1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 upto RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
170 for (i = 0; i < n; i++)
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
189 #include "coretypes.h"
194 #include "tree-flow.h"
196 #include "tree-data-ref.h"
197 #include "tree-scalar-evolution.h"
198 #include "tree-chrec.h"
200 #include "diagnostic.h"
201 #include "tree-pass.h"
202 #include "tree-affine.h"
203 #include "tree-inline.h"
205 /* The maximum number of iterations between the considered memory
208 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
210 /* Data references (or phi nodes that carry data reference values across
215 /* The reference itself. */
216 struct data_reference
*ref
;
218 /* The statement in that the reference appears. */
221 /* In case that STMT is a phi node, this field is set to the SSA name
222 defined by it in replace_phis_by_defined_names (in order to avoid
223 pointing to phi node that got reallocated in the meantime). */
224 tree name_defined_by_phi
;
226 /* Distance of the reference from the root of the chain (in number of
227 iterations of the loop). */
230 /* Number of iterations offset from the first reference in the component. */
233 /* Number of the reference in a component, in dominance ordering. */
236 /* True if the memory reference is always accessed when the loop is
238 unsigned always_accessed
: 1;
242 DEF_VEC_ALLOC_P (dref
, heap
);
244 /* Type of the chain of the references. */
248 /* The addresses of the references in the chain are constant. */
251 /* There are only loads in the chain. */
254 /* Root of the chain is store, the rest are loads. */
257 /* A combination of two chains. */
261 /* Chains of data references. */
265 /* Type of the chain. */
266 enum chain_type type
;
268 /* For combination chains, the operator and the two chains that are
269 combined, and the type of the result. */
272 struct chain
*ch1
, *ch2
;
274 /* The references in the chain. */
275 VEC(dref
,heap
) *refs
;
277 /* The maximum distance of the reference in the chain from the root. */
280 /* The variables used to copy the value throughout iterations. */
281 VEC(tree
,heap
) *vars
;
283 /* Initializers for the variables. */
284 VEC(tree
,heap
) *inits
;
286 /* True if there is a use of a variable with the maximal distance
287 that comes after the root in the loop. */
288 unsigned has_max_use_after
: 1;
290 /* True if all the memory references in the chain are always accessed. */
291 unsigned all_always_accessed
: 1;
293 /* True if this chain was combined together with some other chain. */
294 unsigned combined
: 1;
298 DEF_VEC_ALLOC_P (chain_p
, heap
);
300 /* Describes the knowledge about the step of the memory references in
305 /* The step is zero. */
308 /* The step is nonzero. */
311 /* The step may or may not be nonzero. */
315 /* Components of the data dependence graph. */
319 /* The references in the component. */
320 VEC(dref
,heap
) *refs
;
322 /* What we know about the step of the references in the component. */
323 enum ref_step_type comp_step
;
325 /* Next component in the list. */
326 struct component
*next
;
329 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
331 static bitmap looparound_phis
;
333 /* Cache used by tree_to_aff_combination_expand. */
335 static struct pointer_map_t
*name_expansions
;
337 /* Dumps data reference REF to FILE. */
339 extern void dump_dref (FILE *, dref
);
341 dump_dref (FILE *file
, dref ref
)
346 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
347 fprintf (file
, " (id %u%s)\n", ref
->pos
,
348 DR_IS_READ (ref
->ref
) ? "" : ", write");
350 fprintf (file
, " offset ");
351 dump_double_int (file
, ref
->offset
, false);
352 fprintf (file
, "\n");
354 fprintf (file
, " distance %u\n", ref
->distance
);
358 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
359 fprintf (file
, " looparound ref\n");
361 fprintf (file
, " combination ref\n");
362 fprintf (file
, " in statement ");
363 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
364 fprintf (file
, "\n");
365 fprintf (file
, " distance %u\n", ref
->distance
);
370 /* Dumps CHAIN to FILE. */
372 extern void dump_chain (FILE *, chain_p
);
374 dump_chain (FILE *file
, chain_p chain
)
377 const char *chain_type
;
384 chain_type
= "Load motion";
388 chain_type
= "Loads-only";
392 chain_type
= "Store-loads";
396 chain_type
= "Combination";
403 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
404 chain
->combined
? " (combined)" : "");
405 if (chain
->type
!= CT_INVARIANT
)
406 fprintf (file
, " max distance %u%s\n", chain
->length
,
407 chain
->has_max_use_after
? "" : ", may reuse first");
409 if (chain
->type
== CT_COMBINATION
)
411 fprintf (file
, " equal to %p %s %p in type ",
412 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
413 (void *) chain
->ch2
);
414 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
415 fprintf (file
, "\n");
420 fprintf (file
, " vars");
421 for (i
= 0; VEC_iterate (tree
, chain
->vars
, i
, var
); i
++)
424 print_generic_expr (file
, var
, TDF_SLIM
);
426 fprintf (file
, "\n");
431 fprintf (file
, " inits");
432 for (i
= 0; VEC_iterate (tree
, chain
->inits
, i
, var
); i
++)
435 print_generic_expr (file
, var
, TDF_SLIM
);
437 fprintf (file
, "\n");
440 fprintf (file
, " references:\n");
441 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
444 fprintf (file
, "\n");
447 /* Dumps CHAINS to FILE. */
449 extern void dump_chains (FILE *, VEC (chain_p
, heap
) *);
451 dump_chains (FILE *file
, VEC (chain_p
, heap
) *chains
)
456 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
457 dump_chain (file
, chain
);
460 /* Dumps COMP to FILE. */
462 extern void dump_component (FILE *, struct component
*);
464 dump_component (FILE *file
, struct component
*comp
)
469 fprintf (file
, "Component%s:\n",
470 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
471 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
473 fprintf (file
, "\n");
476 /* Dumps COMPS to FILE. */
478 extern void dump_components (FILE *, struct component
*);
480 dump_components (FILE *file
, struct component
*comps
)
482 struct component
*comp
;
484 for (comp
= comps
; comp
; comp
= comp
->next
)
485 dump_component (file
, comp
);
488 /* Frees a chain CHAIN. */
491 release_chain (chain_p chain
)
499 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, ref
); i
++)
502 VEC_free (dref
, heap
, chain
->refs
);
503 VEC_free (tree
, heap
, chain
->vars
);
504 VEC_free (tree
, heap
, chain
->inits
);
512 release_chains (VEC (chain_p
, heap
) *chains
)
517 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
518 release_chain (chain
);
519 VEC_free (chain_p
, heap
, chains
);
522 /* Frees a component COMP. */
525 release_component (struct component
*comp
)
527 VEC_free (dref
, heap
, comp
->refs
);
531 /* Frees list of components COMPS. */
534 release_components (struct component
*comps
)
536 struct component
*act
, *next
;
538 for (act
= comps
; act
; act
= next
)
541 release_component (act
);
545 /* Finds a root of tree given by FATHERS containing A, and performs path
549 component_of (unsigned fathers
[], unsigned a
