PR debug/42767
[official-gcc/alias-decl.git] / gcc / dwarf2out.c
blob11a496034a4be6f252947f5616772622acd13013
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* TODO: Emit .debug_line header even when there are no functions, since
25 the file numbers are used by .debug_info. Alternately, leave
26 out locations for types and decls.
27 Avoid talking about ctors and op= for PODs.
28 Factor out common prologue sequences into multiple CIEs. */
30 /* The first part of this file deals with the DWARF 2 frame unwind
31 information, which is also used by the GCC efficient exception handling
32 mechanism. The second part, controlled only by an #ifdef
33 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
34 information. */
36 /* DWARF2 Abbreviation Glossary:
38 CFA = Canonical Frame Address
39 a fixed address on the stack which identifies a call frame.
40 We define it to be the value of SP just before the call insn.
41 The CFA register and offset, which may change during the course
42 of the function, are used to calculate its value at runtime.
44 CFI = Call Frame Instruction
45 an instruction for the DWARF2 abstract machine
47 CIE = Common Information Entry
48 information describing information common to one or more FDEs
50 DIE = Debugging Information Entry
52 FDE = Frame Description Entry
53 information describing the stack call frame, in particular,
54 how to restore registers
56 DW_CFA_... = DWARF2 CFA call frame instruction
57 DW_TAG_... = DWARF2 DIE tag */
59 #include "config.h"
60 #include "system.h"
61 #include "coretypes.h"
62 #include "tm.h"
63 #include "tree.h"
64 #include "version.h"
65 #include "flags.h"
66 #include "real.h"
67 #include "rtl.h"
68 #include "hard-reg-set.h"
69 #include "regs.h"
70 #include "insn-config.h"
71 #include "reload.h"
72 #include "function.h"
73 #include "output.h"
74 #include "expr.h"
75 #include "libfuncs.h"
76 #include "except.h"
77 #include "dwarf2.h"
78 #include "dwarf2out.h"
79 #include "dwarf2asm.h"
80 #include "toplev.h"
81 #include "varray.h"
82 #include "ggc.h"
83 #include "md5.h"
84 #include "tm_p.h"
85 #include "diagnostic.h"
86 #include "debug.h"
87 #include "target.h"
88 #include "langhooks.h"
89 #include "hashtab.h"
90 #include "cgraph.h"
91 #include "input.h"
92 #include "gimple.h"
93 #include "tree-pass.h"
95 #ifdef DWARF2_DEBUGGING_INFO
96 static void dwarf2out_source_line (unsigned int, const char *, int, bool);
98 static rtx last_var_location_insn;
99 #endif
101 #ifdef VMS_DEBUGGING_INFO
102 int vms_file_stats_name (const char *, long long *, long *, char *, int *);
104 /* Define this macro to be a nonzero value if the directory specifications
105 which are output in the debug info should end with a separator. */
106 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
107 /* Define this macro to evaluate to a nonzero value if GCC should refrain
108 from generating indirect strings in DWARF2 debug information, for instance
109 if your target is stuck with an old version of GDB that is unable to
110 process them properly or uses VMS Debug. */
111 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
112 #else
113 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
114 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
115 #endif
117 #ifndef DWARF2_FRAME_INFO
118 # ifdef DWARF2_DEBUGGING_INFO
119 # define DWARF2_FRAME_INFO \
120 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
121 # else
122 # define DWARF2_FRAME_INFO 0
123 # endif
124 #endif
126 /* Map register numbers held in the call frame info that gcc has
127 collected using DWARF_FRAME_REGNUM to those that should be output in
128 .debug_frame and .eh_frame. */
129 #ifndef DWARF2_FRAME_REG_OUT
130 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
131 #endif
133 /* Save the result of dwarf2out_do_frame across PCH. */
134 static GTY(()) bool saved_do_cfi_asm = 0;
136 /* Decide whether we want to emit frame unwind information for the current
137 translation unit. */
140 dwarf2out_do_frame (void)
142 /* We want to emit correct CFA location expressions or lists, so we
143 have to return true if we're going to output debug info, even if
144 we're not going to output frame or unwind info. */
145 return (write_symbols == DWARF2_DEBUG
146 || write_symbols == VMS_AND_DWARF2_DEBUG
147 || DWARF2_FRAME_INFO || saved_do_cfi_asm
148 #ifdef DWARF2_UNWIND_INFO
149 || (DWARF2_UNWIND_INFO
150 && (flag_unwind_tables
151 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
152 #endif
156 /* Decide whether to emit frame unwind via assembler directives. */
159 dwarf2out_do_cfi_asm (void)
161 int enc;
163 #ifdef MIPS_DEBUGGING_INFO
164 return false;
165 #endif
166 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
167 return false;
168 if (saved_do_cfi_asm)
169 return true;
170 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
171 return false;
173 /* Make sure the personality encoding is one the assembler can support.
174 In particular, aligned addresses can't be handled. */
175 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
176 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
177 return false;
178 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
179 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
180 return false;
182 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE)
184 #ifdef TARGET_UNWIND_INFO
185 return false;
186 #else
187 if (USING_SJLJ_EXCEPTIONS || (!flag_unwind_tables && !flag_exceptions))
188 return false;
189 #endif
192 saved_do_cfi_asm = true;
193 return true;
196 /* The size of the target's pointer type. */
197 #ifndef PTR_SIZE
198 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
199 #endif
201 /* Array of RTXes referenced by the debugging information, which therefore
202 must be kept around forever. */
203 static GTY(()) VEC(rtx,gc) *used_rtx_array;
205 /* A pointer to the base of a list of incomplete types which might be
206 completed at some later time. incomplete_types_list needs to be a
207 VEC(tree,gc) because we want to tell the garbage collector about
208 it. */
209 static GTY(()) VEC(tree,gc) *incomplete_types;
211 /* A pointer to the base of a table of references to declaration
212 scopes. This table is a display which tracks the nesting
213 of declaration scopes at the current scope and containing
214 scopes. This table is used to find the proper place to
215 define type declaration DIE's. */
216 static GTY(()) VEC(tree,gc) *decl_scope_table;
218 /* Pointers to various DWARF2 sections. */
219 static GTY(()) section *debug_info_section;
220 static GTY(()) section *debug_abbrev_section;
221 static GTY(()) section *debug_aranges_section;
222 static GTY(()) section *debug_macinfo_section;
223 static GTY(()) section *debug_line_section;
224 static GTY(()) section *debug_loc_section;
225 static GTY(()) section *debug_pubnames_section;
226 static GTY(()) section *debug_pubtypes_section;
227 static GTY(()) section *debug_dcall_section;
228 static GTY(()) section *debug_vcall_section;
229 static GTY(()) section *debug_str_section;
230 static GTY(()) section *debug_ranges_section;
231 static GTY(()) section *debug_frame_section;
233 /* Personality decl of current unit. Used only when assembler does not support
234 personality CFI. */
235 static GTY(()) rtx current_unit_personality;
237 /* How to start an assembler comment. */
238 #ifndef ASM_COMMENT_START
239 #define ASM_COMMENT_START ";#"
240 #endif
242 typedef struct dw_cfi_struct *dw_cfi_ref;
243 typedef struct dw_fde_struct *dw_fde_ref;
244 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
246 /* Call frames are described using a sequence of Call Frame
247 Information instructions. The register number, offset
248 and address fields are provided as possible operands;
249 their use is selected by the opcode field. */
251 enum dw_cfi_oprnd_type {
252 dw_cfi_oprnd_unused,
253 dw_cfi_oprnd_reg_num,
254 dw_cfi_oprnd_offset,
255 dw_cfi_oprnd_addr,
256 dw_cfi_oprnd_loc
259 typedef union GTY(()) dw_cfi_oprnd_struct {
260 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
261 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
262 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
263 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
265 dw_cfi_oprnd;
267 typedef struct GTY(()) dw_cfi_struct {
268 dw_cfi_ref dw_cfi_next;
269 enum dwarf_call_frame_info dw_cfi_opc;
270 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
271 dw_cfi_oprnd1;
272 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
273 dw_cfi_oprnd2;
275 dw_cfi_node;
277 /* This is how we define the location of the CFA. We use to handle it
278 as REG + OFFSET all the time, but now it can be more complex.
279 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
280 Instead of passing around REG and OFFSET, we pass a copy
281 of this structure. */
282 typedef struct GTY(()) cfa_loc {
283 HOST_WIDE_INT offset;
284 HOST_WIDE_INT base_offset;
285 unsigned int reg;
286 BOOL_BITFIELD indirect : 1; /* 1 if CFA is accessed via a dereference. */
287 BOOL_BITFIELD in_use : 1; /* 1 if a saved cfa is stored here. */
288 } dw_cfa_location;
290 /* All call frame descriptions (FDE's) in the GCC generated DWARF
291 refer to a single Common Information Entry (CIE), defined at
292 the beginning of the .debug_frame section. This use of a single
293 CIE obviates the need to keep track of multiple CIE's
294 in the DWARF generation routines below. */
296 typedef struct GTY(()) dw_fde_struct {
297 tree decl;
298 const char *dw_fde_begin;
299 const char *dw_fde_current_label;
300 const char *dw_fde_end;
301 const char *dw_fde_hot_section_label;
302 const char *dw_fde_hot_section_end_label;
303 const char *dw_fde_unlikely_section_label;
304 const char *dw_fde_unlikely_section_end_label;
305 dw_cfi_ref dw_fde_cfi;
306 dw_cfi_ref dw_fde_switch_cfi; /* Last CFI before switching sections. */
307 unsigned funcdef_number;
308 HOST_WIDE_INT stack_realignment;
309 /* Dynamic realign argument pointer register. */
310 unsigned int drap_reg;
311 /* Virtual dynamic realign argument pointer register. */
312 unsigned int vdrap_reg;
313 unsigned all_throwers_are_sibcalls : 1;
314 unsigned nothrow : 1;
315 unsigned uses_eh_lsda : 1;
316 /* Whether we did stack realign in this call frame. */
317 unsigned stack_realign : 1;
318 /* Whether dynamic realign argument pointer register has been saved. */
319 unsigned drap_reg_saved: 1;
320 /* True iff dw_fde_begin label is in text_section or cold_text_section. */
321 unsigned in_std_section : 1;
322 /* True iff dw_fde_unlikely_section_label is in text_section or
323 cold_text_section. */
324 unsigned cold_in_std_section : 1;
325 /* True iff switched sections. */
326 unsigned dw_fde_switched_sections : 1;
327 /* True iff switching from cold to hot section. */
328 unsigned dw_fde_switched_cold_to_hot : 1;
330 dw_fde_node;
332 /* Maximum size (in bytes) of an artificially generated label. */
333 #define MAX_ARTIFICIAL_LABEL_BYTES 30
335 /* The size of addresses as they appear in the Dwarf 2 data.
336 Some architectures use word addresses to refer to code locations,
337 but Dwarf 2 info always uses byte addresses. On such machines,
338 Dwarf 2 addresses need to be larger than the architecture's
339 pointers. */
340 #ifndef DWARF2_ADDR_SIZE
341 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
342 #endif
344 /* The size in bytes of a DWARF field indicating an offset or length
345 relative to a debug info section, specified to be 4 bytes in the
346 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
347 as PTR_SIZE. */
349 #ifndef DWARF_OFFSET_SIZE
350 #define DWARF_OFFSET_SIZE 4
351 #endif
353 /* The size in bytes of a DWARF 4 type signature. */
355 #ifndef DWARF_TYPE_SIGNATURE_SIZE
356 #define DWARF_TYPE_SIGNATURE_SIZE 8
357 #endif
359 /* According to the (draft) DWARF 3 specification, the initial length
360 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
361 bytes are 0xffffffff, followed by the length stored in the next 8
362 bytes.
364 However, the SGI/MIPS ABI uses an initial length which is equal to
365 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
367 #ifndef DWARF_INITIAL_LENGTH_SIZE
368 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
369 #endif
371 /* Round SIZE up to the nearest BOUNDARY. */
372 #define DWARF_ROUND(SIZE,BOUNDARY) \
373 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
375 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
376 #ifndef DWARF_CIE_DATA_ALIGNMENT
377 #ifdef STACK_GROWS_DOWNWARD
378 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
379 #else
380 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
381 #endif
382 #endif
384 /* CIE identifier. */
385 #if HOST_BITS_PER_WIDE_INT >= 64
386 #define DWARF_CIE_ID \
387 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
388 #else
389 #define DWARF_CIE_ID DW_CIE_ID
390 #endif
392 /* A pointer to the base of a table that contains frame description
393 information for each routine. */
394 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
396 /* Number of elements currently allocated for fde_table. */
397 static GTY(()) unsigned fde_table_allocated;
399 /* Number of elements in fde_table currently in use. */
400 static GTY(()) unsigned fde_table_in_use;
402 /* Size (in elements) of increments by which we may expand the
403 fde_table. */
404 #define FDE_TABLE_INCREMENT 256
406 /* Get the current fde_table entry we should use. */
408 static inline dw_fde_ref
409 current_fde (void)
411 return fde_table_in_use ? &fde_table[fde_table_in_use - 1] : NULL;
414 /* A list of call frame insns for the CIE. */
415 static GTY(()) dw_cfi_ref cie_cfi_head;
417 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
418 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
419 attribute that accelerates the lookup of the FDE associated
420 with the subprogram. This variable holds the table index of the FDE
421 associated with the current function (body) definition. */
422 static unsigned current_funcdef_fde;
423 #endif
425 struct GTY(()) indirect_string_node {
426 const char *str;
427 unsigned int refcount;
428 enum dwarf_form form;
429 char *label;
432 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
434 /* True if the compilation unit has location entries that reference
435 debug strings. */
436 static GTY(()) bool debug_str_hash_forced = false;
438 static GTY(()) int dw2_string_counter;
439 static GTY(()) unsigned long dwarf2out_cfi_label_num;
441 /* True if the compilation unit places functions in more than one section. */
442 static GTY(()) bool have_multiple_function_sections = false;
444 /* Whether the default text and cold text sections have been used at all. */
446 static GTY(()) bool text_section_used = false;
447 static GTY(()) bool cold_text_section_used = false;
449 /* The default cold text section. */
450 static GTY(()) section *cold_text_section;
452 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
454 /* Forward declarations for functions defined in this file. */
456 static char *stripattributes (const char *);
457 static const char *dwarf_cfi_name (unsigned);
458 static dw_cfi_ref new_cfi (void);
459 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
460 static void add_fde_cfi (const char *, dw_cfi_ref);
461 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *, dw_cfa_location *);
462 static void lookup_cfa (dw_cfa_location *);
463 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
464 #ifdef DWARF2_UNWIND_INFO
465 static void initial_return_save (rtx);
466 #endif
467 static HOST_WIDE_INT stack_adjust_offset (const_rtx, HOST_WIDE_INT,
468 HOST_WIDE_INT);
469 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
470 static void output_cfi_directive (dw_cfi_ref);
471 static void output_call_frame_info (int);
472 static void dwarf2out_note_section_used (void);
473 static void flush_queued_reg_saves (void);
474 static bool clobbers_queued_reg_save (const_rtx);
475 static void dwarf2out_frame_debug_expr (rtx, const char *);
477 /* Support for complex CFA locations. */
478 static void output_cfa_loc (dw_cfi_ref);
479 static void output_cfa_loc_raw (dw_cfi_ref);
480 static void get_cfa_from_loc_descr (dw_cfa_location *,
481 struct dw_loc_descr_struct *);
482 static struct dw_loc_descr_struct *build_cfa_loc
483 (dw_cfa_location *, HOST_WIDE_INT);
484 static struct dw_loc_descr_struct *build_cfa_aligned_loc
485 (HOST_WIDE_INT, HOST_WIDE_INT);
486 static void def_cfa_1 (const char *, dw_cfa_location *);
488 /* How to start an assembler comment. */
489 #ifndef ASM_COMMENT_START
490 #define ASM_COMMENT_START ";#"
491 #endif
493 /* Data and reference forms for relocatable data. */
494 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
495 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
497 #ifndef DEBUG_FRAME_SECTION
498 #define DEBUG_FRAME_SECTION ".debug_frame"
499 #endif
501 #ifndef FUNC_BEGIN_LABEL
502 #define FUNC_BEGIN_LABEL "LFB"
503 #endif
505 #ifndef FUNC_END_LABEL
506 #define FUNC_END_LABEL "LFE"
507 #endif
509 #ifndef FRAME_BEGIN_LABEL
510 #define FRAME_BEGIN_LABEL "Lframe"
511 #endif
512 #define CIE_AFTER_SIZE_LABEL "LSCIE"
513 #define CIE_END_LABEL "LECIE"
514 #define FDE_LABEL "LSFDE"
515 #define FDE_AFTER_SIZE_LABEL "LASFDE"
516 #define FDE_END_LABEL "LEFDE"
517 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
518 #define LINE_NUMBER_END_LABEL "LELT"
519 #define LN_PROLOG_AS_LABEL "LASLTP"
520 #define LN_PROLOG_END_LABEL "LELTP"
521 #define DIE_LABEL_PREFIX "DW"
523 /* The DWARF 2 CFA column which tracks the return address. Normally this
524 is the column for PC, or the first column after all of the hard
525 registers. */
526 #ifndef DWARF_FRAME_RETURN_COLUMN
527 #ifdef PC_REGNUM
528 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
529 #else
530 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
531 #endif
532 #endif
534 /* The mapping from gcc register number to DWARF 2 CFA column number. By
535 default, we just provide columns for all registers. */
536 #ifndef DWARF_FRAME_REGNUM
537 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
538 #endif
540 /* Hook used by __throw. */
543 expand_builtin_dwarf_sp_column (void)
545 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
546 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
549 /* Return a pointer to a copy of the section string name S with all
550 attributes stripped off, and an asterisk prepended (for assemble_name). */
552 static inline char *
553 stripattributes (const char *s)
555 char *stripped = XNEWVEC (char, strlen (s) + 2);
556 char *p = stripped;
558 *p++ = '*';
560 while (*s && *s != ',')
561 *p++ = *s++;
563 *p = '\0';
564 return stripped;
567 /* MEM is a memory reference for the register size table, each element of
568 which has mode MODE. Initialize column C as a return address column. */
570 static void
571 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
573 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
574 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
575 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
578 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
580 static inline HOST_WIDE_INT
581 div_data_align (HOST_WIDE_INT off)
583 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
584 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
585 return r;
588 /* Return true if we need a signed version of a given opcode
589 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
591 static inline bool
592 need_data_align_sf_opcode (HOST_WIDE_INT off)
594 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
597 /* Generate code to initialize the register size table. */
599 void
600 expand_builtin_init_dwarf_reg_sizes (tree address)
602 unsigned int i;
603 enum machine_mode mode = TYPE_MODE (char_type_node);
604 rtx addr = expand_normal (address);
605 rtx mem = gen_rtx_MEM (BLKmode, addr);
606 bool wrote_return_column = false;
608 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
610 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
612 if (rnum < DWARF_FRAME_REGISTERS)
614 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
615 enum machine_mode save_mode = reg_raw_mode[i];
616 HOST_WIDE_INT size;
618 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
619 save_mode = choose_hard_reg_mode (i, 1, true);
620 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
622 if (save_mode == VOIDmode)
623 continue;
624 wrote_return_column = true;
626 size = GET_MODE_SIZE (save_mode);
627 if (offset < 0)
628 continue;
630 emit_move_insn (adjust_address (mem, mode, offset),
631 gen_int_mode (size, mode));
635 if (!wrote_return_column)
636 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
638 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
639 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
640 #endif
642 targetm.init_dwarf_reg_sizes_extra (address);
645 /* Convert a DWARF call frame info. operation to its string name */
647 static const char *
648 dwarf_cfi_name (unsigned int cfi_opc)
650 switch (cfi_opc)
652 case DW_CFA_advance_loc:
653 return "DW_CFA_advance_loc";
654 case DW_CFA_offset:
655 return "DW_CFA_offset";
656 case DW_CFA_restore:
657 return "DW_CFA_restore";
658 case DW_CFA_nop:
659 return "DW_CFA_nop";
660 case DW_CFA_set_loc:
661 return "DW_CFA_set_loc";
662 case DW_CFA_advance_loc1:
663 return "DW_CFA_advance_loc1";
664 case DW_CFA_advance_loc2:
665 return "DW_CFA_advance_loc2";
666 case DW_CFA_advance_loc4:
667 return "DW_CFA_advance_loc4";
668 case DW_CFA_offset_extended:
669 return "DW_CFA_offset_extended";
670 case DW_CFA_restore_extended:
671 return "DW_CFA_restore_extended";
672 case DW_CFA_undefined:
673 return "DW_CFA_undefined";
674 case DW_CFA_same_value:
675 return "DW_CFA_same_value";
676 case DW_CFA_register:
677 return "DW_CFA_register";
678 case DW_CFA_remember_state:
679 return "DW_CFA_remember_state";
680 case DW_CFA_restore_state:
681 return "DW_CFA_restore_state";
682 case DW_CFA_def_cfa:
683 return "DW_CFA_def_cfa";
684 case DW_CFA_def_cfa_register:
685 return "DW_CFA_def_cfa_register";
686 case DW_CFA_def_cfa_offset:
687 return "DW_CFA_def_cfa_offset";
689 /* DWARF 3 */
690 case DW_CFA_def_cfa_expression:
691 return "DW_CFA_def_cfa_expression";
692 case DW_CFA_expression:
693 return "DW_CFA_expression";
694 case DW_CFA_offset_extended_sf:
695 return "DW_CFA_offset_extended_sf";
696 case DW_CFA_def_cfa_sf:
697 return "DW_CFA_def_cfa_sf";
698 case DW_CFA_def_cfa_offset_sf:
699 return "DW_CFA_def_cfa_offset_sf";
701 /* SGI/MIPS specific */
702 case DW_CFA_MIPS_advance_loc8:
703 return "DW_CFA_MIPS_advance_loc8";
705 /* GNU extensions */
706 case DW_CFA_GNU_window_save:
707 return "DW_CFA_GNU_window_save";
708 case DW_CFA_GNU_args_size:
709 return "DW_CFA_GNU_args_size";
710 case DW_CFA_GNU_negative_offset_extended:
711 return "DW_CFA_GNU_negative_offset_extended";
713 default:
714 return "DW_CFA_<unknown>";
718 /* Return a pointer to a newly allocated Call Frame Instruction. */
720 static inline dw_cfi_ref
721 new_cfi (void)
723 dw_cfi_ref cfi = GGC_NEW (dw_cfi_node);
725 cfi->dw_cfi_next = NULL;
726 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
727 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
729 return cfi;
732 /* Add a Call Frame Instruction to list of instructions. */
734 static inline void
735 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
737 dw_cfi_ref *p;
738 dw_fde_ref fde = current_fde ();
740 /* When DRAP is used, CFA is defined with an expression. Redefine
741 CFA may lead to a different CFA value. */
742 /* ??? Of course, this heuristic fails when we're annotating epilogues,
743 because of course we'll always want to redefine the CFA back to the
744 stack pointer on the way out. Where should we move this check? */
745 if (0 && fde && fde->drap_reg != INVALID_REGNUM)
746 switch (cfi->dw_cfi_opc)
748 case DW_CFA_def_cfa_register:
749 case DW_CFA_def_cfa_offset:
750 case DW_CFA_def_cfa_offset_sf:
751 case DW_CFA_def_cfa:
752 case DW_CFA_def_cfa_sf:
