* loop-iv.c (replace_single_def_regs, replace_in_expr): New static
[official-gcc/alias-decl.git] / gcc / ira-int.h
blob6e66cc495720a3be0c28a7d437ad862f6fac9df5
1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "cfgloop.h"
23 #include "ira.h"
24 #include "alloc-pool.h"
26 /* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
29 #ifdef ENABLE_CHECKING
30 #define ENABLE_IRA_CHECKING
31 #endif
33 #ifdef ENABLE_IRA_CHECKING
34 #define ira_assert(c) gcc_assert (c)
35 #else
36 /* Always define and include C, so that warnings for empty body in an
37 ‘if’ statement and unused variable do not occur. */
38 #define ira_assert(c) ((void)(0 && (c)))
39 #endif
41 /* Compute register frequency from edge frequency FREQ. It is
42 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
43 profile driven feedback is available and the function is never
44 executed, frequency is always equivalent. Otherwise rescale the
45 edge frequency. */
46 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
47 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
48 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
49 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
51 /* All natural loops. */
52 extern struct loops ira_loops;
54 /* A modified value of flag `-fira-verbose' used internally. */
55 extern int internal_flag_ira_verbose;
57 /* Dump file of the allocator if it is not NULL. */
58 extern FILE *ira_dump_file;
60 /* Typedefs for pointers to allocno live range, allocno, and copy of
61 allocnos. */
62 typedef struct ira_allocno_live_range *allocno_live_range_t;
63 typedef struct ira_allocno *ira_allocno_t;
64 typedef struct ira_allocno_copy *ira_copy_t;
66 /* Definition of vector of allocnos and copies. */
67 DEF_VEC_P(ira_allocno_t);
68 DEF_VEC_ALLOC_P(ira_allocno_t, heap);
69 DEF_VEC_P(ira_copy_t);
70 DEF_VEC_ALLOC_P(ira_copy_t, heap);
72 /* Typedef for pointer to the subsequent structure. */
73 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
75 /* In general case, IRA is a regional allocator. The regions are
76 nested and form a tree. Currently regions are natural loops. The
77 following structure describes loop tree node (representing basic
78 block or loop). We need such tree because the loop tree from
79 cfgloop.h is not convenient for the optimization: basic blocks are
80 not a part of the tree from cfgloop.h. We also use the nodes for
81 storing additional information about basic blocks/loops for the
82 register allocation purposes. */
83 struct ira_loop_tree_node
85 /* The node represents basic block if children == NULL. */
86 basic_block bb; /* NULL for loop. */
87 struct loop *loop; /* NULL for BB. */
88 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
89 SUBLOOP_NEXT is always NULL for BBs. */
90 ira_loop_tree_node_t subloop_next, next;
91 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
92 the node. They are NULL for BBs. */
93 ira_loop_tree_node_t subloops, children;
94 /* The node immediately containing given node. */
95 ira_loop_tree_node_t parent;
97 /* Loop level in range [0, ira_loop_tree_height). */
98 int level;
100 /* All the following members are defined only for nodes representing
101 loops. */
103 /* True if the loop was marked for removal from the register
104 allocation. */
105 bool to_remove_p;
107 /* Allocnos in the loop corresponding to their regnos. If it is
108 NULL the loop does not form a separate register allocation region
109 (e.g. because it has abnormal enter/exit edges and we can not put
110 code for register shuffling on the edges if a different
111 allocation is used for a pseudo-register on different sides of
112 the edges). Caps are not in the map (remember we can have more
113 one cap with the same regno in a region). */
114 ira_allocno_t *regno_allocno_map;
116 /* True if there is an entry to given loop not from its parent (or
117 grandparent) basic block. For example, it is possible for two
118 adjacent loops inside another loop. */
119 bool entered_from_non_parent_p;
121 /* Maximal register pressure inside loop for given register class
122 (defined only for the cover classes). */
123 int reg_pressure[N_REG_CLASSES];
125 /* Numbers of allocnos referred or living in the loop node (except
126 for its subloops). */
127 bitmap all_allocnos;
129 /* Numbers of allocnos living at the loop borders. */
130 bitmap border_allocnos;
132 /* Regnos of pseudos modified in the loop node (including its
133 subloops). */
134 bitmap modified_regnos;
136 /* Numbers of copies referred in the corresponding loop. */
137 bitmap local_copies;
140 /* The root of the loop tree corresponding to the all function. */
141 extern ira_loop_tree_node_t ira_loop_tree_root;
143 /* Height of the loop tree. */
144 extern int ira_loop_tree_height;
146 /* All nodes representing basic blocks are referred through the
147 following array. We can not use basic block member `aux' for this
148 because it is used for insertion of insns on edges. */
149 extern ira_loop_tree_node_t ira_bb_nodes;
151 /* Two access macros to the nodes representing basic blocks. */
152 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
153 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
154 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
155 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
157 fprintf (stderr, \
158 "\n%s: %d: error in %s: it is not a block node\n", \
159 __FILE__, __LINE__, __FUNCTION__); \
160 gcc_unreachable (); \
162 _node; }))
163 #else
164 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
165 #endif
167 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
169 /* All nodes representing loops are referred through the following
170 array. */
171 extern ira_loop_tree_node_t ira_loop_nodes;
173 /* Two access macros to the nodes representing loops. */
174 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
175 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
176 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
177 if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
179 fprintf (stderr, \
180 "\n%s: %d: error in %s: it is not a loop node\n", \
181 __FILE__, __LINE__, __FUNCTION__); \
182 gcc_unreachable (); \
184 _node; }))
185 #else
186 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
187 #endif
189 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
193 /* The structure describes program points where a given allocno lives.
