1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
33 #include "diagnostic.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
42 /* Set of SSA names found live during the RPO traversal of the function
43 for still active basic-blocks. */
46 /* Return true if the SSA name NAME is live on the edge E. */
49 live_on_edge (edge e
, tree name
)
51 return (live
[e
->dest
->index
]
52 && TEST_BIT (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
55 /* Local functions. */
56 static int compare_values (tree val1
, tree val2
);
57 static int compare_values_warnv (tree val1
, tree val2
, bool *);
58 static void vrp_meet (value_range_t
*, value_range_t
*);
59 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
60 tree
, tree
, bool, bool *,
63 /* Location information for ASSERT_EXPRs. Each instance of this
64 structure describes an ASSERT_EXPR for an SSA name. Since a single
65 SSA name may have more than one assertion associated with it, these
66 locations are kept in a linked list attached to the corresponding
70 /* Basic block where the assertion would be inserted. */
73 /* Some assertions need to be inserted on an edge (e.g., assertions
74 generated by COND_EXPRs). In those cases, BB will be NULL. */
77 /* Pointer to the statement that generated this assertion. */
78 gimple_stmt_iterator si
;
80 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
81 enum tree_code comp_code
;
83 /* Value being compared against. */
86 /* Expression to compare. */
89 /* Next node in the linked list. */
90 struct assert_locus_d
*next
;
93 typedef struct assert_locus_d
*assert_locus_t
;
95 /* If bit I is present, it means that SSA name N_i has a list of
96 assertions that should be inserted in the IL. */
97 static bitmap need_assert_for
;
99 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
100 holds a list of ASSERT_LOCUS_T nodes that describe where
101 ASSERT_EXPRs for SSA name N_I should be inserted. */
102 static assert_locus_t
*asserts_for
;
104 /* Value range array. After propagation, VR_VALUE[I] holds the range
105 of values that SSA name N_I may take. */
106 static value_range_t
**vr_value
;
108 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
109 number of executable edges we saw the last time we visited the
111 static int *vr_phi_edge_counts
;
118 static VEC (edge
, heap
) *to_remove_edges
;
119 DEF_VEC_O(switch_update
);
120 DEF_VEC_ALLOC_O(switch_update
, heap
);
121 static VEC (switch_update
, heap
) *to_update_switch_stmts
;
124 /* Return the maximum value for TYPEs base type. */
127 vrp_val_max (const_tree type
)
129 if (!INTEGRAL_TYPE_P (type
))
132 /* For integer sub-types the values for the base type are relevant. */
133 if (TREE_TYPE (type
))
134 type
= TREE_TYPE (type
);
136 return TYPE_MAX_VALUE (type
);
139 /* Return the minimum value for TYPEs base type. */
142 vrp_val_min (const_tree type
)
144 if (!INTEGRAL_TYPE_P (type
))
147 /* For integer sub-types the values for the base type are relevant. */
148 if (TREE_TYPE (type
))
149 type
= TREE_TYPE (type
);
151 return TYPE_MIN_VALUE (type
);
154 /* Return whether VAL is equal to the maximum value of its type. This
155 will be true for a positive overflow infinity. We can't do a
156 simple equality comparison with TYPE_MAX_VALUE because C typedefs
157 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
158 to the integer constant with the same value in the type. */
161 vrp_val_is_max (const_tree val
)
163 tree type_max
= vrp_val_max (TREE_TYPE (val
));
164 return (val
== type_max
165 || (type_max
!= NULL_TREE
166 && operand_equal_p (val
, type_max
, 0)));
169 /* Return whether VAL is equal to the minimum value of its type. This
170 will be true for a negative overflow infinity. */
173 vrp_val_is_min (const_tree val
)
175 tree type_min
= vrp_val_min (TREE_TYPE (val
));
176 return (val
== type_min
177 || (type_min
!= NULL_TREE
178 && operand_equal_p (val
, type_min
, 0)));
182 /* Return whether TYPE should use an overflow infinity distinct from
183 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
184 represent a signed overflow during VRP computations. An infinity
185 is distinct from a half-range, which will go from some number to
186 TYPE_{MIN,MAX}_VALUE. */
189 needs_overflow_infinity (const_tree type
)
191 return (INTEGRAL_TYPE_P (type
)
192 && !TYPE_OVERFLOW_WRAPS (type
)
193 /* Integer sub-types never overflow as they are never
194 operands of arithmetic operators. */
195 && !(TREE_TYPE (type
) && TREE_TYPE (type
) != type
));
198 /* Return whether TYPE can support our overflow infinity
199 representation: we use the TREE_OVERFLOW flag, which only exists
200 for constants. If TYPE doesn't support this, we don't optimize
201 cases which would require signed overflow--we drop them to
205 supports_overflow_infinity (const_tree type
)
207 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
208 #ifdef ENABLE_CHECKING
209 gcc_assert (needs_overflow_infinity (type
));
211 return (min
!= NULL_TREE
212 && CONSTANT_CLASS_P (min
)
214 && CONSTANT_CLASS_P (max
));
217 /* VAL is the maximum or minimum value of a type. Return a
218 corresponding overflow infinity. */
221 make_overflow_infinity (tree val
)
223 #ifdef ENABLE_CHECKING
224 gcc_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
226 val
= copy_node (val
);
227 TREE_OVERFLOW (val
) = 1;
231 /* Return a negative overflow infinity for TYPE. */
234 negative_overflow_infinity (tree type
)
236 #ifdef ENABLE_CHECKING
237 gcc_assert (supports_overflow_infinity (type
));
239 return make_overflow_infinity (vrp_val_min (type
));
242 /* Return a positive overflow infinity for TYPE. */
245 positive_overflow_infinity (tree type
)
247 #ifdef ENABLE_CHECKING
248 gcc_assert (supports_overflow_infinity (type
));
250 return make_overflow_infinity (vrp_val_max (type
));
253 /* Return whether VAL is a negative overflow infinity. */
256 is_negative_overflow_infinity (const_tree val
)
258 return (needs_overflow_infinity (TREE_TYPE (val
))
259 && CONSTANT_CLASS_P (val
)
260 && TREE_OVERFLOW (val
)
261 && vrp_val_is_min (val
));
264 /* Return whether VAL is a positive overflow infinity. */
267 is_positive_overflow_infinity (const_tree val
)
269 return (needs_overflow_infinity (TREE_TYPE (val
))
270 && CONSTANT_CLASS_P (val
)
271 && TREE_OVERFLOW (val
)
272 && vrp_val_is_max (val
));
275 /* Return whether VAL is a positive or negative overflow infinity. */
278 is_overflow_infinity (const_tree val
)
280 return (needs_overflow_infinity (TREE_TYPE (val
))
281 && CONSTANT_CLASS_P (val
)
282 && TREE_OVERFLOW (val
)
283 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
286 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
289 stmt_overflow_infinity (gimple stmt
)
291 if (is_gimple_assign (stmt
)
292 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
294 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
298 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
299 the same value with TREE_OVERFLOW clear. This can be used to avoid
300 confusing a regular value with an overflow value. */
303 avoid_overflow_infinity (tree val
)
305 if (!is_overflow_infinity (val
))
308 if (vrp_val_is_max (val
))
309 return vrp_val_max (TREE_TYPE (val
));
312 #ifdef ENABLE_CHECKING
313 gcc_assert (vrp_val_is_min (val
));
315 return vrp_val_min (TREE_TYPE (val
));
320 /* Return true if ARG is marked with the nonnull attribute in the
321 current function signature. */
324 nonnull_arg_p (const_tree arg
)
326 tree t
, attrs
, fntype
;
327 unsigned HOST_WIDE_INT arg_num
;
329 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
331 /* The static chain decl is always non null. */
332 if (arg
== cfun
->static_chain_decl
)
335 fntype
= TREE_TYPE (current_function_decl
);
336 attrs
= lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype
));
338 /* If "nonnull" wasn't specified, we know nothing about the argument. */
339 if (attrs
== NULL_TREE
)
342 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
343 if (TREE_VALUE (attrs
) == NULL_TREE
)
346 /* Get the position number for ARG in the function signature. */
347 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
349 t
= TREE_CHAIN (t
), arg_num
++)
355 gcc_assert (t
== arg
);
357 /* Now see if ARG_NUM is mentioned in the nonnull list. */
358 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
360 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
368 /* Set value range VR to VR_VARYING. */
371 set_value_range_to_varying (value_range_t
*vr
)
373 vr
->type
= VR_VARYING
;
374 vr
->min
= vr
->max
= NULL_TREE
;
376 bitmap_clear (vr
->equiv
);
380 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
383 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
384 tree max
, bitmap equiv
)
386 #if defined ENABLE_CHECKING
387 /* Check the validity of the range. */
388 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
392 gcc_assert (min
&& max
);
394 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
395 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
397 cmp
= compare_values (min
, max
);
398 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
400 if (needs_overflow_infinity (TREE_TYPE (min
)))
401 gcc_assert (!is_overflow_infinity (min
)
402 || !is_overflow_infinity (max
));
405 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
406 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
408 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
409 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
416 /* Since updating the equivalence set involves deep copying the
417 bitmaps, only do it if absolutely necessary. */
418 if (vr
->equiv
== NULL
420 vr
->equiv
= BITMAP_ALLOC (NULL
);
422 if (equiv
!= vr
->equiv
)
424 if (equiv
&& !bitmap_empty_p (equiv
))
425 bitmap_copy (vr
->equiv
, equiv
);
427 bitmap_clear (vr
->equiv
);
432 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
433 This means adjusting T, MIN and MAX representing the case of a
434 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
435 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
436 In corner cases where MAX+1 or MIN-1 wraps this will fall back
438 This routine exists to ease canonicalization in the case where we
439 extract ranges from var + CST op limit. */
442 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
443 tree min
, tree max
, bitmap equiv
)
445 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
447 && t
!= VR_ANTI_RANGE
)
448 || TREE_CODE (min
) != INTEGER_CST
449 || TREE_CODE (max
) != INTEGER_CST
)
451 set_value_range (vr
, t
, min
, max
, equiv
);
455 /* Wrong order for min and max, to swap them and the VR type we need
457 if (tree_int_cst_lt (max
, min
))
459 tree one
= build_int_cst (TREE_TYPE (min
), 1);
460 tree tmp
= int_const_binop (PLUS_EXPR
, max
, one
, 0);
461 max
= int_const_binop (MINUS_EXPR
, min
, one
, 0);
464 /* There's one corner case, if we had [C+1, C] before we now have
465 that again. But this represents an empty value range, so drop
466 to varying in this case. */
467 if (tree_int_cst_lt (max
, min
))
469 set_value_range_to_varying (vr
);
473 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
476 /* Anti-ranges that can be represented as ranges should be so. */
477 if (t
== VR_ANTI_RANGE
)
479 bool is_min
= vrp_val_is_min (min
);
480 bool is_max
= vrp_val_is_max (max
);
482 if (is_min
&& is_max
)
484 /* We cannot deal with empty ranges, drop to varying. */
485 set_value_range_to_varying (vr
);
489 /* As a special exception preserve non-null ranges. */
490 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
491 && integer_zerop (max
)))
493 tree one
= build_int_cst (TREE_TYPE (max
), 1);
494 min
= int_const_binop (PLUS_EXPR
, max
, one
, 0);
495 max
= vrp_val_max (TREE_TYPE (max
));
500 tree one
= build_int_cst (TREE_TYPE (min
), 1);
501 max
= int_const_binop (MINUS_EXPR
, min
, one
, 0);
502 min
= vrp_val_min (TREE_TYPE (min
));
507 set_value_range (vr
, t
, min
, max
, equiv
);
510 /* Copy value range FROM into value range TO. */
513 copy_value_range (value_range_t
*to
, value_range_t
*from
)
515 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
518 /* Set value range VR to a single value. This function is only called
519 with values we get from statements, and exists to clear the
520 TREE_OVERFLOW flag so that we don't think we have an overflow
521 infinity when we shouldn't. */
524 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
526 gcc_assert (is_gimple_min_invariant (val
));
527 val
= avoid_overflow_infinity (val
);
528 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
531 /* Set value range VR to a non-negative range of type TYPE.
532 OVERFLOW_INFINITY indicates whether to use an overflow infinity
533 rather than TYPE_MAX_VALUE; this should be true if we determine
534 that the range is nonnegative based on the assumption that signed
535 overflow does not occur. */
538 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
539 bool overflow_infinity
)
543 if (overflow_infinity
&& !supports_overflow_infinity (type
))
545 set_value_range_to_varying (vr
);
549 zero
= build_int_cst (type
, 0);
550 set_value_range (vr
, VR_RANGE
, zero
,
552 ? positive_overflow_infinity (type
)
553 : TYPE_MAX_VALUE (type
)),
557 /* Set value range VR to a non-NULL range of type TYPE. */
560 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
562 tree zero
= build_int_cst (type
, 0);
563 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
567 /* Set value range VR to a NULL range of type TYPE. */
570 set_value_range_to_null (value_range_t
*vr
, tree type
)
572 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
576 /* Set value range VR to a range of a truthvalue of type TYPE. */
579 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
581 if (TYPE_PRECISION (type
) == 1)
582 set_value_range_to_varying (vr
);
584 set_value_range (vr
, VR_RANGE
,
585 build_int_cst (type
, 0), build_int_cst (type
, 1),
590 /* Set value range VR to VR_UNDEFINED. */
593 set_value_range_to_undefined (value_range_t
*vr
)
595 vr
->type
= VR_UNDEFINED
;
596 vr
->min
= vr
->max
= NULL_TREE
;
598 bitmap_clear (vr
->equiv
);
602 /* If abs (min) < abs (max), set VR to [-max, max], if
603 abs (min) >= abs (max), set VR to [-min, min]. */
606 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
610 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
611 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
612 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
613 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
614 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
615 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
616 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
618 set_value_range_to_varying (vr
);
621 cmp
= compare_values (min
, max
);
623 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
624 else if (cmp
== 0 || cmp
== 1)
627 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
631 set_value_range_to_varying (vr
);
634 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
638 /* Return value range information for VAR.
640 If we have no values ranges recorded (ie, VRP is not running), then
641 return NULL. Otherwise create an empty range if none existed for VAR. */
643 static value_range_t
*
644 get_value_range (const_tree var
)
648 unsigned ver
= SSA_NAME_VERSION (var
);
650 /* If we have no recorded ranges, then return NULL. */
658 /* Create a default value range. */
659 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
661 /* Defer allocating the equivalence set. */
664 /* If VAR is a default definition, the variable can take any value
666 sym
= SSA_NAME_VAR (var
);
667 if (SSA_NAME_IS_DEFAULT_DEF (var
))
669 /* Try to use the "nonnull" attribute to create ~[0, 0]
670 anti-ranges for pointers. Note that this is only valid with
671 default definitions of PARM_DECLs. */
672 if (TREE_CODE (sym
) == PARM_DECL
673 && POINTER_TYPE_P (TREE_TYPE (sym
))
674 && nonnull_arg_p (sym
))
675 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
677 set_value_range_to_varying (vr
);
683 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
686 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
690 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
692 if (is_overflow_infinity (val1
))
693 return is_overflow_infinity (val2
);
697 /* Return true, if the bitmaps B1 and B2 are equal. */
700 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
704 && bitmap_equal_p (b1
, b2
)));
707 /* Update the value range and equivalence set for variable VAR to
708 NEW_VR. Return true if NEW_VR is different from VAR's previous
711 NOTE: This function assumes that NEW_VR is a temporary value range
712 object created for the sole purpose of updating VAR's range. The
713 storage used by the equivalence set from NEW_VR will be freed by
714 this function. Do not call update_value_range when NEW_VR
715 is the range object associated with another SSA name. */
718 update_value_range (const_tree var
, value_range_t
*new_vr
)
720 value_range_t
*old_vr
;
723 /* Update the value range, if necessary. */
724 old_vr
= get_value_range (var
);
725 is_new
= old_vr
->type
!= new_vr
->type
726 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
727 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
728 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
731 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
734 BITMAP_FREE (new_vr
->equiv
);
740 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
741 point where equivalence processing can be turned on/off. */
744 add_equivalence (bitmap
*equiv
, const_tree var
)
746 unsigned ver
= SSA_NAME_VERSION (var
);
747 value_range_t
*vr
= vr_value
[ver
];
750 *equiv
= BITMAP_ALLOC (NULL
);
751 bitmap_set_bit (*equiv
, ver
);
753 bitmap_ior_into (*equiv
, vr
->equiv
);
757 /* Return true if VR is ~[0, 0]. */
760 range_is_nonnull (value_range_t
*vr
)
762 return vr
->type
== VR_ANTI_RANGE
763 && integer_zerop (vr
->min
)
764 && integer_zerop (vr
->max
);
768 /* Return true if VR is [0, 0]. */
771 range_is_null (value_range_t
*vr
)
773 return vr
->type
== VR_RANGE
774 && integer_zerop (vr
->min
)
775 && integer_zerop (vr
->max
);
779 /* Return true if value range VR involves at least one symbol. */
782 symbolic_range_p (value_range_t
*vr
)
784 return (!is_gimple_min_invariant (vr
->min
)
785 || !is_gimple_min_invariant (vr
->max
));
788 /* Return true if value range VR uses an overflow infinity. */
791 overflow_infinity_range_p (value_range_t
*vr
)
793 return (vr
->type
== VR_RANGE
794 && (is_overflow_infinity (vr
->min
)
795 || is_overflow_infinity (vr
->max
)));
798 /* Return false if we can not make a valid comparison based on VR;
799 this will be the case if it uses an overflow infinity and overflow
800 is not undefined (i.e., -fno-strict-overflow is in effect).
801 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
802 uses an overflow infinity. */
805 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
807 gcc_assert (vr
->type
== VR_RANGE
);
808 if (is_overflow_infinity (vr
->min
))
810 *strict_overflow_p
= true;
811 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
814 if (is_overflow_infinity (vr
->max
))
816 *strict_overflow_p
= true;
817 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
824 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
825 ranges obtained so far. */
828 vrp_expr_computes_nonnegative (tree expr
, bool *strict_overflow_p
)
830 return (tree_expr_nonnegative_warnv_p (expr
, strict_overflow_p
)
831 || (TREE_CODE (expr
) == SSA_NAME
832 && ssa_name_nonnegative_p (expr
)));
835 /* Return true if the result of assignment STMT is know to be non-negative.
836 If the return value is based on the assumption that signed overflow is
837 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
838 *STRICT_OVERFLOW_P.*/
841 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
843 enum tree_code code
= gimple_assign_rhs_code (stmt
);
844 switch (get_gimple_rhs_class (code
))
846 case GIMPLE_UNARY_RHS
:
847 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
848 gimple_expr_type (stmt
),
849 gimple_assign_rhs1 (stmt
),
851 case GIMPLE_BINARY_RHS
:
852 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
853 gimple_expr_type (stmt
),
854 gimple_assign_rhs1 (stmt
),
855 gimple_assign_rhs2 (stmt
),
857 case GIMPLE_SINGLE_RHS
:
858 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
860 case GIMPLE_INVALID_RHS
:
867 /* Return true if return value of call STMT is know to be non-negative.
868 If the return value is based on the assumption that signed overflow is
869 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
870 *STRICT_OVERFLOW_P.*/
873 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
875 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
876 gimple_call_arg (stmt
, 0) : NULL_TREE
;
877 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
878 gimple_call_arg (stmt
, 1) : NULL_TREE
;
880 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
881 gimple_call_fndecl (stmt
),
887 /* Return true if STMT is know to to compute a non-negative value.
888 If the return value is based on the assumption that signed overflow is
889 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
890 *STRICT_OVERFLOW_P.*/
893 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
895 switch (gimple_code (stmt
))
898 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
900 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
906 /* Return true if the result of assignment STMT is know to be non-zero.
907 If the return value is based on the assumption that signed overflow is
908 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
909 *STRICT_OVERFLOW_P.*/
912 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
914 enum tree_code code
= gimple_assign_rhs_code (stmt
);
915 switch (get_gimple_rhs_class (code
))
917 case GIMPLE_UNARY_RHS
:
918 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
919 gimple_expr_type (stmt
),
920 gimple_assign_rhs1 (stmt
),
922 case GIMPLE_BINARY_RHS
:
923 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
924 gimple_expr_type (stmt
),
925 gimple_assign_rhs1 (stmt
),
926 gimple_assign_rhs2 (stmt
),
928 case GIMPLE_SINGLE_RHS
:
929 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
931 case GIMPLE_INVALID_RHS
:
938 /* Return true if STMT is know to to compute a non-zero value.
939 If the return value is based on the assumption that signed overflow is
940 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
941 *STRICT_OVERFLOW_P.*/
944 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
946 switch (gimple_code (stmt
))
949 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
951 return gimple_alloca_call_p (stmt
);
957 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
961 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
963 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
966 /* If we have an expression of the form &X->a, then the expression
967 is nonnull if X is nonnull. */
968 if (is_gimple_assign (stmt
)
969 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
971 tree expr
= gimple_assign_rhs1 (stmt
);
972 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
974 if (base
!= NULL_TREE
975 && TREE_CODE (base
) == INDIRECT_REF
976 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
978 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
979 if (range_is_nonnull (vr
))
987 /* Returns true if EXPR is a valid value (as expected by compare_values) --
988 a gimple invariant, or SSA_NAME +- CST. */
991 valid_value_p (tree expr
)
993 if (TREE_CODE (expr
) == SSA_NAME
)
996 if (TREE_CODE (expr
) == PLUS_EXPR
997 || TREE_CODE (expr
) == MINUS_EXPR
)
998 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
999 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1001 return is_gimple_min_invariant (expr
);
1007 -2 if those are incomparable. */
1009 operand_less_p (tree val
, tree val2
)
1011 /* LT is folded faster than GE and others. Inline the common case. */
1012 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1014 if (TYPE_UNSIGNED (TREE_TYPE (val
)))
1015 return INT_CST_LT_UNSIGNED (val
, val2
);
1018 if (INT_CST_LT (val
, val2
))
1026 fold_defer_overflow_warnings ();
1028 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1030 fold_undefer_and_ignore_overflow_warnings ();
1033 || TREE_CODE (tcmp
) != INTEGER_CST
)
1036 if (!integer_zerop (tcmp
))
1040 /* val >= val2, not considering overflow infinity. */
1041 if (is_negative_overflow_infinity (val
))
1042 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1043 else if (is_positive_overflow_infinity (val2
))
1044 return is_positive_overflow_infinity (val
) ? 0 : 1;
1049 /* Compare two values VAL1 and VAL2. Return
1051 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1054 +1 if VAL1 > VAL2, and
1057 This is similar to tree_int_cst_compare but supports pointer values
1058 and values that cannot be compared at compile time.