753 gcc_unreachable ();
755 default:
756 break;
759 /* Find the end of the chain. */
760 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
763 *p = cfi;
766 /* Generate a new label for the CFI info to refer to. FORCE is true
767 if a label needs to be output even when using .cfi_* directives. */
769 char *
770 dwarf2out_cfi_label (bool force)
772 static char label[20];
774 if (!force && dwarf2out_do_cfi_asm ())
776 /* In this case, we will be emitting the asm directive instead of
777 the label, so just return a placeholder to keep the rest of the
778 interfaces happy. */
779 strcpy (label, "<do not output>");
781 else
783 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
784 ASM_OUTPUT_LABEL (asm_out_file, label);
787 return label;
790 /* True if remember_state should be emitted before following CFI directive. */
791 static bool emit_cfa_remember;
793 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
794 or to the CIE if LABEL is NULL. */
796 static void
797 add_fde_cfi (const char *label, dw_cfi_ref cfi)
799 dw_cfi_ref *list_head;
801 if (emit_cfa_remember)
803 dw_cfi_ref cfi_remember;
805 /* Emit the state save. */
806 emit_cfa_remember = false;
807 cfi_remember = new_cfi ();
808 cfi_remember->dw_cfi_opc = DW_CFA_remember_state;
809 add_fde_cfi (label, cfi_remember);
812 list_head = &cie_cfi_head;
814 if (dwarf2out_do_cfi_asm ())
816 if (label)
818 dw_fde_ref fde = current_fde ();
820 gcc_assert (fde != NULL);
822 /* We still have to add the cfi to the list so that lookup_cfa
823 works later on. When -g2 and above we even need to force
824 emitting of CFI labels and add to list a DW_CFA_set_loc for
825 convert_cfa_to_fb_loc_list purposes. If we're generating
826 DWARF3 output we use DW_OP_call_frame_cfa and so don't use
827 convert_cfa_to_fb_loc_list. */
828 if (dwarf_version == 2
829 && debug_info_level > DINFO_LEVEL_TERSE
830 && (write_symbols == DWARF2_DEBUG
831 || write_symbols == VMS_AND_DWARF2_DEBUG))
833 switch (cfi->dw_cfi_opc)
835 case DW_CFA_def_cfa_offset:
836 case DW_CFA_def_cfa_offset_sf:
837 case DW_CFA_def_cfa_register:
838 case DW_CFA_def_cfa:
839 case DW_CFA_def_cfa_sf:
840 case DW_CFA_def_cfa_expression:
841 case DW_CFA_restore_state:
842 if (*label == 0 || strcmp (label, "<do not output>") == 0)
843 label = dwarf2out_cfi_label (true);
845 if (fde->dw_fde_current_label == NULL
846 || strcmp (label, fde->dw_fde_current_label) != 0)
848 dw_cfi_ref xcfi;
850 label = xstrdup (label);
852 /* Set the location counter to the new label. */
853 xcfi = new_cfi ();
854 /* It doesn't metter whether DW_CFA_set_loc
855 or DW_CFA_advance_loc4 is added here, those aren't
856 emitted into assembly, only looked up by
857 convert_cfa_to_fb_loc_list. */
858 xcfi->dw_cfi_opc = DW_CFA_set_loc;
859 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
860 add_cfi (&fde->dw_fde_cfi, xcfi);
861 fde->dw_fde_current_label = label;
863 break;
864 default:
865 break;
869 output_cfi_directive (cfi);
871 list_head = &fde->dw_fde_cfi;
873 /* ??? If this is a CFI for the CIE, we don't emit. This
874 assumes that the standard CIE contents that the assembler
875 uses matches the standard CIE contents that the compiler
876 uses. This is probably a bad assumption. I'm not quite
877 sure how to address this for now. */
879 else if (label)
881 dw_fde_ref fde = current_fde ();
883 gcc_assert (fde != NULL);
885 if (*label == 0)
886 label = dwarf2out_cfi_label (false);
888 if (fde->dw_fde_current_label == NULL
889 || strcmp (label, fde->dw_fde_current_label) != 0)
891 dw_cfi_ref xcfi;
893 label = xstrdup (label);
895 /* Set the location counter to the new label. */
896 xcfi = new_cfi ();
897 /* If we have a current label, advance from there, otherwise
898 set the location directly using set_loc. */
899 xcfi->dw_cfi_opc = fde->dw_fde_current_label
900 ? DW_CFA_advance_loc4
901 : DW_CFA_set_loc;
902 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
903 add_cfi (&fde->dw_fde_cfi, xcfi);
905 fde->dw_fde_current_label = label;
908 list_head = &fde->dw_fde_cfi;
911 add_cfi (list_head, cfi);
914 /* Subroutine of lookup_cfa. */
916 static void
917 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
919 switch (cfi->dw_cfi_opc)
921 case DW_CFA_def_cfa_offset:
922 case DW_CFA_def_cfa_offset_sf:
923 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
924 break;
925 case DW_CFA_def_cfa_register:
926 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
927 break;
928 case DW_CFA_def_cfa:
929 case DW_CFA_def_cfa_sf:
930 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
931 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
932 break;
933 case DW_CFA_def_cfa_expression:
934 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
935 break;
937 case DW_CFA_remember_state:
938 gcc_assert (!remember->in_use);
939 *remember = *loc;
940 remember->in_use = 1;
941 break;
942 case DW_CFA_restore_state:
943 gcc_assert (remember->in_use);
944 *loc = *remember;
945 remember->in_use = 0;
946 break;
948 default:
949 break;
953 /* Find the previous value for the CFA. */
955 static void
956 lookup_cfa (dw_cfa_location *loc)
958 dw_cfi_ref cfi;
959 dw_fde_ref fde;
960 dw_cfa_location remember;
962 memset (loc, 0, sizeof (*loc));
963 loc->reg = INVALID_REGNUM;
964 remember = *loc;
966 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
967 lookup_cfa_1 (cfi, loc, &remember);
969 fde = current_fde ();
970 if (fde)
971 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
972 lookup_cfa_1 (cfi, loc, &remember);
975 /* The current rule for calculating the DWARF2 canonical frame address. */
976 static dw_cfa_location cfa;
978 /* The register used for saving registers to the stack, and its offset
979 from the CFA. */
980 static dw_cfa_location cfa_store;
982 /* The current save location around an epilogue. */
983 static dw_cfa_location cfa_remember;
985 /* The running total of the size of arguments pushed onto the stack. */
986 static HOST_WIDE_INT args_size;
988 /* The last args_size we actually output. */
989 static HOST_WIDE_INT old_args_size;
991 /* Entry point to update the canonical frame address (CFA).
992 LABEL is passed to add_fde_cfi. The value of CFA is now to be
993 calculated from REG+OFFSET. */
995 void
996 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
998 dw_cfa_location loc;
999 loc.indirect = 0;
1000 loc.base_offset = 0;
1001 loc.reg = reg;
1002 loc.offset = offset;
1003 def_cfa_1 (label, &loc);
1006 /* Determine if two dw_cfa_location structures define the same data. */
1008 static bool
1009 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
1011 return (loc1->reg == loc2->reg
1012 && loc1->offset == loc2->offset
1013 && loc1->indirect == loc2->indirect
1014 && (loc1->indirect == 0
1015 || loc1->base_offset == loc2->base_offset));
1018 /* This routine does the actual work. The CFA is now calculated from
1019 the dw_cfa_location structure. */
1021 static void
1022 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
1024 dw_cfi_ref cfi;
1025 dw_cfa_location old_cfa, loc;
1027 cfa = *loc_p;
1028 loc = *loc_p;
1030 if (cfa_store.reg == loc.reg && loc.indirect == 0)
1031 cfa_store.offset = loc.offset;
1033 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
1034 lookup_cfa (&old_cfa);
1036 /* If nothing changed, no need to issue any call frame instructions. */
1037 if (cfa_equal_p (&loc, &old_cfa))
1038 return;
1040 cfi = new_cfi ();
1042 if (loc.reg == old_cfa.reg && !loc.indirect)
1044 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
1045 the CFA register did not change but the offset did. The data
1046 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
1047 in the assembler via the .cfi_def_cfa_offset directive. */
1048 if (loc.offset < 0)
1049 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
1050 else
1051 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
1052 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
1055 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
1056 else if (loc.offset == old_cfa.offset
1057 && old_cfa.reg != INVALID_REGNUM
1058 && !loc.indirect)
1060 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
1061 indicating the CFA register has changed to <register> but the
1062 offset has not changed. */
1063 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
1064 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
1066 #endif
1068 else if (loc.indirect == 0)
1070 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
1071 indicating the CFA register has changed to <register> with
1072 the specified offset. The data factoring for DW_CFA_def_cfa_sf
1073 happens in output_cfi, or in the assembler via the .cfi_def_cfa
1074 directive. */
1075 if (loc.offset < 0)
1076 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
1077 else
1078 cfi->dw_cfi_opc = DW_CFA_def_cfa;
1079 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
1080 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
1082 else
1084 /* Construct a DW_CFA_def_cfa_expression instruction to
1085 calculate the CFA using a full location expression since no
1086 register-offset pair is available. */
1087 struct dw_loc_descr_struct *loc_list;
1089 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
1090 loc_list = build_cfa_loc (&loc, 0);
1091 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
1094 add_fde_cfi (label, cfi);
1097 /* Add the CFI for saving a register. REG is the CFA column number.
1098 LABEL is passed to add_fde_cfi.
1099 If SREG is -1, the register is saved at OFFSET from the CFA;
1100 otherwise it is saved in SREG. */
1102 static void
1103 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
1105 dw_cfi_ref cfi = new_cfi ();
1106 dw_fde_ref fde = current_fde ();
1108 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
1110 /* When stack is aligned, store REG using DW_CFA_expression with
1111 FP. */
1112 if (fde
1113 && fde->stack_realign
1114 && sreg == INVALID_REGNUM)
1116 cfi->dw_cfi_opc = DW_CFA_expression;
1117 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = reg;
1118 cfi->dw_cfi_oprnd1.dw_cfi_loc
1119 = build_cfa_aligned_loc (offset, fde->stack_realignment);
1121 else if (sreg == INVALID_REGNUM)
1123 if (need_data_align_sf_opcode (offset))
1124 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
1125 else if (reg & ~0x3f)
1126 cfi->dw_cfi_opc = DW_CFA_offset_extended;
1127 else
1128 cfi->dw_cfi_opc = DW_CFA_offset;
1129 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
1131 else if (sreg == reg)
1132 cfi->dw_cfi_opc = DW_CFA_same_value;
1133 else
1135 cfi->dw_cfi_opc = DW_CFA_register;
1136 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
1139 add_fde_cfi (label, cfi);
1142 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
1143 This CFI tells the unwinder that it needs to restore the window registers
1144 from the previous frame's window save area.
1146 ??? Perhaps we should note in the CIE where windows are saved (instead of
1147 assuming 0(cfa)) and what registers are in the window. */
1149 void
1150 dwarf2out_window_save (const char *label)
1152 dw_cfi_ref cfi = new_cfi ();
1154 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1155 add_fde_cfi (label, cfi);
1158 /* Entry point for saving a register to the stack. REG is the GCC register
1159 number. LABEL and OFFSET are passed to reg_save. */
1161 void
1162 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
1164 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
1167 /* Entry point for saving the return address in the stack.
1168 LABEL and OFFSET are passed to reg_save. */
1170 void
1171 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
1173 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
1176 /* Entry point for saving the return address in a register.
1177 LABEL and SREG are passed to reg_save. */
1179 void
1180 dwarf2out_return_reg (const char *label, unsigned int sreg)
1182 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
1185 #ifdef DWARF2_UNWIND_INFO
1186 /* Record the initial position of the return address. RTL is
1187 INCOMING_RETURN_ADDR_RTX. */
1189 static void
1190 initial_return_save (rtx rtl)
1192 unsigned int reg = INVALID_REGNUM;
1193 HOST_WIDE_INT offset = 0;
1195 switch (GET_CODE (rtl))
1197 case REG:
1198 /* RA is in a register. */
1199 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
1200 break;
1202 case MEM:
1203 /* RA is on the stack. */
1204 rtl = XEXP (rtl, 0);
1205 switch (GET_CODE (rtl))
1207 case REG:
1208 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
1209 offset = 0;
1210 break;
1212 case PLUS:
1213 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
1214 offset = INTVAL (XEXP (rtl, 1));
1215 break;
1217 case MINUS:
1218 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
1219 offset = -INTVAL (XEXP (rtl, 1));
1220 break;
1222 default:
1223 gcc_unreachable ();
1226 break;
1228 case PLUS:
1229 /* The return address is at some offset from any value we can
1230 actually load. For instance, on the SPARC it is in %i7+8. Just
1231 ignore the offset for now; it doesn't matter for unwinding frames. */
1232 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
1233 initial_return_save (XEXP (rtl, 0));
1234 return;
1236 default:
1237 gcc_unreachable ();
1240 if (reg != DWARF_FRAME_RETURN_COLUMN)
1241 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1243 #endif
1245 /* Given a SET, calculate the amount of stack adjustment it
1246 contains. */
1248 static HOST_WIDE_INT
1249 stack_adjust_offset (const_rtx pattern, HOST_WIDE_INT cur_args_size,
1250 HOST_WIDE_INT cur_offset)
1252 const_rtx src = SET_SRC (pattern);
1253 const_rtx dest = SET_DEST (pattern);
1254 HOST_WIDE_INT offset = 0;
1255 enum rtx_code code;
1257 if (dest == stack_pointer_rtx)
1259 code = GET_CODE (src);
1261 /* Assume (set (reg sp) (reg whatever)) sets args_size
1262 level to 0. */
1263 if (code == REG && src != stack_pointer_rtx)
1265 offset = -cur_args_size;
1266 #ifndef STACK_GROWS_DOWNWARD
1267 offset = -offset;
1268 #endif
1269 return offset - cur_offset;
1272 if (! (code == PLUS || code == MINUS)
1273 || XEXP (src, 0) != stack_pointer_rtx
1274 || !CONST_INT_P (XEXP (src, 1)))
1275 return 0;
1277 /* (set (reg sp) (plus (reg sp) (const_int))) */
1278 offset = INTVAL (XEXP (src, 1));
1279 if (code == PLUS)
1280 offset = -offset;
1281 return offset;
1284 if (MEM_P (src) && !MEM_P (dest))
1285 dest = src;
1286 if (MEM_P (dest))
1288 /* (set (mem (pre_dec (reg sp))) (foo)) */
1289 src = XEXP (dest, 0);
1290 code = GET_CODE (src);
1292 switch (code)
1294 case PRE_MODIFY:
1295 case POST_MODIFY:
1296 if (XEXP (src, 0) == stack_pointer_rtx)
1298 rtx val = XEXP (XEXP (src, 1), 1);
1299 /* We handle only adjustments by constant amount. */
1300 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1301 && CONST_INT_P (val));
1302 offset = -INTVAL (val);
1303 break;
1305 return 0;
1307 case PRE_DEC:
1308 case POST_DEC:
1309 if (XEXP (src, 0) == stack_pointer_rtx)
1311 offset = GET_MODE_SIZE (GET_MODE (dest));
1312 break;
1314 return 0;
1316 case PRE_INC:
1317 case POST_INC:
1318 if (XEXP (src, 0) == stack_pointer_rtx)
1320 offset = -GET_MODE_SIZE (GET_MODE (dest));
1321 break;
1323 return 0;
1325 default:
1326 return 0;
1329 else
1330 return 0;
1332 return offset;
1335 /* Precomputed args_size for CODE_LABELs and BARRIERs preceeding them,
1336 indexed by INSN_UID. */
1338 static HOST_WIDE_INT *barrier_args_size;
1340 /* Helper function for compute_barrier_args_size. Handle one insn. */
1342 static HOST_WIDE_INT
1343 compute_barrier_args_size_1 (rtx insn, HOST_WIDE_INT cur_args_size,
1344 VEC (rtx, heap) **next)
1346 HOST_WIDE_INT offset = 0;
1347 int i;
1349 if (! RTX_FRAME_RELATED_P (insn))
1351 if (prologue_epilogue_contains (insn))
1352 /* Nothing */;
1353 else if (GET_CODE (PATTERN (insn)) == SET)
1354 offset = stack_adjust_offset (PATTERN (insn), cur_args_size, 0);
1355 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1356 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1358 /* There may be stack adjustments inside compound insns. Search
1359 for them. */
1360 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1361 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1362 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i),
1363 cur_args_size, offset);
1366 else
1368 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1370 if (expr)
1372 expr = XEXP (expr, 0);
1373 if (GET_CODE (expr) == PARALLEL
1374 || GET_CODE (expr) == SEQUENCE)
1375 for (i = 1; i < XVECLEN (expr, 0); i++)
1377 rtx elem = XVECEXP (expr, 0, i);
1379 if (GET_CODE (elem) == SET && !RTX_FRAME_RELATED_P (elem))
1380 offset += stack_adjust_offset (elem, cur_args_size, offset);
1385 #ifndef STACK_GROWS_DOWNWARD
1386 offset = -offset;
1387 #endif
1389 cur_args_size += offset;
1390 if (cur_args_size < 0)
1391 cur_args_size = 0;
1393 if (JUMP_P (insn))
1395 rtx dest = JUMP_LABEL (insn);
1397 if (dest)
1399 if (barrier_args_size [INSN_UID (dest)] < 0)
1401 barrier_args_size [INSN_UID (dest)] = cur_args_size;
1402 VEC_safe_push (rtx, heap, *next, dest);
1407 return cur_args_size;
1410 /* Walk the whole function and compute args_size on BARRIERs. */
1412 static void
1413 compute_barrier_args_size (void)
1415 int max_uid = get_max_uid (), i;
1416 rtx insn;
1417 VEC (rtx, heap) *worklist, *next, *tmp;
1419 barrier_args_size = XNEWVEC (HOST_WIDE_INT, max_uid);
1420 for (i = 0; i < max_uid; i++)
1421 barrier_args_size[i] = -1;
1423 worklist = VEC_alloc (rtx, heap, 20);
1424 next = VEC_alloc (rtx, heap, 20);
1425 insn = get_insns ();
1426 barrier_args_size[INSN_UID (insn)] = 0;
1427 VEC_quick_push (rtx, worklist, insn);
1428 for (;;)
1430 while (!VEC_empty (rtx, worklist))
1432 rtx prev, body, first_insn;
1433 HOST_WIDE_INT cur_args_size;
1435 first_insn = insn = VEC_pop (rtx, worklist);
1436 cur_args_size = barrier_args_size[INSN_UID (insn)];
1437 prev = prev_nonnote_insn (insn);
1438 if (prev && BARRIER_P (prev))
1439 barrier_args_size[INSN_UID (prev)] = cur_args_size;
1441 for (; insn; insn = NEXT_INSN (insn))
1443 if (INSN_DELETED_P (insn) || NOTE_P (insn))
1444 continue;
1445 if (BARRIER_P (insn))
1446 break;
1448 if (LABEL_P (insn))
1450 if (insn == first_insn)
1451 continue;
1452 else if (barrier_args_size[INSN_UID (insn)] < 0)
1454 barrier_args_size[INSN_UID (insn)] = cur_args_size;
1455 continue;
1457 else
1459 /* The insns starting with this label have been
1460 already scanned or are in the worklist. */
1461 break;
1465 body = PATTERN (insn);
1466 if (GET_CODE (body) == SEQUENCE)
1468 HOST_WIDE_INT dest_args_size = cur_args_size;
1469 for (i = 1; i < XVECLEN (body, 0); i++)
1470 if (INSN_ANNULLED_BRANCH_P (XVECEXP (body, 0, 0))
1471 && INSN_FROM_TARGET_P (XVECEXP (body, 0, i)))
1472 dest_args_size
1473 = compute_barrier_args_size_1 (XVECEXP (body, 0, i),
1474 dest_args_size, &next);
1475 else
1476 cur_args_size
1477 = compute_barrier_args_size_1 (XVECEXP (body, 0, i),
1478 cur_args_size, &next);
1480 if (INSN_ANNULLED_BRANCH_P (XVECEXP (body, 0, 0)))
1481 compute_barrier_args_size_1 (XVECEXP (body, 0, 0),
1482 dest_args_size, &next);
1483 else
1484 cur_args_size
1485 = compute_barrier_args_size_1 (XVECEXP (body, 0, 0),
1486 cur_args_size, &next);
1488 else
1489 cur_args_size
1490 = compute_barrier_args_size_1 (insn, cur_args_size, &next);
1494 if (VEC_empty (rtx, next))
1495 break;
1497 /* Swap WORKLIST with NEXT and truncate NEXT for next iteration. */
1498 tmp = next;
1499 next = worklist;
1500 worklist = tmp;
1501 VEC_truncate (rtx, next, 0);
1504 VEC_free (rtx, heap, worklist);
1505 VEC_free (rtx, heap, next);
1508 /* Add a CFI to update the running total of the size of arguments
1509 pushed onto the stack. */
1511 static void
1512 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
1514 dw_cfi_ref cfi;
1516 if (size == old_args_size)
1517 return;
1519 old_args_size = size;
1521 cfi = new_cfi ();
1522 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
1523 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
1524 add_fde_cfi (label, cfi);
1527 /* Record a stack adjustment of OFFSET bytes. */
1529 static void
1530 dwarf2out_stack_adjust (HOST_WIDE_INT offset, const char *label)
1532 if (cfa.reg == STACK_POINTER_REGNUM)
1533 cfa.offset += offset;
1535 if (cfa_store.reg == STACK_POINTER_REGNUM)
1536 cfa_store.offset += offset;
1538 if (ACCUMULATE_OUTGOING_ARGS)
1539 return;
1541 #ifndef STACK_GROWS_DOWNWARD
1542 offset = -offset;
1543 #endif
1545 args_size += offset;
1546 if (args_size < 0)
1547 args_size = 0;
1549 def_cfa_1 (label, &cfa);
1550 if (flag_asynchronous_unwind_tables)
1551 dwarf2out_args_size (label, args_size);
1554 /* Check INSN to see if it looks like a push or a stack adjustment, and
1555 make a note of it if it does. EH uses this information to find out
1556 how much extra space it needs to pop off the stack. */
1558 static void
1559 dwarf2out_notice_stack_adjust (rtx insn, bool after_p)
1561 HOST_WIDE_INT offset;
1562 const char *label;
1563 int i;
1565 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1566 with this function. Proper support would require all frame-related
1567 insns to be marked, and to be able to handle saving state around
1568 epilogues textually in the middle of the function. */
1569 if (prologue_epilogue_contains (insn))
1570 return;
1572 /* If INSN is an instruction from target of an annulled branch, the
1573 effects are for the target only and so current argument size
1574 shouldn't change at all. */
1575 if (final_sequence
1576 && INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))
1577 && INSN_FROM_TARGET_P (insn))
1578 return;
1580 /* If only calls can throw, and we have a frame pointer,
1581 save up adjustments until we see the CALL_INSN. */
1582 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1584 if (CALL_P (insn) && !after_p)
1586 /* Extract the size of the args from the CALL rtx itself. */
1587 insn = PATTERN (insn);
1588 if (GET_CODE (insn) == PARALLEL)
1589 insn = XVECEXP (insn, 0, 0);
1590 if (GET_CODE (insn) == SET)
1591 insn = SET_SRC (insn);
1592 gcc_assert (GET_CODE (insn) == CALL);
1593 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1595 return;
1598 if (CALL_P (insn) && !after_p)
1600 if (!flag_asynchronous_unwind_tables)
1601 dwarf2out_args_size ("", args_size);
1602 return;
1604 else if (BARRIER_P (insn))
1606 /* Don't call compute_barrier_args_size () if the only
1607 BARRIER is at the end of function. */
1608 if (barrier_args_size == NULL && next_nonnote_insn (insn))
1609 compute_barrier_args_size ();
1610 if (barrier_args_size == NULL)
1611 offset = 0;
1612 else
1614 offset = barrier_args_size[INSN_UID (insn)];
1615 if (offset < 0)
1616 offset = 0;
1619 offset -= args_size;
1620 #ifndef STACK_GROWS_DOWNWARD
1621 offset = -offset;
1622 #endif
1624 else if (GET_CODE (PATTERN (insn)) == SET)
1625 offset = stack_adjust_offset (PATTERN (insn), args_size, 0);
1626 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1627 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1629 /* There may be stack adjustments inside compound insns. Search
1630 for them. */
1631 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1632 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1633 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i),
1634 args_size, offset);
1636 else
1637 return;
1639 if (offset == 0)
1640 return;
1642 label = dwarf2out_cfi_label (false);
1643 dwarf2out_stack_adjust (offset, label);
1646 #endif
1648 /* We delay emitting a register save until either (a) we reach the end
1649 of the prologue or (b) the register is clobbered. This clusters
1650 register saves so that there are fewer pc advances. */
1652 struct GTY(()) queued_reg_save {
1653 struct queued_reg_save *next;
1654 rtx reg;
1655 HOST_WIDE_INT cfa_offset;
1656 rtx saved_reg;
1659 static GTY(()) struct queued_reg_save *queued_reg_saves;
1661 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1662 struct GTY(()) reg_saved_in_data {
1663 rtx orig_reg;
1664 rtx saved_in_reg;
1667 /* A list of registers saved in other registers.