194 To save memory we store allocno conflicts only for the same cover
195 class allocnos which is enough to assign hard registers. To find
196 conflicts for other allocnos (e.g. to assign stack memory slot) we
197 use the live ranges. If the live ranges of two allocnos are
198 intersected, the allocnos are in conflict. */
199 struct ira_allocno_live_range
201 /* Allocno whose live range is described by given structure. */
202 ira_allocno_t allocno;
203 /* Program point range. */
204 int start, finish;
205 /* Next structure describing program points where the allocno
206 lives. */
207 allocno_live_range_t next;
208 /* Pointer to structures with the same start/finish. */
209 allocno_live_range_t start_next, finish_next;
212 /* Program points are enumerated by numbers from range
213 0..IRA_MAX_POINT-1. There are approximately two times more program
214 points than insns. Program points are places in the program where
215 liveness info can be changed. In most general case (there are more
216 complicated cases too) some program points correspond to places
217 where input operand dies and other ones correspond to places where
218 output operands are born. */
219 extern int ira_max_point;
221 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
222 live ranges with given start/finish point. */
223 extern allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
225 /* A structure representing an allocno (allocation entity). Allocno
226 represents a pseudo-register in an allocation region. If
227 pseudo-register does not live in a region but it lives in the
228 nested regions, it is represented in the region by special allocno
229 called *cap*. There may be more one cap representing the same
230 pseudo-register in region. It means that the corresponding
231 pseudo-register lives in more one non-intersected subregion. */
232 struct ira_allocno
234 /* The allocno order number starting with 0. Each allocno has an
235 unique number and the number is never changed for the
236 allocno. */
237 int num;
238 /* Regno for allocno or cap. */
239 int regno;
240 /* Mode of the allocno which is the mode of the corresponding
241 pseudo-register. */
242 enum machine_mode mode;
243 /* Hard register assigned to given allocno. Negative value means
244 that memory was allocated to the allocno. During the reload,
245 spilled allocno has value equal to the corresponding stack slot
246 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
247 reload (at this point pseudo-register has only one allocno) which
248 did not get stack slot yet. */
249 int hard_regno;
250 /* Final rtx representation of the allocno. */
251 rtx reg;
252 /* Allocnos with the same regno are linked by the following member.
253 Allocnos corresponding to inner loops are first in the list (it
254 corresponds to depth-first traverse of the loops). */
255 ira_allocno_t next_regno_allocno;
256 /* There may be different allocnos with the same regno in different
257 regions. Allocnos are bound to the corresponding loop tree node.
258 Pseudo-register may have only one regular allocno with given loop
259 tree node but more than one cap (see comments above). */
260 ira_loop_tree_node_t loop_tree_node;
261 /* Accumulated usage references of the allocno. Here and below,
262 word 'accumulated' means info for given region and all nested
263 subregions. In this case, 'accumulated' means sum of references
264 of the corresponding pseudo-register in this region and in all
265 nested subregions recursively. */
266 int nrefs;
267 /* Accumulated frequency of usage of the allocno. */
268 int freq;
269 /* Register class which should be used for allocation for given
270 allocno. NO_REGS means that we should use memory. */
271 enum reg_class cover_class;
272 /* Minimal accumulated and updated costs of usage register of the
273 cover class for the allocno. */
274 int cover_class_cost, updated_cover_class_cost;
275 /* Minimal accumulated, and updated costs of memory for the allocno.
276 At the allocation start, the original and updated costs are
277 equal. The updated cost may be changed after finishing
278 allocation in a region and starting allocation in a subregion.
279 The change reflects the cost of spill/restore code on the
280 subregion border if we assign memory to the pseudo in the
281 subregion. */
282 int memory_cost, updated_memory_cost;
283 /* Accumulated number of points where the allocno lives and there is
284 excess pressure for its class. Excess pressure for a register
285 class at some point means that there are more allocnos of given
286 register class living at the point than number of hard-registers
287 of the class available for the allocation. */
288 int excess_pressure_points_num;
289 /* Copies to other non-conflicting allocnos. The copies can
290 represent move insn or potential move insn usually because of two
291 operand insn constraints. */
292 ira_copy_t allocno_copies;
293 /* It is a allocno (cap) representing given allocno on upper loop tree
294 level. */
295 ira_allocno_t cap;
296 /* It is a link to allocno (cap) on lower loop level represented by
297 given cap. Null if given allocno is not a cap. */
298 ira_allocno_t cap_member;
299 /* Coalesced allocnos form a cyclic list. One allocno given by
300 FIRST_COALESCED_ALLOCNO represents all coalesced allocnos. The
301 list is chained by NEXT_COALESCED_ALLOCNO. */
302 ira_allocno_t first_coalesced_allocno;
303 ira_allocno_t next_coalesced_allocno;
304 /* Pointer to structures describing at what program point the
305 allocno lives. We always maintain the list in such way that *the
306 ranges in the list are not intersected and ordered by decreasing
307 their program points*. */
308 allocno_live_range_t live_ranges;
309 /* Before building conflicts the two member values are
310 correspondingly minimal and maximal points of the accumulated
311 allocno live ranges. After building conflicts the values are
312 correspondingly minimal and maximal conflict ids of allocnos with
313 which given allocno can conflict. */
314 int min, max;
315 /* Vector of accumulated conflicting allocnos with NULL end marker
316 (if CONFLICT_VEC_P is true) or conflict bit vector otherwise.