1060 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1061 true if the return value is only valid if we assume that signed
1062 overflow is undefined. */
1065 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1070 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1072 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1073 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1074 /* Convert the two values into the same type. This is needed because
1075 sizetype causes sign extension even for unsigned types. */
1076 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1077 STRIP_USELESS_TYPE_CONVERSION (val2
);
1079 if ((TREE_CODE (val1
) == SSA_NAME
1080 || TREE_CODE (val1
) == PLUS_EXPR
1081 || TREE_CODE (val1
) == MINUS_EXPR
)
1082 && (TREE_CODE (val2
) == SSA_NAME
1083 || TREE_CODE (val2
) == PLUS_EXPR
1084 || TREE_CODE (val2
) == MINUS_EXPR
))
1086 tree n1
, c1
, n2
, c2
;
1087 enum tree_code code1
, code2
;
1089 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1090 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1091 same name, return -2. */
1092 if (TREE_CODE (val1
) == SSA_NAME
)
1100 code1
= TREE_CODE (val1
);
1101 n1
= TREE_OPERAND (val1
, 0);
1102 c1
= TREE_OPERAND (val1
, 1);
1103 if (tree_int_cst_sgn (c1
) == -1)
1105 if (is_negative_overflow_infinity (c1
))
1107 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1110 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1114 if (TREE_CODE (val2
) == SSA_NAME
)
1122 code2
= TREE_CODE (val2
);
1123 n2
= TREE_OPERAND (val2
, 0);
1124 c2
= TREE_OPERAND (val2
, 1);
1125 if (tree_int_cst_sgn (c2
) == -1)
1127 if (is_negative_overflow_infinity (c2
))
1129 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1132 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1136 /* Both values must use the same name. */
1140 if (code1
== SSA_NAME
1141 && code2
== SSA_NAME
)
1145 /* If overflow is defined we cannot simplify more. */
1146 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1149 if (strict_overflow_p
!= NULL
1150 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1151 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1152 *strict_overflow_p
= true;
1154 if (code1
== SSA_NAME
)
1156 if (code2
== PLUS_EXPR
)
1157 /* NAME < NAME + CST */
1159 else if (code2
== MINUS_EXPR
)
1160 /* NAME > NAME - CST */
1163 else if (code1
== PLUS_EXPR
)
1165 if (code2
== SSA_NAME
)
1166 /* NAME + CST > NAME */
1168 else if (code2
== PLUS_EXPR
)
1169 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1170 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1171 else if (code2
== MINUS_EXPR
)
1172 /* NAME + CST1 > NAME - CST2 */
1175 else if (code1
== MINUS_EXPR
)
1177 if (code2
== SSA_NAME
)
1178 /* NAME - CST < NAME */
1180 else if (code2
== PLUS_EXPR
)
1181 /* NAME - CST1 < NAME + CST2 */
1183 else if (code2
== MINUS_EXPR
)
1184 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1185 C1 and C2 are swapped in the call to compare_values. */
1186 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1192 /* We cannot compare non-constants. */
1193 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1196 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1198 /* We cannot compare overflowed values, except for overflow
1200 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1202 if (strict_overflow_p
!= NULL
)
1203 *strict_overflow_p
= true;
1204 if (is_negative_overflow_infinity (val1
))
1205 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1206 else if (is_negative_overflow_infinity (val2
))
1208 else if (is_positive_overflow_infinity (val1
))
1209 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1210 else if (is_positive_overflow_infinity (val2
))
1215 return tree_int_cst_compare (val1
, val2
);
1221 /* First see if VAL1 and VAL2 are not the same. */
1222 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1225 /* If VAL1 is a lower address than VAL2, return -1. */
1226 if (operand_less_p (val1
, val2
) == 1)
1229 /* If VAL1 is a higher address than VAL2, return +1. */
1230 if (operand_less_p (val2
, val1
) == 1)
1233 /* If VAL1 is different than VAL2, return +2.
1234 For integer constants we either have already returned -1 or 1
1235 or they are equivalent. We still might succeed in proving
1236 something about non-trivial operands. */
1237 if (TREE_CODE (val1
) != INTEGER_CST
1238 || TREE_CODE (val2
) != INTEGER_CST
)
1240 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1241 if (t
&& integer_onep (t
))
1249 /* Compare values like compare_values_warnv, but treat comparisons of
1250 nonconstants which rely on undefined overflow as incomparable. */
1253 compare_values (tree val1
, tree val2
)
1259 ret
= compare_values_warnv (val1
, val2
, &sop
);
1261 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1267 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1268 0 if VAL is not inside VR,
1269 -2 if we cannot tell either way.
1271 FIXME, the current semantics of this functions are a bit quirky
1272 when taken in the context of VRP. In here we do not care
1273 about VR's type. If VR is the anti-range ~[3, 5] the call
1274 value_inside_range (4, VR) will return 1.
1276 This is counter-intuitive in a strict sense, but the callers
1277 currently expect this. They are calling the function
1278 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1279 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1282 This also applies to value_ranges_intersect_p and
1283 range_includes_zero_p. The semantics of VR_RANGE and
1284 VR_ANTI_RANGE should be encoded here, but that also means
1285 adapting the users of these functions to the new semantics.
1287 Benchmark compile/20001226-1.c compilation time after changing this
1291 value_inside_range (tree val
, value_range_t
* vr
)
1295 cmp1
= operand_less_p (val
, vr
->min
);
1301 cmp2
= operand_less_p (vr
->max
, val
);
1309 /* Return true if value ranges VR0 and VR1 have a non-empty
1312 Benchmark compile/20001226-1.c compilation time after changing this
1317 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1319 /* The value ranges do not intersect if the maximum of the first range is
1320 less than the minimum of the second range or vice versa.
1321 When those relations are unknown, we can't do any better. */
1322 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1324 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1330 /* Return true if VR includes the value zero, false otherwise. FIXME,
1331 currently this will return false for an anti-range like ~[-4, 3].
1332 This will be wrong when the semantics of value_inside_range are
1333 modified (currently the users of this function expect these
1337 range_includes_zero_p (value_range_t
*vr
)
1341 gcc_assert (vr
->type
!= VR_UNDEFINED
1342 && vr
->type
!= VR_VARYING
1343 && !symbolic_range_p (vr
));
1345 zero
= build_int_cst (TREE_TYPE (vr
->min
), 0);
1346 return (value_inside_range (zero
, vr
) == 1);
1349 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1350 false otherwise or if no value range information is available. */
1353 ssa_name_nonnegative_p (const_tree t
)
1355 value_range_t
*vr
= get_value_range (t
);
1360 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1361 which would return a useful value should be encoded as a VR_RANGE. */
1362 if (vr
->type
== VR_RANGE
)
1364 int result
= compare_values (vr
->min
, integer_zero_node
);
1366 return (result
== 0 || result
== 1);
1371 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
1372 false otherwise or if no value range information is available. */
1375 ssa_name_nonzero_p (const_tree t
)
1377 value_range_t
*vr
= get_value_range (t
);
1382 /* A VR_RANGE which does not include zero is a nonzero value. */
1383 if (vr
->type
== VR_RANGE
&& !symbolic_range_p (vr
))
1384 return ! range_includes_zero_p (vr
);
1386 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1387 if (vr
->type
== VR_ANTI_RANGE
&& !symbolic_range_p (vr
))
1388 return range_includes_zero_p (vr
);
1393 /* If OP has a value range with a single constant value return that,
1394 otherwise return NULL_TREE. This returns OP itself if OP is a
1398 op_with_constant_singleton_value_range (tree op
)
1402 if (is_gimple_min_invariant (op
))
1405 if (TREE_CODE (op
) != SSA_NAME
)
1408 vr
= get_value_range (op
);
1409 if (vr
->type
== VR_RANGE
1410 && operand_equal_p (vr
->min
, vr
->max
, 0)
1411 && is_gimple_min_invariant (vr
->min
))
1418 /* Extract value range information from an ASSERT_EXPR EXPR and store
1422 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1424 tree var
, cond
, limit
, min
, max
, type
;
1425 value_range_t
*var_vr
, *limit_vr
;
1426 enum tree_code cond_code
;
1428 var
= ASSERT_EXPR_VAR (expr
);
1429 cond
= ASSERT_EXPR_COND (expr
);
1431 gcc_assert (COMPARISON_CLASS_P (cond
));
1433 /* Find VAR in the ASSERT_EXPR conditional. */
1434 if (var
== TREE_OPERAND (cond
, 0)
1435 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1436 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1438 /* If the predicate is of the form VAR COMP LIMIT, then we just
1439 take LIMIT from the RHS and use the same comparison code. */
1440 cond_code
= TREE_CODE (cond
);
1441 limit
= TREE_OPERAND (cond
, 1);
1442 cond
= TREE_OPERAND (cond
, 0);
1446 /* If the predicate is of the form LIMIT COMP VAR, then we need
1447 to flip around the comparison code to create the proper range
1449 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1450 limit
= TREE_OPERAND (cond
, 0);
1451 cond
= TREE_OPERAND (cond
, 1);
1454 limit
= avoid_overflow_infinity (limit
);
1456 type
= TREE_TYPE (limit
);
1457 gcc_assert (limit
!= var
);
1459 /* For pointer arithmetic, we only keep track of pointer equality
1461 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1463 set_value_range_to_varying (vr_p
);
1467 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1468 try to use LIMIT's range to avoid creating symbolic ranges
1470 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1472 /* LIMIT's range is only interesting if it has any useful information. */
1474 && (limit_vr
->type
== VR_UNDEFINED
1475 || limit_vr
->type
== VR_VARYING
1476 || symbolic_range_p (limit_vr
)))
1479 /* Initially, the new range has the same set of equivalences of
1480 VAR's range. This will be revised before returning the final
1481 value. Since assertions may be chained via mutually exclusive
1482 predicates, we will need to trim the set of equivalences before
1484 gcc_assert (vr_p
->equiv
== NULL
);
1485 add_equivalence (&vr_p
->equiv
, var
);
1487 /* Extract a new range based on the asserted comparison for VAR and
1488 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1489 will only use it for equality comparisons (EQ_EXPR). For any
1490 other kind of assertion, we cannot derive a range from LIMIT's
1491 anti-range that can be used to describe the new range. For
1492 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1493 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1494 no single range for x_2 that could describe LE_EXPR, so we might
1495 as well build the range [b_4, +INF] for it.
1496 One special case we handle is extracting a range from a
1497 range test encoded as (unsigned)var + CST <= limit. */
1498 if (TREE_CODE (cond
) == NOP_EXPR
1499 || TREE_CODE (cond
) == PLUS_EXPR
)
1501 if (TREE_CODE (cond
) == PLUS_EXPR
)
1503 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1504 TREE_OPERAND (cond
, 1));
1505 max
= int_const_binop (PLUS_EXPR
, limit
, min
, 0);
1506 cond
= TREE_OPERAND (cond
, 0);
1510 min
= build_int_cst (TREE_TYPE (var
), 0);
1514 /* Make sure to not set TREE_OVERFLOW on the final type
1515 conversion. We are willingly interpreting large positive
1516 unsigned values as negative singed values here. */
1517 min
= force_fit_type_double (TREE_TYPE (var
), TREE_INT_CST_LOW (min
),
1518 TREE_INT_CST_HIGH (min
), 0, false);
1519 max
= force_fit_type_double (TREE_TYPE (var
), TREE_INT_CST_LOW (max
),
1520 TREE_INT_CST_HIGH (max
), 0, false);
1522 /* We can transform a max, min range to an anti-range or
1523 vice-versa. Use set_and_canonicalize_value_range which does
1525 if (cond_code
== LE_EXPR
)
1526 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1527 min
, max
, vr_p
->equiv
);
1528 else if (cond_code
== GT_EXPR
)
1529 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1530 min
, max
, vr_p
->equiv
);
1534 else if (cond_code
== EQ_EXPR
)
1536 enum value_range_type range_type
;
1540 range_type
= limit_vr
->type
;
1541 min
= limit_vr
->min
;
1542 max
= limit_vr
->max
;
1546 range_type
= VR_RANGE
;
1551 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1553 /* When asserting the equality VAR == LIMIT and LIMIT is another
1554 SSA name, the new range will also inherit the equivalence set
1556 if (TREE_CODE (limit
) == SSA_NAME
)
1557 add_equivalence (&vr_p
->equiv
, limit
);
1559 else if (cond_code
== NE_EXPR
)
1561 /* As described above, when LIMIT's range is an anti-range and
1562 this assertion is an inequality (NE_EXPR), then we cannot
1563 derive anything from the anti-range. For instance, if
1564 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1565 not imply that VAR's range is [0, 0]. So, in the case of
1566 anti-ranges, we just assert the inequality using LIMIT and
1569 If LIMIT_VR is a range, we can only use it to build a new
1570 anti-range if LIMIT_VR is a single-valued range. For
1571 instance, if LIMIT_VR is [0, 1], the predicate
1572 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1573 Rather, it means that for value 0 VAR should be ~[0, 0]
1574 and for value 1, VAR should be ~[1, 1]. We cannot
1575 represent these ranges.
1577 The only situation in which we can build a valid
1578 anti-range is when LIMIT_VR is a single-valued range
1579 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1580 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1582 && limit_vr
->type
== VR_RANGE
1583 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1585 min
= limit_vr
->min
;
1586 max
= limit_vr
->max
;
1590 /* In any other case, we cannot use LIMIT's range to build a
1591 valid anti-range. */
1595 /* If MIN and MAX cover the whole range for their type, then
1596 just use the original LIMIT. */
1597 if (INTEGRAL_TYPE_P (type
)
1598 && vrp_val_is_min (min
)
1599 && vrp_val_is_max (max
))
1602 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
1604 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1606 min
= TYPE_MIN_VALUE (type
);
1608 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1612 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1613 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1615 max
= limit_vr
->max
;
1618 /* If the maximum value forces us to be out of bounds, simply punt.
1619 It would be pointless to try and do anything more since this
1620 all should be optimized away above us. */
1621 if ((cond_code
== LT_EXPR
1622 && compare_values (max
, min
) == 0)
1623 || (CONSTANT_CLASS_P (max
) && TREE_OVERFLOW (max
)))
1624 set_value_range_to_varying (vr_p
);
1627 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1628 if (cond_code
== LT_EXPR
)
1630 tree one
= build_int_cst (type
, 1);
1631 max
= fold_build2 (MINUS_EXPR
, type
, max
, one
);
1633 TREE_NO_WARNING (max
) = 1;
1636 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1639 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1641 max
= TYPE_MAX_VALUE (type
);
1643 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1647 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1648 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1650 min
= limit_vr
->min
;
1653 /* If the minimum value forces us to be out of bounds, simply punt.
1654 It would be pointless to try and do anything more since this
1655 all should be optimized away above us. */
1656 if ((cond_code
== GT_EXPR
1657 && compare_values (min
, max
) == 0)
1658 || (CONSTANT_CLASS_P (min
) && TREE_OVERFLOW (min
)))
1659 set_value_range_to_varying (vr_p
);
1662 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1663 if (cond_code
== GT_EXPR
)
1665 tree one
= build_int_cst (type
, 1);
1666 min
= fold_build2 (PLUS_EXPR
, type
, min
, one
);
1668 TREE_NO_WARNING (min
) = 1;
1671 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1677 /* If VAR already had a known range, it may happen that the new
1678 range we have computed and VAR's range are not compatible. For
1682 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1684 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1686 While the above comes from a faulty program, it will cause an ICE
1687 later because p_8 and p_6 will have incompatible ranges and at
1688 the same time will be considered equivalent. A similar situation
1692 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1694 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1696 Again i_6 and i_7 will have incompatible ranges. It would be
1697 pointless to try and do anything with i_7's range because
1698 anything dominated by 'if (i_5 < 5)' will be optimized away.
1699 Note, due to the wa in which simulation proceeds, the statement
1700 i_7 = ASSERT_EXPR <...> we would never be visited because the
1701 conditional 'if (i_5 < 5)' always evaluates to false. However,
1702 this extra check does not hurt and may protect against future
1703 changes to VRP that may get into a situation similar to the
1704 NULL pointer dereference example.
1706 Note that these compatibility tests are only needed when dealing
1707 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1708 are both anti-ranges, they will always be compatible, because two
1709 anti-ranges will always have a non-empty intersection. */
1711 var_vr
= get_value_range (var
);
1713 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1714 ranges or anti-ranges. */
1715 if (vr_p
->type
== VR_VARYING
1716 || vr_p
->type
== VR_UNDEFINED
1717 || var_vr
->type
== VR_VARYING
1718 || var_vr
->type
== VR_UNDEFINED
1719 || symbolic_range_p (vr_p
)
1720 || symbolic_range_p (var_vr
))
1723 if (var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_RANGE
)
1725 /* If the two ranges have a non-empty intersection, we can
1726 refine the resulting range. Since the assert expression
1727 creates an equivalency and at the same time it asserts a
1728 predicate, we can take the intersection of the two ranges to
1729 get better precision. */
1730 if (value_ranges_intersect_p (var_vr
, vr_p
))
1732 /* Use the larger of the two minimums. */
1733 if (compare_values (vr_p
->min
, var_vr
->min
) == -1)
1738 /* Use the smaller of the two maximums. */
1739 if (compare_values (vr_p
->max
, var_vr
->max
) == 1)
1744 set_value_range (vr_p
, vr_p
->type
, min
, max
, vr_p
->equiv
);
1748 /* The two ranges do not intersect, set the new range to
1749 VARYING, because we will not be able to do anything
1750 meaningful with it. */
1751 set_value_range_to_varying (vr_p
);
1754 else if ((var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
1755 || (var_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
1757 /* A range and an anti-range will cancel each other only if
1758 their ends are the same. For instance, in the example above,
1759 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1760 so VR_P should be set to VR_VARYING. */
1761 if (compare_values (var_vr
->min
, vr_p
->min
) == 0
1762 && compare_values (var_vr
->max
, vr_p
->max
) == 0)
1763 set_value_range_to_varying (vr_p
);
1766 tree min
, max
, anti_min
, anti_max
, real_min
, real_max
;
1769 /* We want to compute the logical AND of the two ranges;
1770 there are three cases to consider.
1773 1. The VR_ANTI_RANGE range is completely within the
1774 VR_RANGE and the endpoints of the ranges are
1775 different. In that case the resulting range
1776 should be whichever range is more precise.
1777 Typically that will be the VR_RANGE.
1779 2. The VR_ANTI_RANGE is completely disjoint from
1780 the VR_RANGE. In this case the resulting range
1781 should be the VR_RANGE.
1783 3. There is some overlap between the VR_ANTI_RANGE
1786 3a. If the high limit of the VR_ANTI_RANGE resides
1787 within the VR_RANGE, then the result is a new
1788 VR_RANGE starting at the high limit of the
1789 VR_ANTI_RANGE + 1 and extending to the
1790 high limit of the original VR_RANGE.
1792 3b. If the low limit of the VR_ANTI_RANGE resides
1793 within the VR_RANGE, then the result is a new
1794 VR_RANGE starting at the low limit of the original
1795 VR_RANGE and extending to the low limit of the
1796 VR_ANTI_RANGE - 1. */
1797 if (vr_p
->type
== VR_ANTI_RANGE
)
1799 anti_min
= vr_p
->min
;
1800 anti_max
= vr_p
->max
;
1801 real_min
= var_vr
->min
;
1802 real_max
= var_vr
->max
;
1806 anti_min
= var_vr
->min
;
1807 anti_max
= var_vr
->max
;
1808 real_min
= vr_p
->min
;
1809 real_max
= vr_p
->max
;
1813 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1814 not including any endpoints. */
1815 if (compare_values (anti_max
, real_max
) == -1
1816 && compare_values (anti_min
, real_min
) == 1)
1818 /* If the range is covering the whole valid range of
1819 the type keep the anti-range. */
1820 if (!vrp_val_is_min (real_min
)
1821 || !vrp_val_is_max (real_max
))
1822 set_value_range (vr_p
, VR_RANGE
, real_min
,
1823 real_max
, vr_p
->equiv
);
1825 /* Case 2, VR_ANTI_RANGE completely disjoint from
1827 else if (compare_values (anti_min
, real_max
) == 1
1828 || compare_values (anti_max
, real_min
) == -1)
1830 set_value_range (vr_p
, VR_RANGE
, real_min
,
1831 real_max
, vr_p
->equiv
);
1833 /* Case 3a, the anti-range extends into the low
1834 part of the real range. Thus creating a new
1835 low for the real range. */
1836 else if (((cmp
= compare_values (anti_max
, real_min
)) == 1
1838 && compare_values (anti_max
, real_max
) == -1)
1840 gcc_assert (!is_positive_overflow_infinity (anti_max
));
1841 if (needs_overflow_infinity (TREE_TYPE (anti_max
))
1842 && vrp_val_is_max (anti_max
))
1844 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1846 set_value_range_to_varying (vr_p
);
1849 min
= positive_overflow_infinity (TREE_TYPE (var_vr
->min
));
1851 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1852 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1854 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1856 min
= fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1857 anti_max
, size_int (1));
1859 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1861 /* Case 3b, the anti-range extends into the high
1862 part of the real range. Thus creating a new
1863 higher for the real range. */
1864 else if (compare_values (anti_min
, real_min
) == 1
1865 && ((cmp
= compare_values (anti_min
, real_max
)) == -1
1868 gcc_assert (!is_negative_overflow_infinity (anti_min
));
1869 if (needs_overflow_infinity (TREE_TYPE (anti_min
))
1870 && vrp_val_is_min (anti_min
))
1872 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1874 set_value_range_to_varying (vr_p
);
1877 max
= negative_overflow_infinity (TREE_TYPE (var_vr
->min
));
1879 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1880 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (var_vr
->min
),
1882 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1884 max
= fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1888 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1895 /* Extract range information from SSA name VAR and store it in VR. If
1896 VAR has an interesting range, use it. Otherwise, create the
1897 range [VAR, VAR] and return it. This is useful in situations where
1898 we may have conditionals testing values of VARYING names. For
1905 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1909 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1911 value_range_t
*var_vr
= get_value_range (var
);
1913 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1914 copy_value_range (vr
, var_vr
);
1916 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1918 add_equivalence (&vr
->equiv
, var
);
1922 /* Wrapper around int_const_binop. If the operation overflows and we
1923 are not using wrapping arithmetic, then adjust the result to be
1924 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1925 NULL_TREE if we need to use an overflow infinity representation but
1926 the type does not support it. */
1929 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1933 res
= int_const_binop (code
, val1
, val2
, 0);
1935 /* If we are not using wrapping arithmetic, operate symbolically
1936 on -INF and +INF. */
1937 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
1939 int checkz
= compare_values (res
, val1
);
1940 bool overflow
= false;
1942 /* Ensure that res = val1 [+*] val2 >= val1
1943 or that res = val1 - val2 <= val1. */
1944 if ((code
== PLUS_EXPR
1945 && !(checkz
== 1 || checkz
== 0))
1946 || (code
== MINUS_EXPR
1947 && !(checkz
== 0 || checkz
== -1)))
1951 /* Checking for multiplication overflow is done by dividing the
1952 output of the multiplication by the first input of the
1953 multiplication. If the result of that division operation is
1954 not equal to the second input of the multiplication, then the
1955 multiplication overflowed. */
1956 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
1958 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
1961 int check
= compare_values (tmp
, val2
);
1969 res
= copy_node (res
);
1970 TREE_OVERFLOW (res
) = 1;
1974 else if ((TREE_OVERFLOW (res
)
1975 && !TREE_OVERFLOW (val1
)
1976 && !TREE_OVERFLOW (val2
))
1977 || is_overflow_infinity (val1
)
1978 || is_overflow_infinity (val2
))
1980 /* If the operation overflowed but neither VAL1 nor VAL2 are
1981 overflown, return -INF or +INF depending on the operation
1982 and the combination of signs of the operands. */
1983 int sgn1
= tree_int_cst_sgn (val1
);
1984 int sgn2
= tree_int_cst_sgn (val2
);
1986 if (needs_overflow_infinity (TREE_TYPE (res
))
1987 && !supports_overflow_infinity (TREE_TYPE (res
)))
1990 /* We have to punt on adding infinities of different signs,
1991 since we can't tell what the sign of the result should be.
