* h8300.c (asm_file_start): Corrected optimization comment.
[official-gcc/alias-decl.git] / gcc / optabs.c
blob3f17034f0d51de25866143fdc1e9e5ff27f80fd0
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "except.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "libfuncs.h"
39 #include "recog.h"
40 #include "reload.h"
41 #include "ggc.h"
42 #include "real.h"
44 /* Each optab contains info on how this target machine
45 can perform a particular operation
46 for all sizes and kinds of operands.
48 The operation to be performed is often specified
49 by passing one of these optabs as an argument.
51 See expr.h for documentation of these optabs. */
53 optab optab_table[OTI_MAX];
55 rtx libfunc_table[LTI_MAX];
57 /* Tables of patterns for extending one integer mode to another. */
58 enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
60 /* Tables of patterns for converting between fixed and floating point. */
61 enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
62 enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
63 enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
65 /* Contains the optab used for each rtx code. */
66 optab code_to_optab[NUM_RTX_CODE + 1];
68 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
69 gives the gen_function to make a branch to test that condition. */
71 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
73 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
74 gives the insn code to make a store-condition insn
75 to test that condition. */
77 enum insn_code setcc_gen_code[NUM_RTX_CODE];
79 #ifdef HAVE_conditional_move
80 /* Indexed by the machine mode, gives the insn code to make a conditional
81 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
82 setcc_gen_code to cut down on the number of named patterns. Consider a day
83 when a lot more rtx codes are conditional (eg: for the ARM). */
85 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
86 #endif
88 static int add_equal_note PARAMS ((rtx, rtx, enum rtx_code, rtx, rtx));
89 static rtx widen_operand PARAMS ((rtx, enum machine_mode,
90 enum machine_mode, int, int));
91 static int expand_cmplxdiv_straight PARAMS ((rtx, rtx, rtx, rtx,
92 rtx, rtx, enum machine_mode,
93 int, enum optab_methods,
94 enum mode_class, optab));
95 static int expand_cmplxdiv_wide PARAMS ((rtx, rtx, rtx, rtx,
96 rtx, rtx, enum machine_mode,
97 int, enum optab_methods,
98 enum mode_class, optab));
99 static void prepare_cmp_insn PARAMS ((rtx *, rtx *, enum rtx_code *, rtx,
100 enum machine_mode *, int *,
101 enum can_compare_purpose));
102 static enum insn_code can_fix_p PARAMS ((enum machine_mode, enum machine_mode,
103 int, int *));
104 static enum insn_code can_float_p PARAMS ((enum machine_mode,
105 enum machine_mode,
106 int));
107 static rtx ftruncify PARAMS ((rtx));
108 static optab new_optab PARAMS ((void));
109 static inline optab init_optab PARAMS ((enum rtx_code));
110 static inline optab init_optabv PARAMS ((enum rtx_code));
111 static void init_libfuncs PARAMS ((optab, int, int, const char *, int));
112 static void init_integral_libfuncs PARAMS ((optab, const char *, int));
113 static void init_floating_libfuncs PARAMS ((optab, const char *, int));
114 #ifdef HAVE_conditional_trap
115 static void init_traps PARAMS ((void));
116 #endif
117 static void emit_cmp_and_jump_insn_1 PARAMS ((rtx, rtx, enum machine_mode,
118 enum rtx_code, int, rtx));
119 static void prepare_float_lib_cmp PARAMS ((rtx *, rtx *, enum rtx_code *,
120 enum machine_mode *, int *));
121 static rtx expand_vector_binop PARAMS ((enum machine_mode, optab,
122 rtx, rtx, rtx, int,
123 enum optab_methods));
124 static rtx expand_vector_unop PARAMS ((enum machine_mode, optab, rtx, rtx,
125 int));
127 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
128 the result of operation CODE applied to OP0 (and OP1 if it is a binary
129 operation).
131 If the last insn does not set TARGET, don't do anything, but return 1.
133 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
134 don't add the REG_EQUAL note but return 0. Our caller can then try
135 again, ensuring that TARGET is not one of the operands. */
137 static int
138 add_equal_note (insns, target, code, op0, op1)
139 rtx insns;
140 rtx target;
141 enum rtx_code code;
142 rtx op0, op1;
144 rtx last_insn, insn, set;
145 rtx note;
147 if (! insns
148 || ! INSN_P (insns)
149 || NEXT_INSN (insns) == NULL_RTX)
150 abort ();
152 if (GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
153 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
154 return 1;
156 if (GET_CODE (target) == ZERO_EXTRACT)
157 return 1;
159 for (last_insn = insns;
160 NEXT_INSN (last_insn) != NULL_RTX;
161 last_insn = NEXT_INSN (last_insn))
164 set = single_set (last_insn);
165 if (set == NULL_RTX)
166 return 1;
168 if (! rtx_equal_p (SET_DEST (set), target)
169 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
170 SUBREG. */
171 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
172 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
173 target)))
174 return 1;
176 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
177 besides the last insn. */
178 if (reg_overlap_mentioned_p (target, op0)
179 || (op1 && reg_overlap_mentioned_p (target, op1)))
181 insn = PREV_INSN (last_insn);
182 while (insn != NULL_RTX)
184 if (reg_set_p (target, insn))
185 return 0;
187 insn = PREV_INSN (insn);
191 if (GET_RTX_CLASS (code) == '1')
192 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
193 else
194 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
196 set_unique_reg_note (last_insn, REG_EQUAL, note);
198 return 1;
201 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
202 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
203 not actually do a sign-extend or zero-extend, but can leave the
204 higher-order bits of the result rtx undefined, for example, in the case
205 of logical operations, but not right shifts. */
207 static rtx
208 widen_operand (op, mode, oldmode, unsignedp, no_extend)
209 rtx op;
210 enum machine_mode mode, oldmode;
211 int unsignedp;
212 int no_extend;
214 rtx result;
216 /* If we don't have to extend and this is a constant, return it. */
217 if (no_extend && GET_MODE (op) == VOIDmode)
218 return op;
220 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
221 extend since it will be more efficient to do so unless the signedness of
222 a promoted object differs from our extension. */
223 if (! no_extend
224 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
225 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
226 return convert_modes (mode, oldmode, op, unsignedp);
228 /* If MODE is no wider than a single word, we return a paradoxical
229 SUBREG. */
230 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
231 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
233 /* Otherwise, get an object of MODE, clobber it, and set the low-order
234 part to OP. */
236 result = gen_reg_rtx (mode);
237 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
238 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
239 return result;
242 /* Generate code to perform a straightforward complex divide. */
244 static int
245 expand_cmplxdiv_straight (real0, real1, imag0, imag1, realr, imagr, submode,
246 unsignedp, methods, class, binoptab)
247 rtx real0, real1, imag0, imag1, realr, imagr;
248 enum machine_mode submode;
249 int unsignedp;
250 enum optab_methods methods;
251 enum mode_class class;
252 optab binoptab;
254 rtx divisor;
255 rtx real_t, imag_t;
256 rtx temp1, temp2;
257 rtx res;
258 optab this_add_optab = add_optab;
259 optab this_sub_optab = sub_optab;
260 optab this_neg_optab = neg_optab;
261 optab this_mul_optab = smul_optab;
263 if (binoptab == sdivv_optab)
265 this_add_optab = addv_optab;
266 this_sub_optab = subv_optab;
267 this_neg_optab = negv_optab;
268 this_mul_optab = smulv_optab;
271 /* Don't fetch these from memory more than once. */
272 real0 = force_reg (submode, real0);
273 real1 = force_reg (submode, real1);
275 if (imag0 != 0)
276 imag0 = force_reg (submode, imag0);
278 imag1 = force_reg (submode, imag1);
280 /* Divisor: c*c + d*d. */
281 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
282 NULL_RTX, unsignedp, methods);
284 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
285 NULL_RTX, unsignedp, methods);
287 if (temp1 == 0 || temp2 == 0)
288 return 0;
290 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
291 NULL_RTX, unsignedp, methods);
292 if (divisor == 0)
293 return 0;
295 if (imag0 == 0)
297 /* Mathematically, ((a)(c-id))/divisor. */
298 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
300 /* Calculate the dividend. */
301 real_t = expand_binop (submode, this_mul_optab, real0, real1,
302 NULL_RTX, unsignedp, methods);
304 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
305 NULL_RTX, unsignedp, methods);
307 if (real_t == 0 || imag_t == 0)
308 return 0;
310 imag_t = expand_unop (submode, this_neg_optab, imag_t,
311 NULL_RTX, unsignedp);
313 else
315 /* Mathematically, ((a+ib)(c-id))/divider. */
316 /* Calculate the dividend. */
317 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
318 NULL_RTX, unsignedp, methods);
320 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
321 NULL_RTX, unsignedp, methods);
323 if (temp1 == 0 || temp2 == 0)
324 return 0;
326 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
327 NULL_RTX, unsignedp, methods);
329 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
330 NULL_RTX, unsignedp, methods);
332 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
333 NULL_RTX, unsignedp, methods);
335 if (temp1 == 0 || temp2 == 0)
336 return 0;
338 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
339 NULL_RTX, unsignedp, methods);
341 if (real_t == 0 || imag_t == 0)
342 return 0;
345 if (class == MODE_COMPLEX_FLOAT)
346 res = expand_binop (submode, binoptab, real_t, divisor,
347 realr, unsignedp, methods);
348 else
349 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
350 real_t, divisor, realr, unsignedp);
352 if (res == 0)
353 return 0;
355 if (res != realr)
356 emit_move_insn (realr, res);
358 if (class == MODE_COMPLEX_FLOAT)
359 res = expand_binop (submode, binoptab, imag_t, divisor,
360 imagr, unsignedp, methods);
361 else
362 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
363 imag_t, divisor, imagr, unsignedp);
365 if (res == 0)
366 return 0;
368 if (res != imagr)
369 emit_move_insn (imagr, res);
371 return 1;
374 /* Generate code to perform a wide-input-range-acceptable complex divide. */
376 static int
377 expand_cmplxdiv_wide (real0, real1, imag0, imag1, realr, imagr, submode,
378 unsignedp, methods, class, binoptab)
379 rtx real0, real1, imag0, imag1, realr, imagr;
380 enum machine_mode submode;
381 int unsignedp;
382 enum optab_methods methods;
383 enum mode_class class;
384 optab binoptab;
386 rtx ratio, divisor;
387 rtx real_t, imag_t;
388 rtx temp1, temp2, lab1, lab2;
389 enum machine_mode mode;
390 rtx res;
391 optab this_add_optab = add_optab;
392 optab this_sub_optab = sub_optab;
393 optab this_neg_optab = neg_optab;
394 optab this_mul_optab = smul_optab;
396 if (binoptab == sdivv_optab)
398 this_add_optab = addv_optab;
399 this_sub_optab = subv_optab;
400 this_neg_optab = negv_optab;
401 this_mul_optab = smulv_optab;
404 /* Don't fetch these from memory more than once. */
405 real0 = force_reg (submode, real0);
406 real1 = force_reg (submode, real1);
408 if (imag0 != 0)
409 imag0 = force_reg (submode, imag0);
411 imag1 = force_reg (submode, imag1);
413 /* XXX What's an "unsigned" complex number? */
414 if (unsignedp)
416 temp1 = real1;
417 temp2 = imag1;
419 else
421 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
422 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
425 if (temp1 == 0 || temp2 == 0)
426 return 0;
428 mode = GET_MODE (temp1);
429 lab1 = gen_label_rtx ();
430 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
431 mode, unsignedp, lab1);
433 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
435 if (class == MODE_COMPLEX_FLOAT)
436 ratio = expand_binop (submode, binoptab, imag1, real1,
437 NULL_RTX, unsignedp, methods);
438 else
439 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
440 imag1, real1, NULL_RTX, unsignedp);
442 if (ratio == 0)
443 return 0;
445 /* Calculate divisor. */
447 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
448 NULL_RTX, unsignedp, methods);
450 if (temp1 == 0)
451 return 0;
453 divisor = expand_binop (submode, this_add_optab, temp1, real1,
454 NULL_RTX, unsignedp, methods);
456 if (divisor == 0)
457 return 0;
459 /* Calculate dividend. */
461 if (imag0 == 0)
463 real_t = real0;
465 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
467 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
468 NULL_RTX, unsignedp, methods);
470 if (imag_t == 0)
471 return 0;
473 imag_t = expand_unop (submode, this_neg_optab, imag_t,
474 NULL_RTX, unsignedp);
476 if (real_t == 0 || imag_t == 0)
477 return 0;
479 else
481 /* Compute (a+ib)/(c+id) as
482 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
484 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
485 NULL_RTX, unsignedp, methods);
487 if (temp1 == 0)
488 return 0;
490 real_t = expand_binop (submode, this_add_optab, temp1, real0,
491 NULL_RTX, unsignedp, methods);
493 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
494 NULL_RTX, unsignedp, methods);
496 if (temp1 == 0)
497 return 0;
499 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
500 NULL_RTX, unsignedp, methods);
502 if (real_t == 0 || imag_t == 0)
503 return 0;
506 if (class == MODE_COMPLEX_FLOAT)
507 res = expand_binop (submode, binoptab, real_t, divisor,
508 realr, unsignedp, methods);
509 else
510 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
511 real_t, divisor, realr, unsignedp);
513 if (res == 0)
514 return 0;
516 if (res != realr)
517 emit_move_insn (realr, res);
519 if (class == MODE_COMPLEX_FLOAT)
520 res = expand_binop (submode, binoptab, imag_t, divisor,
521 imagr, unsignedp, methods);
522 else
523 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
524 imag_t, divisor, imagr, unsignedp);
526 if (res == 0)
527 return 0;
529 if (res != imagr)
530 emit_move_insn (imagr, res);
532 lab2 = gen_label_rtx ();
533 emit_jump_insn (gen_jump (lab2));
534 emit_barrier ();
536 emit_label (lab1);
538 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
540 if (class == MODE_COMPLEX_FLOAT)
541 ratio = expand_binop (submode, binoptab, real1, imag1,
542 NULL_RTX, unsignedp, methods);
543 else
544 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
545 real1, imag1, NULL_RTX, unsignedp);
547 if (ratio == 0)
548 return 0;
550 /* Calculate divisor. */
552 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
553 NULL_RTX, unsignedp, methods);
555 if (temp1 == 0)
556 return 0;
558 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
559 NULL_RTX, unsignedp, methods);
561 if (divisor == 0)
562 return 0;
564 /* Calculate dividend. */
566 if (imag0 == 0)
568 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
570 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
571 NULL_RTX, unsignedp, methods);
573 imag_t = expand_unop (submode, this_neg_optab, real0,
574 NULL_RTX, unsignedp);
576 if (real_t == 0 || imag_t == 0)
577 return 0;
579 else
581 /* Compute (a+ib)/(c+id) as
582 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
584 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
585 NULL_RTX, unsignedp, methods);
587 if (temp1 == 0)
588 return 0;
590 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
591 NULL_RTX, unsignedp, methods);
593 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
594 NULL_RTX, unsignedp, methods);
596 if (temp1 == 0)
597 return 0;
599 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
600 NULL_RTX, unsignedp, methods);
602 if (real_t == 0 || imag_t == 0)
603 return 0;
606 if (class == MODE_COMPLEX_FLOAT)
607 res = expand_binop (submode, binoptab, real_t, divisor,
608 realr, unsignedp, methods);
609 else
610 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
611 real_t, divisor, realr, unsignedp);
613 if (res == 0)
614 return 0;
616 if (res != realr)
617 emit_move_insn (realr, res);
619 if (class == MODE_COMPLEX_FLOAT)
620 res = expand_binop (submode, binoptab, imag_t, divisor,
621 imagr, unsignedp, methods);
622 else
623 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
624 imag_t, divisor, imagr, unsignedp);
626 if (res == 0)
627 return 0;
629 if (res != imagr)
630 emit_move_insn (imagr, res);
632 emit_label (lab2);
634 return 1;
637 /* Wrapper around expand_binop which takes an rtx code to specify
638 the operation to perform, not an optab pointer. All other
639 arguments are the same. */
641 expand_simple_binop (mode, code, op0, op1, target, unsignedp, methods)
642 enum machine_mode mode;
643 enum rtx_code code;
644 rtx op0, op1;
645 rtx target;
646 int unsignedp;
647 enum optab_methods methods;
649 optab binop = code_to_optab [(int) code];
650 if (binop == 0)
651 abort ();
653 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
656 /* Generate code to perform an operation specified by BINOPTAB
657 on operands OP0 and OP1, with result having machine-mode MODE.
659 UNSIGNEDP is for the case where we have to widen the operands
660 to perform the operation. It says to use zero-extension.
662 If TARGET is nonzero, the value
663 is generated there, if it is convenient to do so.
664 In all cases an rtx is returned for the locus of the value;
665 this may or may not be TARGET. */
668 expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
669 enum machine_mode mode;
670 optab binoptab;
671 rtx op0, op1;
672 rtx target;
673 int unsignedp;
674 enum optab_methods methods;
676 enum optab_methods next_methods
677 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
678 ? OPTAB_WIDEN : methods);
679 enum mode_class class;
680 enum machine_mode wider_mode;
681 rtx temp;
682 int commutative_op = 0;
683 int shift_op = (binoptab->code == ASHIFT
684 || binoptab->code == ASHIFTRT
685 || binoptab->code == LSHIFTRT
686 || binoptab->code == ROTATE
687 || binoptab->code == ROTATERT);
688 rtx entry_last = get_last_insn ();
689 rtx last;
691 class = GET_MODE_CLASS (mode);
693 op0 = protect_from_queue (op0, 0);
694 op1 = protect_from_queue (op1, 0);
695 if (target)
696 target = protect_from_queue (target, 1);
698 if (flag_force_mem)
700 op0 = force_not_mem (op0);
701 op1 = force_not_mem (op1);
704 /* If subtracting an integer constant, convert this into an addition of
705 the negated constant. */
707 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
709 op1 = negate_rtx (mode, op1);
710 binoptab = add_optab;
713 /* If we are inside an appropriately-short loop and one operand is an
714 expensive constant, force it into a register. */
715 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
716 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
717 op0 = force_reg (mode, op0);
719 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
720 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
721 op1 = force_reg (mode, op1);
723 /* Record where to delete back to if we backtrack. */
724 last = get_last_insn ();
726 /* If operation is commutative,
727 try to make the first operand a register.