317 Only allocnos with the same cover class are in the vector or in
318 the bit vector. */
319 void *conflict_allocno_array;
320 /* The unique member value represents given allocno in conflict bit
321 vectors. */
322 int conflict_id;
323 /* Allocated size of the previous array. */
324 unsigned int conflict_allocno_array_size;
325 /* Initial and accumulated hard registers conflicting with this
326 allocno and as a consequences can not be assigned to the allocno.
327 All non-allocatable hard regs and hard regs of cover classes
328 different from given allocno one are included in the sets. */
329 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
330 /* Number of accumulated conflicts in the vector of conflicting
331 allocnos. */
332 int conflict_allocnos_num;
333 /* Accumulated frequency of calls which given allocno
334 intersects. */
335 int call_freq;
336 /* Accumulated number of the intersected calls. */
337 int calls_crossed_num;
338 /* TRUE if the allocno assigned to memory was a destination of
339 removed move (see ira-emit.c) at loop exit because the value of
340 the corresponding pseudo-register is not changed inside the
341 loop. */
342 unsigned int mem_optimized_dest_p : 1;
343 /* TRUE if the corresponding pseudo-register has disjoint live
344 ranges and the other allocnos of the pseudo-register except this
345 one changed REG. */
346 unsigned int somewhere_renamed_p : 1;
347 /* TRUE if allocno with the same REGNO in a subregion has been
348 renamed, in other words, got a new pseudo-register. */
349 unsigned int child_renamed_p : 1;
350 /* During the reload, value TRUE means that we should not reassign a
351 hard register to the allocno got memory earlier. It is set up
352 when we removed memory-memory move insn before each iteration of
353 the reload. */
354 unsigned int dont_reassign_p : 1;
355 #ifdef STACK_REGS
356 /* Set to TRUE if allocno can't be assigned to the stack hard
357 register correspondingly in this region and area including the
358 region and all its subregions recursively. */
359 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
360 #endif
361 /* TRUE value means that there is no sense to spill the allocno
362 during coloring because the spill will result in additional
363 reloads in reload pass. */
364 unsigned int bad_spill_p : 1;
365 /* TRUE value means that the allocno was not removed yet from the
366 conflicting graph during colouring. */
367 unsigned int in_graph_p : 1;
368 /* TRUE if a hard register or memory has been assigned to the
369 allocno. */
370 unsigned int assigned_p : 1;
371 /* TRUE if it is put on the stack to make other allocnos
372 colorable. */
373 unsigned int may_be_spilled_p : 1;
374 /* TRUE if the allocno was removed from the splay tree used to
375 choose allocn for spilling (see ira-color.c::. */
376 unsigned int splay_removed_p : 1;
377 /* TRUE if conflicts for given allocno are represented by vector of
378 pointers to the conflicting allocnos. Otherwise, we use a bit
379 vector where a bit with given index represents allocno with the
380 same number. */
381 unsigned int conflict_vec_p : 1;
382 /* Non NULL if we remove restoring value from given allocno to
383 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
384 allocno value is not changed inside the loop. */
385 ira_allocno_t mem_optimized_dest;
386 /* Array of usage costs (accumulated and the one updated during
387 coloring) for each hard register of the allocno cover class. The
388 member value can be NULL if all costs are the same and equal to
389 COVER_CLASS_COST. For example, the costs of two different hard
390 registers can be different if one hard register is callee-saved
391 and another one is callee-used and the allocno lives through
392 calls. Another example can be case when for some insn the
393 corresponding pseudo-register value should be put in specific
394 register class (e.g. AREG for x86) which is a strict subset of
395 the allocno cover class (GENERAL_REGS for x86). We have updated
396 costs to reflect the situation when the usage cost of a hard
397 register is decreased because the allocno is connected to another
398 allocno by a copy and the another allocno has been assigned to
399 the hard register. */
400 int *hard_reg_costs, *updated_hard_reg_costs;
401 /* Array of decreasing costs (accumulated and the one updated during
402 coloring) for allocnos conflicting with given allocno for hard
403 regno of the allocno cover class. The member value can be NULL
404 if all costs are the same. These costs are used to reflect
405 preferences of other allocnos not assigned yet during assigning
406 to given allocno. */
407 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
408 /* Size (in hard registers) of the same cover class allocnos with
409 TRUE in_graph_p value and conflicting with given allocno during
410 each point of graph coloring. */
411 int left_conflicts_size;
412 /* Number of hard registers of the allocno cover class really
413 available for the allocno allocation. */
414 int available_regs_num;
415 /* Allocnos in a bucket (used in coloring) chained by the following
416 two members. */
417 ira_allocno_t next_bucket_allocno;
418 ira_allocno_t prev_bucket_allocno;
419 /* Used for temporary purposes. */
420 int temp;
423 /* All members of the allocno structures should be accessed only
424 through the following macros. */
425 #define ALLOCNO_NUM(A) ((A)->num)
426 #define ALLOCNO_REGNO(A) ((A)->regno)
427 #define ALLOCNO_REG(A) ((A)->reg)
428 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
429 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
430 #define ALLOCNO_CAP(A) ((A)->cap)
431 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
432 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY(A) ((A)->conflict_allocno_array)
433 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE(A) \