1992 Likewise for subtracting infinities of the same sign. */
1993 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
1994 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
1995 && is_overflow_infinity (val1
)
1996 && is_overflow_infinity (val2
))
1999 /* Don't try to handle division or shifting of infinities. */
2000 if ((code
== TRUNC_DIV_EXPR
2001 || code
== FLOOR_DIV_EXPR
2002 || code
== CEIL_DIV_EXPR
2003 || code
== EXACT_DIV_EXPR
2004 || code
== ROUND_DIV_EXPR
2005 || code
== RSHIFT_EXPR
)
2006 && (is_overflow_infinity (val1
)
2007 || is_overflow_infinity (val2
)))
2010 /* Notice that we only need to handle the restricted set of
2011 operations handled by extract_range_from_binary_expr.
2012 Among them, only multiplication, addition and subtraction
2013 can yield overflow without overflown operands because we
2014 are working with integral types only... except in the
2015 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2016 for division too. */
2018 /* For multiplication, the sign of the overflow is given
2019 by the comparison of the signs of the operands. */
2020 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
2021 /* For addition, the operands must be of the same sign
2022 to yield an overflow. Its sign is therefore that
2023 of one of the operands, for example the first. For
2024 infinite operands X + -INF is negative, not positive. */
2025 || (code
== PLUS_EXPR
2027 ? !is_negative_overflow_infinity (val2
)
2028 : is_positive_overflow_infinity (val2
)))
2029 /* For subtraction, non-infinite operands must be of
2030 different signs to yield an overflow. Its sign is
2031 therefore that of the first operand or the opposite of
2032 that of the second operand. A first operand of 0 counts
2033 as positive here, for the corner case 0 - (-INF), which
2034 overflows, but must yield +INF. For infinite operands 0
2035 - INF is negative, not positive. */
2036 || (code
== MINUS_EXPR
2038 ? !is_positive_overflow_infinity (val2
)
2039 : is_negative_overflow_infinity (val2
)))
2040 /* We only get in here with positive shift count, so the
2041 overflow direction is the same as the sign of val1.
2042 Actually rshift does not overflow at all, but we only
2043 handle the case of shifting overflowed -INF and +INF. */
2044 || (code
== RSHIFT_EXPR
2046 /* For division, the only case is -INF / -1 = +INF. */
2047 || code
== TRUNC_DIV_EXPR
2048 || code
== FLOOR_DIV_EXPR
2049 || code
== CEIL_DIV_EXPR
2050 || code
== EXACT_DIV_EXPR
2051 || code
== ROUND_DIV_EXPR
)
2052 return (needs_overflow_infinity (TREE_TYPE (res
))
2053 ? positive_overflow_infinity (TREE_TYPE (res
))
2054 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
2056 return (needs_overflow_infinity (TREE_TYPE (res
))
2057 ? negative_overflow_infinity (TREE_TYPE (res
))
2058 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
2065 /* Extract range information from a binary expression EXPR based on
2066 the ranges of each of its operands and the expression code. */
2069 extract_range_from_binary_expr (value_range_t
*vr
,
2070 enum tree_code code
,
2071 tree expr_type
, tree op0
, tree op1
)
2073 enum value_range_type type
;
2076 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2077 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2079 /* Not all binary expressions can be applied to ranges in a
2080 meaningful way. Handle only arithmetic operations. */
2081 if (code
!= PLUS_EXPR
2082 && code
!= MINUS_EXPR
2083 && code
!= POINTER_PLUS_EXPR
2084 && code
!= MULT_EXPR
2085 && code
!= TRUNC_DIV_EXPR
2086 && code
!= FLOOR_DIV_EXPR
2087 && code
!= CEIL_DIV_EXPR
2088 && code
!= EXACT_DIV_EXPR
2089 && code
!= ROUND_DIV_EXPR
2090 && code
!= RSHIFT_EXPR
2093 && code
!= BIT_AND_EXPR
2094 && code
!= BIT_IOR_EXPR
2095 && code
!= TRUTH_AND_EXPR
2096 && code
!= TRUTH_OR_EXPR
)
2098 /* We can still do constant propagation here. */
2099 tree const_op0
= op_with_constant_singleton_value_range (op0
);
2100 tree const_op1
= op_with_constant_singleton_value_range (op1
);
2101 if (const_op0
|| const_op1
)
2103 tree tem
= fold_binary (code
, expr_type
,
2104 const_op0
? const_op0
: op0
,
2105 const_op1
? const_op1
: op1
);
2107 && is_gimple_min_invariant (tem
)
2108 && !is_overflow_infinity (tem
))
2110 set_value_range (vr
, VR_RANGE
, tem
, tem
, NULL
);
2114 set_value_range_to_varying (vr
);
2118 /* Get value ranges for each operand. For constant operands, create
2119 a new value range with the operand to simplify processing. */
2120 if (TREE_CODE (op0
) == SSA_NAME
)
2121 vr0
= *(get_value_range (op0
));
2122 else if (is_gimple_min_invariant (op0
))
2123 set_value_range_to_value (&vr0
, op0
, NULL
);
2125 set_value_range_to_varying (&vr0
);
2127 if (TREE_CODE (op1
) == SSA_NAME
)
2128 vr1
= *(get_value_range (op1
));
2129 else if (is_gimple_min_invariant (op1
))
2130 set_value_range_to_value (&vr1
, op1
, NULL
);
2132 set_value_range_to_varying (&vr1
);
2134 /* If either range is UNDEFINED, so is the result. */
2135 if (vr0
.type
== VR_UNDEFINED
|| vr1
.type
== VR_UNDEFINED
)
2137 set_value_range_to_undefined (vr
);
2141 /* The type of the resulting value range defaults to VR0.TYPE. */
2144 /* Refuse to operate on VARYING ranges, ranges of different kinds
2145 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2146 because we may be able to derive a useful range even if one of
2147 the operands is VR_VARYING or symbolic range. Similarly for
2148 divisions. TODO, we may be able to derive anti-ranges in
2150 if (code
!= BIT_AND_EXPR
2151 && code
!= TRUTH_AND_EXPR
2152 && code
!= TRUTH_OR_EXPR
2153 && code
!= TRUNC_DIV_EXPR
2154 && code
!= FLOOR_DIV_EXPR
2155 && code
!= CEIL_DIV_EXPR
2156 && code
!= EXACT_DIV_EXPR
2157 && code
!= ROUND_DIV_EXPR
2158 && (vr0
.type
== VR_VARYING
2159 || vr1
.type
== VR_VARYING
2160 || vr0
.type
!= vr1
.type
2161 || symbolic_range_p (&vr0
)
2162 || symbolic_range_p (&vr1
)))
2164 set_value_range_to_varying (vr
);
2168 /* Now evaluate the expression to determine the new range. */
2169 if (POINTER_TYPE_P (expr_type
)
2170 || POINTER_TYPE_P (TREE_TYPE (op0
))
2171 || POINTER_TYPE_P (TREE_TYPE (op1
)))
2173 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2175 /* For MIN/MAX expressions with pointers, we only care about
2176 nullness, if both are non null, then the result is nonnull.
2177 If both are null, then the result is null. Otherwise they
2179 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2180 set_value_range_to_nonnull (vr
, expr_type
);
2181 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2182 set_value_range_to_null (vr
, expr_type
);
2184 set_value_range_to_varying (vr
);
2188 gcc_assert (code
== POINTER_PLUS_EXPR
);
2189 /* For pointer types, we are really only interested in asserting
2190 whether the expression evaluates to non-NULL. */
2191 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2192 set_value_range_to_nonnull (vr
, expr_type
);
2193 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2194 set_value_range_to_null (vr
, expr_type
);
2196 set_value_range_to_varying (vr
);
2201 /* For integer ranges, apply the operation to each end of the
2202 range and see what we end up with. */
2203 if (code
== TRUTH_AND_EXPR
2204 || code
== TRUTH_OR_EXPR
)
2206 /* If one of the operands is zero, we know that the whole
2207 expression evaluates zero. */
2208 if (code
== TRUTH_AND_EXPR
2209 && ((vr0
.type
== VR_RANGE
2210 && integer_zerop (vr0
.min
)
2211 && integer_zerop (vr0
.max
))
2212 || (vr1
.type
== VR_RANGE
2213 && integer_zerop (vr1
.min
)
2214 && integer_zerop (vr1
.max
))))
2217 min
= max
= build_int_cst (expr_type
, 0);
2219 /* If one of the operands is one, we know that the whole
2220 expression evaluates one. */
2221 else if (code
== TRUTH_OR_EXPR
2222 && ((vr0
.type
== VR_RANGE
2223 && integer_onep (vr0
.min
)
2224 && integer_onep (vr0
.max
))
2225 || (vr1
.type
== VR_RANGE
2226 && integer_onep (vr1
.min
)
2227 && integer_onep (vr1
.max
))))
2230 min
= max
= build_int_cst (expr_type
, 1);
2232 else if (vr0
.type
!= VR_VARYING
2233 && vr1
.type
!= VR_VARYING
2234 && vr0
.type
== vr1
.type
2235 && !symbolic_range_p (&vr0
)
2236 && !overflow_infinity_range_p (&vr0
)
2237 && !symbolic_range_p (&vr1
)
2238 && !overflow_infinity_range_p (&vr1
))
2240 /* Boolean expressions cannot be folded with int_const_binop. */
2241 min
= fold_binary (code
, expr_type
, vr0
.min
, vr1
.min
);
2242 max
= fold_binary (code
, expr_type
, vr0
.max
, vr1
.max
);
2246 /* The result of a TRUTH_*_EXPR is always true or false. */
2247 set_value_range_to_truthvalue (vr
, expr_type
);
2251 else if (code
== PLUS_EXPR
2253 || code
== MAX_EXPR
)
2255 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2256 VR_VARYING. It would take more effort to compute a precise
2257 range for such a case. For example, if we have op0 == 1 and
2258 op1 == -1 with their ranges both being ~[0,0], we would have
2259 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2260 Note that we are guaranteed to have vr0.type == vr1.type at
2262 if (code
== PLUS_EXPR
&& vr0
.type
== VR_ANTI_RANGE
)
2264 set_value_range_to_varying (vr
);
2268 /* For operations that make the resulting range directly
2269 proportional to the original ranges, apply the operation to
2270 the same end of each range. */
2271 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2272 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2274 else if (code
== MULT_EXPR
2275 || code
== TRUNC_DIV_EXPR
2276 || code
== FLOOR_DIV_EXPR
2277 || code
== CEIL_DIV_EXPR
2278 || code
== EXACT_DIV_EXPR
2279 || code
== ROUND_DIV_EXPR
2280 || code
== RSHIFT_EXPR
)
2286 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2287 drop to VR_VARYING. It would take more effort to compute a
2288 precise range for such a case. For example, if we have
2289 op0 == 65536 and op1 == 65536 with their ranges both being
2290 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2291 we cannot claim that the product is in ~[0,0]. Note that we
2292 are guaranteed to have vr0.type == vr1.type at this
2294 if (code
== MULT_EXPR
2295 && vr0
.type
== VR_ANTI_RANGE
2296 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
2298 set_value_range_to_varying (vr
);
2302 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2303 then drop to VR_VARYING. Outside of this range we get undefined
2304 behavior from the shift operation. We cannot even trust
2305 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2306 shifts, and the operation at the tree level may be widened. */
2307 if (code
== RSHIFT_EXPR
)
2309 if (vr1
.type
== VR_ANTI_RANGE
2310 || !vrp_expr_computes_nonnegative (op1
, &sop
)
2312 (build_int_cst (TREE_TYPE (vr1
.max
),
2313 TYPE_PRECISION (expr_type
) - 1),
2316 set_value_range_to_varying (vr
);
2321 else if ((code
== TRUNC_DIV_EXPR
2322 || code
== FLOOR_DIV_EXPR
2323 || code
== CEIL_DIV_EXPR
2324 || code
== EXACT_DIV_EXPR
2325 || code
== ROUND_DIV_EXPR
)
2326 && (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
)))
2328 /* For division, if op1 has VR_RANGE but op0 does not, something
2329 can be deduced just from that range. Say [min, max] / [4, max]
2330 gives [min / 4, max / 4] range. */
2331 if (vr1
.type
== VR_RANGE
2332 && !symbolic_range_p (&vr1
)
2333 && !range_includes_zero_p (&vr1
))
2335 vr0
.type
= type
= VR_RANGE
;
2336 vr0
.min
= vrp_val_min (TREE_TYPE (op0
));
2337 vr0
.max
= vrp_val_max (TREE_TYPE (op1
));
2341 set_value_range_to_varying (vr
);
2346 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2347 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2349 if ((code
== TRUNC_DIV_EXPR
2350 || code
== FLOOR_DIV_EXPR
2351 || code
== CEIL_DIV_EXPR
2352 || code
== EXACT_DIV_EXPR
2353 || code
== ROUND_DIV_EXPR
)
2354 && vr0
.type
== VR_RANGE
2355 && (vr1
.type
!= VR_RANGE
2356 || symbolic_range_p (&vr1
)
2357 || range_includes_zero_p (&vr1
)))
2359 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
2365 if (vrp_expr_computes_nonnegative (op1
, &sop
) && !sop
)
2367 /* For unsigned division or when divisor is known
2368 to be non-negative, the range has to cover
2369 all numbers from 0 to max for positive max
2370 and all numbers from min to 0 for negative min. */
2371 cmp
= compare_values (vr0
.max
, zero
);
2374 else if (cmp
== 0 || cmp
== 1)
2378 cmp
= compare_values (vr0
.min
, zero
);
2381 else if (cmp
== 0 || cmp
== -1)
2388 /* Otherwise the range is -max .. max or min .. -min
2389 depending on which bound is bigger in absolute value,
2390 as the division can change the sign. */
2391 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
2394 if (type
== VR_VARYING
)
2396 set_value_range_to_varying (vr
);
2401 /* Multiplications and divisions are a bit tricky to handle,
2402 depending on the mix of signs we have in the two ranges, we
2403 need to operate on different values to get the minimum and
2404 maximum values for the new range. One approach is to figure
2405 out all the variations of range combinations and do the
2408 However, this involves several calls to compare_values and it
2409 is pretty convoluted. It's simpler to do the 4 operations
2410 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2411 MAX1) and then figure the smallest and largest values to form
2415 gcc_assert ((vr0
.type
== VR_RANGE
2416 || (code
== MULT_EXPR
&& vr0
.type
== VR_ANTI_RANGE
))
2417 && vr0
.type
== vr1
.type
);
2419 /* Compute the 4 cross operations. */
2421 val
[0] = vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2422 if (val
[0] == NULL_TREE
)
2425 if (vr1
.max
== vr1
.min
)
2429 val
[1] = vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
2430 if (val
[1] == NULL_TREE
)
2434 if (vr0
.max
== vr0
.min
)
2438 val
[2] = vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
2439 if (val
[2] == NULL_TREE
)
2443 if (vr0
.min
== vr0
.max
|| vr1
.min
== vr1
.max
)
2447 val
[3] = vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2448 if (val
[3] == NULL_TREE
)
2454 set_value_range_to_varying (vr
);
2458 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2462 for (i
= 1; i
< 4; i
++)
2464 if (!is_gimple_min_invariant (min
)
2465 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2466 || !is_gimple_min_invariant (max
)
2467 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2472 if (!is_gimple_min_invariant (val
[i
])
2473 || (TREE_OVERFLOW (val
[i
])
2474 && !is_overflow_infinity (val
[i
])))
2476 /* If we found an overflowed value, set MIN and MAX
2477 to it so that we set the resulting range to
2483 if (compare_values (val
[i
], min
) == -1)
2486 if (compare_values (val
[i
], max
) == 1)
2492 else if (code
== MINUS_EXPR
)
2494 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2495 VR_VARYING. It would take more effort to compute a precise
2496 range for such a case. For example, if we have op0 == 1 and
2497 op1 == 1 with their ranges both being ~[0,0], we would have
2498 op0 - op1 == 0, so we cannot claim that the difference is in
2499 ~[0,0]. Note that we are guaranteed to have
2500 vr0.type == vr1.type at this point. */
2501 if (vr0
.type
== VR_ANTI_RANGE
)
2503 set_value_range_to_varying (vr
);
2507 /* For MINUS_EXPR, apply the operation to the opposite ends of
2509 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
2510 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
2512 else if (code
== BIT_AND_EXPR
)
2514 if (vr0
.type
== VR_RANGE
2515 && vr0
.min
== vr0
.max
2516 && TREE_CODE (vr0
.max
) == INTEGER_CST
2517 && !TREE_OVERFLOW (vr0
.max
)
2518 && tree_int_cst_sgn (vr0
.max
) >= 0)
2520 min
= build_int_cst (expr_type
, 0);
2523 else if (vr1
.type
== VR_RANGE
2524 && vr1
.min
== vr1
.max
2525 && TREE_CODE (vr1
.max
) == INTEGER_CST
2526 && !TREE_OVERFLOW (vr1
.max
)
2527 && tree_int_cst_sgn (vr1
.max
) >= 0)
2530 min
= build_int_cst (expr_type
, 0);
2535 set_value_range_to_varying (vr
);
2539 else if (code
== BIT_IOR_EXPR
)
2541 if (vr0
.type
== VR_RANGE
2542 && vr1
.type
== VR_RANGE
2543 && TREE_CODE (vr0
.min
) == INTEGER_CST
2544 && TREE_CODE (vr1
.min
) == INTEGER_CST
2545 && TREE_CODE (vr0
.max
) == INTEGER_CST
2546 && TREE_CODE (vr1
.max
) == INTEGER_CST
2547 && tree_int_cst_sgn (vr0
.min
) >= 0
2548 && tree_int_cst_sgn (vr1
.min
) >= 0)
2550 double_int vr0_max
= tree_to_double_int (vr0
.max
);
2551 double_int vr1_max
= tree_to_double_int (vr1
.max
);
2554 /* Set all bits to the right of the most significant one to 1.
2555 For example, [0, 4] | [4, 4] = [4, 7]. */
2556 ior_max
.low
= vr0_max
.low
| vr1_max
.low
;
2557 ior_max
.high
= vr0_max
.high
| vr1_max
.high
;
2558 if (ior_max
.high
!= 0)
2560 ior_max
.low
= ~(unsigned HOST_WIDE_INT
)0u;
2561 ior_max
.high
|= ((HOST_WIDE_INT
) 1
2562 << floor_log2 (ior_max
.high
)) - 1;
2564 else if (ior_max
.low
!= 0)
2565 ior_max
.low
|= ((unsigned HOST_WIDE_INT
) 1u
2566 << floor_log2 (ior_max
.low
)) - 1;
2568 /* Both of these endpoints are conservative. */
2569 min
= vrp_int_const_binop (MAX_EXPR
, vr0
.min
, vr1
.min
);
2570 max
= double_int_to_tree (expr_type
, ior_max
);
2574 set_value_range_to_varying (vr
);
2581 /* If either MIN or MAX overflowed, then set the resulting range to
2582 VARYING. But we do accept an overflow infinity
2584 if (min
== NULL_TREE
2585 || !is_gimple_min_invariant (min
)
2586 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2588 || !is_gimple_min_invariant (max
)
2589 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2591 set_value_range_to_varying (vr
);
2597 2) [-INF, +-INF(OVF)]
2598 3) [+-INF(OVF), +INF]
2599 4) [+-INF(OVF), +-INF(OVF)]