)
553 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
556 for (; a
!= root
; a
= n
)
565 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
566 components, A and B are components to merge. */
569 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
571 unsigned ca
= component_of (fathers
, a
);
572 unsigned cb
= component_of (fathers
, b
);
577 if (sizes
[ca
] < sizes
[cb
])
579 sizes
[cb
] += sizes
[ca
];
584 sizes
[ca
] += sizes
[cb
];
589 /* Returns true if A is a reference that is suitable for predictive commoning
590 in the innermost loop that contains it. REF_STEP is set according to the
591 step of the reference A. */
594 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
596 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
599 || !is_gimple_reg_type (TREE_TYPE (ref
))
600 || tree_could_throw_p (ref
))
603 if (integer_zerop (step
))
604 *ref_step
= RS_INVARIANT
;
605 else if (integer_nonzerop (step
))
606 *ref_step
= RS_NONZERO
;
613 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
616 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
620 tree_to_aff_combination_expand (DR_OFFSET (dr
), sizetype
, offset
,
622 aff_combination_const (&delta
, sizetype
, tree_to_double_int (DR_INIT (dr
)));
623 aff_combination_add (offset
, &delta
);
626 /* Determines number of iterations of the innermost enclosing loop before B
627 refers to exactly the same location as A and stores it to OFF. If A and
628 B do not have the same step, they never meet, or anything else fails,
629 returns false, otherwise returns true. Both A and B are assumed to
630 satisfy suitable_reference_p. */
633 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
636 aff_tree diff
, baseb
, step
;
639 /* Check that both the references access the location in the same type. */
640 typea
= TREE_TYPE (DR_REF (a
));
641 typeb
= TREE_TYPE (DR_REF (b
));
642 if (!useless_type_conversion_p (typeb
, typea
))
645 /* Check whether the base address and the step of both references is the
647 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
648 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
651 if (integer_zerop (DR_STEP (a
)))
653 /* If the references have loop invariant address, check that they access
654 exactly the same location. */
655 *off
= double_int_zero
;
656 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
657 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
660 /* Compare the offsets of the addresses, and check whether the difference
661 is a multiple of step. */
662 aff_combination_dr_offset (a
, &diff
);
663 aff_combination_dr_offset (b
, &baseb
);
664 aff_combination_scale (&baseb
, double_int_minus_one
);
665 aff_combination_add (&diff
, &baseb
);
667 tree_to_aff_combination_expand (DR_STEP (a
), sizetype
,
668 &step
, &name_expansions
);
669 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
672 /* Returns the last basic block in LOOP for that we are sure that
673 it is executed whenever the loop is entered. */
676 last_always_executed_block (struct loop
*loop
)
679 VEC (edge
, heap
) *exits
= get_loop_exit_edges (loop
);
681 basic_block last
= loop
->latch
;
683 for (i
= 0; VEC_iterate (edge
, exits
, i
, ex
); i
++)
684 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
685 VEC_free (edge
, heap
, exits
);
690 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
692 static struct component
*
693 split_data_refs_to_components (struct loop
*loop
,
694 VEC (data_reference_p
, heap
) *datarefs
,
695 VEC (ddr_p
, heap
) *depends
)
697 unsigned i
, n
= VEC_length (data_reference_p
, datarefs
);
698 unsigned ca
, ia
, ib
, bad
;
699 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
700 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
701 struct component
**comps
;
702 struct data_reference
*dr
, *dra
, *drb
;
703 struct data_dependence_relation
*ddr
;
704 struct component
*comp_list
= NULL
, *comp
;
706 basic_block last_always_executed
= last_always_executed_block (loop
);
708 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
712 /* A fake reference for call or asm_expr that may clobber memory;
716 dr
->aux
= (void *) (size_t) i
;
721 /* A component reserved for the "bad" data references. */
725 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
727 enum ref_step_type dummy
;
729 if (!suitable_reference_p (dr
, &dummy
))
731 ia
= (unsigned) (size_t) dr
->aux
;
732 merge_comps (comp_father
, comp_size
, n
, ia
);
736 for (i
= 0; VEC_iterate (ddr_p
, depends
, i
, ddr
); i
++)
738 double_int dummy_off
;
740 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
745 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
746 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
750 bad
= component_of (comp_father
, n
);
752 /* If both A and B are reads, we may ignore unsuitable dependences. */
753 if (DR_IS_READ (dra
) && DR_IS_READ (drb
)
754 && (ia
== bad
|| ib
== bad
755 || !determine_offset (dra
, drb
, &dummy_off
)))
758 merge_comps (comp_father
, comp_size
, ia
, ib
);
761 comps
= XCNEWVEC (struct component
*, n
);
762 bad
= component_of (comp_father
, n
);
763 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
765 ia
= (unsigned) (size_t) dr
->aux
;
766 ca
= component_of (comp_father
, ia
);
773 comp
= XCNEW (struct component
);
774 comp
->refs
= VEC_alloc (dref
, heap
, comp_size
[ca
]);
778 dataref
= XCNEW (struct dref
);
780 dataref
->stmt
= DR_STMT (dr
);
781 dataref
->offset
= double_int_zero
;
782 dataref
->distance
= 0;
784 dataref
->always_accessed
785 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
786 gimple_bb (dataref
->stmt
));
787 dataref
->pos
= VEC_length (dref
, comp
->refs
);
788 VEC_quick_push (dref
, comp
->refs
, dataref
);
791 for (i
= 0; i
< n
; i
++)
796 comp
->next
= comp_list
;
808 /* Returns true if the component COMP satisfies the conditions
809 described in 2) at the beginning of this file. LOOP is the current
813 suitable_component_p (struct loop
*loop
, struct component
*comp
)
817 basic_block ba
, bp
= loop
->header
;
818 bool ok
, has_write
= false;
820 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
822 ba
= gimple_bb (a
->stmt
);
824 if (!just_once_each_iteration_p (loop
, ba
))
827 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
830 if (!DR_IS_READ (a
->ref
))
834 first
= VEC_index (dref
, comp
->refs
, 0);
835 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
837 first
->offset
= double_int_zero
;
839 for (i
= 1; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
841 if (!determine_offset (first
->ref
, a
->ref
, &a
->offset
))
844 #ifdef ENABLE_CHECKING
846 enum ref_step_type a_step
;
847 ok
= suitable_reference_p (a
->ref
, &a_step
);
848 gcc_assert (ok
&& a_step
== comp
->comp_step
);
853 /* If there is a write inside the component, we must know whether the
854 step is nonzero or not -- we would not otherwise be able to recognize
855 whether the value accessed by reads comes from the OFFSET-th iteration
856 or the previous one. */
857 if (has_write
&& comp
->comp_step
== RS_ANY
)
863 /* Check the conditions on references inside each of components COMPS,
864 and remove the unsuitable components from the list. The new list