434 ((A)->conflict_allocno_array_size)
435 #define ALLOCNO_CONFLICT_ALLOCNOS_NUM(A) \
436 ((A)->conflict_allocnos_num)
437 #define ALLOCNO_CONFLICT_HARD_REGS(A) ((A)->conflict_hard_regs)
438 #define ALLOCNO_TOTAL_CONFLICT_HARD_REGS(A) ((A)->total_conflict_hard_regs)
439 #define ALLOCNO_NREFS(A) ((A)->nrefs)
440 #define ALLOCNO_FREQ(A) ((A)->freq)
441 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
442 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
443 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
444 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
445 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
446 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
447 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
448 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
449 #ifdef STACK_REGS
450 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
451 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
452 #endif
453 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
454 #define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p)
455 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
456 #define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p)
457 #define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p)
458 #define ALLOCNO_CONFLICT_VEC_P(A) ((A)->conflict_vec_p)
459 #define ALLOCNO_MODE(A) ((A)->mode)
460 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
461 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
462 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
463 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
464 ((A)->conflict_hard_reg_costs)
465 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
466 ((A)->updated_conflict_hard_reg_costs)
467 #define ALLOCNO_LEFT_CONFLICTS_SIZE(A) ((A)->left_conflicts_size)
468 #define ALLOCNO_COVER_CLASS(A) ((A)->cover_class)
469 #define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost)
470 #define ALLOCNO_UPDATED_COVER_CLASS_COST(A) ((A)->updated_cover_class_cost)
471 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
472 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
473 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num)
474 #define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num)
475 #define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno)
476 #define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno)
477 #define ALLOCNO_TEMP(A) ((A)->temp)
478 #define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno)
479 #define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno)
480 #define ALLOCNO_LIVE_RANGES(A) ((A)->live_ranges)
481 #define ALLOCNO_MIN(A) ((A)->min)
482 #define ALLOCNO_MAX(A) ((A)->max)
483 #define ALLOCNO_CONFLICT_ID(A) ((A)->conflict_id)
485 /* Map regno -> allocnos with given regno (see comments for
486 allocno member `next_regno_allocno'). */
487 extern ira_allocno_t *ira_regno_allocno_map;
489 /* Array of references to all allocnos. The order number of the
490 allocno corresponds to the index in the array. Removed allocnos
491 have NULL element value. */
492 extern ira_allocno_t *ira_allocnos;
494 /* Sizes of the previous array. */
495 extern int ira_allocnos_num;
497 /* Map conflict id -> allocno with given conflict id (see comments for
498 allocno member `conflict_id'). */
499 extern ira_allocno_t *ira_conflict_id_allocno_map;
501 /* The following structure represents a copy of two allocnos. The
502 copies represent move insns or potential move insns usually because
503 of two operand insn constraints. To remove register shuffle, we
504 also create copies between allocno which is output of an insn and
505 allocno becoming dead in the insn. */
506 struct ira_allocno_copy
508 /* The unique order number of the copy node starting with 0. */
509 int num;
510 /* Allocnos connected by the copy. The first allocno should have
511 smaller order number than the second one. */
512 ira_allocno_t first, second;
513 /* Execution frequency of the copy. */
514 int freq;
515 bool constraint_p;
516 /* It is a move insn which is an origin of the copy. The member
517 value for the copy representing two operand insn constraints or
518 for the copy created to remove register shuffle is NULL. In last
519 case the copy frequency is smaller than the corresponding insn
520 execution frequency. */
521 rtx insn;
522 /* All copies with the same allocno as FIRST are linked by the two
523 following members. */
524 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
525 /* All copies with the same allocno as SECOND are linked by the two
526 following members. */
527 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
528 /* Region from which given copy is originated. */
529 ira_loop_tree_node_t loop_tree_node;
532 /* Array of references to all copies. The order number of the copy
533 corresponds to the index in the array. Removed copies have NULL
534 element value. */
535 extern ira_copy_t *ira_copies;
537 /* Size of the previous array. */
538 extern int ira_copies_num;
540 /* The following structure describes a stack slot used for spilled
541 pseudo-registers. */
542 struct ira_spilled_reg_stack_slot
544 /* pseudo-registers assigned to the stack slot. */
545 regset_head spilled_regs;
546 /* RTL representation of the stack slot. */
547 rtx mem;
548 /* Size of the stack slot. */
549 unsigned int width;
552 /* The number of elements in the following array. */
553 extern int ira_spilled_reg_stack_slots_num;
555 /* The following array contains info about spilled pseudo-registers
556 stack slots used in current function so far. */
557 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
559 /* Correspondingly overall cost of the allocation, cost of the
560 allocnos assigned to hard-registers, cost of the allocnos assigned
561 to memory, cost of loads, stores and register move insns generated