2600 We learn nothing when we have INF and INF(OVF) on both sides.
2601 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2603 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2604 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2606 set_value_range_to_varying (vr
);
2610 cmp
= compare_values (min
, max
);
2611 if (cmp
== -2 || cmp
== 1)
2613 /* If the new range has its limits swapped around (MIN > MAX),
2614 then the operation caused one of them to wrap around, mark
2615 the new range VARYING. */
2616 set_value_range_to_varying (vr
);
2619 set_value_range (vr
, type
, min
, max
, NULL
);
2623 /* Extract range information from a unary expression EXPR based on
2624 the range of its operand and the expression code. */
2627 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
2628 tree type
, tree op0
)
2632 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2634 /* Refuse to operate on certain unary expressions for which we
2635 cannot easily determine a resulting range. */
2636 if (code
== FIX_TRUNC_EXPR
2637 || code
== FLOAT_EXPR
2638 || code
== BIT_NOT_EXPR
2639 || code
== CONJ_EXPR
)
2641 /* We can still do constant propagation here. */
2642 if ((op0
= op_with_constant_singleton_value_range (op0
)) != NULL_TREE
)
2644 tree tem
= fold_unary (code
, type
, op0
);
2646 && is_gimple_min_invariant (tem
)
2647 && !is_overflow_infinity (tem
))
2649 set_value_range (vr
, VR_RANGE
, tem
, tem
, NULL
);
2653 set_value_range_to_varying (vr
);
2657 /* Get value ranges for the operand. For constant operands, create
2658 a new value range with the operand to simplify processing. */
2659 if (TREE_CODE (op0
) == SSA_NAME
)
2660 vr0
= *(get_value_range (op0
));
2661 else if (is_gimple_min_invariant (op0
))
2662 set_value_range_to_value (&vr0
, op0
, NULL
);
2664 set_value_range_to_varying (&vr0
);
2666 /* If VR0 is UNDEFINED, so is the result. */
2667 if (vr0
.type
== VR_UNDEFINED
)
2669 set_value_range_to_undefined (vr
);
2673 /* Refuse to operate on symbolic ranges, or if neither operand is
2674 a pointer or integral type. */
2675 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
2676 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
2677 || (vr0
.type
!= VR_VARYING
2678 && symbolic_range_p (&vr0
)))
2680 set_value_range_to_varying (vr
);
2684 /* If the expression involves pointers, we are only interested in
2685 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2686 if (POINTER_TYPE_P (type
) || POINTER_TYPE_P (TREE_TYPE (op0
)))
2691 if (range_is_nonnull (&vr0
)
2692 || (tree_unary_nonzero_warnv_p (code
, type
, op0
, &sop
)
2694 set_value_range_to_nonnull (vr
, type
);
2695 else if (range_is_null (&vr0
))
2696 set_value_range_to_null (vr
, type
);
2698 set_value_range_to_varying (vr
);
2703 /* Handle unary expressions on integer ranges. */
2704 if (CONVERT_EXPR_CODE_P (code
)
2705 && INTEGRAL_TYPE_P (type
)
2706 && INTEGRAL_TYPE_P (TREE_TYPE (op0
)))
2708 tree inner_type
= TREE_TYPE (op0
);
2709 tree outer_type
= type
;
2711 /* Always use base-types here. This is important for the
2712 correct signedness. */
2713 if (TREE_TYPE (inner_type
))
2714 inner_type
= TREE_TYPE (inner_type
);
2715 if (TREE_TYPE (outer_type
))
2716 outer_type
= TREE_TYPE (outer_type
);
2718 /* If VR0 is varying and we increase the type precision, assume
2719 a full range for the following transformation. */
2720 if (vr0
.type
== VR_VARYING
2721 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
2723 vr0
.type
= VR_RANGE
;
2724 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
2725 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
2728 /* If VR0 is a constant range or anti-range and the conversion is
2729 not truncating we can convert the min and max values and
2730 canonicalize the resulting range. Otherwise we can do the
2731 conversion if the size of the range is less than what the
2732 precision of the target type can represent and the range is
2733 not an anti-range. */
2734 if ((vr0
.type
== VR_RANGE
2735 || vr0
.type
== VR_ANTI_RANGE
)
2736 && TREE_CODE (vr0
.min
) == INTEGER_CST
2737 && TREE_CODE (vr0
.max
) == INTEGER_CST
2738 && !is_overflow_infinity (vr0
.min
)
2739 && !is_overflow_infinity (vr0
.max
)
2740 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
2741 || (vr0
.type
== VR_RANGE
2742 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
2743 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
, 0),
2744 size_int (TYPE_PRECISION (outer_type
)), 0)))))
2746 tree new_min
, new_max
;
2747 new_min
= force_fit_type_double (outer_type
,
2748 TREE_INT_CST_LOW (vr0
.min
),
2749 TREE_INT_CST_HIGH (vr0
.min
), 0, 0);
2750 new_max
= force_fit_type_double (outer_type
,
2751 TREE_INT_CST_LOW (vr0
.max
),
2752 TREE_INT_CST_HIGH (vr0
.max
), 0, 0);
2753 set_and_canonicalize_value_range (vr
, vr0
.type
,
2754 new_min
, new_max
, NULL
);
2758 set_value_range_to_varying (vr
);
2762 /* Conversion of a VR_VARYING value to a wider type can result
2763 in a usable range. So wait until after we've handled conversions
2764 before dropping the result to VR_VARYING if we had a source
2765 operand that is VR_VARYING. */
2766 if (vr0
.type
== VR_VARYING
)
2768 set_value_range_to_varying (vr
);
2772 /* Apply the operation to each end of the range and see what we end
2774 if (code
== NEGATE_EXPR
2775 && !TYPE_UNSIGNED (type
))
2777 /* NEGATE_EXPR flips the range around. We need to treat
2778 TYPE_MIN_VALUE specially. */
2779 if (is_positive_overflow_infinity (vr0
.max
))
2780 min
= negative_overflow_infinity (type
);
2781 else if (is_negative_overflow_infinity (vr0
.max
))
2782 min
= positive_overflow_infinity (type
);
2783 else if (!vrp_val_is_min (vr0
.max
))
2784 min
= fold_unary_to_constant (code
, type
, vr0
.max
);
2785 else if (needs_overflow_infinity (type
))
2787 if (supports_overflow_infinity (type
)
2788 && !is_overflow_infinity (vr0
.min
)
2789 && !vrp_val_is_min (vr0
.min
))
2790 min
= positive_overflow_infinity (type
);
2793 set_value_range_to_varying (vr
);
2798 min
= TYPE_MIN_VALUE (type
);
2800 if (is_positive_overflow_infinity (vr0
.min
))
2801 max
= negative_overflow_infinity (type
);
2802 else if (is_negative_overflow_infinity (vr0
.min
))
2803 max
= positive_overflow_infinity (type
);
2804 else if (!vrp_val_is_min (vr0
.min
))
2805 max
= fold_unary_to_constant (code
, type
, vr0
.min
);
2806 else if (needs_overflow_infinity (type
))
2808 if (supports_overflow_infinity (type
))
2809 max
= positive_overflow_infinity (type
);
2812 set_value_range_to_varying (vr
);
2817 max
= TYPE_MIN_VALUE (type
);
2819 else if (code
== NEGATE_EXPR
2820 && TYPE_UNSIGNED (type
))
2822 if (!range_includes_zero_p (&vr0
))
2824 max
= fold_unary_to_constant (code
, type
, vr0
.min
);
2825 min
= fold_unary_to_constant (code
, type
, vr0
.max
);
2829 if (range_is_null (&vr0
))
2830 set_value_range_to_null (vr
, type
);
2832 set_value_range_to_varying (vr
);
2836 else if (code
== ABS_EXPR
2837 && !TYPE_UNSIGNED (type
))
2839 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2841 if (!TYPE_OVERFLOW_UNDEFINED (type
)
2842 && ((vr0
.type
== VR_RANGE
2843 && vrp_val_is_min (vr0
.min
))
2844 || (vr0
.type
== VR_ANTI_RANGE
2845 && !vrp_val_is_min (vr0
.min
)
2846 && !range_includes_zero_p (&vr0
))))
2848 set_value_range_to_varying (vr
);
2852 /* ABS_EXPR may flip the range around, if the original range
2853 included negative values. */
2854 if (is_overflow_infinity (vr0
.min
))
2855 min
= positive_overflow_infinity (type
);
2856 else if (!vrp_val_is_min (vr0
.min
))
2857 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
2858 else if (!needs_overflow_infinity (type
))
2859 min
= TYPE_MAX_VALUE (type
);
2860 else if (supports_overflow_infinity (type
))
2861 min
= positive_overflow_infinity (type
);
2864 set_value_range_to_varying (vr
);
2868 if (is_overflow_infinity (vr0
.max
))
2869 max
= positive_overflow_infinity (type
);
2870 else if (!vrp_val_is_min (vr0
.max
))
2871 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
2872 else if (!needs_overflow_infinity (type
))
2873 max
= TYPE_MAX_VALUE (type
);
2874 else if (supports_overflow_infinity (type
)
2875 /* We shouldn't generate [+INF, +INF] as set_value_range
2876 doesn't like this and ICEs. */
2877 && !is_positive_overflow_infinity (min
))
2878 max
= positive_overflow_infinity (type
);
2881 set_value_range_to_varying (vr
);
2885 cmp
= compare_values (min
, max
);
2887 /* If a VR_ANTI_RANGEs contains zero, then we have
2888 ~[-INF, min(MIN, MAX)]. */
2889 if (vr0
.type
== VR_ANTI_RANGE
)
2891 if (range_includes_zero_p (&vr0
))
2893 /* Take the lower of the two values. */
2897 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2898 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2899 flag_wrapv is set and the original anti-range doesn't include
2900 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2901 if (TYPE_OVERFLOW_WRAPS (type
))
2903 tree type_min_value
= TYPE_MIN_VALUE (type
);
2905 min
= (vr0
.min
!= type_min_value
2906 ? int_const_binop (PLUS_EXPR
, type_min_value
,
2907 integer_one_node
, 0)
2912 if (overflow_infinity_range_p (&vr0
))
2913 min
= negative_overflow_infinity (type
);
2915 min
= TYPE_MIN_VALUE (type
);
2920 /* All else has failed, so create the range [0, INF], even for
2921 flag_wrapv since TYPE_MIN_VALUE is in the original
2923 vr0
.type
= VR_RANGE
;
2924 min
= build_int_cst (type
, 0);
2925 if (needs_overflow_infinity (type
))
2927 if (supports_overflow_infinity (type
))
2928 max
= positive_overflow_infinity (type
);
2931 set_value_range_to_varying (vr
);
2936 max
= TYPE_MAX_VALUE (type
);
2940 /* If the range contains zero then we know that the minimum value in the
2941 range will be zero. */
2942 else if (range_includes_zero_p (&vr0
))
2946 min
= build_int_cst (type
, 0);
2950 /* If the range was reversed, swap MIN and MAX. */
2961 /* Otherwise, operate on each end of the range. */
2962 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
2963 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
2965 if (needs_overflow_infinity (type
))
2967 gcc_assert (code
!= NEGATE_EXPR
&& code
!= ABS_EXPR
);
2969 /* If both sides have overflowed, we don't know
2971 if ((is_overflow_infinity (vr0
.min
)
2972 || TREE_OVERFLOW (min
))
2973 && (is_overflow_infinity (vr0
.max
)
2974 || TREE_OVERFLOW (max
)))
2976 set_value_range_to_varying (vr
);
2980 if (is_overflow_infinity (vr0
.min
))
2982 else if (TREE_OVERFLOW (min
))
2984 if (supports_overflow_infinity (type
))
2985 min
= (tree_int_cst_sgn (min
) >= 0
2986 ? positive_overflow_infinity (TREE_TYPE (min
))
2987 : negative_overflow_infinity (TREE_TYPE (min
)));
2990 set_value_range_to_varying (vr
);
2995 if (is_overflow_infinity (vr0
.max
))
2997 else if (TREE_OVERFLOW (max
))
2999 if (supports_overflow_infinity (type
))
3000 max
= (tree_int_cst_sgn (max
) >= 0
3001 ? positive_overflow_infinity (TREE_TYPE (max
))
3002 : negative_overflow_infinity (TREE_TYPE (max
)));
3005 set_value_range_to_varying (vr
);
3012 cmp
= compare_values (min
, max
);
3013 if (cmp
== -2 || cmp
== 1)
3015 /* If the new range has its limits swapped around (MIN > MAX),
3016 then the operation caused one of them to wrap around, mark
3017 the new range VARYING. */
3018 set_value_range_to_varying (vr
);
3021 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3025 /* Extract range information from a conditional expression EXPR based on
3026 the ranges of each of its operands and the expression code. */
3029 extract_range_from_cond_expr (value_range_t
*vr
, tree expr
)
3032 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3033 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3035 /* Get value ranges for each operand. For constant operands, create
3036 a new value range with the operand to simplify processing. */
3037 op0
= COND_EXPR_THEN (expr
);
3038 if (TREE_CODE (op0
) == SSA_NAME
)
3039 vr0
= *(get_value_range (op0
));
3040 else if (is_gimple_min_invariant (op0
))
3041 set_value_range_to_value (&vr0
, op0
, NULL
);
3043 set_value_range_to_varying (&vr0
);
3045 op1
= COND_EXPR_ELSE (expr
);
3046 if (TREE_CODE (op1
) == SSA_NAME
)
3047 vr1
= *(get_value_range (op1
));
3048 else if (is_gimple_min_invariant (op1
))
3049 set_value_range_to_value (&vr1
, op1
, NULL
);
3051 set_value_range_to_varying (&vr1
);
3053 /* The resulting value range is the union of the operand ranges */
3054 vrp_meet (&vr0
, &vr1
);
3055 copy_value_range (vr
, &vr0
);
3059 /* Extract range information from a comparison expression EXPR based
3060 on the range of its operand and the expression code. */
3063 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3064 tree type
, tree op0
, tree op1
)
3069 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3072 /* A disadvantage of using a special infinity as an overflow
3073 representation is that we lose the ability to record overflow
3074 when we don't have an infinity. So we have to ignore a result
3075 which relies on overflow. */
3077 if (val
&& !is_overflow_infinity (val
) && !sop
)
3079 /* Since this expression was found on the RHS of an assignment,
3080 its type may be different from _Bool. Convert VAL to EXPR's
3082 val
= fold_convert (type
, val
);
3083 if (is_gimple_min_invariant (val
))
3084 set_value_range_to_value (vr
, val
, vr
->equiv
);
3086 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3089 /* The result of a comparison is always true or false. */
3090 set_value_range_to_truthvalue (vr
, type
);
3093 /* Try to derive a nonnegative or nonzero range out of STMT relying
3094 primarily on generic routines in fold in conjunction with range data.
3095 Store the result in *VR */
3098 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3101 tree type
= gimple_expr_type (stmt
);
3103 if (INTEGRAL_TYPE_P (type
)
3104 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
3105 set_value_range_to_nonnegative (vr
, type
,
3106 sop
|| stmt_overflow_infinity (stmt
));
3107 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
3109 set_value_range_to_nonnull (vr
, type
);
3111 set_value_range_to_varying (vr
);
3115 /* Try to compute a useful range out of assignment STMT and store it
3119 extract_range_from_assignment (value_range_t
*vr
, gimple stmt
)
3121 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3123 if (code
== ASSERT_EXPR
)
3124 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
3125 else if (code
== SSA_NAME
)
3126 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
3127 else if (TREE_CODE_CLASS (code
) == tcc_binary
3128 || code
== TRUTH_AND_EXPR
3129 || code
== TRUTH_OR_EXPR
3130 || code
== TRUTH_XOR_EXPR
)
3131 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
3132 gimple_expr_type (stmt
),
3133 gimple_assign_rhs1 (stmt
),
3134 gimple_assign_rhs2 (stmt
));
3135 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
3136 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
3137 gimple_expr_type (stmt
),
3138 gimple_assign_rhs1 (stmt
));
3139 else if (code
== COND_EXPR
)
3140 extract_range_from_cond_expr (vr
, gimple_assign_rhs1 (stmt
));
3141 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3142 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
3143 gimple_expr_type (stmt
),
3144 gimple_assign_rhs1 (stmt
),
3145 gimple_assign_rhs2 (stmt
));
3146 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
3147 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
3148 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
3150 set_value_range_to_varying (vr
);
3152 if (vr
->type
== VR_VARYING
)
3153 extract_range_basic (vr
, stmt
);
3156 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3157 would be profitable to adjust VR using scalar evolution information
3158 for VAR. If so, update VR with the new limits. */
3161 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
3162 gimple stmt
, tree var
)
3164 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
;
3165 enum ev_direction dir
;
3167 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3168 better opportunities than a regular range, but I'm not sure. */
3169 if (vr
->type
== VR_ANTI_RANGE
)
3172 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
3174 /* Like in PR19590, scev can return a constant function. */
3175 if (is_gimple_min_invariant (chrec
))
3177 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
3181 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3184 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
3185 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
3187 /* If STEP is symbolic, we can't know whether INIT will be the
3188 minimum or maximum value in the range. Also, unless INIT is
3189 a simple expression, compare_values and possibly other functions
3190 in tree-vrp won't be able to handle it. */
3191 if (step
== NULL_TREE
3192 || !is_gimple_min_invariant (step
)
3193 || !valid_value_p (init
))
3196 dir
= scev_direction (chrec
);
3197 if (/* Do not adjust ranges if we do not know whether the iv increases
3198 or decreases, ... */
3199 dir
== EV_DIR_UNKNOWN
3200 /* ... or if it may wrap. */
3201 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3205 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3206 negative_overflow_infinity and positive_overflow_infinity,
3207 because we have concluded that the loop probably does not
3210 type
= TREE_TYPE (var
);
3211 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
3212 tmin
= lower_bound_in_type (type
, type
);
3214 tmin
= TYPE_MIN_VALUE (type
);
3215 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
3216 tmax
= upper_bound_in_type (type
, type
);
3218 tmax
= TYPE_MAX_VALUE (type
);
3220 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3225 /* For VARYING or UNDEFINED ranges, just about anything we get
3226 from scalar evolutions should be better. */
3228 if (dir
== EV_DIR_DECREASES
)
3233 /* If we would create an invalid range, then just assume we
3234 know absolutely nothing. This may be over-conservative,
3235 but it's clearly safe, and should happen only in unreachable
3236 parts of code, or for invalid programs. */
3237 if (compare_values (min
, max
) == 1)
3240 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3242 else if (vr
->type
== VR_RANGE
)
3247 if (dir
== EV_DIR_DECREASES
)
3249 /* INIT is the maximum value. If INIT is lower than VR->MAX
3250 but no smaller than VR->MIN, set VR->MAX to INIT. */
3251 if (compare_values (init
, max
) == -1)
3255 /* If we just created an invalid range with the minimum
3256 greater than the maximum, we fail conservatively.
3257 This should happen only in unreachable
3258 parts of code, or for invalid programs. */
3259 if (compare_values (min
, max
) == 1)
3263 /* According to the loop information, the variable does not
3264 overflow. If we think it does, probably because of an
3265 overflow due to arithmetic on a different INF value,
3267 if (is_negative_overflow_infinity (min
))
3272 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3273 if (compare_values (init
, min
) == 1)
3277 /* Again, avoid creating invalid range by failing. */
3278 if (compare_values (min
, max
) == 1)
3282 if (is_positive_overflow_infinity (max
))
3286 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3290 /* Return true if VAR may overflow at STMT. This checks any available
3291 loop information to see if we can determine that VAR does not
3295 vrp_var_may_overflow (tree var
, gimple stmt
)
3298 tree chrec
, init
, step
;
3300 if (current_loops
== NULL
)
3303 l
= loop_containing_stmt (stmt
);
3307 chrec
= instantiate_parameters (l
, analyze_scalar_evolution (l
, var
));
3308 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3311 init
= initial_condition_in_loop_num (chrec
, l
->num
);
3312 step
= evolution_part_in_loop_num (chrec
, l
->num
);
3314 if (step
== NULL_TREE
3315 || !is_gimple_min_invariant (step
)
3316 || !valid_value_p (init
))
3319 /* If we get here, we know something useful about VAR based on the
3320 loop information. If it wraps, it may overflow. */
3322 if (scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3326 if (dump_file
&& (dump_flags
& TDF_DETAILS
) != 0)
3328 print_generic_expr (dump_file
, var
, 0);
3329 fprintf (dump_file
, ": loop information indicates does not overflow\n");
3336 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3338 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3339 all the values in the ranges.
3341 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3343 - Return NULL_TREE if it is not always possible to determine the
3344 value of the comparison.