1668 The list intentionally has a small maximum capacity of 4; if your
1669 port needs more than that, you might consider implementing a
1670 more efficient data structure. */
1671 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1672 static GTY(()) size_t num_regs_saved_in_regs;
1674 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1675 static const char *last_reg_save_label;
1677 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1678 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1680 static void
1681 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1683 struct queued_reg_save *q;
1685 /* Duplicates waste space, but it's also necessary to remove them
1686 for correctness, since the queue gets output in reverse
1687 order. */
1688 for (q = queued_reg_saves; q != NULL; q = q->next)
1689 if (REGNO (q->reg) == REGNO (reg))
1690 break;
1692 if (q == NULL)
1694 q = GGC_NEW (struct queued_reg_save);
1695 q->next = queued_reg_saves;
1696 queued_reg_saves = q;
1699 q->reg = reg;
1700 q->cfa_offset = offset;
1701 q->saved_reg = sreg;
1703 last_reg_save_label = label;
1706 /* Output all the entries in QUEUED_REG_SAVES. */
1708 static void
1709 flush_queued_reg_saves (void)
1711 struct queued_reg_save *q;
1713 for (q = queued_reg_saves; q; q = q->next)
1715 size_t i;
1716 unsigned int reg, sreg;
1718 for (i = 0; i < num_regs_saved_in_regs; i++)
1719 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1720 break;
1721 if (q->saved_reg && i == num_regs_saved_in_regs)
1723 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1724 num_regs_saved_in_regs++;
1726 if (i != num_regs_saved_in_regs)
1728 regs_saved_in_regs[i].orig_reg = q->reg;
1729 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1732 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1733 if (q->saved_reg)
1734 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1735 else
1736 sreg = INVALID_REGNUM;
1737 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1740 queued_reg_saves = NULL;
1741 last_reg_save_label = NULL;
1744 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1745 location for? Or, does it clobber a register which we've previously
1746 said that some other register is saved in, and for which we now
1747 have a new location for? */
1749 static bool
1750 clobbers_queued_reg_save (const_rtx insn)
1752 struct queued_reg_save *q;
1754 for (q = queued_reg_saves; q; q = q->next)
1756 size_t i;
1757 if (modified_in_p (q->reg, insn))
1758 return true;
1759 for (i = 0; i < num_regs_saved_in_regs; i++)
1760 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1761 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1762 return true;
1765 return false;
1768 /* Entry point for saving the first register into the second. */
1770 void
1771 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1773 size_t i;
1774 unsigned int regno, sregno;
1776 for (i = 0; i < num_regs_saved_in_regs; i++)
1777 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1778 break;
1779 if (i == num_regs_saved_in_regs)
1781 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1782 num_regs_saved_in_regs++;
1784 regs_saved_in_regs[i].orig_reg = reg;
1785 regs_saved_in_regs[i].saved_in_reg = sreg;
1787 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1788 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1789 reg_save (label, regno, sregno, 0);
1792 /* What register, if any, is currently saved in REG? */
1794 static rtx
1795 reg_saved_in (rtx reg)
1797 unsigned int regn = REGNO (reg);
1798 size_t i;
1799 struct queued_reg_save *q;
1801 for (q = queued_reg_saves; q; q = q->next)
1802 if (q->saved_reg && regn == REGNO (q->saved_reg))
1803 return q->reg;
1805 for (i = 0; i < num_regs_saved_in_regs; i++)
1806 if (regs_saved_in_regs[i].saved_in_reg
1807 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1808 return regs_saved_in_regs[i].orig_reg;
1810 return NULL_RTX;
1814 /* A temporary register holding an integral value used in adjusting SP
1815 or setting up the store_reg. The "offset" field holds the integer
1816 value, not an offset. */
1817 static dw_cfa_location cfa_temp;
1819 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1821 static void
1822 dwarf2out_frame_debug_def_cfa (rtx pat, const char *label)
1824 memset (&cfa, 0, sizeof (cfa));
1826 switch (GET_CODE (pat))
1828 case PLUS:
1829 cfa.reg = REGNO (XEXP (pat, 0));
1830 cfa.offset = INTVAL (XEXP (pat, 1));
1831 break;
1833 case REG:
1834 cfa.reg = REGNO (pat);
1835 break;
1837 default:
1838 /* Recurse and define an expression. */
1839 gcc_unreachable ();
1842 def_cfa_1 (label, &cfa);
1845 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1847 static void
1848 dwarf2out_frame_debug_adjust_cfa (rtx pat, const char *label)
1850 rtx src, dest;
1852 gcc_assert (GET_CODE (pat) == SET);
1853 dest = XEXP (pat, 0);
1854 src = XEXP (pat, 1);
1856 switch (GET_CODE (src))
1858 case PLUS:
1859 gcc_assert (REGNO (XEXP (src, 0)) == cfa.reg);
1860 cfa.offset -= INTVAL (XEXP (src, 1));
1861 break;
1863 case REG:
1864 break;
1866 default:
1867 gcc_unreachable ();
1870 cfa.reg = REGNO (dest);
1871 gcc_assert (cfa.indirect == 0);
1873 def_cfa_1 (label, &cfa);
1876 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1878 static void
1879 dwarf2out_frame_debug_cfa_offset (rtx set, const char *label)
1881 HOST_WIDE_INT offset;
1882 rtx src, addr, span;
1884 src = XEXP (set, 1);
1885 addr = XEXP (set, 0);
1886 gcc_assert (MEM_P (addr));
1887 addr = XEXP (addr, 0);
1889 /* As documented, only consider extremely simple addresses. */
1890 switch (GET_CODE (addr))
1892 case REG:
1893 gcc_assert (REGNO (addr) == cfa.reg);
1894 offset = -cfa.offset;
1895 break;
1896 case PLUS:
1897 gcc_assert (REGNO (XEXP (addr, 0)) == cfa.reg);
1898 offset = INTVAL (XEXP (addr, 1)) - cfa.offset;
1899 break;
1900 default:
1901 gcc_unreachable ();
1904 span = targetm.dwarf_register_span (src);
1906 /* ??? We'd like to use queue_reg_save, but we need to come up with
1907 a different flushing heuristic for epilogues. */
1908 if (!span)
1909 reg_save (label, DWARF_FRAME_REGNUM (REGNO (src)), INVALID_REGNUM, offset);
1910 else
1912 /* We have a PARALLEL describing where the contents of SRC live.
1913 Queue register saves for each piece of the PARALLEL. */
1914 int par_index;
1915 int limit;
1916 HOST_WIDE_INT span_offset = offset;
1918 gcc_assert (GET_CODE (span) == PARALLEL);
1920 limit = XVECLEN (span, 0);
1921 for (par_index = 0; par_index < limit; par_index++)
1923 rtx elem = XVECEXP (span, 0, par_index);
1925 reg_save (label, DWARF_FRAME_REGNUM (REGNO (elem)),
1926 INVALID_REGNUM, span_offset);
1927 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1932 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1934 static void
1935 dwarf2out_frame_debug_cfa_register (rtx set, const char *label)
1937 rtx src, dest;
1938 unsigned sregno, dregno;
1940 src = XEXP (set, 1);
1941 dest = XEXP (set, 0);
1943 if (src == pc_rtx)
1944 sregno = DWARF_FRAME_RETURN_COLUMN;
1945 else
1946 sregno = DWARF_FRAME_REGNUM (REGNO (src));
1948 dregno = DWARF_FRAME_REGNUM (REGNO (dest));
1950 /* ??? We'd like to use queue_reg_save, but we need to come up with
1951 a different flushing heuristic for epilogues. */
1952 reg_save (label, sregno, dregno, 0);
1955 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1957 static void
1958 dwarf2out_frame_debug_cfa_restore (rtx reg, const char *label)
1960 dw_cfi_ref cfi = new_cfi ();
1961 unsigned int regno = DWARF_FRAME_REGNUM (REGNO (reg));
1963 cfi->dw_cfi_opc = (regno & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
1964 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1966 add_fde_cfi (label, cfi);
1969 /* Record call frame debugging information for an expression EXPR,
1970 which either sets SP or FP (adjusting how we calculate the frame
1971 address) or saves a register to the stack or another register.
1972 LABEL indicates the address of EXPR.
1974 This function encodes a state machine mapping rtxes to actions on
1975 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1976 users need not read the source code.
1978 The High-Level Picture
1980 Changes in the register we use to calculate the CFA: Currently we
1981 assume that if you copy the CFA register into another register, we
1982 should take the other one as the new CFA register; this seems to
1983 work pretty well. If it's wrong for some target, it's simple
1984 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1986 Changes in the register we use for saving registers to the stack:
1987 This is usually SP, but not always. Again, we deduce that if you
1988 copy SP into another register (and SP is not the CFA register),
1989 then the new register is the one we will be using for register
1990 saves. This also seems to work.
1992 Register saves: There's not much guesswork about this one; if
1993 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1994 register save, and the register used to calculate the destination
1995 had better be the one we think we're using for this purpose.
1996 It's also assumed that a copy from a call-saved register to another
1997 register is saving that register if RTX_FRAME_RELATED_P is set on
1998 that instruction. If the copy is from a call-saved register to
1999 the *same* register, that means that the register is now the same
2000 value as in the caller.
2002 Except: If the register being saved is the CFA register, and the
2003 offset is nonzero, we are saving the CFA, so we assume we have to
2004 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
2005 the intent is to save the value of SP from the previous frame.
2007 In addition, if a register has previously been saved to a different
2008 register,
2010 Invariants / Summaries of Rules
2012 cfa current rule for calculating the CFA. It usually
2013 consists of a register and an offset.
2014 cfa_store register used by prologue code to save things to the stack
2015 cfa_store.offset is the offset from the value of
2016 cfa_store.reg to the actual CFA
2017 cfa_temp register holding an integral value. cfa_temp.offset
2018 stores the value, which will be used to adjust the
2019 stack pointer. cfa_temp is also used like cfa_store,
2020 to track stores to the stack via fp or a temp reg.
2022 Rules 1- 4: Setting a register's value to cfa.reg or an expression
2023 with cfa.reg as the first operand changes the cfa.reg and its
2024 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
2025 cfa_temp.offset.
2027 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
2028 expression yielding a constant. This sets cfa_temp.reg
2029 and cfa_temp.offset.
2031 Rule 5: Create a new register cfa_store used to save items to the
2032 stack.
2034 Rules 10-14: Save a register to the stack. Define offset as the
2035 difference of the original location and cfa_store's
2036 location (or cfa_temp's location if cfa_temp is used).
2038 Rules 16-20: If AND operation happens on sp in prologue, we assume
2039 stack is realigned. We will use a group of DW_OP_XXX
2040 expressions to represent the location of the stored
2041 register instead of CFA+offset.
2043 The Rules
2045 "{a,b}" indicates a choice of a xor b.
2046 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
2048 Rule 1:
2049 (set <reg1> <reg2>:cfa.reg)
2050 effects: cfa.reg = <reg1>
2051 cfa.offset unchanged
2052 cfa_temp.reg = <reg1>
2053 cfa_temp.offset = cfa.offset
2055 Rule 2:
2056 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
2057 {<const_int>,<reg>:cfa_temp.reg}))
2058 effects: cfa.reg = sp if fp used
2059 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
2060 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
2061 if cfa_store.reg==sp
2063 Rule 3:
2064 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
2065 effects: cfa.reg = fp
2066 cfa_offset += +/- <const_int>
2068 Rule 4:
2069 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
2070 constraints: <reg1> != fp
2071 <reg1> != sp
2072 effects: cfa.reg = <reg1>
2073 cfa_temp.reg = <reg1>
2074 cfa_temp.offset = cfa.offset
2076 Rule 5:
2077 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
2078 constraints: <reg1> != fp
2079 <reg1> != sp
2080 effects: cfa_store.reg = <reg1>
2081 cfa_store.offset = cfa.offset - cfa_temp.offset
2083 Rule 6:
2084 (set <reg> <const_int>)
2085 effects: cfa_temp.reg = <reg>
2086 cfa_temp.offset = <const_int>
2088 Rule 7:
2089 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
2090 effects: cfa_temp.reg = <reg1>
2091 cfa_temp.offset |= <const_int>
2093 Rule 8:
2094 (set <reg> (high <exp>))
2095 effects: none
2097 Rule 9:
2098 (set <reg> (lo_sum <exp> <const_int>))
2099 effects: cfa_temp.reg = <reg>
2100 cfa_temp.offset = <const_int>
2102 Rule 10:
2103 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
2104 effects: cfa_store.offset -= <const_int>
2105 cfa.offset = cfa_store.offset if cfa.reg == sp
2106 cfa.reg = sp
2107 cfa.base_offset = -cfa_store.offset
2109 Rule 11:
2110 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
2111 effects: cfa_store.offset += -/+ mode_size(mem)
2112 cfa.offset = cfa_store.offset if cfa.reg == sp
2113 cfa.reg = sp
2114 cfa.base_offset = -cfa_store.offset
2116 Rule 12:
2117 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
2119 <reg2>)
2120 effects: cfa.reg = <reg1>
2121 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
2123 Rule 13:
2124 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
2125 effects: cfa.reg = <reg1>
2126 cfa.base_offset = -{cfa_store,cfa_temp}.offset
2128 Rule 14:
2129 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
2130 effects: cfa.reg = <reg1>
2131 cfa.base_offset = -cfa_temp.offset
2132 cfa_temp.offset -= mode_size(mem)
2134 Rule 15:
2135 (set <reg> {unspec, unspec_volatile})
2136 effects: target-dependent
2138 Rule 16:
2139 (set sp (and: sp <const_int>))
2140 constraints: cfa_store.reg == sp
2141 effects: current_fde.stack_realign = 1
2142 cfa_store.offset = 0
2143 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
2145 Rule 17:
2146 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
2147 effects: cfa_store.offset += -/+ mode_size(mem)
2149 Rule 18:
2150 (set (mem ({pre_inc, pre_dec} sp)) fp)
2151 constraints: fde->stack_realign == 1
2152 effects: cfa_store.offset = 0
2153 cfa.reg != HARD_FRAME_POINTER_REGNUM
2155 Rule 19:
2156 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
2157 constraints: fde->stack_realign == 1
2158 && cfa.offset == 0
2159 && cfa.indirect == 0
2160 && cfa.reg != HARD_FRAME_POINTER_REGNUM
2161 effects: Use DW_CFA_def_cfa_expression to define cfa
2162 cfa.reg == fde->drap_reg
2164 Rule 20:
2165 (set reg fde->drap_reg)
2166 constraints: fde->vdrap_reg == INVALID_REGNUM
2167 effects: fde->vdrap_reg = reg.
2168 (set mem fde->drap_reg)
2169 constraints: fde->drap_reg_saved == 1
2170 effects: none. */
2172 static void
2173 dwarf2out_frame_debug_expr (rtx expr, const char *label)
2175 rtx src, dest, span;
2176 HOST_WIDE_INT offset;
2177 dw_fde_ref fde;
2179 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
2180 the PARALLEL independently. The first element is always processed if
2181 it is a SET. This is for backward compatibility. Other elements
2182 are processed only if they are SETs and the RTX_FRAME_RELATED_P
2183 flag is set in them. */
2184 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
2186 int par_index;
2187 int limit = XVECLEN (expr, 0);
2188 rtx elem;
2190 /* PARALLELs have strict read-modify-write semantics, so we
2191 ought to evaluate every rvalue before changing any lvalue.
2192 It's cumbersome to do that in general, but there's an
2193 easy approximation that is enough for all current users:
2194 handle register saves before register assignments. */
2195 if (GET_CODE (expr) == PARALLEL)
2196 for (par_index = 0; par_index < limit; par_index++)
2198 elem = XVECEXP (expr, 0, par_index);
2199 if (GET_CODE (elem) == SET
2200 && MEM_P (SET_DEST (elem))
2201 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
2202 dwarf2out_frame_debug_expr (elem, label);
2205 for (par_index = 0; par_index < limit; par_index++)
2207 elem = XVECEXP (expr, 0, par_index);
2208 if (GET_CODE (elem) == SET
2209 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
2210 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
2211 dwarf2out_frame_debug_expr (elem, label);
2212 else if (GET_CODE (elem) == SET
2213 && par_index != 0
2214 && !RTX_FRAME_RELATED_P (elem))
2216 /* Stack adjustment combining might combine some post-prologue
2217 stack adjustment into a prologue stack adjustment. */
2218 HOST_WIDE_INT offset = stack_adjust_offset (elem, args_size, 0);
2220 if (offset != 0)
2221 dwarf2out_stack_adjust (offset, label);
2224 return;
2227 gcc_assert (GET_CODE (expr) == SET);
2229 src = SET_SRC (expr);
2230 dest = SET_DEST (expr);
2232 if (REG_P (src))
2234 rtx rsi = reg_saved_in (src);
2235 if (rsi)
2236 src = rsi;
2239 fde = current_fde ();
2241 if (REG_P (src)
2242 && fde
2243 && fde->drap_reg == REGNO (src)
2244 && (fde->drap_reg_saved
2245 || REG_P (dest)))
2247 /* Rule 20 */
2248 /* If we are saving dynamic realign argument pointer to a
2249 register, the destination is virtual dynamic realign
2250 argument pointer. It may be used to access argument. */
2251 if (REG_P (dest))
2253 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2254 fde->vdrap_reg = REGNO (dest);
2256 return;
2259 switch (GET_CODE (dest))
2261 case REG:
2262 switch (GET_CODE (src))
2264 /* Setting FP from SP. */
2265 case REG:
2266 if (cfa.reg == (unsigned) REGNO (src))
2268 /* Rule 1 */
2269 /* Update the CFA rule wrt SP or FP. Make sure src is
2270 relative to the current CFA register.