728 Even better, try to make it the same as the target.
729 Also try to make the last operand a constant. */
730 if (GET_RTX_CLASS (binoptab->code) == 'c'
731 || binoptab == smul_widen_optab
732 || binoptab == umul_widen_optab
733 || binoptab == smul_highpart_optab
734 || binoptab == umul_highpart_optab)
736 commutative_op = 1;
738 if (((target == 0 || GET_CODE (target) == REG)
739 ? ((GET_CODE (op1) == REG
740 && GET_CODE (op0) != REG)
741 || target == op1)
742 : rtx_equal_p (op1, target))
743 || GET_CODE (op0) == CONST_INT)
745 temp = op1;
746 op1 = op0;
747 op0 = temp;
751 /* If we can do it with a three-operand insn, do so. */
753 if (methods != OPTAB_MUST_WIDEN
754 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
756 int icode = (int) binoptab->handlers[(int) mode].insn_code;
757 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
758 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
759 rtx pat;
760 rtx xop0 = op0, xop1 = op1;
762 if (target)
763 temp = target;
764 else
765 temp = gen_reg_rtx (mode);
767 /* If it is a commutative operator and the modes would match
768 if we would swap the operands, we can save the conversions. */
769 if (commutative_op)
771 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
772 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
774 rtx tmp;
776 tmp = op0; op0 = op1; op1 = tmp;
777 tmp = xop0; xop0 = xop1; xop1 = tmp;
781 /* In case the insn wants input operands in modes different from
782 the result, convert the operands. It would seem that we
783 don't need to convert CONST_INTs, but we do, so that they're
784 a properly sign-extended for their modes; we choose the
785 widest mode between mode and mode[01], so that, in a widening
786 operation, we call convert_modes with different FROM and TO
787 modes, which ensures the value is sign-extended. Shift
788 operations are an exception, because the second operand needs
789 not be extended to the mode of the result. */
791 if (GET_MODE (op0) != mode0
792 && mode0 != VOIDmode)
793 xop0 = convert_modes (mode0,
794 GET_MODE (op0) != VOIDmode
795 ? GET_MODE (op0)
796 : GET_MODE_SIZE (mode) > GET_MODE_SIZE (mode0)
797 ? mode
798 : mode0,
799 xop0, unsignedp);
801 if (GET_MODE (xop1) != mode1
802 && mode1 != VOIDmode)
803 xop1 = convert_modes (mode1,
804 GET_MODE (op1) != VOIDmode
805 ? GET_MODE (op1)
806 : (GET_MODE_SIZE (mode) > GET_MODE_SIZE (mode1)
807 && ! shift_op)
808 ? mode
809 : mode1,
810 xop1, unsignedp);
812 /* Now, if insn's predicates don't allow our operands, put them into
813 pseudo regs. */
815 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
816 && mode0 != VOIDmode)
817 xop0 = copy_to_mode_reg (mode0, xop0);
819 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
820 && mode1 != VOIDmode)
821 xop1 = copy_to_mode_reg (mode1, xop1);
823 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
824 temp = gen_reg_rtx (mode);
826 pat = GEN_FCN (icode) (temp, xop0, xop1);
827 if (pat)
829 /* If PAT is composed of more than one insn, try to add an appropriate
830 REG_EQUAL note to it. If we can't because TEMP conflicts with an
831 operand, call ourselves again, this time without a target. */
832 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
833 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
835 delete_insns_since (last);
836 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
837 unsignedp, methods);
840 emit_insn (pat);
841 return temp;
843 else
844 delete_insns_since (last);
847 /* If this is a multiply, see if we can do a widening operation that
848 takes operands of this mode and makes a wider mode. */
850 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
851 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
852 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
853 != CODE_FOR_nothing))
855 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
856 unsignedp ? umul_widen_optab : smul_widen_optab,
857 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
859 if (temp != 0)
861 if (GET_MODE_CLASS (mode) == MODE_INT)
862 return gen_lowpart (mode, temp);
863 else
864 return convert_to_mode (mode, temp, unsignedp);
868 /* Look for a wider mode of the same class for which we think we
869 can open-code the operation. Check for a widening multiply at the
870 wider mode as well. */
872 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
873 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
874 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
875 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
877 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
878 || (binoptab == smul_optab
879 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
880 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
881 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
882 != CODE_FOR_nothing)))
884 rtx xop0 = op0, xop1 = op1;
885 int no_extend = 0;
887 /* For certain integer operations, we need not actually extend
888 the narrow operands, as long as we will truncate
889 the results to the same narrowness. */
891 if ((binoptab == ior_optab || binoptab == and_optab
892 || binoptab == xor_optab
893 || binoptab == add_optab || binoptab == sub_optab
894 || binoptab == smul_optab || binoptab == ashl_optab)
895 && class == MODE_INT)
896 no_extend = 1;
898 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
900 /* The second operand of a shift must always be extended. */
901 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
902 no_extend && binoptab != ashl_optab);
904 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
905 unsignedp, OPTAB_DIRECT);
906 if (temp)
908 if (class != MODE_INT)
910 if (target == 0)
911 target = gen_reg_rtx (mode);
912 convert_move (target, temp, 0);
913 return target;
915 else
916 return gen_lowpart (mode, temp);
918 else
919 delete_insns_since (last);
923 /* These can be done a word at a time. */
924 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
925 && class == MODE_INT
926 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
927 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
929 int i;
930 rtx insns;
931 rtx equiv_value;
933 /* If TARGET is the same as one of the operands, the REG_EQUAL note
934 won't be accurate, so use a new target. */
935 if (target == 0 || target == op0 || target == op1)
936 target = gen_reg_rtx (mode);
938 start_sequence ();
940 /* Do the actual arithmetic. */
941 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
943 rtx target_piece = operand_subword (target, i, 1, mode);
944 rtx x = expand_binop (word_mode, binoptab,
945 operand_subword_force (op0, i, mode),
946 operand_subword_force (op1, i, mode),
947 target_piece, unsignedp, next_methods);
949 if (x == 0)
950 break;
952 if (target_piece != x)
953 emit_move_insn (target_piece, x);
956 insns = get_insns ();
957 end_sequence ();
959 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
961 if (binoptab->code != UNKNOWN)
962 equiv_value
963 = gen_rtx_fmt_ee (binoptab->code, mode,
964 copy_rtx (op0), copy_rtx (op1));
965 else
966 equiv_value = 0;
968 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
969 return target;
973 /* Synthesize double word shifts from single word shifts. */
974 if ((binoptab == lshr_optab || binoptab == ashl_optab
975 || binoptab == ashr_optab)
976 && class == MODE_INT
977 && GET_CODE (op1) == CONST_INT
978 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
979 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
980 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
981 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
983 rtx insns, inter, equiv_value;
984 rtx into_target, outof_target;
985 rtx into_input, outof_input;
986 int shift_count, left_shift, outof_word;
988 /* If TARGET is the same as one of the operands, the REG_EQUAL note
989 won't be accurate, so use a new target. */
990 if (target == 0 || target == op0 || target == op1)
991 target = gen_reg_rtx (mode);
993 start_sequence ();
995 shift_count = INTVAL (op1);
997 /* OUTOF_* is the word we are shifting bits away from, and
998 INTO_* is the word that we are shifting bits towards, thus
999 they differ depending on the direction of the shift and
1000 WORDS_BIG_ENDIAN. */
1002 left_shift = binoptab == ashl_optab;
1003 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1005 outof_target = operand_subword (target, outof_word, 1, mode);
1006 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1008 outof_input = operand_subword_force (op0, outof_word, mode);
1009 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1011 if (shift_count >= BITS_PER_WORD)
1013 inter = expand_binop (word_mode, binoptab,
1014 outof_input,
1015 GEN_INT (shift_count - BITS_PER_WORD),
1016 into_target, unsignedp, next_methods);
1018 if (inter != 0 && inter != into_target)
1019 emit_move_insn (into_target, inter);
1021 /* For a signed right shift, we must fill the word we are shifting
1022 out of with copies of the sign bit. Otherwise it is zeroed. */
1023 if (inter != 0 && binoptab != ashr_optab)
1024 inter = CONST0_RTX (word_mode);
1025 else if (inter != 0)
1026 inter = expand_binop (word_mode, binoptab,
1027 outof_input,
1028 GEN_INT (BITS_PER_WORD - 1),
1029 outof_target, unsignedp, next_methods);
1031 if (inter != 0 && inter != outof_target)
1032 emit_move_insn (outof_target, inter);
1034 else
1036 rtx carries;
1037 optab reverse_unsigned_shift, unsigned_shift;
1039 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1040 we must do a logical shift in the opposite direction of the
1041 desired shift. */
1043 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1045 /* For a shift of less than BITS_PER_WORD, to compute the word
1046 shifted towards, we need to unsigned shift the orig value of
1047 that word. */
1049 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1051 carries = expand_binop (word_mode, reverse_unsigned_shift,
1052 outof_input,
1053 GEN_INT (BITS_PER_WORD - shift_count),
1054 0, unsignedp, next_methods);
1056 if (carries == 0)
1057 inter = 0;
1058 else
1059 inter = expand_binop (word_mode, unsigned_shift, into_input,
1060 op1, 0, unsignedp, next_methods);
1062 if (inter != 0)
1063 inter = expand_binop (word_mode, ior_optab, carries, inter,
1064 into_target, unsignedp, next_methods);
1066 if (inter != 0 && inter != into_target)
1067 emit_move_insn (into_target, inter);
1069 if (inter != 0)
1070 inter = expand_binop (word_mode, binoptab, outof_input,
1071 op1, outof_target, unsignedp, next_methods);
1073 if (inter != 0 && inter != outof_target)
1074 emit_move_insn (outof_target, inter);
1077 insns = get_insns ();
1078 end_sequence ();
1080 if (inter != 0)
1082 if (binoptab->code != UNKNOWN)
1083 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1084 else
1085 equiv_value = 0;
1087 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1088 return target;
1092 /* Synthesize double word rotates from single word shifts. */
1093 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1094 && class == MODE_INT
1095 && GET_CODE (op1) == CONST_INT
1096 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1097 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1098 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1100 rtx insns, equiv_value;
1101 rtx into_target, outof_target;
1102 rtx into_input, outof_input;
1103 rtx inter;
1104 int shift_count, left_shift, outof_word;
1106 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1107 won't be accurate, so use a new target. */
1108 if (target == 0 || target == op0 || target == op1)
1109 target = gen_reg_rtx (mode);
1111 start_sequence ();
1113 shift_count = INTVAL (op1);
1115 /* OUTOF_* is the word we are shifting bits away from, and
1116 INTO_* is the word that we are shifting bits towards, thus
1117 they differ depending on the direction of the shift and
1118 WORDS_BIG_ENDIAN. */
1120 left_shift = (binoptab == rotl_optab);
1121 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1123 outof_target = operand_subword (target, outof_word, 1, mode);
1124 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1126 outof_input = operand_subword_force (op0, outof_word, mode);
1127 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1129 if (shift_count == BITS_PER_WORD)
1131 /* This is just a word swap. */
1132 emit_move_insn (outof_target, into_input);
1133 emit_move_insn (into_target, outof_input);
1134 inter = const0_rtx;
1136 else
1138 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1139 rtx first_shift_count, second_shift_count;
1140 optab reverse_unsigned_shift, unsigned_shift;
1142 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1143 ? lshr_optab : ashl_optab);
1145 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1146 ? ashl_optab : lshr_optab);
1148 if (shift_count > BITS_PER_WORD)
1150 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1151 second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
1153 else
1155 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1156 second_shift_count = GEN_INT (shift_count);
1159 into_temp1 = expand_binop (word_mode, unsigned_shift,
1160 outof_input, first_shift_count,
1161 NULL_RTX, unsignedp, next_methods);
1162 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1163 into_input, second_shift_count,
1164 into_target, unsignedp, next_methods);
1166 if (into_temp1 != 0 && into_temp2 != 0)
1167 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1168 into_target, unsignedp, next_methods);
1169 else
1170 inter = 0;
1172 if (inter != 0 && inter != into_target)
1173 emit_move_insn (into_target, inter);
1175 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1176 into_input, first_shift_count,
1177 NULL_RTX, unsignedp, next_methods);
1178 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1179 outof_input, second_shift_count,
1180 outof_target, unsignedp, next_methods);
1182 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1183 inter = expand_binop (word_mode, ior_optab,
1184 outof_temp1, outof_temp2,
1185 outof_target, unsignedp, next_methods);
1187 if (inter != 0 && inter != outof_target)
1188 emit_move_insn (outof_target, inter);
1191 insns = get_insns ();
1192 end_sequence ();
1194 if (inter != 0)
1196 if (binoptab->code != UNKNOWN)
1197 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1198 else
1199 equiv_value = 0;
1201 /* We can't make this a no conflict block if this is a word swap,
1202 because the word swap case fails if the input and output values
1203 are in the same register. */
1204 if (shift_count != BITS_PER_WORD)
1205 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1206 else
1207 emit_insn (insns);
1210 return target;
1214 /* These can be done a word at a time by propagating carries. */
1215 if ((binoptab == add_optab || binoptab == sub_optab)
1216 && class == MODE_INT
1217 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1218 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1220 unsigned int i;
1221 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1222 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1223 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1224 rtx xop0, xop1, xtarget;
1226 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1227 value is one of those, use it. Otherwise, use 1 since it is the
1228 one easiest to get. */
1229 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1230 int normalizep = STORE_FLAG_VALUE;
1231 #else
1232 int normalizep = 1;
1233 #endif
1235 /* Prepare the operands. */
1236 xop0 = force_reg (mode, op0);
1237 xop1 = force_reg (mode, op1);
1239 xtarget = gen_reg_rtx (mode);
1241 if (target == 0 || GET_CODE (target) != REG)
1242 target = xtarget;
1244 /* Indicate for flow that the entire target reg is being set. */
1245 if (GET_CODE (target) == REG)
1246 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
1248 /* Do the actual arithmetic. */
1249 for (i = 0; i < nwords; i++)
1251 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1252 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1253 rtx op0_piece = operand_subword_force (xop0, index, mode);
1254 rtx op1_piece = operand_subword_force (xop1, index, mode);
1255 rtx x;
1257 /* Main add/subtract of the input operands. */
1258 x = expand_binop (word_mode, binoptab,
1259 op0_piece, op1_piece,
1260 target_piece, unsignedp, next_methods);
1261 if (x == 0)
1262 break;
1264 if (i + 1 < nwords)
1266 /* Store carry from main add/subtract. */
1267 carry_out = gen_reg_rtx (word_mode);
1268 carry_out = emit_store_flag_force (carry_out,
1269 (binoptab == add_optab
1270 ? LT : GT),
1271 x, op0_piece,
1272 word_mode, 1, normalizep);
1275 if (i > 0)
1277 rtx newx;
1279 /* Add/subtract previous carry to main result. */
1280 newx = expand_binop (word_mode,
1281 normalizep == 1 ? binoptab : otheroptab,
1282 x, carry_in,
1283 NULL_RTX, 1, next_methods);
1285 if (i + 1 < nwords)
1287 /* Get out carry from adding/subtracting carry in. */
1288 rtx carry_tmp = gen_reg_rtx (word_mode);
1289 carry_tmp = emit_store_flag_force (carry_tmp,
1290 (binoptab == add_optab
1291 ? LT : GT),
1292 newx, x,
1293 word_mode, 1, normalizep);
1295 /* Logical-ior the two poss. carry together. */
1296 carry_out = expand_binop (word_mode, ior_optab,
1297 carry_out, carry_tmp,
1298 carry_out, 0, next_methods);
1299 if (carry_out == 0)
1300 break;
1302 emit_move_insn (target_piece, newx);
1305 carry_in = carry_out;
1308 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1310 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1312 rtx temp = emit_move_insn (target, xtarget);
1314 set_unique_reg_note (temp,
1315 REG_EQUAL,
1316 gen_rtx_fmt_ee (binoptab->code, mode,
1317 copy_rtx (xop0),
1318 copy_rtx (xop1)));
1321 return target;
1324 else
1325 delete_insns_since (last);
1328 /* If we want to multiply two two-word values and have normal and widening
1329 multiplies of single-word values, we can do this with three smaller
1330 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1331 because we are not operating on one word at a time.
1333 The multiplication proceeds as follows:
1334 _______________________
1335 [__op0_high_|__op0_low__]
1336 _______________________
1337 * [__op1_high_|__op1_low__]
1338 _______________________________________________
1339 _______________________
1340 (1) [__op0_low__*__op1_low__]
1341 _______________________
1342 (2a) [__op0_low__*__op1_high_]
1343 _______________________
1344 (2b) [__op0_high_*__op1_low__]
1345 _______________________
1346 (3) [__op0_high_*__op1_high_]
1349 This gives a 4-word result. Since we are only interested in the
1350 lower 2 words, partial result (3) and the upper words of (2a) and
1351 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1352 calculated using non-widening multiplication.
1354 (1), however, needs to be calculated with an unsigned widening
1355 multiplication. If this operation is not directly supported we
1356 try using a signed widening multiplication and adjust the result.
1357 This adjustment works as follows:
1359 If both operands are positive then no adjustment is needed.
1361 If the operands have different signs, for example op0_low < 0 and
1362 op1_low >= 0, the instruction treats the most significant bit of
1363 op0_low as a sign bit instead of a bit with significance
1364 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1365 with 2**BITS_PER_WORD - op0_low, and two's complements the
1366 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1367 the result.
1369 Similarly, if both operands are negative, we need to add
1370 (op0_low + op1_low) * 2**BITS_PER_WORD.
1372 We use a trick to adjust quickly. We logically shift op0_low right
1373 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1374 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1375 logical shift exists, we do an arithmetic right shift and subtract
1376 the 0 or -1. */
1378 if (binoptab == smul_optab
1379 && class == MODE_INT
1380 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1381 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1382 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1383 && ((umul_widen_optab->handlers[(int) mode].insn_code
1384 != CODE_FOR_nothing)
1385 || (smul_widen_optab->handlers[(int) mode].insn_code
1386 != CODE_FOR_nothing)))
1388 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1389 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1390 rtx op0_high = operand_subword_force (op0, high, mode);
1391 rtx op0_low = operand_subword_force (op0, low, mode);
1392 rtx op1_high = operand_subword_force (op1, high, mode);
1393 rtx op1_low = operand_subword_force (op1, low, mode);
1394 rtx product = 0;
1395 rtx op0_xhigh = NULL_RTX;
1396 rtx op1_xhigh = NULL_RTX;
1398 /* If the target is the same as one of the inputs, don't use it. This
1399 prevents problems with the REG_EQUAL note. */
1400 if (target == op0 || target == op1
1401 || (target != 0 && GET_CODE (target) != REG))
1402 target = 0;
1404 /* Multiply the two lower words to get a double-word product.
1405 If unsigned widening multiplication is available, use that;
1406 otherwise use the signed form and compensate. */
1408 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1410 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1411 target, 1, OPTAB_DIRECT);
1413 /* If we didn't succeed, delete everything we did so far. */
1414 if (product == 0)
1415 delete_insns_since (last);
1416 else
1417 op0_xhigh = op0_high, op1_xhigh = op1_high;
1420 if (product == 0
1421 && smul_widen_optab->handlers[(int) mode].insn_code
1422 != CODE_FOR_nothing)
1424 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1425 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1426 target, 1, OPTAB_DIRECT);
1427 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1428 NULL_RTX, 1, next_methods);
1429 if (op0_xhigh)
1430 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1431 op0_xhigh, op0_xhigh, 0, next_methods);
1432 else
1434 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1435 NULL_RTX, 0, next_methods);
1436 if (op0_xhigh)
1437 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1438 op0_xhigh, op0_xhigh, 0,
1439 next_methods);
1442 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1443 NULL_RTX, 1, next_methods);
1444 if (op1_xhigh)
1445 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1446 op1_xhigh, op1_xhigh, 0, next_methods);
1447 else
1449 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1450 NULL_RTX, 0, next_methods);
1451 if (op1_xhigh)
1452 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1453 op1_xhigh, op1_xhigh, 0,
1454 next_methods);
1458 /* If we have been able to directly compute the product of the
1459 low-order words of the operands and perform any required adjustments
1460 of the operands, we proceed by trying two more multiplications
1461 and then computing the appropriate sum.