3346 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3347 overflow infinity was used in the test. */
3351 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
3352 bool *strict_overflow_p
)
3354 /* VARYING or UNDEFINED ranges cannot be compared. */
3355 if (vr0
->type
== VR_VARYING
3356 || vr0
->type
== VR_UNDEFINED
3357 || vr1
->type
== VR_VARYING
3358 || vr1
->type
== VR_UNDEFINED
)
3361 /* Anti-ranges need to be handled separately. */
3362 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3364 /* If both are anti-ranges, then we cannot compute any
3366 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3369 /* These comparisons are never statically computable. */
3376 /* Equality can be computed only between a range and an
3377 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3378 if (vr0
->type
== VR_RANGE
)
3380 /* To simplify processing, make VR0 the anti-range. */
3381 value_range_t
*tmp
= vr0
;
3386 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
3388 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
3389 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
3390 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3395 if (!usable_range_p (vr0
, strict_overflow_p
)
3396 || !usable_range_p (vr1
, strict_overflow_p
))
3399 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3400 operands around and change the comparison code. */
3401 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3404 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
3410 if (comp
== EQ_EXPR
)
3412 /* Equality may only be computed if both ranges represent
3413 exactly one value. */
3414 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
3415 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
3417 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
3419 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
3421 if (cmp_min
== 0 && cmp_max
== 0)
3422 return boolean_true_node
;
3423 else if (cmp_min
!= -2 && cmp_max
!= -2)
3424 return boolean_false_node
;
3426 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3427 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
3428 strict_overflow_p
) == 1
3429 || compare_values_warnv (vr1
->min
, vr0
->max
,
3430 strict_overflow_p
) == 1)
3431 return boolean_false_node
;
3435 else if (comp
== NE_EXPR
)
3439 /* If VR0 is completely to the left or completely to the right
3440 of VR1, they are always different. Notice that we need to
3441 make sure that both comparisons yield similar results to
3442 avoid comparing values that cannot be compared at
3444 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3445 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3446 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
3447 return boolean_true_node
;
3449 /* If VR0 and VR1 represent a single value and are identical,
3451 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
3452 strict_overflow_p
) == 0
3453 && compare_values_warnv (vr1
->min
, vr1
->max
,
3454 strict_overflow_p
) == 0
3455 && compare_values_warnv (vr0
->min
, vr1
->min
,
3456 strict_overflow_p
) == 0
3457 && compare_values_warnv (vr0
->max
, vr1
->max
,
3458 strict_overflow_p
) == 0)
3459 return boolean_false_node
;
3461 /* Otherwise, they may or may not be different. */
3465 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3469 /* If VR0 is to the left of VR1, return true. */
3470 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3471 if ((comp
== LT_EXPR
&& tst
== -1)
3472 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3474 if (overflow_infinity_range_p (vr0
)
3475 || overflow_infinity_range_p (vr1
))
3476 *strict_overflow_p
= true;
3477 return boolean_true_node
;
3480 /* If VR0 is to the right of VR1, return false. */
3481 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3482 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3483 || (comp
== LE_EXPR
&& tst
== 1))
3485 if (overflow_infinity_range_p (vr0
)
3486 || overflow_infinity_range_p (vr1
))
3487 *strict_overflow_p
= true;
3488 return boolean_false_node
;
3491 /* Otherwise, we don't know. */
3499 /* Given a value range VR, a value VAL and a comparison code COMP, return
3500 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3501 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3502 always returns false. Return NULL_TREE if it is not always
3503 possible to determine the value of the comparison. Also set
3504 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3505 infinity was used in the test. */
3508 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
3509 bool *strict_overflow_p
)
3511 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3514 /* Anti-ranges need to be handled separately. */
3515 if (vr
->type
== VR_ANTI_RANGE
)
3517 /* For anti-ranges, the only predicates that we can compute at
3518 compile time are equality and inequality. */
3525 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3526 if (value_inside_range (val
, vr
) == 1)
3527 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3532 if (!usable_range_p (vr
, strict_overflow_p
))
3535 if (comp
== EQ_EXPR
)
3537 /* EQ_EXPR may only be computed if VR represents exactly
3539 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
3541 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3543 return boolean_true_node
;
3544 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
3545 return boolean_false_node
;
3547 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
3548 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
3549 return boolean_false_node
;
3553 else if (comp
== NE_EXPR
)
3555 /* If VAL is not inside VR, then they are always different. */
3556 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
3557 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
3558 return boolean_true_node
;
3560 /* If VR represents exactly one value equal to VAL, then return
3562 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
3563 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
3564 return boolean_false_node
;
3566 /* Otherwise, they may or may not be different. */
3569 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3573 /* If VR is to the left of VAL, return true. */
3574 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3575 if ((comp
== LT_EXPR
&& tst
== -1)
3576 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3578 if (overflow_infinity_range_p (vr
))
3579 *strict_overflow_p
= true;
3580 return boolean_true_node
;
3583 /* If VR is to the right of VAL, return false. */
3584 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3585 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3586 || (comp
== LE_EXPR
&& tst
== 1))
3588 if (overflow_infinity_range_p (vr
))
3589 *strict_overflow_p
= true;
3590 return boolean_false_node
;
3593 /* Otherwise, we don't know. */
3596 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3600 /* If VR is to the right of VAL, return true. */
3601 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3602 if ((comp
== GT_EXPR
&& tst
== 1)
3603 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
3605 if (overflow_infinity_range_p (vr
))
3606 *strict_overflow_p
= true;
3607 return boolean_true_node
;
3610 /* If VR is to the left of VAL, return false. */
3611 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3612 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
3613 || (comp
== GE_EXPR
&& tst
== -1))
3615 if (overflow_infinity_range_p (vr
))
3616 *strict_overflow_p
= true;
3617 return boolean_false_node
;
3620 /* Otherwise, we don't know. */
3628 /* Debugging dumps. */
3630 void dump_value_range (FILE *, value_range_t
*);
3631 void debug_value_range (value_range_t
*);
3632 void dump_all_value_ranges (FILE *);
3633 void debug_all_value_ranges (void);
3634 void dump_vr_equiv (FILE *, bitmap
);
3635 void debug_vr_equiv (bitmap
);
3638 /* Dump value range VR to FILE. */
3641 dump_value_range (FILE *file
, value_range_t
*vr
)
3644 fprintf (file
, "[]");
3645 else if (vr
->type
== VR_UNDEFINED
)
3646 fprintf (file
, "UNDEFINED");
3647 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
3649 tree type
= TREE_TYPE (vr
->min
);
3651 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
3653 if (is_negative_overflow_infinity (vr
->min
))
3654 fprintf (file
, "-INF(OVF)");
3655 else if (INTEGRAL_TYPE_P (type
)
3656 && !TYPE_UNSIGNED (type
)
3657 && vrp_val_is_min (vr
->min
))
3658 fprintf (file
, "-INF");
3660 print_generic_expr (file
, vr
->min
, 0);
3662 fprintf (file
, ", ");
3664 if (is_positive_overflow_infinity (vr
->max
))
3665 fprintf (file
, "+INF(OVF)");
3666 else if (INTEGRAL_TYPE_P (type
)
3667 && vrp_val_is_max (vr
->max
))
3668 fprintf (file
, "+INF");
3670 print_generic_expr (file
, vr
->max
, 0);
3672 fprintf (file
, "]");
3679 fprintf (file
, " EQUIVALENCES: { ");
3681 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
3683 print_generic_expr (file
, ssa_name (i
), 0);
3684 fprintf (file
, " ");
3688 fprintf (file
, "} (%u elements)", c
);
3691 else if (vr
->type
== VR_VARYING
)
3692 fprintf (file
, "VARYING");
3694 fprintf (file
, "INVALID RANGE");
3698 /* Dump value range VR to stderr. */
3701 debug_value_range (value_range_t
*vr
)
3703 dump_value_range (stderr
, vr
);
3704 fprintf (stderr
, "\n");
3708 /* Dump value ranges of all SSA_NAMEs to FILE. */
3711 dump_all_value_ranges (FILE *file
)
3715 for (i
= 0; i
< num_ssa_names
; i
++)
3719 print_generic_expr (file
, ssa_name (i
), 0);
3720 fprintf (file
, ": ");
3721 dump_value_range (file
, vr_value
[i
]);
3722 fprintf (file
, "\n");
3726 fprintf (file
, "\n");
3730 /* Dump all value ranges to stderr. */
3733 debug_all_value_ranges (void)
3735 dump_all_value_ranges (stderr
);
3739 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3740 create a new SSA name N and return the assertion assignment
3741 'V = ASSERT_EXPR <V, V OP W>'. */
3744 build_assert_expr_for (tree cond
, tree v
)
3749 gcc_assert (TREE_CODE (v
) == SSA_NAME
);
3750 n
= duplicate_ssa_name (v
, NULL
);
3752 if (COMPARISON_CLASS_P (cond
))
3754 tree a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
3755 assertion
= gimple_build_assign (n
, a
);
3757 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
3759 /* Given !V, build the assignment N = false. */
3760 tree op0
= TREE_OPERAND (cond
, 0);
3761 gcc_assert (op0
== v
);
3762 assertion
= gimple_build_assign (n
, boolean_false_node
);
3764 else if (TREE_CODE (cond
) == SSA_NAME
)
3766 /* Given V, build the assignment N = true. */
3767 gcc_assert (v
== cond
);
3768 assertion
= gimple_build_assign (n
, boolean_true_node
);
3773 SSA_NAME_DEF_STMT (n
) = assertion
;
3775 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3776 operand of the ASSERT_EXPR. Register the new name and the old one
3777 in the replacement table so that we can fix the SSA web after
3778 adding all the ASSERT_EXPRs. */
3779 register_new_name_mapping (n
, v
);
3785 /* Return false if EXPR is a predicate expression involving floating
3789 fp_predicate (gimple stmt
)
3791 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
3793 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
3797 /* If the range of values taken by OP can be inferred after STMT executes,
3798 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3799 describes the inferred range. Return true if a range could be
3803 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
3806 *comp_code_p
= ERROR_MARK
;
3808 /* Do not attempt to infer anything in names that flow through
3810 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
3813 /* Similarly, don't infer anything from statements that may throw
3815 if (stmt_could_throw_p (stmt
))
3818 /* If STMT is the last statement of a basic block with no
3819 successors, there is no point inferring anything about any of its
3820 operands. We would not be able to find a proper insertion point
3821 for the assertion, anyway. */
3822 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (gimple_bb (stmt
)->succs
) == 0)
3825 /* We can only assume that a pointer dereference will yield
3826 non-NULL if -fdelete-null-pointer-checks is enabled. */
3827 if (flag_delete_null_pointer_checks
3828 && POINTER_TYPE_P (TREE_TYPE (op
))
3829 && gimple_code (stmt
) != GIMPLE_ASM
)
3831 unsigned num_uses
, num_loads
, num_stores
;
3833 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_loads
, &num_stores
);
3834 if (num_loads
+ num_stores
> 0)
3836 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
3837 *comp_code_p
= NE_EXPR
;
3846 void dump_asserts_for (FILE *, tree
);
3847 void debug_asserts_for (tree
);
3848 void dump_all_asserts (FILE *);
3849 void debug_all_asserts (void);
3851 /* Dump all the registered assertions for NAME to FILE. */
3854 dump_asserts_for (FILE *file
, tree name
)
3858 fprintf (file
, "Assertions to be inserted for ");
3859 print_generic_expr (file
, name
, 0);
3860 fprintf (file
, "\n");
3862 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
3865 fprintf (file
, "\t");
3866 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
3867 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
3870 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
3871 loc
->e
->dest
->index
);
3872 dump_edge_info (file
, loc
->e
, 0);
3874 fprintf (file
, "\n\tPREDICATE: ");
3875 print_generic_expr (file
, name
, 0);
3876 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
3877 print_generic_expr (file
, loc
->val
, 0);
3878 fprintf (file
, "\n\n");
3882 fprintf (file
, "\n");
3886 /* Dump all the registered assertions for NAME to stderr. */
3889 debug_asserts_for (tree name
)
3891 dump_asserts_for (stderr
, name
);
3895 /* Dump all the registered assertions for all the names to FILE. */
3898 dump_all_asserts (FILE *file
)
3903 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
3904 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
3905 dump_asserts_for (file
, ssa_name (i
));
3906 fprintf (file
, "\n");
3910 /* Dump all the registered assertions for all the names to stderr. */
3913 debug_all_asserts (void)
3915 dump_all_asserts (stderr
);
3919 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3920 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3921 E->DEST, then register this location as a possible insertion point
3922 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3924 BB, E and SI provide the exact insertion point for the new
3925 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3926 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3927 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3928 must not be NULL. */
3931 register_new_assert_for (tree name
, tree expr
,
3932 enum tree_code comp_code
,
3936 gimple_stmt_iterator si
)
3938 assert_locus_t n
, loc
, last_loc
;
3940 basic_block dest_bb
;
3942 #if defined ENABLE_CHECKING
3943 gcc_assert (bb
== NULL
|| e
== NULL
);
3946 gcc_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
3947 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
3950 /* Never build an assert comparing against an integer constant with
3951 TREE_OVERFLOW set. This confuses our undefined overflow warning
3953 if (TREE_CODE (val
) == INTEGER_CST
3954 && TREE_OVERFLOW (val
))
3955 val
= build_int_cst_wide (TREE_TYPE (val
),
3956 TREE_INT_CST_LOW (val
), TREE_INT_CST_HIGH (val
));
3958 /* The new assertion A will be inserted at BB or E. We need to
3959 determine if the new location is dominated by a previously
3960 registered location for A. If we are doing an edge insertion,
3961 assume that A will be inserted at E->DEST. Note that this is not
3964 If E is a critical edge, it will be split. But even if E is
3965 split, the new block will dominate the same set of blocks that
3968 The reverse, however, is not true, blocks dominated by E->DEST
3969 will not be dominated by the new block created to split E. So,
3970 if the insertion location is on a critical edge, we will not use
3971 the new location to move another assertion previously registered
3972 at a block dominated by E->DEST. */
3973 dest_bb
= (bb
) ? bb
: e
->dest
;
3975 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3976 VAL at a block dominating DEST_BB, then we don't need to insert a new
3977 one. Similarly, if the same assertion already exists at a block
3978 dominated by DEST_BB and the new location is not on a critical
3979 edge, then update the existing location for the assertion (i.e.,
3980 move the assertion up in the dominance tree).
3982 Note, this is implemented as a simple linked list because there
3983 should not be more than a handful of assertions registered per
3984 name. If this becomes a performance problem, a table hashed by
3985 COMP_CODE and VAL could be implemented. */
3986 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
3991 if (loc
->comp_code
== comp_code
3993 || operand_equal_p (loc
->val
, val
, 0))
3994 && (loc
->expr
== expr
3995 || operand_equal_p (loc
->expr
, expr
, 0)))
3997 /* If the assertion NAME COMP_CODE VAL has already been
3998 registered at a basic block that dominates DEST_BB, then
3999 we don't need to insert the same assertion again. Note
4000 that we don't check strict dominance here to avoid
4001 replicating the same assertion inside the same basic
4002 block more than once (e.g., when a pointer is
4003 dereferenced several times inside a block).
4005 An exception to this rule are edge insertions. If the
4006 new assertion is to be inserted on edge E, then it will
4007 dominate all the other insertions that we may want to
4008 insert in DEST_BB. So, if we are doing an edge
4009 insertion, don't do this dominance check. */
4011 && dominated_by_p (CDI_DOMINATORS
, dest_bb
, loc
->bb
))
4014 /* Otherwise, if E is not a critical edge and DEST_BB
4015 dominates the existing location for the assertion, move
4016 the assertion up in the dominance tree by updating its
4017 location information. */
4018 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
4019 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
4028 /* Update the last node of the list and move to the next one. */
4033 /* If we didn't find an assertion already registered for
4034 NAME COMP_CODE VAL, add a new one at the end of the list of
4035 assertions associated with NAME. */
4036 n
= XNEW (struct assert_locus_d
);
4040 n
->comp_code
= comp_code
;
4048 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
4050 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
4053 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4054 Extract a suitable test code and value and store them into *CODE_P and
4055 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4057 If no extraction was possible, return FALSE, otherwise return TRUE.
4059 If INVERT is true, then we invert the result stored into *CODE_P. */
4062 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
4063 tree cond_op0
, tree cond_op1
,
4064 bool invert
, enum tree_code
*code_p
,
4067 enum tree_code comp_code
;
4070 /* Otherwise, we have a comparison of the form NAME COMP VAL
4071 or VAL COMP NAME. */
4072 if (name
== cond_op1
)
4074 /* If the predicate is of the form VAL COMP NAME, flip
4075 COMP around because we need to register NAME as the
4076 first operand in the predicate. */
4077 comp_code
= swap_tree_comparison (cond_code
);
4082 /* The comparison is of the form NAME COMP VAL, so the
4083 comparison code remains unchanged. */
4084 comp_code
= cond_code
;
4088 /* Invert the comparison code as necessary. */
4090 comp_code
= invert_tree_comparison (comp_code
, 0);
4092 /* VRP does not handle float types. */
4093 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
4096 /* Do not register always-false predicates.
4097 FIXME: this works around a limitation in fold() when dealing with
4098 enumerations. Given 'enum { N1, N2 } x;', fold will not
4099 fold 'if (x > N2)' to 'if (0)'. */
4100 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
4101 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
4103 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
4104 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
4106 if (comp_code
== GT_EXPR
4108 || compare_values (val
, max
) == 0))
4111 if (comp_code
== LT_EXPR
4113 || compare_values (val
, min
) == 0))
4116 *code_p
= comp_code
;
4121 /* Try to register an edge assertion for SSA name NAME on edge E for
4122 the condition COND contributing to the conditional jump pointed to by BSI.
4123 Invert the condition COND if INVERT is true.
4124 Return true if an assertion for NAME could be registered. */
4127 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
4128 enum tree_code cond_code
,
4129 tree cond_op0
, tree cond_op1
, bool invert
)
4132 enum tree_code comp_code
;
4133 bool retval
= false;
4135 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4138 invert
, &comp_code
, &val
))
4141 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4142 reachable from E. */
4143 if (live_on_edge (e
, name
)
4144 && !has_single_use (name
))
4146 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
4150 /* In the case of NAME <= CST and NAME being defined as
4151 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4152 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4153 This catches range and anti-range tests. */
4154 if ((comp_code
== LE_EXPR
4155 || comp_code
== GT_EXPR
)
4156 && TREE_CODE (val
) == INTEGER_CST
4157 && TYPE_UNSIGNED (TREE_TYPE (val
)))
4159 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4160 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
4162 /* Extract CST2 from the (optional) addition. */
4163 if (is_gimple_assign (def_stmt
)
4164 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
4166 name2
= gimple_assign_rhs1 (def_stmt
);
4167 cst2
= gimple_assign_rhs2 (def_stmt
);
4168 if (TREE_CODE (name2
) == SSA_NAME
4169 && TREE_CODE (cst2
) == INTEGER_CST
)
4170 def_stmt
= SSA_NAME_DEF_STMT (name2
);
4173 /* Extract NAME2 from the (optional) sign-changing cast. */
4174 if (gimple_assign_cast_p (def_stmt
))
4176 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
4177 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
4178 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
4179 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
4180 name3
= gimple_assign_rhs1 (def_stmt
);
4183 /* If name3 is used later, create an ASSERT_EXPR for it. */
4184 if (name3
!= NULL_TREE
4185 && TREE_CODE (name3
) == SSA_NAME
4186 && (cst2
== NULL_TREE
4187 || TREE_CODE (cst2
) == INTEGER_CST
)
4188 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
4189 && live_on_edge (e
, name3
)
4190 && !has_single_use (name3
))
4194 /* Build an expression for the range test. */
4195 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
4196 if (cst2
!= NULL_TREE
)
4197 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4201 fprintf (dump_file
, "Adding assert for ");
4202 print_generic_expr (dump_file
, name3
, 0);
4203 fprintf (dump_file
, " from ");
4204 print_generic_expr (dump_file
, tmp
, 0);
4205 fprintf (dump_file
, "\n");
4208 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4213 /* If name2 is used later, create an ASSERT_EXPR for it. */
4214 if (name2
!= NULL_TREE
4215 && TREE_CODE (name2
) == SSA_NAME
4216 && TREE_CODE (cst2
) == INTEGER_CST
4217 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4218 && live_on_edge (e
, name2
)
4219 && !has_single_use (name2
))
4223 /* Build an expression for the range test. */
4225 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
4226 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
4227 if (cst2
!= NULL_TREE
)
4228 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4232 fprintf (dump_file
, "Adding assert for ");
4233 print_generic_expr (dump_file
, name2
, 0);
4234 fprintf (dump_file
, " from ");
4235 print_generic_expr (dump_file
, tmp
, 0);
4236 fprintf (dump_file
, "\n");
4239 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4248 /* OP is an operand of a truth value expression which is known to have
4249 a particular value. Register any asserts for OP and for any
4250 operands in OP's defining statement.
4252 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4253 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4256 register_edge_assert_for_1 (tree op
, enum tree_code code
,
4257 edge e
, gimple_stmt_iterator bsi
)
4259 bool retval
= false;
4262 enum tree_code rhs_code
;
4264 /* We only care about SSA_NAMEs. */
4265 if (TREE_CODE (op
) != SSA_NAME
)
4268 /* We know that OP will have a zero or nonzero value. If OP is used
4269 more than once go ahead and register an assert for OP.
4271 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4272 it will always be set for OP (because OP is used in a COND_EXPR in
4274 if (!has_single_use (op
))
4276 val
= build_int_cst (TREE_TYPE (op
), 0);
4277 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
4281 /* Now look at how OP is set. If it's set from a comparison,
4282 a truth operation or some bit operations, then we may be able
4283 to register information about the operands of that assignment. */
4284 op_def
= SSA_NAME_DEF_STMT (op
);
4285 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
4288 rhs_code
= gimple_assign_rhs_code (op_def
);
4290 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
4292 bool invert
= (code
== EQ_EXPR
? true : false);
4293 tree op0
= gimple_assign_rhs1 (op_def
);
4294 tree op1
= gimple_assign_rhs2 (op_def
);
4296 if (TREE_CODE (op0
) == SSA_NAME
)
4297 retval
|= register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
,
4299 if (TREE_CODE (op1
) == SSA_NAME
)
4300 retval
|= register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
,
4303 else if ((code
== NE_EXPR
4304 && (gimple_assign_rhs_code (op_def
) == TRUTH_AND_EXPR
4305 || gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
))
4307 && (gimple_assign_rhs_code (op_def
) == TRUTH_OR_EXPR
4308 || gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
)))
4310 /* Recurse on each operand. */
4311 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4313 retval
|= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def
),
4316 else if (gimple_assign_rhs_code (op_def
) == TRUTH_NOT_EXPR
)
4318 /* Recurse, flipping CODE. */
4319 code
= invert_tree_comparison (code
, false);
4320 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4323 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
4325 /* Recurse through the copy. */
4326 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4329 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
4331 /* Recurse through the type conversion. */
4332 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4339 /* Try to register an edge assertion for SSA name NAME on edge E for
4340 the condition COND contributing to the conditional jump pointed to by SI.
4341 Return true if an assertion for NAME could be registered. */
4344 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
4345 enum tree_code cond_code
, tree cond_op0
,
4349 enum tree_code comp_code
;
4350 bool retval
= false;
4351 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
4353 /* Do not attempt to infer anything in names that flow through
4355 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
4358 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4364 /* Register ASSERT_EXPRs for name. */
4365 retval
|= register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
4366 cond_op1
, is_else_edge
);
4369 /* If COND is effectively an equality test of an SSA_NAME against
4370 the value zero or one, then we may be able to assert values
4371 for SSA_NAMEs which flow into COND. */
4373 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4374 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4375 have nonzero value. */
4376 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
4377 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
4379 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4381 if (is_gimple_assign (def_stmt
)
4382 && (gimple_assign_rhs_code (def_stmt
) == TRUTH_AND_EXPR
4383 || gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
))
4385 tree op0
= gimple_assign_rhs1 (def_stmt
);
4386 tree op1
= gimple_assign_rhs2 (def_stmt
);
4387 retval
|= register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
4388 retval
|= register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
4392 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4393 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4395 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
4396 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
4398 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4400 if (is_gimple_assign (def_stmt
)
4401 && (gimple_assign_rhs_code (def_stmt
) == TRUTH_OR_EXPR
4402 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4403 necessarily zero value. */
4404 || (comp_code
== EQ_EXPR
4405 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
))))
4407 tree op0
= gimple_assign_rhs1 (def_stmt
);
4408 tree op1
= gimple_assign_rhs2 (def_stmt
);
4409 retval
|= register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
4410 retval
|= register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
4418 /* Determine whether the outgoing edges of BB should receive an
4419 ASSERT_EXPR for each of the operands of BB's LAST statement.
4420 The last statement of BB must be a COND_EXPR.
4422 If any of the sub-graphs rooted at BB have an interesting use of
4423 the predicate operands, an assert location node is added to the
4424 list of assertions for the corresponding operands. */
4427 find_conditional_asserts (basic_block bb
, gimple last
)
4430 gimple_stmt_iterator bsi
;
4436 need_assert
= false;
4437 bsi
= gsi_for_stmt (last
);
4439 /* Look for uses of the operands in each of the sub-graphs
4440 rooted at BB. We need to check each of the outgoing edges
4441 separately, so that we know what kind of ASSERT_EXPR to
4443 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4448 /* Register the necessary assertions for each operand in the
4449 conditional predicate. */
4450 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
4452 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4453 gimple_cond_code (last
),
4454 gimple_cond_lhs (last
),
4455 gimple_cond_rhs (last
));
4462 /* Compare two case labels sorting first by the destination label uid
4463 and then by the case value. */
4466 compare_case_labels (const void *p1
, const void *p2
)
4468 const_tree
const case1
= *(const_tree
const*)p1
;
4469 const_tree
const case2
= *(const_tree
const*)p2
;
4470 unsigned int uid1
= DECL_UID (CASE_LABEL (case1
));
4471 unsigned int uid2
= DECL_UID (CASE_LABEL (case2
));
4475 else if (uid1
== uid2
)
4477 /* Make sure the default label is first in a group. */
4478 if (!CASE_LOW (case1
))
4480 else if (!CASE_LOW (case2
))
4483 return tree_int_cst_compare (CASE_LOW (case1
), CASE_LOW (case2
));
4489 /* Determine whether the outgoing edges of BB should receive an
4490 ASSERT_EXPR for each of the operands of BB's LAST statement.
4491 The last statement of BB must be a SWITCH_EXPR.
4493 If any of the sub-graphs rooted at BB have an interesting use of
4494 the predicate operands, an assert location node is added to the
4495 list of assertions for the corresponding operands. */
4498 find_switch_asserts (basic_block bb
, gimple last
)
4501 gimple_stmt_iterator bsi
;
4505 size_t n
= gimple_switch_num_labels(last
);
4506 #if GCC_VERSION >= 4000
4509 /* Work around GCC 3.4 bug (PR 37086). */
4510 volatile unsigned int idx
;
4513 need_assert
= false;
4514 bsi
= gsi_for_stmt (last
);
4515 op
= gimple_switch_index (last
);
4516 if (TREE_CODE (op
) != SSA_NAME
)
4519 /* Build a vector of case labels sorted by destination label. */
4520 vec2
= make_tree_vec (n
);
4521 for (idx
= 0; idx
< n
; ++idx
)
4522 TREE_VEC_ELT (vec2
, idx
) = gimple_switch_label (last
, idx
);
4523 qsort (&TREE_VEC_ELT (vec2
, 0), n
, sizeof (tree
), compare_case_labels
);
4525 for (idx
= 0; idx
< n
; ++idx
)
4528 tree cl
= TREE_VEC_ELT (vec2
, idx
);
4530 min
= CASE_LOW (cl
);
4531 max
= CASE_HIGH (cl
);
4533 /* If there are multiple case labels with the same destination
4534 we need to combine them to a single value range for the edge. */
4536 && CASE_LABEL (cl
) == CASE_LABEL (TREE_VEC_ELT (vec2
, idx
+ 1)))
4538 /* Skip labels until the last of the group. */
4542 && CASE_LABEL (cl
) == CASE_LABEL (TREE_VEC_ELT (vec2
, idx
)));
4545 /* Pick up the maximum of the case label range. */
4546 if (CASE_HIGH (TREE_VEC_ELT (vec2
, idx
)))
4547 max
= CASE_HIGH (TREE_VEC_ELT (vec2
, idx
));
4549 max
= CASE_LOW (TREE_VEC_ELT (vec2
, idx
));
4552 /* Nothing to do if the range includes the default label until we
4553 can register anti-ranges. */
4554 if (min
== NULL_TREE
)
4557 /* Find the edge to register the assert expr on. */
4558 e
= find_edge (bb
, label_to_block (CASE_LABEL (cl
)));
4560 /* Register the necessary assertions for the operand in the
4562 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4563 max
? GE_EXPR
: EQ_EXPR
,
4565 fold_convert (TREE_TYPE (op
),
4569 need_assert
|= register_edge_assert_for (op
, e
, bsi
, LE_EXPR
,
4571 fold_convert (TREE_TYPE (op
),
4580 /* Traverse all the statements in block BB looking for statements that
4581 may generate useful assertions for the SSA names in their operand.