2272 We used to require that dest be either SP or FP, but the
2273 ARM copies SP to a temporary register, and from there to
2274 FP. So we just rely on the backends to only set
2275 RTX_FRAME_RELATED_P on appropriate insns. */
2276 cfa.reg = REGNO (dest);
2277 cfa_temp.reg = cfa.reg;
2278 cfa_temp.offset = cfa.offset;
2280 else
2282 /* Saving a register in a register. */
2283 gcc_assert (!fixed_regs [REGNO (dest)]
2284 /* For the SPARC and its register window. */
2285 || (DWARF_FRAME_REGNUM (REGNO (src))
2286 == DWARF_FRAME_RETURN_COLUMN));
2288 /* After stack is aligned, we can only save SP in FP
2289 if drap register is used. In this case, we have
2290 to restore stack pointer with the CFA value and we
2291 don't generate this DWARF information. */
2292 if (fde
2293 && fde->stack_realign
2294 && REGNO (src) == STACK_POINTER_REGNUM)
2295 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
2296 && fde->drap_reg != INVALID_REGNUM
2297 && cfa.reg != REGNO (src));
2298 else
2299 queue_reg_save (label, src, dest, 0);
2301 break;
2303 case PLUS:
2304 case MINUS:
2305 case LO_SUM:
2306 if (dest == stack_pointer_rtx)
2308 /* Rule 2 */
2309 /* Adjusting SP. */
2310 switch (GET_CODE (XEXP (src, 1)))
2312 case CONST_INT:
2313 offset = INTVAL (XEXP (src, 1));
2314 break;
2315 case REG:
2316 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
2317 == cfa_temp.reg);
2318 offset = cfa_temp.offset;
2319 break;
2320 default:
2321 gcc_unreachable ();
2324 if (XEXP (src, 0) == hard_frame_pointer_rtx)
2326 /* Restoring SP from FP in the epilogue. */
2327 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
2328 cfa.reg = STACK_POINTER_REGNUM;
2330 else if (GET_CODE (src) == LO_SUM)
2331 /* Assume we've set the source reg of the LO_SUM from sp. */
2333 else
2334 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
2336 if (GET_CODE (src) != MINUS)
2337 offset = -offset;
2338 if (cfa.reg == STACK_POINTER_REGNUM)
2339 cfa.offset += offset;
2340 if (cfa_store.reg == STACK_POINTER_REGNUM)
2341 cfa_store.offset += offset;
2343 else if (dest == hard_frame_pointer_rtx)
2345 /* Rule 3 */
2346 /* Either setting the FP from an offset of the SP,
2347 or adjusting the FP */
2348 gcc_assert (frame_pointer_needed);
2350 gcc_assert (REG_P (XEXP (src, 0))
2351 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
2352 && CONST_INT_P (XEXP (src, 1)));
2353 offset = INTVAL (XEXP (src, 1));
2354 if (GET_CODE (src) != MINUS)
2355 offset = -offset;
2356 cfa.offset += offset;
2357 cfa.reg = HARD_FRAME_POINTER_REGNUM;
2359 else
2361 gcc_assert (GET_CODE (src) != MINUS);
2363 /* Rule 4 */
2364 if (REG_P (XEXP (src, 0))
2365 && REGNO (XEXP (src, 0)) == cfa.reg
2366 && CONST_INT_P (XEXP (src, 1)))
2368 /* Setting a temporary CFA register that will be copied
2369 into the FP later on. */
2370 offset = - INTVAL (XEXP (src, 1));
2371 cfa.offset += offset;
2372 cfa.reg = REGNO (dest);
2373 /* Or used to save regs to the stack. */
2374 cfa_temp.reg = cfa.reg;
2375 cfa_temp.offset = cfa.offset;
2378 /* Rule 5 */
2379 else if (REG_P (XEXP (src, 0))
2380 && REGNO (XEXP (src, 0)) == cfa_temp.reg
2381 && XEXP (src, 1) == stack_pointer_rtx)
2383 /* Setting a scratch register that we will use instead
2384 of SP for saving registers to the stack. */
2385 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
2386 cfa_store.reg = REGNO (dest);
2387 cfa_store.offset = cfa.offset - cfa_temp.offset;
2390 /* Rule 9 */
2391 else if (GET_CODE (src) == LO_SUM
2392 && CONST_INT_P (XEXP (src, 1)))
2394 cfa_temp.reg = REGNO (dest);
2395 cfa_temp.offset = INTVAL (XEXP (src, 1));
2397 else
2398 gcc_unreachable ();
2400 break;
2402 /* Rule 6 */
2403 case CONST_INT:
2404 cfa_temp.reg = REGNO (dest);
2405 cfa_temp.offset = INTVAL (src);
2406 break;
2408 /* Rule 7 */
2409 case IOR:
2410 gcc_assert (REG_P (XEXP (src, 0))
2411 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
2412 && CONST_INT_P (XEXP (src, 1)));
2414 if ((unsigned) REGNO (dest) != cfa_temp.reg)
2415 cfa_temp.reg = REGNO (dest);
2416 cfa_temp.offset |= INTVAL (XEXP (src, 1));
2417 break;
2419 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
2420 which will fill in all of the bits. */
2421 /* Rule 8 */
2422 case HIGH:
2423 break;
2425 /* Rule 15 */
2426 case UNSPEC:
2427 case UNSPEC_VOLATILE:
2428 gcc_assert (targetm.dwarf_handle_frame_unspec);
2429 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
2430 return;
2432 /* Rule 16 */
2433 case AND:
2434 /* If this AND operation happens on stack pointer in prologue,
2435 we assume the stack is realigned and we extract the
2436 alignment. */
2437 if (fde && XEXP (src, 0) == stack_pointer_rtx)
2439 gcc_assert (cfa_store.reg == REGNO (XEXP (src, 0)));
2440 fde->stack_realign = 1;
2441 fde->stack_realignment = INTVAL (XEXP (src, 1));
2442 cfa_store.offset = 0;
2444 if (cfa.reg != STACK_POINTER_REGNUM
2445 && cfa.reg != HARD_FRAME_POINTER_REGNUM)
2446 fde->drap_reg = cfa.reg;
2448 return;
2450 default:
2451 gcc_unreachable ();
2454 def_cfa_1 (label, &cfa);
2455 break;
2457 case MEM:
2459 /* Saving a register to the stack. Make sure dest is relative to the
2460 CFA register. */
2461 switch (GET_CODE (XEXP (dest, 0)))
2463 /* Rule 10 */
2464 /* With a push. */
2465 case PRE_MODIFY:
2466 /* We can't handle variable size modifications. */
2467 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2468 == CONST_INT);
2469 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
2471 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
2472 && cfa_store.reg == STACK_POINTER_REGNUM);
2474 cfa_store.offset += offset;
2475 if (cfa.reg == STACK_POINTER_REGNUM)
2476 cfa.offset = cfa_store.offset;
2478 offset = -cfa_store.offset;
2479 break;
2481 /* Rule 11 */
2482 case PRE_INC:
2483 case PRE_DEC:
2484 offset = GET_MODE_SIZE (GET_MODE (dest));
2485 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
2486 offset = -offset;
2488 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
2489 == STACK_POINTER_REGNUM)
2490 && cfa_store.reg == STACK_POINTER_REGNUM);
2492 cfa_store.offset += offset;
2494 /* Rule 18: If stack is aligned, we will use FP as a
2495 reference to represent the address of the stored
2496 regiser. */
2497 if (fde
2498 && fde->stack_realign
2499 && src == hard_frame_pointer_rtx)
2501 gcc_assert (cfa.reg != HARD_FRAME_POINTER_REGNUM);
2502 cfa_store.offset = 0;
2505 if (cfa.reg == STACK_POINTER_REGNUM)
2506 cfa.offset = cfa_store.offset;
2508 offset = -cfa_store.offset;
2509 break;
2511 /* Rule 12 */
2512 /* With an offset. */
2513 case PLUS:
2514 case MINUS:
2515 case LO_SUM:
2517 int regno;
2519 gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
2520 && REG_P (XEXP (XEXP (dest, 0), 0)));
2521 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
2522 if (GET_CODE (XEXP (dest, 0)) == MINUS)
2523 offset = -offset;
2525 regno = REGNO (XEXP (XEXP (dest, 0), 0));
2527 if (cfa_store.reg == (unsigned) regno)
2528 offset -= cfa_store.offset;
2529 else
2531 gcc_assert (cfa_temp.reg == (unsigned) regno);
2532 offset -= cfa_temp.offset;
2535 break;
2537 /* Rule 13 */
2538 /* Without an offset. */
2539 case REG:
2541 int regno = REGNO (XEXP (dest, 0));
2543 if (cfa_store.reg == (unsigned) regno)
2544 offset = -cfa_store.offset;
2545 else
2547 gcc_assert (cfa_temp.reg == (unsigned) regno);
2548 offset = -cfa_temp.offset;
2551 break;
2553 /* Rule 14 */
2554 case POST_INC:
2555 gcc_assert (cfa_temp.reg
2556 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
2557 offset = -cfa_temp.offset;
2558 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
2559 break;
2561 default:
2562 gcc_unreachable ();
2565 /* Rule 17 */
2566 /* If the source operand of this MEM operation is not a
2567 register, basically the source is return address. Here
2568 we only care how much stack grew and we don't save it. */
2569 if (!REG_P (src))
2570 break;
2572 if (REGNO (src) != STACK_POINTER_REGNUM
2573 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
2574 && (unsigned) REGNO (src) == cfa.reg)
2576 /* We're storing the current CFA reg into the stack. */
2578 if (cfa.offset == 0)
2580 /* Rule 19 */
2581 /* If stack is aligned, putting CFA reg into stack means
2582 we can no longer use reg + offset to represent CFA.
2583 Here we use DW_CFA_def_cfa_expression instead. The
2584 result of this expression equals to the original CFA
2585 value. */
2586 if (fde
2587 && fde->stack_realign
2588 && cfa.indirect == 0
2589 && cfa.reg != HARD_FRAME_POINTER_REGNUM)
2591 dw_cfa_location cfa_exp;
2593 gcc_assert (fde->drap_reg == cfa.reg);
2595 cfa_exp.indirect = 1;
2596 cfa_exp.reg = HARD_FRAME_POINTER_REGNUM;
2597 cfa_exp.base_offset = offset;
2598 cfa_exp.offset = 0;
2600 fde->drap_reg_saved = 1;
2602 def_cfa_1 (label, &cfa_exp);
2603 break;
2606 /* If the source register is exactly the CFA, assume
2607 we're saving SP like any other register; this happens
2608 on the ARM. */
2609 def_cfa_1 (label, &cfa);
2610 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
2611 break;
2613 else
2615 /* Otherwise, we'll need to look in the stack to
2616 calculate the CFA. */
2617 rtx x = XEXP (dest, 0);
2619 if (!REG_P (x))
2620 x = XEXP (x, 0);
2621 gcc_assert (REG_P (x));
2623 cfa.reg = REGNO (x);
2624 cfa.base_offset = offset;
2625 cfa.indirect = 1;
2626 def_cfa_1 (label, &cfa);
2627 break;
2631 def_cfa_1 (label, &cfa);
2633 span = targetm.dwarf_register_span (src);
2635 if (!span)
2636 queue_reg_save (label, src, NULL_RTX, offset);
2637 else
2639 /* We have a PARALLEL describing where the contents of SRC
2640 live. Queue register saves for each piece of the
2641 PARALLEL. */
2642 int par_index;
2643 int limit;
2644 HOST_WIDE_INT span_offset = offset;
2646 gcc_assert (GET_CODE (span) == PARALLEL);
2648 limit = XVECLEN (span, 0);
2649 for (par_index = 0; par_index < limit; par_index++)
2651 rtx elem = XVECEXP (span, 0, par_index);
2653 queue_reg_save (label, elem, NULL_RTX, span_offset);
2654 span_offset += GET_MODE_SIZE (GET_MODE (elem));
2658 break;
2660 default:
2661 gcc_unreachable ();
2665 /* Record call frame debugging information for INSN, which either
2666 sets SP or FP (adjusting how we calculate the frame address) or saves a
2667 register to the stack. If INSN is NULL_RTX, initialize our state.
2669 If AFTER_P is false, we're being called before the insn is emitted,
2670 otherwise after. Call instructions get invoked twice. */
2672 void
2673 dwarf2out_frame_debug (rtx insn, bool after_p)
2675 const char *label;
2676 rtx note, n;
2677 bool handled_one = false;
2679 if (insn == NULL_RTX)
2681 size_t i;
2683 /* Flush any queued register saves. */
2684 flush_queued_reg_saves ();
2686 /* Set up state for generating call frame debug info. */
2687 lookup_cfa (&cfa);
2688 gcc_assert (cfa.reg
2689 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
2691 cfa.reg = STACK_POINTER_REGNUM;
2692 cfa_store = cfa;
2693 cfa_temp.reg = -1;
2694 cfa_temp.offset = 0;
2696 for (i = 0; i < num_regs_saved_in_regs; i++)
2698 regs_saved_in_regs[i].orig_reg = NULL_RTX;
2699 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
2701 num_regs_saved_in_regs = 0;
2703 if (barrier_args_size)
2705 XDELETEVEC (barrier_args_size);
2706 barrier_args_size = NULL;
2708 return;
2711 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
2712 flush_queued_reg_saves ();
2714 if (!RTX_FRAME_RELATED_P (insn))
2716 /* ??? This should be done unconditionally since stack adjustments
2717 matter if the stack pointer is not the CFA register anymore but
2718 is still used to save registers. */
2719 if (!ACCUMULATE_OUTGOING_ARGS)
2720 dwarf2out_notice_stack_adjust (insn, after_p);
2721 return;
2724 label = dwarf2out_cfi_label (false);
2726 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2727 switch (REG_NOTE_KIND (note))
2729 case REG_FRAME_RELATED_EXPR:
2730 insn = XEXP (note, 0);
2731 goto found;
2733 case REG_CFA_DEF_CFA:
2734 dwarf2out_frame_debug_def_cfa (XEXP (note, 0), label);
2735 handled_one = true;
2736 break;
2738 case REG_CFA_ADJUST_CFA:
2739 n = XEXP (note, 0);
2740 if (n == NULL)
2742 n = PATTERN (insn);
2743 if (GET_CODE (n) == PARALLEL)
2744 n = XVECEXP (n, 0, 0);
2746 dwarf2out_frame_debug_adjust_cfa (n, label);
2747 handled_one = true;
2748 break;
2750 case REG_CFA_OFFSET:
2751 n = XEXP (note, 0);
2752 if (n == NULL)
2753 n = single_set (insn);
2754 dwarf2out_frame_debug_cfa_offset (n, label);
2755 handled_one = true;
2756 break;
2758 case REG_CFA_REGISTER:
2759 n = XEXP (note, 0);
2760 if (n == NULL)
2762 n = PATTERN (insn);
2763 if (GET_CODE (n) == PARALLEL)
2764 n = XVECEXP (n, 0, 0);
2766 dwarf2out_frame_debug_cfa_register (n, label);
2767 handled_one = true;
2768 break;
2770 case REG_CFA_RESTORE:
2771 n = XEXP (note, 0);
2772 if (n == NULL)
2774 n = PATTERN (insn);
2775 if (GET_CODE (n) == PARALLEL)
2776 n = XVECEXP (n, 0, 0);
2777 n = XEXP (n, 0);
2779 dwarf2out_frame_debug_cfa_restore (n, label);
2780 handled_one = true;
2781 break;
2783 default:
2784 break;
2786 if (handled_one)
2787 return;
2789 insn = PATTERN (insn);
2790 found:
2791 dwarf2out_frame_debug_expr (insn, label);
2794 /* Determine if we need to save and restore CFI information around this
2795 epilogue. If SIBCALL is true, then this is a sibcall epilogue. If
2796 we do need to save/restore, then emit the save now, and insert a
2797 NOTE_INSN_CFA_RESTORE_STATE at the appropriate place in the stream. */
2799 void
2800 dwarf2out_begin_epilogue (rtx insn)
2802 bool saw_frp = false;
2803 rtx i;
2805 /* Scan forward to the return insn, noticing if there are possible
2806 frame related insns. */
2807 for (i = NEXT_INSN (insn); i ; i = NEXT_INSN (i))
2809 if (!INSN_P (i))
2810 continue;
2812 /* Look for both regular and sibcalls to end the block. */
2813 if (returnjump_p (i))
2814 break;
2815 if (CALL_P (i) && SIBLING_CALL_P (i))
2816 break;
2818 if (GET_CODE (PATTERN (i)) == SEQUENCE)
2820 int idx;
2821 rtx seq = PATTERN (i);
2823 if (returnjump_p (XVECEXP (seq, 0, 0)))
2824 break;
2825 if (CALL_P (XVECEXP (seq, 0, 0))
2826 && SIBLING_CALL_P (XVECEXP (seq, 0, 0)))
2827 break;
2829 for (idx = 0; idx < XVECLEN (seq, 0); idx++)
2830 if (RTX_FRAME_RELATED_P (XVECEXP (seq, 0, idx)))
2831 saw_frp = true;
2834 if (RTX_FRAME_RELATED_P (i))
2835 saw_frp = true;
2838 /* If the port doesn't emit epilogue unwind info, we don't need a
2839 save/restore pair. */
2840 if (!saw_frp)
2841 return;
2843 /* Otherwise, search forward to see if the return insn was the last
2844 basic block of the function. If so, we don't need save/restore. */
2845 gcc_assert (i != NULL);
2846 i = next_real_insn (i);
2847 if (i == NULL)
2848 return;
2850 /* Insert the restore before that next real insn in the stream, and before
2851 a potential NOTE_INSN_EPILOGUE_BEG -- we do need these notes to be
2852 properly nested. This should be after any label or alignment. This
2853 will be pushed into the CFI stream by the function below. */
2854 while (1)
2856 rtx p = PREV_INSN (i);
2857 if (!NOTE_P (p))
2858 break;
2859 if (NOTE_KIND (p) == NOTE_INSN_BASIC_BLOCK)
2860 break;
2861 i = p;
2863 emit_note_before (NOTE_INSN_CFA_RESTORE_STATE, i);
2865 emit_cfa_remember = true;
2867 /* And emulate the state save. */
2868 gcc_assert (!cfa_remember.in_use);
2869 cfa_remember = cfa;
2870 cfa_remember.in_use = 1;
2873 /* A "subroutine" of dwarf2out_begin_epilogue. Emit the restore required. */
2875 void
2876 dwarf2out_frame_debug_restore_state (void)
2878 dw_cfi_ref cfi = new_cfi ();
2879 const char *label = dwarf2out_cfi_label (false);
2881 cfi->dw_cfi_opc = DW_CFA_restore_state;
2882 add_fde_cfi (label, cfi);
2884 gcc_assert (cfa_remember.in_use);
2885 cfa = cfa_remember;
2886 cfa_remember.in_use = 0;
2889 #endif
2891 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
2892 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
2893 (enum dwarf_call_frame_info cfi);
2895 static enum dw_cfi_oprnd_type
2896 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
2898 switch (cfi)
2900 case DW_CFA_nop:
2901 case DW_CFA_GNU_window_save:
2902 case DW_CFA_remember_state:
2903 case DW_CFA_restore_state:
2904 return dw_cfi_oprnd_unused;
2906 case DW_CFA_set_loc:
2907 case DW_CFA_advance_loc1:
2908 case DW_CFA_advance_loc2:
2909 case DW_CFA_advance_loc4:
2910 case DW_CFA_MIPS_advance_loc8:
2911 return dw_cfi_oprnd_addr;
2913 case DW_CFA_offset:
2914 case DW_CFA_offset_extended:
2915 case DW_CFA_def_cfa:
2916 case DW_CFA_offset_extended_sf:
2917 case DW_CFA_def_cfa_sf:
2918 case DW_CFA_restore:
2919 case DW_CFA_restore_extended:
2920 case DW_CFA_undefined:
2921 case DW_CFA_same_value:
2922 case DW_CFA_def_cfa_register:
2923 case DW_CFA_register:
2924 return dw_cfi_oprnd_reg_num;
2926 case DW_CFA_def_cfa_offset:
2927 case DW_CFA_GNU_args_size:
2928 case DW_CFA_def_cfa_offset_sf:
2929 return dw_cfi_oprnd_offset;
2931 case DW_CFA_def_cfa_expression:
2932 case DW_CFA_expression:
2933 return dw_cfi_oprnd_loc;
2935 default:
2936 gcc_unreachable ();
2940 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
2941 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
2942 (enum dwarf_call_frame_info cfi);
2944 static enum dw_cfi_oprnd_type
2945 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
2947 switch (cfi)
2949 case DW_CFA_def_cfa:
2950 case DW_CFA_def_cfa_sf:
2951 case DW_CFA_offset:
2952 case DW_CFA_offset_extended_sf:
2953 case DW_CFA_offset_extended:
2954 return dw_cfi_oprnd_offset;
2956 case DW_CFA_register:
2957 return dw_cfi_oprnd_reg_num;
2959 default:
2960 return dw_cfi_oprnd_unused;
2964 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2966 /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section,
2967 switch to the data section instead, and write out a synthetic start label
2968 for collect2 the first time around. */
2970 static void
2971 switch_to_eh_frame_section (bool back)
2973 tree label;
2975 #ifdef EH_FRAME_SECTION_NAME
2976 if (eh_frame_section == 0)
2978 int flags;
2980 if (EH_TABLES_CAN_BE_READ_ONLY)
2982 int fde_encoding;
2983 int per_encoding;
2984 int lsda_encoding;
2986 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2987 /*global=*/0);
2988 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2989 /*global=*/1);
2990 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2991 /*global=*/0);
2992 flags = ((! flag_pic
2993 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2994 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2995 && (per_encoding & 0x70) != DW_EH_PE_absptr
2996 && (per_encoding & 0x70) != DW_EH_PE_aligned
2997 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2998 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2999 ? 0 : SECTION_WRITE);
3001 else
3002 flags = SECTION_WRITE;
3003 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
3005 #endif
3007 if (eh_frame_section)
3008 switch_to_section (eh_frame_section);
3009 else
3011 /* We have no special eh_frame section. Put the information in
3012 the data section and emit special labels to guide collect2. */
3013 switch_to_section (data_section);
3015 if (!back)
3017 label = get_file_function_name ("F");
3018 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
3019 targetm.asm_out.globalize_label (asm_out_file,
3020 IDENTIFIER_POINTER (label));
3021 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
3026 /* Switch [BACK] to the eh or debug frame table section, depending on
3027 FOR_EH. */
3029 static void
3030 switch_to_frame_table_section (int for_eh, bool back)
3032 if (for_eh)
3033 switch_to_eh_frame_section (back);
3034 else
3036 if (!debug_frame_section)
3037 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
3038 SECTION_DEBUG, NULL);
3039 switch_to_section (debug_frame_section);
3043 /* Output a Call Frame Information opcode and its operand(s). */
3045 static void
3046 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3048 unsigned long r;
3049 HOST_WIDE_INT off;
3051 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3052 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3053 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3054 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3055 ((unsigned HOST_WIDE_INT)
3056 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3057 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3059 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3060 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3061 "DW_CFA_offset, column 0x%lx", r);
