* es.po: Update.
[official-gcc/alias-decl.git] / gcc / sched-deps.c
blob539d02734108adbffeec5d8cda85dd023b055174
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "toplev.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "regs.h"
34 #include "function.h"
35 #include "flags.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 #include "except.h"
39 #include "toplev.h"
40 #include "recog.h"
41 #include "sched-int.h"
42 #include "params.h"
43 #include "cselib.h"
44 #include "df.h"
47 static regset reg_pending_sets;
48 static regset reg_pending_clobbers;
49 static regset reg_pending_uses;
51 /* The following enumeration values tell us what dependencies we
52 should use to implement the barrier. We use true-dependencies for
53 TRUE_BARRIER and anti-dependencies for MOVE_BARRIER. */
54 enum reg_pending_barrier_mode
56 NOT_A_BARRIER = 0,
57 MOVE_BARRIER,
58 TRUE_BARRIER
61 static enum reg_pending_barrier_mode reg_pending_barrier;
63 /* To speed up the test for duplicate dependency links we keep a
64 record of dependencies created by add_dependence when the average
65 number of instructions in a basic block is very large.
67 Studies have shown that there is typically around 5 instructions between
68 branches for typical C code. So we can make a guess that the average
69 basic block is approximately 5 instructions long; we will choose 100X
70 the average size as a very large basic block.
72 Each insn has associated bitmaps for its dependencies. Each bitmap
73 has enough entries to represent a dependency on any other insn in
74 the insn chain. All bitmap for true dependencies cache is
75 allocated then the rest two ones are also allocated. */
76 static bitmap_head *true_dependency_cache;
77 static bitmap_head *anti_dependency_cache;
78 static bitmap_head *output_dependency_cache;
79 int cache_size;
81 /* To speed up checking consistency of formed forward insn
82 dependencies we use the following cache. Another possible solution
83 could be switching off checking duplication of insns in forward
84 dependencies. */
85 #ifdef ENABLE_CHECKING
86 static bitmap_head *forward_dependency_cache;
87 #endif
89 static int deps_may_trap_p (rtx);
90 static void add_dependence_list (rtx, rtx, enum reg_note);
91 static void add_dependence_list_and_free (rtx, rtx *, enum reg_note);
92 static void delete_all_dependences (rtx);
93 static void fixup_sched_groups (rtx);
95 static void flush_pending_lists (struct deps *, rtx, int, int);
96 static void sched_analyze_1 (struct deps *, rtx, rtx);
97 static void sched_analyze_2 (struct deps *, rtx, rtx);
98 static void sched_analyze_insn (struct deps *, rtx, rtx, rtx);
100 static rtx sched_get_condition (rtx);
101 static int conditions_mutex_p (rtx, rtx);
103 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
105 static int
106 deps_may_trap_p (rtx mem)
108 rtx addr = XEXP (mem, 0);
110 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
112 rtx t = get_reg_known_value (REGNO (addr));
113 if (t)
114 addr = t;
116 return rtx_addr_can_trap_p (addr);
119 /* Return the INSN_LIST containing INSN in LIST, or NULL
120 if LIST does not contain INSN. */
123 find_insn_list (rtx insn, rtx list)
125 while (list)
127 if (XEXP (list, 0) == insn)
128 return list;
129 list = XEXP (list, 1);
131 return 0;
134 /* Find the condition under which INSN is executed. */
136 static rtx
137 sched_get_condition (rtx insn)
139 rtx pat = PATTERN (insn);
140 rtx src;
142 if (pat == 0)
143 return 0;
145 if (GET_CODE (pat) == COND_EXEC)
146 return COND_EXEC_TEST (pat);
148 if (!any_condjump_p (insn) || !onlyjump_p (insn))
149 return 0;
151 src = SET_SRC (pc_set (insn));
152 #if 0
153 /* The previous code here was completely invalid and could never extract
154 the condition from a jump. This code does the correct thing, but that
155 triggers latent bugs later in the scheduler on ports with conditional
156 execution. So this is disabled for now. */
157 if (XEXP (src, 2) == pc_rtx)
158 return XEXP (src, 0);
159 else if (XEXP (src, 1) == pc_rtx)
161 rtx cond = XEXP (src, 0);
162 enum rtx_code revcode = reversed_comparison_code (cond, insn);
164 if (revcode == UNKNOWN)
165 return 0;
166 return gen_rtx_fmt_ee (revcode, GET_MODE (cond), XEXP (cond, 0),
167 XEXP (cond, 1));
169 #endif
171 return 0;
174 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
176 static int
177 conditions_mutex_p (rtx cond1, rtx cond2)
179 if (COMPARISON_P (cond1)
180 && COMPARISON_P (cond2)
181 && GET_CODE (cond1) == reversed_comparison_code (cond2, NULL)
182 && XEXP (cond1, 0) == XEXP (cond2, 0)
183 && XEXP (cond1, 1) == XEXP (cond2, 1))
184 return 1;
185 return 0;
188 /* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
189 LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the
190 type of dependence that this link represents. The function returns
191 nonzero if a new entry has been added to insn's LOG_LINK. */
194 add_dependence (rtx insn, rtx elem, enum reg_note dep_type)
196 rtx link;
197 int present_p;
198 rtx cond1, cond2;
200 /* Don't depend an insn on itself. */
201 if (insn == elem)
202 return 0;
204 /* We can get a dependency on deleted insns due to optimizations in
205 the register allocation and reloading or due to splitting. Any
206 such dependency is useless and can be ignored. */
207 if (NOTE_P (elem))
208 return 0;
210 /* flow.c doesn't handle conditional lifetimes entirely correctly;
211 calls mess up the conditional lifetimes. */
212 /* ??? add_dependence is the wrong place to be eliding dependencies,
213 as that forgets that the condition expressions themselves may
214 be dependent. */
215 if (!CALL_P (insn) && !CALL_P (elem))
217 cond1 = sched_get_condition (insn);
218 cond2 = sched_get_condition (elem);
219 if (cond1 && cond2
220 && conditions_mutex_p (cond1, cond2)
221 /* Make sure first instruction doesn't affect condition of second
222 instruction if switched. */
223 && !modified_in_p (cond1, elem)
224 /* Make sure second instruction doesn't affect condition of first
225 instruction if switched. */
226 && !modified_in_p (cond2, insn))
227 return 0;
230 present_p = 1;
231 #ifdef INSN_SCHEDULING
232 /* ??? No good way to tell from here whether we're doing interblock
233 scheduling. Possibly add another callback. */
234 #if 0
235 /* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.)