4582 If a statement produces a useful assertion A for name N_i, then the
4583 list of assertions already generated for N_i is scanned to
4584 determine if A is actually needed.
4586 If N_i already had the assertion A at a location dominating the
4587 current location, then nothing needs to be done. Otherwise, the
4588 new location for A is recorded instead.
4590 1- For every statement S in BB, all the variables used by S are
4591 added to bitmap FOUND_IN_SUBGRAPH.
4593 2- If statement S uses an operand N in a way that exposes a known
4594 value range for N, then if N was not already generated by an
4595 ASSERT_EXPR, create a new assert location for N. For instance,
4596 if N is a pointer and the statement dereferences it, we can
4597 assume that N is not NULL.
4599 3- COND_EXPRs are a special case of #2. We can derive range
4600 information from the predicate but need to insert different
4601 ASSERT_EXPRs for each of the sub-graphs rooted at the
4602 conditional block. If the last statement of BB is a conditional
4603 expression of the form 'X op Y', then
4605 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4607 b) If the conditional is the only entry point to the sub-graph
4608 corresponding to the THEN_CLAUSE, recurse into it. On
4609 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4610 an ASSERT_EXPR is added for the corresponding variable.
4612 c) Repeat step (b) on the ELSE_CLAUSE.
4614 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4623 In this case, an assertion on the THEN clause is useful to
4624 determine that 'a' is always 9 on that edge. However, an assertion
4625 on the ELSE clause would be unnecessary.
4627 4- If BB does not end in a conditional expression, then we recurse
4628 into BB's dominator children.
4630 At the end of the recursive traversal, every SSA name will have a
4631 list of locations where ASSERT_EXPRs should be added. When a new
4632 location for name N is found, it is registered by calling
4633 register_new_assert_for. That function keeps track of all the
4634 registered assertions to prevent adding unnecessary assertions.
4635 For instance, if a pointer P_4 is dereferenced more than once in a
4636 dominator tree, only the location dominating all the dereference of
4637 P_4 will receive an ASSERT_EXPR.
4639 If this function returns true, then it means that there are names
4640 for which we need to generate ASSERT_EXPRs. Those assertions are
4641 inserted by process_assert_insertions. */
4644 find_assert_locations_1 (basic_block bb
, sbitmap live
)
4646 gimple_stmt_iterator si
;
4651 need_assert
= false;
4652 last
= last_stmt (bb
);
4654 /* If BB's last statement is a conditional statement involving integer
4655 operands, determine if we need to add ASSERT_EXPRs. */
4657 && gimple_code (last
) == GIMPLE_COND
4658 && !fp_predicate (last
)
4659 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4660 need_assert
|= find_conditional_asserts (bb
, last
);
4662 /* If BB's last statement is a switch statement involving integer
4663 operands, determine if we need to add ASSERT_EXPRs. */
4665 && gimple_code (last
) == GIMPLE_SWITCH
4666 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4667 need_assert
|= find_switch_asserts (bb
, last
);
4669 /* Traverse all the statements in BB marking used names and looking
4670 for statements that may infer assertions for their used operands. */
4671 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
4677 stmt
= gsi_stmt (si
);
4679 /* See if we can derive an assertion for any of STMT's operands. */
4680 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
4683 enum tree_code comp_code
;
4685 /* Mark OP in our live bitmap. */
4686 SET_BIT (live
, SSA_NAME_VERSION (op
));
4688 /* If OP is used in such a way that we can infer a value
4689 range for it, and we don't find a previous assertion for
4690 it, create a new assertion location node for OP. */
4691 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
4693 /* If we are able to infer a nonzero value range for OP,
4694 then walk backwards through the use-def chain to see if OP
4695 was set via a typecast.
4697 If so, then we can also infer a nonzero value range
4698 for the operand of the NOP_EXPR. */
4699 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
4702 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
4704 while (is_gimple_assign (def_stmt
)
4705 && gimple_assign_rhs_code (def_stmt
) == NOP_EXPR
4707 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
4709 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
4711 t
= gimple_assign_rhs1 (def_stmt
);
4712 def_stmt
= SSA_NAME_DEF_STMT (t
);
4714 /* Note we want to register the assert for the
4715 operand of the NOP_EXPR after SI, not after the
4717 if (! has_single_use (t
))
4719 register_new_assert_for (t
, t
, comp_code
, value
,
4726 /* If OP is used only once, namely in this STMT, don't
4727 bother creating an ASSERT_EXPR for it. Such an
4728 ASSERT_EXPR would do nothing but increase compile time. */
4729 if (!has_single_use (op
))
4731 register_new_assert_for (op
, op
, comp_code
, value
,
4739 /* Traverse all PHI nodes in BB marking used operands. */
4740 for (si
= gsi_start_phis (bb
); !gsi_end_p(si
); gsi_next (&si
))
4742 use_operand_p arg_p
;
4744 phi
= gsi_stmt (si
);
4746 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
4748 tree arg
= USE_FROM_PTR (arg_p
);
4749 if (TREE_CODE (arg
) == SSA_NAME
)
4750 SET_BIT (live
, SSA_NAME_VERSION (arg
));
4757 /* Do an RPO walk over the function computing SSA name liveness
4758 on-the-fly and deciding on assert expressions to insert.
4759 Returns true if there are assert expressions to be inserted. */
4762 find_assert_locations (void)
4764 int *rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4765 int *bb_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4766 int *last_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4770 live
= XCNEWVEC (sbitmap
, last_basic_block
+ NUM_FIXED_BLOCKS
);
4771 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
4772 for (i
= 0; i
< rpo_cnt
; ++i
)
4775 need_asserts
= false;
4776 for (i
= rpo_cnt
-1; i
>= 0; --i
)
4778 basic_block bb
= BASIC_BLOCK (rpo
[i
]);
4784 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
4785 sbitmap_zero (live
[rpo
[i
]]);
4788 /* Process BB and update the live information with uses in
4790 need_asserts
|= find_assert_locations_1 (bb
, live
[rpo
[i
]]);
4792 /* Merge liveness into the predecessor blocks and free it. */
4793 if (!sbitmap_empty_p (live
[rpo
[i
]]))
4796 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4798 int pred
= e
->src
->index
;
4799 if (e
->flags
& EDGE_DFS_BACK
)
4804 live
[pred
] = sbitmap_alloc (num_ssa_names
);
4805 sbitmap_zero (live
[pred
]);
4807 sbitmap_a_or_b (live
[pred
], live
[pred
], live
[rpo
[i
]]);
4809 if (bb_rpo
[pred
] < pred_rpo
)
4810 pred_rpo
= bb_rpo
[pred
];
4813 /* Record the RPO number of the last visited block that needs
4814 live information from this block. */
4815 last_rpo
[rpo
[i
]] = pred_rpo
;
4819 sbitmap_free (live
[rpo
[i
]]);
4820 live
[rpo
[i
]] = NULL
;
4823 /* We can free all successors live bitmaps if all their
4824 predecessors have been visited already. */
4825 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4826 if (last_rpo
[e
->dest
->index
] == i
4827 && live
[e
->dest
->index
])
4829 sbitmap_free (live
[e
->dest
->index
]);
4830 live
[e
->dest
->index
] = NULL
;
4835 XDELETEVEC (bb_rpo
);
4836 XDELETEVEC (last_rpo
);
4837 for (i
= 0; i
< last_basic_block
+ NUM_FIXED_BLOCKS
; ++i
)
4839 sbitmap_free (live
[i
]);
4842 return need_asserts
;
4845 /* Create an ASSERT_EXPR for NAME and insert it in the location
4846 indicated by LOC. Return true if we made any edge insertions. */
4849 process_assert_insertions_for (tree name
, assert_locus_t loc
)
4851 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4858 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
4859 assert_stmt
= build_assert_expr_for (cond
, name
);
4862 /* We have been asked to insert the assertion on an edge. This
4863 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4864 #if defined ENABLE_CHECKING
4865 gcc_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
4866 || gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_SWITCH
);
4869 gsi_insert_on_edge (loc
->e
, assert_stmt
);
4873 /* Otherwise, we can insert right after LOC->SI iff the
4874 statement must not be the last statement in the block. */
4875 stmt
= gsi_stmt (loc
->si
);
4876 if (!stmt_ends_bb_p (stmt
))
4878 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
4882 /* If STMT must be the last statement in BB, we can only insert new
4883 assertions on the non-abnormal edge out of BB. Note that since
4884 STMT is not control flow, there may only be one non-abnormal edge
4886 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
4887 if (!(e
->flags
& EDGE_ABNORMAL
))
4889 gsi_insert_on_edge (e
, assert_stmt
);
4897 /* Process all the insertions registered for every name N_i registered
4898 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4899 found in ASSERTS_FOR[i]. */
4902 process_assert_insertions (void)
4906 bool update_edges_p
= false;
4907 int num_asserts
= 0;
4909 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4910 dump_all_asserts (dump_file
);
4912 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4914 assert_locus_t loc
= asserts_for
[i
];
4919 assert_locus_t next
= loc
->next
;
4920 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
4928 gsi_commit_edge_inserts ();
4930 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
4935 /* Traverse the flowgraph looking for conditional jumps to insert range
4936 expressions. These range expressions are meant to provide information
4937 to optimizations that need to reason in terms of value ranges. They
4938 will not be expanded into RTL. For instance, given:
4947 this pass will transform the code into:
4953 x = ASSERT_EXPR <x, x < y>
4958 y = ASSERT_EXPR <y, x <= y>
4962 The idea is that once copy and constant propagation have run, other
4963 optimizations will be able to determine what ranges of values can 'x'
4964 take in different paths of the code, simply by checking the reaching
4965 definition of 'x'. */
4968 insert_range_assertions (void)
4970 need_assert_for
= BITMAP_ALLOC (NULL
);
4971 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
4973 calculate_dominance_info (CDI_DOMINATORS
);
4975 if (find_assert_locations ())
4977 process_assert_insertions ();
4978 update_ssa (TODO_update_ssa_no_phi
);
4981 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4983 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
4984 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
4988 BITMAP_FREE (need_assert_for
);
4991 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4992 and "struct" hacks. If VRP can determine that the
4993 array subscript is a constant, check if it is outside valid
4994 range. If the array subscript is a RANGE, warn if it is
4995 non-overlapping with valid range.
4996 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4999 check_array_ref (tree ref
, const location_t
*location
, bool ignore_off_by_one
)
5001 value_range_t
* vr
= NULL
;
5002 tree low_sub
, up_sub
;
5003 tree low_bound
, up_bound
= array_ref_up_bound (ref
);
5005 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
5007 if (!up_bound
|| TREE_NO_WARNING (ref
)
5008 || TREE_CODE (up_bound
) != INTEGER_CST
5009 /* Can not check flexible arrays. */
5010 || (TYPE_SIZE (TREE_TYPE (ref
)) == NULL_TREE
5011 && TYPE_DOMAIN (TREE_TYPE (ref
)) != NULL_TREE
5012 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref
))) == NULL_TREE
)
5013 /* Accesses after the end of arrays of size 0 (gcc
5014 extension) and 1 are likely intentional ("struct
5016 || compare_tree_int (up_bound
, 1) <= 0)
5019 low_bound
= array_ref_low_bound (ref
);
5021 if (TREE_CODE (low_sub
) == SSA_NAME
)
5023 vr
= get_value_range (low_sub
);
5024 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
5026 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
5027 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
5031 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
5033 if (TREE_CODE (up_sub
) == INTEGER_CST
5034 && tree_int_cst_lt (up_bound
, up_sub
)
5035 && TREE_CODE (low_sub
) == INTEGER_CST
5036 && tree_int_cst_lt (low_sub
, low_bound
))
5038 warning (OPT_Warray_bounds
,
5039 "%Harray subscript is outside array bounds", location
);
5040 TREE_NO_WARNING (ref
) = 1;
5043 else if (TREE_CODE (up_sub
) == INTEGER_CST
5044 && tree_int_cst_lt (up_bound
, up_sub
)
5045 && !tree_int_cst_equal (up_bound
, up_sub
)
5046 && (!ignore_off_by_one
5047 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR
,
5053 warning (OPT_Warray_bounds
, "%Harray subscript is above array bounds",
5055 TREE_NO_WARNING (ref
) = 1;
5057 else if (TREE_CODE (low_sub
) == INTEGER_CST
5058 && tree_int_cst_lt (low_sub
, low_bound
))
5060 warning (OPT_Warray_bounds
, "%Harray subscript is below array bounds",
5062 TREE_NO_WARNING (ref
) = 1;
5066 /* Searches if the expr T, located at LOCATION computes
5067 address of an ARRAY_REF, and call check_array_ref on it. */
5070 search_for_addr_array (tree t
, const location_t
*location
)
5072 while (TREE_CODE (t
) == SSA_NAME
)
5074 gimple g
= SSA_NAME_DEF_STMT (t
);
5076 if (gimple_code (g
) != GIMPLE_ASSIGN
)
5079 if (get_gimple_rhs_class (gimple_assign_rhs_code (g
))
5080 != GIMPLE_SINGLE_RHS
)
5083 t
= gimple_assign_rhs1 (g
);
5087 /* We are only interested in addresses of ARRAY_REF's. */
5088 if (TREE_CODE (t
) != ADDR_EXPR
)
5091 /* Check each ARRAY_REFs in the reference chain. */
5094 if (TREE_CODE (t
) == ARRAY_REF
)
5095 check_array_ref (t
, location
, true /*ignore_off_by_one*/);
5097 t
= TREE_OPERAND (t
, 0);
5099 while (handled_component_p (t
));
5102 /* walk_tree() callback that checks if *TP is
5103 an ARRAY_REF inside an ADDR_EXPR (in which an array
5104 subscript one outside the valid range is allowed). Call
5105 check_array_ref for each ARRAY_REF found. The location is
5109 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
5112 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5113 const location_t
*location
= (const location_t
*) wi
->info
;
5115 *walk_subtree
= TRUE
;
5117 if (TREE_CODE (t
) == ARRAY_REF
)
5118 check_array_ref (t
, location
, false /*ignore_off_by_one*/);
5120 if (TREE_CODE (t
) == INDIRECT_REF
5121 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
5122 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
5124 if (TREE_CODE (t
) == ADDR_EXPR
)
5125 *walk_subtree
= FALSE
;
5130 /* Walk over all statements of all reachable BBs and call check_array_bounds
5134 check_all_array_refs (void)
5137 gimple_stmt_iterator si
;
5141 /* Skip bb's that are clearly unreachable. */
5142 if (single_pred_p (bb
))
5144 basic_block pred_bb
= EDGE_PRED (bb
, 0)->src
;
5147 if (!gsi_end_p (gsi_last_bb (pred_bb
)))
5148 ls
= gsi_stmt (gsi_last_bb (pred_bb
));
5150 if (ls
&& gimple_code (ls
) == GIMPLE_COND
5151 && ((gimple_cond_false_p (ls
)
5152 && (EDGE_PRED (bb
, 0)->flags
& EDGE_TRUE_VALUE
))
5153 || (gimple_cond_true_p (ls
)
5154 && (EDGE_PRED (bb
, 0)->flags
& EDGE_FALSE_VALUE
))))
5157 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5159 gimple stmt
= gsi_stmt (si
);
5160 const location_t
*location
= gimple_location_ptr (stmt
);
5161 struct walk_stmt_info wi
;
5162 if (!gimple_has_location (stmt
))
5165 if (is_gimple_call (stmt
))
5168 size_t n
= gimple_call_num_args (stmt
);
5169 for (i
= 0; i
< n
; i
++)
5171 tree arg
= gimple_call_arg (stmt
, i
);
5172 search_for_addr_array (arg
, location
);
5177 memset (&wi
, 0, sizeof (wi
));
5178 wi
.info
= CONST_CAST (void *, (const void *) location
);
5180 walk_gimple_op (gsi_stmt (si
),
5188 /* Convert range assertion expressions into the implied copies and
5189 copy propagate away the copies. Doing the trivial copy propagation
5190 here avoids the need to run the full copy propagation pass after
5193 FIXME, this will eventually lead to copy propagation removing the
5194 names that had useful range information attached to them. For
5195 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5196 then N_i will have the range [3, +INF].
5198 However, by converting the assertion into the implied copy
5199 operation N_i = N_j, we will then copy-propagate N_j into the uses
5200 of N_i and lose the range information. We may want to hold on to
5201 ASSERT_EXPRs a little while longer as the ranges could be used in
5202 things like jump threading.