3062 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3063 dw2_asm_output_data_uleb128 (off, NULL);
3065 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3067 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3068 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3069 "DW_CFA_restore, column 0x%lx", r);
3071 else
3073 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3074 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3076 switch (cfi->dw_cfi_opc)
3078 case DW_CFA_set_loc:
3079 if (for_eh)
3080 dw2_asm_output_encoded_addr_rtx (
3081 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3082 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3083 false, NULL);
3084 else
3085 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3086 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3087 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3088 break;
3090 case DW_CFA_advance_loc1:
3091 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3092 fde->dw_fde_current_label, NULL);
3093 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3094 break;
3096 case DW_CFA_advance_loc2:
3097 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3098 fde->dw_fde_current_label, NULL);
3099 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3100 break;
3102 case DW_CFA_advance_loc4:
3103 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3104 fde->dw_fde_current_label, NULL);
3105 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3106 break;
3108 case DW_CFA_MIPS_advance_loc8:
3109 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3110 fde->dw_fde_current_label, NULL);
3111 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3112 break;
3114 case DW_CFA_offset_extended:
3115 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3116 dw2_asm_output_data_uleb128 (r, NULL);
3117 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3118 dw2_asm_output_data_uleb128 (off, NULL);
3119 break;
3121 case DW_CFA_def_cfa:
3122 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3123 dw2_asm_output_data_uleb128 (r, NULL);
3124 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3125 break;
3127 case DW_CFA_offset_extended_sf:
3128 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3129 dw2_asm_output_data_uleb128 (r, NULL);
3130 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3131 dw2_asm_output_data_sleb128 (off, NULL);
3132 break;
3134 case DW_CFA_def_cfa_sf:
3135 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3136 dw2_asm_output_data_uleb128 (r, NULL);
3137 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3138 dw2_asm_output_data_sleb128 (off, NULL);
3139 break;
3141 case DW_CFA_restore_extended:
3142 case DW_CFA_undefined:
3143 case DW_CFA_same_value:
3144 case DW_CFA_def_cfa_register:
3145 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3146 dw2_asm_output_data_uleb128 (r, NULL);
3147 break;
3149 case DW_CFA_register:
3150 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3151 dw2_asm_output_data_uleb128 (r, NULL);
3152 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3153 dw2_asm_output_data_uleb128 (r, NULL);
3154 break;
3156 case DW_CFA_def_cfa_offset:
3157 case DW_CFA_GNU_args_size:
3158 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3159 break;
3161 case DW_CFA_def_cfa_offset_sf:
3162 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3163 dw2_asm_output_data_sleb128 (off, NULL);
3164 break;
3166 case DW_CFA_GNU_window_save:
3167 break;
3169 case DW_CFA_def_cfa_expression:
3170 case DW_CFA_expression:
3171 output_cfa_loc (cfi);
3172 break;
3174 case DW_CFA_GNU_negative_offset_extended:
3175 /* Obsoleted by DW_CFA_offset_extended_sf. */
3176 gcc_unreachable ();
3178 default:
3179 break;
3184 /* Similar, but do it via assembler directives instead. */
3186 static void
3187 output_cfi_directive (dw_cfi_ref cfi)
3189 unsigned long r, r2;
3191 switch (cfi->dw_cfi_opc)
3193 case DW_CFA_advance_loc:
3194 case DW_CFA_advance_loc1:
3195 case DW_CFA_advance_loc2:
3196 case DW_CFA_advance_loc4:
3197 case DW_CFA_MIPS_advance_loc8:
3198 case DW_CFA_set_loc:
3199 /* Should only be created by add_fde_cfi in a code path not
3200 followed when emitting via directives. The assembler is
3201 going to take care of this for us. */
3202 gcc_unreachable ();
3204 case DW_CFA_offset:
3205 case DW_CFA_offset_extended:
3206 case DW_CFA_offset_extended_sf:
3207 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3208 fprintf (asm_out_file, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3209 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3210 break;
3212 case DW_CFA_restore:
3213 case DW_CFA_restore_extended:
3214 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3215 fprintf (asm_out_file, "\t.cfi_restore %lu\n", r);
3216 break;
3218 case DW_CFA_undefined:
3219 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3220 fprintf (asm_out_file, "\t.cfi_undefined %lu\n", r);
3221 break;
3223 case DW_CFA_same_value:
3224 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3225 fprintf (asm_out_file, "\t.cfi_same_value %lu\n", r);
3226 break;
3228 case DW_CFA_def_cfa:
3229 case DW_CFA_def_cfa_sf:
3230 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3231 fprintf (asm_out_file, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3232 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3233 break;
3235 case DW_CFA_def_cfa_register:
3236 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3237 fprintf (asm_out_file, "\t.cfi_def_cfa_register %lu\n", r);
3238 break;
3240 case DW_CFA_register:
3241 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3242 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3243 fprintf (asm_out_file, "\t.cfi_register %lu, %lu\n", r, r2);
3244 break;
3246 case DW_CFA_def_cfa_offset:
3247 case DW_CFA_def_cfa_offset_sf:
3248 fprintf (asm_out_file, "\t.cfi_def_cfa_offset "
3249 HOST_WIDE_INT_PRINT_DEC"\n",
3250 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3251 break;
3253 case DW_CFA_remember_state:
3254 fprintf (asm_out_file, "\t.cfi_remember_state\n");
3255 break;
3256 case DW_CFA_restore_state:
3257 fprintf (asm_out_file, "\t.cfi_restore_state\n");
3258 break;
3260 case DW_CFA_GNU_args_size:
3261 fprintf (asm_out_file, "\t.cfi_escape 0x%x,", DW_CFA_GNU_args_size);
3262 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3263 if (flag_debug_asm)
3264 fprintf (asm_out_file, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3265 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3266 fputc ('\n', asm_out_file);
3267 break;
3269 case DW_CFA_GNU_window_save:
3270 fprintf (asm_out_file, "\t.cfi_window_save\n");
3271 break;
3273 case DW_CFA_def_cfa_expression:
3274 case DW_CFA_expression:
3275 fprintf (asm_out_file, "\t.cfi_escape 0x%x,", cfi->dw_cfi_opc);
3276 output_cfa_loc_raw (cfi);
3277 fputc ('\n', asm_out_file);
3278 break;
3280 default:
3281 gcc_unreachable ();
3285 DEF_VEC_P (dw_cfi_ref);
3286 DEF_VEC_ALLOC_P (dw_cfi_ref, heap);
3288 /* Output CFIs to bring current FDE to the same state as after executing
3289 CFIs in CFI chain. DO_CFI_ASM is true if .cfi_* directives shall
3290 be emitted, false otherwise. If it is false, FDE and FOR_EH are the
3291 other arguments to pass to output_cfi. */
3293 static void
3294 output_cfis (dw_cfi_ref cfi, bool do_cfi_asm, dw_fde_ref fde, bool for_eh)
3296 struct dw_cfi_struct cfi_buf;
3297 dw_cfi_ref cfi2;
3298 dw_cfi_ref cfi_args_size = NULL, cfi_cfa = NULL, cfi_cfa_offset = NULL;
3299 VEC (dw_cfi_ref, heap) *regs = VEC_alloc (dw_cfi_ref, heap, 32);
3300 unsigned int len, idx;
3302 for (;; cfi = cfi->dw_cfi_next)
3303 switch (cfi ? cfi->dw_cfi_opc : DW_CFA_nop)
3305 case DW_CFA_advance_loc:
3306 case DW_CFA_advance_loc1:
3307 case DW_CFA_advance_loc2:
3308 case DW_CFA_advance_loc4:
3309 case DW_CFA_MIPS_advance_loc8:
3310 case DW_CFA_set_loc:
3311 /* All advances should be ignored. */
3312 break;
3313 case DW_CFA_remember_state:
3315 dw_cfi_ref args_size = cfi_args_size;
3317 /* Skip everything between .cfi_remember_state and
3318 .cfi_restore_state. */
3319 for (cfi2 = cfi->dw_cfi_next; cfi2; cfi2 = cfi2->dw_cfi_next)
3320 if (cfi2->dw_cfi_opc == DW_CFA_restore_state)
3321 break;
3322 else if (cfi2->dw_cfi_opc == DW_CFA_GNU_args_size)
3323 args_size = cfi2;
3324 else
3325 gcc_assert (cfi2->dw_cfi_opc != DW_CFA_remember_state);
3327 if (cfi2 == NULL)
3328 goto flush_all;
3329 else
3331 cfi = cfi2;
3332 cfi_args_size = args_size;
3334 break;
3336 case DW_CFA_GNU_args_size:
3337 cfi_args_size = cfi;
3338 break;
3339 case DW_CFA_GNU_window_save:
3340 goto flush_all;
3341 case DW_CFA_offset:
3342 case DW_CFA_offset_extended:
3343 case DW_CFA_offset_extended_sf:
3344 case DW_CFA_restore:
3345 case DW_CFA_restore_extended:
3346 case DW_CFA_undefined:
3347 case DW_CFA_same_value:
3348 case DW_CFA_register:
3349 case DW_CFA_val_offset:
3350 case DW_CFA_val_offset_sf:
3351 case DW_CFA_expression:
3352 case DW_CFA_val_expression:
3353 case DW_CFA_GNU_negative_offset_extended:
3354 if (VEC_length (dw_cfi_ref, regs) <= cfi->dw_cfi_oprnd1.dw_cfi_reg_num)
3355 VEC_safe_grow_cleared (dw_cfi_ref, heap, regs,
3356 cfi->dw_cfi_oprnd1.dw_cfi_reg_num + 1);
3357 VEC_replace (dw_cfi_ref, regs, cfi->dw_cfi_oprnd1.dw_cfi_reg_num, cfi);
3358 break;
3359 case DW_CFA_def_cfa:
3360 case DW_CFA_def_cfa_sf:
3361 case DW_CFA_def_cfa_expression:
3362 cfi_cfa = cfi;
3363 cfi_cfa_offset = cfi;
3364 break;
3365 case DW_CFA_def_cfa_register:
3366 cfi_cfa = cfi;
3367 break;
3368 case DW_CFA_def_cfa_offset:
3369 case DW_CFA_def_cfa_offset_sf:
3370 cfi_cfa_offset = cfi;
3371 break;
3372 case DW_CFA_nop:
3373 gcc_assert (cfi == NULL);
3374 flush_all:
3375 len = VEC_length (dw_cfi_ref, regs);
3376 for (idx = 0; idx < len; idx++)
3378 cfi2 = VEC_replace (dw_cfi_ref, regs, idx, NULL);
3379 if (cfi2 != NULL
3380 && cfi2->dw_cfi_opc != DW_CFA_restore
3381 && cfi2->dw_cfi_opc != DW_CFA_restore_extended)
3383 if (do_cfi_asm)
3384 output_cfi_directive (cfi2);
3385 else
3386 output_cfi (cfi2, fde, for_eh);
3389 if (cfi_cfa && cfi_cfa_offset && cfi_cfa_offset != cfi_cfa)
3391 gcc_assert (cfi_cfa->dw_cfi_opc != DW_CFA_def_cfa_expression);
3392 cfi_buf = *cfi_cfa;
3393 switch (cfi_cfa_offset->dw_cfi_opc)
3395 case DW_CFA_def_cfa_offset:
3396 cfi_buf.dw_cfi_opc = DW_CFA_def_cfa;
3397 cfi_buf.dw_cfi_oprnd2 = cfi_cfa_offset->dw_cfi_oprnd1;
3398 break;
3399 case DW_CFA_def_cfa_offset_sf:
3400 cfi_buf.dw_cfi_opc = DW_CFA_def_cfa_sf;
3401 cfi_buf.dw_cfi_oprnd2 = cfi_cfa_offset->dw_cfi_oprnd1;
3402 break;
3403 case DW_CFA_def_cfa:
3404 case DW_CFA_def_cfa_sf:
3405 cfi_buf.dw_cfi_opc = cfi_cfa_offset->dw_cfi_opc;
3406 cfi_buf.dw_cfi_oprnd2 = cfi_cfa_offset->dw_cfi_oprnd2;
3407 break;
3408 default:
3409 gcc_unreachable ();
3411 cfi_cfa = &cfi_buf;
3413 else if (cfi_cfa_offset)
3414 cfi_cfa = cfi_cfa_offset;
3415 if (cfi_cfa)
3417 if (do_cfi_asm)
3418 output_cfi_directive (cfi_cfa);
3419 else
3420 output_cfi (cfi_cfa, fde, for_eh);
3422 cfi_cfa = NULL;
3423 cfi_cfa_offset = NULL;
3424 if (cfi_args_size
3425 && cfi_args_size->dw_cfi_oprnd1.dw_cfi_offset)
3427 if (do_cfi_asm)
3428 output_cfi_directive (cfi_args_size);
3429 else
3430 output_cfi (cfi_args_size, fde, for_eh);
3432 cfi_args_size = NULL;
3433 if (cfi == NULL)
3435 VEC_free (dw_cfi_ref, heap, regs);
3436 return;
3438 else if (do_cfi_asm)
3439 output_cfi_directive (cfi);
3440 else
3441 output_cfi (cfi, fde, for_eh);
3442 break;
3443 default:
3444 gcc_unreachable ();
3448 /* Output one FDE. */
3450 static void
3451 output_fde (dw_fde_ref fde, bool for_eh, bool second,
3452 char *section_start_label, int fde_encoding, char *augmentation,
3453 bool any_lsda_needed, int lsda_encoding)
3455 const char *begin, *end;
3456 static unsigned int j;
3457 char l1[20], l2[20];
3458 dw_cfi_ref cfi;
3460 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh,
3461 /* empty */ 0);
3462 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL,
3463 for_eh + j);
3464 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + j);
3465 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + j);
3466 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
3467 dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
3468 " indicating 64-bit DWARF extension");
3469 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
3470 "FDE Length");
3471 ASM_OUTPUT_LABEL (asm_out_file, l1);
3473 if (for_eh)
3474 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
3475 else
3476 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
3477 debug_frame_section, "FDE CIE offset");
3479 if (!fde->dw_fde_switched_sections)
3481 begin = fde->dw_fde_begin;
3482 end = fde->dw_fde_end;
3484 else
3486 /* For the first section, prefer dw_fde_begin over
3487 dw_fde_{hot,cold}_section_label, as the latter
3488 might be separated from the real start of the
3489 function by alignment padding. */
3490 if (!second)
3491 begin = fde->dw_fde_begin;
3492 else if (fde->dw_fde_switched_cold_to_hot)
3493 begin = fde->dw_fde_hot_section_label;
3494 else
3495 begin = fde->dw_fde_unlikely_section_label;
3496 if (second ^ fde->dw_fde_switched_cold_to_hot)
3497 end = fde->dw_fde_unlikely_section_end_label;
3498 else
3499 end = fde->dw_fde_hot_section_end_label;
3502 if (for_eh)
3504 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, begin);
3505 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
3506 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref, false,
3507 "FDE initial location");
3508 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
3509 end, begin, "FDE address range");
3511 else
3513 dw2_asm_output_addr (DWARF2_ADDR_SIZE, begin, "FDE initial location");
3514 dw2_asm_output_delta (DWARF2_ADDR_SIZE, end, begin, "FDE address range");
3517 if (augmentation[0])
3519 if (any_lsda_needed)
3521 int size = size_of_encoded_value (lsda_encoding);
3523 if (lsda_encoding == DW_EH_PE_aligned)
3525 int offset = ( 4 /* Length */
3526 + 4 /* CIE offset */
3527 + 2 * size_of_encoded_value (fde_encoding)
3528 + 1 /* Augmentation size */ );
3529 int pad = -offset & (PTR_SIZE - 1);
3531 size += pad;
3532 gcc_assert (size_of_uleb128 (size) == 1);
3535 dw2_asm_output_data_uleb128 (size, "Augmentation size");
3537 if (fde->uses_eh_lsda)
3539 ASM_GENERATE_INTERNAL_LABEL (l1, second ? "LLSDAC" : "LLSDA",
3540 fde->funcdef_number);
3541 dw2_asm_output_encoded_addr_rtx (lsda_encoding,
3542 gen_rtx_SYMBOL_REF (Pmode, l1),
3543 false,
3544 "Language Specific Data Area");
3546 else
3548 if (lsda_encoding == DW_EH_PE_aligned)
3549 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
3550 dw2_asm_output_data (size_of_encoded_value (lsda_encoding), 0,
3551 "Language Specific Data Area (none)");
3554 else
3555 dw2_asm_output_data_uleb128 (0, "Augmentation size");
3558 /* Loop through the Call Frame Instructions associated with
3559 this FDE. */
3560 fde->dw_fde_current_label = begin;
3561 if (!fde->dw_fde_switched_sections)
3562 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
3563 output_cfi (cfi, fde, for_eh);
3564 else if (!second)
3566 if (fde->dw_fde_switch_cfi)
3567 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
3569 output_cfi (cfi, fde, for_eh);
3570 if (cfi == fde->dw_fde_switch_cfi)
3571 break;
3574 else
3576 dw_cfi_ref cfi_next = fde->dw_fde_cfi;
3578 if (fde->dw_fde_switch_cfi)
3580 cfi_next = fde->dw_fde_switch_cfi->dw_cfi_next;
3581 fde->dw_fde_switch_cfi->dw_cfi_next = NULL;
3582 output_cfis (fde->dw_fde_cfi, false, fde, for_eh);
3583 fde->dw_fde_switch_cfi->dw_cfi_next = cfi_next;
3585 for (cfi = cfi_next; cfi != NULL; cfi = cfi->dw_cfi_next)
3586 output_cfi (cfi, fde, for_eh);
3589 /* If we are to emit a ref/link from function bodies to their frame tables,
3590 do it now. This is typically performed to make sure that tables
3591 associated with functions are dragged with them and not discarded in
3592 garbage collecting links. We need to do this on a per function basis to
3593 cope with -ffunction-sections. */
3595 #ifdef ASM_OUTPUT_DWARF_TABLE_REF
3596 /* Switch to the function section, emit the ref to the tables, and
3597 switch *back* into the table section. */
3598 switch_to_section (function_section (fde->decl));
3599 ASM_OUTPUT_DWARF_TABLE_REF (section_start_label);
3600 switch_to_frame_table_section (for_eh, true);
3601 #endif
3603 /* Pad the FDE out to an address sized boundary. */
3604 ASM_OUTPUT_ALIGN (asm_out_file,
3605 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
3606 ASM_OUTPUT_LABEL (asm_out_file, l2);
3608 j += 2;
3611 /* Output the call frame information used to record information
3612 that relates to calculating the frame pointer, and records the
3613 location of saved registers. */
3615 static void
3616 output_call_frame_info (int for_eh)
3618 unsigned int i;
3619 dw_fde_ref fde;
3620 dw_cfi_ref cfi;
3621 char l1[20], l2[20], section_start_label[20];
3622 bool any_lsda_needed = false;
3623 char augmentation[6];
3624 int augmentation_size;
3625 int fde_encoding = DW_EH_PE_absptr;
3626 int per_encoding = DW_EH_PE_absptr;
3627 int lsda_encoding = DW_EH_PE_absptr;
3628 int return_reg;
3629 rtx personality = NULL;
3630 int dw_cie_version;
3632 /* Don't emit a CIE if there won't be any FDEs. */
3633 if (fde_table_in_use == 0)
3634 return;
3636 /* Nothing to do if the assembler's doing it all. */
3637 if (dwarf2out_do_cfi_asm ())
3638 return;
3640 /* If we make FDEs linkonce, we may have to emit an empty label for
3641 an FDE that wouldn't otherwise be emitted. We want to avoid
3642 having an FDE kept around when the function it refers to is
3643 discarded. Example where this matters: a primary function
3644 template in C++ requires EH information, but an explicit
3645 specialization doesn't. */
3646 if (TARGET_USES_WEAK_UNWIND_INFO
3647 && ! flag_asynchronous_unwind_tables
3648 && flag_exceptions
3649 && for_eh)
3650 for (i = 0; i < fde_table_in_use; i++)
3651 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
3652 && !fde_table[i].uses_eh_lsda
3653 && ! DECL_WEAK (fde_table[i].decl))
3654 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
3655 for_eh, /* empty */ 1);
3657 /* If we don't have any functions we'll want to unwind out of, don't
3658 emit any EH unwind information. Note that if exceptions aren't
3659 enabled, we won't have collected nothrow information, and if we
3660 asked for asynchronous tables, we always want this info. */
3661 if (for_eh)
3663 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
3665 for (i = 0; i < fde_table_in_use; i++)
3666 if (fde_table[i].uses_eh_lsda)
3667 any_eh_needed = any_lsda_needed = true;
3668 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
3669 any_eh_needed = true;
3670 else if (! fde_table[i].nothrow
3671 && ! fde_table[i].all_throwers_are_sibcalls)
3672 any_eh_needed = true;
3674 if (! any_eh_needed)
3675 return;
3678 /* We're going to be generating comments, so turn on app. */
3679 if (flag_debug_asm)
3680 app_enable ();
3682 /* Switch to the proper frame section, first time. */
3683 switch_to_frame_table_section (for_eh, false);
3685 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
3686 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
3688 /* Output the CIE. */
3689 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
3690 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
3691 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
3692 dw2_asm_output_data (4, 0xffffffff,
3693 "Initial length escape value indicating 64-bit DWARF extension");
3694 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
3695 "Length of Common Information Entry");
3696 ASM_OUTPUT_LABEL (asm_out_file, l1);
3698 /* Now that the CIE pointer is PC-relative for EH,
3699 use 0 to identify the CIE. */
3700 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
3701 (for_eh ? 0 : DWARF_CIE_ID),
3702 "CIE Identifier Tag");
3704 /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
3705 use CIE version 1, unless that would produce incorrect results
3706 due to overflowing the return register column. */
3707 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
3708 dw_cie_version = 1;
3709 if (return_reg >= 256 || dwarf_version > 2)
3710 dw_cie_version = 3;
3711 dw2_asm_output_data (1, dw_cie_version, "CIE Version");
3713 augmentation[0] = 0;
3714 augmentation_size = 0;
3716 personality = current_unit_personality;
3717 if (for_eh)
3719 char *p;
3721 /* Augmentation:
3722 z Indicates that a uleb128 is present to size the
3723 augmentation section.