1463 We have checked above that the required addition is provided.
1464 Full-word addition will normally always succeed, especially if
1465 it is provided at all, so we don't worry about its failure. The
1466 multiplication may well fail, however, so we do handle that. */
1468 if (product && op0_xhigh && op1_xhigh)
1470 rtx product_high = operand_subword (product, high, 1, mode);
1471 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1472 NULL_RTX, 0, OPTAB_DIRECT);
1474 if (!REG_P (product_high))
1475 product_high = force_reg (word_mode, product_high);
1477 if (temp != 0)
1478 temp = expand_binop (word_mode, add_optab, temp, product_high,
1479 product_high, 0, next_methods);
1481 if (temp != 0 && temp != product_high)
1482 emit_move_insn (product_high, temp);
1484 if (temp != 0)
1485 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1486 NULL_RTX, 0, OPTAB_DIRECT);
1488 if (temp != 0)
1489 temp = expand_binop (word_mode, add_optab, temp,
1490 product_high, product_high,
1491 0, next_methods);
1493 if (temp != 0 && temp != product_high)
1494 emit_move_insn (product_high, temp);
1496 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1498 if (temp != 0)
1500 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1502 temp = emit_move_insn (product, product);
1503 set_unique_reg_note (temp,
1504 REG_EQUAL,
1505 gen_rtx_fmt_ee (MULT, mode,
1506 copy_rtx (op0),
1507 copy_rtx (op1)));
1510 return product;
1514 /* If we get here, we couldn't do it for some reason even though we
1515 originally thought we could. Delete anything we've emitted in
1516 trying to do it. */
1518 delete_insns_since (last);
1521 /* Open-code the vector operations if we have no hardware support
1522 for them. */
1523 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1524 return expand_vector_binop (mode, binoptab, op0, op1, target,
1525 unsignedp, methods);
1527 /* We need to open-code the complex type operations: '+, -, * and /' */
1529 /* At this point we allow operations between two similar complex
1530 numbers, and also if one of the operands is not a complex number
1531 but rather of MODE_FLOAT or MODE_INT. However, the caller
1532 must make sure that the MODE of the non-complex operand matches
1533 the SUBMODE of the complex operand. */
1535 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1537 rtx real0 = 0, imag0 = 0;
1538 rtx real1 = 0, imag1 = 0;
1539 rtx realr, imagr, res;
1540 rtx seq;
1541 rtx equiv_value;
1542 int ok = 0;
1544 /* Find the correct mode for the real and imaginary parts */
1545 enum machine_mode submode
1546 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1547 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1550 if (submode == BLKmode)
1551 abort ();
1553 if (! target)
1554 target = gen_reg_rtx (mode);
1556 start_sequence ();
1558 realr = gen_realpart (submode, target);
1559 imagr = gen_imagpart (submode, target);
1561 if (GET_MODE (op0) == mode)
1563 real0 = gen_realpart (submode, op0);
1564 imag0 = gen_imagpart (submode, op0);
1566 else
1567 real0 = op0;
1569 if (GET_MODE (op1) == mode)
1571 real1 = gen_realpart (submode, op1);
1572 imag1 = gen_imagpart (submode, op1);
1574 else
1575 real1 = op1;
1577 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
1578 abort ();
1580 switch (binoptab->code)
1582 case PLUS:
1583 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1584 case MINUS:
1585 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1586 res = expand_binop (submode, binoptab, real0, real1,
1587 realr, unsignedp, methods);
1589 if (res == 0)
1590 break;
1591 else if (res != realr)
1592 emit_move_insn (realr, res);
1594 if (imag0 != 0 && imag1 != 0)
1595 res = expand_binop (submode, binoptab, imag0, imag1,
1596 imagr, unsignedp, methods);
1597 else if (imag0 != 0)
1598 res = imag0;
1599 else if (binoptab->code == MINUS)
1600 res = expand_unop (submode,
1601 binoptab == subv_optab ? negv_optab : neg_optab,
1602 imag1, imagr, unsignedp);
1603 else
1604 res = imag1;
1606 if (res == 0)
1607 break;
1608 else if (res != imagr)
1609 emit_move_insn (imagr, res);
1611 ok = 1;
1612 break;
1614 case MULT:
1615 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1617 if (imag0 != 0 && imag1 != 0)
1619 rtx temp1, temp2;
1621 /* Don't fetch these from memory more than once. */
1622 real0 = force_reg (submode, real0);
1623 real1 = force_reg (submode, real1);
1624 imag0 = force_reg (submode, imag0);
1625 imag1 = force_reg (submode, imag1);
1627 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1628 unsignedp, methods);
1630 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1631 unsignedp, methods);
1633 if (temp1 == 0 || temp2 == 0)
1634 break;
1636 res = (expand_binop
1637 (submode,
1638 binoptab == smulv_optab ? subv_optab : sub_optab,
1639 temp1, temp2, realr, unsignedp, methods));
1641 if (res == 0)
1642 break;
1643 else if (res != realr)
1644 emit_move_insn (realr, res);
1646 temp1 = expand_binop (submode, binoptab, real0, imag1,
1647 NULL_RTX, unsignedp, methods);
1649 temp2 = expand_binop (submode, binoptab, real1, imag0,
1650 NULL_RTX, unsignedp, methods);
1652 if (temp1 == 0 || temp2 == 0)
1653 break;
1655 res = (expand_binop
1656 (submode,
1657 binoptab == smulv_optab ? addv_optab : add_optab,
1658 temp1, temp2, imagr, unsignedp, methods));
1660 if (res == 0)
1661 break;
1662 else if (res != imagr)
1663 emit_move_insn (imagr, res);
1665 ok = 1;
1667 else
1669 /* Don't fetch these from memory more than once. */
1670 real0 = force_reg (submode, real0);
1671 real1 = force_reg (submode, real1);
1673 res = expand_binop (submode, binoptab, real0, real1,
1674 realr, unsignedp, methods);
1675 if (res == 0)
1676 break;
1677 else if (res != realr)
1678 emit_move_insn (realr, res);
1680 if (imag0 != 0)
1681 res = expand_binop (submode, binoptab,
1682 real1, imag0, imagr, unsignedp, methods);
1683 else
1684 res = expand_binop (submode, binoptab,
1685 real0, imag1, imagr, unsignedp, methods);
1687 if (res == 0)
1688 break;
1689 else if (res != imagr)
1690 emit_move_insn (imagr, res);
1692 ok = 1;
1694 break;
1696 case DIV:
1697 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1699 if (imag1 == 0)
1701 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1703 /* Don't fetch these from memory more than once. */
1704 real1 = force_reg (submode, real1);
1706 /* Simply divide the real and imaginary parts by `c' */
1707 if (class == MODE_COMPLEX_FLOAT)
1708 res = expand_binop (submode, binoptab, real0, real1,
1709 realr, unsignedp, methods);
1710 else
1711 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1712 real0, real1, realr, unsignedp);
1714 if (res == 0)
1715 break;
1716 else if (res != realr)
1717 emit_move_insn (realr, res);
1719 if (class == MODE_COMPLEX_FLOAT)
1720 res = expand_binop (submode, binoptab, imag0, real1,
1721 imagr, unsignedp, methods);
1722 else
1723 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1724 imag0, real1, imagr, unsignedp);
1726 if (res == 0)
1727 break;
1728 else if (res != imagr)
1729 emit_move_insn (imagr, res);
1731 ok = 1;
1733 else
1735 switch (flag_complex_divide_method)
1737 case 0:
1738 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1739 realr, imagr, submode,
1740 unsignedp, methods,
1741 class, binoptab);
1742 break;
1744 case 1:
1745 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1746 realr, imagr, submode,
1747 unsignedp, methods,
1748 class, binoptab);
1749 break;
1751 default:
1752 abort ();
1755 break;
1757 default:
1758 abort ();
1761 seq = get_insns ();
1762 end_sequence ();
1764 if (ok)
1766 if (binoptab->code != UNKNOWN)
1767 equiv_value
1768 = gen_rtx_fmt_ee (binoptab->code, mode,
1769 copy_rtx (op0), copy_rtx (op1));
1770 else
1771 equiv_value = 0;
1773 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
1775 return target;
1779 /* It can't be open-coded in this mode.
1780 Use a library call if one is available and caller says that's ok. */
1782 if (binoptab->handlers[(int) mode].libfunc
1783 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1785 rtx insns;
1786 rtx op1x = op1;
1787 enum machine_mode op1_mode = mode;
1788 rtx value;
1790 start_sequence ();
1792 if (shift_op)
1794 op1_mode = word_mode;
1795 /* Specify unsigned here,
1796 since negative shift counts are meaningless. */
1797 op1x = convert_to_mode (word_mode, op1, 1);
1800 if (GET_MODE (op0) != VOIDmode
1801 && GET_MODE (op0) != mode)
1802 op0 = convert_to_mode (mode, op0, unsignedp);
1804 /* Pass 1 for NO_QUEUE so we don't lose any increments
1805 if the libcall is cse'd or moved. */
1806 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1807 NULL_RTX, LCT_CONST, mode, 2,
1808 op0, mode, op1x, op1_mode);
1810 insns = get_insns ();
1811 end_sequence ();
1813 target = gen_reg_rtx (mode);
1814 emit_libcall_block (insns, target, value,
1815 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1817 return target;
1820 delete_insns_since (last);
1822 /* It can't be done in this mode. Can we do it in a wider mode? */
1824 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1825 || methods == OPTAB_MUST_WIDEN))
1827 /* Caller says, don't even try. */
1828 delete_insns_since (entry_last);
1829 return 0;
1832 /* Compute the value of METHODS to pass to recursive calls.
1833 Don't allow widening to be tried recursively. */
1835 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1837 /* Look for a wider mode of the same class for which it appears we can do
1838 the operation. */
1840 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1842 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1843 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1845 if ((binoptab->handlers[(int) wider_mode].insn_code
1846 != CODE_FOR_nothing)
1847 || (methods == OPTAB_LIB
1848 && binoptab->handlers[(int) wider_mode].libfunc))
1850 rtx xop0 = op0, xop1 = op1;
1851 int no_extend = 0;
1853 /* For certain integer operations, we need not actually extend
1854 the narrow operands, as long as we will truncate
1855 the results to the same narrowness. */
1857 if ((binoptab == ior_optab || binoptab == and_optab
1858 || binoptab == xor_optab
1859 || binoptab == add_optab || binoptab == sub_optab
1860 || binoptab == smul_optab || binoptab == ashl_optab)
1861 && class == MODE_INT)
1862 no_extend = 1;
1864 xop0 = widen_operand (xop0, wider_mode, mode,
1865 unsignedp, no_extend);
1867 /* The second operand of a shift must always be extended. */
1868 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1869 no_extend && binoptab != ashl_optab);
1871 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1872 unsignedp, methods);
1873 if (temp)
1875 if (class != MODE_INT)
1877 if (target == 0)
1878 target = gen_reg_rtx (mode);
1879 convert_move (target, temp, 0);
1880 return target;
1882 else
1883 return gen_lowpart (mode, temp);
1885 else
1886 delete_insns_since (last);
1891 delete_insns_since (entry_last);
1892 return 0;
1895 /* Like expand_binop, but for open-coding vectors binops. */
1897 static rtx
1898 expand_vector_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
1899 enum machine_mode mode;
1900 optab binoptab;
1901 rtx op0, op1;
1902 rtx target;
1903 int unsignedp;
1904 enum optab_methods methods;
1906 enum machine_mode submode, tmode;
1907 int size, elts, subsize, subbitsize, i;
1908 rtx t, a, b, res, seq;
1909 enum mode_class class;
1911 class = GET_MODE_CLASS (mode);
1913 size = GET_MODE_SIZE (mode);
1914 submode = GET_MODE_INNER (mode);
1916 /* Search for the widest vector mode with the same inner mode that is
1917 still narrower than MODE and that allows to open-code this operator.
1918 Note, if we find such a mode and the handler later decides it can't
1919 do the expansion, we'll be called recursively with the narrower mode. */
1920 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1921 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1922 tmode = GET_MODE_WIDER_MODE (tmode))
1924 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1925 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1926 submode = tmode;
1929 switch (binoptab->code)
1931 case AND:
1932 case IOR:
1933 case XOR:
1934 tmode = int_mode_for_mode (mode);
1935 if (tmode != BLKmode)
1936 submode = tmode;
1937 case PLUS:
1938 case MINUS:
1939 case MULT:
1940 case DIV:
1941 subsize = GET_MODE_SIZE (submode);
1942 subbitsize = GET_MODE_BITSIZE (submode);
1943 elts = size / subsize;
1945 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
1946 but that we operate on more than one element at a time. */
1947 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
1948 return 0;
1950 start_sequence ();
1952 /* Errors can leave us with a const0_rtx as operand. */
1953 if (GET_MODE (op0) != mode)
1954 op0 = copy_to_mode_reg (mode, op0);
1955 if (GET_MODE (op1) != mode)
1956 op1 = copy_to_mode_reg (mode, op1);
1958 if (!target)
1959 target = gen_reg_rtx (mode);
1961 for (i = 0; i < elts; ++i)
1963 /* If this is part of a register, and not the first item in the
1964 word, we can't store using a SUBREG - that would clobber
1965 previous results.
1966 And storing with a SUBREG is only possible for the least
1967 significant part, hence we can't do it for big endian
1968 (unless we want to permute the evaluation order. */
1969 if (GET_CODE (target) == REG
1970 && (BYTES_BIG_ENDIAN
1971 ? subsize < UNITS_PER_WORD
1972 : ((i * subsize) % UNITS_PER_WORD) != 0))
1973 t = NULL_RTX;
1974 else
1975 t = simplify_gen_subreg (submode, target, mode, i * subsize);
1976 if (CONSTANT_P (op0))
1977 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
1978 else
1979 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
1980 NULL_RTX, submode, submode, size);
1981 if (CONSTANT_P (op1))
1982 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
1983 else
1984 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
1985 NULL_RTX, submode, submode, size);
1987 if (binoptab->code == DIV)
1989 if (class == MODE_VECTOR_FLOAT)
1990 res = expand_binop (submode, binoptab, a, b, t,
1991 unsignedp, methods);
1992 else
1993 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1994 a, b, t, unsignedp);
1996 else
1997 res = expand_binop (submode, binoptab, a, b, t,
1998 unsignedp, methods);
2000 if (res == 0)
2001 break;
2003 if (t)
2004 emit_move_insn (t, res);
2005 else
2006 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
2007 size);
2009 break;
2011 default:
2012 abort ();
2015 seq = get_insns ();
2016 end_sequence ();
2017 emit_insn (seq);
2019 return target;
2022 /* Like expand_unop but for open-coding vector unops. */
2024 static rtx
2025 expand_vector_unop (mode, unoptab, op0, target, unsignedp)
2026 enum machine_mode mode;
2027 optab unoptab;
2028 rtx op0;
2029 rtx target;
2030 int unsignedp;
2032 enum machine_mode submode, tmode;
2033 int size, elts, subsize, subbitsize, i;
2034 rtx t, a, res, seq;
2036 size = GET_MODE_SIZE (mode);
2037 submode = GET_MODE_INNER (mode);
2039 /* Search for the widest vector mode with the same inner mode that is
2040 still narrower than MODE and that allows to open-code this operator.
2041 Note, if we find such a mode and the handler later decides it can't
2042 do the expansion, we'll be called recursively with the narrower mode. */
2043 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2044 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2045 tmode = GET_MODE_WIDER_MODE (tmode))
2047 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2048 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2049 submode = tmode;
2051 /* If there is no negate operation, try doing a subtract from zero. */
2052 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2053 /* Avoid infinite recursion when an
2054 error has left us with the wrong mode. */
2055 && GET_MODE (op0) == mode)
2057 rtx temp;
2058 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2059 target, unsignedp, OPTAB_DIRECT);
2060 if (temp)
2061 return temp;
2064 if (unoptab == one_cmpl_optab)
2066 tmode = int_mode_for_mode (mode);
2067 if (tmode != BLKmode)
2068 submode = tmode;
2071 subsize = GET_MODE_SIZE (submode);
2072 subbitsize = GET_MODE_BITSIZE (submode);
2073 elts = size / subsize;
2075 /* Errors can leave us with a const0_rtx as operand. */
2076 if (GET_MODE (op0) != mode)
2077 op0 = copy_to_mode_reg (mode, op0);
2079 if (!target)
2080 target = gen_reg_rtx (mode);
2082 start_sequence ();
2084 for (i = 0; i < elts; ++i)
2086 /* If this is part of a register, and not the first item in the
2087 word, we can't store using a SUBREG - that would clobber
2088 previous results.
2089 And storing with a SUBREG is only possible for the least
2090 significant part, hence we can't do it for big endian
2091 (unless we want to permute the evaluation order. */
2092 if (GET_CODE (target) == REG
2093 && (BYTES_BIG_ENDIAN
2094 ? subsize < UNITS_PER_WORD
2095 : ((i * subsize) % UNITS_PER_WORD) != 0))
2096 t = NULL_RTX;
2097 else
2098 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2099 if (CONSTANT_P (op0))
2100 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2101 else
2102 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2103 t, submode, submode, size);
2105 res = expand_unop (submode, unoptab, a, t, unsignedp);
2107 if (t)
2108 emit_move_insn (t, res);
2109 else
2110 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
2111 size);
2114 seq = get_insns ();
2115 end_sequence ();
2116 emit_insn (seq);
2118 return target;
2121 /* Expand a binary operator which has both signed and unsigned forms.
2122 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2123 signed operations.
2125 If we widen unsigned operands, we may use a signed wider operation instead
2126 of an unsigned wider operation, since the result would be the same. */
2129 sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
2130 enum machine_mode mode;
2131 optab uoptab, soptab;
2132 rtx op0, op1, target;
2133 int unsignedp;
2134 enum optab_methods methods;
2136 rtx temp;
2137 optab direct_optab = unsignedp ? uoptab : soptab;
2138 struct optab wide_soptab;
2140 /* Do it without widening, if possible. */
2141 temp = expand_binop (mode, direct_optab, op0, op1, target,
2142 unsignedp, OPTAB_DIRECT);
2143 if (temp || methods == OPTAB_DIRECT)
2144 return temp;
2146 /* Try widening to a signed int. Make a fake signed optab that
2147 hides any signed insn for direct use. */
2148 wide_soptab = *soptab;
2149 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2150 wide_soptab.handlers[(int) mode].libfunc = 0;
2152 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2153 unsignedp, OPTAB_WIDEN);
2155 /* For unsigned operands, try widening to an unsigned int. */
2156 if (temp == 0 && unsignedp)
2157 temp = expand_binop (mode, uoptab, op0, op1, target,
2158 unsignedp, OPTAB_WIDEN);
2159 if (temp || methods == OPTAB_WIDEN)
2160 return temp;
2162 /* Use the right width lib call if that exists. */
2163 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2164 if (temp || methods == OPTAB_LIB)
2165 return temp;
2167 /* Must widen and use a lib call, use either signed or unsigned. */
2168 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2169 unsignedp, methods);
2170 if (temp != 0)
2171 return temp;
2172 if (unsignedp)
2173 return expand_binop (mode, uoptab, op0, op1, target,
2174 unsignedp, methods);
2175 return 0;
2178 /* Generate code to perform an operation specified by BINOPTAB
2179 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2180 We assume that the order of the operands for the instruction
2181 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2182 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2184 Either TARG0 or TARG1 may be zero, but what that means is that
2185 the result is not actually wanted. We will generate it into
2186 a dummy pseudo-reg and discard it. They may not both be zero.