5204 The problem with keeping ASSERT_EXPRs around is that passes after
5205 VRP need to handle them appropriately.
5207 Another approach would be to make the range information a first
5208 class property of the SSA_NAME so that it can be queried from
5209 any pass. This is made somewhat more complex by the need for
5210 multiple ranges to be associated with one SSA_NAME. */
5213 remove_range_assertions (void)
5216 gimple_stmt_iterator si
;
5218 /* Note that the BSI iterator bump happens at the bottom of the
5219 loop and no bump is necessary if we're removing the statement
5220 referenced by the current BSI. */
5222 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
);)
5224 gimple stmt
= gsi_stmt (si
);
5227 if (is_gimple_assign (stmt
)
5228 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
5230 tree rhs
= gimple_assign_rhs1 (stmt
);
5232 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
5233 use_operand_p use_p
;
5234 imm_use_iterator iter
;
5236 gcc_assert (cond
!= boolean_false_node
);
5238 /* Propagate the RHS into every use of the LHS. */
5239 var
= ASSERT_EXPR_VAR (rhs
);
5240 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
,
5241 gimple_assign_lhs (stmt
))
5242 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
5244 SET_USE (use_p
, var
);
5245 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
5248 /* And finally, remove the copy, it is not needed. */
5249 gsi_remove (&si
, true);
5250 release_defs (stmt
);
5258 /* Return true if STMT is interesting for VRP. */
5261 stmt_interesting_for_vrp (gimple stmt
)
5263 if (gimple_code (stmt
) == GIMPLE_PHI
5264 && is_gimple_reg (gimple_phi_result (stmt
))
5265 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))
5266 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))))
5268 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
5270 tree lhs
= gimple_get_lhs (stmt
);
5272 /* In general, assignments with virtual operands are not useful
5273 for deriving ranges, with the obvious exception of calls to
5274 builtin functions. */
5275 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
5276 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5277 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
5278 && ((is_gimple_call (stmt
)
5279 && gimple_call_fndecl (stmt
) != NULL_TREE
5280 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt
)))
5281 || ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
)))
5284 else if (gimple_code (stmt
) == GIMPLE_COND
5285 || gimple_code (stmt
) == GIMPLE_SWITCH
)
5292 /* Initialize local data structures for VRP. */
5295 vrp_initialize (void)
5299 vr_value
= XCNEWVEC (value_range_t
*, num_ssa_names
);
5300 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
5304 gimple_stmt_iterator si
;
5306 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
5308 gimple phi
= gsi_stmt (si
);
5309 if (!stmt_interesting_for_vrp (phi
))
5311 tree lhs
= PHI_RESULT (phi
);
5312 set_value_range_to_varying (get_value_range (lhs
));
5313 prop_set_simulate_again (phi
, false);
5316 prop_set_simulate_again (phi
, true);
5319 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5321 gimple stmt
= gsi_stmt (si
);
5323 if (!stmt_interesting_for_vrp (stmt
))
5327 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
5328 set_value_range_to_varying (get_value_range (def
));
5329 prop_set_simulate_again (stmt
, false);
5333 prop_set_simulate_again (stmt
, true);
5340 /* Visit assignment STMT. If it produces an interesting range, record
5341 the SSA name in *OUTPUT_P. */
5343 static enum ssa_prop_result
5344 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
5348 enum gimple_code code
= gimple_code (stmt
);
5349 lhs
= gimple_get_lhs (stmt
);
5351 /* We only keep track of ranges in integral and pointer types. */
5352 if (TREE_CODE (lhs
) == SSA_NAME
5353 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5354 /* It is valid to have NULL MIN/MAX values on a type. See
5355 build_range_type. */
5356 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
5357 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
5358 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
5361 value_range_t new_vr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
5363 if (code
== GIMPLE_CALL
)
5364 extract_range_basic (&new_vr
, stmt
);
5366 extract_range_from_assignment (&new_vr
, stmt
);
5368 /* If STMT is inside a loop, we may be able to know something
5369 else about the range of LHS by examining scalar evolution
5371 if (current_loops
&& (l
= loop_containing_stmt (stmt
)))
5372 adjust_range_with_scev (&new_vr
, l
, stmt
, lhs
);
5374 if (update_value_range (lhs
, &new_vr
))
5378 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5380 fprintf (dump_file
, "Found new range for ");
5381 print_generic_expr (dump_file
, lhs
, 0);
5382 fprintf (dump_file
, ": ");
5383 dump_value_range (dump_file
, &new_vr
);
5384 fprintf (dump_file
, "\n\n");
5387 if (new_vr
.type
== VR_VARYING
)
5388 return SSA_PROP_VARYING
;
5390 return SSA_PROP_INTERESTING
;
5393 return SSA_PROP_NOT_INTERESTING
;
5396 /* Every other statement produces no useful ranges. */
5397 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
5398 set_value_range_to_varying (get_value_range (def
));
5400 return SSA_PROP_VARYING
;
5403 /* Helper that gets the value range of the SSA_NAME with version I
5404 or a symbolic range containing the SSA_NAME only if the value range
5405 is varying or undefined. */
5407 static inline value_range_t
5408 get_vr_for_comparison (int i
)
5410 value_range_t vr
= *(vr_value
[i
]);
5412 /* If name N_i does not have a valid range, use N_i as its own
5413 range. This allows us to compare against names that may
5414 have N_i in their ranges. */
5415 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
5418 vr
.min
= ssa_name (i
);
5419 vr
.max
= ssa_name (i
);
5425 /* Compare all the value ranges for names equivalent to VAR with VAL
5426 using comparison code COMP. Return the same value returned by
5427 compare_range_with_value, including the setting of
5428 *STRICT_OVERFLOW_P. */
5431 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
5432 bool *strict_overflow_p
)
5438 int used_strict_overflow
;
5440 value_range_t equiv_vr
;
5442 /* Get the set of equivalences for VAR. */
5443 e
= get_value_range (var
)->equiv
;
5445 /* Start at -1. Set it to 0 if we do a comparison without relying
5446 on overflow, or 1 if all comparisons rely on overflow. */
5447 used_strict_overflow
= -1;
5449 /* Compare vars' value range with val. */
5450 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
5452 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5454 used_strict_overflow
= sop
? 1 : 0;
5456 /* If the equiv set is empty we have done all work we need to do. */
5460 && used_strict_overflow
> 0)
5461 *strict_overflow_p
= true;
5465 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
5467 equiv_vr
= get_vr_for_comparison (i
);
5469 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5472 /* If we get different answers from different members
5473 of the equivalence set this check must be in a dead
5474 code region. Folding it to a trap representation
5475 would be correct here. For now just return don't-know. */
5485 used_strict_overflow
= 0;
5486 else if (used_strict_overflow
< 0)
5487 used_strict_overflow
= 1;
5492 && used_strict_overflow
> 0)
5493 *strict_overflow_p
= true;
5499 /* Given a comparison code COMP and names N1 and N2, compare all the
5500 ranges equivalent to N1 against all the ranges equivalent to N2
5501 to determine the value of N1 COMP N2. Return the same value
5502 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5503 whether we relied on an overflow infinity in the comparison. */
5507 compare_names (enum tree_code comp
, tree n1
, tree n2
,
5508 bool *strict_overflow_p
)
5512 bitmap_iterator bi1
, bi2
;
5514 int used_strict_overflow
;
5515 static bitmap_obstack
*s_obstack
= NULL
;
5516 static bitmap s_e1
= NULL
, s_e2
= NULL
;
5518 /* Compare the ranges of every name equivalent to N1 against the
5519 ranges of every name equivalent to N2. */
5520 e1
= get_value_range (n1
)->equiv
;
5521 e2
= get_value_range (n2
)->equiv
;
5523 /* Use the fake bitmaps if e1 or e2 are not available. */
5524 if (s_obstack
== NULL
)
5526 s_obstack
= XNEW (bitmap_obstack
);
5527 bitmap_obstack_initialize (s_obstack
);
5528 s_e1
= BITMAP_ALLOC (s_obstack
);
5529 s_e2
= BITMAP_ALLOC (s_obstack
);
5536 /* Add N1 and N2 to their own set of equivalences to avoid
5537 duplicating the body of the loop just to check N1 and N2
5539 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
5540 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
5542 /* If the equivalence sets have a common intersection, then the two
5543 names can be compared without checking their ranges. */
5544 if (bitmap_intersect_p (e1
, e2
))
5546 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5547 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5549 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
5551 : boolean_false_node
;
5554 /* Start at -1. Set it to 0 if we do a comparison without relying
5555 on overflow, or 1 if all comparisons rely on overflow. */
5556 used_strict_overflow
= -1;
5558 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5559 N2 to their own set of equivalences to avoid duplicating the body
5560 of the loop just to check N1 and N2 ranges. */
5561 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
5563 value_range_t vr1
= get_vr_for_comparison (i1
);
5565 t
= retval
= NULL_TREE
;
5566 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
5570 value_range_t vr2
= get_vr_for_comparison (i2
);
5572 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
5575 /* If we get different answers from different members
5576 of the equivalence set this check must be in a dead
5577 code region. Folding it to a trap representation
5578 would be correct here. For now just return don't-know. */
5582 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5583 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5589 used_strict_overflow
= 0;
5590 else if (used_strict_overflow
< 0)
5591 used_strict_overflow
= 1;
5597 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5598 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5599 if (used_strict_overflow
> 0)
5600 *strict_overflow_p
= true;
5605 /* None of the equivalent ranges are useful in computing this
5607 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5608 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5612 /* Helper function for vrp_evaluate_conditional_warnv. */
5615 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
5617 bool * strict_overflow_p
)
5619 value_range_t
*vr0
, *vr1
;
5621 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
5622 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
5625 return compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
5626 else if (vr0
&& vr1
== NULL
)
5627 return compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
5628 else if (vr0
== NULL
&& vr1
)
5629 return (compare_range_with_value
5630 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
5634 /* Helper function for vrp_evaluate_conditional_warnv. */
5637 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
5638 tree op1
, bool use_equiv_p
,
5639 bool *strict_overflow_p
, bool *only_ranges
)
5643 *only_ranges
= true;
5645 /* We only deal with integral and pointer types. */
5646 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
5647 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
5653 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
5654 (code
, op0
, op1
, strict_overflow_p
)))
5656 *only_ranges
= false;
5657 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
5658 return compare_names (code
, op0
, op1
, strict_overflow_p
);
5659 else if (TREE_CODE (op0
) == SSA_NAME
)
5660 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
5661 else if (TREE_CODE (op1
) == SSA_NAME
)
5662 return (compare_name_with_value
5663 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
5666 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
5671 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5672 information. Return NULL if the conditional can not be evaluated.
5673 The ranges of all the names equivalent with the operands in COND
5674 will be used when trying to compute the value. If the result is
5675 based on undefined signed overflow, issue a warning if
5679 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
5686 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
5691 enum warn_strict_overflow_code wc
;
5692 const char* warnmsg
;
5694 if (is_gimple_min_invariant (ret
))
5696 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
5697 warnmsg
= G_("assuming signed overflow does not occur when "
5698 "simplifying conditional to constant");
5702 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
5703 warnmsg
= G_("assuming signed overflow does not occur when "
5704 "simplifying conditional");
5707 if (issue_strict_overflow_warning (wc
))
5709 location_t location
;
5711 if (!gimple_has_location (stmt
))
5712 location
= input_location
;
5714 location
= gimple_location (stmt
);
5715 warning (OPT_Wstrict_overflow
, "%H%s", &location
, warnmsg
);
5719 if (warn_type_limits
5720 && ret
&& only_ranges
5721 && TREE_CODE_CLASS (code
) == tcc_comparison
5722 && TREE_CODE (op0
) == SSA_NAME
)
5724 /* If the comparison is being folded and the operand on the LHS
5725 is being compared against a constant value that is outside of
5726 the natural range of OP0's type, then the predicate will
5727 always fold regardless of the value of OP0. If -Wtype-limits
5728 was specified, emit a warning. */
5729 const char *warnmsg
= NULL
;
5730 tree type
= TREE_TYPE (op0
);
5731 value_range_t
*vr0
= get_value_range (op0
);
5733 if (vr0
->type
!= VR_VARYING
5734 && INTEGRAL_TYPE_P (type
)
5735 && vrp_val_is_min (vr0
->min
)
5736 && vrp_val_is_max (vr0
->max
)
5737 && is_gimple_min_invariant (op1
))
5739 if (integer_zerop (ret
))
5740 warnmsg
= G_("comparison always false due to limited range of "
5743 warnmsg
= G_("comparison always true due to limited range of "
5749 location_t location
;
5751 if (!gimple_has_location (stmt
))
5752 location
= input_location
;
5754 location
= gimple_location (stmt
);
5756 warning (OPT_Wtype_limits
, "%H%s", &location
, warnmsg
);
5764 /* Visit conditional statement STMT. If we can determine which edge
5765 will be taken out of STMT's basic block, record it in
5766 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5767 SSA_PROP_VARYING. */
5769 static enum ssa_prop_result
5770 vrp_visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
5775 *taken_edge_p
= NULL
;
5777 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5782 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
5783 print_gimple_stmt (dump_file
, stmt
, 0, 0);
5784 fprintf (dump_file
, "\nWith known ranges\n");
5786 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
5788 fprintf (dump_file
, "\t");
5789 print_generic_expr (dump_file
, use
, 0);
5790 fprintf (dump_file
, ": ");
5791 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
5794 fprintf (dump_file
, "\n");
5797 /* Compute the value of the predicate COND by checking the known
5798 ranges of each of its operands.
5800 Note that we cannot evaluate all the equivalent ranges here
5801 because those ranges may not yet be final and with the current
5802 propagation strategy, we cannot determine when the value ranges
5803 of the names in the equivalence set have changed.
5805 For instance, given the following code fragment
5809 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5813 Assume that on the first visit to i_14, i_5 has the temporary
5814 range [8, 8] because the second argument to the PHI function is
5815 not yet executable. We derive the range ~[0, 0] for i_14 and the
5816 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5817 the first time, since i_14 is equivalent to the range [8, 8], we
5818 determine that the predicate is always false.
5820 On the next round of propagation, i_13 is determined to be
5821 VARYING, which causes i_5 to drop down to VARYING. So, another
5822 visit to i_14 is scheduled. In this second visit, we compute the
5823 exact same range and equivalence set for i_14, namely ~[0, 0] and
5824 { i_5 }. But we did not have the previous range for i_5
5825 registered, so vrp_visit_assignment thinks that the range for
5826 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5827 is not visited again, which stops propagation from visiting
5828 statements in the THEN clause of that if().
5830 To properly fix this we would need to keep the previous range
5831 value for the names in the equivalence set. This way we would've
5832 discovered that from one visit to the other i_5 changed from
5833 range [8, 8] to VR_VARYING.
5835 However, fixing this apparent limitation may not be worth the
5836 additional checking. Testing on several code bases (GCC, DLV,
5837 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5838 4 more predicates folded in SPEC. */
5841 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
5842 gimple_cond_lhs (stmt
),
5843 gimple_cond_rhs (stmt
),
5848 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
5851 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5853 "\nIgnoring predicate evaluation because "
5854 "it assumes that signed overflow is undefined");
5859 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5861 fprintf (dump_file
, "\nPredicate evaluates to: ");
5862 if (val
== NULL_TREE
)
5863 fprintf (dump_file
, "DON'T KNOW\n");
5865 print_generic_stmt (dump_file
, val
, 0);
5868 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
5871 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5872 that includes the value VAL. The search is restricted to the range
5873 [START_IDX, n - 1] where n is the size of VEC.
5875 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5878 If there is no CASE_LABEL for VAL and the is one that is larger than VAL,
5879 it is placed in IDX and false is returned.
5881 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5885 find_case_label_index (gimple stmt
, size_t start_idx
, tree val
, size_t *idx
)
5887 size_t n
= gimple_switch_num_labels (stmt
);
5890 /* Find case label for minimum of the value range or the next one.
5891 At each iteration we are searching in [low, high - 1]. */
5893 for (low
= start_idx
, high
= n
; high
!= low
; )
5897 /* Note that i != high, so we never ask for n. */
5898 size_t i
= (high
+ low
) / 2;
5899 t
= gimple_switch_label (stmt
, i
);
5901 /* Cache the result of comparing CASE_LOW and val. */
5902 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
5906 /* Ranges cannot be empty. */
5915 if (CASE_HIGH (t
) != NULL
5916 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
5928 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5929 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5930 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5931 then MAX_IDX < MIN_IDX.
5932 Returns true if the default label is not needed. */
5935 find_case_label_range (gimple stmt
, tree min
, tree max
, size_t *min_idx
,
5939 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
5940 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
5944 && max_take_default
)
5946 /* Only the default case label reached.
5947 Return an empty range. */
5954 bool take_default
= min_take_default
|| max_take_default
;
5958 if (max_take_default
)
5961 /* If the case label range is continuous, we do not need
5962 the default case label. Verify that. */
5963 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
5964 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
5965 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
5966 for (k
= i
+ 1; k
<= j
; ++k
)
5968 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
5969 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
, 0)))
5971 take_default
= true;
5975 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
5976 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
5981 return !take_default
;
5985 /* Visit switch statement STMT. If we can determine which edge
5986 will be taken out of STMT's basic block, record it in
5987 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5988 SSA_PROP_VARYING. */
5990 static enum ssa_prop_result
5991 vrp_visit_switch_stmt (gimple stmt
, edge
*taken_edge_p
)
5995 size_t i
= 0, j
= 0, n
;
5998 *taken_edge_p
= NULL
;
5999 op
= gimple_switch_index (stmt
);
6000 if (TREE_CODE (op
) != SSA_NAME
)
6001 return SSA_PROP_VARYING
;
6003 vr
= get_value_range (op
);
6004 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6006 fprintf (dump_file
, "\nVisiting switch expression with operand ");
6007 print_generic_expr (dump_file
, op
, 0);
6008 fprintf (dump_file
, " with known range ");
6009 dump_value_range (dump_file
, vr
);
6010 fprintf (dump_file
, "\n");
6013 if (vr
->type
!= VR_RANGE
6014 || symbolic_range_p (vr
))
6015 return SSA_PROP_VARYING
;
6017 /* Find the single edge that is taken from the switch expression. */
6018 n
= gimple_switch_num_labels (stmt
);
6020 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
6022 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6026 gcc_assert (take_default
);
6027 val
= gimple_switch_default_label (stmt
);
6031 /* Check if labels with index i to j and maybe the default label
6032 are all reaching the same label. */
6034 val
= gimple_switch_label (stmt
, i
);
6036 && CASE_LABEL (gimple_switch_default_label (stmt
))
6037 != CASE_LABEL (val
))
6039 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6040 fprintf (dump_file
, " not a single destination for this "
6042 return SSA_PROP_VARYING
;
6044 for (++i
; i
<= j
; ++i
)
6046 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
6048 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6049 fprintf (dump_file
, " not a single destination for this "
6051 return SSA_PROP_VARYING
;
6056 *taken_edge_p
= find_edge (gimple_bb (stmt
),
6057 label_to_block (CASE_LABEL (val
)));
6059 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6061 fprintf (dump_file
, " will take edge to ");
6062 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
6065 return SSA_PROP_INTERESTING
;
6069 /* Evaluate statement STMT. If the statement produces a useful range,
6070 return SSA_PROP_INTERESTING and record the SSA name with the
6071 interesting range into *OUTPUT_P.
6073 If STMT is a conditional branch and we can determine its truth
6074 value, the taken edge is recorded in *TAKEN_EDGE_P.
6076 If STMT produces a varying value, return SSA_PROP_VARYING. */
6078 static enum ssa_prop_result
6079 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
6084 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6086 fprintf (dump_file
, "\nVisiting statement:\n");
6087 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
6088 fprintf (dump_file
, "\n");
6091 if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6093 /* In general, assignments with virtual operands are not useful
6094 for deriving ranges, with the obvious exception of calls to
6095 builtin functions. */
6097 if ((is_gimple_call (stmt
)
6098 && gimple_call_fndecl (stmt
) != NULL_TREE
6099 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt
)))
6100 || ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
))
6101 return vrp_visit_assignment_or_call (stmt
, output_p
);
6103 else if (gimple_code (stmt
) == GIMPLE_COND
)
6104 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
6105 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
6106 return vrp_visit_switch_stmt (stmt
, taken_edge_p
);
6108 /* All other statements produce nothing of interest for VRP, so mark
6109 their outputs varying and prevent further simulation. */
6110 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
6111 set_value_range_to_varying (get_value_range (def
));
6113 return SSA_PROP_VARYING
;
6117 /* Meet operation for value ranges. Given two value ranges VR0 and
6118 VR1, store in VR0 a range that contains both VR0 and VR1. This
6119 may not be the smallest possible such range. */
6122 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
6124 if (vr0
->type
== VR_UNDEFINED
)
6126 copy_value_range (vr0
, vr1
);
6130 if (vr1
->type
== VR_UNDEFINED
)
6132 /* Nothing to do. VR0 already has the resulting range. */
6136 if (vr0
->type
== VR_VARYING
)
6138 /* Nothing to do. VR0 already has the resulting range. */
6142 if (vr1
->type
== VR_VARYING
)
6144 set_value_range_to_varying (vr0
);
6148 if (vr0
->type
== VR_RANGE
&& vr1
->type
== VR_RANGE
)
6153 /* Compute the convex hull of the ranges. The lower limit of
6154 the new range is the minimum of the two ranges. If they
6155 cannot be compared, then give up. */
6156 cmp
= compare_values (vr0
->min
, vr1
->min
);
6157 if (cmp
== 0 || cmp
== 1)
6164 /* Similarly, the upper limit of the new range is the maximum
6165 of the two ranges. If they cannot be compared, then
6167 cmp
= compare_values (vr0
->max
, vr1
->max
);
6168 if (cmp
== 0 || cmp
== -1)
6175 /* Check for useless ranges. */
6176 if (INTEGRAL_TYPE_P (TREE_TYPE (min
))
6177 && ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
6178 && (vrp_val_is_max (max
) || is_overflow_infinity (max
))))
6181 /* The resulting set of equivalences is the intersection of
6183 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6184 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6185 else if (vr0
->equiv
&& !vr1
->equiv
)
6186 bitmap_clear (vr0
->equiv
);
6188 set_value_range (vr0
, vr0
->type
, min
, max
, vr0
->equiv
);
6190 else if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
6192 /* Two anti-ranges meet only if their complements intersect.
6193 Only handle the case of identical ranges. */
6194 if (compare_values (vr0
->min
, vr1
->min
) == 0
6195 && compare_values (vr0
->max
, vr1
->max
) == 0
6196 && compare_values (vr0
->min
, vr0
->max
) == 0)
6198 /* The resulting set of equivalences is the intersection of
6200 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6201 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6202 else if (vr0
->equiv
&& !vr1
->equiv
)
6203 bitmap_clear (vr0
->equiv
);
6208 else if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
6210 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6211 only handle the case where the ranges have an empty intersection.
