694 case DW_TAG_packed_type:
13695 case DW_TAG_pointer_type:
13696 case DW_TAG_reference_type:
13697 case DW_TAG_volatile_type:
13698 case DW_TAG_typedef:
13699 case DW_TAG_array_type:
13700 case DW_TAG_structure_type:
13701 case DW_TAG_union_type:
13702 case DW_TAG_class_type:
13703 case DW_TAG_friend:
13704 case DW_TAG_variant_part:
13705 case DW_TAG_enumeration_type:
13706 case DW_TAG_subroutine_type:
13707 case DW_TAG_string_type:
13708 case DW_TAG_set_type:
13709 case DW_TAG_subrange_type:
13710 case DW_TAG_ptr_to_member_type:
13711 case DW_TAG_file_type:
13712 /* It's a type node --- don't mark it. */
13713 return;
13715 default:
13716 /* Mark everything else. */
13717 break;
13720 die->die_mark = 1;
13722 /* Now, mark any dies referenced from here. */
13723 prune_unused_types_walk_attribs (die);
13725 /* Mark children. */
13726 for (c = die->die_child; c; c = c->die_sib)
13727 prune_unused_types_walk (c);
13731 /* Remove from the tree DIE any dies that aren't marked. */
13733 static void
13734 prune_unused_types_prune (dw_die_ref die)
13736 dw_die_ref c, p, n;
13738 gcc_assert (die->die_mark);
13740 p = NULL;
13741 for (c = die->die_child; c; c = n)
13743 n = c->die_sib;
13744 if (c->die_mark)
13746 prune_unused_types_prune (c);
13747 p = c;
13749 else
13751 if (p)
13752 p->die_sib = n;
13753 else
13754 die->die_child = n;
13755 free_die (c);
13761 /* Remove dies representing declarations that we never use. */
13763 static void
13764 prune_unused_types (void)
13766 unsigned int i;
13767 limbo_die_node *node;
13769 /* Clear all the marks. */
13770 prune_unmark_dies (comp_unit_die);
13771 for (node = limbo_die_list; node; node = node->next)
13772 prune_unmark_dies (node->die);
13774 /* Set the mark on nodes that are actually used. */
13775 prune_unused_types_walk (comp_unit_die);
13776 for (node = limbo_die_list; node; node = node->next)
13777 prune_unused_types_walk (node->die);
13779 /* Also set the mark on nodes referenced from the
13780 pubname_table or arange_table. */
13781 for (i = 0; i < pubname_table_in_use; i++)
13782 prune_unused_types_mark (pubname_table[i].die, 1);
13783 for (i = 0; i < arange_table_in_use; i++)
13784 prune_unused_types_mark (arange_table[i], 1);
13786 /* Get rid of nodes that aren't marked. */
13787 prune_unused_types_prune (comp_unit_die);
13788 for (node = limbo_die_list; node; node = node->next)
13789 prune_unused_types_prune (node->die);
13791 /* Leave the marks clear. */
13792 prune_unmark_dies (comp_unit_die);
13793 for (node = limbo_die_list; node; node = node->next)
13794 prune_unmark_dies (node->die);
13797 /* Output stuff that dwarf requires at the end of every file,
13798 and generate the DWARF-2 debugging info. */
13800 static void
13801 dwarf2out_finish (const char *filename)
13803 limbo_die_node *node, *next_node;
13804 dw_die_ref die = 0;
13806 /* Add the name for the main input file now. We delayed this from
13807 dwarf2out_init to avoid complications with PCH. */
13808 add_name_attribute (comp_unit_die, filename);
13809 if (filename[0] != DIR_SEPARATOR)
13810 add_comp_dir_attribute (comp_unit_die);
13811 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13813 size_t i;
13814 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13815 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13816 /* Don't add cwd for <built-in>. */
13817 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13819 add_comp_dir_attribute (comp_unit_die);
13820 break;
13824 /* Traverse the limbo die list, and add parent/child links. The only
13825 dies without parents that should be here are concrete instances of
13826 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13827 For concrete instances, we can get the parent die from the abstract
13828 instance. */
13829 for (node = limbo_die_list; node; node = next_node)
13831 next_node = node->next;
13832 die = node->die;
13834 if (die->die_parent == NULL)
13836 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13838 if (origin)
13839 add_child_die (origin->die_parent, die);
13840 else if (die == comp_unit_die)
13842 else if (errorcount > 0 || sorrycount > 0)
13843 /* It's OK to be confused by errors in the input. */
13844 add_child_die (comp_unit_die, die);
13845 else
13847 /* In certain situations, the lexical block containing a
13848 nested function can be optimized away, which results
13849 in the nested function die being orphaned. Likewise
13850 with the return type of that nested function. Force
13851 this to be a child of the containing function.