562 for pseudo-register live range splitting (see ira-emit.c). */
563 extern int ira_overall_cost;
564 extern int ira_reg_cost, ira_mem_cost;
565 extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
566 extern int ira_move_loops_num, ira_additional_jumps_num;
568 /* Map: hard register number -> cover class it belongs to. If the
569 corresponding class is NO_REGS, the hard register is not available
570 for allocation. */
571 extern enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
573 /* Map: register class x machine mode -> number of hard registers of
574 given class needed to store value of given mode. If the number for
575 some hard-registers of the register class is different, the size
576 will be negative. */
577 extern int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
579 /* Maximal value of the previous array elements. */
580 extern int ira_max_nregs;
582 /* The number of bits in each element of array used to implement a bit
583 vector of allocnos and what type that element has. We use the
584 largest integer format on the host machine. */
585 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
586 #define IRA_INT_TYPE HOST_WIDE_INT
588 /* Set, clear or test bit number I in R, a bit vector of elements with
589 minimal index and maximal index equal correspondingly to MIN and
590 MAX. */
591 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
593 #define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
594 (({ int _min = (MIN), _max = (MAX), _i = (I); \
595 if (_i < _min || _i > _max) \
597 fprintf (stderr, \
598 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
599 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
600 gcc_unreachable (); \
602 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
603 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
606 #define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
607 (({ int _min = (MIN), _max = (MAX), _i = (I); \
608 if (_i < _min || _i > _max) \
610 fprintf (stderr, \
611 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
612 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
613 gcc_unreachable (); \
615 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
616 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
618 #define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
619 (({ int _min = (MIN), _max = (MAX), _i = (I); \
620 if (_i < _min || _i > _max) \
622 fprintf (stderr, \
623 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
624 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
625 gcc_unreachable (); \
627 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
628 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
630 #else
632 #define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
633 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
634 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
636 #define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
637 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
638 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
640 #define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
641 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
642 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
644 #endif
646 /* The iterator for allocno set implemented ed as allocno bit
647 vector. */
648 typedef struct {
650 /* Array containing the allocno bit vector. */
651 IRA_INT_TYPE *vec;
653 /* The number of the current element in the vector. */
654 unsigned int word_num;
656 /* The number of bits in the bit vector. */
657 unsigned int nel;
659 /* The current bit index of the bit vector. */
660 unsigned int bit_num;
662 /* Index corresponding to the 1st bit of the bit vector. */
663 int start_val;
665 /* The word of the bit vector currently visited. */
666 unsigned IRA_INT_TYPE word;
667 } ira_allocno_set_iterator;
669 /* Initialize the iterator I for allocnos bit vector VEC containing
670 minimal and maximal values MIN and MAX. */
671 static inline void
672 ira_allocno_set_iter_init (ira_allocno_set_iterator *i,
673 IRA_INT_TYPE *vec, int min, int max)
675 i->vec = vec;
676 i->word_num = 0;
677 i->nel = max < min ? 0 : max - min + 1;
678 i->start_val = min;
679 i->bit_num = 0;
680 i->word = i->nel == 0 ? 0 : vec[0];
683 /* Return TRUE if we have more allocnos to visit, in which case *N is
684 set to the allocno number to be visited. Otherwise, return
685 FALSE. */
686 static inline bool
687 ira_allocno_set_iter_cond (ira_allocno_set_iterator *i, int *n)
689 /* Skip words that are zeros. */
690 for (; i->word == 0; i->word = i->vec[i->word_num])
692 i->word_num++;
693 i->bit_num = i->word_num * IRA_INT_BITS;
695 /* If we have reached the end, break. */
696 if (i->bit_num >= i->nel)
697 return false;
700 /* Skip bits that are zero. */
701 for (; (i->word & 1) == 0; i->word >>= 1)
702 i->bit_num++;
704 *n = (int) i->bit_num + i->start_val;
706 return true;
709 /* Advance to the next allocno in the set. */
710 static inline void
711 ira_allocno_set_iter_next (ira_allocno_set_iterator *i)
713 i->word >>= 1;
714 i->bit_num++;
717 /* Loop over all elements of allocno set given by bit vector VEC and
718 their minimal and maximal values MIN and MAX. In each iteration, N
719 is set to the number of next allocno. ITER is an instance of
720 ira_allocno_set_iterator used to iterate the allocnos in the set. */
721 #define FOR_EACH_ALLOCNO_IN_SET(VEC, MIN, MAX, N, ITER) \
722 for (ira_allocno_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
723 ira_allocno_set_iter_cond (&(ITER), &(N)); \
724 ira_allocno_set_iter_next (&(ITER)))
726 /* ira.c: */
728 /* Map: hard regs X modes -> set of hard registers for storing value
729 of given mode starting with given hard register. */
730 extern HARD_REG_SET ira_reg_mode_hard_regset