865 of components is returned. The conditions are described in 2) at
866 the beginning of this file. LOOP is the current loop. */
868 static struct component
*
869 filter_suitable_components (struct loop
*loop
, struct component
*comps
)
871 struct component
**comp
, *act
;
873 for (comp
= &comps
; *comp
; )
876 if (suitable_component_p (loop
, act
))
884 for (i
= 0; VEC_iterate (dref
, act
->refs
, i
, ref
); i
++)
886 release_component (act
);
893 /* Compares two drefs A and B by their offset and position. Callback for
897 order_drefs (const void *a
, const void *b
)
899 const dref
*const da
= (const dref
*) a
;
900 const dref
*const db
= (const dref
*) b
;
901 int offcmp
= double_int_scmp ((*da
)->offset
, (*db
)->offset
);
906 return (*da
)->pos
- (*db
)->pos
;
909 /* Returns root of the CHAIN. */
912 get_chain_root (chain_p chain
)
914 return VEC_index (dref
, chain
->refs
, 0);
917 /* Adds REF to the chain CHAIN. */
920 add_ref_to_chain (chain_p chain
, dref ref
)
922 dref root
= get_chain_root (chain
);
925 gcc_assert (double_int_scmp (root
->offset
, ref
->offset
) <= 0);
926 dist
= double_int_add (ref
->offset
, double_int_neg (root
->offset
));
927 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE
), dist
) <= 0)
932 gcc_assert (double_int_fits_in_uhwi_p (dist
));
934 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
936 ref
->distance
= double_int_to_uhwi (dist
);
938 if (ref
->distance
>= chain
->length
)
940 chain
->length
= ref
->distance
;
941 chain
->has_max_use_after
= false;
944 if (ref
->distance
== chain
->length
945 && ref
->pos
> root
->pos
)
946 chain
->has_max_use_after
= true;
948 chain
->all_always_accessed
&= ref
->always_accessed
;
951 /* Returns the chain for invariant component COMP. */
954 make_invariant_chain (struct component
*comp
)
956 chain_p chain
= XCNEW (struct chain
);
960 chain
->type
= CT_INVARIANT
;
962 chain
->all_always_accessed
= true;
964 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, ref
); i
++)
966 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
967 chain
->all_always_accessed
&= ref
->always_accessed
;
973 /* Make a new chain rooted at REF. */
976 make_rooted_chain (dref ref
)
978 chain_p chain
= XCNEW (struct chain
);
980 chain
->type
= DR_IS_READ (ref
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
982 VEC_safe_push (dref
, heap
, chain
->refs
, ref
);
983 chain
->all_always_accessed
= ref
->always_accessed
;
990 /* Returns true if CHAIN is not trivial. */
993 nontrivial_chain_p (chain_p chain
)
995 return chain
!= NULL
&& VEC_length (dref
, chain
->refs
) > 1;
998 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1002 name_for_ref (dref ref
)
1006 if (is_gimple_assign (ref
->stmt
))
1008 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1009 name
= gimple_assign_lhs (ref
->stmt
);
1011 name
= gimple_assign_rhs1 (ref
->stmt
);
1014 name
= PHI_RESULT (ref
->stmt
);
1016 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1019 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1020 iterations of the innermost enclosing loop). */
1023 valid_initializer_p (struct data_reference
*ref
,
1024 unsigned distance
, struct data_reference
*root
)
1026 aff_tree diff
, base
, step
;
1029 /* Both REF and ROOT must be accessing the same object. */
1030 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1033 /* The initializer is defined outside of loop, hence its address must be
1034 invariant inside the loop. */
1035 gcc_assert (integer_zerop (DR_STEP (ref
)));
1037 /* If the address of the reference is invariant, initializer must access
1038 exactly the same location. */
1039 if (integer_zerop (DR_STEP (root
)))
1040 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1041 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1043 /* Verify that this index of REF is equal to the root's index at
1044 -DISTANCE-th iteration. */
1045 aff_combination_dr_offset (root
, &diff
);
1046 aff_combination_dr_offset (ref
, &base
);
1047 aff_combination_scale (&base
, double_int_minus_one
);
1048 aff_combination_add (&diff
, &base
);
1050 tree_to_aff_combination_expand (DR_STEP (root
), sizetype
, &step
,
1052 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1055 if (!double_int_equal_p (off
, uhwi_to_double_int (distance
)))
1061 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1062 initial value is correct (equal to initial value of REF shifted by one
1063 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1064 is the root of the current chain. */
1067 find_looparound_phi (struct loop
*loop
, dref ref
, dref root
)
1069 tree name
, init
, init_ref
;
1070 gimple phi
= NULL
, init_stmt
;
1071 edge latch
= loop_latch_edge (loop
);
1072 struct data_reference init_dr
;
1073 gimple_stmt_iterator psi
;
1075 if (is_gimple_assign (ref
->stmt
))
1077 if (DR_IS_READ (ref
->ref
))
1078 name
= gimple_assign_lhs (ref
->stmt
);
1080 name
= gimple_assign_rhs1 (ref
->stmt
);
1083 name
= PHI_RESULT (ref
->stmt
);
1087 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1089 phi
= gsi_stmt (psi
);
1090 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1094 if (gsi_end_p (psi
))
1097 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1098 if (TREE_CODE (init
) != SSA_NAME
)
1100 init_stmt
= SSA_NAME_DEF_STMT (init
);
1101 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1103 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1105 init_ref
= gimple_assign_rhs1 (init_stmt
);
1106 if (!REFERENCE_CLASS_P (init_ref
)
1107 && !DECL_P (init_ref
))
1110 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1111 loop enclosing PHI). */
1112 memset (&init_dr
, 0, sizeof (struct data_reference
));
1113 DR_REF (&init_dr
) = init_ref
;
1114 DR_STMT (&init_dr
) = phi
;
1115 if (!dr_analyze_innermost (&init_dr
))
1118 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1124 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1127 insert_looparound_copy (chain_p chain
, dref ref
, gimple phi
)
1129 dref nw
= XCNEW (struct dref
), aref
;
1133 nw
->distance
= ref
->distance
+ 1;
1134 nw
->always_accessed
= 1;
1136 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, aref
); i
++)
1137 if (aref
->distance
>= nw
->distance
)
1139 VEC_safe_insert (dref
, heap
, chain
->refs
, i
, nw
);
1141 if (nw
->distance
> chain
->length
)
1143 chain
->length
= nw
->distance
;
1144 chain
->has_max_use_after
= false;
1148 /* For references in CHAIN that are copied around the LOOP (created previously
1149 by PRE, or by user), add the results of such copies to the chain. This
1150 enables us to remove the copies by unrolling, and may need less registers
1151 (also, it may allow us to combine chains together). */
1154 add_looparound_copies (struct loop
*loop
, chain_p chain
)
1157 dref ref
, root
= get_chain_root (chain
);
1160 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, ref
); i
++)
1162 phi
= find_looparound_phi (loop
, ref
, root
);
1166 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1167 insert_looparound_copy (chain
, ref
, phi
);
1171 /* Find roots of the values and determine distances in the component COMP.