2188 Returns 1 if this operation can be performed; 0 if not. */
2191 expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
2192 optab binoptab;
2193 rtx op0, op1;
2194 rtx targ0, targ1;
2195 int unsignedp;
2197 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2198 enum mode_class class;
2199 enum machine_mode wider_mode;
2200 rtx entry_last = get_last_insn ();
2201 rtx last;
2203 class = GET_MODE_CLASS (mode);
2205 op0 = protect_from_queue (op0, 0);
2206 op1 = protect_from_queue (op1, 0);
2208 if (flag_force_mem)
2210 op0 = force_not_mem (op0);
2211 op1 = force_not_mem (op1);
2214 /* If we are inside an appropriately-short loop and one operand is an
2215 expensive constant, force it into a register. */
2216 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
2217 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
2218 op0 = force_reg (mode, op0);
2220 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
2221 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
2222 op1 = force_reg (mode, op1);
2224 if (targ0)
2225 targ0 = protect_from_queue (targ0, 1);
2226 else
2227 targ0 = gen_reg_rtx (mode);
2228 if (targ1)
2229 targ1 = protect_from_queue (targ1, 1);
2230 else
2231 targ1 = gen_reg_rtx (mode);
2233 /* Record where to go back to if we fail. */
2234 last = get_last_insn ();
2236 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2238 int icode = (int) binoptab->handlers[(int) mode].insn_code;
2239 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2240 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2241 rtx pat;
2242 rtx xop0 = op0, xop1 = op1;
2244 /* In case this insn wants input operands in modes different from the
2245 result, convert the operands. */
2246 if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
2247 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2249 if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
2250 xop1 = convert_to_mode (mode1, xop1, unsignedp);
2252 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2253 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2254 xop0 = copy_to_mode_reg (mode0, xop0);
2256 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
2257 xop1 = copy_to_mode_reg (mode1, xop1);
2259 /* We could handle this, but we should always be called with a pseudo
2260 for our targets and all insns should take them as outputs. */
2261 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2262 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
2263 abort ();
2265 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2266 if (pat)
2268 emit_insn (pat);
2269 return 1;
2271 else
2272 delete_insns_since (last);
2275 /* It can't be done in this mode. Can we do it in a wider mode? */
2277 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2279 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2280 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2282 if (binoptab->handlers[(int) wider_mode].insn_code
2283 != CODE_FOR_nothing)
2285 rtx t0 = gen_reg_rtx (wider_mode);
2286 rtx t1 = gen_reg_rtx (wider_mode);
2287 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2288 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2290 if (expand_twoval_binop (binoptab, cop0, cop1,
2291 t0, t1, unsignedp))
2293 convert_move (targ0, t0, unsignedp);
2294 convert_move (targ1, t1, unsignedp);
2295 return 1;
2297 else
2298 delete_insns_since (last);
2303 delete_insns_since (entry_last);
2304 return 0;
2307 /* Wrapper around expand_unop which takes an rtx code to specify
2308 the operation to perform, not an optab pointer. All other
2309 arguments are the same. */
2311 expand_simple_unop (mode, code, op0, target, unsignedp)
2312 enum machine_mode mode;
2313 enum rtx_code code;
2314 rtx op0;
2315 rtx target;
2316 int unsignedp;
2318 optab unop = code_to_optab [(int) code];
2319 if (unop == 0)
2320 abort ();
2322 return expand_unop (mode, unop, op0, target, unsignedp);
2325 /* Generate code to perform an operation specified by UNOPTAB
2326 on operand OP0, with result having machine-mode MODE.
2328 UNSIGNEDP is for the case where we have to widen the operands
2329 to perform the operation. It says to use zero-extension.
2331 If TARGET is nonzero, the value
2332 is generated there, if it is convenient to do so.
2333 In all cases an rtx is returned for the locus of the value;
2334 this may or may not be TARGET. */
2337 expand_unop (mode, unoptab, op0, target, unsignedp)
2338 enum machine_mode mode;
2339 optab unoptab;
2340 rtx op0;
2341 rtx target;
2342 int unsignedp;
2344 enum mode_class class;
2345 enum machine_mode wider_mode;
2346 rtx temp;
2347 rtx last = get_last_insn ();
2348 rtx pat;
2350 class = GET_MODE_CLASS (mode);
2352 op0 = protect_from_queue (op0, 0);
2354 if (flag_force_mem)
2356 op0 = force_not_mem (op0);
2359 if (target)
2360 target = protect_from_queue (target, 1);
2362 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2364 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2365 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2366 rtx xop0 = op0;
2368 if (target)
2369 temp = target;
2370 else
2371 temp = gen_reg_rtx (mode);
2373 if (GET_MODE (xop0) != VOIDmode
2374 && GET_MODE (xop0) != mode0)
2375 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2377 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2379 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2380 xop0 = copy_to_mode_reg (mode0, xop0);
2382 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2383 temp = gen_reg_rtx (mode);
2385 pat = GEN_FCN (icode) (temp, xop0);
2386 if (pat)
2388 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2389 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2391 delete_insns_since (last);
2392 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2395 emit_insn (pat);
2397 return temp;
2399 else
2400 delete_insns_since (last);
2403 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2405 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2406 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2407 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2409 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2411 rtx xop0 = op0;
2413 /* For certain operations, we need not actually extend
2414 the narrow operand, as long as we will truncate the
2415 results to the same narrowness. */
2417 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2418 (unoptab == neg_optab
2419 || unoptab == one_cmpl_optab)
2420 && class == MODE_INT);
2422 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2423 unsignedp);
2425 if (temp)
2427 if (class != MODE_INT)
2429 if (target == 0)
2430 target = gen_reg_rtx (mode);
2431 convert_move (target, temp, 0);
2432 return target;
2434 else
2435 return gen_lowpart (mode, temp);
2437 else
2438 delete_insns_since (last);
2442 /* These can be done a word at a time. */
2443 if (unoptab == one_cmpl_optab
2444 && class == MODE_INT
2445 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2446 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2448 int i;
2449 rtx insns;
2451 if (target == 0 || target == op0)
2452 target = gen_reg_rtx (mode);
2454 start_sequence ();
2456 /* Do the actual arithmetic. */
2457 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2459 rtx target_piece = operand_subword (target, i, 1, mode);
2460 rtx x = expand_unop (word_mode, unoptab,
2461 operand_subword_force (op0, i, mode),
2462 target_piece, unsignedp);
2464 if (target_piece != x)
2465 emit_move_insn (target_piece, x);
2468 insns = get_insns ();
2469 end_sequence ();
2471 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2472 gen_rtx_fmt_e (unoptab->code, mode,
2473 copy_rtx (op0)));
2474 return target;
2477 /* Open-code the complex negation operation. */
2478 else if (unoptab->code == NEG
2479 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2481 rtx target_piece;
2482 rtx x;
2483 rtx seq;
2485 /* Find the correct mode for the real and imaginary parts */
2486 enum machine_mode submode
2487 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2488 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2491 if (submode == BLKmode)
2492 abort ();
2494 if (target == 0)
2495 target = gen_reg_rtx (mode);
2497 start_sequence ();
2499 target_piece = gen_imagpart (submode, target);
2500 x = expand_unop (submode, unoptab,
2501 gen_imagpart (submode, op0),
2502 target_piece, unsignedp);
2503 if (target_piece != x)
2504 emit_move_insn (target_piece, x);
2506 target_piece = gen_realpart (submode, target);
2507 x = expand_unop (submode, unoptab,
2508 gen_realpart (submode, op0),
2509 target_piece, unsignedp);
2510 if (target_piece != x)
2511 emit_move_insn (target_piece, x);
2513 seq = get_insns ();
2514 end_sequence ();
2516 emit_no_conflict_block (seq, target, op0, 0,
2517 gen_rtx_fmt_e (unoptab->code, mode,
2518 copy_rtx (op0)));
2519 return target;
2522 /* Now try a library call in this mode. */
2523 if (unoptab->handlers[(int) mode].libfunc)
2525 rtx insns;
2526 rtx value;
2528 start_sequence ();
2530 /* Pass 1 for NO_QUEUE so we don't lose any increments
2531 if the libcall is cse'd or moved. */
2532 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2533 NULL_RTX, LCT_CONST, mode, 1, op0, mode);
2534 insns = get_insns ();
2535 end_sequence ();
2537 target = gen_reg_rtx (mode);
2538 emit_libcall_block (insns, target, value,
2539 gen_rtx_fmt_e (unoptab->code, mode, op0));
2541 return target;
2544 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2545 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2547 /* It can't be done in this mode. Can we do it in a wider mode? */
2549 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2551 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2552 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2554 if ((unoptab->handlers[(int) wider_mode].insn_code
2555 != CODE_FOR_nothing)
2556 || unoptab->handlers[(int) wider_mode].libfunc)
2558 rtx xop0 = op0;
2560 /* For certain operations, we need not actually extend
2561 the narrow operand, as long as we will truncate the
2562 results to the same narrowness. */
2564 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2565 (unoptab == neg_optab
2566 || unoptab == one_cmpl_optab)
2567 && class == MODE_INT);
2569 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2570 unsignedp);
2572 if (temp)
2574 if (class != MODE_INT)
2576 if (target == 0)
2577 target = gen_reg_rtx (mode);
2578 convert_move (target, temp, 0);
2579 return target;
2581 else
2582 return gen_lowpart (mode, temp);
2584 else
2585 delete_insns_since (last);
2590 /* If there is no negate operation, try doing a subtract from zero.
2591 The US Software GOFAST library needs this. */
2592 if (unoptab->code == NEG)
2594 rtx temp;
2595 temp = expand_binop (mode,
2596 unoptab == negv_optab ? subv_optab : sub_optab,
2597 CONST0_RTX (mode), op0,
2598 target, unsignedp, OPTAB_LIB_WIDEN);
2599 if (temp)
2600 return temp;
2603 return 0;
2606 /* Emit code to compute the absolute value of OP0, with result to
2607 TARGET if convenient. (TARGET may be 0.) The return value says
2608 where the result actually is to be found.
2610 MODE is the mode of the operand; the mode of the result is
2611 different but can be deduced from MODE.
2616 expand_abs (mode, op0, target, result_unsignedp, safe)
2617 enum machine_mode mode;
2618 rtx op0;
2619 rtx target;
2620 int result_unsignedp;
2621 int safe;
2623 rtx temp, op1;
2625 if (! flag_trapv)
2626 result_unsignedp = 1;
2628 /* First try to do it with a special abs instruction. */
2629 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2630 op0, target, 0);
2631 if (temp != 0)
2632 return temp;
2634 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2635 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2637 rtx last = get_last_insn ();
2639 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2640 if (temp != 0)
2641 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2642 OPTAB_WIDEN);
2644 if (temp != 0)
2645 return temp;
2647 delete_insns_since (last);
2650 /* If this machine has expensive jumps, we can do integer absolute
2651 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2652 where W is the width of MODE. */
2654 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2656 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2657 size_int (GET_MODE_BITSIZE (mode) - 1),
2658 NULL_RTX, 0);
2660 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2661 OPTAB_LIB_WIDEN);
2662 if (temp != 0)
2663 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2664 temp, extended, target, 0, OPTAB_LIB_WIDEN);
2666 if (temp != 0)
2667 return temp;
2670 /* If that does not win, use conditional jump and negate. */
2672 /* It is safe to use the target if it is the same
2673 as the source if this is also a pseudo register */
2674 if (op0 == target && GET_CODE (op0) == REG
2675 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2676 safe = 1;
2678 op1 = gen_label_rtx ();
2679 if (target == 0 || ! safe
2680 || GET_MODE (target) != mode
2681 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2682 || (GET_CODE (target) == REG
2683 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2684 target = gen_reg_rtx (mode);
2686 emit_move_insn (target, op0);
2687 NO_DEFER_POP;
2689 /* If this mode is an integer too wide to compare properly,
2690 compare word by word. Rely on CSE to optimize constant cases. */
2691 if (GET_MODE_CLASS (mode) == MODE_INT
2692 && ! can_compare_p (GE, mode, ccp_jump))
2693 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2694 NULL_RTX, op1);
2695 else
2696 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
2697 NULL_RTX, NULL_RTX, op1);
2699 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2700 target, target, 0);
2701 if (op0 != target)
2702 emit_move_insn (target, op0);
2703 emit_label (op1);
2704 OK_DEFER_POP;
2705 return target;
2708 /* Emit code to compute the absolute value of OP0, with result to
2709 TARGET if convenient. (TARGET may be 0.) The return value says
2710 where the result actually is to be found.
2712 MODE is the mode of the operand; the mode of the result is
2713 different but can be deduced from MODE.
2715 UNSIGNEDP is relevant for complex integer modes. */
2718 expand_complex_abs (mode, op0, target, unsignedp)
2719 enum machine_mode mode;
2720 rtx op0;
2721 rtx target;
2722 int unsignedp;
2724 enum mode_class class = GET_MODE_CLASS (mode);
2725 enum machine_mode wider_mode;
2726 rtx temp;
2727 rtx entry_last = get_last_insn ();
2728 rtx last;
2729 rtx pat;
2730 optab this_abs_optab;
2732 /* Find the correct mode for the real and imaginary parts. */
2733 enum machine_mode submode
2734 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2735 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2738 if (submode == BLKmode)
2739 abort ();
2741 op0 = protect_from_queue (op0, 0);
2743 if (flag_force_mem)
2745 op0 = force_not_mem (op0);
2748 last = get_last_insn ();
2750 if (target)
2751 target = protect_from_queue (target, 1);
2753 this_abs_optab = ! unsignedp && flag_trapv
2754 && (GET_MODE_CLASS(mode) == MODE_INT)
2755 ? absv_optab : abs_optab;
2757 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2759 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
2760 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2761 rtx xop0 = op0;
2763 if (target)
2764 temp = target;
2765 else
2766 temp = gen_reg_rtx (submode);
2768 if (GET_MODE (xop0) != VOIDmode
2769 && GET_MODE (xop0) != mode0)
2770 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2772 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2774 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2775 xop0 = copy_to_mode_reg (mode0, xop0);
2777 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
2778 temp = gen_reg_rtx (submode);
2780 pat = GEN_FCN (icode) (temp, xop0);
2781 if (pat)
2783 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2784 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
2785 NULL_RTX))
2787 delete_insns_since (last);
2788 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
2789 unsignedp);
2792 emit_insn (pat);
2794 return temp;
2796 else
2797 delete_insns_since (last);
2800 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2802 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2803 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2805 if (this_abs_optab->handlers[(int) wider_mode].insn_code
2806 != CODE_FOR_nothing)
2808 rtx xop0 = op0;
2810 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2811 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2813 if (temp)
2815 if (class != MODE_COMPLEX_INT)
2817 if (target == 0)
2818 target = gen_reg_rtx (submode);
2819 convert_move (target, temp, 0);
2820 return target;
2822 else
2823 return gen_lowpart (submode, temp);
2825 else
2826 delete_insns_since (last);
2830 /* Open-code the complex absolute-value operation
2831 if we can open-code sqrt. Otherwise it's not worth while. */
2832 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
2833 && ! flag_trapv)
2835 rtx real, imag, total;
2837 real = gen_realpart (submode, op0);
2838 imag = gen_imagpart (submode, op0);
2840 /* Square both parts. */
2841 real = expand_mult (submode, real, real, NULL_RTX, 0);
2842 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2844 /* Sum the parts. */
2845 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
2846 0, OPTAB_LIB_WIDEN);
2848 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2849 target = expand_unop (submode, sqrt_optab, total, target, 0);
2850 if (target == 0)
2851 delete_insns_since (last);
2852 else
2853 return target;
2856 /* Now try a library call in this mode. */
2857 if (this_abs_optab->handlers[(int) mode].libfunc)
2859 rtx insns;
2860 rtx value;
2862 start_sequence ();
2864 /* Pass 1 for NO_QUEUE so we don't lose any increments
2865 if the libcall is cse'd or moved. */
2866 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
2867 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
2868 insns = get_insns ();
2869 end_sequence ();
2871 target = gen_reg_rtx (submode);
2872 emit_libcall_block (insns, target, value,
2873 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
2875 return target;
2878 /* It can't be done in this mode. Can we do it in a wider mode? */
2880 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2881 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2883 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
2884 != CODE_FOR_nothing)
2885 || this_abs_optab->handlers[(int) wider_mode].libfunc)
2887 rtx xop0 = op0;
2889 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2891 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2893 if (temp)
2895 if (class != MODE_COMPLEX_INT)
2897 if (target == 0)
2898 target = gen_reg_rtx (submode);
2899 convert_move (target, temp, 0);
2900 return target;
2902 else
2903 return gen_lowpart (submode, temp);
2905 else
2906 delete_insns_since (last);
2910 delete_insns_since (entry_last);
2911 return 0;
2914 /* Generate an instruction whose insn-code is INSN_CODE,
2915 with two operands: an output TARGET and an input OP0.
2916 TARGET *must* be nonzero, and the output is always stored there.
2917 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2918 the value that is stored into TARGET. */
2920 void
2921 emit_unop_insn (icode, target, op0, code)
2922 int icode;
2923 rtx target;
2924 rtx op0;
2925 enum rtx_code code;
2927 rtx temp;
2928 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2929 rtx pat;
2931 temp = target = protect_from_queue (target, 1);
2933 op0 = protect_from_queue (op0, 0);
2935 /* Sign and zero extension from memory is often done specially on
2936 RISC machines, so forcing into a register here can pessimize
2937 code. */
2938 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
2939 op0 = force_not_mem (op0);
2941 /* Now, if insn does not accept our operands, put them into pseudos. */
2943 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
2944 op0 = copy_to_mode_reg (mode0, op0);
2946 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
2947 || (flag_force_mem && GET_CODE (temp) == MEM))
2948 temp = gen_reg_rtx (GET_MODE (temp));
2950 pat = GEN_FCN (icode) (temp, op0);
2952 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
2953 add_equal_note (pat, temp, code, op0, NULL_RTX);
2955 emit_insn (pat);
2957 if (temp != target)
2958 emit_move_insn (target, temp);
2961 /* Emit code to perform a series of operations on a multi-word quantity, one
2962 word at a time.
2964 Such a block is preceded by a CLOBBER of the output, consists of multiple
2965 insns, each setting one word of the output, and followed by a SET copying
2966 the output to itself.