731 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
733 /* Arrays analogous to macros MEMORY_MOVE_COST and
734 REGISTER_MOVE_COST. */
735 extern short ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
736 extern move_table *ira_register_move_cost[MAX_MACHINE_MODE];
738 /* Similar to may_move_in_cost but it is calculated in IRA instead of
739 regclass. Another difference we take only available hard registers
740 into account to figure out that one register class is a subset of
741 the another one. */
742 extern move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
744 /* Similar to may_move_out_cost but it is calculated in IRA instead of
745 regclass. Another difference we take only available hard registers
746 into account to figure out that one register class is a subset of
747 the another one. */
748 extern move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
750 /* Register class subset relation: TRUE if the first class is a subset
751 of the second one considering only hard registers available for the
752 allocation. */
753 extern int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
755 /* Array of number of hard registers of given class which are
756 available for the allocation. The order is defined by the
757 allocation order. */
758 extern short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
760 /* The number of elements of the above array for given register
761 class. */
762 extern int ira_class_hard_regs_num[N_REG_CLASSES];
764 /* Index (in ira_class_hard_regs) for given register class and hard
765 register (in general case a hard register can belong to several
766 register classes). The index is negative for hard registers
767 unavailable for the allocation. */
768 extern short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
770 /* Function specific hard registers can not be used for the register
771 allocation. */
772 extern HARD_REG_SET ira_no_alloc_regs;
774 /* Number of given class hard registers available for the register
775 allocation for given classes. */
776 extern int ira_available_class_regs[N_REG_CLASSES];
778 /* Array whose values are hard regset of hard registers available for
779 the allocation of given register class whose HARD_REGNO_MODE_OK
780 values for given mode are zero. */
781 extern HARD_REG_SET prohibited_class_mode_regs
782 [N_REG_CLASSES][NUM_MACHINE_MODES];
784 /* Array whose values are hard regset of hard registers for which
785 move of the hard register in given mode into itself is
786 prohibited. */
787 extern HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
789 /* Number of cover classes. Cover classes is non-intersected register
790 classes containing all hard-registers available for the
791 allocation. */
792 extern int ira_reg_class_cover_size;
794 /* The array containing cover classes (see also comments for macro
795 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
796 used for this. */
797 extern enum reg_class ira_reg_class_cover[N_REG_CLASSES];
799 /* The value is number of elements in the subsequent array. */
800 extern int ira_important_classes_num;
802 /* The array containing non-empty classes (including non-empty cover
803 classes) which are subclasses of cover classes. Such classes is
804 important for calculation of the hard register usage costs. */
805 extern enum reg_class ira_important_classes[N_REG_CLASSES];
807 /* The array containing indexes of important classes in the previous
808 array. The array elements are defined only for important
809 classes. */
810 extern int ira_important_class_nums[N_REG_CLASSES];
812 /* Map of all register classes to corresponding cover class containing
813 the given class. If given class is not a subset of a cover class,
814 we translate it into the cheapest cover class. */
815 extern enum reg_class ira_class_translate[N_REG_CLASSES];
817 /* The biggest important class inside of intersection of the two
818 classes (that is calculated taking only hard registers available
819 for allocation into account). If the both classes contain no hard
820 registers available for allocation, the value is calculated with
821 taking all hard-registers including fixed ones into account. */
822 extern enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
824 /* True if the two classes (that is calculated taking only hard
825 registers available for allocation into account) are
826 intersected. */
827 extern bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
829 /* Classes with end marker LIM_REG_CLASSES which are intersected with
830 given class (the first index). That includes given class itself.
831 This is calculated taking only hard registers available for
832 allocation into account. */
833 extern enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
834 /* The biggest important class inside of union of the two classes
835 (that is calculated taking only hard registers available for
836 allocation into account). If the both classes contain no hard
837 registers available for allocation, the value is calculated with
838 taking all hard-registers including fixed ones into account. In
839 other words, the value is the corresponding reg_class_subunion
840 value. */
841 extern enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
843 extern void *ira_allocate (size_t);
844 extern void *ira_reallocate (void *, size_t);
845 extern void ira_free (void *addr);
846 extern bitmap ira_allocate_bitmap (void);
847 extern void ira_free_bitmap (bitmap);
848 extern void ira_print_disposition (FILE *);
849 extern void ira_debug_disposition (void);
850 extern void ira_debug_class_cover (void);
851 extern void ira_init_register_move_cost (enum machine_mode);
853 /* The length of the two following arrays. */
854 extern int ira_reg_equiv_len;
856 /* The element value is TRUE if the corresponding regno value is