1172 The references are redistributed into CHAINS. LOOP is the current
1176 determine_roots_comp (struct loop
*loop
,
1177 struct component
*comp
,
1178 VEC (chain_p
, heap
) **chains
)
1182 chain_p chain
= NULL
;
1184 /* Invariants are handled specially. */
1185 if (comp
->comp_step
== RS_INVARIANT
)
1187 chain
= make_invariant_chain (comp
);
1188 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1192 qsort (VEC_address (dref
, comp
->refs
), VEC_length (dref
, comp
->refs
),
1193 sizeof (dref
), order_drefs
);
1195 for (i
= 0; VEC_iterate (dref
, comp
->refs
, i
, a
); i
++)
1197 if (!chain
|| !DR_IS_READ (a
->ref
))
1199 if (nontrivial_chain_p (chain
))
1200 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1202 release_chain (chain
);
1203 chain
= make_rooted_chain (a
);
1207 add_ref_to_chain (chain
, a
);
1210 if (nontrivial_chain_p (chain
))
1212 add_looparound_copies (loop
, chain
);
1213 VEC_safe_push (chain_p
, heap
, *chains
, chain
);
1216 release_chain (chain
);
1219 /* Find roots of the values and determine distances in components COMPS, and
1220 separates the references to CHAINS. LOOP is the current loop. */
1223 determine_roots (struct loop
*loop
,
1224 struct component
*comps
, VEC (chain_p
, heap
) **chains
)
1226 struct component
*comp
;
1228 for (comp
= comps
; comp
; comp
= comp
->next
)
1229 determine_roots_comp (loop
, comp
, chains
);
1232 /* Replace the reference in statement STMT with temporary variable
1233 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1234 the reference in the statement. IN_LHS is true if the reference
1235 is in the lhs of STMT, false if it is in rhs. */
1238 replace_ref_with (gimple stmt
, tree new_tree
, bool set
, bool in_lhs
)
1242 gimple_stmt_iterator bsi
, psi
;
1244 if (gimple_code (stmt
) == GIMPLE_PHI
)
1246 gcc_assert (!in_lhs
&& !set
);
1248 val
= PHI_RESULT (stmt
);
1249 bsi
= gsi_after_labels (gimple_bb (stmt
));
1250 psi
= gsi_for_stmt (stmt
);
1251 remove_phi_node (&psi
, false);
1253 /* Turn the phi node into GIMPLE_ASSIGN. */
1254 new_stmt
= gimple_build_assign (val
, new_tree
);
1255 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1259 /* Since the reference is of gimple_reg type, it should only
1260 appear as lhs or rhs of modify statement. */
1261 gcc_assert (is_gimple_assign (stmt
));
1263 bsi
= gsi_for_stmt (stmt
);
1265 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1268 gcc_assert (!in_lhs
);
1269 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1270 stmt
= gsi_stmt (bsi
);
1277 /* We have statement
1281 If OLD is a memory reference, then VAL is gimple_val, and we transform
1287 Otherwise, we are replacing a combination chain,
1288 VAL is the expression that performs the combination, and OLD is an
1289 SSA name. In this case, we transform the assignment to
1296 val
= gimple_assign_lhs (stmt
);
1297 if (TREE_CODE (val
) != SSA_NAME
)
1299 gcc_assert (gimple_assign_copy_p (stmt
));
1300 val
= gimple_assign_rhs1 (stmt
);
1312 val
= gimple_assign_lhs (stmt
);
1315 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1316 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1319 /* Returns the reference to the address of REF in the ITER-th iteration of
1320 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1321 try to preserve the original shape of the reference (not rewrite it
1322 as an indirect ref to the address), to make tree_could_trap_p in
1323 prepare_initializers_chain return false more often. */
1326 ref_at_iteration (struct loop
*loop
, tree ref
, int iter
)
1328 tree idx
, *idx_p
, type
, val
, op0
= NULL_TREE
, ret
;
1332 if (handled_component_p (ref
))
1334 op0
= ref_at_iteration (loop
, TREE_OPERAND (ref
, 0), iter
);
1338 else if (!INDIRECT_REF_P (ref
))
1339 return unshare_expr (ref
);
1341 if (TREE_CODE (ref
) == INDIRECT_REF
)
1343 ret
= build1 (INDIRECT_REF
, TREE_TYPE (ref
), NULL_TREE
);
1344 idx
= TREE_OPERAND (ref
, 0);
1345 idx_p
= &TREE_OPERAND (ret
, 0);
1347 else if (TREE_CODE (ref
) == COMPONENT_REF
)
1349 /* Check that the offset is loop invariant. */
1350 if (TREE_OPERAND (ref
, 2)
1351 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1354 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), op0
,
1355 unshare_expr (TREE_OPERAND (ref
, 1)),
1356 unshare_expr (TREE_OPERAND (ref
, 2)));
1358 else if (TREE_CODE (ref
) == ARRAY_REF
)
1360 /* Check that the lower bound and the step are loop invariant. */
1361 if (TREE_OPERAND (ref
, 2)
1362 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 2)))
1364 if (TREE_OPERAND (ref
, 3)
1365 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (ref
, 3)))
1368 ret
= build4 (ARRAY_REF
, TREE_TYPE (ref
), op0
, NULL_TREE
,
1369 unshare_expr (TREE_OPERAND (ref
, 2)),
1370 unshare_expr (TREE_OPERAND (ref
, 3)));
1371 idx
= TREE_OPERAND (ref
, 1);
1372 idx_p
= &TREE_OPERAND (ret
, 1);
1377 ok
= simple_iv (loop
, loop
, idx
, &iv
, true);
1380 iv
.base
= expand_simple_operations (iv
.base
);
1381 if (integer_zerop (iv
.step
))
1382 *idx_p
= unshare_expr (iv
.base
);
1385 type
= TREE_TYPE (iv
.base
);
1386 if (POINTER_TYPE_P (type
))
1388 val
= fold_build2 (MULT_EXPR
, sizetype
, iv
.step
,
1390 val
= fold_build2 (POINTER_PLUS_EXPR
, type
, iv
.base
, val
);
1394 val
= fold_build2 (MULT_EXPR
, type
, iv
.step
,
1395 build_int_cst_type (type
, iter
));
1396 val
= fold_build2 (PLUS_EXPR
, type
, iv
.base
, val
);
1398 *idx_p
= unshare_expr (val
);
1404 /* Get the initialization expression for the INDEX-th temporary variable
1408 get_init_expr (chain_p chain
, unsigned index
)
1410 if (chain
->type
== CT_COMBINATION
)
1412 tree e1
= get_init_expr (chain
->ch1
, index
);
1413 tree e2
= get_init_expr (chain
->ch2
, index
);
1415 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1418 return VEC_index (tree
, chain
->inits
, index
);
1421 /* Marks all virtual operands of statement STMT for renaming. */
1424 mark_virtual_ops_for_renaming (gimple stmt
)
1429 if (gimple_code (stmt
) == GIMPLE_PHI
)
1431 var
= PHI_RESULT (stmt
);
1432 if (is_gimple_reg (var
))
1435 if (TREE_CODE (var
) == SSA_NAME
)
1436 var
= SSA_NAME_VAR (var
);
1437 mark_sym_for_renaming (var
);
1443 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_ALL_VIRTUALS
)
1445 if (TREE_CODE (var
) == SSA_NAME
)
1446 var
= SSA_NAME_VAR (var
);
1447 mark_sym_for_renaming (var
);
1451 /* Calls mark_virtual_ops_for_renaming for all members of LIST. */
1454 mark_virtual_ops_for_renaming_list (gimple_seq list
)
1456 gimple_stmt_iterator gsi
;
1458 for (gsi
= gsi_start (list
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1459 mark_virtual_ops_for_renaming (gsi_stmt (gsi
));
1462 /* Returns a new temporary variable used for the I-th variable carrying
1463 value of REF. The variable's uid is marked in TMP_VARS. */
1466 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1468 tree type
= TREE_TYPE (ref
);
1469 tree var
= create_tmp_var (type
, get_lsm_tmp_name (ref
, i
));