3724 L Indicates the encoding (and thus presence) of
3725 an LSDA pointer in the FDE augmentation.
3726 R Indicates a non-default pointer encoding for
3727 FDE code pointers.
3728 P Indicates the presence of an encoding + language
3729 personality routine in the CIE augmentation. */
3731 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
3732 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
3733 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
3735 p = augmentation + 1;
3736 if (personality)
3738 *p++ = 'P';
3739 augmentation_size += 1 + size_of_encoded_value (per_encoding);
3740 assemble_external_libcall (personality);
3742 if (any_lsda_needed)
3744 *p++ = 'L';
3745 augmentation_size += 1;
3747 if (fde_encoding != DW_EH_PE_absptr)
3749 *p++ = 'R';
3750 augmentation_size += 1;
3752 if (p > augmentation + 1)
3754 augmentation[0] = 'z';
3755 *p = '\0';
3758 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
3759 if (personality && per_encoding == DW_EH_PE_aligned)
3761 int offset = ( 4 /* Length */
3762 + 4 /* CIE Id */
3763 + 1 /* CIE version */
3764 + strlen (augmentation) + 1 /* Augmentation */
3765 + size_of_uleb128 (1) /* Code alignment */
3766 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
3767 + 1 /* RA column */
3768 + 1 /* Augmentation size */
3769 + 1 /* Personality encoding */ );
3770 int pad = -offset & (PTR_SIZE - 1);
3772 augmentation_size += pad;
3774 /* Augmentations should be small, so there's scarce need to
3775 iterate for a solution. Die if we exceed one uleb128 byte. */
3776 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
3780 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
3781 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
3782 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
3783 "CIE Data Alignment Factor");
3785 if (dw_cie_version == 1)
3786 dw2_asm_output_data (1, return_reg, "CIE RA Column");
3787 else
3788 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
3790 if (augmentation[0])
3792 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
3793 if (personality)
3795 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
3796 eh_data_format_name (per_encoding));
3797 dw2_asm_output_encoded_addr_rtx (per_encoding,
3798 personality,
3799 true, NULL);
3802 if (any_lsda_needed)
3803 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
3804 eh_data_format_name (lsda_encoding));
3806 if (fde_encoding != DW_EH_PE_absptr)
3807 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
3808 eh_data_format_name (fde_encoding));
3811 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
3812 output_cfi (cfi, NULL, for_eh);
3814 /* Pad the CIE out to an address sized boundary. */
3815 ASM_OUTPUT_ALIGN (asm_out_file,
3816 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
3817 ASM_OUTPUT_LABEL (asm_out_file, l2);
3819 /* Loop through all of the FDE's. */
3820 for (i = 0; i < fde_table_in_use; i++)
3822 unsigned int k;
3823 fde = &fde_table[i];
3825 /* Don't emit EH unwind info for leaf functions that don't need it. */
3826 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
3827 && (fde->nothrow || fde->all_throwers_are_sibcalls)
3828 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
3829 && !fde->uses_eh_lsda)
3830 continue;
3832 for (k = 0; k < (fde->dw_fde_switched_sections ? 2 : 1); k++)
3833 output_fde (fde, for_eh, k, section_start_label, fde_encoding,
3834 augmentation, any_lsda_needed, lsda_encoding);
3837 if (for_eh && targetm.terminate_dw2_eh_frame_info)
3838 dw2_asm_output_data (4, 0, "End of Table");
3839 #ifdef MIPS_DEBUGGING_INFO
3840 /* Work around Irix 6 assembler bug whereby labels at the end of a section
3841 get a value of 0. Putting .align 0 after the label fixes it. */
3842 ASM_OUTPUT_ALIGN (asm_out_file, 0);
3843 #endif
3845 /* Turn off app to make assembly quicker. */
3846 if (flag_debug_asm)
3847 app_disable ();
3850 /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */
3852 static void
3853 dwarf2out_do_cfi_startproc (bool second)
3855 int enc;
3856 rtx ref;
3857 rtx personality = get_personality_function (current_function_decl);
3859 fprintf (asm_out_file, "\t.cfi_startproc\n");
3861 if (personality)
3863 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
3864 ref = personality;
3866 /* ??? The GAS support isn't entirely consistent. We have to
3867 handle indirect support ourselves, but PC-relative is done
3868 in the assembler. Further, the assembler can't handle any
3869 of the weirder relocation types. */
3870 if (enc & DW_EH_PE_indirect)
3871 ref = dw2_force_const_mem (ref, true);
3873 fprintf (asm_out_file, "\t.cfi_personality 0x%x,", enc);
3874 output_addr_const (asm_out_file, ref);
3875 fputc ('\n', asm_out_file);
3878 if (crtl->uses_eh_lsda)
3880 char lab[20];
3882 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
3883 ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA",
3884 current_function_funcdef_no);
3885 ref = gen_rtx_SYMBOL_REF (Pmode, lab);
3886 SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL;
3888 if (enc & DW_EH_PE_indirect)
3889 ref = dw2_force_const_mem (ref, true);
3891 fprintf (asm_out_file, "\t.cfi_lsda 0x%x,", enc);
3892 output_addr_const (asm_out_file, ref);
3893 fputc ('\n', asm_out_file);
3897 /* Output a marker (i.e. a label) for the beginning of a function, before
3898 the prologue. */
3900 void
3901 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
3902 const char *file ATTRIBUTE_UNUSED)
3904 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3905 char * dup_label;
3906 dw_fde_ref fde;
3907 section *fnsec;
3909 current_function_func_begin_label = NULL;
3911 #ifdef TARGET_UNWIND_INFO
3912 /* ??? current_function_func_begin_label is also used by except.c
3913 for call-site information. We must emit this label if it might
3914 be used. */
3915 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
3916 && ! dwarf2out_do_frame ())
3917 return;
3918 #else
3919 if (! dwarf2out_do_frame ())
3920 return;
3921 #endif
3923 fnsec = function_section (current_function_decl);
3924 switch_to_section (fnsec);
3925 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
3926 current_function_funcdef_no);
3927 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
3928 current_function_funcdef_no);
3929 dup_label = xstrdup (label);
3930 current_function_func_begin_label = dup_label;
3932 #ifdef TARGET_UNWIND_INFO
3933 /* We can elide the fde allocation if we're not emitting debug info. */
3934 if (! dwarf2out_do_frame ())
3935 return;
3936 #endif
3938 /* Expand the fde table if necessary. */
3939 if (fde_table_in_use == fde_table_allocated)
3941 fde_table_allocated += FDE_TABLE_INCREMENT;
3942 fde_table = GGC_RESIZEVEC (dw_fde_node, fde_table, fde_table_allocated);
3943 memset (fde_table + fde_table_in_use, 0,
3944 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
3947 /* Record the FDE associated with this function. */
3948 current_funcdef_fde = fde_table_in_use;
3950 /* Add the new FDE at the end of the fde_table. */
3951 fde = &fde_table[fde_table_in_use++];
3952 fde->decl = current_function_decl;
3953 fde->dw_fde_begin = dup_label;
3954 fde->dw_fde_current_label = dup_label;
3955 fde->dw_fde_hot_section_label = NULL;
3956 fde->dw_fde_hot_section_end_label = NULL;
3957 fde->dw_fde_unlikely_section_label = NULL;
3958 fde->dw_fde_unlikely_section_end_label = NULL;
3959 fde->dw_fde_switched_sections = 0;
3960 fde->dw_fde_switched_cold_to_hot = 0;
3961 fde->dw_fde_end = NULL;
3962 fde->dw_fde_cfi = NULL;
3963 fde->dw_fde_switch_cfi = NULL;
3964 fde->funcdef_number = current_function_funcdef_no;
3965 fde->nothrow = crtl->nothrow;
3966 fde->uses_eh_lsda = crtl->uses_eh_lsda;
3967 fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
3968 fde->drap_reg = INVALID_REGNUM;
3969 fde->vdrap_reg = INVALID_REGNUM;
3970 if (flag_reorder_blocks_and_partition)
3972 section *unlikelysec;
3973 if (first_function_block_is_cold)
3974 fde->in_std_section = 1;
3975 else
3976 fde->in_std_section
3977 = (fnsec == text_section
3978 || (cold_text_section && fnsec == cold_text_section));
3979 unlikelysec = unlikely_text_section ();
3980 fde->cold_in_std_section
3981 = (unlikelysec == text_section
3982 || (cold_text_section && unlikelysec == cold_text_section));
3984 else
3986 fde->in_std_section
3987 = (fnsec == text_section
3988 || (cold_text_section && fnsec == cold_text_section));
3989 fde->cold_in_std_section = 0;
3992 args_size = old_args_size = 0;
3994 /* We only want to output line number information for the genuine dwarf2
3995 prologue case, not the eh frame case. */
3996 #ifdef DWARF2_DEBUGGING_INFO
3997 if (file)
3998 dwarf2out_source_line (line, file, 0, true);
3999 #endif
4001 if (dwarf2out_do_cfi_asm ())
4002 dwarf2out_do_cfi_startproc (false);
4003 else
4005 rtx personality = get_personality_function (current_function_decl);
4006 if (!current_unit_personality)
4007 current_unit_personality = personality;
4009 /* We cannot keep a current personality per function as without CFI
4010 asm at the point where we emit the CFI data there is no current
4011 function anymore. */
4012 if (personality
4013 && current_unit_personality != personality)
4014 sorry ("Multiple EH personalities are supported only with assemblers "
4015 "supporting .cfi.personality directive.");
4019 /* Output a marker (i.e. a label) for the absolute end of the generated code
4020 for a function definition. This gets called *after* the epilogue code has
4021 been generated. */
4023 void
4024 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
4025 const char *file ATTRIBUTE_UNUSED)
4027 dw_fde_ref fde;
4028 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4030 #ifdef DWARF2_DEBUGGING_INFO
4031 last_var_location_insn = NULL_RTX;
4032 #endif
4034 if (dwarf2out_do_cfi_asm ())
4035 fprintf (asm_out_file, "\t.cfi_endproc\n");
4037 /* Output a label to mark the endpoint of the code generated for this
4038 function. */
4039 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
4040 current_function_funcdef_no);
4041 ASM_OUTPUT_LABEL (asm_out_file, label);
4042 fde = current_fde ();
4043 gcc_assert (fde != NULL);
4044 fde->dw_fde_end = xstrdup (label);
4047 void
4048 dwarf2out_frame_init (void)
4050 /* Allocate the initial hunk of the fde_table. */
4051 fde_table = GGC_CNEWVEC (dw_fde_node, FDE_TABLE_INCREMENT);
4052 fde_table_allocated = FDE_TABLE_INCREMENT;
4053 fde_table_in_use = 0;
4055 /* Generate the CFA instructions common to all FDE's. Do it now for the
4056 sake of lookup_cfa. */
4058 /* On entry, the Canonical Frame Address is at SP. */
4059 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
4061 #ifdef DWARF2_UNWIND_INFO
4062 if (DWARF2_UNWIND_INFO || DWARF2_FRAME_INFO)
4063 initial_return_save (INCOMING_RETURN_ADDR_RTX);
4064 #endif
4067 void
4068 dwarf2out_frame_finish (void)
4070 /* Output call frame information. */
4071 if (DWARF2_FRAME_INFO)
4072 output_call_frame_info (0);
4074 #ifndef TARGET_UNWIND_INFO
4075 /* Output another copy for the unwinder. */
4076 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
4077 output_call_frame_info (1);
4078 #endif
4081 /* Note that the current function section is being used for code. */
4083 static void
4084 dwarf2out_note_section_used (void)
4086 section *sec = current_function_section ();
4087 if (sec == text_section)
4088 text_section_used = true;
4089 else if (sec == cold_text_section)
4090 cold_text_section_used = true;
4093 void
4094 dwarf2out_switch_text_section (void)
4096 dw_fde_ref fde = current_fde ();
4098 gcc_assert (cfun && fde && !fde->dw_fde_switched_sections);
4100 fde->dw_fde_switched_sections = 1;
4101 fde->dw_fde_switched_cold_to_hot = !in_cold_section_p;
4103 fde->dw_fde_hot_section_label = crtl->subsections.hot_section_label;
4104 fde->dw_fde_hot_section_end_label = crtl->subsections.hot_section_end_label;
4105 fde->dw_fde_unlikely_section_label = crtl->subsections.cold_section_label;
4106 fde->dw_fde_unlikely_section_end_label = crtl->subsections.cold_section_end_label;
4107 have_multiple_function_sections = true;
4109 /* Reset the current label on switching text sections, so that we
4110 don't attempt to advance_loc4 between labels in different sections. */
4111 fde->dw_fde_current_label = NULL;
4113 /* There is no need to mark used sections when not debugging. */
4114 if (cold_text_section != NULL)
4115 dwarf2out_note_section_used ();
4117 if (dwarf2out_do_cfi_asm ())
4118 fprintf (asm_out_file, "\t.cfi_endproc\n");
4120 /* Now do the real section switch. */
4121 switch_to_section (current_function_section ());
4123 if (dwarf2out_do_cfi_asm ())
4125 dwarf2out_do_cfi_startproc (true);
4126 /* As this is a different FDE, insert all current CFI instructions
4127 again. */
4128 output_cfis (fde->dw_fde_cfi, true, fde, true);
4130 else
4132 dw_cfi_ref cfi = fde->dw_fde_cfi;
4134 cfi = fde->dw_fde_cfi;
4135 if (cfi)
4136 while (cfi->dw_cfi_next != NULL)
4137 cfi = cfi->dw_cfi_next;
4138 fde->dw_fde_switch_cfi = cfi;
4141 #endif
4143 /* And now, the subset of the debugging information support code necessary
4144 for emitting location expressions. */
4146 /* Data about a single source file. */
4147 struct GTY(()) dwarf_file_data {
4148 const char * filename;
4149 int emitted_number;
4152 typedef struct dw_val_struct *dw_val_ref;
4153 typedef struct die_struct *dw_die_ref;
4154 typedef const struct die_struct *const_dw_die_ref;
4155 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
4156 typedef struct dw_loc_list_struct *dw_loc_list_ref;
4158 typedef struct GTY(()) deferred_locations_struct
4160 tree variable;
4161 dw_die_ref die;
4162 } deferred_locations;
4164 DEF_VEC_O(deferred_locations);
4165 DEF_VEC_ALLOC_O(deferred_locations,gc);
4167 static GTY(()) VEC(deferred_locations, gc) *deferred_locations_list;
4169 DEF_VEC_P(dw_die_ref);
4170 DEF_VEC_ALLOC_P(dw_die_ref,heap);
4172 /* Each DIE may have a series of attribute/value pairs. Values
4173 can take on several forms. The forms that are used in this
4174 implementation are listed below. */
4176 enum dw_val_class
4178 dw_val_class_addr,
4179 dw_val_class_offset,
4180 dw_val_class_loc,
4181 dw_val_class_loc_list,
4182 dw_val_class_range_list,
4183 dw_val_class_const,
4184 dw_val_class_unsigned_const,
4185 dw_val_class_const_double,
4186 dw_val_class_vec,
4187 dw_val_class_flag,
4188 dw_val_class_die_ref,
4189 dw_val_class_fde_ref,
4190 dw_val_class_lbl_id,
4191 dw_val_class_lineptr,
4192 dw_val_class_str,
4193 dw_val_class_macptr,
4194 dw_val_class_file,
4195 dw_val_class_data8
4198 /* Describe a floating point constant value, or a vector constant value. */
4200 typedef struct GTY(()) dw_vec_struct {
4201 unsigned char * GTY((length ("%h.length"))) array;
4202 unsigned length;
4203 unsigned elt_size;
4205 dw_vec_const;
4207 /* The dw_val_node describes an attribute's value, as it is
4208 represented internally. */
4210 typedef struct GTY(()) dw_val_struct {
4211 enum dw_val_class val_class;
4212 union dw_val_struct_union
4214 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
4215 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
4216 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
4217 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
4218 HOST_WIDE_INT GTY ((default)) val_int;
4219 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
4220 double_int GTY ((tag ("dw_val_class_const_double"))) val_double;
4221 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
4222 struct dw_val_die_union
4224 dw_die_ref die;
4225 int external;
4226 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
4227 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
4228 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
4229 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
4230 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
4231 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
4232 unsigned char GTY ((tag ("dw_val_class_data8"))) val_data8[8];
4234 GTY ((desc ("%1.val_class"))) v;
4236 dw_val_node;
4238 /* Locations in memory are described using a sequence of stack machine
4239 operations. */
4241 typedef struct GTY(()) dw_loc_descr_struct {
4242 dw_loc_descr_ref dw_loc_next;
4243 ENUM_BITFIELD (dwarf_location_atom) dw_loc_opc : 8;
4244 /* Used to distinguish DW_OP_addr with a direct symbol relocation
4245 from DW_OP_addr with a dtp-relative symbol relocation. */
4246 unsigned int dtprel : 1;
4247 int dw_loc_addr;
4248 dw_val_node dw_loc_oprnd1;
4249 dw_val_node dw_loc_oprnd2;
4251 dw_loc_descr_node;
4253 /* Location lists are ranges + location descriptions for that range,
4254 so you can track variables that are in different places over
4255 their entire life. */
4256 typedef struct GTY(()) dw_loc_list_struct {
4257 dw_loc_list_ref dw_loc_next;
4258 const char *begin; /* Label for begin address of range */
4259 const char *end; /* Label for end address of range */
4260 char *ll_symbol; /* Label for beginning of location list.