857 invariant. */
858 extern bool *ira_reg_equiv_invariant_p;
860 /* The element value is equiv constant of given pseudo-register or
861 NULL_RTX. */
862 extern rtx *ira_reg_equiv_const;
864 /* ira-build.c */
866 /* The current loop tree node and its regno allocno map. */
867 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
868 extern ira_allocno_t *ira_curr_regno_allocno_map;
870 extern void ira_debug_copy (ira_copy_t);
871 extern void ira_debug_copies (void);
872 extern void ira_debug_allocno_copies (ira_allocno_t);
874 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
875 void (*) (ira_loop_tree_node_t),
876 void (*) (ira_loop_tree_node_t));
877 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
878 extern void ira_set_allocno_cover_class (ira_allocno_t, enum reg_class);
879 extern bool ira_conflict_vector_profitable_p (ira_allocno_t, int);
880 extern void ira_allocate_allocno_conflict_vec (ira_allocno_t, int);
881 extern void ira_allocate_allocno_conflicts (ira_allocno_t, int);
882 extern void ira_add_allocno_conflict (ira_allocno_t, ira_allocno_t);
883 extern void ira_print_expanded_allocno (ira_allocno_t);
884 extern allocno_live_range_t ira_create_allocno_live_range
885 (ira_allocno_t, int, int, allocno_live_range_t);
886 extern allocno_live_range_t ira_copy_allocno_live_range_list
887 (allocno_live_range_t);
888 extern allocno_live_range_t ira_merge_allocno_live_ranges
889 (allocno_live_range_t, allocno_live_range_t);
890 extern bool ira_allocno_live_ranges_intersect_p (allocno_live_range_t,
891 allocno_live_range_t);
892 extern void ira_finish_allocno_live_range (allocno_live_range_t);
893 extern void ira_finish_allocno_live_range_list (allocno_live_range_t);
894 extern void ira_free_allocno_updated_costs (ira_allocno_t);
895 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
896 int, bool, rtx, ira_loop_tree_node_t);
897 extern void ira_add_allocno_copy_to_list (ira_copy_t);
898 extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
899 extern void ira_remove_allocno_copy_from_list (ira_copy_t);
900 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
901 bool, rtx, ira_loop_tree_node_t);
903 extern int *ira_allocate_cost_vector (enum reg_class);
904 extern void ira_free_cost_vector (int *, enum reg_class);
906 extern void ira_flattening (int, int);
907 extern bool ira_build (bool);
908 extern void ira_destroy (void);
910 /* ira-costs.c */
911 extern void ira_init_costs_once (void);
912 extern void ira_init_costs (void);
913 extern void ira_finish_costs_once (void);
914 extern void ira_costs (void);
915 extern void ira_tune_allocno_costs_and_cover_classes (void);
917 /* ira-lives.c */
919 extern void ira_rebuild_start_finish_chains (void);
920 extern void ira_print_live_range_list (FILE *, allocno_live_range_t);
921 extern void ira_debug_live_range_list (allocno_live_range_t);
922 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
923 extern void ira_debug_live_ranges (void);
924 extern void ira_create_allocno_live_ranges (void);
925 extern void ira_compress_allocno_live_ranges (void);
926 extern void ira_finish_allocno_live_ranges (void);
928 /* ira-conflicts.c */
929 extern void ira_debug_conflicts (bool);
930 extern void ira_build_conflicts (void);
932 /* ira-color.c */
933 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
934 extern void ira_reassign_conflict_allocnos (int);
935 extern void ira_initiate_assign (void);
936 extern void ira_finish_assign (void);
937 extern void ira_color (void);
939 /* ira-emit.c */
940 extern void ira_emit (bool);
944 /* The iterator for all allocnos. */
945 typedef struct {
946 /* The number of the current element in IRA_ALLOCNOS. */
947 int n;
948 } ira_allocno_iterator;
950 /* Initialize the iterator I. */
951 static inline void
952 ira_allocno_iter_init (ira_allocno_iterator *i)
954 i->n = 0;
957 /* Return TRUE if we have more allocnos to visit, in which case *A is
958 set to the allocno to be visited. Otherwise, return FALSE. */
959 static inline bool
960 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
962 int n;
964 for (n = i->n; n < ira_allocnos_num; n++)
965 if (ira_allocnos[n] != NULL)
967 *a = ira_allocnos[n];
968 i->n = n + 1;
969 return true;
971 return false;
974 /* Loop over all allocnos. In each iteration, A is set to the next
975 allocno. ITER is an instance of ira_allocno_iterator used to iterate
976 the allocnos. */
977 #define FOR_EACH_ALLOCNO(A, ITER) \
978 for (ira_allocno_iter_init (&(ITER)); \
979 ira_allocno_iter_cond (&(ITER), &(A));)
984 /* The iterator for copies. */
985 typedef struct {
986 /* The number of the current element in IRA_COPIES. */
987 int n;
988 } ira_copy_iterator;
990 /* Initialize the iterator I. */
991 static inline void
992 ira_copy_iter_init (ira_copy_iterator *i)
994 i->n = 0;
997 /* Return TRUE if we have more copies to visit, in which case *CP is
998 set to the copy to be visited. Otherwise, return FALSE. */
999 static inline bool
1000 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1002 int n;
1004 for (n = i->n; n < ira_copies_num; n++)
1005 if (ira_copies[n] != NULL)
1007 *cp = ira_copies[n];
1008 i->n = n + 1;
1009 return true;
1011 return false;
1014 /* Loop over all copies. In each iteration, C is set to the next
1015 copy. ITER is an instance of ira_copy_iterator used to iterate
1016 the copies. */
1017 #define FOR_EACH_COPY(C, ITER) \
1018 for (ira_copy_iter_init (&(ITER)); \
1019 ira_copy_iter_cond (&(ITER), &(C));)
1024 /* The iterator for allocno conflicts. */
1025 typedef struct {
1027 /* TRUE if the conflicts are represented by vector of allocnos. */
1028 bool allocno_conflict_vec_p;
1030 /* The conflict vector or conflict bit vector. */
1031 void *vec;
1033 /* The number of the current element in the vector (of type
1034 ira_allocno_t or IRA_INT_TYPE). */
1035 unsigned int word_num;