1471 /* We never access the components of the temporary variable in predictive
1473 if (TREE_CODE (type
) == COMPLEX_TYPE
1474 || TREE_CODE (type
) == VECTOR_TYPE
)
1475 DECL_GIMPLE_REG_P (var
) = 1;
1477 add_referenced_var (var
);
1478 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1482 /* Creates the variables for CHAIN, as well as phi nodes for them and
1483 initialization on entry to LOOP. Uids of the newly created
1484 temporary variables are marked in TMP_VARS. */
1487 initialize_root_vars (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1490 unsigned n
= chain
->length
;
1491 dref root
= get_chain_root (chain
);
1492 bool reuse_first
= !chain
->has_max_use_after
;
1493 tree ref
, init
, var
, next
;
1496 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1498 /* If N == 0, then all the references are within the single iteration. And
1499 since this is an nonempty chain, reuse_first cannot be true. */
1500 gcc_assert (n
> 0 || !reuse_first
);
1502 chain
->vars
= VEC_alloc (tree
, heap
, n
+ 1);
1504 if (chain
->type
== CT_COMBINATION
)
1505 ref
= gimple_assign_lhs (root
->stmt
);
1507 ref
= DR_REF (root
->ref
);
1509 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1511 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1512 VEC_quick_push (tree
, chain
->vars
, var
);
1515 VEC_quick_push (tree
, chain
->vars
, VEC_index (tree
, chain
->vars
, 0));
1517 for (i
= 0; VEC_iterate (tree
, chain
->vars
, i
, var
); i
++)
1518 VEC_replace (tree
, chain
->vars
, i
, make_ssa_name (var
, NULL
));
1520 for (i
= 0; i
< n
; i
++)
1522 var
= VEC_index (tree
, chain
->vars
, i
);
1523 next
= VEC_index (tree
, chain
->vars
, i
+ 1);
1524 init
= get_init_expr (chain
, i
);
1526 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1529 mark_virtual_ops_for_renaming_list (stmts
);
1530 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1533 phi
= create_phi_node (var
, loop
->header
);
1534 SSA_NAME_DEF_STMT (var
) = phi
;
1535 add_phi_arg (phi
, init
, entry
);
1536 add_phi_arg (phi
, next
, latch
);
1540 /* Create the variables and initialization statement for root of chain
1541 CHAIN. Uids of the newly created temporary variables are marked
1545 initialize_root (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1547 dref root
= get_chain_root (chain
);
1548 bool in_lhs
= (chain
->type
== CT_STORE_LOAD
1549 || chain
->type
== CT_COMBINATION
);
1551 initialize_root_vars (loop
, chain
, tmp_vars
);
1552 replace_ref_with (root
->stmt
,
1553 VEC_index (tree
, chain
->vars
, chain
->length
),
1557 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1558 initialization on entry to LOOP if necessary. The ssa name for the variable
1559 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1560 around the loop is created. Uid of the newly created temporary variable
1561 is marked in TMP_VARS. INITS is the list containing the (single)
1565 initialize_root_vars_lm (struct loop
*loop
, dref root
, bool written
,
1566 VEC(tree
, heap
) **vars
, VEC(tree
, heap
) *inits
,
1570 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1573 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1575 /* Find the initializer for the variable, and check that it cannot
1577 init
= VEC_index (tree
, inits
, 0);
1579 *vars
= VEC_alloc (tree
, heap
, written
? 2 : 1);
1580 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1581 VEC_quick_push (tree
, *vars
, var
);
1583 VEC_quick_push (tree
, *vars
, VEC_index (tree
, *vars
, 0));
1585 for (i
= 0; VEC_iterate (tree
, *vars
, i
, var
); i
++)
1586 VEC_replace (tree
, *vars
, i
, make_ssa_name (var
, NULL
));
1588 var
= VEC_index (tree
, *vars
, 0);
1590 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1593 mark_virtual_ops_for_renaming_list (stmts
);
1594 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1599 next
= VEC_index (tree
, *vars
, 1);
1600 phi
= create_phi_node (var
, loop
->header
);
1601 SSA_NAME_DEF_STMT (var
) = phi
;
1602 add_phi_arg (phi
, init
, entry
);
1603 add_phi_arg (phi
, next
, latch
);
1607 gimple init_stmt
= gimple_build_assign (var
, init
);
1608 mark_virtual_ops_for_renaming (init_stmt
);
1609 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1614 /* Execute load motion for references in chain CHAIN. Uids of the newly
1615 created temporary variables are marked in TMP_VARS. */
1618 execute_load_motion (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1620 VEC (tree
, heap
) *vars
;
1622 unsigned n_writes
= 0, ridx
, i
;
1625 gcc_assert (chain
->type
== CT_INVARIANT
);
1626 gcc_assert (!chain
->combined
);
1627 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1628 if (!DR_IS_READ (a
->ref
))
1631 /* If there are no reads in the loop, there is nothing to do. */
1632 if (n_writes
== VEC_length (dref
, chain
->refs
))
1635 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
1636 &vars
, chain
->inits
, tmp_vars
);
1639 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1641 bool is_read
= DR_IS_READ (a
->ref
);
1642 mark_virtual_ops_for_renaming (a
->stmt
);
1644 if (!DR_IS_READ (a
->ref
))
1649 var
= VEC_index (tree
, vars
, 0);
1650 var
= make_ssa_name (SSA_NAME_VAR (var
), NULL
);
1651 VEC_replace (tree
, vars
, 0, var
);
1657 replace_ref_with (a
->stmt
, VEC_index (tree
, vars
, ridx
),
1658 !is_read
, !is_read
);
1661 VEC_free (tree
, heap
, vars
);
1664 /* Returns the single statement in that NAME is used, excepting
1665 the looparound phi nodes contained in one of the chains. If there is no
1666 such statement, or more statements, NULL is returned. */
1669 single_nonlooparound_use (tree name
)
1672 imm_use_iterator it
;
1673 gimple stmt
, ret
= NULL
;
1675 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
1677 stmt
= USE_STMT (use
);
1679 if (gimple_code (stmt
) == GIMPLE_PHI
)
1681 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1682 could not be processed anyway, so just fail for them. */
1683 if (bitmap_bit_p (looparound_phis
,
1684 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
1689 else if (ret
!= NULL
)
1698 /* Remove statement STMT, as well as the chain of assignments in that it is
1702 remove_stmt (gimple stmt
)
1706 gimple_stmt_iterator psi
;
1708 if (gimple_code (stmt
) == GIMPLE_PHI
)
1710 name
= PHI_RESULT (stmt
);
1711 next
= single_nonlooparound_use (name
);
1712 psi
= gsi_for_stmt (stmt
);
1713 remove_phi_node (&psi
, true);
1716 || !gimple_assign_ssa_name_copy_p (next
)
1717 || gimple_assign_rhs1 (next
) != name
)
1725 gimple_stmt_iterator bsi
;
1727 bsi
= gsi_for_stmt (stmt
);
1729 name
= gimple_assign_lhs (stmt
);
1730 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1732 next
= single_nonlooparound_use (name
);
1734 mark_virtual_ops_for_renaming (stmt
);
1735 gsi_remove (&bsi
, true);
1736 release_defs (stmt
);
1739 || !gimple_assign_ssa_name_copy_p (next
)
1740 || gimple_assign_rhs1 (next
) != name
)
1747 /* Perform the predictive commoning optimization for a chain CHAIN.