4261 Only on head of list */
4262 const char *section; /* Section this loclist is relative to */
4263 dw_loc_descr_ref expr;
4264 } dw_loc_list_node;
4266 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
4268 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4270 /* Convert a DWARF stack opcode into its string name. */
4272 static const char *
4273 dwarf_stack_op_name (unsigned int op)
4275 switch (op)
4277 case DW_OP_addr:
4278 return "DW_OP_addr";
4279 case DW_OP_deref:
4280 return "DW_OP_deref";
4281 case DW_OP_const1u:
4282 return "DW_OP_const1u";
4283 case DW_OP_const1s:
4284 return "DW_OP_const1s";
4285 case DW_OP_const2u:
4286 return "DW_OP_const2u";
4287 case DW_OP_const2s:
4288 return "DW_OP_const2s";
4289 case DW_OP_const4u:
4290 return "DW_OP_const4u";
4291 case DW_OP_const4s:
4292 return "DW_OP_const4s";
4293 case DW_OP_const8u:
4294 return "DW_OP_const8u";
4295 case DW_OP_const8s:
4296 return "DW_OP_const8s";
4297 case DW_OP_constu:
4298 return "DW_OP_constu";
4299 case DW_OP_consts:
4300 return "DW_OP_consts";
4301 case DW_OP_dup:
4302 return "DW_OP_dup";
4303 case DW_OP_drop:
4304 return "DW_OP_drop";
4305 case DW_OP_over:
4306 return "DW_OP_over";
4307 case DW_OP_pick:
4308 return "DW_OP_pick";
4309 case DW_OP_swap:
4310 return "DW_OP_swap";
4311 case DW_OP_rot:
4312 return "DW_OP_rot";
4313 case DW_OP_xderef:
4314 return "DW_OP_xderef";
4315 case DW_OP_abs:
4316 return "DW_OP_abs";
4317 case DW_OP_and:
4318 return "DW_OP_and";
4319 case DW_OP_div:
4320 return "DW_OP_div";
4321 case DW_OP_minus:
4322 return "DW_OP_minus";
4323 case DW_OP_mod:
4324 return "DW_OP_mod";
4325 case DW_OP_mul:
4326 return "DW_OP_mul";
4327 case DW_OP_neg:
4328 return "DW_OP_neg";
4329 case DW_OP_not:
4330 return "DW_OP_not";
4331 case DW_OP_or:
4332 return "DW_OP_or";
4333 case DW_OP_plus:
4334 return "DW_OP_plus";
4335 case DW_OP_plus_uconst:
4336 return "DW_OP_plus_uconst";
4337 case DW_OP_shl:
4338 return "DW_OP_shl";
4339 case DW_OP_shr:
4340 return "DW_OP_shr";
4341 case DW_OP_shra:
4342 return "DW_OP_shra";
4343 case DW_OP_xor:
4344 return "DW_OP_xor";
4345 case DW_OP_bra:
4346 return "DW_OP_bra";
4347 case DW_OP_eq:
4348 return "DW_OP_eq";
4349 case DW_OP_ge:
4350 return "DW_OP_ge";
4351 case DW_OP_gt:
4352 return "DW_OP_gt";
4353 case DW_OP_le:
4354 return "DW_OP_le";
4355 case DW_OP_lt:
4356 return "DW_OP_lt";
4357 case DW_OP_ne:
4358 return "DW_OP_ne";
4359 case DW_OP_skip:
4360 return "DW_OP_skip";
4361 case DW_OP_lit0:
4362 return "DW_OP_lit0";
4363 case DW_OP_lit1:
4364 return "DW_OP_lit1";
4365 case DW_OP_lit2:
4366 return "DW_OP_lit2";
4367 case DW_OP_lit3:
4368 return "DW_OP_lit3";
4369 case DW_OP_lit4:
4370 return "DW_OP_lit4";
4371 case DW_OP_lit5:
4372 return "DW_OP_lit5";
4373 case DW_OP_lit6:
4374 return "DW_OP_lit6";
4375 case DW_OP_lit7:
4376 return "DW_OP_lit7";
4377 case DW_OP_lit8:
4378 return "DW_OP_lit8";
4379 case DW_OP_lit9:
4380 return "DW_OP_lit9";
4381 case DW_OP_lit10:
4382 return "DW_OP_lit10";
4383 case DW_OP_lit11:
4384 return "DW_OP_lit11";
4385 case DW_OP_lit12:
4386 return "DW_OP_lit12";
4387 case DW_OP_lit13:
4388 return "DW_OP_lit13";
4389 case DW_OP_lit14:
4390 return "DW_OP_lit14";
4391 case DW_OP_lit15:
4392 return "DW_OP_lit15";
4393 case DW_OP_lit16:
4394 return "DW_OP_lit16";
4395 case DW_OP_lit17:
4396 return "DW_OP_lit17";
4397 case DW_OP_lit18:
4398 return "DW_OP_lit18";
4399 case DW_OP_lit19:
4400 return "DW_OP_lit19";
4401 case DW_OP_lit20:
4402 return "DW_OP_lit20";
4403 case DW_OP_lit21:
4404 return "DW_OP_lit21";
4405 case DW_OP_lit22:
4406 return "DW_OP_lit22";
4407 case DW_OP_lit23:
4408 return "DW_OP_lit23";
4409 case DW_OP_lit24:
4410 return "DW_OP_lit24";
4411 case DW_OP_lit25:
4412 return "DW_OP_lit25";
4413 case DW_OP_lit26:
4414 return "DW_OP_lit26";
4415 case DW_OP_lit27:
4416 return "DW_OP_lit27";
4417 case DW_OP_lit28:
4418 return "DW_OP_lit28";
4419 case DW_OP_lit29:
4420 return "DW_OP_lit29";
4421 case DW_OP_lit30:
4422 return "DW_OP_lit30";
4423 case DW_OP_lit31:
4424 return "DW_OP_lit31";
4425 case DW_OP_reg0:
4426 return "DW_OP_reg0";
4427 case DW_OP_reg1:
4428 return "DW_OP_reg1";
4429 case DW_OP_reg2:
4430 return "DW_OP_reg2";
4431 case DW_OP_reg3:
4432 return "DW_OP_reg3";
4433 case DW_OP_reg4:
4434 return "DW_OP_reg4";
4435 case DW_OP_reg5:
4436 return "DW_OP_reg5";
4437 case DW_OP_reg6:
4438 return "DW_OP_reg6";
4439 case DW_OP_reg7:
4440 return "DW_OP_reg7";
4441 case DW_OP_reg8:
4442 return "DW_OP_reg8";
4443 case DW_OP_reg9:
4444 return "DW_OP_reg9";
4445 case DW_OP_reg10:
4446 return "DW_OP_reg10";
4447 case DW_OP_reg11:
4448 return "DW_OP_reg11";
4449 case DW_OP_reg12:
4450 return "DW_OP_reg12";
4451 case DW_OP_reg13:
4452 return "DW_OP_reg13";
4453 case DW_OP_reg14:
4454 return "DW_OP_reg14";
4455 case DW_OP_reg15:
4456 return "DW_OP_reg15";
4457 case DW_OP_reg16:
4458 return "DW_OP_reg16";
4459 case DW_OP_reg17:
4460 return "DW_OP_reg17";
4461 case DW_OP_reg18:
4462 return "DW_OP_reg18";
4463 case DW_OP_reg19:
4464 return "DW_OP_reg19";
4465 case DW_OP_reg20:
4466 return "DW_OP_reg20";
4467 case DW_OP_reg21:
4468 return "DW_OP_reg21";
4469 case DW_OP_reg22:
4470 return "DW_OP_reg22";
4471 case DW_OP_reg23:
4472 return "DW_OP_reg23";
4473 case DW_OP_reg24:
4474 return "DW_OP_reg24";
4475 case DW_OP_reg25:
4476 return "DW_OP_reg25";
4477 case DW_OP_reg26:
4478 return "DW_OP_reg26";
4479 case DW_OP_reg27:
4480 return "DW_OP_reg27";
4481 case DW_OP_reg28:
4482 return "DW_OP_reg28";
4483 case DW_OP_reg29:
4484 return "DW_OP_reg29";
4485 case DW_OP_reg30:
4486 return "DW_OP_reg30";
4487 case DW_OP_reg31:
4488 return "DW_OP_reg31";
4489 case DW_OP_breg0:
4490 return "DW_OP_breg0";
4491 case DW_OP_breg1:
4492 return "DW_OP_breg1";
4493 case DW_OP_breg2:
4494 return "DW_OP_breg2";
4495 case DW_OP_breg3:
4496 return "DW_OP_breg3";
4497 case DW_OP_breg4:
4498 return "DW_OP_breg4";
4499 case DW_OP_breg5:
4500 return "DW_OP_breg5";
4501 case DW_OP_breg6:
4502 return "DW_OP_breg6";
4503 case DW_OP_breg7:
4504 return "DW_OP_breg7";
4505 case DW_OP_breg8:
4506 return "DW_OP_breg8";
4507 case DW_OP_breg9:
4508 return "DW_OP_breg9";
4509 case DW_OP_breg10:
4510 return "DW_OP_breg10";
4511 case DW_OP_breg11:
4512 return "DW_OP_breg11";
4513 case DW_OP_breg12:
4514 return "DW_OP_breg12";
4515 case DW_OP_breg13:
4516 return "DW_OP_breg13";
4517 case DW_OP_breg14:
4518 return "DW_OP_breg14";
4519 case DW_OP_breg15:
4520 return "DW_OP_breg15";
4521 case DW_OP_breg16:
4522 return "DW_OP_breg16";
4523 case DW_OP_breg17:
4524 return "DW_OP_breg17";
4525 case DW_OP_breg18:
4526 return "DW_OP_breg18";
4527 case DW_OP_breg19:
4528 return "DW_OP_breg19";
4529 case DW_OP_breg20:
4530 return "DW_OP_breg20";
4531 case DW_OP_breg21:
4532 return "DW_OP_breg21";
4533 case DW_OP_breg22:
4534 return "DW_OP_breg22";
4535 case DW_OP_breg23:
4536 return "DW_OP_breg23";
4537 case DW_OP_breg24:
4538 return "DW_OP_breg24";
4539 case DW_OP_breg25:
4540 return "DW_OP_breg25";
4541 case DW_OP_breg26:
4542 return "DW_OP_breg26";
4543 case DW_OP_breg27:
4544 return "DW_OP_breg27";
4545 case DW_OP_breg28:
4546 return "DW_OP_breg28";
4547 case DW_OP_breg29:
4548 return "DW_OP_breg29";
4549 case DW_OP_breg30:
4550 return "DW_OP_breg30";
4551 case DW_OP_breg31:
4552 return "DW_OP_breg31";
4553 case DW_OP_regx:
4554 return "DW_OP_regx";
4555 case DW_OP_fbreg:
4556 return "DW_OP_fbreg";
4557 case DW_OP_bregx:
4558 return "DW_OP_bregx";
4559 case DW_OP_piece:
4560 return "DW_OP_piece";
4561 case DW_OP_deref_size:
4562 return "DW_OP_deref_size";
4563 case DW_OP_xderef_size:
4564 return "DW_OP_xderef_size";
4565 case DW_OP_nop:
4566 return "DW_OP_nop";
4568 case DW_OP_push_object_address:
4569 return "DW_OP_push_object_address";
4570 case DW_OP_call2:
4571 return "DW_OP_call2";
4572 case DW_OP_call4:
4573 return "DW_OP_call4";
4574 case DW_OP_call_ref:
4575 return "DW_OP_call_ref";
4576 case DW_OP_implicit_value:
4577 return "DW_OP_implicit_value";
4578 case DW_OP_stack_value:
4579 return "DW_OP_stack_value";
4580 case DW_OP_form_tls_address:
4581 return "DW_OP_form_tls_address";
4582 case DW_OP_call_frame_cfa:
4583 return "DW_OP_call_frame_cfa";
4584 case DW_OP_bit_piece:
4585 return "DW_OP_bit_piece";
4587 case DW_OP_GNU_push_tls_address:
4588 return "DW_OP_GNU_push_tls_address";
4589 case DW_OP_GNU_uninit:
4590 return "DW_OP_GNU_uninit";
4591 case DW_OP_GNU_encoded_addr:
4592 return "DW_OP_GNU_encoded_addr";
4594 default:
4595 return "OP_<unknown>";
4599 /* Return a pointer to a newly allocated location description. Location
4600 descriptions are simple expression terms that can be strung
4601 together to form more complicated location (address) descriptions. */
4603 static inline dw_loc_descr_ref
4604 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
4605 unsigned HOST_WIDE_INT oprnd2)
4607 dw_loc_descr_ref descr = GGC_CNEW (dw_loc_descr_node);
4609 descr->dw_loc_opc = op;
4610 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
4611 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
4612 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
4613 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
4615 return descr;
4618 /* Return a pointer to a newly allocated location description for
4619 REG and OFFSET. */
4621 static inline dw_loc_descr_ref
4622 new_reg_loc_descr (unsigned int reg, unsigned HOST_WIDE_INT offset)
4624 if (reg <= 31)
4625 return new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + reg),
4626 offset, 0);
4627 else
4628 return new_loc_descr (DW_OP_bregx, reg, offset);
4631 /* Add a location description term to a location description expression. */
4633 static inline void
4634 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
4636 dw_loc_descr_ref *d;
4638 /* Find the end of the chain. */
4639 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
4642 *d = descr;
4645 /* Add a constant OFFSET to a location expression. */
4647 static void
4648 loc_descr_plus_const (dw_loc_descr_ref *list_head, HOST_WIDE_INT offset)
4650 dw_loc_descr_ref loc;
4651 HOST_WIDE_INT *p;
4653 gcc_assert (*list_head != NULL);
4655 if (!offset)
4656 return;
4658 /* Find the end of the chain. */
4659 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
4662 p = NULL;
4663 if (loc->dw_loc_opc == DW_OP_fbreg
4664 || (loc->dw_loc_opc >= DW_OP_breg0 && loc->dw_loc_opc <= DW_OP_breg31))
4665 p = &loc->dw_loc_oprnd1.v.val_int;
4666 else if (loc->dw_loc_opc == DW_OP_bregx)
4667 p = &loc->dw_loc_oprnd2.v.val_int;
4669 /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
4670 offset. Don't optimize if an signed integer overflow would happen. */
4671 if (p != NULL
4672 && ((offset > 0 && *p <= INTTYPE_MAXIMUM (HOST_WIDE_INT) - offset)
4673 || (offset < 0 && *p >= INTTYPE_MINIMUM (HOST_WIDE_INT) - offset)))
4674 *p += offset;
4676 else if (offset > 0)
4677 loc->dw_loc_next = new_loc_descr (DW_OP_plus_uconst, offset, 0);
4679 else
4681 loc->dw_loc_next = int_loc_descriptor (offset);
4682 add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_plus, 0, 0));
4686 #ifdef DWARF2_DEBUGGING_INFO
4687 /* Add a constant OFFSET to a location list. */
4689 static void
4690 loc_list_plus_const (dw_loc_list_ref list_head, HOST_WIDE_INT offset)
4692 dw_loc_list_ref d;
4693 for (d = list_head; d != NULL; d = d->dw_loc_next)
4694 loc_descr_plus_const (&d->expr, offset);
4696 #endif
4698 /* Return the size of a location descriptor. */
4700 static unsigned long
4701 size_of_loc_descr (dw_loc_descr_ref loc)
4703 unsigned long size = 1;
4705 switch (loc->dw_loc_opc)
4707 case DW_OP_addr:
4708 size += DWARF2_ADDR_SIZE;
4709 break;
4710 case DW_OP_const1u:
4711 case DW_OP_const1s:
4712 size += 1;
4713 break;
4714 case DW_OP_const2u:
4715 case DW_OP_const2s:
4716 size += 2;
4717 break;
4718 case DW_OP_const4u:
4719 case DW_OP_const4s:
4720 size += 4;
4721 break;
4722 case DW_OP_const8u:
4723 case DW_OP_const8s:
4724 size += 8;
4725 break;
4726 case DW_OP_constu:
4727 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
4728 break;
4729 case DW_OP_consts:
4730 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
4731 break;
4732 case DW_OP_pick:
4733 size += 1;
4734 break;
4735 case DW_OP_plus_uconst:
4736 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
4737 break;
4738 case DW_OP_skip:
4739 case DW_OP_bra:
4740 size += 2;
4741 break;
4742 case DW_OP_breg0:
4743 case DW_OP_breg1:
4744 case DW_OP_breg2:
4745 case DW_OP_breg3:
4746 case DW_OP_breg4:
4747 case DW_OP_breg5:
4748 case DW_OP_breg6:
4749 case DW_OP_breg7:
4750 case DW_OP_breg8:
4751 case DW_OP_breg9:
4752 case DW_OP_breg10:
4753 case DW_OP_breg11:
4754 case DW_OP_breg12:
4755 case DW_OP_breg13:
4756 case DW_OP_breg14:
4757 case DW_OP_breg15:
4758 case DW_OP_breg16:
4759 case DW_OP_breg17:
4760 case DW_OP_breg18:
4761 case DW_OP_breg19:
4762 case DW_OP_breg20:
4763 case DW_OP_breg21:
4764 case DW_OP_breg22:
4765 case DW_OP_breg23:
4766 case DW_OP_breg24:
4767 case DW_OP_breg25:
4768 case DW_OP_breg26:
4769 case DW_OP_breg27:
4770 case DW_OP_breg28:
4771 case DW_OP_breg29:
4772 case DW_OP_breg30:
4773 case DW_OP_breg31:
4774 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
4775 break;
4776 case DW_OP_regx:
4777 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
4778 break;
4779 case DW_OP_fbreg:
4780 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
4781 break;
4782 case DW_OP_bregx:
4783 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
4784 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
4785 break;
4786 case DW_OP_piece:
4787 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
4788 break;
4789 case DW_OP_deref_size:
4790 case DW_OP_xderef_size:
4791 size += 1;
4792 break;
4793 case DW_OP_call2:
4794 size += 2;
4795 break;
4796 case DW_OP_call4:
4797 size += 4;
4798 break;
4799 case DW_OP_call_ref:
4800 size += DWARF2_ADDR_SIZE;
4801 break;
4802 case DW_OP_implicit_value:
4803 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
4804 + loc->dw_loc_oprnd1.v.val_unsigned;
4805 break;
4806 default:
4807 break;
4810 return size;
4813 /* Return the size of a series of location descriptors. */
4815 static unsigned long
4816 size_of_locs (dw_loc_descr_ref loc)
4818 dw_loc_descr_ref l;
4819 unsigned long size;
4821 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
4822 field, to avoid writing to a PCH file. */
4823 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
4825 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
4826 break;
4827 size += size_of_loc_descr (l);
4829 if (! l)
4830 return size;
4832 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
4834 l->dw_loc_addr = size;
4835 size += size_of_loc_descr (l);
4838 return size;
4841 #ifdef DWARF2_DEBUGGING_INFO
4842 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4843 #endif
4845 /* Output location description stack opcode's operands (if any). */
4847 static void
4848 output_loc_operands (dw_loc_descr_ref loc)
4850 dw_val_ref val1 = &loc->dw_loc_oprnd1;
4851 dw_val_ref val2 = &loc->dw_loc_oprnd2;
4853 switch (loc->dw_loc_opc)
4855 #ifdef DWARF2_DEBUGGING_INFO
4856 case DW_OP_const2u:
4857 case DW_OP_const2s:
4858 dw2_asm_output_data (2, val1->v.val_int, NULL);
4859 break;
4860 case DW_OP_const4u:
4861 case DW_OP_const4s:
4862 dw2_asm_output_data (4, val1->v.val_int, NULL);
4863 break;
4864 case DW_OP_const8u:
4865 case DW_OP_const8s:
4866 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
4867 dw2_asm_output_data (8, val1->v.val_int, NULL);
4868 break;
4869 case DW_OP_skip:
4870 case DW_OP_bra:
4872 int offset;
4874 gcc_assert (val1->val_class == dw_val_class_loc);
4875 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
4877 dw2_asm_output_data (2, offset, NULL);
4879 break;
4880 case DW_OP_implicit_value:
4881 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
4882 switch (val2->val_class)
4884 case dw_val_class_const:
4885 dw2_asm_output_data (val1->v.val_unsigned, val2->v.val_int, NULL);
4886 break;
4887 case dw_val_class_vec:
4889 unsigned int elt_size = val2->v.val_vec.elt_size;
4890 unsigned int len = val2->v.val_vec.length;
4891 unsigned int i;
4892 unsigned char *p;
4894 if (elt_size > sizeof (HOST_WIDE_INT))
4896 elt_size /= 2;
4897 len *= 2;
4899 for (i = 0, p = val2->v.val_vec.array;
4900 i < len;
4901 i++, p += elt_size)
4902 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
4903 "fp or vector constant word %u", i);
4905 break;
4906 case dw_val_class_const_double:
4908 unsigned HOST_WIDE_INT first, second;
4910 if (WORDS_BIG_ENDIAN)
4912 first = val2->v.val_double.high;
4913 second = val2->v.val_double.low;
4915 else
4917 first = val2->v.val_double.low;
4918 second = val2->v.val_double.high;
4920 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
4921 first, NULL);
4922 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
4923 second, NULL);
4925 break;
4926 case dw_val_class_addr:
4927 gcc_assert (val1->v.val_unsigned == DWARF2_ADDR_SIZE);
4928 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val2->v.val_addr, NULL);
4929 break;
4930 default:
4931 gcc_unreachable ();
4933 break;
4934 #else
4935 case DW_OP_const2u:
4936 case DW_OP_const2s:
4937 case DW_OP_const4u:
4938 case DW_OP_const4s:
4939 case DW_OP_const8u:
4940 case DW_OP_const8s:
4941 case DW_OP_skip:
4942 case DW_OP_bra:
4943 case DW_OP_implicit_value:
4944 /* We currently don't make any attempt to make sure these are
4945 aligned properly like we do for the main unwind info, so
4946 don't support emitting things larger than a byte if we're
4947 only doing unwinding. */
4948 gcc_unreachable ();
4949 #endif
4950 case DW_OP_const1u:
4951 case DW_OP_const1s:
4952 dw2_asm_output_data (1, val1->v.val_int, NULL);
4953 break;
4954 case DW_OP_constu:
4955 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
4956 break;
4957 case DW_OP_consts:
4958 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
4959 break;
4960 case DW_OP_pick:
4961 dw2_asm_output_data (1, val1->v.val_int, NULL);
4962 break;
4963 case DW_OP_plus_uconst:
4964 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
4965 break;
4966 case DW_OP_breg0:
4967 case DW_OP_breg1:
4968 case DW_OP_breg2:
4969 case DW_OP_breg3:
4970 case DW_OP_breg4:
4971 case DW_OP_breg5:
4972 case DW_OP_breg6:
4973 case DW_OP_breg7:
4974 case DW_OP_breg8:
4975 case DW_OP_breg9:
4976 case DW_OP_breg10:
4977 case DW_OP_breg11:
4978 case DW_OP_breg12:
4979 case DW_OP_breg13:
4980 case DW_OP_breg14:
4981 case DW_OP_breg15:
4982 case DW_OP_breg16:
4983 case DW_OP_breg17:
4984 case DW_OP_breg18:
4985 case DW_OP_breg19:
4986 case DW_OP_breg20:
4987 case DW_OP_breg21:
4988 case DW_OP_breg22:
4989 case DW_OP_breg23:
4990 case DW_OP_breg24:
4991 case DW_OP_breg25:
4992 case DW_OP_breg26:
4993 case DW_OP_breg27:
4994 case DW_OP_breg28:
4995 case DW_OP_breg29:
4996 case DW_OP_breg30:
4997 case DW_OP_breg31:
4998 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
4999 break;
5000 case DW_OP_regx:
5001 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
5002 break;
5003 case DW_OP_fbreg:
5004 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
5005 break;
5006 case DW_OP_bregx:
5007 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
5008 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
5009 break;
5010 case DW_OP_piece:
5011 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
5012 break;
5013 case DW_OP_deref_size:
5014 case DW_OP_xderef_size:
5015 dw2_asm_output_data (1, val1->v.val_int, NULL);
5016 break;
5018 case DW_OP_addr:
5019 if (loc->dtprel)
5021 if (targetm.asm_out.output_dwarf_dtprel)
5023 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
5024 DWARF2_ADDR_SIZE,
5025 val1->v.val_addr);
5026 fputc ('\n', asm_out_file);
5028 else
5029 gcc_unreachable ();
5031 else
5033 #ifdef DWARF2_DEBUGGING_INFO
5034 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
5035 #else
5036 gcc_unreachable ();
5037 #endif
5039 break;
5041 default:
5042 /* Other codes have no operands. */
5043 break;
5047 /* Output a sequence of location operations. */
5049 static void
5050 output_loc_sequence (dw_loc_descr_ref loc)
5052 for (; loc != NULL; loc = loc->dw_loc_next)
5054 /* Output the opcode. */
5055 dw2_asm_output_data (1, loc->dw_loc_opc,
5056 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
5058 /* Output the operand(s) (if any). */
5059 output_loc_operands (loc);
5063 /* Output location description stack opcode's operands (if any).