236 No need for interblock dependences with calls, since
237 calls are not moved between blocks. Note: the edge where
238 elem is a CALL is still required. */
239 if (CALL_P (insn)
240 && (INSN_BB (elem) != INSN_BB (insn)))
241 return 0;
242 #endif
244 /* If we already have a dependency for ELEM, then we do not need to
245 do anything. Avoiding the list walk below can cut compile times
246 dramatically for some code. */
247 if (true_dependency_cache != NULL)
249 enum reg_note present_dep_type = 0;
251 gcc_assert (anti_dependency_cache);
252 gcc_assert (output_dependency_cache);
253 if (bitmap_bit_p (&true_dependency_cache[INSN_LUID (insn)],
254 INSN_LUID (elem)))
255 /* Do nothing (present_set_type is already 0). */
257 else if (bitmap_bit_p (&anti_dependency_cache[INSN_LUID (insn)],
258 INSN_LUID (elem)))
259 present_dep_type = REG_DEP_ANTI;
260 else if (bitmap_bit_p (&output_dependency_cache[INSN_LUID (insn)],
261 INSN_LUID (elem)))
262 present_dep_type = REG_DEP_OUTPUT;
263 else
264 present_p = 0;
265 if (present_p && (int) dep_type >= (int) present_dep_type)
266 return 0;
268 #endif
270 /* Check that we don't already have this dependence. */
271 if (present_p)
272 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
273 if (XEXP (link, 0) == elem)
275 #ifdef INSN_SCHEDULING
276 /* Clear corresponding cache entry because type of the link
277 may be changed. */
278 if (true_dependency_cache != NULL)
280 enum reg_note kind = REG_NOTE_KIND (link);
281 switch (kind)
283 case REG_DEP_ANTI:
284 bitmap_clear_bit (&anti_dependency_cache[INSN_LUID (insn)],
285 INSN_LUID (elem));
286 break;
287 case REG_DEP_OUTPUT:
288 gcc_assert (output_dependency_cache);
289 bitmap_clear_bit (&output_dependency_cache[INSN_LUID (insn)],
290 INSN_LUID (elem));
291 break;
292 default:
293 gcc_unreachable ();
296 #endif
298 /* If this is a more restrictive type of dependence than the existing
299 one, then change the existing dependence to this type. */
300 if ((int) dep_type < (int) REG_NOTE_KIND (link))
301 PUT_REG_NOTE_KIND (link, dep_type);
303 #ifdef INSN_SCHEDULING
304 /* If we are adding a dependency to INSN's LOG_LINKs, then
305 note that in the bitmap caches of dependency information. */
306 if (true_dependency_cache != NULL)
308 if ((int) REG_NOTE_KIND (link) == 0)
309 bitmap_set_bit (&true_dependency_cache[INSN_LUID (insn)],
310 INSN_LUID (elem));
311 else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
312 bitmap_set_bit (&anti_dependency_cache[INSN_LUID (insn)],
313 INSN_LUID (elem));
314 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
315 bitmap_set_bit (&output_dependency_cache[INSN_LUID (insn)],
316 INSN_LUID (elem));
318 #endif
319 return 0;
321 /* Might want to check one level of transitivity to save conses. */
323 link = alloc_INSN_LIST (elem, LOG_LINKS (insn));
324 LOG_LINKS (insn) = link;
326 /* Insn dependency, not data dependency. */
327 PUT_REG_NOTE_KIND (link, dep_type);
329 #ifdef INSN_SCHEDULING
330 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
331 in the bitmap caches of dependency information. */
332 if (true_dependency_cache != NULL)
334 if ((int) dep_type == 0)
335 bitmap_set_bit (&true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
336 else if (dep_type == REG_DEP_ANTI)
337 bitmap_set_bit (&anti_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
338 else if (dep_type == REG_DEP_OUTPUT)
339 bitmap_set_bit (&output_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
341 #endif
342 return 1;
345 /* A convenience wrapper to operate on an entire list. */
347 static void
348 add_dependence_list (rtx insn, rtx list, enum reg_note dep_type)
350 for (; list; list = XEXP (list, 1))
351 add_dependence (insn, XEXP (list, 0), dep_type);
354 /* Similar, but free *LISTP at the same time. */
356 static void
357 add_dependence_list_and_free (rtx insn, rtx *listp, enum reg_note dep_type)
359 rtx list, next;
360 for (list = *listp, *listp = NULL; list ; list = next)
362 next = XEXP (list, 1);
363 add_dependence (insn, XEXP (list, 0), dep_type);
364 free_INSN_LIST_node (list);
368 /* Clear all dependencies for an insn. */
370 static void
371 delete_all_dependences (rtx insn)
373 /* Clear caches, if they exist, as well as free the dependence. */
375 #ifdef INSN_SCHEDULING
376 if (true_dependency_cache != NULL)
378 bitmap_clear (&true_dependency_cache[INSN_LUID (insn)]);
379 bitmap_clear (&anti_dependency_cache[INSN_LUID (insn)]);
380 bitmap_clear (&output_dependency_cache[INSN_LUID (insn)]);
382 #endif
384 free_INSN_LIST_list (&LOG_LINKS (insn));
387 /* All insns in a scheduling group except the first should only have
388 dependencies on the previous insn in the group. So we find the
389 first instruction in the scheduling group by walking the dependence
390 chains backwards. Then we add the dependencies for the group to
391 the previous nonnote insn. */
393 static void
394 fixup_sched_groups (rtx insn)
396 rtx link;
398 for (link = LOG_LINKS (insn); link ; link = XEXP (link, 1))
400 rtx i = insn;
403 i = prev_nonnote_insn (i);
405 if (XEXP (link, 0) == i)
406 goto next_link;
407 } while (SCHED_GROUP_P (i));
408 add_dependence (i, XEXP (link, 0), REG_NOTE_KIND (link));
409 next_link:;
412 delete_all_dependences (insn);
414 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote_insn (insn)))
415 add_dependence (insn, prev_nonnote_insn (insn), REG_DEP_ANTI);
418 /* Process an insn's memory dependencies. There are four kinds of
419 dependencies:
421 (0) read dependence: read follows read
422 (1) true dependence: read follows write
423 (2) anti dependence: write follows read
424 (3) output dependence: write follows write
426 We are careful to build only dependencies which actually exist, and
427 use transitivity to avoid building too many links. */
429 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
430 The MEM is a memory reference contained within INSN, which we are saving
431 so that we can do memory aliasing on it. */
433 static void
434 add_insn_mem_dependence (struct deps *deps, rtx *insn_list, rtx *mem_list,
435 rtx insn, rtx mem)
437 rtx link;
439 link = alloc_INSN_LIST (insn, *insn_list);