1748 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1751 execute_pred_commoning_chain (struct loop
*loop
, chain_p chain
,
1758 if (chain
->combined
)
1760 /* For combined chains, just remove the statements that are used to
1761 compute the values of the expression (except for the root one). */
1762 for (i
= 1; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1763 remove_stmt (a
->stmt
);
1767 /* For non-combined chains, set up the variables that hold its value,
1768 and replace the uses of the original references by these
1770 root
= get_chain_root (chain
);
1771 mark_virtual_ops_for_renaming (root
->stmt
);
1773 initialize_root (loop
, chain
, tmp_vars
);
1774 for (i
= 1; VEC_iterate (dref
, chain
->refs
, i
, a
); i
++)
1776 mark_virtual_ops_for_renaming (a
->stmt
);
1777 var
= VEC_index (tree
, chain
->vars
, chain
->length
- a
->distance
);
1778 replace_ref_with (a
->stmt
, var
, false, false);
1783 /* Determines the unroll factor necessary to remove as many temporary variable
1784 copies as possible. CHAINS is the list of chains that will be
1788 determine_unroll_factor (VEC (chain_p
, heap
) *chains
)
1791 unsigned factor
= 1, af
, nfactor
, i
;
1792 unsigned max
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1794 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1796 if (chain
->type
== CT_INVARIANT
|| chain
->combined
)
1799 /* The best unroll factor for this chain is equal to the number of
1800 temporary variables that we create for it. */
1802 if (chain
->has_max_use_after
)
1805 nfactor
= factor
* af
/ gcd (factor
, af
);
1813 /* Perform the predictive commoning optimization for CHAINS.
1814 Uids of the newly created temporary variables are marked in TMP_VARS. */
1817 execute_pred_commoning (struct loop
*loop
, VEC (chain_p
, heap
) *chains
,
1823 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1825 if (chain
->type
== CT_INVARIANT
)
1826 execute_load_motion (loop
, chain
, tmp_vars
);
1828 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
1831 update_ssa (TODO_update_ssa_only_virtuals
);
1834 /* For each reference in CHAINS, if its defining statement is
1835 phi node, record the ssa name that is defined by it. */
1838 replace_phis_by_defined_names (VEC (chain_p
, heap
) *chains
)
1844 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1845 for (j
= 0; VEC_iterate (dref
, chain
->refs
, j
, a
); j
++)
1847 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
1849 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
1855 /* For each reference in CHAINS, if name_defined_by_phi is not
1856 NULL, use it to set the stmt field. */
1859 replace_names_by_phis (VEC (chain_p
, heap
) *chains
)
1865 for (i
= 0; VEC_iterate (chain_p
, chains
, i
, chain
); i
++)
1866 for (j
= 0; VEC_iterate (dref
, chain
->refs
, j
, a
); j
++)
1867 if (a
->stmt
== NULL
)
1869 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
1870 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
1871 a
->name_defined_by_phi
= NULL_TREE
;
1875 /* Wrapper over execute_pred_commoning, to pass it as a callback
1876 to tree_transform_and_unroll_loop. */
1880 VEC (chain_p
, heap
) *chains
;
1885 execute_pred_commoning_cbck (struct loop
*loop
, void *data
)
1887 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
1889 /* Restore phi nodes that were replaced by ssa names before
1890 tree_transform_and_unroll_loop (see detailed description in
1891 tree_predictive_commoning_loop). */
1892 replace_names_by_phis (dta
->chains
);
1893 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
1896 /* Returns true if we can and should unroll LOOP FACTOR times. Number
1897 of iterations of the loop is returned in NITER. */
1900 should_unroll_loop_p (struct loop
*loop
, unsigned factor
,
1901 struct tree_niter_desc
*niter
)
1908 /* Check whether unrolling is possible. We only want to unroll loops
1909 for that we are able to determine number of iterations. We also
1910 want to split the extra iterations of the loop from its end,
1911 therefore we require that the loop has precisely one
1914 exit
= single_dom_exit (loop
);
1918 if (!number_of_iterations_exit (loop
, exit
, niter
, false))
1921 /* And of course, we must be able to duplicate the loop. */
1922 if (!can_duplicate_loop_p (loop
))
1925 /* The final loop should be small enough. */
1926 if (tree_num_loop_insns (loop
, &eni_size_weights
) * factor
1927 > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
))
1933 /* Base NAME and all the names in the chain of phi nodes that use it
1934 on variable VAR. The phi nodes are recognized by being in the copies of
1935 the header of the LOOP. */
1938 base_names_in_chain_on (struct loop
*loop
, tree name
, tree var
)
1941 imm_use_iterator iter
;
1944 SSA_NAME_VAR (name
) = var
;
1949 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
1951 if (gimple_code (stmt
) == GIMPLE_PHI
1952 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
1955 BREAK_FROM_IMM_USE_STMT (iter
);
1961 if (gimple_bb (phi
) == loop
->header
)
1962 e
= loop_latch_edge (loop
);
1964 e
= single_pred_edge (gimple_bb (stmt
));
1966 name
= PHI_RESULT (phi
);
1967 SSA_NAME_VAR (name
) = var
;
1971 /* Given an unrolled LOOP after predictive commoning, remove the
1972 register copies arising from phi nodes by changing the base
1973 variables of SSA names. TMP_VARS is the set of the temporary variables
1974 for those we want to perform this. */
1977 eliminate_temp_copies (struct loop
*loop
, bitmap tmp_vars
)
1981 tree name
, use
, var
;
1982 gimple_stmt_iterator psi
;
1984 e
= loop_latch_edge (loop
);
1985 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1987 phi
= gsi_stmt (psi
);
1988 name
= PHI_RESULT (phi
);
1989 var
= SSA_NAME_VAR (name
);
1990 if (!bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
1992 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1993 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
1995 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1996 stmt
= SSA_NAME_DEF_STMT (use
);
1997 while (gimple_code (stmt
) == GIMPLE_PHI
1998 /* In case we could not unroll the loop enough to eliminate
1999 all copies, we may reach the loop header before the defining
2000 statement (in that case, some register copies will be present
2001 in loop latch in the final code, corresponding to the newly
2002 created looparound phi nodes). */
2003 && gimple_bb (stmt
) != loop
->header
)
2005 gcc_assert (single_pred_p (gimple_bb (stmt
)));
2006 use
= PHI_ARG_DEF (stmt
, 0);
2007 stmt
= SSA_NAME_DEF_STMT (use
);
2010 base_names_in_chain_on (loop
, use
, var
);
2014 /* Returns true if CHAIN is suitable to be combined. */
2017 chain_can_be_combined_p (chain_p chain
)
2019 return (!chain
->combined
2020 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
2023 /* Returns the modify statement that uses NAME. Skips over assignment
2024 statements, NAME is replaced with the actual name used in the returned
2028 find_use_stmt (tree
*name
)
2033 /* Skip over assignments. */
2036 stmt
= single_nonlooparound_use (*name
);
2040 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2043 lhs
= gimple_assign_lhs (stmt
);
2044 if (TREE_CODE (lhs
) != SSA_NAME
)
2047 if (gimple_assign_copy_p (stmt