2968 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2969 note indicating that it doesn't conflict with the (also multi-word)
2970 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2971 notes.
2973 INSNS is a block of code generated to perform the operation, not including
2974 the CLOBBER and final copy. All insns that compute intermediate values
2975 are first emitted, followed by the block as described above.
2977 TARGET, OP0, and OP1 are the output and inputs of the operations,
2978 respectively. OP1 may be zero for a unary operation.
2980 EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
2981 on the last insn.
2983 If TARGET is not a register, INSNS is simply emitted with no special
2984 processing. Likewise if anything in INSNS is not an INSN or if
2985 there is a libcall block inside INSNS.
2987 The final insn emitted is returned. */
2990 emit_no_conflict_block (insns, target, op0, op1, equiv)
2991 rtx insns;
2992 rtx target;
2993 rtx op0, op1;
2994 rtx equiv;
2996 rtx prev, next, first, last, insn;
2998 if (GET_CODE (target) != REG || reload_in_progress)
2999 return emit_insn (insns);
3000 else
3001 for (insn = insns; insn; insn = NEXT_INSN (insn))
3002 if (GET_CODE (insn) != INSN
3003 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
3004 return emit_insn (insns);
3006 /* First emit all insns that do not store into words of the output and remove
3007 these from the list. */
3008 for (insn = insns; insn; insn = next)
3010 rtx set = 0, note;
3011 int i;
3013 next = NEXT_INSN (insn);
3015 /* Some ports (cris) create an libcall regions at their own. We must
3016 avoid any potential nesting of LIBCALLs. */
3017 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3018 remove_note (insn, note);
3019 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3020 remove_note (insn, note);
3022 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3023 || GET_CODE (PATTERN (insn)) == CLOBBER)
3024 set = PATTERN (insn);
3025 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3027 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3028 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3030 set = XVECEXP (PATTERN (insn), 0, i);
3031 break;
3035 if (set == 0)
3036 abort ();
3038 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3040 if (PREV_INSN (insn))
3041 NEXT_INSN (PREV_INSN (insn)) = next;
3042 else
3043 insns = next;
3045 if (next)
3046 PREV_INSN (next) = PREV_INSN (insn);
3048 add_insn (insn);
3052 prev = get_last_insn ();
3054 /* Now write the CLOBBER of the output, followed by the setting of each
3055 of the words, followed by the final copy. */
3056 if (target != op0 && target != op1)
3057 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
3059 for (insn = insns; insn; insn = next)
3061 next = NEXT_INSN (insn);
3062 add_insn (insn);
3064 if (op1 && GET_CODE (op1) == REG)
3065 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3066 REG_NOTES (insn));
3068 if (op0 && GET_CODE (op0) == REG)
3069 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3070 REG_NOTES (insn));
3073 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3074 != CODE_FOR_nothing)
3076 last = emit_move_insn (target, target);
3077 if (equiv)
3078 set_unique_reg_note (last, REG_EQUAL, equiv);
3080 else
3082 last = get_last_insn ();
3084 /* Remove any existing REG_EQUAL note from "last", or else it will
3085 be mistaken for a note referring to the full contents of the
3086 alleged libcall value when found together with the REG_RETVAL
3087 note added below. An existing note can come from an insn
3088 expansion at "last". */
3089 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3092 if (prev == 0)
3093 first = get_insns ();
3094 else
3095 first = NEXT_INSN (prev);
3097 /* Encapsulate the block so it gets manipulated as a unit. */
3098 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3099 REG_NOTES (first));
3100 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
3102 return last;
3105 /* Emit code to make a call to a constant function or a library call.
3107 INSNS is a list containing all insns emitted in the call.
3108 These insns leave the result in RESULT. Our block is to copy RESULT
3109 to TARGET, which is logically equivalent to EQUIV.
3111 We first emit any insns that set a pseudo on the assumption that these are
3112 loading constants into registers; doing so allows them to be safely cse'ed
3113 between blocks. Then we emit all the other insns in the block, followed by
3114 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3115 note with an operand of EQUIV.
3117 Moving assignments to pseudos outside of the block is done to improve
3118 the generated code, but is not required to generate correct code,
3119 hence being unable to move an assignment is not grounds for not making
3120 a libcall block. There are two reasons why it is safe to leave these
3121 insns inside the block: First, we know that these pseudos cannot be
3122 used in generated RTL outside the block since they are created for
3123 temporary purposes within the block. Second, CSE will not record the
3124 values of anything set inside a libcall block, so we know they must
3125 be dead at the end of the block.
3127 Except for the first group of insns (the ones setting pseudos), the
3128 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3130 void
3131 emit_libcall_block (insns, target, result, equiv)
3132 rtx insns;
3133 rtx target;
3134 rtx result;
3135 rtx equiv;
3137 rtx final_dest = target;
3138 rtx prev, next, first, last, insn;
3140 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3141 into a MEM later. Protect the libcall block from this change. */
3142 if (! REG_P (target) || REG_USERVAR_P (target))
3143 target = gen_reg_rtx (GET_MODE (target));
3145 /* If we're using non-call exceptions, a libcall corresponding to an
3146 operation that may trap may also trap. */
3147 if (flag_non_call_exceptions && may_trap_p (equiv))
3149 for (insn = insns; insn; insn = NEXT_INSN (insn))
3150 if (GET_CODE (insn) == CALL_INSN)
3152 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3154 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3155 remove_note (insn, note);
3158 else
3159 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3160 reg note to indicate that this call cannot throw or execute a nonlocal
3161 goto (unless there is already a REG_EH_REGION note, in which case
3162 we update it). */
3163 for (insn = insns; insn; insn = NEXT_INSN (insn))
3164 if (GET_CODE (insn) == CALL_INSN)
3166 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3168 if (note != 0)
3169 XEXP (note, 0) = GEN_INT (-1);
3170 else
3171 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
3172 REG_NOTES (insn));
3175 /* First emit all insns that set pseudos. Remove them from the list as
3176 we go. Avoid insns that set pseudos which were referenced in previous
3177 insns. These can be generated by move_by_pieces, for example,
3178 to update an address. Similarly, avoid insns that reference things
3179 set in previous insns. */
3181 for (insn = insns; insn; insn = next)
3183 rtx set = single_set (insn);
3184 rtx note;
3186 /* Some ports (cris) create an libcall regions at their own. We must
3187 avoid any potential nesting of LIBCALLs. */
3188 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3189 remove_note (insn, note);
3190 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3191 remove_note (insn, note);
3193 next = NEXT_INSN (insn);
3195 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
3196 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
3197 && (insn == insns
3198 || ((! INSN_P(insns)
3199 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
3200 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3201 && ! modified_in_p (SET_SRC (set), insns)
3202 && ! modified_between_p (SET_SRC (set), insns, insn))))
3204 if (PREV_INSN (insn))
3205 NEXT_INSN (PREV_INSN (insn)) = next;
3206 else
3207 insns = next;
3209 if (next)
3210 PREV_INSN (next) = PREV_INSN (insn);
3212 add_insn (insn);
3216 prev = get_last_insn ();
3218 /* Write the remaining insns followed by the final copy. */
3220 for (insn = insns; insn; insn = next)
3222 next = NEXT_INSN (insn);
3224 add_insn (insn);
3227 last = emit_move_insn (target, result);
3228 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3229 != CODE_FOR_nothing)
3230 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3231 else
3233 /* Remove any existing REG_EQUAL note from "last", or else it will
3234 be mistaken for a note referring to the full contents of the
3235 libcall value when found together with the REG_RETVAL note added
3236 below. An existing note can come from an insn expansion at
3237 "last". */
3238 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3241 if (final_dest != target)
3242 emit_move_insn (final_dest, target);
3244 if (prev == 0)
3245 first = get_insns ();
3246 else
3247 first = NEXT_INSN (prev);
3249 /* Encapsulate the block so it gets manipulated as a unit. */
3250 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3252 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3253 REG_NOTES (first));
3254 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3255 REG_NOTES (last));
3259 /* Generate code to store zero in X. */
3261 void
3262 emit_clr_insn (x)
3263 rtx x;
3265 emit_move_insn (x, const0_rtx);
3268 /* Generate code to store 1 in X
3269 assuming it contains zero beforehand. */
3271 void
3272 emit_0_to_1_insn (x)
3273 rtx x;
3275 emit_move_insn (x, const1_rtx);
3278 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3279 PURPOSE describes how this comparison will be used. CODE is the rtx
3280 comparison code we will be using.
3282 ??? Actually, CODE is slightly weaker than that. A target is still
3283 required to implement all of the normal bcc operations, but not
3284 required to implement all (or any) of the unordered bcc operations. */
3287 can_compare_p (code, mode, purpose)
3288 enum rtx_code code;
3289 enum machine_mode mode;
3290 enum can_compare_purpose purpose;
3294 if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3296 if (purpose == ccp_jump)
3297 return bcc_gen_fctn[(int)code] != NULL;
3298 else if (purpose == ccp_store_flag)
3299 return setcc_gen_code[(int)code] != CODE_FOR_nothing;
3300 else
3301 /* There's only one cmov entry point, and it's allowed to fail. */
3302 return 1;
3304 if (purpose == ccp_jump
3305 && cbranch_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3306 return 1;
3307 if (purpose == ccp_cmov
3308 && cmov_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3309 return 1;
3310 if (purpose == ccp_store_flag
3311 && cstore_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3312 return 1;
3314 mode = GET_MODE_WIDER_MODE (mode);
3316 while (mode != VOIDmode);
3318 return 0;
3321 /* This function is called when we are going to emit a compare instruction that
3322 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3324 *PMODE is the mode of the inputs (in case they are const_int).
3325 *PUNSIGNEDP nonzero says that the operands are unsigned;
3326 this matters if they need to be widened.
3328 If they have mode BLKmode, then SIZE specifies the size of both operands.
3330 This function performs all the setup necessary so that the caller only has
3331 to emit a single comparison insn. This setup can involve doing a BLKmode
3332 comparison or emitting a library call to perform the comparison if no insn
3333 is available to handle it.
3334 The values which are passed in through pointers can be modified; the caller
3335 should perform the comparison on the modified values. */
3337 static void
3338 prepare_cmp_insn (px, py, pcomparison, size, pmode, punsignedp, purpose)
3339 rtx *px, *py;
3340 enum rtx_code *pcomparison;
3341 rtx size;
3342 enum machine_mode *pmode;
3343 int *punsignedp;
3344 enum can_compare_purpose purpose;
3346 enum machine_mode mode = *pmode;
3347 rtx x = *px, y = *py;
3348 int unsignedp = *punsignedp;
3349 enum mode_class class;
3351 class = GET_MODE_CLASS (mode);
3353 /* They could both be VOIDmode if both args are immediate constants,
3354 but we should fold that at an earlier stage.
3355 With no special code here, this will call abort,
3356 reminding the programmer to implement such folding. */
3358 if (mode != BLKmode && flag_force_mem)
3360 x = force_not_mem (x);
3361 y = force_not_mem (y);
3364 /* If we are inside an appropriately-short loop and one operand is an
3365 expensive constant, force it into a register. */
3366 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3367 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3368 x = force_reg (mode, x);
3370 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3371 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3372 y = force_reg (mode, y);
3374 #ifdef HAVE_cc0
3375 /* Abort if we have a non-canonical comparison. The RTL documentation
3376 states that canonical comparisons are required only for targets which
3377 have cc0. */
3378 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3379 abort();
3380 #endif
3382 /* Don't let both operands fail to indicate the mode. */
3383 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3384 x = force_reg (mode, x);
3386 /* Handle all BLKmode compares. */
3388 if (mode == BLKmode)
3390 rtx result;
3391 enum machine_mode result_mode;
3392 rtx opalign ATTRIBUTE_UNUSED
3393 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3395 emit_queue ();
3396 x = protect_from_queue (x, 0);
3397 y = protect_from_queue (y, 0);
3399 if (size == 0)
3400 abort ();
3401 #ifdef HAVE_cmpstrqi
3402 if (HAVE_cmpstrqi
3403 && GET_CODE (size) == CONST_INT
3404 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3406 result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
3407 result = gen_reg_rtx (result_mode);
3408 emit_insn (gen_cmpstrqi (result, x, y, size, opalign));
3410 else
3411 #endif
3412 #ifdef HAVE_cmpstrhi
3413 if (HAVE_cmpstrhi
3414 && GET_CODE (size) == CONST_INT
3415 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3417 result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
3418 result = gen_reg_rtx (result_mode);
3419 emit_insn (gen_cmpstrhi (result, x, y, size, opalign));
3421 else
3422 #endif
3423 #ifdef HAVE_cmpstrsi
3424 if (HAVE_cmpstrsi)
3426 result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
3427 result = gen_reg_rtx (result_mode);
3428 size = protect_from_queue (size, 0);
3429 emit_insn (gen_cmpstrsi (result, x, y,
3430 convert_to_mode (SImode, size, 1),
3431 opalign));
3433 else
3434 #endif
3436 #ifdef TARGET_MEM_FUNCTIONS
3437 emit_library_call (memcmp_libfunc, LCT_PURE_MAKE_BLOCK,
3438 TYPE_MODE (integer_type_node), 3,
3439 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3440 convert_to_mode (TYPE_MODE (sizetype), size,
3441 TREE_UNSIGNED (sizetype)),
3442 TYPE_MODE (sizetype));
3443 #else
3444 emit_library_call (bcmp_libfunc, LCT_PURE_MAKE_BLOCK,
3445 TYPE_MODE (integer_type_node), 3,
3446 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3447 convert_to_mode (TYPE_MODE (integer_type_node),
3448 size,
3449 TREE_UNSIGNED (integer_type_node)),
3450 TYPE_MODE (integer_type_node));
3451 #endif
3453 /* Immediately move the result of the libcall into a pseudo
3454 register so reload doesn't clobber the value if it needs
3455 the return register for a spill reg. */
3456 result = gen_reg_rtx (TYPE_MODE (integer_type_node));
3457 result_mode = TYPE_MODE (integer_type_node);
3458 emit_move_insn (result,
3459 hard_libcall_value (result_mode));
3461 *px = result;
3462 *py = const0_rtx;
3463 *pmode = result_mode;
3464 return;
3467 *px = x;
3468 *py = y;
3469 if (can_compare_p (*pcomparison, mode, purpose))
3470 return;
3472 /* Handle a lib call just for the mode we are using. */
3474 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3476 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3477 rtx result;
3479 /* If we want unsigned, and this mode has a distinct unsigned
3480 comparison routine, use that. */
3481 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3482 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3484 emit_library_call (libfunc, LCT_CONST_MAKE_BLOCK, word_mode, 2, x, mode,
3485 y, mode);
3487 /* Immediately move the result of the libcall into a pseudo
3488 register so reload doesn't clobber the value if it needs
3489 the return register for a spill reg. */
3490 result = gen_reg_rtx (word_mode);
3491 emit_move_insn (result, hard_libcall_value (word_mode));
3493 /* Integer comparison returns a result that must be compared against 1,
3494 so that even if we do an unsigned compare afterward,
3495 there is still a value that can represent the result "less than". */
3496 *px = result;
3497 *py = const1_rtx;
3498 *pmode = word_mode;
3499 return;
3502 if (class == MODE_FLOAT)
3503 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3505 else
3506 abort ();
3509 /* Before emitting an insn with code ICODE, make sure that X, which is going
3510 to be used for operand OPNUM of the insn, is converted from mode MODE to
3511 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3512 that it is accepted by the operand predicate. Return the new value. */
3515 prepare_operand (icode, x, opnum, mode, wider_mode, unsignedp)
3516 int icode;
3517 rtx x;
3518 int opnum;
3519 enum machine_mode mode, wider_mode;
3520 int unsignedp;
3522 x = protect_from_queue (x, 0);
3524 if (mode != wider_mode)
3525 x = convert_modes (wider_mode, mode, x, unsignedp);
3527 if (! (*insn_data[icode].operand[opnum].predicate)
3528 (x, insn_data[icode].operand[opnum].mode))
3529 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3530 return x;
3533 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3534 we can do the comparison.
3535 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3536 be NULL_RTX which indicates that only a comparison is to be generated. */
3538 static void
3539 emit_cmp_and_jump_insn_1 (x, y, mode, comparison, unsignedp, label)
3540 rtx x, y;
3541 enum machine_mode mode;
3542 enum rtx_code comparison;
3543 int unsignedp;
3544 rtx label;
3546 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3547 enum mode_class class = GET_MODE_CLASS (mode);
3548 enum machine_mode wider_mode = mode;
3550 /* Try combined insns first. */
3553 enum insn_code icode;
3554 PUT_MODE (test, wider_mode);
3556 if (label)
3558 icode = cbranch_optab->handlers[(int)wider_mode].insn_code;
3560 if (icode != CODE_FOR_nothing
3561 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3563 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3564 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3565 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3566 return;
3570 /* Handle some compares against zero. */
3571 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3572 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3574 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3575 emit_insn (GEN_FCN (icode) (x));
3576 if (label)
3577 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3578 return;
3581 /* Handle compares for which there is a directly suitable insn. */
3583 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3584 if (icode != CODE_FOR_nothing)
3586 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3587 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3588 emit_insn (GEN_FCN (icode) (x, y));
3589 if (label)
3590 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3591 return;
3594 if (class != MODE_INT && class != MODE_FLOAT
3595 && class != MODE_COMPLEX_FLOAT)
3596 break;
3598 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3599 } while (wider_mode != VOIDmode);
3601 abort ();
3604 /* Generate code to compare X with Y so that the condition codes are
3605 set and to jump to LABEL if the condition is true. If X is a
3606 constant and Y is not a constant, then the comparison is swapped to
3607 ensure that the comparison RTL has the canonical form.
3609 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3610 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3611 the proper branch condition code.
3613 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3615 MODE is the mode of the inputs (in case they are const_int).
3617 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3618 be passed unchanged to emit_cmp_insn, then potentially converted into an
3619 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3621 void
3622 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, label)
3623 rtx x, y;
3624 enum rtx_code comparison;
3625 rtx size;
3626 enum machine_mode mode;
3627 int unsignedp;
3628 rtx label;
3630 rtx op0 = x, op1 = y;
3632 /* Swap operands and condition to ensure canonical RTL. */
3633 if (swap_commutative_operands_p (x, y))
3635 /* If we're not emitting a branch, this means some caller
3636 is out of sync. */
3637 if (! label)
3638 abort ();
3640 op0 = y, op1 = x;
3641 comparison = swap_condition (comparison);
3644 #ifdef HAVE_cc0
3645 /* If OP0 is still a constant, then both X and Y must be constants. Force
3646 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3647 RTL. */
3648 if (CONSTANT_P (op0))
3649 op0 = force_reg (mode, op0);
3650 #endif
3652 emit_queue ();
3653 if (unsignedp)
3654 comparison = unsigned_condition (comparison);
3656 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
3657 ccp_jump);
3658 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3661 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3663 void
3664 emit_cmp_insn (x, y, comparison, size, mode, unsignedp)
3665 rtx x, y;
3666 enum rtx_code comparison;
3667 rtx size;
3668 enum machine_mode mode;
3669 int unsignedp;
3671 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
3674 /* Emit a library call comparison between floating point X and Y.