1037 /* The bit vector size. It is defined only if
1038 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1039 unsigned int size;
1041 /* The current bit index of bit vector. It is defined only if
1042 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1043 unsigned int bit_num;
1045 /* Allocno conflict id corresponding to the 1st bit of the bit
1046 vector. It is defined only if ALLOCNO_CONFLICT_VEC_P is
1047 FALSE. */
1048 int base_conflict_id;
1050 /* The word of bit vector currently visited. It is defined only if
1051 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1052 unsigned IRA_INT_TYPE word;
1053 } ira_allocno_conflict_iterator;
1055 /* Initialize the iterator I with ALLOCNO conflicts. */
1056 static inline void
1057 ira_allocno_conflict_iter_init (ira_allocno_conflict_iterator *i,
1058 ira_allocno_t allocno)
1060 i->allocno_conflict_vec_p = ALLOCNO_CONFLICT_VEC_P (allocno);
1061 i->vec = ALLOCNO_CONFLICT_ALLOCNO_ARRAY (allocno);
1062 i->word_num = 0;
1063 if (i->allocno_conflict_vec_p)
1064 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1065 else
1067 if (ALLOCNO_MIN (allocno) > ALLOCNO_MAX (allocno))
1068 i->size = 0;
1069 else
1070 i->size = ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno)
1071 + IRA_INT_BITS)
1072 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1073 i->bit_num = 0;
1074 i->base_conflict_id = ALLOCNO_MIN (allocno);
1075 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1079 /* Return TRUE if we have more conflicting allocnos to visit, in which
1080 case *A is set to the allocno to be visited. Otherwise, return
1081 FALSE. */
1082 static inline bool
1083 ira_allocno_conflict_iter_cond (ira_allocno_conflict_iterator *i,
1084 ira_allocno_t *a)
1086 ira_allocno_t conflict_allocno;
1088 if (i->allocno_conflict_vec_p)
1090 conflict_allocno = ((ira_allocno_t *) i->vec)[i->word_num];
1091 if (conflict_allocno == NULL)
1092 return false;
1093 *a = conflict_allocno;
1094 return true;
1096 else
1098 /* Skip words that are zeros. */
1099 for (; i->word == 0; i->word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1101 i->word_num++;
1103 /* If we have reached the end, break. */
1104 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1105 return false;
1107 i->bit_num = i->word_num * IRA_INT_BITS;
1110 /* Skip bits that are zero. */
1111 for (; (i->word & 1) == 0; i->word >>= 1)
1112 i->bit_num++;
1114 *a = ira_conflict_id_allocno_map[i->bit_num + i->base_conflict_id];
1116 return true;
1120 /* Advance to the next conflicting allocno. */
1121 static inline void
1122 ira_allocno_conflict_iter_next (ira_allocno_conflict_iterator *i)
1124 if (i->allocno_conflict_vec_p)
1125 i->word_num++;
1126 else
1128 i->word >>= 1;
1129 i->bit_num++;
1133 /* Loop over all allocnos conflicting with ALLOCNO. In each
1134 iteration, A is set to the next conflicting allocno. ITER is an
1135 instance of ira_allocno_conflict_iterator used to iterate the
1136 conflicts. */
1137 #define FOR_EACH_ALLOCNO_CONFLICT(ALLOCNO, A, ITER) \
1138 for (ira_allocno_conflict_iter_init (&(ITER), (ALLOCNO)); \
1139 ira_allocno_conflict_iter_cond (&(ITER), &(A)); \
1140 ira_allocno_conflict_iter_next (&(ITER)))
1144 /* The function returns TRUE if hard registers starting with
1145 HARD_REGNO and containing value of MODE are not in set
1146 HARD_REGSET. */
1147 static inline bool
1148 ira_hard_reg_not_in_set_p (int hard_regno, enum machine_mode mode,
1149 HARD_REG_SET hard_regset)
1151 int i;
1153 ira_assert (hard_regno >= 0);
1154 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1155 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1156 return false;
1157 return true;
1162 /* To save memory we use a lazy approach for allocation and
1163 initialization of the cost vectors. We do this only when it is
1164 really necessary. */
1166 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1167 initialize the elements by VAL if it is necessary */
1168 static inline void
1169 ira_allocate_and_set_costs (int **vec, enum reg_class cover_class, int val)
1171 int i, *reg_costs;
1172 int len;
1174 if (*vec != NULL)
1175 return;
1176 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1177 len = ira_class_hard_regs_num[cover_class];
1178 for (i = 0; i < len; i++)
1179 reg_costs[i] = val;
1182 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1183 copy values of vector SRC into the vector if it is necessary */
1184 static inline void
1185 ira_allocate_and_copy_costs (int **vec, enum reg_class cover_class, int *src)
1187 int len;
1189 if (*vec != NULL || src == NULL)
1190 return;
1191 *vec = ira_allocate_cost_vector (cover_class);
1192 len = ira_class_hard_regs_num[cover_class];
1193 memcpy (*vec, src, sizeof (int) * len);
1196 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1197 add values of vector SRC into the vector if it is necessary */
1198 static inline void
1199 ira_allocate_and_accumulate_costs (int **vec, enum reg_class cover_class,
1200 int *src)
1202 int i, len;
1204 if (src == NULL)
1205 return;
1206 len = ira_class_hard_regs_num[cover_class];
1207 if (*vec == NULL)
1209 *vec = ira_allocate_cost_vector (cover_class);
1210 memset (*vec, 0, sizeof (int) * len);
1212 for (i = 0; i < len; i++)
1213 (*vec)[i] += src[i];
1216 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1217 copy values of vector SRC into the vector or initialize it by VAL
1218 (if SRC is null). */
1219 static inline void
1220 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class cover_class,
1221 int val, int *src)
1223 int i, *reg_costs;
1224 int len;
1226 if (*vec != NULL)
1227 return;
1228 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1229 len = ira_class_hard_regs_num[cover_class];
1230 if (src != NULL)
1231 memcpy (reg_costs, src, sizeof (int) * len);
1232 else
1234 for (i = 0; i < len; i++)
1235 reg_costs[i] = val;