440 *insn_list = link;
442 if (current_sched_info->use_cselib)
444 mem = shallow_copy_rtx (mem);
445 XEXP (mem, 0) = cselib_subst_to_values (XEXP (mem, 0));
447 link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
448 *mem_list = link;
450 deps->pending_lists_length++;
453 /* Make a dependency between every memory reference on the pending lists
454 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
455 dependencies for a read operation, similarly with FOR_WRITE. */
457 static void
458 flush_pending_lists (struct deps *deps, rtx insn, int for_read,
459 int for_write)
461 if (for_write)
463 add_dependence_list_and_free (insn, &deps->pending_read_insns,
464 REG_DEP_ANTI);
465 free_EXPR_LIST_list (&deps->pending_read_mems);
468 add_dependence_list_and_free (insn, &deps->pending_write_insns,
469 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
470 free_EXPR_LIST_list (&deps->pending_write_mems);
471 deps->pending_lists_length = 0;
473 add_dependence_list_and_free (insn, &deps->last_pending_memory_flush,
474 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
475 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
476 deps->pending_flush_length = 1;
479 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
480 rtx, X, creating all dependencies generated by the write to the
481 destination of X, and reads of everything mentioned. */
483 static void
484 sched_analyze_1 (struct deps *deps, rtx x, rtx insn)
486 int regno;
487 rtx dest = XEXP (x, 0);
488 enum rtx_code code = GET_CODE (x);
490 if (dest == 0)
491 return;
493 if (GET_CODE (dest) == PARALLEL)
495 int i;
497 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
498 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
499 sched_analyze_1 (deps,
500 gen_rtx_CLOBBER (VOIDmode,
501 XEXP (XVECEXP (dest, 0, i), 0)),
502 insn);
504 if (GET_CODE (x) == SET)
505 sched_analyze_2 (deps, SET_SRC (x), insn);
506 return;
509 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
510 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
512 if (GET_CODE (dest) == STRICT_LOW_PART
513 || GET_CODE (dest) == ZERO_EXTRACT
514 || GET_CODE (dest) == SIGN_EXTRACT
515 || read_modify_subreg_p (dest))
517 /* These both read and modify the result. We must handle
518 them as writes to get proper dependencies for following
519 instructions. We must handle them as reads to get proper
520 dependencies from this to previous instructions.
521 Thus we need to call sched_analyze_2. */
523 sched_analyze_2 (deps, XEXP (dest, 0), insn);
525 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
527 /* The second and third arguments are values read by this insn. */
528 sched_analyze_2 (deps, XEXP (dest, 1), insn);
529 sched_analyze_2 (deps, XEXP (dest, 2), insn);
531 dest = XEXP (dest, 0);
534 if (REG_P (dest))
536 regno = REGNO (dest);
538 /* A hard reg in a wide mode may really be multiple registers.
539 If so, mark all of them just like the first. */
540 if (regno < FIRST_PSEUDO_REGISTER)
542 int i = hard_regno_nregs[regno][GET_MODE (dest)];
543 if (code == SET)
545 while (--i >= 0)
546 SET_REGNO_REG_SET (reg_pending_sets, regno + i);
548 else
550 while (--i >= 0)
551 SET_REGNO_REG_SET (reg_pending_clobbers, regno + i);
554 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
555 it does not reload. Ignore these as they have served their
556 purpose already. */
557 else if (regno >= deps->max_reg)
559 gcc_assert (GET_CODE (PATTERN (insn)) == USE
560 || GET_CODE (PATTERN (insn)) == CLOBBER);
562 else
564 if (code == SET)
565 SET_REGNO_REG_SET (reg_pending_sets, regno);
566 else
567 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
569 /* Pseudos that are REG_EQUIV to something may be replaced
570 by that during reloading. We need only add dependencies for
571 the address in the REG_EQUIV note. */
572 if (!reload_completed && get_reg_known_equiv_p (regno))
574 rtx t = get_reg_known_value (regno);
575 if (MEM_P (t))
576 sched_analyze_2 (deps, XEXP (t, 0), insn);
579 /* Don't let it cross a call after scheduling if it doesn't
580 already cross one. */
581 if (REG_N_CALLS_CROSSED (regno) == 0)
582 add_dependence_list (insn, deps->last_function_call, REG_DEP_ANTI);
585 else if (MEM_P (dest))
587 /* Writing memory. */
588 rtx t = dest;
590 if (current_sched_info->use_cselib)
592 t = shallow_copy_rtx (dest);
593 cselib_lookup (XEXP (t, 0), Pmode, 1);
594 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0));
596 t = canon_rtx (t);
598 if (deps->pending_lists_length > MAX_PENDING_LIST_LENGTH)
600 /* Flush all pending reads and writes to prevent the pending lists
601 from getting any larger. Insn scheduling runs too slowly when
602 these lists get long. When compiling GCC with itself,
603 this flush occurs 8 times for sparc, and 10 times for m88k using
604 the default value of 32. */
605 flush_pending_lists (deps, insn, false, true);
607 else
609 rtx pending, pending_mem;
611 pending = deps->pending_read_insns;
612 pending_mem = deps->pending_read_mems;
613 while (pending)
615 if (anti_dependence (XEXP (pending_mem, 0), t))
616 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
618 pending = XEXP (pending, 1);
619 pending_mem = XEXP (pending_mem, 1);
622 pending = deps->pending_write_insns;
623 pending_mem = deps->pending_write_mems;
624 while (pending)
626 if (output_dependence (XEXP (pending_mem, 0), t))
627 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
629 pending = XEXP (pending, 1);
630 pending_mem = XEXP (pending_mem, 1);
633 add_dependence_list (insn, deps->last_pending_memory_flush,
634 REG_DEP_ANTI);
636 add_insn_mem_dependence (deps, &deps->pending_write_insns,
637 &deps->pending_write_mems, insn, dest);
639 sched_analyze_2 (deps, XEXP (dest, 0), insn);
642 /* Analyze reads. */
643 if (GET_CODE (x) == SET)
644 sched_analyze_2 (deps, SET_SRC (x), insn);
647 /* Analyze the uses of memory and registers in rtx X in INSN. */
649 static void
650 sched_analyze_2 (struct deps *deps, rtx x, rtx insn)
652 int i;
653 int j;
654 enum rtx_code code;
655 const char *fmt;
657 if (x == 0)
658 return;
660 code = GET_CODE (x);
662 switch (code)
664 case CONST_INT:
665 case CONST_DOUBLE:
666 case CONST_VECTOR:
667 case SYMBOL_REF:
668 case CONST:
669 case LABEL_REF:
670 /* Ignore constants. Note that we must handle CONST_DOUBLE here
671 because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
672 this does not mean that this insn is using cc0. */
673 return;
675 #ifdef HAVE_cc0
676 case CC0:
677 /* User of CC0 depends on immediately preceding insn. */
678 SCHED_GROUP_P (insn) = 1;
679 /* Don't move CC0 setter to another block (it can set up the
680 same flag for previous CC0 users which is safe). */
681 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
682 return;
683 #endif
685 case REG:
687 int regno = REGNO (x);
688 if (regno < FIRST_PSEUDO_REGISTER)
690 int i = hard_regno_nregs[regno][GET_MODE (x)];
691 while (--i >= 0)
692 SET_REGNO_REG_SET (reg_pending_uses, regno + i);
694 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
695 it does not reload. Ignore these as they have served their
696 purpose already. */
697 else if (regno >= deps->max_reg)
699 gcc_assert (GET_CODE (PATTERN (insn)) == USE
700 || GET_CODE (PATTERN (insn)) == CLOBBER);
702 else
704 SET_REGNO_REG_SET (reg_pending_uses, regno);
706 /* Pseudos that are REG_EQUIV to something may be replaced
707 by that during reloading. We need only add dependencies for
708 the address in the REG_EQUIV note. */
709 if (!reload_completed && get_reg_known_equiv_p (regno))
711 rtx t = get_reg_known_value (regno);
712 if (MEM_P (t))
713 sched_analyze_2 (deps, XEXP (t, 0), insn);
716 /* If the register does not already cross any calls, then add this
717 insn to the sched_before_next_call list so that it will still
718 not cross calls after scheduling. */
719 if (REG_N_CALLS_CROSSED (regno) == 0)
720 deps->sched_before_next_call
721 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
723 return;
726 case MEM:
728 /* Reading memory. */
729 rtx u;
730 rtx pending, pending_mem;
731 rtx t = x;
733 if (current_sched_info->use_cselib)
735 t = shallow_copy_rtx (t);
736 cselib_lookup (XEXP (t, 0), Pmode, 1);
737 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0));
739 t = canon_rtx (t);
740 pending = deps->pending_read_insns;
741 pending_mem = deps->pending_read_mems;
742 while (pending)
744 if (read_dependence (XEXP (pending_mem, 0), t))
745 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
747 pending = XEXP (pending, 1);
748 pending_mem = XEXP (pending_mem, 1);
751 pending = deps->pending_write_insns;
752 pending_mem = deps->pending_write_mems;
753 while (pending)
755 if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
756 t, rtx_varies_p))
757 add_dependence (insn, XEXP (pending, 0), 0);
759 pending = XEXP (pending, 1);
760 pending_mem = XEXP (pending_mem, 1);
763 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
764 if (!JUMP_P (XEXP (u, 0))
765 || deps_may_trap_p (x))
766 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
768 /* Always add these dependencies to pending_reads, since
769 this insn may be followed by a write. */
770 add_insn_mem_dependence (deps, &deps->pending_read_insns,
771 &deps->pending_read_mems, insn, x);
773 /* Take advantage of tail recursion here. */
774 sched_analyze_2 (deps, XEXP (x, 0), insn);
775 return;
778 /* Force pending stores to memory in case a trap handler needs them. */
779 case TRAP_IF:
780 flush_pending_lists (deps, insn, true, false);
781 break;
783 case ASM_OPERANDS:
784 case ASM_INPUT:
785 case UNSPEC_VOLATILE:
787 /* Traditional and volatile asm instructions must be considered to use
788 and clobber all hard registers, all pseudo-registers and all of
789 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
791 Consider for instance a volatile asm that changes the fpu rounding
792 mode. An insn should not be moved across this even if it only uses
793 pseudo-regs because it might give an incorrectly rounded result. */
794 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
795 reg_pending_barrier = TRUE_BARRIER;
797 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
798 We can not just fall through here since then we would be confused
799 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
800 traditional asms unlike their normal usage. */
802 if (code == ASM_OPERANDS)
804 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
805 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
806 return;
808 break;
811 case PRE_DEC:
812 case POST_DEC:
813 case PRE_INC:
814 case POST_INC:
815 /* These both read and modify the result. We must handle them as writes
816 to get proper dependencies for following instructions. We must handle
817 them as reads to get proper dependencies from this to previous
818 instructions. Thus we need to pass them to both sched_analyze_1
819 and sched_analyze_2. We must call sched_analyze_2 first in order
820 to get the proper antecedent for the read. */
821 sched_analyze_2 (deps, XEXP (x, 0), insn);
822 sched_analyze_1 (deps, x, insn);
823 return;
825 case POST_MODIFY:
826 case PRE_MODIFY:
827 /* op0 = op0 + op1 */
828 sched_analyze_2 (deps, XEXP (x, 0), insn);
829 sched_analyze_2 (deps, XEXP (x, 1), insn);
830 sched_analyze_1 (deps, x, insn);
831 return;
833 default:
834 break;
837 /* Other cases: walk the insn. */
838 fmt = GET_RTX_FORMAT (code);
839 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
841 if (fmt[i] == 'e')
842 sched_analyze_2 (deps, XEXP (x, i), insn);
843 else if (fmt[i] == 'E')
844 for (j = 0; j < XVECLEN (x, i); j++)
845 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
849 /* Analyze an INSN with pattern X to find all dependencies. */
851 static void
852 sched_analyze_insn (struct deps *deps, rtx x, rtx insn, rtx loop_notes)
854 RTX_CODE code = GET_CODE (x);
855 rtx link;
856 unsigned i;
857 reg_set_iterator rsi;
859 if (code == COND_EXEC)
861 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
863 /* ??? Should be recording conditions so we reduce the number of
864 false dependencies. */
865 x = COND_EXEC_CODE (x);
866 code = GET_CODE (x);
868 if (code == SET || code == CLOBBER)
870 sched_analyze_1 (deps, x, insn);
872 /* Bare clobber insns are used for letting life analysis, reg-stack
873 and others know that a value is dead. Depend on the last call