13853 It may happen that even the containing function got fully
13854 inlined and optimized out. In that case we are lost and
13855 assign the empty child. This should not be big issue as
13856 the function is likely unreachable too. */
13857 tree context = NULL_TREE;
13859 gcc_assert (node->created_for);
13861 if (DECL_P (node->created_for))
13862 context = DECL_CONTEXT (node->created_for);
13863 else if (TYPE_P (node->created_for))
13864 context = TYPE_CONTEXT (node->created_for);
13866 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
13868 origin = lookup_decl_die (context);
13869 if (origin)
13870 add_child_die (origin, die);
13871 else
13872 add_child_die (comp_unit_die, die);
13877 limbo_die_list = NULL;
13879 /* Walk through the list of incomplete types again, trying once more to
13880 emit full debugging info for them. */
13881 retry_incomplete_types ();
13883 /* We need to reverse all the dies before break_out_includes, or
13884 we'll see the end of an include file before the beginning. */
13885 reverse_all_dies (comp_unit_die);
13887 if (flag_eliminate_unused_debug_types)
13888 prune_unused_types ();
13890 /* Generate separate CUs for each of the include files we've seen.
13891 They will go into limbo_die_list. */
13892 if (flag_eliminate_dwarf2_dups)
13893 break_out_includes (comp_unit_die);
13895 /* Traverse the DIE's and add add sibling attributes to those DIE's
13896 that have children. */
13897 add_sibling_attributes (comp_unit_die);
13898 for (node = limbo_die_list; node; node = node->next)
13899 add_sibling_attributes (node->die);
13901 /* Output a terminator label for the .text section. */
13902 text_section ();
13903 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13904 if (flag_reorder_blocks_and_partition)
13906 unlikely_text_section ();
13907 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
13910 /* Output the source line correspondence table. We must do this
13911 even if there is no line information. Otherwise, on an empty
13912 translation unit, we will generate a present, but empty,
13913 .debug_info section. IRIX 6.5 `nm' will then complain when
13914 examining the file. */
13915 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13917 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13918 output_line_info ();
13921 /* Output location list section if necessary. */
13922 if (have_location_lists)
13924 /* Output the location lists info. */
13925 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13926 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13927 DEBUG_LOC_SECTION_LABEL, 0);
13928 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13929 output_location_lists (die);
13930 have_location_lists = 0;
13933 /* We can only use the low/high_pc attributes if all of the code was
13934 in .text. */
13935 if (separate_line_info_table_in_use == 0)
13937 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13938 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13941 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13942 "base address". Use zero so that these addresses become absolute. */
13943 else if (have_location_lists || ranges_table_in_use)
13944 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13946 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13947 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13948 debug_line_section_label);
13950 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13951 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13953 /* Output all of the compilation units. We put the main one last so that
13954 the offsets are available to output_pubnames. */
13955 for (node = limbo_die_list; node; node = node->next)
13956 output_comp_unit (node->die, 0);
13958 output_comp_unit (comp_unit_die, 0);
13960 /* Output the abbreviation table. */
13961 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13962 output_abbrev_section ();
13964 /* Output public names table if necessary. */
13965 if (pubname_table_in_use)
13967 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13968 output_pubnames ();
13971 /* Output the address range information. We only put functions in the arange
13972 table, so don't write it out if we don't have any. */
13973 if (fde_table_in_use)
13975 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13976 output_aranges ();
13979 /* Output ranges section if necessary. */
13980 if (ranges_table_in_use)
13982 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13983 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13984 output_ranges ();
13987 /* Have to end the macro section. */
13988 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13990 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13991 dw2_asm_output_data (1, 0, "End compilation unit");
13994 /* If we emitted any DW_FORM_strp form attribute, output the string
13995 table too. */
13996 if (debug_str_hash)
13997 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13999 #else
14001 /* This should never be used, but its address is needed for comparisons. */
14002 const struct gcc_debug_hooks dwarf2_debug_hooks;
14004 #endif /* DWARF2_DEBUGGING_INFO */
14006 #include "gt-dwarf2out.h"