))
2049 rhs
= gimple_assign_rhs1 (stmt
);
2055 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
2056 == GIMPLE_BINARY_RHS
)
2063 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2066 may_reassociate_p (tree type
, enum tree_code code
)
2068 if (FLOAT_TYPE_P (type
)
2069 && !flag_unsafe_math_optimizations
)
2072 return (commutative_tree_code (code
)
2073 && associative_tree_code (code
));
2076 /* If the operation used in STMT is associative and commutative, go through the
2077 tree of the same operations and returns its root. Distance to the root
2078 is stored in DISTANCE. */
2081 find_associative_operation_root (gimple stmt
, unsigned *distance
)
2085 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2086 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2089 if (!may_reassociate_p (type
, code
))
2094 lhs
= gimple_assign_lhs (stmt
);
2095 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2097 next
= find_use_stmt (&lhs
);
2099 || gimple_assign_rhs_code (next
) != code
)
2111 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2112 is no such statement, returns NULL_TREE. In case the operation used on
2113 NAME1 and NAME2 is associative and commutative, returns the root of the
2114 tree formed by this operation instead of the statement that uses NAME1 or
2118 find_common_use_stmt (tree
*name1
, tree
*name2
)
2120 gimple stmt1
, stmt2
;
2122 stmt1
= find_use_stmt (name1
);
2126 stmt2
= find_use_stmt (name2
);
2133 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2136 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2140 return (stmt1
== stmt2
? stmt1
: NULL
);
2143 /* Checks whether R1 and R2 are combined together using CODE, with the result
2144 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2145 if it is true. If CODE is ERROR_MARK, set these values instead. */
2148 combinable_refs_p (dref r1
, dref r2
,
2149 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2151 enum tree_code acode
;
2157 name1
= name_for_ref (r1
);
2158 name2
= name_for_ref (r2
);
2159 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2161 stmt
= find_common_use_stmt (&name1
, &name2
);
2166 acode
= gimple_assign_rhs_code (stmt
);
2167 aswap
= (!commutative_tree_code (acode
)
2168 && gimple_assign_rhs1 (stmt
) != name1
);
2169 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2171 if (*code
== ERROR_MARK
)
2179 return (*code
== acode
2181 && *rslt_type
== atype
);
2184 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2185 an assignment of the remaining operand. */
2188 remove_name_from_operation (gimple stmt
, tree op
)
2191 gimple_stmt_iterator si
;
2193 gcc_assert (is_gimple_assign (stmt
));
2195 if (gimple_assign_rhs1 (stmt
) == op
)
2196 other_op
= gimple_assign_rhs2 (stmt
);
2198 other_op
= gimple_assign_rhs1 (stmt
);
2200 si
= gsi_for_stmt (stmt
);
2201 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2203 /* We should not have reallocated STMT. */
2204 gcc_assert (gsi_stmt (si
) == stmt
);
2209 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2210 are combined in a single statement, and returns this statement. */
2213 reassociate_to_the_same_stmt (tree name1
, tree name2
)
2215 gimple stmt1
, stmt2
, root1
, root2
, s1
, s2
;
2216 gimple new_stmt
, tmp_stmt
;
2217 tree new_name
, tmp_name
, var
, r1
, r2
;
2218 unsigned dist1
, dist2
;
2219 enum tree_code code
;
2220 tree type
= TREE_TYPE (name1
);
2221 gimple_stmt_iterator bsi
;
2223 stmt1
= find_use_stmt (&name1
);
2224 stmt2
= find_use_stmt (&name2
);
2225 root1
= find_associative_operation_root (stmt1
, &dist1
);
2226 root2
= find_associative_operation_root (stmt2
, &dist2
);
2227 code
= gimple_assign_rhs_code (stmt1
);
2229 gcc_assert (root1
&& root2
&& root1
== root2
2230 && code
== gimple_assign_rhs_code (stmt2
));
2232 /* Find the root of the nearest expression in that both NAME1 and NAME2
2239 while (dist1
> dist2
)
2241 s1
= find_use_stmt (&r1
);
2242 r1
= gimple_assign_lhs (s1
);
2245 while (dist2
> dist1
)
2247 s2
= find_use_stmt (&r2
);
2248 r2
= gimple_assign_lhs (s2
);
2254 s1
= find_use_stmt (&r1
);
2255 r1
= gimple_assign_lhs (s1
);
2256 s2
= find_use_stmt (&r2
);
2257 r2
= gimple_assign_lhs (s2
);
2260 /* Remove NAME1 and NAME2 from the statements in that they are used
2262 remove_name_from_operation (stmt1
, name1
);
2263 remove_name_from_operation (stmt2
, name2
);
2265 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2266 combine it with the rhs of S1. */
2267 var
= create_tmp_var (type
, "predreastmp");
2268 add_referenced_var (var
);
2269 new_name
= make_ssa_name (var
, NULL
);
2270 new_stmt
= gimple_build_assign_with_ops (code
, new_name
, name1
, name2
);
2272 var
= create_tmp_var (type
, "predreastmp");
2273 add_referenced_var (var
);
2274 tmp_name
= make_ssa_name (var
, NULL
);
2276 /* Rhs of S1 may now be either a binary expression with operation
2277 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2278 so that name1 or name2 was removed from it). */
2279 tmp_stmt
= gimple_build_assign_with_ops (gimple_assign_rhs_code (s1
),
2281 gimple_assign_rhs1 (s1
),
2282 gimple_assign_rhs2 (s1
));
2284 bsi
= gsi_for_stmt (s1
);
2285 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2286 s1
= gsi_stmt (bsi
);
2289 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2290 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2295 /* Returns the statement that combines references R1 and R2. In case R1
2296 and R2 are not used in the same statement, but they are used with an
2297 associative and commutative operation in the same expression, reassociate
2298 the expression so that they are used in the same statement. */
2301 stmt_combining_refs (dref r1
, dref r2
)
2303 gimple stmt1
, stmt2
;
2304 tree name1
= name_for_ref (r1
);
2305 tree name2
= name_for_ref (r2
);
2307 stmt1
= find_use_stmt (&name1
);
2308 stmt2
= find_use_stmt (&name2
);
2312 return reassociate_to_the_same_stmt (name1
, name2
);
2315 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2316 description of the new chain is returned, otherwise we return NULL. */
2319 combine_chains (chain_p ch1
, chain_p ch2
)
2322 enum tree_code op
= ERROR_MARK
;
2327 tree rslt_type
= NULL_TREE
;
2331 if (ch1
->length
!= ch2
->length
)
2334 if (VEC_length (dref
, ch1
->refs
) != VEC_length (dref
, ch2
->refs
))
2337 for (i
= 0; (VEC_iterate (dref
, ch1
->refs
, i
, r1
)
2338 && VEC_iterate (dref
, ch2
->refs
, i
, r2
)); i
++)
2340 if (r1
->distance
!= r2
->distance
)
2343 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2354 new_chain
= XCNEW (struct chain
);
2355 new_chain
->type
= CT_COMBINATION
;
2357 new_chain
->ch1
= ch1
;
2358 new_chain
->ch2
= ch2
;
2359 new_chain
->rslt_type
= rslt_type
;
2360 new_chain
->length
= ch1
->length
;
2362 for (i
= 0; (VEC_iterate (dref
, ch1
->refs
, i
, r1
)
2363 && VEC_iterate (dref
, ch2
->refs
, i
, r2
)); i
++)
2365 nw
= XCNEW (struct dref
);
2366 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2367 nw
->distance
= r1
->distance
;
2369 VEC_safe_push (dref
, heap
, new_chain
->refs
, nw
);
2372 new_chain
->has_max_use_after
= false;
2373 root_stmt
= get_chain_root (new_chain
)->stmt
;
2374 for (i
= 1; VEC_iterate (dref
, new_chain