874 instruction so that reg-stack won't get confused. */
875 if (code == CLOBBER)
876 add_dependence_list (insn, deps->last_function_call, REG_DEP_OUTPUT);
878 else if (code == PARALLEL)
880 for (i = XVECLEN (x, 0); i--;)
882 rtx sub = XVECEXP (x, 0, i);
883 code = GET_CODE (sub);
885 if (code == COND_EXEC)
887 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
888 sub = COND_EXEC_CODE (sub);
889 code = GET_CODE (sub);
891 if (code == SET || code == CLOBBER)
892 sched_analyze_1 (deps, sub, insn);
893 else
894 sched_analyze_2 (deps, sub, insn);
897 else
898 sched_analyze_2 (deps, x, insn);
900 /* Mark registers CLOBBERED or used by called function. */
901 if (CALL_P (insn))
903 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
905 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
906 sched_analyze_1 (deps, XEXP (link, 0), insn);
907 else
908 sched_analyze_2 (deps, XEXP (link, 0), insn);
910 if (find_reg_note (insn, REG_SETJMP, NULL))
911 reg_pending_barrier = MOVE_BARRIER;
914 if (JUMP_P (insn))
916 rtx next;
917 next = next_nonnote_insn (insn);
918 if (next && BARRIER_P (next))
919 reg_pending_barrier = TRUE_BARRIER;
920 else
922 rtx pending, pending_mem;
923 regset_head tmp_uses, tmp_sets;
924 INIT_REG_SET (&tmp_uses);
925 INIT_REG_SET (&tmp_sets);
927 (*current_sched_info->compute_jump_reg_dependencies)
928 (insn, &deps->reg_conditional_sets, &tmp_uses, &tmp_sets);
929 /* Make latency of jump equal to 0 by using anti-dependence. */
930 EXECUTE_IF_SET_IN_REG_SET (&tmp_uses, 0, i, rsi)
932 struct deps_reg *reg_last = &deps->reg_last[i];
933 add_dependence_list (insn, reg_last->sets, REG_DEP_ANTI);
934 add_dependence_list (insn, reg_last->clobbers, REG_DEP_ANTI);
935 reg_last->uses_length++;
936 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
938 IOR_REG_SET (reg_pending_sets, &tmp_sets);
940 CLEAR_REG_SET (&tmp_uses);
941 CLEAR_REG_SET (&tmp_sets);
943 /* All memory writes and volatile reads must happen before the
944 jump. Non-volatile reads must happen before the jump iff
945 the result is needed by the above register used mask. */
947 pending = deps->pending_write_insns;
948 pending_mem = deps->pending_write_mems;
949 while (pending)
951 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
952 pending = XEXP (pending, 1);
953 pending_mem = XEXP (pending_mem, 1);
956 pending = deps->pending_read_insns;
957 pending_mem = deps->pending_read_mems;
958 while (pending)
960 if (MEM_VOLATILE_P (XEXP (pending_mem, 0)))
961 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
962 pending = XEXP (pending, 1);
963 pending_mem = XEXP (pending_mem, 1);
966 add_dependence_list (insn, deps->last_pending_memory_flush,
967 REG_DEP_ANTI);
971 /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic
972 block, then we must be sure that no instructions are scheduled across it.
973 Otherwise, the reg_n_refs info (which depends on loop_depth) would
974 become incorrect. */
975 if (loop_notes)
977 rtx link;
979 /* Update loop_notes with any notes from this insn. */
980 link = loop_notes;
981 while (XEXP (link, 1))
983 gcc_assert (INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_BEG
984 || INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_END);
986 reg_pending_barrier = MOVE_BARRIER;
987 link = XEXP (link, 1);
989 XEXP (link, 1) = REG_NOTES (insn);
990 REG_NOTES (insn) = loop_notes;
993 /* If this instruction can throw an exception, then moving it changes
994 where block boundaries fall. This is mighty confusing elsewhere.
995 Therefore, prevent such an instruction from being moved. */
996 if (can_throw_internal (insn))
997 reg_pending_barrier = MOVE_BARRIER;
999 /* Add dependencies if a scheduling barrier was found. */
1000 if (reg_pending_barrier)
1002 /* In the case of barrier the most added dependencies are not
1003 real, so we use anti-dependence here. */
1004 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1006 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
1008 struct deps_reg *reg_last = &deps->reg_last[i];
1009 add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
1010 add_dependence_list
1011 (insn, reg_last->sets,
1012 reg_pending_barrier == TRUE_BARRIER ? 0 : REG_DEP_ANTI);
1013 add_dependence_list
1014 (insn, reg_last->clobbers,
1015 reg_pending_barrier == TRUE_BARRIER ? 0 : REG_DEP_ANTI);
1018 else
1020 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
1022 struct deps_reg *reg_last = &deps->reg_last[i];
1023 add_dependence_list_and_free (insn, &reg_last->uses,
1024 REG_DEP_ANTI);
1025 add_dependence_list_and_free
1026 (insn, &reg_last->sets,
1027 reg_pending_barrier == TRUE_BARRIER ? 0 : REG_DEP_ANTI);
1028 add_dependence_list_and_free
1029 (insn, &reg_last->clobbers,
1030 reg_pending_barrier == TRUE_BARRIER ? 0 : REG_DEP_ANTI);
1031 reg_last->uses_length = 0;
1032 reg_last->clobbers_length = 0;
1036 for (i = 0; i < (unsigned)deps->max_reg; i++)
1038 struct deps_reg *reg_last = &deps->reg_last[i];
1039 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
1040 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
1043 flush_pending_lists (deps, insn, true, true);
1044 CLEAR_REG_SET (&deps->reg_conditional_sets);
1045 reg_pending_barrier = NOT_A_BARRIER;
1047 else
1049 /* If the current insn is conditional, we can't free any
1050 of the lists. */
1051 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1053 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1055 struct deps_reg *reg_last = &deps->reg_last[i];
1056 add_dependence_list (insn, reg_last->sets, 0);
1057 add_dependence_list (insn, reg_last->clobbers, 0);
1058 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
1059 reg_last->uses_length++;
1061 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
1063 struct deps_reg *reg_last = &deps->reg_last[i];
1064 add_dependence_list (insn, reg_last->sets, REG_DEP_OUTPUT);
1065 add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
1066 reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers);
1067 reg_last->clobbers_length++;
1069 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
1071 struct deps_reg *reg_last = &deps->reg_last[i];