3675 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3677 static void
3678 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp)
3679 rtx *px, *py;
3680 enum rtx_code *pcomparison;
3681 enum machine_mode *pmode;
3682 int *punsignedp;
3684 enum rtx_code comparison = *pcomparison;
3685 rtx tmp;
3686 rtx x = *px = protect_from_queue (*px, 0);
3687 rtx y = *py = protect_from_queue (*py, 0);
3688 enum machine_mode mode = GET_MODE (x);
3689 rtx libfunc = 0;
3690 rtx result;
3692 if (mode == HFmode)
3693 switch (comparison)
3695 case EQ:
3696 libfunc = eqhf2_libfunc;
3697 break;
3699 case NE:
3700 libfunc = nehf2_libfunc;
3701 break;
3703 case GT:
3704 libfunc = gthf2_libfunc;
3705 if (libfunc == NULL_RTX)
3707 tmp = x; x = y; y = tmp;
3708 *pcomparison = LT;
3709 libfunc = lthf2_libfunc;
3711 break;
3713 case GE:
3714 libfunc = gehf2_libfunc;
3715 if (libfunc == NULL_RTX)
3717 tmp = x; x = y; y = tmp;
3718 *pcomparison = LE;
3719 libfunc = lehf2_libfunc;
3721 break;
3723 case LT:
3724 libfunc = lthf2_libfunc;
3725 if (libfunc == NULL_RTX)
3727 tmp = x; x = y; y = tmp;
3728 *pcomparison = GT;
3729 libfunc = gthf2_libfunc;
3731 break;
3733 case LE:
3734 libfunc = lehf2_libfunc;
3735 if (libfunc == NULL_RTX)
3737 tmp = x; x = y; y = tmp;
3738 *pcomparison = GE;
3739 libfunc = gehf2_libfunc;
3741 break;
3743 case UNORDERED:
3744 libfunc = unordhf2_libfunc;
3745 break;
3747 default:
3748 break;
3750 else if (mode == SFmode)
3751 switch (comparison)
3753 case EQ:
3754 libfunc = eqsf2_libfunc;
3755 break;
3757 case NE:
3758 libfunc = nesf2_libfunc;
3759 break;
3761 case GT:
3762 libfunc = gtsf2_libfunc;
3763 if (libfunc == NULL_RTX)
3765 tmp = x; x = y; y = tmp;
3766 *pcomparison = LT;
3767 libfunc = ltsf2_libfunc;
3769 break;
3771 case GE:
3772 libfunc = gesf2_libfunc;
3773 if (libfunc == NULL_RTX)
3775 tmp = x; x = y; y = tmp;
3776 *pcomparison = LE;
3777 libfunc = lesf2_libfunc;
3779 break;
3781 case LT:
3782 libfunc = ltsf2_libfunc;
3783 if (libfunc == NULL_RTX)
3785 tmp = x; x = y; y = tmp;
3786 *pcomparison = GT;
3787 libfunc = gtsf2_libfunc;
3789 break;
3791 case LE:
3792 libfunc = lesf2_libfunc;
3793 if (libfunc == NULL_RTX)
3795 tmp = x; x = y; y = tmp;
3796 *pcomparison = GE;
3797 libfunc = gesf2_libfunc;
3799 break;
3801 case UNORDERED:
3802 libfunc = unordsf2_libfunc;
3803 break;
3805 default:
3806 break;
3808 else if (mode == DFmode)
3809 switch (comparison)
3811 case EQ:
3812 libfunc = eqdf2_libfunc;
3813 break;
3815 case NE:
3816 libfunc = nedf2_libfunc;
3817 break;
3819 case GT:
3820 libfunc = gtdf2_libfunc;
3821 if (libfunc == NULL_RTX)
3823 tmp = x; x = y; y = tmp;
3824 *pcomparison = LT;
3825 libfunc = ltdf2_libfunc;
3827 break;
3829 case GE:
3830 libfunc = gedf2_libfunc;
3831 if (libfunc == NULL_RTX)
3833 tmp = x; x = y; y = tmp;
3834 *pcomparison = LE;
3835 libfunc = ledf2_libfunc;
3837 break;
3839 case LT:
3840 libfunc = ltdf2_libfunc;
3841 if (libfunc == NULL_RTX)
3843 tmp = x; x = y; y = tmp;
3844 *pcomparison = GT;
3845 libfunc = gtdf2_libfunc;
3847 break;
3849 case LE:
3850 libfunc = ledf2_libfunc;
3851 if (libfunc == NULL_RTX)
3853 tmp = x; x = y; y = tmp;
3854 *pcomparison = GE;
3855 libfunc = gedf2_libfunc;
3857 break;
3859 case UNORDERED:
3860 libfunc = unorddf2_libfunc;
3861 break;
3863 default:
3864 break;
3866 else if (mode == XFmode)
3867 switch (comparison)
3869 case EQ:
3870 libfunc = eqxf2_libfunc;
3871 break;
3873 case NE:
3874 libfunc = nexf2_libfunc;
3875 break;
3877 case GT:
3878 libfunc = gtxf2_libfunc;
3879 if (libfunc == NULL_RTX)
3881 tmp = x; x = y; y = tmp;
3882 *pcomparison = LT;
3883 libfunc = ltxf2_libfunc;
3885 break;
3887 case GE:
3888 libfunc = gexf2_libfunc;
3889 if (libfunc == NULL_RTX)
3891 tmp = x; x = y; y = tmp;
3892 *pcomparison = LE;
3893 libfunc = lexf2_libfunc;
3895 break;
3897 case LT:
3898 libfunc = ltxf2_libfunc;
3899 if (libfunc == NULL_RTX)
3901 tmp = x; x = y; y = tmp;
3902 *pcomparison = GT;
3903 libfunc = gtxf2_libfunc;
3905 break;
3907 case LE:
3908 libfunc = lexf2_libfunc;
3909 if (libfunc == NULL_RTX)
3911 tmp = x; x = y; y = tmp;
3912 *pcomparison = GE;
3913 libfunc = gexf2_libfunc;
3915 break;
3917 case UNORDERED:
3918 libfunc = unordxf2_libfunc;
3919 break;
3921 default:
3922 break;
3924 else if (mode == TFmode)
3925 switch (comparison)
3927 case EQ:
3928 libfunc = eqtf2_libfunc;
3929 break;
3931 case NE:
3932 libfunc = netf2_libfunc;
3933 break;
3935 case GT:
3936 libfunc = gttf2_libfunc;
3937 if (libfunc == NULL_RTX)
3939 tmp = x; x = y; y = tmp;
3940 *pcomparison = LT;
3941 libfunc = lttf2_libfunc;
3943 break;
3945 case GE:
3946 libfunc = getf2_libfunc;
3947 if (libfunc == NULL_RTX)
3949 tmp = x; x = y; y = tmp;
3950 *pcomparison = LE;
3951 libfunc = letf2_libfunc;
3953 break;
3955 case LT:
3956 libfunc = lttf2_libfunc;
3957 if (libfunc == NULL_RTX)
3959 tmp = x; x = y; y = tmp;
3960 *pcomparison = GT;
3961 libfunc = gttf2_libfunc;
3963 break;
3965 case LE:
3966 libfunc = letf2_libfunc;
3967 if (libfunc == NULL_RTX)
3969 tmp = x; x = y; y = tmp;
3970 *pcomparison = GE;
3971 libfunc = getf2_libfunc;
3973 break;
3975 case UNORDERED:
3976 libfunc = unordtf2_libfunc;
3977 break;
3979 default:
3980 break;
3982 else
3984 enum machine_mode wider_mode;
3986 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3987 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3989 if ((cmp_optab->handlers[(int) wider_mode].insn_code
3990 != CODE_FOR_nothing)
3991 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
3993 x = protect_from_queue (x, 0);
3994 y = protect_from_queue (y, 0);
3995 *px = convert_to_mode (wider_mode, x, 0);
3996 *py = convert_to_mode (wider_mode, y, 0);
3997 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3998 return;
4001 abort ();
4004 if (libfunc == 0)
4005 abort ();
4007 emit_library_call (libfunc, LCT_CONST_MAKE_BLOCK, word_mode, 2, x, mode, y,
4008 mode);
4010 /* Immediately move the result of the libcall into a pseudo
4011 register so reload doesn't clobber the value if it needs
4012 the return register for a spill reg. */
4013 result = gen_reg_rtx (word_mode);
4014 emit_move_insn (result, hard_libcall_value (word_mode));
4015 *px = result;
4016 *py = const0_rtx;
4017 *pmode = word_mode;
4018 if (comparison == UNORDERED)
4019 *pcomparison = NE;
4020 #ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
4021 else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4022 *pcomparison = NE;
4023 #endif
4024 *punsignedp = 0;
4027 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4029 void
4030 emit_indirect_jump (loc)
4031 rtx loc;
4033 if (! ((*insn_data[(int)CODE_FOR_indirect_jump].operand[0].predicate)
4034 (loc, Pmode)))
4035 loc = copy_to_mode_reg (Pmode, loc);
4037 emit_jump_insn (gen_indirect_jump (loc));
4038 emit_barrier ();
4041 #ifdef HAVE_conditional_move
4043 /* Emit a conditional move instruction if the machine supports one for that
4044 condition and machine mode.
4046 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4047 the mode to use should they be constants. If it is VOIDmode, they cannot
4048 both be constants.
4050 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4051 should be stored there. MODE is the mode to use should they be constants.
4052 If it is VOIDmode, they cannot both be constants.
4054 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4055 is not supported. */
4058 emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
4059 unsignedp)
4060 rtx target;
4061 enum rtx_code code;
4062 rtx op0, op1;
4063 enum machine_mode cmode;
4064 rtx op2, op3;
4065 enum machine_mode mode;
4066 int unsignedp;
4068 rtx tem, subtarget, comparison, insn;
4069 enum insn_code icode;
4070 enum rtx_code reversed;
4072 /* If one operand is constant, make it the second one. Only do this
4073 if the other operand is not constant as well. */
4075 if (swap_commutative_operands_p (op0, op1))
4077 tem = op0;
4078 op0 = op1;
4079 op1 = tem;
4080 code = swap_condition (code);
4083 /* get_condition will prefer to generate LT and GT even if the old
4084 comparison was against zero, so undo that canonicalization here since
4085 comparisons against zero are cheaper. */
4086 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
4087 code = LE, op1 = const0_rtx;
4088 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
4089 code = GE, op1 = const0_rtx;
4091 if (cmode == VOIDmode)
4092 cmode = GET_MODE (op0);
4094 if (swap_commutative_operands_p (op2, op3)
4095 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4096 != UNKNOWN))
4098 tem = op2;
4099 op2 = op3;
4100 op3 = tem;
4101 code = reversed;
4104 if (mode == VOIDmode)
4105 mode = GET_MODE (op2);
4107 icode = movcc_gen_code[mode];
4109 if (icode == CODE_FOR_nothing)
4110 return 0;
4112 if (flag_force_mem)
4114 op2 = force_not_mem (op2);
4115 op3 = force_not_mem (op3);
4118 if (target)
4119 target = protect_from_queue (target, 1);
4120 else
4121 target = gen_reg_rtx (mode);
4123 subtarget = target;
4125 emit_queue ();
4127 op2 = protect_from_queue (op2, 0);
4128 op3 = protect_from_queue (op3, 0);
4130 /* If the insn doesn't accept these operands, put them in pseudos. */
4132 if (! (*insn_data[icode].operand[0].predicate)
4133 (subtarget, insn_data[icode].operand[0].mode))
4134 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4136 if (! (*insn_data[icode].operand[2].predicate)
4137 (op2, insn_data[icode].operand[2].mode))
4138 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4140 if (! (*insn_data[icode].operand[3].predicate)
4141 (op3, insn_data[icode].operand[3].mode))
4142 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4144 /* Everything should now be in the suitable form, so emit the compare insn
4145 and then the conditional move. */
4147 comparison
4148 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4150 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4151 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4152 return NULL and let the caller figure out how best to deal with this
4153 situation. */
4154 if (GET_CODE (comparison) != code)
4155 return NULL_RTX;
4157 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4159 /* If that failed, then give up. */
4160 if (insn == 0)
4161 return 0;
4163 emit_insn (insn);
4165 if (subtarget != target)
4166 convert_move (target, subtarget, 0);
4168 return target;
4171 /* Return non-zero if a conditional move of mode MODE is supported.
4173 This function is for combine so it can tell whether an insn that looks
4174 like a conditional move is actually supported by the hardware. If we
4175 guess wrong we lose a bit on optimization, but that's it. */
4176 /* ??? sparc64 supports conditionally moving integers values based on fp
4177 comparisons, and vice versa. How do we handle them? */
4180 can_conditionally_move_p (mode)
4181 enum machine_mode mode;
4183 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4184 return 1;
4186 return 0;
4189 #endif /* HAVE_conditional_move */
4191 /* These functions generate an insn body and return it
4192 rather than emitting the insn.
4194 They do not protect from queued increments,
4195 because they may be used 1) in protect_from_queue itself
4196 and 2) in other passes where there is no queue. */
4198 /* Generate and return an insn body to add Y to X. */
4201 gen_add2_insn (x, y)
4202 rtx x, y;
4204 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4206 if (! ((*insn_data[icode].operand[0].predicate)
4207 (x, insn_data[icode].operand[0].mode))
4208 || ! ((*insn_data[icode].operand[1].predicate)
4209 (x, insn_data[icode].operand[1].mode))
4210 || ! ((*insn_data[icode].operand[2].predicate)
4211 (y, insn_data[icode].operand[2].mode)))
4212 abort ();
4214 return (GEN_FCN (icode) (x, x, y));
4217 /* Generate and return an insn body to add r1 and c,
4218 storing the result in r0. */
4220 gen_add3_insn (r0, r1, c)
4221 rtx r0, r1, c;
4223 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4225 if (icode == CODE_FOR_nothing
4226 || ! ((*insn_data[icode].operand[0].predicate)
4227 (r0, insn_data[icode].operand[0].mode))
4228 || ! ((*insn_data[icode].operand[1].predicate)
4229 (r1, insn_data[icode].operand[1].mode))
4230 || ! ((*insn_data[icode].operand[2].predicate)
4231 (c, insn_data[icode].operand[2].mode)))
4232 return NULL_RTX;
4234 return (GEN_FCN (icode) (r0, r1, c));
4238 have_add2_insn (x, y)
4239 rtx x, y;
4241 int icode;
4243 if (GET_MODE (x) == VOIDmode)
4244 abort ();
4246 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4248 if (icode == CODE_FOR_nothing)
4249 return 0;
4251 if (! ((*insn_data[icode].operand[0].predicate)
4252 (x, insn_data[icode].operand[0].mode))
4253 || ! ((*insn_data[icode].operand[1].predicate)
4254 (x, insn_data[icode].operand[1].mode))
4255 || ! ((*insn_data[icode].operand[2].predicate)
4256 (y, insn_data[icode].operand[2].mode)))
4257 return 0;
4259 return 1;
4262 /* Generate and return an insn body to subtract Y from X. */
4265 gen_sub2_insn (x, y)
4266 rtx x, y;
4268 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4270 if (! ((*insn_data[icode].operand[0].predicate)
4271 (x, insn_data[icode].operand[0].mode))
4272 || ! ((*insn_data[icode].operand[1].predicate)
4273 (x, insn_data[icode].operand[1].mode))
4274 || ! ((*insn_data[icode].operand[2].predicate)
4275 (y, insn_data[icode].operand[2].mode)))
4276 abort ();
4278 return (GEN_FCN (icode) (x, x, y));
4281 /* Generate and return an insn body to subtract r1 and c,
4282 storing the result in r0. */
4284 gen_sub3_insn (r0, r1, c)
4285 rtx r0, r1, c;
4287 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4289 if (icode == CODE_FOR_nothing
4290 || ! ((*insn_data[icode].operand[0].predicate)
4291 (r0, insn_data[icode].operand[0].mode))
4292 || ! ((*insn_data[icode].operand[1].predicate)
4293 (r1, insn_data[icode].operand[1].mode))
4294 || ! ((*insn_data[icode].operand[2].predicate)
4295 (c, insn_data[icode].operand[2].mode)))
4296 return NULL_RTX;
4298 return (GEN_FCN (icode) (r0, r1, c));
4302 have_sub2_insn (x, y)
4303 rtx x, y;
4305 int icode;
4307 if (GET_MODE (x) == VOIDmode)
4308 abort ();
4310 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4312 if (icode == CODE_FOR_nothing)
4313 return 0;
4315 if (! ((*insn_data[icode].operand[0].predicate)
4316 (x, insn_data[icode].operand[0].mode))
4317 || ! ((*insn_data[icode].operand[1].predicate)
4318 (x, insn_data[icode].operand[1].mode))
4319 || ! ((*insn_data[icode].operand[2].predicate)
4320 (y, insn_data[icode].operand[2].mode)))
4321 return 0;
4323 return 1;
4326 /* Generate the body of an instruction to copy Y into X.
4327 It may be a list of insns, if one insn isn't enough. */
4330 gen_move_insn (x, y)
4331 rtx x, y;
4333 enum machine_mode mode = GET_MODE (x);
4334 enum insn_code insn_code;
4335 rtx seq;
4337 if (mode == VOIDmode)
4338 mode = GET_MODE (y);
4340 insn_code = mov_optab->handlers[(int) mode].insn_code;
4342 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
4343 find a mode to do it in. If we have a movcc, use it. Otherwise,
4344 find the MODE_INT mode of the same width. */
4346 if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
4348 enum machine_mode tmode = VOIDmode;
4349 rtx x1 = x, y1 = y;
4351 if (mode != CCmode
4352 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
4353 tmode = CCmode;
4354 else
4355 for (tmode = QImode; tmode != VOIDmode;
4356 tmode = GET_MODE_WIDER_MODE (tmode))
4357 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
4358 break;
4360 if (tmode == VOIDmode)
4361 abort ();
4363 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
4364 may call change_address which is not appropriate if we were
4365 called when a reload was in progress. We don't have to worry
4366 about changing the address since the size in bytes is supposed to
4367 be the same. Copy the MEM to change the mode and move any
4368 substitutions from the old MEM to the new one. */
4370 if (reload_in_progress)
4372 x = gen_lowpart_common (tmode, x1);
4373 if (x == 0 && GET_CODE (x1) == MEM)
4375 x = adjust_address_nv (x1, tmode, 0);
4376 copy_replacements (x1, x);
4379 y = gen_lowpart_common (tmode, y1);
4380 if (y == 0 && GET_CODE (y1) == MEM)
4382 y = adjust_address_nv (y1, tmode, 0);
4383 copy_replacements (y1, y);
4386 else
4388 x = gen_lowpart (tmode, x);
4389 y = gen_lowpart (tmode, y);
4392 insn_code = mov_optab->handlers[(int) tmode].insn_code;
4393 return (GEN_FCN (insn_code) (x, y));
4396 start_sequence ();
4397 emit_move_insn_1 (x, y);
4398 seq = get_insns ();
4399 end_sequence ();
4400 return seq;
4403 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4404 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4405 no such operation exists, CODE_FOR_nothing will be returned. */
4407 enum insn_code
4408 can_extend_p (to_mode, from_mode, unsignedp)
4409 enum machine_mode to_mode, from_mode;
4410 int unsignedp;
4412 #ifdef HAVE_ptr_extend
4413 if (unsignedp < 0)
4414 return CODE_FOR_ptr_extend;
4415 else
4416 #endif
4417 return extendtab[(int) to_mode][(int) from_mode][unsignedp != 0];
4420 /* Generate the body of an insn to extend Y (with mode MFROM)
4421 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4424 gen_extend_insn (x, y, mto, mfrom, unsignedp)
4425 rtx x, y;
4426 enum machine_mode mto, mfrom;
4427 int unsignedp;
4429 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp != 0]) (x, y));
4432 /* can_fix_p and can_float_p say whether the target machine
4433 can directly convert a given fixed point type to
4434 a given floating point type, or vice versa.