->refs
, i
, nw
); i
++)
2376 if (nw
->distance
== new_chain
->length
2377 && !stmt_dominates_stmt_p (nw
->stmt
, root_stmt
))
2379 new_chain
->has_max_use_after
= true;
2384 ch1
->combined
= true;
2385 ch2
->combined
= true;
2389 /* Try to combine the CHAINS. */
2392 try_combine_chains (VEC (chain_p
, heap
) **chains
)
2395 chain_p ch1
, ch2
, cch
;
2396 VEC (chain_p
, heap
) *worklist
= NULL
;
2398 for (i
= 0; VEC_iterate (chain_p
, *chains
, i
, ch1
); i
++)
2399 if (chain_can_be_combined_p (ch1
))
2400 VEC_safe_push (chain_p
, heap
, worklist
, ch1
);
2402 while (!VEC_empty (chain_p
, worklist
))
2404 ch1
= VEC_pop (chain_p
, worklist
);
2405 if (!chain_can_be_combined_p (ch1
))
2408 for (j
= 0; VEC_iterate (chain_p
, *chains
, j
, ch2
); j
++)
2410 if (!chain_can_be_combined_p (ch2
))
2413 cch
= combine_chains (ch1
, ch2
);
2416 VEC_safe_push (chain_p
, heap
, worklist
, cch
);
2417 VEC_safe_push (chain_p
, heap
, *chains
, cch
);
2424 /* Sets alias information based on data reference DR for REF,
2428 set_alias_info (tree ref
, struct data_reference
*dr
)
2431 tree tag
= DR_SYMBOL_TAG (dr
);
2433 gcc_assert (tag
!= NULL_TREE
);
2435 ref
= get_base_address (ref
);
2436 if (!ref
|| !INDIRECT_REF_P (ref
))
2439 var
= SSA_NAME_VAR (TREE_OPERAND (ref
, 0));
2440 if (var_ann (var
)->symbol_mem_tag
)
2444 new_type_alias (var
, tag
, ref
);
2446 var_ann (var
)->symbol_mem_tag
= tag
;
2449 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2450 impossible because one of these initializers may trap, true otherwise. */
2453 prepare_initializers_chain (struct loop
*loop
, chain_p chain
)
2455 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
2456 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2460 edge entry
= loop_preheader_edge (loop
);
2462 /* Find the initializers for the variables, and check that they cannot
2464 chain
->inits
= VEC_alloc (tree
, heap
, n
);
2465 for (i
= 0; i
< n
; i
++)
2466 VEC_quick_push (tree
, chain
->inits
, NULL_TREE
);
2468 /* If we have replaced some looparound phi nodes, use their initializers
2469 instead of creating our own. */
2470 for (i
= 0; VEC_iterate (dref
, chain
->refs
, i
, laref
); i
++)
2472 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
2475 gcc_assert (laref
->distance
> 0);
2476 VEC_replace (tree
, chain
->inits
, n
- laref
->distance
,
2477 PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
));
2480 for (i
= 0; i
< n
; i
++)
2482 if (VEC_index (tree
, chain
->inits
, i
) != NULL_TREE
)
2485 init
= ref_at_iteration (loop
, DR_REF (dr
), (int) i
- n
);
2489 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
2492 init
= force_gimple_operand (init
, &stmts
, false, NULL_TREE
);
2495 mark_virtual_ops_for_renaming_list (stmts
);
2496 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2498 set_alias_info (init
, dr
);
2500 VEC_replace (tree
, chain
->inits
, i
, init
);
2506 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2507 be used because the initializers might trap. */
2510 prepare_initializers (struct loop
*loop
, VEC (chain_p
, heap
) *chains
)
2515 for (i
= 0; i
< VEC_length (chain_p
, chains
); )
2517 chain
= VEC_index (chain_p
, chains
, i
);
2518 if (prepare_initializers_chain (loop
, chain
))
2522 release_chain (chain
);
2523 VEC_unordered_remove (chain_p
, chains
, i
);
2528 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2532 tree_predictive_commoning_loop (struct loop
*loop
)
2534 VEC (data_reference_p
, heap
) *datarefs
;
2535 VEC (ddr_p
, heap
) *dependences
;
2536 struct component
*components
;
2537 VEC (chain_p
, heap
) *chains
= NULL
;
2538 unsigned unroll_factor
;
2539 struct tree_niter_desc desc
;
2540 bool unroll
= false;
2544 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2545 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
2547 /* Find the data references and split them into components according to their
2548 dependence relations. */
2549 datarefs
= VEC_alloc (data_reference_p
, heap
, 10);
2550 dependences
= VEC_alloc (ddr_p
, heap
, 10);
2551 compute_data_dependences_for_loop (loop
, true, &datarefs
, &dependences
);
2552 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2553 dump_data_dependence_relations (dump_file
, dependences
);
2555 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
2556 free_dependence_relations (dependences
);
2559 free_data_refs (datarefs
);
2563 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2565 fprintf (dump_file
, "Initial state:\n\n");
2566 dump_components (dump_file
, components
);
2569 /* Find the suitable components and split them into chains. */
2570 components
= filter_suitable_components (loop
, components
);
2572 tmp_vars
= BITMAP_ALLOC (NULL
);
2573 looparound_phis
= BITMAP_ALLOC (NULL
);
2574 determine_roots (loop
, components
, &chains
);
2575 release_components (components
);
2579 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2581 "Predictive commoning failed: no suitable chains\n");
2584 prepare_initializers (loop
, chains
);
2586 /* Try to combine the chains that are always worked with together. */
2587 try_combine_chains (&chains
);
2589 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2591 fprintf (dump_file
, "Before commoning:\n\n");
2592 dump_chains (dump_file
, chains
);
2595 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2596 that its number of iterations is divisible by the factor. */
2597 unroll_factor
= determine_unroll_factor (chains
);
2599 unroll
= should_unroll_loop_p (loop
, unroll_factor
, &desc
);
2600 exit
= single_dom_exit (loop
);
2602 /* Execute the predictive commoning transformations, and possibly unroll the
2606 struct epcc_data dta
;
2608 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2609 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
2611 dta
.chains
= chains
;
2612 dta
.tmp_vars
= tmp_vars
;
2614 update_ssa (TODO_update_ssa_only_virtuals
);
2616 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2617 execute_pred_commoning_cbck is called may cause phi nodes to be
2618 reallocated, which is a problem since CHAINS may point to these
2619 statements. To fix this, we store the ssa names defined by the
2620 phi nodes here instead of the phi nodes themselves, and restore
2621 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2622 replace_phis_by_defined_names (chains
);
2624 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
2625 execute_pred_commoning_cbck
, &dta
);
2626 eliminate_temp_copies (loop
, tmp_vars
);
2630 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2632 "Executing predictive commoning without unrolling.\n");
2633 execute_pred_commoning (loop
, chains
, tmp_vars
);
2637 release_chains (chains
);
2638 free_data_refs (datarefs
);
2639 BITMAP_FREE (tmp_vars
);
2640 BITMAP_FREE (looparound_phis
);
2642 free_affine_expand_cache (&name_expansions
);
2647 /* Runs predictive commoning. */
2650 tree_predictive_commoning (void)
2652 bool unrolled
= false;
2657 initialize_original_copy_tables ();
2658 FOR_EACH_LOOP (li
, loop
, LI_ONLY_INNERMOST
)
2659 if (optimize_loop_for_speed_p (loop
))
2661 unrolled
|= tree_predictive_commoning_loop (loop
);
2667 ret
= TODO_cleanup_cfg
;
2669 free_original_copy_tables ();