1072 add_dependence_list (insn, reg_last->sets, REG_DEP_OUTPUT);
1073 add_dependence_list (insn, reg_last->clobbers, REG_DEP_OUTPUT);
1074 add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
1075 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
1076 SET_REGNO_REG_SET (&deps->reg_conditional_sets, i);
1079 else
1081 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1083 struct deps_reg *reg_last = &deps->reg_last[i];
1084 add_dependence_list (insn, reg_last->sets, 0);
1085 add_dependence_list (insn, reg_last->clobbers, 0);
1086 reg_last->uses_length++;
1087 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
1089 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
1091 struct deps_reg *reg_last = &deps->reg_last[i];
1092 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
1093 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
1095 add_dependence_list_and_free (insn, &reg_last->sets,
1096 REG_DEP_OUTPUT);
1097 add_dependence_list_and_free (insn, &reg_last->uses,
1098 REG_DEP_ANTI);
1099 add_dependence_list_and_free (insn, &reg_last->clobbers,
1100 REG_DEP_OUTPUT);
1101 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
1102 reg_last->clobbers_length = 0;
1103 reg_last->uses_length = 0;
1105 else
1107 add_dependence_list (insn, reg_last->sets, REG_DEP_OUTPUT);
1108 add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
1110 reg_last->clobbers_length++;
1111 reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers);
1113 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
1115 struct deps_reg *reg_last = &deps->reg_last[i];
1116 add_dependence_list_and_free (insn, &reg_last->sets,
1117 REG_DEP_OUTPUT);
1118 add_dependence_list_and_free (insn, &reg_last->clobbers,
1119 REG_DEP_OUTPUT);
1120 add_dependence_list_and_free (insn, &reg_last->uses,
1121 REG_DEP_ANTI);
1122 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
1123 reg_last->uses_length = 0;
1124 reg_last->clobbers_length = 0;
1125 CLEAR_REGNO_REG_SET (&deps->reg_conditional_sets, i);
1129 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
1130 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
1131 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
1133 CLEAR_REG_SET (reg_pending_uses);
1134 CLEAR_REG_SET (reg_pending_clobbers);
1135 CLEAR_REG_SET (reg_pending_sets);
1137 /* If we are currently in a libcall scheduling group, then mark the
1138 current insn as being in a scheduling group and that it can not
1139 be moved into a different basic block. */
1141 if (deps->libcall_block_tail_insn)
1143 SCHED_GROUP_P (insn) = 1;
1144 CANT_MOVE (insn) = 1;
1147 /* If a post-call group is still open, see if it should remain so.
1148 This insn must be a simple move of a hard reg to a pseudo or
1149 vice-versa.
1151 We must avoid moving these insns for correctness on
1152 SMALL_REGISTER_CLASS machines, and for special registers like
1153 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
1154 hard regs for all targets. */
1156 if (deps->in_post_call_group_p)
1158 rtx tmp, set = single_set (insn);
1159 int src_regno, dest_regno;
1161 if (set == NULL)
1162 goto end_call_group;
1164 tmp = SET_DEST (set);
1165 if (GET_CODE (tmp) == SUBREG)
1166 tmp = SUBREG_REG (tmp);
1167 if (REG_P (tmp))
1168 dest_regno = REGNO (tmp);
1169 else
1170 goto end_call_group;
1172 tmp = SET_SRC (set);
1173 if (GET_CODE (tmp) == SUBREG)
1174 tmp = SUBREG_REG (tmp);
1175 if ((GET_CODE (tmp) == PLUS
1176 || GET_CODE (tmp) == MINUS)
1177 && REG_P (XEXP (tmp, 0))
1178 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
1179 && dest_regno == STACK_POINTER_REGNUM)
1180 src_regno = STACK_POINTER_REGNUM;
1181 else if (REG_P (tmp))
1182 src_regno = REGNO (tmp);
1183 else
1184 goto end_call_group;
1186 if (src_regno < FIRST_PSEUDO_REGISTER
1187 || dest_regno < FIRST_PSEUDO_REGISTER)
1189 if (deps->in_post_call_group_p == post_call_initial)
1190 deps->in_post_call_group_p = post_call;
1192 SCHED_GROUP_P (insn) = 1;
1193 CANT_MOVE (insn) = 1;
1195 else
1197 end_call_group:
1198 deps->in_post_call_group_p = not_post_call;
1202 /* Fixup the dependencies in the sched group. */
1203 if (SCHED_GROUP_P (insn))
1204 fixup_sched_groups (insn);
1207 /* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
1208 for every dependency. */
1210 void
1211 sched_analyze (struct deps *deps, rtx head, rtx tail)
1213 rtx insn;
1214 rtx loop_notes = 0;
1216 if (current_sched_info->use_cselib)
1217 cselib_init (true);
1219 /* Before reload, if the previous block ended in a call, show that
1220 we are inside a post-call group, so as to keep the lifetimes of
1221 hard registers correct. */
1222 if (! reload_completed && !LABEL_P (head))
1224 insn = prev_nonnote_insn (head);
1225 if (insn && CALL_P (insn))
1226 deps->in_post_call_group_p = post_call_initial;
1228 for (insn = head;; insn = NEXT_INSN (insn))
1230 rtx link, end_seq, r0, set;
1232 if (NONJUMP_INSN_P (insn) || JUMP_P (insn))
1234 /* Clear out the stale LOG_LINKS from flow. */
1235 free_INSN_LIST_list (&LOG_LINKS (insn));
1237 /* Make each JUMP_INSN a scheduling barrier for memory
1238 references. */
1239 if (JUMP_P (insn))
1241 /* Keep the list a reasonable size. */
1242 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
1243 flush_pending_lists (deps, insn, true, true);
1244 else
1245 deps->last_pending_memory_flush
1246 = alloc_INSN_LIST (insn, deps->last_pending_memory_flush);
1248 sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes);
1249 loop_notes = 0;
1251 else if (CALL_P (insn))
1253 int i;
1255 CANT_MOVE (insn) = 1;
1257 /* Clear out the stale LOG_LINKS from flow. */
1258 free_INSN_LIST_list (&LOG_LINKS (insn));
1260 if (find_reg_note (insn, REG_SETJMP, NULL))
1262 /* This is setjmp. Assume that all registers, not just
1263 hard registers, may be clobbered by this call. */
1264 reg_pending_barrier = MOVE_BARRIER;
1266 else
1268 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1269 /* A call may read and modify global register variables. */
1270 if (global_regs[i])
1272 SET_REGNO_REG_SET (reg_pending_sets, i);
1273 SET_REGNO_REG_SET (reg_pending_uses, i);
1275 /* Other call-clobbered hard regs may be clobbered.