4435 The returned value is the CODE_FOR_... value to use,
4436 or CODE_FOR_nothing if these modes cannot be directly converted.
4438 *TRUNCP_PTR is set to 1 if it is necessary to output
4439 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4441 static enum insn_code
4442 can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
4443 enum machine_mode fltmode, fixmode;
4444 int unsignedp;
4445 int *truncp_ptr;
4447 *truncp_ptr = 0;
4448 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0]
4449 != CODE_FOR_nothing)
4450 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0];
4452 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
4454 *truncp_ptr = 1;
4455 return fixtab[(int) fltmode][(int) fixmode][unsignedp != 0];
4457 return CODE_FOR_nothing;
4460 static enum insn_code
4461 can_float_p (fltmode, fixmode, unsignedp)
4462 enum machine_mode fixmode, fltmode;
4463 int unsignedp;
4465 return floattab[(int) fltmode][(int) fixmode][unsignedp != 0];
4468 /* Generate code to convert FROM to floating point
4469 and store in TO. FROM must be fixed point and not VOIDmode.
4470 UNSIGNEDP nonzero means regard FROM as unsigned.
4471 Normally this is done by correcting the final value
4472 if it is negative. */
4474 void
4475 expand_float (to, from, unsignedp)
4476 rtx to, from;
4477 int unsignedp;
4479 enum insn_code icode;
4480 rtx target = to;
4481 enum machine_mode fmode, imode;
4483 /* Crash now, because we won't be able to decide which mode to use. */
4484 if (GET_MODE (from) == VOIDmode)
4485 abort ();
4487 /* Look for an insn to do the conversion. Do it in the specified
4488 modes if possible; otherwise convert either input, output or both to
4489 wider mode. If the integer mode is wider than the mode of FROM,
4490 we can do the conversion signed even if the input is unsigned. */
4492 for (imode = GET_MODE (from); imode != VOIDmode;
4493 imode = GET_MODE_WIDER_MODE (imode))
4494 for (fmode = GET_MODE (to); fmode != VOIDmode;
4495 fmode = GET_MODE_WIDER_MODE (fmode))
4497 int doing_unsigned = unsignedp;
4499 if (fmode != GET_MODE (to)
4500 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4501 continue;
4503 icode = can_float_p (fmode, imode, unsignedp);
4504 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4505 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4507 if (icode != CODE_FOR_nothing)
4509 to = protect_from_queue (to, 1);
4510 from = protect_from_queue (from, 0);
4512 if (imode != GET_MODE (from))
4513 from = convert_to_mode (imode, from, unsignedp);
4515 if (fmode != GET_MODE (to))
4516 target = gen_reg_rtx (fmode);
4518 emit_unop_insn (icode, target, from,
4519 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4521 if (target != to)
4522 convert_move (to, target, 0);
4523 return;
4527 /* Unsigned integer, and no way to convert directly.
4528 Convert as signed, then conditionally adjust the result. */
4529 if (unsignedp)
4531 rtx label = gen_label_rtx ();
4532 rtx temp;
4533 REAL_VALUE_TYPE offset;
4535 emit_queue ();
4537 to = protect_from_queue (to, 1);
4538 from = protect_from_queue (from, 0);
4540 if (flag_force_mem)
4541 from = force_not_mem (from);
4543 /* Look for a usable floating mode FMODE wider than the source and at
4544 least as wide as the target. Using FMODE will avoid rounding woes
4545 with unsigned values greater than the signed maximum value. */
4547 for (fmode = GET_MODE (to); fmode != VOIDmode;
4548 fmode = GET_MODE_WIDER_MODE (fmode))
4549 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4550 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4551 break;
4553 if (fmode == VOIDmode)
4555 /* There is no such mode. Pretend the target is wide enough. */
4556 fmode = GET_MODE (to);
4558 /* Avoid double-rounding when TO is narrower than FROM. */
4559 if ((significand_size (fmode) + 1)
4560 < GET_MODE_BITSIZE (GET_MODE (from)))
4562 rtx temp1;
4563 rtx neglabel = gen_label_rtx ();
4565 /* Don't use TARGET if it isn't a register, is a hard register,
4566 or is the wrong mode. */
4567 if (GET_CODE (target) != REG
4568 || REGNO (target) < FIRST_PSEUDO_REGISTER
4569 || GET_MODE (target) != fmode)
4570 target = gen_reg_rtx (fmode);
4572 imode = GET_MODE (from);
4573 do_pending_stack_adjust ();
4575 /* Test whether the sign bit is set. */
4576 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4577 0, neglabel);
4579 /* The sign bit is not set. Convert as signed. */
4580 expand_float (target, from, 0);
4581 emit_jump_insn (gen_jump (label));
4582 emit_barrier ();
4584 /* The sign bit is set.
4585 Convert to a usable (positive signed) value by shifting right
4586 one bit, while remembering if a nonzero bit was shifted
4587 out; i.e., compute (from & 1) | (from >> 1). */
4589 emit_label (neglabel);
4590 temp = expand_binop (imode, and_optab, from, const1_rtx,
4591 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4592 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4593 NULL_RTX, 1);
4594 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4595 OPTAB_LIB_WIDEN);
4596 expand_float (target, temp, 0);
4598 /* Multiply by 2 to undo the shift above. */
4599 temp = expand_binop (fmode, add_optab, target, target,
4600 target, 0, OPTAB_LIB_WIDEN);
4601 if (temp != target)
4602 emit_move_insn (target, temp);
4604 do_pending_stack_adjust ();
4605 emit_label (label);
4606 goto done;
4610 /* If we are about to do some arithmetic to correct for an
4611 unsigned operand, do it in a pseudo-register. */
4613 if (GET_MODE (to) != fmode
4614 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
4615 target = gen_reg_rtx (fmode);
4617 /* Convert as signed integer to floating. */
4618 expand_float (target, from, 0);
4620 /* If FROM is negative (and therefore TO is negative),
4621 correct its value by 2**bitwidth. */
4623 do_pending_stack_adjust ();
4624 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4625 0, label);
4627 /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
4628 Rather than setting up a dconst_dot_5, let's hope SCO
4629 fixes the bug. */
4630 offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
4631 temp = expand_binop (fmode, add_optab, target,
4632 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4633 target, 0, OPTAB_LIB_WIDEN);
4634 if (temp != target)
4635 emit_move_insn (target, temp);
4637 do_pending_stack_adjust ();
4638 emit_label (label);
4639 goto done;
4642 /* No hardware instruction available; call a library routine to convert from
4643 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
4645 rtx libfcn;
4646 rtx insns;
4647 rtx value;
4649 to = protect_from_queue (to, 1);
4650 from = protect_from_queue (from, 0);
4652 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4653 from = convert_to_mode (SImode, from, unsignedp);
4655 if (flag_force_mem)
4656 from = force_not_mem (from);
4658 if (GET_MODE (to) == SFmode)
4660 if (GET_MODE (from) == SImode)
4661 libfcn = floatsisf_libfunc;
4662 else if (GET_MODE (from) == DImode)
4663 libfcn = floatdisf_libfunc;
4664 else if (GET_MODE (from) == TImode)
4665 libfcn = floattisf_libfunc;
4666 else
4667 abort ();
4669 else if (GET_MODE (to) == DFmode)
4671 if (GET_MODE (from) == SImode)
4672 libfcn = floatsidf_libfunc;
4673 else if (GET_MODE (from) == DImode)
4674 libfcn = floatdidf_libfunc;
4675 else if (GET_MODE (from) == TImode)
4676 libfcn = floattidf_libfunc;
4677 else
4678 abort ();
4680 else if (GET_MODE (to) == XFmode)
4682 if (GET_MODE (from) == SImode)
4683 libfcn = floatsixf_libfunc;
4684 else if (GET_MODE (from) == DImode)
4685 libfcn = floatdixf_libfunc;
4686 else if (GET_MODE (from) == TImode)
4687 libfcn = floattixf_libfunc;
4688 else
4689 abort ();
4691 else if (GET_MODE (to) == TFmode)
4693 if (GET_MODE (from) == SImode)
4694 libfcn = floatsitf_libfunc;
4695 else if (GET_MODE (from) == DImode)
4696 libfcn = floatditf_libfunc;
4697 else if (GET_MODE (from) == TImode)
4698 libfcn = floattitf_libfunc;
4699 else
4700 abort ();
4702 else
4703 abort ();
4705 start_sequence ();
4707 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4708 GET_MODE (to), 1, from,
4709 GET_MODE (from));
4710 insns = get_insns ();
4711 end_sequence ();
4713 emit_libcall_block (insns, target, value,
4714 gen_rtx_FLOAT (GET_MODE (to), from));
4717 done:
4719 /* Copy result to requested destination
4720 if we have been computing in a temp location. */
4722 if (target != to)
4724 if (GET_MODE (target) == GET_MODE (to))
4725 emit_move_insn (to, target);
4726 else
4727 convert_move (to, target, 0);
4731 /* expand_fix: generate code to convert FROM to fixed point
4732 and store in TO. FROM must be floating point. */
4734 static rtx
4735 ftruncify (x)
4736 rtx x;
4738 rtx temp = gen_reg_rtx (GET_MODE (x));
4739 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
4742 void
4743 expand_fix (to, from, unsignedp)
4744 rtx to, from;
4745 int unsignedp;
4747 enum insn_code icode;
4748 rtx target = to;
4749 enum machine_mode fmode, imode;
4750 int must_trunc = 0;
4751 rtx libfcn = 0;
4753 /* We first try to find a pair of modes, one real and one integer, at
4754 least as wide as FROM and TO, respectively, in which we can open-code
4755 this conversion. If the integer mode is wider than the mode of TO,
4756 we can do the conversion either signed or unsigned. */
4758 for (fmode = GET_MODE (from); fmode != VOIDmode;
4759 fmode = GET_MODE_WIDER_MODE (fmode))
4760 for (imode = GET_MODE (to); imode != VOIDmode;
4761 imode = GET_MODE_WIDER_MODE (imode))
4763 int doing_unsigned = unsignedp;
4765 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4766 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4767 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4769 if (icode != CODE_FOR_nothing)
4771 to = protect_from_queue (to, 1);
4772 from = protect_from_queue (from, 0);
4774 if (fmode != GET_MODE (from))
4775 from = convert_to_mode (fmode, from, 0);
4777 if (must_trunc)
4778 from = ftruncify (from);
4780 if (imode != GET_MODE (to))
4781 target = gen_reg_rtx (imode);
4783 emit_unop_insn (icode, target, from,
4784 doing_unsigned ? UNSIGNED_FIX : FIX);
4785 if (target != to)
4786 convert_move (to, target, unsignedp);
4787 return;
4791 /* For an unsigned conversion, there is one more way to do it.
4792 If we have a signed conversion, we generate code that compares
4793 the real value to the largest representable positive number. If if
4794 is smaller, the conversion is done normally. Otherwise, subtract
4795 one plus the highest signed number, convert, and add it back.
4797 We only need to check all real modes, since we know we didn't find
4798 anything with a wider integer mode. */
4800 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4801 for (fmode = GET_MODE (from); fmode != VOIDmode;
4802 fmode = GET_MODE_WIDER_MODE (fmode))
4803 /* Make sure we won't lose significant bits doing this. */
4804 if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
4805 && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4806 &must_trunc))
4808 int bitsize;
4809 REAL_VALUE_TYPE offset;
4810 rtx limit, lab1, lab2, insn;
4812 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4813 offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
4814 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4815 lab1 = gen_label_rtx ();
4816 lab2 = gen_label_rtx ();
4818 emit_queue ();
4819 to = protect_from_queue (to, 1);
4820 from = protect_from_queue (from, 0);
4822 if (flag_force_mem)
4823 from = force_not_mem (from);
4825 if (fmode != GET_MODE (from))
4826 from = convert_to_mode (fmode, from, 0);
4828 /* See if we need to do the subtraction. */
4829 do_pending_stack_adjust ();
4830 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4831 0, lab1);
4833 /* If not, do the signed "fix" and branch around fixup code. */
4834 expand_fix (to, from, 0);
4835 emit_jump_insn (gen_jump (lab2));
4836 emit_barrier ();
4838 /* Otherwise, subtract 2**(N-1), convert to signed number,
4839 then add 2**(N-1). Do the addition using XOR since this
4840 will often generate better code. */
4841 emit_label (lab1);
4842 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4843 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4844 expand_fix (to, target, 0);
4845 target = expand_binop (GET_MODE (to), xor_optab, to,
4846 gen_int_mode
4847 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4848 GET_MODE (to)),
4849 to, 1, OPTAB_LIB_WIDEN);
4851 if (target != to)
4852 emit_move_insn (to, target);
4854 emit_label (lab2);
4856 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4857 != CODE_FOR_nothing)
4859 /* Make a place for a REG_NOTE and add it. */
4860 insn = emit_move_insn (to, to);
4861 set_unique_reg_note (insn,
4862 REG_EQUAL,
4863 gen_rtx_fmt_e (UNSIGNED_FIX,
4864 GET_MODE (to),
4865 copy_rtx (from)));
4868 return;
4871 /* We can't do it with an insn, so use a library call. But first ensure
4872 that the mode of TO is at least as wide as SImode, since those are the
4873 only library calls we know about. */
4875 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4877 target = gen_reg_rtx (SImode);
4879 expand_fix (target, from, unsignedp);
4881 else if (GET_MODE (from) == SFmode)
4883 if (GET_MODE (to) == SImode)
4884 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
4885 else if (GET_MODE (to) == DImode)
4886 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
4887 else if (GET_MODE (to) == TImode)
4888 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
4889 else
4890 abort ();
4892 else if (GET_MODE (from) == DFmode)
4894 if (GET_MODE (to) == SImode)
4895 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
4896 else if (GET_MODE (to) == DImode)
4897 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
4898 else if (GET_MODE (to) == TImode)
4899 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
4900 else
4901 abort ();
4903 else if (GET_MODE (from) == XFmode)
4905 if (GET_MODE (to) == SImode)
4906 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
4907 else if (GET_MODE (to) == DImode)
4908 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
4909 else if (GET_MODE (to) == TImode)
4910 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
4911 else
4912 abort ();
4914 else if (GET_MODE (from) == TFmode)
4916 if (GET_MODE (to) == SImode)
4917 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
4918 else if (GET_MODE (to) == DImode)
4919 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
4920 else if (GET_MODE (to) == TImode)
4921 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
4922 else
4923 abort ();
4925 else
4926 abort ();
4928 if (libfcn)
4930 rtx insns;
4931 rtx value;
4933 to = protect_from_queue (to, 1);
4934 from = protect_from_queue (from, 0);
4936 if (flag_force_mem)
4937 from = force_not_mem (from);
4939 start_sequence ();
4941 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4942 GET_MODE (to), 1, from,
4943 GET_MODE (from));
4944 insns = get_insns ();
4945 end_sequence ();
4947 emit_libcall_block (insns, target, value,
4948 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4949 GET_MODE (to), from));
4952 if (target != to)
4954 if (GET_MODE (to) == GET_MODE (target))
4955 emit_move_insn (to, target);
4956 else
4957 convert_move (to, target, 0);
4961 /* Report whether we have an instruction to perform the operation
4962 specified by CODE on operands of mode MODE. */
4964 have_insn_for (code, mode)
4965 enum rtx_code code;
4966 enum machine_mode mode;
4968 return (code_to_optab[(int) code] != 0
4969 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
4970 != CODE_FOR_nothing));
4973 /* Create a blank optab. */
4974 static optab
4975 new_optab ()
4977 int i;
4978 optab op = (optab) ggc_alloc (sizeof (struct optab));
4979 for (i = 0; i < NUM_MACHINE_MODES; i++)
4981 op->handlers[i].insn_code = CODE_FOR_nothing;
4982 op->handlers[i].libfunc = 0;
4985 return op;
4988 /* Same, but fill in its code as CODE, and write it into the
4989 code_to_optab table. */
4990 static inline optab
4991 init_optab (code)
4992 enum rtx_code code;
4994 optab op = new_optab ();
4995 op->code = code;
4996 code_to_optab[(int) code] = op;
4997 return op;
5000 /* Same, but fill in its code as CODE, and do _not_ write it into
5001 the code_to_optab table. */
5002 static inline optab
5003 init_optabv (code)
5004 enum rtx_code code;
5006 optab op = new_optab ();
5007 op->code = code;
5008 return op;
5011 /* Initialize the libfunc fields of an entire group of entries in some
5012 optab. Each entry is set equal to a string consisting of a leading
5013 pair of underscores followed by a generic operation name followed by
5014 a mode name (downshifted to lower case) followed by a single character
5015 representing the number of operands for the given operation (which is
5016 usually one of the characters '2', '3', or '4').
5018 OPTABLE is the table in which libfunc fields are to be initialized.
5019 FIRST_MODE is the first machine mode index in the given optab to
5020 initialize.
5021 LAST_MODE is the last machine mode index in the given optab to
5022 initialize.
5023 OPNAME is the generic (string) name of the operation.
5024 SUFFIX is the character which specifies the number of operands for
5025 the given generic operation.