6212 The result of the meet operation is the anti-range. */
6213 if (!symbolic_range_p (vr0
)
6214 && !symbolic_range_p (vr1
)
6215 && !value_ranges_intersect_p (vr0
, vr1
))
6217 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6218 set. We need to compute the intersection of the two
6219 equivalence sets. */
6220 if (vr1
->type
== VR_ANTI_RANGE
)
6221 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr0
->equiv
);
6223 /* The resulting set of equivalences is the intersection of
6225 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6226 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6227 else if (vr0
->equiv
&& !vr1
->equiv
)
6228 bitmap_clear (vr0
->equiv
);
6239 /* Failed to find an efficient meet. Before giving up and setting
6240 the result to VARYING, see if we can at least derive a useful
6241 anti-range. FIXME, all this nonsense about distinguishing
6242 anti-ranges from ranges is necessary because of the odd
6243 semantics of range_includes_zero_p and friends. */
6244 if (!symbolic_range_p (vr0
)
6245 && ((vr0
->type
== VR_RANGE
&& !range_includes_zero_p (vr0
))
6246 || (vr0
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr0
)))
6247 && !symbolic_range_p (vr1
)
6248 && ((vr1
->type
== VR_RANGE
&& !range_includes_zero_p (vr1
))
6249 || (vr1
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr1
))))
6251 set_value_range_to_nonnull (vr0
, TREE_TYPE (vr0
->min
));
6253 /* Since this meet operation did not result from the meeting of
6254 two equivalent names, VR0 cannot have any equivalences. */
6256 bitmap_clear (vr0
->equiv
);
6259 set_value_range_to_varying (vr0
);
6263 /* Visit all arguments for PHI node PHI that flow through executable
6264 edges. If a valid value range can be derived from all the incoming
6265 value ranges, set a new range for the LHS of PHI. */
6267 static enum ssa_prop_result
6268 vrp_visit_phi_node (gimple phi
)
6271 tree lhs
= PHI_RESULT (phi
);
6272 value_range_t
*lhs_vr
= get_value_range (lhs
);
6273 value_range_t vr_result
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6274 int edges
, old_edges
;
6276 copy_value_range (&vr_result
, lhs_vr
);
6278 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6280 fprintf (dump_file
, "\nVisiting PHI node: ");
6281 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
6285 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
6287 edge e
= gimple_phi_arg_edge (phi
, i
);
6289 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6292 "\n Argument #%d (%d -> %d %sexecutable)\n",
6293 (int) i
, e
->src
->index
, e
->dest
->index
,
6294 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
6297 if (e
->flags
& EDGE_EXECUTABLE
)
6299 tree arg
= PHI_ARG_DEF (phi
, i
);
6300 value_range_t vr_arg
;
6304 if (TREE_CODE (arg
) == SSA_NAME
)
6306 vr_arg
= *(get_value_range (arg
));
6310 if (is_overflow_infinity (arg
))
6312 arg
= copy_node (arg
);
6313 TREE_OVERFLOW (arg
) = 0;
6316 vr_arg
.type
= VR_RANGE
;
6319 vr_arg
.equiv
= NULL
;
6322 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6324 fprintf (dump_file
, "\t");
6325 print_generic_expr (dump_file
, arg
, dump_flags
);
6326 fprintf (dump_file
, "\n\tValue: ");
6327 dump_value_range (dump_file
, &vr_arg
);
6328 fprintf (dump_file
, "\n");
6331 vrp_meet (&vr_result
, &vr_arg
);
6333 if (vr_result
.type
== VR_VARYING
)
6338 if (vr_result
.type
== VR_VARYING
)
6341 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
6342 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
6344 /* To prevent infinite iterations in the algorithm, derive ranges
6345 when the new value is slightly bigger or smaller than the
6346 previous one. We don't do this if we have seen a new executable
6347 edge; this helps us avoid an overflow infinity for conditionals
6348 which are not in a loop. */
6349 if (lhs_vr
->type
== VR_RANGE
&& vr_result
.type
== VR_RANGE
6350 && edges
<= old_edges
)
6352 if (!POINTER_TYPE_P (TREE_TYPE (lhs
)))
6354 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
6355 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
6357 /* If the new minimum is smaller or larger than the previous
6358 one, go all the way to -INF. In the first case, to avoid
6359 iterating millions of times to reach -INF, and in the
6360 other case to avoid infinite bouncing between different
6362 if (cmp_min
> 0 || cmp_min
< 0)
6364 /* If we will end up with a (-INF, +INF) range, set it to
6365 VARYING. Same if the previous max value was invalid for
6366 the type and we'd end up with vr_result.min > vr_result.max. */
6367 if (vrp_val_is_max (vr_result
.max
)
6368 || compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
)),
6372 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.min
))
6373 || !vrp_var_may_overflow (lhs
, phi
))
6374 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
6375 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.min
)))
6377 negative_overflow_infinity (TREE_TYPE (vr_result
.min
));
6382 /* Similarly, if the new maximum is smaller or larger than
6383 the previous one, go all the way to +INF. */
6384 if (cmp_max
< 0 || cmp_max
> 0)
6386 /* If we will end up with a (-INF, +INF) range, set it to
6387 VARYING. Same if the previous min value was invalid for
6388 the type and we'd end up with vr_result.max < vr_result.min. */
6389 if (vrp_val_is_min (vr_result
.min
)
6390 || compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
)),
6394 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.max
))
6395 || !vrp_var_may_overflow (lhs
, phi
))
6396 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
6397 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.max
)))
6399 positive_overflow_infinity (TREE_TYPE (vr_result
.max
));
6406 /* If the new range is different than the previous value, keep
6408 if (update_value_range (lhs
, &vr_result
))
6409 return SSA_PROP_INTERESTING
;
6411 /* Nothing changed, don't add outgoing edges. */
6412 return SSA_PROP_NOT_INTERESTING
;
6414 /* No match found. Set the LHS to VARYING. */
6416 set_value_range_to_varying (lhs_vr
);
6417 return SSA_PROP_VARYING
;
6420 /* Simplify boolean operations if the source is known
6421 to be already a boolean. */
6423 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
6425 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6430 bool need_conversion
;
6432 op0
= gimple_assign_rhs1 (stmt
);
6433 if (TYPE_PRECISION (TREE_TYPE (op0
)) != 1)
6435 if (TREE_CODE (op0
) != SSA_NAME
)
6437 vr
= get_value_range (op0
);
6439 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6440 if (!val
|| !integer_onep (val
))
6443 val
= compare_range_with_value (LE_EXPR
, vr
, integer_one_node
, &sop
);
6444 if (!val
|| !integer_onep (val
))
6448 if (rhs_code
== TRUTH_NOT_EXPR
)
6451 op1
= build_int_cst (TREE_TYPE (op0
), 1);
6455 op1
= gimple_assign_rhs2 (stmt
);
6457 /* Reduce number of cases to handle. */
6458 if (is_gimple_min_invariant (op1
))
6460 /* Exclude anything that should have been already folded. */
6461 if (rhs_code
!= EQ_EXPR
6462 && rhs_code
!= NE_EXPR
6463 && rhs_code
!= TRUTH_XOR_EXPR
)
6466 if (!integer_zerop (op1
)
6467 && !integer_onep (op1
)
6468 && !integer_all_onesp (op1
))
6471 /* Limit the number of cases we have to consider. */
6472 if (rhs_code
== EQ_EXPR
)
6475 op1
= fold_unary (TRUTH_NOT_EXPR
, TREE_TYPE (op1
), op1
);
6480 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6481 if (rhs_code
== EQ_EXPR
)
6484 if (TYPE_PRECISION (TREE_TYPE (op1
)) != 1)
6486 vr
= get_value_range (op1
);
6487 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6488 if (!val
|| !integer_onep (val
))
6491 val
= compare_range_with_value (LE_EXPR
, vr
, integer_one_node
, &sop
);
6492 if (!val
|| !integer_onep (val
))
6498 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6500 location_t location
;
6502 if (!gimple_has_location (stmt
))
6503 location
= input_location
;
6505 location
= gimple_location (stmt
);
6507 if (rhs_code
== TRUTH_AND_EXPR
|| rhs_code
== TRUTH_OR_EXPR
)
6508 warning_at (location
, OPT_Wstrict_overflow
,
6509 _("assuming signed overflow does not occur when "
6510 "simplifying && or || to & or |"));
6512 warning_at (location
, OPT_Wstrict_overflow
,
6513 _("assuming signed overflow does not occur when "
6514 "simplifying ==, != or ! to identity or ^"));
6518 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt
)),
6521 /* Make sure to not sign-extend -1 as a boolean value. */
6523 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
6524 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1)
6529 case TRUTH_AND_EXPR
:
6530 rhs_code
= BIT_AND_EXPR
;
6533 rhs_code
= BIT_IOR_EXPR
;
6535 case TRUTH_XOR_EXPR
:
6537 if (integer_zerop (op1
))
6539 gimple_assign_set_rhs_with_ops (gsi
,
6540 need_conversion
? NOP_EXPR
: SSA_NAME
,
6542 update_stmt (gsi_stmt (*gsi
));
6546 rhs_code
= BIT_XOR_EXPR
;
6552 if (need_conversion
)
6555 gimple_assign_set_rhs_with_ops (gsi
, rhs_code
, op0
, op1
);
6556 update_stmt (gsi_stmt (*gsi
));
6560 /* Simplify a division or modulo operator to a right shift or
6561 bitwise and if the first operand is unsigned or is greater
6562 than zero and the second operand is an exact power of two. */
6565 simplify_div_or_mod_using_ranges (gimple stmt
)
6567 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6569 tree op0
= gimple_assign_rhs1 (stmt
);
6570 tree op1
= gimple_assign_rhs2 (stmt
);
6571 value_range_t
*vr
= get_value_range (gimple_assign_rhs1 (stmt
));
6573 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
6575 val
= integer_one_node
;
6581 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6585 && integer_onep (val
)
6586 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6588 location_t location
;
6590 if (!gimple_has_location (stmt
))
6591 location
= input_location
;
6593 location
= gimple_location (stmt
);
6594 warning (OPT_Wstrict_overflow
,
6595 ("%Hassuming signed overflow does not occur when "
6596 "simplifying / or %% to >> or &"),
6601 if (val
&& integer_onep (val
))
6605 if (rhs_code
== TRUNC_DIV_EXPR
)
6607 t
= build_int_cst (NULL_TREE
, tree_log2 (op1
));
6608 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
6609 gimple_assign_set_rhs1 (stmt
, op0
);
6610 gimple_assign_set_rhs2 (stmt
, t
);
6614 t
= build_int_cst (TREE_TYPE (op1
), 1);
6615 t
= int_const_binop (MINUS_EXPR
, op1
, t
, 0);
6616 t
= fold_convert (TREE_TYPE (op0
), t
);
6618 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
6619 gimple_assign_set_rhs1 (stmt
, op0
);
6620 gimple_assign_set_rhs2 (stmt
, t
);
6630 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6631 ABS_EXPR. If the operand is <= 0, then simplify the
6632 ABS_EXPR into a NEGATE_EXPR. */
6635 simplify_abs_using_ranges (gimple stmt
)
6638 tree op
= gimple_assign_rhs1 (stmt
);
6639 tree type
= TREE_TYPE (op
);
6640 value_range_t
*vr
= get_value_range (op
);
6642 if (TYPE_UNSIGNED (type
))
6644 val
= integer_zero_node
;
6650 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
6654 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
6659 if (integer_zerop (val
))
6660 val
= integer_one_node
;
6661 else if (integer_onep (val
))
6662 val
= integer_zero_node
;
6667 && (integer_onep (val
) || integer_zerop (val
)))
6669 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6671 location_t location
;
6673 if (!gimple_has_location (stmt
))
6674 location
= input_location
;
6676 location
= gimple_location (stmt
);
6677 warning (OPT_Wstrict_overflow
,
6678 ("%Hassuming signed overflow does not occur when "
6679 "simplifying abs (X) to X or -X"),
6683 gimple_assign_set_rhs1 (stmt
, op
);
6684 if (integer_onep (val
))
6685 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
6687 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
6696 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6697 a known value range VR.
6699 If there is one and only one value which will satisfy the
6700 conditional, then return that value. Else return NULL. */
6703 test_for_singularity (enum tree_code cond_code
, tree op0
,
6704 tree op1
, value_range_t
*vr
)
6709 /* Extract minimum/maximum values which satisfy the
6710 the conditional as it was written. */
6711 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
6713 /* This should not be negative infinity; there is no overflow
6715 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
6718 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
6720 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
6721 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
6723 TREE_NO_WARNING (max
) = 1;
6726 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
6728 /* This should not be positive infinity; there is no overflow
6730 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
6733 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
6735 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
6736 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
6738 TREE_NO_WARNING (min
) = 1;
6742 /* Now refine the minimum and maximum values using any
6743 value range information we have for op0. */
6746 if (compare_values (vr
->min
, min
) == -1)
6750 if (compare_values (vr
->max
, max
) == 1)
6755 /* If the new min/max values have converged to a single value,
6756 then there is only one value which can satisfy the condition,
6757 return that value. */
6758 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
6764 /* Simplify a conditional using a relational operator to an equality
6765 test if the range information indicates only one value can satisfy
6766 the original conditional. */
6769 simplify_cond_using_ranges (gimple stmt
)
6771 tree op0
= gimple_cond_lhs (stmt
);
6772 tree op1
= gimple_cond_rhs (stmt
);
6773 enum tree_code cond_code
= gimple_cond_code (stmt
);
6775 if (cond_code
!= NE_EXPR
6776 && cond_code
!= EQ_EXPR
6777 && TREE_CODE (op0
) == SSA_NAME
6778 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6779 && is_gimple_min_invariant (op1
))
6781 value_range_t
*vr
= get_value_range (op0
);
6783 /* If we have range information for OP0, then we might be
6784 able to simplify this conditional. */
6785 if (vr
->type
== VR_RANGE
)
6787 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
6793 fprintf (dump_file
, "Simplified relational ");
6794 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6795 fprintf (dump_file
, " into ");
6798 gimple_cond_set_code (stmt
, EQ_EXPR
);
6799 gimple_cond_set_lhs (stmt
, op0
);
6800 gimple_cond_set_rhs (stmt
, new_tree
);
6806 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6807 fprintf (dump_file
, "\n");
6813 /* Try again after inverting the condition. We only deal
6814 with integral types here, so no need to worry about
6815 issues with inverting FP comparisons. */
6816 cond_code
= invert_tree_comparison (cond_code
, false);
6817 new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
6823 fprintf (dump_file
, "Simplified relational ");
6824 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6825 fprintf (dump_file
, " into ");
6828 gimple_cond_set_code (stmt
, NE_EXPR
);
6829 gimple_cond_set_lhs (stmt
, op0
);
6830 gimple_cond_set_rhs (stmt
, new_tree
);
6836 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6837 fprintf (dump_file
, "\n");
6848 /* Simplify a switch statement using the value range of the switch
6852 simplify_switch_using_ranges (gimple stmt
)
6854 tree op
= gimple_switch_index (stmt
);
6859 size_t i
= 0, j
= 0, n
, n2
;
6863 if (TREE_CODE (op
) != SSA_NAME
)
6866 vr
= get_value_range (op
);
6868 /* We can only handle integer ranges. */
6869 if (vr
->type
!= VR_RANGE
6870 || symbolic_range_p (vr
))
6873 /* Find case label for min/max of the value range. */
6874 n
= gimple_switch_num_labels (stmt
);
6875 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
6877 /* Bail out if this is just all edges taken. */
6883 /* Build a new vector of taken case labels. */
6884 vec2
= make_tree_vec (j
- i
+ 1 + (int)take_default
);
6887 /* Add the default edge, if necessary. */
6889 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
6891 for (; i
<= j
; ++i
, ++n2
)
6892 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
6894 /* Mark needed edges. */
6895 for (i
= 0; i
< n2
; ++i
)
6897 e
= find_edge (gimple_bb (stmt
),
6898 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
6899 e
->aux
= (void *)-1;
6902 /* Queue not needed edges for later removal. */
6903 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
6905 if (e
->aux
== (void *)-1)
6911 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6913 fprintf (dump_file
, "removing unreachable case label\n");
6915 VEC_safe_push (edge
, heap
, to_remove_edges
, e
);
6918 /* And queue an update for the stmt. */
6921 VEC_safe_push (switch_update
, heap
, to_update_switch_stmts
, &su
);
6925 /* Simplify STMT using ranges if possible. */
6928 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
6930 gimple stmt
= gsi_stmt (*gsi
);
6931 if (is_gimple_assign (stmt
))
6933 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6939 case TRUTH_NOT_EXPR
:
6940 case TRUTH_AND_EXPR
:
6942 case TRUTH_XOR_EXPR
:
6943 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
6944 or identity if the RHS is zero or one, and the LHS are known
6945 to be boolean values. Transform all TRUTH_*_EXPR into
6946 BIT_*_EXPR if both arguments are known to be boolean values. */
6947 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt
))))
6948 return simplify_truth_ops_using_ranges (gsi
, stmt
);
6951 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6952 and BIT_AND_EXPR respectively if the first operand is greater
6953 than zero and the second operand is an exact power of two. */
6954 case TRUNC_DIV_EXPR
:
6955 case TRUNC_MOD_EXPR
:
6956 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt
)))
6957 && integer_pow2p (gimple_assign_rhs2 (stmt
)))
6958 return simplify_div_or_mod_using_ranges (stmt
);
6961 /* Transform ABS (X) into X or -X as appropriate. */
6963 if (TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
6964 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt
))))
6965 return simplify_abs_using_ranges (stmt
);
6972 else if (gimple_code (stmt
) == GIMPLE_COND
)
6973 return simplify_cond_using_ranges (stmt
);
6974 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
6975 return simplify_switch_using_ranges (stmt
);
6980 /* Stack of dest,src equivalency pairs that need to be restored after
6981 each attempt to thread a block's incoming edge to an outgoing edge.
6983 A NULL entry is used to mark the end of pairs which need to be
6985 static VEC(tree
,heap
) *stack
;
6987 /* A trivial wrapper so that we can present the generic jump threading
6988 code with a simple API for simplifying statements. STMT is the
6989 statement we want to simplify, WITHIN_STMT provides the location
6990 for any overflow warnings. */
6993 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
6995 /* We only use VRP information to simplify conditionals. This is
6996 overly conservative, but it's unclear if doing more would be
6997 worth the compile time cost. */
6998 if (gimple_code (stmt
) != GIMPLE_COND
)
7001 return vrp_evaluate_conditional (gimple_cond_code (stmt
),
7002 gimple_cond_lhs (stmt
),
7003 gimple_cond_rhs (stmt
), within_stmt
);
7006 /* Blocks which have more than one predecessor and more than
7007 one successor present jump threading opportunities, i.e.,
7008 when the block is reached from a specific predecessor, we
7009 may be able to determine which of the outgoing edges will
7010 be traversed. When this optimization applies, we are able
7011 to avoid conditionals at runtime and we may expose secondary
7012 optimization opportunities.
7014 This routine is effectively a driver for the generic jump
7015 threading code. It basically just presents the generic code
7016 with edges that may be suitable for jump threading.
7018 Unlike DOM, we do not iterate VRP if jump threading was successful.
7019 While iterating may expose new opportunities for VRP, it is expected
7020 those opportunities would be very limited and the compile time cost
7021 to expose those opportunities would be significant.
7023 As jump threading opportunities are discovered, they are registered
7024 for later realization. */
7027 identify_jump_threads (void)
7034 /* Ugh. When substituting values earlier in this pass we can
7035 wipe the dominance information. So rebuild the dominator
7036 information as we need it within the jump threading code. */
7037 calculate_dominance_info (CDI_DOMINATORS
);
7039 /* We do not allow VRP information to be used for jump threading
7040 across a back edge in the CFG. Otherwise it becomes too
7041 difficult to avoid eliminating loop exit tests. Of course
7042 EDGE_DFS_BACK is not accurate at this time so we have to
7044 mark_dfs_back_edges ();
7046 /* Do not thread across edges we are about to remove. Just marking
7047 them as EDGE_DFS_BACK will do. */
7048 for (i
= 0; VEC_iterate (edge
, to_remove_edges
, i
, e
); ++i
)
7049 e
->flags
|= EDGE_DFS_BACK
;
7051 /* Allocate our unwinder stack to unwind any temporary equivalences
7052 that might be recorded. */
7053 stack
= VEC_alloc (tree
, heap
, 20);
7055 /* To avoid lots of silly node creation, we create a single
7056 conditional and just modify it in-place when attempting to
7058 dummy
= gimple_build_cond (EQ_EXPR
,
7059 integer_zero_node
, integer_zero_node
,
7062 /* Walk through all the blocks finding those which present a
7063 potential jump threading opportunity. We could set this up
7064 as a dominator walker and record data during the walk, but
7065 I doubt it's worth the effort for the classes of jump
7066 threading opportunities we are trying to identify at this
7067 point in compilation. */
7072 /* If the generic jump threading code does not find this block
7073 interesting, then there is nothing to do. */
7074 if (! potentially_threadable_block (bb
))
7077 /* We only care about blocks ending in a COND_EXPR. While there
7078 may be some value in handling SWITCH_EXPR here, I doubt it's
7079 terribly important. */
7080 last
= gsi_stmt (gsi_last_bb (bb
));
7081 if (gimple_code (last
) != GIMPLE_COND
)
7084 /* We're basically looking for any kind of conditional with
7085 integral type arguments. */
7086 if (TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
7087 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
7088 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
7089 || is_gimple_min_invariant (gimple_cond_rhs (last
)))
7090 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last
))))
7094 /* We've got a block with multiple predecessors and multiple
7095 successors which also ends in a suitable conditional. For
7096 each predecessor, see if we can thread it to a specific
7098 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7100 /* Do not thread across back edges or abnormal edges
7102 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
7105 thread_across_edge (dummy
, e
, true, &stack
,
7106 simplify_stmt_for_jump_threading
);
7111 /* We do not actually update the CFG or SSA graphs at this point as
7112 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7113 handle ASSERT_EXPRs gracefully. */
7116 /* We identified all the jump threading opportunities earlier, but could
7117 not transform the CFG at that time. This routine transforms the
7118 CFG and arranges for the dominator tree to be rebuilt if necessary.
7120 Note the SSA graph update will occur during the normal TODO
7121 processing by the pass manager. */
7123 finalize_jump_threads (void)
7125 thread_through_all_blocks (false);
7126 VEC_free (tree
, heap
, stack
);
7130 /* Traverse all the blocks folding conditionals with known ranges. */
7136 prop_value_t
*single_val_range
;
7137 bool do_value_subst_p
;
7141 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
7142 dump_all_value_ranges (dump_file
);
7143 fprintf (dump_file
, "\n");
7146 /* We may have ended with ranges that have exactly one value. Those
7147 values can be substituted as any other copy/const propagated
7148 value using substitute_and_fold. */
7149 single_val_range
= XCNEWVEC (prop_value_t
, num_ssa_names
);
7151 do_value_subst_p
= false;
7152 for (i
= 0; i
< num_ssa_names
; i
++)
7154 && vr_value
[i
]->type
== VR_RANGE
7155 && vr_value
[i
]->min
== vr_value
[i
]->max
)
7157 single_val_range
[i
].value
= vr_value
[i
]->min
;
7158 do_value_subst_p
= true;
7161 if (!do_value_subst_p
)
7163 /* We found no single-valued ranges, don't waste time trying to
7164 do single value substitution in substitute_and_fold. */
7165 free (single_val_range
);
7166 single_val_range
= NULL
;
7169 substitute_and_fold (single_val_range
, true);
7171 if (warn_array_bounds
)
7172 check_all_array_refs ();
7174 /* We must identify jump threading opportunities before we release
7175 the datastructures built by VRP. */
7176 identify_jump_threads ();
7178 /* Free allocated memory. */
7179 for (i
= 0; i
< num_ssa_names
; i
++)
7182 BITMAP_FREE (vr_value
[i
]->equiv
);
7186 free (single_val_range
);
7188 free (vr_phi_edge_counts
);
7190 /* So that we can distinguish between VRP data being available
7191 and not available. */
7193 vr_phi_edge_counts
= NULL
;
7197 /* Main entry point to VRP (Value Range Propagation). This pass is
7198 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7199 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7200 Programming Language Design and Implementation, pp. 67-78, 1995.
7201 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7203 This is essentially an SSA-CCP pass modified to deal with ranges
7204 instead of constants.
7206 While propagating ranges, we may find that two or more SSA name
7207 have equivalent, though distinct ranges. For instance,
7210 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7212 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7216 In the code above, pointer p_5 has range [q_2, q_2], but from the
7217 code we can also determine that p_5 cannot be NULL and, if q_2 had
7218 a non-varying range, p_5's range should also be compatible with it.
7220 These equivalences are created by two expressions: ASSERT_EXPR and
7221 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7222 result of another assertion, then we can use the fact that p_5 and
7223 p_4 are equivalent when evaluating p_5's range.
7225 Together with value ranges, we also propagate these equivalences
7226 between names so that we can take advantage of information from
7227 multiple ranges when doing final replacement. Note that this
7228 equivalency relation is transitive but not symmetric.
7230 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7231 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7232 in contexts where that assertion does not hold (e.g., in line 6).
7234 TODO, the main difference between this pass and Patterson's is that
7235 we do not propagate edge probabilities. We only compute whether
7236 edges can be taken or not. That is, instead of having a spectrum
7237 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7238 DON'T KNOW. In the future, it may be worthwhile to propagate
7239 probabilities to aid branch prediction. */
7248 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
7249 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
7252 insert_range_assertions ();
7254 to_remove_edges
= VEC_alloc (edge
, heap
, 10);
7255 to_update_switch_stmts
= VEC_alloc (switch_update
, heap
, 5);
7258 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
7261 /* ASSERT_EXPRs must be removed before finalizing jump threads
7262 as finalizing jump threads calls the CFG cleanup code which
7263 does not properly handle ASSERT_EXPRs. */
7264 remove_range_assertions ();
7266 /* If we exposed any new variables, go ahead and put them into
7267 SSA form now, before we handle jump threading. This simplifies
7268 interactions between rewriting of _DECL nodes into SSA form
7269 and rewriting SSA_NAME nodes into SSA form after block
7270 duplication and CFG manipulation. */
7271 update_ssa (TODO_update_ssa
);
7273 finalize_jump_threads ();
7275 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7276 CFG in a broken state and requires a cfg_cleanup run. */
7277 for (i
= 0; VEC_iterate (edge
, to_remove_edges
, i
, e
); ++i
)
7279 /* Update SWITCH_EXPR case label vector. */
7280 for (i
= 0; VEC_iterate (switch_update
, to_update_switch_stmts
, i
, su
); ++i
)
7283 size_t n
= TREE_VEC_LENGTH (su
->vec
);
7285 gimple_switch_set_num_labels (su
->stmt
, n
);
7286 for (j
= 0; j
< n
; j
++)
7287 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
7288 /* As we may have replaced the default label with a regular one
7289 make sure to make it a real default label again. This ensures
7290 optimal expansion. */
7291 label
= gimple_switch_default_label (su
->stmt
);
7292 CASE_LOW (label
) = NULL_TREE
;
7293 CASE_HIGH (label
) = NULL_TREE
;
7296 if (VEC_length (edge
, to_remove_edges
) > 0)
7297 free_dominance_info (CDI_DOMINATORS
);
7299 VEC_free (edge
, heap
, to_remove_edges
);
7300 VEC_free (switch_update
, heap
, to_update_switch_stmts
);
7303 loop_optimizer_finalize ();
7310 return flag_tree_vrp
!= 0;
7313 struct gimple_opt_pass pass_vrp
=
7318 gate_vrp
, /* gate */
7319 execute_vrp
, /* execute */
7322 0, /* static_pass_number */
7323 TV_TREE_VRP
, /* tv_id */
7324 PROP_ssa
| PROP_alias
, /* properties_required */
7325 0, /* properties_provided */
7326 0, /* properties_destroyed */
7327 0, /* todo_flags_start */
7332 | TODO_update_ssa
/* todo_flags_finish */