1276 Since we only have a choice between 'might be clobbered'
1277 and 'definitely not clobbered', we must include all
1278 partly call-clobbered registers here. */
1279 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
1280 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1281 SET_REGNO_REG_SET (reg_pending_clobbers, i);
1282 /* We don't know what set of fixed registers might be used
1283 by the function, but it is certain that the stack pointer
1284 is among them, but be conservative. */
1285 else if (fixed_regs[i])
1286 SET_REGNO_REG_SET (reg_pending_uses, i);
1287 /* The frame pointer is normally not used by the function
1288 itself, but by the debugger. */
1289 /* ??? MIPS o32 is an exception. It uses the frame pointer
1290 in the macro expansion of jal but does not represent this
1291 fact in the call_insn rtl. */
1292 else if (i == FRAME_POINTER_REGNUM
1293 || (i == HARD_FRAME_POINTER_REGNUM
1294 && (! reload_completed || frame_pointer_needed)))
1295 SET_REGNO_REG_SET (reg_pending_uses, i);
1298 /* For each insn which shouldn't cross a call, add a dependence
1299 between that insn and this call insn. */
1300 add_dependence_list_and_free (insn, &deps->sched_before_next_call,
1301 REG_DEP_ANTI);
1303 sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes);
1304 loop_notes = 0;
1306 /* In the absence of interprocedural alias analysis, we must flush
1307 all pending reads and writes, and start new dependencies starting
1308 from here. But only flush writes for constant calls (which may
1309 be passed a pointer to something we haven't written yet). */
1310 flush_pending_lists (deps, insn, true, !CONST_OR_PURE_CALL_P (insn));
1312 /* Remember the last function call for limiting lifetimes. */
1313 free_INSN_LIST_list (&deps->last_function_call);
1314 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
1316 /* Before reload, begin a post-call group, so as to keep the
1317 lifetimes of hard registers correct. */
1318 if (! reload_completed)
1319 deps->in_post_call_group_p = post_call;
1322 /* EH_REGION insn notes can not appear until well after we complete
1323 scheduling. */
1324 if (NOTE_P (insn))
1325 gcc_assert (NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
1326 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END);
1328 /* See comments on reemit_notes as to why we do this.
1329 ??? Actually, the reemit_notes just say what is done, not why. */
1331 if (NOTE_P (insn)
1332 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1333 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END))
1335 loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE,
1336 GEN_INT (NOTE_LINE_NUMBER (insn)),
1337 loop_notes);
1338 CONST_OR_PURE_CALL_P (loop_notes) = CONST_OR_PURE_CALL_P (insn);
1341 if (current_sched_info->use_cselib)
1342 cselib_process_insn (insn);
1344 /* Now that we have completed handling INSN, check and see if it is
1345 a CLOBBER beginning a libcall block. If it is, record the
1346 end of the libcall sequence.
1348 We want to schedule libcall blocks as a unit before reload. While
1349 this restricts scheduling, it preserves the meaning of a libcall
1350 block.
1352 As a side effect, we may get better code due to decreased register
1353 pressure as well as less chance of a foreign insn appearing in
1354 a libcall block. */
1355 if (!reload_completed
1356 /* Note we may have nested libcall sequences. We only care about
1357 the outermost libcall sequence. */
1358 && deps->libcall_block_tail_insn == 0
1359 /* The sequence must start with a clobber of a register. */
1360 && NONJUMP_INSN_P (insn)
1361 && GET_CODE (PATTERN (insn)) == CLOBBER
1362 && (r0 = XEXP (PATTERN (insn), 0), REG_P (r0))
1363 && REG_P (XEXP (PATTERN (insn), 0))
1364 /* The CLOBBER must also have a REG_LIBCALL note attached. */
1365 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1366 && (end_seq = XEXP (link, 0)) != 0
1367 /* The insn referenced by the REG_LIBCALL note must be a
1368 simple nop copy with the same destination as the register
1369 mentioned in the clobber. */
1370 && (set = single_set (end_seq)) != 0
1371 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1372 /* And finally the insn referenced by the REG_LIBCALL must
1373 also contain a REG_EQUAL note and a REG_RETVAL note. */
1374 && find_reg_note (end_seq, REG_EQUAL, NULL_RTX) != 0
1375 && find_reg_note (end_seq, REG_RETVAL, NULL_RTX) != 0)
1376 deps->libcall_block_tail_insn = XEXP (link, 0);
1378 /* If we have reached the end of a libcall block, then close the
1379 block. */
1380 if (deps->libcall_block_tail_insn == insn)
1381 deps->libcall_block_tail_insn = 0;
1383 if (insn == tail)
1385 if (current_sched_info->use_cselib)
1386 cselib_finish ();
1387 return;
1390 gcc_unreachable ();
1394 /* The following function adds forward dependence (FROM, TO) with
1395 given DEP_TYPE. The forward dependence should be not exist before. */
1397 void
1398 add_forward_dependence (rtx from, rtx to, enum reg_note dep_type)
1400 rtx new_link;
1402 #ifdef ENABLE_CHECKING
1403 /* If add_dependence is working properly there should never
1404 be notes, deleted insns or duplicates in the backward
1405 links. Thus we need not check for them here.