5028 static void
5029 init_libfuncs (optable, first_mode, last_mode, opname, suffix)
5030 optab optable;
5031 int first_mode;
5032 int last_mode;
5033 const char *opname;
5034 int suffix;
5036 int mode;
5037 unsigned opname_len = strlen (opname);
5039 for (mode = first_mode; (int) mode <= (int) last_mode;
5040 mode = (enum machine_mode) ((int) mode + 1))
5042 const char *mname = GET_MODE_NAME(mode);
5043 unsigned mname_len = strlen (mname);
5044 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5045 char *p;
5046 const char *q;
5048 p = libfunc_name;
5049 *p++ = '_';
5050 *p++ = '_';
5051 for (q = opname; *q; )
5052 *p++ = *q++;
5053 for (q = mname; *q; q++)
5054 *p++ = TOLOWER (*q);
5055 *p++ = suffix;
5056 *p = '\0';
5058 optable->handlers[(int) mode].libfunc
5059 = gen_rtx_SYMBOL_REF (Pmode, ggc_alloc_string (libfunc_name,
5060 p - libfunc_name));
5064 /* Initialize the libfunc fields of an entire group of entries in some
5065 optab which correspond to all integer mode operations. The parameters
5066 have the same meaning as similarly named ones for the `init_libfuncs'
5067 routine. (See above). */
5069 static void
5070 init_integral_libfuncs (optable, opname, suffix)
5071 optab optable;
5072 const char *opname;
5073 int suffix;
5075 init_libfuncs (optable, SImode, TImode, opname, suffix);
5078 /* Initialize the libfunc fields of an entire group of entries in some
5079 optab which correspond to all real mode operations. The parameters
5080 have the same meaning as similarly named ones for the `init_libfuncs'
5081 routine. (See above). */
5083 static void
5084 init_floating_libfuncs (optable, opname, suffix)
5085 optab optable;
5086 const char *opname;
5087 int suffix;
5089 init_libfuncs (optable, SFmode, TFmode, opname, suffix);
5093 init_one_libfunc (name)
5094 const char *name;
5096 /* Create a FUNCTION_DECL that can be passed to
5097 targetm.encode_section_info. */
5098 /* ??? We don't have any type information except for this is
5099 a function. Pretend this is "int foo()". */
5100 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
5101 build_function_type (integer_type_node, NULL_TREE));
5102 DECL_ARTIFICIAL (decl) = 1;
5103 DECL_EXTERNAL (decl) = 1;
5104 TREE_PUBLIC (decl) = 1;
5106 /* Return the symbol_ref from the mem rtx. */
5107 return XEXP (DECL_RTL (decl), 0);
5110 /* Call this once to initialize the contents of the optabs
5111 appropriately for the current target machine. */
5113 void
5114 init_optabs ()
5116 unsigned int i, j, k;
5118 /* Start by initializing all tables to contain CODE_FOR_nothing. */
5120 for (i = 0; i < ARRAY_SIZE (fixtab); i++)
5121 for (j = 0; j < ARRAY_SIZE (fixtab[0]); j++)
5122 for (k = 0; k < ARRAY_SIZE (fixtab[0][0]); k++)
5123 fixtab[i][j][k] = CODE_FOR_nothing;
5125 for (i = 0; i < ARRAY_SIZE (fixtrunctab); i++)
5126 for (j = 0; j < ARRAY_SIZE (fixtrunctab[0]); j++)
5127 for (k = 0; k < ARRAY_SIZE (fixtrunctab[0][0]); k++)
5128 fixtrunctab[i][j][k] = CODE_FOR_nothing;
5130 for (i = 0; i < ARRAY_SIZE (floattab); i++)
5131 for (j = 0; j < ARRAY_SIZE (floattab[0]); j++)
5132 for (k = 0; k < ARRAY_SIZE (floattab[0][0]); k++)
5133 floattab[i][j][k] = CODE_FOR_nothing;
5135 for (i = 0; i < ARRAY_SIZE (extendtab); i++)
5136 for (j = 0; j < ARRAY_SIZE (extendtab[0]); j++)
5137 for (k = 0; k < ARRAY_SIZE (extendtab[0][0]); k++)
5138 extendtab[i][j][k] = CODE_FOR_nothing;
5140 for (i = 0; i < NUM_RTX_CODE; i++)
5141 setcc_gen_code[i] = CODE_FOR_nothing;
5143 #ifdef HAVE_conditional_move
5144 for (i = 0; i < NUM_MACHINE_MODES; i++)
5145 movcc_gen_code[i] = CODE_FOR_nothing;
5146 #endif
5148 add_optab = init_optab (PLUS);
5149 addv_optab = init_optabv (PLUS);
5150 sub_optab = init_optab (MINUS);
5151 subv_optab = init_optabv (MINUS);
5152 smul_optab = init_optab (MULT);
5153 smulv_optab = init_optabv (MULT);
5154 smul_highpart_optab = init_optab (UNKNOWN);
5155 umul_highpart_optab = init_optab (UNKNOWN);
5156 smul_widen_optab = init_optab (UNKNOWN);
5157 umul_widen_optab = init_optab (UNKNOWN);
5158 sdiv_optab = init_optab (DIV);
5159 sdivv_optab = init_optabv (DIV);
5160 sdivmod_optab = init_optab (UNKNOWN);
5161 udiv_optab = init_optab (UDIV);
5162 udivmod_optab = init_optab (UNKNOWN);
5163 smod_optab = init_optab (MOD);
5164 umod_optab = init_optab (UMOD);
5165 ftrunc_optab = init_optab (UNKNOWN);
5166 and_optab = init_optab (AND);
5167 ior_optab = init_optab (IOR);
5168 xor_optab = init_optab (XOR);
5169 ashl_optab = init_optab (ASHIFT);
5170 ashr_optab = init_optab (ASHIFTRT);
5171 lshr_optab = init_optab (LSHIFTRT);
5172 rotl_optab = init_optab (ROTATE);
5173 rotr_optab = init_optab (ROTATERT);
5174 smin_optab = init_optab (SMIN);
5175 smax_optab = init_optab (SMAX);
5176 umin_optab = init_optab (UMIN);
5177 umax_optab = init_optab (UMAX);
5179 /* These three have codes assigned exclusively for the sake of
5180 have_insn_for. */
5181 mov_optab = init_optab (SET);
5182 movstrict_optab = init_optab (STRICT_LOW_PART);
5183 cmp_optab = init_optab (COMPARE);
5185 ucmp_optab = init_optab (UNKNOWN);
5186 tst_optab = init_optab (UNKNOWN);
5187 neg_optab = init_optab (NEG);
5188 negv_optab = init_optabv (NEG);
5189 abs_optab = init_optab (ABS);
5190 absv_optab = init_optabv (ABS);
5191 one_cmpl_optab = init_optab (NOT);
5192 ffs_optab = init_optab (FFS);
5193 sqrt_optab = init_optab (SQRT);
5194 sin_optab = init_optab (UNKNOWN);
5195 cos_optab = init_optab (UNKNOWN);
5196 exp_optab = init_optab (UNKNOWN);
5197 log_optab = init_optab (UNKNOWN);
5198 strlen_optab = init_optab (UNKNOWN);
5199 cbranch_optab = init_optab (UNKNOWN);
5200 cmov_optab = init_optab (UNKNOWN);
5201 cstore_optab = init_optab (UNKNOWN);
5202 push_optab = init_optab (UNKNOWN);
5204 for (i = 0; i < NUM_MACHINE_MODES; i++)
5206 movstr_optab[i] = CODE_FOR_nothing;
5207 clrstr_optab[i] = CODE_FOR_nothing;
5209 #ifdef HAVE_SECONDARY_RELOADS
5210 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
5211 #endif
5214 /* Fill in the optabs with the insns we support. */
5215 init_all_optabs ();
5217 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
5218 /* This flag says the same insns that convert to a signed fixnum
5219 also convert validly to an unsigned one. */
5220 for (i = 0; i < NUM_MACHINE_MODES; i++)
5221 for (j = 0; j < NUM_MACHINE_MODES; j++)
5222 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
5223 #endif
5225 /* Initialize the optabs with the names of the library functions. */
5226 init_integral_libfuncs (add_optab, "add", '3');
5227 init_floating_libfuncs (add_optab, "add", '3');
5228 init_integral_libfuncs (addv_optab, "addv", '3');
5229 init_floating_libfuncs (addv_optab, "add", '3');
5230 init_integral_libfuncs (sub_optab, "sub", '3');
5231 init_floating_libfuncs (sub_optab, "sub", '3');
5232 init_integral_libfuncs (subv_optab, "subv", '3');
5233 init_floating_libfuncs (subv_optab, "sub", '3');
5234 init_integral_libfuncs (smul_optab, "mul", '3');
5235 init_floating_libfuncs (smul_optab, "mul", '3');
5236 init_integral_libfuncs (smulv_optab, "mulv", '3');
5237 init_floating_libfuncs (smulv_optab, "mul", '3');
5238 init_integral_libfuncs (sdiv_optab, "div", '3');
5239 init_floating_libfuncs (sdiv_optab, "div", '3');
5240 init_integral_libfuncs (sdivv_optab, "divv", '3');
5241 init_integral_libfuncs (udiv_optab, "udiv", '3');
5242 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5243 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5244 init_integral_libfuncs (smod_optab, "mod", '3');
5245 init_integral_libfuncs (umod_optab, "umod", '3');
5246 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5247 init_integral_libfuncs (and_optab, "and", '3');
5248 init_integral_libfuncs (ior_optab, "ior", '3');
5249 init_integral_libfuncs (xor_optab, "xor", '3');
5250 init_integral_libfuncs (ashl_optab, "ashl", '3');
5251 init_integral_libfuncs (ashr_optab, "ashr", '3');
5252 init_integral_libfuncs (lshr_optab, "lshr", '3');
5253 init_integral_libfuncs (smin_optab, "min", '3');
5254 init_floating_libfuncs (smin_optab, "min", '3');
5255 init_integral_libfuncs (smax_optab, "max", '3');
5256 init_floating_libfuncs (smax_optab, "max", '3');
5257 init_integral_libfuncs (umin_optab, "umin", '3');
5258 init_integral_libfuncs (umax_optab, "umax", '3');
5259 init_integral_libfuncs (neg_optab, "neg", '2');
5260 init_floating_libfuncs (neg_optab, "neg", '2');
5261 init_integral_libfuncs (negv_optab, "negv", '2');
5262 init_floating_libfuncs (negv_optab, "neg", '2');
5263 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5264 init_integral_libfuncs (ffs_optab, "ffs", '2');
5266 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5267 init_integral_libfuncs (cmp_optab, "cmp", '2');
5268 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5269 init_floating_libfuncs (cmp_optab, "cmp", '2');
5271 #ifdef MULSI3_LIBCALL
5272 smul_optab->handlers[(int) SImode].libfunc
5273 = init_one_libfunc (MULSI3_LIBCALL);
5274 #endif
5275 #ifdef MULDI3_LIBCALL
5276 smul_optab->handlers[(int) DImode].libfunc
5277 = init_one_libfunc (MULDI3_LIBCALL);
5278 #endif
5280 #ifdef DIVSI3_LIBCALL
5281 sdiv_optab->handlers[(int) SImode].libfunc
5282 = init_one_libfunc (DIVSI3_LIBCALL);
5283 #endif
5284 #ifdef DIVDI3_LIBCALL
5285 sdiv_optab->handlers[(int) DImode].libfunc
5286 = init_one_libfunc (DIVDI3_LIBCALL);
5287 #endif
5289 #ifdef UDIVSI3_LIBCALL
5290 udiv_optab->handlers[(int) SImode].libfunc
5291 = init_one_libfunc (UDIVSI3_LIBCALL);
5292 #endif
5293 #ifdef UDIVDI3_LIBCALL
5294 udiv_optab->handlers[(int) DImode].libfunc
5295 = init_one_libfunc (UDIVDI3_LIBCALL);
5296 #endif
5298 #ifdef MODSI3_LIBCALL
5299 smod_optab->handlers[(int) SImode].libfunc
5300 = init_one_libfunc (MODSI3_LIBCALL);
5301 #endif
5302 #ifdef MODDI3_LIBCALL
5303 smod_optab->handlers[(int) DImode].libfunc
5304 = init_one_libfunc (MODDI3_LIBCALL);
5305 #endif
5307 #ifdef UMODSI3_LIBCALL
5308 umod_optab->handlers[(int) SImode].libfunc
5309 = init_one_libfunc (UMODSI3_LIBCALL);
5310 #endif
5311 #ifdef UMODDI3_LIBCALL
5312 umod_optab->handlers[(int) DImode].libfunc
5313 = init_one_libfunc (UMODDI3_LIBCALL);
5314 #endif
5316 /* Use cabs for DC complex abs, since systems generally have cabs.
5317 Don't define any libcall for SCmode, so that cabs will be used. */
5318 abs_optab->handlers[(int) DCmode].libfunc
5319 = init_one_libfunc ("cabs");
5321 /* The ffs function operates on `int'. */
5322 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
5323 = init_one_libfunc ("ffs");
5325 extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
5326 extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
5327 extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
5328 extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
5329 extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
5331 truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
5332 truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
5333 trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
5334 truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
5335 trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
5337 abort_libfunc = init_one_libfunc ("abort");
5338 memcpy_libfunc = init_one_libfunc ("memcpy");
5339 memmove_libfunc = init_one_libfunc ("memmove");
5340 bcopy_libfunc = init_one_libfunc ("bcopy");
5341 memcmp_libfunc = init_one_libfunc ("memcmp");
5342 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
5343 memset_libfunc = init_one_libfunc ("memset");
5344 bzero_libfunc = init_one_libfunc ("bzero");
5346 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5347 ? "_Unwind_SjLj_Resume"
5348 : "_Unwind_Resume");
5349 #ifndef DONT_USE_BUILTIN_SETJMP
5350 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5351 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
5352 #else
5353 setjmp_libfunc = init_one_libfunc ("setjmp");
5354 longjmp_libfunc = init_one_libfunc ("longjmp");
5355 #endif
5356 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5357 unwind_sjlj_unregister_libfunc
5358 = init_one_libfunc ("_Unwind_SjLj_Unregister");
5360 eqhf2_libfunc = init_one_libfunc ("__eqhf2");
5361 nehf2_libfunc = init_one_libfunc ("__nehf2");
5362 gthf2_libfunc = init_one_libfunc ("__gthf2");
5363 gehf2_libfunc = init_one_libfunc ("__gehf2");
5364 lthf2_libfunc = init_one_libfunc ("__lthf2");
5365 lehf2_libfunc = init_one_libfunc ("__lehf2");
5366 unordhf2_libfunc = init_one_libfunc ("__unordhf2");
5368 eqsf2_libfunc = init_one_libfunc ("__eqsf2");
5369 nesf2_libfunc = init_one_libfunc ("__nesf2");
5370 gtsf2_libfunc = init_one_libfunc ("__gtsf2");
5371 gesf2_libfunc = init_one_libfunc ("__gesf2");
5372 ltsf2_libfunc = init_one_libfunc ("__ltsf2");
5373 lesf2_libfunc = init_one_libfunc ("__lesf2");
5374 unordsf2_libfunc = init_one_libfunc ("__unordsf2");
5376 eqdf2_libfunc = init_one_libfunc ("__eqdf2");
5377 nedf2_libfunc = init_one_libfunc ("__nedf2");
5378 gtdf2_libfunc = init_one_libfunc ("__gtdf2");
5379 gedf2_libfunc = init_one_libfunc ("__gedf2");
5380 ltdf2_libfunc = init_one_libfunc ("__ltdf2");
5381 ledf2_libfunc = init_one_libfunc ("__ledf2");
5382 unorddf2_libfunc = init_one_libfunc ("__unorddf2");
5384 eqxf2_libfunc = init_one_libfunc ("__eqxf2");
5385 nexf2_libfunc = init_one_libfunc ("__nexf2");
5386 gtxf2_libfunc = init_one_libfunc ("__gtxf2");
5387 gexf2_libfunc = init_one_libfunc ("__gexf2");
5388 ltxf2_libfunc = init_one_libfunc ("__ltxf2");
5389 lexf2_libfunc = init_one_libfunc ("__lexf2");
5390 unordxf2_libfunc = init_one_libfunc ("__unordxf2");
5392 eqtf2_libfunc = init_one_libfunc ("__eqtf2");
5393 netf2_libfunc = init_one_libfunc ("__netf2");
5394 gttf2_libfunc = init_one_libfunc ("__gttf2");
5395 getf2_libfunc = init_one_libfunc ("__getf2");
5396 lttf2_libfunc = init_one_libfunc ("__lttf2");
5397 letf2_libfunc = init_one_libfunc ("__letf2");
5398 unordtf2_libfunc = init_one_libfunc ("__unordtf2");
5400 floatsisf_libfunc = init_one_libfunc ("__floatsisf");
5401 floatdisf_libfunc = init_one_libfunc ("__floatdisf");
5402 floattisf_libfunc = init_one_libfunc ("__floattisf");
5404 floatsidf_libfunc = init_one_libfunc ("__floatsidf");
5405 floatdidf_libfunc = init_one_libfunc ("__floatdidf");
5406 floattidf_libfunc = init_one_libfunc ("__floattidf");
5408 floatsixf_libfunc = init_one_libfunc ("__floatsixf");
5409 floatdixf_libfunc = init_one_libfunc ("__floatdixf");
5410 floattixf_libfunc = init_one_libfunc ("__floattixf");
5412 floatsitf_libfunc = init_one_libfunc ("__floatsitf");
5413 floatditf_libfunc = init_one_libfunc ("__floatditf");
5414 floattitf_libfunc = init_one_libfunc ("__floattitf");
5416 fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
5417 fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
5418 fixsfti_libfunc = init_one_libfunc ("__fixsfti");
5420 fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
5421 fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
5422 fixdfti_libfunc = init_one_libfunc ("__fixdfti");
5424 fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
5425 fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
5426 fixxfti_libfunc = init_one_libfunc ("__fixxfti");
5428 fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
5429 fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
5430 fixtfti_libfunc = init_one_libfunc ("__fixtfti");
5432 fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
5433 fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
5434 fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
5436 fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
5437 fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
5438 fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
5440 fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
5441 fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
5442 fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
5444 fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
5445 fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
5446 fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
5448 /* For function entry/exit instrumentation. */
5449 profile_function_entry_libfunc
5450 = init_one_libfunc ("__cyg_profile_func_enter");
5451 profile_function_exit_libfunc
5452 = init_one_libfunc ("__cyg_profile_func_exit");
5454 #ifdef HAVE_conditional_trap
5455 init_traps ();
5456 #endif
5458 #ifdef INIT_TARGET_OPTABS
5459 /* Allow the target to add more libcalls or rename some, etc. */
5460 INIT_TARGET_OPTABS;
5461 #endif
5464 static GTY(()) rtx trap_rtx;
5466 #ifdef HAVE_conditional_trap
5467 /* The insn generating function can not take an rtx_code argument.
5468 TRAP_RTX is used as an rtx argument. Its code is replaced with
5469 the code to be used in the trap insn and all other fields are
5470 ignored. */
5472 static void
5473 init_traps ()
5475 if (HAVE_conditional_trap)
5477 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
5480 #endif
5482 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5483 CODE. Return 0 on failure. */
5486 gen_cond_trap (code, op1, op2, tcode)
5487 enum rtx_code code ATTRIBUTE_UNUSED;
5488 rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
5490 enum machine_mode mode = GET_MODE (op1);
5492 if (mode == VOIDmode)
5493 return 0;
5495 #ifdef HAVE_conditional_trap
5496 if (HAVE_conditional_trap
5497 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
5499 rtx insn;
5500 start_sequence();
5501 emit_insn (GEN_FCN (cmp_optab->handlers[(int) mode].insn_code) (op1, op2));
5502 PUT_CODE (trap_rtx, code);
5503 insn = gen_conditional_trap (trap_rtx, tcode);
5504 if (insn)
5506 emit_insn (insn);
5507 insn = get_insns ();
5509 end_sequence();
5510 return insn;
5512 #endif
5514 return 0;
5517 #include "gt-optabs.h"