1407 However, if we have enabled checking we might as well go
1408 ahead and verify that add_dependence worked properly. */
1409 gcc_assert (!NOTE_P (from));
1410 gcc_assert (!INSN_DELETED_P (from));
1411 if (forward_dependency_cache)
1412 gcc_assert (!bitmap_bit_p (&forward_dependency_cache[INSN_LUID (from)],
1413 INSN_LUID (to)));
1414 else
1415 gcc_assert (!find_insn_list (to, INSN_DEPEND (from)));
1417 /* ??? If bitmap_bit_p is a predicate, what is this supposed to do? */
1418 if (forward_dependency_cache != NULL)
1419 bitmap_bit_p (&forward_dependency_cache[INSN_LUID (from)],
1420 INSN_LUID (to));
1421 #endif
1423 new_link = alloc_INSN_LIST (to, INSN_DEPEND (from));
1425 PUT_REG_NOTE_KIND (new_link, dep_type);
1427 INSN_DEPEND (from) = new_link;
1428 INSN_DEP_COUNT (to) += 1;
1431 /* Examine insns in the range [ HEAD, TAIL ] and Use the backward
1432 dependences from LOG_LINKS to build forward dependences in
1433 INSN_DEPEND. */
1435 void
1436 compute_forward_dependences (rtx head, rtx tail)
1438 rtx insn, link;
1439 rtx next_tail;
1441 next_tail = NEXT_INSN (tail);
1442 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1444 if (! INSN_P (insn))
1445 continue;
1447 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1448 add_forward_dependence (XEXP (link, 0), insn, REG_NOTE_KIND (link));
1452 /* Initialize variables for region data dependence analysis.
1453 n_bbs is the number of region blocks. */
1455 void
1456 init_deps (struct deps *deps)
1458 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
1460 deps->max_reg = max_reg;
1461 deps->reg_last = xcalloc (max_reg, sizeof (struct deps_reg));
1462 INIT_REG_SET (&deps->reg_last_in_use);
1463 INIT_REG_SET (&deps->reg_conditional_sets);
1465 deps->pending_read_insns = 0;
1466 deps->pending_read_mems = 0;
1467 deps->pending_write_insns = 0;
1468 deps->pending_write_mems = 0;
1469 deps->pending_lists_length = 0;
1470 deps->pending_flush_length = 0;
1471 deps->last_pending_memory_flush = 0;
1472 deps->last_function_call = 0;
1473 deps->sched_before_next_call = 0;
1474 deps->in_post_call_group_p = not_post_call;
1475 deps->libcall_block_tail_insn = 0;
1478 /* Free insn lists found in DEPS. */
1480 void
1481 free_deps (struct deps *deps)
1483 unsigned i;
1484 reg_set_iterator rsi;
1486 free_INSN_LIST_list (&deps->pending_read_insns);
1487 free_EXPR_LIST_list (&deps->pending_read_mems);
1488 free_INSN_LIST_list (&deps->pending_write_insns);
1489 free_EXPR_LIST_list (&deps->pending_write_mems);
1490 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1492 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
1493 times. For a testcase with 42000 regs and 8000 small basic blocks,
1494 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
1495 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
1497 struct deps_reg *reg_last = &deps->reg_last[i];
1498 if (reg_last->uses)
1499 free_INSN_LIST_list (&reg_last->uses);
1500 if (reg_last->sets)
1501 free_INSN_LIST_list (&reg_last->sets);
1502 if (reg_last->clobbers)
1503 free_INSN_LIST_list (&reg_last->clobbers);
1505 CLEAR_REG_SET (&deps->reg_last_in_use);
1506 CLEAR_REG_SET (&deps->reg_conditional_sets);
1508 free (deps->reg_last);
1511 /* If it is profitable to use them, initialize caches for tracking
1512 dependency information. LUID is the number of insns to be scheduled,
1513 it is used in the estimate of profitability. */
1515 void
1516 init_dependency_caches (int luid)
1518 /* ?!? We could save some memory by computing a per-region luid mapping
1519 which could reduce both the number of vectors in the cache and the size
1520 of each vector. Instead we just avoid the cache entirely unless the
1521 average number of instructions in a basic block is very high. See
1522 the comment before the declaration of true_dependency_cache for
1523 what we consider "very high". */
1524 if (luid / n_basic_blocks > 100 * 5)
1526 int i;
1527 true_dependency_cache = xmalloc (luid * sizeof (bitmap_head));
1528 anti_dependency_cache = xmalloc (luid * sizeof (bitmap_head));
1529 output_dependency_cache = xmalloc (luid * sizeof (bitmap_head));
1530 #ifdef ENABLE_CHECKING
1531 forward_dependency_cache = xmalloc (luid * sizeof (bitmap_head));
1532 #endif
1533 for (i = 0; i < luid; i++)
1535 bitmap_initialize (&true_dependency_cache[i], 0);
1536 bitmap_initialize (&anti_dependency_cache[i], 0);
1537 bitmap_initialize (&output_dependency_cache[i], 0);
1538 #ifdef ENABLE_CHECKING
1539 bitmap_initialize (&forward_dependency_cache[i], 0);
1540 #endif
1542 cache_size = luid;
1546 /* Free the caches allocated in init_dependency_caches. */
1548 void
1549 free_dependency_caches (void)
1551 if (true_dependency_cache)
1553 int i;
1555 for (i = 0; i < cache_size; i++)
1557 bitmap_clear (&true_dependency_cache[i]);
1558 bitmap_clear (&anti_dependency_cache[i]);
1559 bitmap_clear (&output_dependency_cache[i]);
1560 #ifdef ENABLE_CHECKING
1561 bitmap_clear (&forward_dependency_cache[i]);
1562 #endif
1564 free (true_dependency_cache);
1565 true_dependency_cache = NULL;
1566 free (anti_dependency_cache);
1567 anti_dependency_cache = NULL;
1568 free (output_dependency_cache);
1569 output_dependency_cache = NULL;
1570 #ifdef ENABLE_CHECKING
1571 free (forward_dependency_cache);
1572 forward_dependency_cache = NULL;
1573 #endif
1577 /* Initialize some global variables needed by the dependency analysis
1578 code. */
1580 void
1581 init_deps_global (void)
1583 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
1584 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
1585 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
1586 reg_pending_barrier = NOT_A_BARRIER;
1589 /* Free everything used by the dependency analysis code. */
1591 void
1592 finish_deps_global (void)
1594 FREE_REG_SET (reg_pending_sets);
1595 FREE_REG_SET (reg_pending_clobbers);
1596 FREE_REG_SET (reg_pending_uses);