5064 The output is single bytes on a line, suitable for .cfi_escape. */
5066 static void
5067 output_loc_operands_raw (dw_loc_descr_ref loc)
5069 dw_val_ref val1 = &loc->dw_loc_oprnd1;
5070 dw_val_ref val2 = &loc->dw_loc_oprnd2;
5072 switch (loc->dw_loc_opc)
5074 case DW_OP_addr:
5075 case DW_OP_implicit_value:
5076 /* We cannot output addresses in .cfi_escape, only bytes. */
5077 gcc_unreachable ();
5079 case DW_OP_const1u:
5080 case DW_OP_const1s:
5081 case DW_OP_pick:
5082 case DW_OP_deref_size:
5083 case DW_OP_xderef_size:
5084 fputc (',', asm_out_file);
5085 dw2_asm_output_data_raw (1, val1->v.val_int);
5086 break;
5088 case DW_OP_const2u:
5089 case DW_OP_const2s:
5090 fputc (',', asm_out_file);
5091 dw2_asm_output_data_raw (2, val1->v.val_int);
5092 break;
5094 case DW_OP_const4u:
5095 case DW_OP_const4s:
5096 fputc (',', asm_out_file);
5097 dw2_asm_output_data_raw (4, val1->v.val_int);
5098 break;
5100 case DW_OP_const8u:
5101 case DW_OP_const8s:
5102 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
5103 fputc (',', asm_out_file);
5104 dw2_asm_output_data_raw (8, val1->v.val_int);
5105 break;
5107 case DW_OP_skip:
5108 case DW_OP_bra:
5110 int offset;
5112 gcc_assert (val1->val_class == dw_val_class_loc);
5113 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
5115 fputc (',', asm_out_file);
5116 dw2_asm_output_data_raw (2, offset);
5118 break;
5120 case DW_OP_constu:
5121 case DW_OP_plus_uconst:
5122 case DW_OP_regx:
5123 case DW_OP_piece:
5124 fputc (',', asm_out_file);
5125 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
5126 break;
5128 case DW_OP_consts:
5129 case DW_OP_breg0:
5130 case DW_OP_breg1:
5131 case DW_OP_breg2:
5132 case DW_OP_breg3:
5133 case DW_OP_breg4:
5134 case DW_OP_breg5:
5135 case DW_OP_breg6:
5136 case DW_OP_breg7:
5137 case DW_OP_breg8:
5138 case DW_OP_breg9:
5139 case DW_OP_breg10:
5140 case DW_OP_breg11:
5141 case DW_OP_breg12:
5142 case DW_OP_breg13:
5143 case DW_OP_breg14:
5144 case DW_OP_breg15:
5145 case DW_OP_breg16:
5146 case DW_OP_breg17:
5147 case DW_OP_breg18:
5148 case DW_OP_breg19:
5149 case DW_OP_breg20:
5150 case DW_OP_breg21:
5151 case DW_OP_breg22:
5152 case DW_OP_breg23:
5153 case DW_OP_breg24:
5154 case DW_OP_breg25:
5155 case DW_OP_breg26:
5156 case DW_OP_breg27:
5157 case DW_OP_breg28:
5158 case DW_OP_breg29:
5159 case DW_OP_breg30:
5160 case DW_OP_breg31:
5161 case DW_OP_fbreg:
5162 fputc (',', asm_out_file);
5163 dw2_asm_output_data_sleb128_raw (val1->v.val_int);
5164 break;
5166 case DW_OP_bregx:
5167 fputc (',', asm_out_file);
5168 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
5169 fputc (',', asm_out_file);
5170 dw2_asm_output_data_sleb128_raw (val2->v.val_int);
5171 break;
5173 default:
5174 /* Other codes have no operands. */
5175 break;
5179 static void
5180 output_loc_sequence_raw (dw_loc_descr_ref loc)
5182 while (1)
5184 /* Output the opcode. */
5185 fprintf (asm_out_file, "0x%x", loc->dw_loc_opc);
5186 output_loc_operands_raw (loc);
5188 if (!loc->dw_loc_next)
5189 break;
5190 loc = loc->dw_loc_next;
5192 fputc (',', asm_out_file);
5196 /* This routine will generate the correct assembly data for a location
5197 description based on a cfi entry with a complex address. */
5199 static void
5200 output_cfa_loc (dw_cfi_ref cfi)
5202 dw_loc_descr_ref loc;
5203 unsigned long size;
5205 if (cfi->dw_cfi_opc == DW_CFA_expression)
5206 dw2_asm_output_data (1, cfi->dw_cfi_oprnd2.dw_cfi_reg_num, NULL);
5208 /* Output the size of the block. */
5209 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
5210 size = size_of_locs (loc);
5211 dw2_asm_output_data_uleb128 (size, NULL);
5213 /* Now output the operations themselves. */
5214 output_loc_sequence (loc);
5217 /* Similar, but used for .cfi_escape. */
5219 static void
5220 output_cfa_loc_raw (dw_cfi_ref cfi)
5222 dw_loc_descr_ref loc;
5223 unsigned long size;
5225 if (cfi->dw_cfi_opc == DW_CFA_expression)
5226 fprintf (asm_out_file, "0x%x,", cfi->dw_cfi_oprnd2.dw_cfi_reg_num);
5228 /* Output the size of the block. */
5229 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
5230 size = size_of_locs (loc);
5231 dw2_asm_output_data_uleb128_raw (size);
5232 fputc (',', asm_out_file);
5234 /* Now output the operations themselves. */
5235 output_loc_sequence_raw (loc);
5238 /* This function builds a dwarf location descriptor sequence from a
5239 dw_cfa_location, adding the given OFFSET to the result of the
5240 expression. */
5242 static struct dw_loc_descr_struct *
5243 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
5245 struct dw_loc_descr_struct *head, *tmp;
5247 offset += cfa->offset;
5249 if (cfa->indirect)
5251 head = new_reg_loc_descr (cfa->reg, cfa->base_offset);
5252 head->dw_loc_oprnd1.val_class = dw_val_class_const;
5253 tmp = new_loc_descr (DW_OP_deref, 0, 0);
5254 add_loc_descr (&head, tmp);
5255 if (offset != 0)
5257 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
5258 add_loc_descr (&head, tmp);
5261 else
5262 head = new_reg_loc_descr (cfa->reg, offset);
5264 return head;
5267 /* This function builds a dwarf location descriptor sequence for
5268 the address at OFFSET from the CFA when stack is aligned to
5269 ALIGNMENT byte. */
5271 static struct dw_loc_descr_struct *
5272 build_cfa_aligned_loc (HOST_WIDE_INT offset, HOST_WIDE_INT alignment)
5274 struct dw_loc_descr_struct *head;
5275 unsigned int dwarf_fp
5276 = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
5278 /* When CFA is defined as FP+OFFSET, emulate stack alignment. */
5279 if (cfa.reg == HARD_FRAME_POINTER_REGNUM && cfa.indirect == 0)
5281 head = new_reg_loc_descr (dwarf_fp, 0);
5282 add_loc_descr (&head, int_loc_descriptor (alignment));
5283 add_loc_descr (&head, new_loc_descr (DW_OP_and, 0, 0));
5284 loc_descr_plus_const (&head, offset);
5286 else
5287 head = new_reg_loc_descr (dwarf_fp, offset);
5288 return head;
5291 /* This function fills in aa dw_cfa_location structure from a dwarf location
5292 descriptor sequence. */
5294 static void
5295 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
5297 struct dw_loc_descr_struct *ptr;
5298 cfa->offset = 0;
5299 cfa->base_offset = 0;
5300 cfa->indirect = 0;
5301 cfa->reg = -1;
5303 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
5305 enum dwarf_location_atom op = ptr->dw_loc_opc;
5307 switch (op)
5309 case DW_OP_reg0:
5310 case DW_OP_reg1:
5311 case DW_OP_reg2:
5312 case DW_OP_reg3:
5313 case DW_OP_reg4:
5314 case DW_OP_reg5:
5315 case DW_OP_reg6:
5316 case DW_OP_reg7:
5317 case DW_OP_reg8:
5318 case DW_OP_reg9:
5319 case DW_OP_reg10:
5320 case DW_OP_reg11:
5321 case DW_OP_reg12:
5322 case DW_OP_reg13:
5323 case DW_OP_reg14:
5324 case DW_OP_reg15:
5325 case DW_OP_reg16:
5326 case DW_OP_reg17:
5327 case DW_OP_reg18:
5328 case DW_OP_reg19:
5329 case DW_OP_reg20:
5330 case DW_OP_reg21:
5331 case DW_OP_reg22:
5332 case DW_OP_reg23:
5333 case DW_OP_reg24:
5334 case DW_OP_reg25:
5335 case DW_OP_reg26:
5336 case DW_OP_reg27:
5337 case DW_OP_reg28:
5338 case DW_OP_reg29:
5339 case DW_OP_reg30:
5340 case DW_OP_reg31:
5341 cfa->reg = op - DW_OP_reg0;
5342 break;
5343 case DW_OP_regx:
5344 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
5345 break;
5346 case DW_OP_breg0:
5347 case DW_OP_breg1:
5348 case DW_OP_breg2:
5349 case DW_OP_breg3:
5350 case DW_OP_breg4:
5351 case DW_OP_breg5:
5352 case DW_OP_breg6:
5353 case DW_OP_breg7:
5354 case DW_OP_breg8:
5355 case DW_OP_breg9:
5356 case DW_OP_breg10:
5357 case DW_OP_breg11:
5358 case DW_OP_breg12:
5359 case DW_OP_breg13:
5360 case DW_OP_breg14:
5361 case DW_OP_breg15:
5362 case DW_OP_breg16:
5363 case DW_OP_breg17:
5364 case DW_OP_breg18:
5365 case DW_OP_breg19:
5366 case DW_OP_breg20:
5367 case DW_OP_breg21:
5368 case DW_OP_breg22:
5369 case DW_OP_breg23:
5370 case DW_OP_breg24:
5371 case DW_OP_breg25:
5372 case DW_OP_breg26:
5373 case DW_OP_breg27:
5374 case DW_OP_breg28:
5375 case DW_OP_breg29:
5376 case DW_OP_breg30:
5377 case DW_OP_breg31:
5378 cfa->reg = op - DW_OP_breg0;
5379 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
5380 break;
5381 case DW_OP_bregx:
5382 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
5383 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
5384 break;
5385 case DW_OP_deref:
5386 cfa->indirect = 1;
5387 break;
5388 case DW_OP_plus_uconst:
5389 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
5390 break;
5391 default:
5392 internal_error ("DW_LOC_OP %s not implemented",
5393 dwarf_stack_op_name (ptr->dw_loc_opc));
5397 #endif /* .debug_frame support */
5399 /* And now, the support for symbolic debugging information. */
5400 #ifdef DWARF2_DEBUGGING_INFO
5402 /* .debug_str support. */
5403 static int output_indirect_string (void **, void *);
5405 static void dwarf2out_init (const char *);
5406 static void dwarf2out_finish (const char *);
5407 static void dwarf2out_assembly_start (void);
5408 static void dwarf2out_define (unsigned int, const char *);
5409 static void dwarf2out_undef (unsigned int, const char *);
5410 static void dwarf2out_start_source_file (unsigned, const char *);
5411 static void dwarf2out_end_source_file (unsigned);
5412 static void dwarf2out_begin_block (unsigned, unsigned);
5413 static void dwarf2out_end_block (unsigned, unsigned);
5414 static bool dwarf2out_ignore_block (const_tree);
5415 static void dwarf2out_global_decl (tree);
5416 static void dwarf2out_type_decl (tree, int);
5417 static void dwarf2out_imported_module_or_decl (tree, tree, tree, bool);
5418 static void dwarf2out_imported_module_or_decl_1 (tree, tree, tree,
5419 dw_die_ref);
5420 static void dwarf2out_abstract_function (tree);
5421 static void dwarf2out_var_location (rtx);
5422 static void dwarf2out_direct_call (tree);
5423 static void dwarf2out_virtual_call_token (tree, int);
5424 static void dwarf2out_copy_call_info (rtx, rtx);
5425 static void dwarf2out_virtual_call (int);
5426 static void dwarf2out_begin_function (tree);
5427 static void dwarf2out_set_name (tree, tree);
5429 /* The debug hooks structure. */
5431 const struct gcc_debug_hooks dwarf2_debug_hooks =
5433 dwarf2out_init,
5434 dwarf2out_finish,
5435 dwarf2out_assembly_start,
5436 dwarf2out_define,
5437 dwarf2out_undef,
5438 dwarf2out_start_source_file,
5439 dwarf2out_end_source_file,
5440 dwarf2out_begin_block,
5441 dwarf2out_end_block,
5442 dwarf2out_ignore_block,
5443 dwarf2out_source_line,
5444 dwarf2out_begin_prologue,
5445 debug_nothing_int_charstar, /* end_prologue */
5446 dwarf2out_end_epilogue,
5447 dwarf2out_begin_function,
5448 debug_nothing_int, /* end_function */
5449 dwarf2out_decl, /* function_decl */
5450 dwarf2out_global_decl,
5451 dwarf2out_type_decl, /* type_decl */
5452 dwarf2out_imported_module_or_decl,
5453 debug_nothing_tree, /* deferred_inline_function */
5454 /* The DWARF 2 backend tries to reduce debugging bloat by not
5455 emitting the abstract description of inline functions until
5456 something tries to reference them. */
5457 dwarf2out_abstract_function, /* outlining_inline_function */
5458 debug_nothing_rtx, /* label */
5459 debug_nothing_int, /* handle_pch */
5460 dwarf2out_var_location,
5461 dwarf2out_switch_text_section,
5462 dwarf2out_direct_call,
5463 dwarf2out_virtual_call_token,
5464 dwarf2out_copy_call_info,
5465 dwarf2out_virtual_call,
5466 dwarf2out_set_name,
5467 1 /* start_end_main_source_file */
5469 #endif
5471 /* NOTE: In the comments in this file, many references are made to
5472 "Debugging Information Entries". This term is abbreviated as `DIE'
5473 throughout the remainder of this file. */
5475 /* An internal representation of the DWARF output is built, and then
5476 walked to generate the DWARF debugging info. The walk of the internal
5477 representation is done after the entire program has been compiled.
5478 The types below are used to describe the internal representation. */
5480 /* Various DIE's use offsets relative to the beginning of the
5481 .debug_info section to refer to each other. */
5483 typedef long int dw_offset;
5485 /* Define typedefs here to avoid circular dependencies. */
5487 typedef struct dw_attr_struct *dw_attr_ref;
5488 typedef struct dw_line_info_struct *dw_line_info_ref;
5489 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
5490 typedef struct pubname_struct *pubname_ref;
5491 typedef struct dw_ranges_struct *dw_ranges_ref;
5492 typedef struct dw_ranges_by_label_struct *dw_ranges_by_label_ref;
5493 typedef struct comdat_type_struct *comdat_type_node_ref;
5495 /* Each entry in the line_info_table maintains the file and
5496 line number associated with the label generated for that
5497 entry. The label gives the PC value associated with
5498 the line number entry. */
5500 typedef struct GTY(()) dw_line_info_struct {
5501 unsigned long dw_file_num;
5502 unsigned long dw_line_num;
5504 dw_line_info_entry;
5506 /* Line information for functions in separate sections; each one gets its
5507 own sequence. */
5508 typedef struct GTY(()) dw_separate_line_info_struct {
5509 unsigned long dw_file_num;
5510 unsigned long dw_line_num;
5511 unsigned long function;
5513 dw_separate_line_info_entry;
5515 /* Each DIE attribute has a field specifying the attribute kind,
5516 a link to the next attribute in the chain, and an attribute value.
5517 Attributes are typically linked below the DIE they modify. */
5519 typedef struct GTY(()) dw_attr_struct {
5520 enum dwarf_attribute dw_attr;
5521 dw_val_node dw_attr_val;
5523 dw_attr_node;
5525 DEF_VEC_O(dw_attr_node);
5526 DEF_VEC_ALLOC_O(dw_attr_node,gc);
5528 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
5529 The children of each node form a circular list linked by
5530 die_sib. die_child points to the node *before* the "first" child node. */
5532 typedef struct GTY((chain_circular ("%h.die_sib"))) die_struct {
5533 enum dwarf_tag die_tag;
5534 union die_symbol_or_type_node
5536 char * GTY ((tag ("0"))) die_symbol;
5537 comdat_type_node_ref GTY ((tag ("1"))) die_type_node;
5539 GTY ((desc ("dwarf_version >= 4"))) die_id;
5540 VEC(dw_attr_node,gc) * die_attr;
5541 dw_die_ref die_parent;
5542 dw_die_ref die_child;
5543 dw_die_ref die_sib;
5544 dw_die_ref die_definition; /* ref from a specification to its definition */
5545 dw_offset die_offset;
5546 unsigned long die_abbrev;
5547 int die_mark;
5548 /* Die is used and must not be pruned as unused. */
5549 int die_perennial_p;
5550 unsigned int decl_id;
5552 die_node;
5554 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
5555 #define FOR_EACH_CHILD(die, c, expr) do { \
5556 c = die->die_child; \
5557 if (c) do { \
5558 c = c->die_sib; \
5559 expr; \
5560 } while (c != die->die_child); \
5561 } while (0)
5563 /* The pubname structure */
5565 typedef struct GTY(()) pubname_struct {
5566 dw_die_ref die;
5567 const char *name;
5569 pubname_entry;
5571 DEF_VEC_O(pubname_entry);
5572 DEF_VEC_ALLOC_O(pubname_entry, gc);
5574 struct GTY(()) dw_ranges_struct {
5575 /* If this is positive, it's a block number, otherwise it's a
5576 bitwise-negated index into dw_ranges_by_label. */
5577 int num;
5580 struct GTY(()) dw_ranges_by_label_struct {
5581 const char *begin;
5582 const char *end;
5585 /* The comdat type node structure. */
5586 typedef struct GTY(()) comdat_type_struct
5588 dw_die_ref root_die;
5589 dw_die_ref type_die;
5590 char signature[DWARF_TYPE_SIGNATURE_SIZE];
5591 struct comdat_type_struct *next;
5593 comdat_type_node;
5595 /* The limbo die list structure. */
5596 typedef struct GTY(()) limbo_die_struct {
5597 dw_die_ref die;
5598 tree created_for;
5599 struct limbo_die_struct *next;
5601 limbo_die_node;
5603 typedef struct GTY(()) skeleton_chain_struct
5605 dw_die_ref old_die;
5606 dw_die_ref new_die;
5607 struct skeleton_chain_struct *parent;
5609 skeleton_chain_node;
5611 /* How to start an assembler comment. */
5612 #ifndef ASM_COMMENT_START
5613 #define ASM_COMMENT_START ";#"
5614 #endif
5616 /* Define a macro which returns nonzero for a TYPE_DECL which was
5617 implicitly generated for a tagged type.
5619 Note that unlike the gcc front end (which generates a NULL named
5620 TYPE_DECL node for each complete tagged type, each array type, and
5621 each function type node created) the g++ front end generates a
5622 _named_ TYPE_DECL node for each tagged type node created.
5623 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
5624 generate a DW_TAG_typedef DIE for them. */
5626 #define TYPE_DECL_IS_STUB(decl) \
5627 (DECL_NAME (decl) == NULL_TREE \
5628 || (DECL_ARTIFICIAL (decl) \
5629 && is_tagged_type (TREE_TYPE (decl)) \
5630 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
5631 /* This is necessary for stub decls that \
5632 appear in nested inline functions. */ \
5633 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
5634 && (decl_ultimate_origin (decl) \
5635 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
5637 /* Information concerning the compilation unit's programming
5638 language, and compiler version. */
5640 /* Fixed size portion of the DWARF compilation unit header. */
5641 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
5642 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
5644 /* Fixed size portion of the DWARF comdat type unit header. */
5645 #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
5646 (DWARF_COMPILE_UNIT_HEADER_SIZE + DWARF_TYPE_SIGNATURE_SIZE \
5647 + DWARF_OFFSET_SIZE)
5649 /* Fixed size portion of public names info. */
5650 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
5652 /* Fixed size portion of the address range info. */
5653 #define DWARF_ARANGES_HEADER_SIZE \
5654 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
5655 DWARF2_ADDR_SIZE * 2) \
5656 - DWARF_INITIAL_LENGTH_SIZE)
5658 /* Size of padding portion in the address range info. It must be
5659 aligned to twice the pointer size. */
5660 #define DWARF_ARANGES_PAD_SIZE \
5661 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
5662 DWARF2_ADDR_SIZE * 2) \
5663 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
5665 /* Use assembler line directives if available. */
5666 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
5667 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
5668 #define DWARF2_ASM_LINE_DEBUG_INFO 1
5669 #else
5670 #define DWARF2_ASM_LINE_DEBUG_INFO 0
5671 #endif
5672 #endif
5674 /* Minimum line offset in a special line info. opcode.
5675 This value was chosen to give a reasonable range of values. */
5676 #define DWARF_LINE_BASE -10
5678 /* First special line opcode - leave room for the standard opcodes. */
5679 #define DWARF_LINE_OPCODE_BASE 10
5681 /* Range of line offsets in a special line info. opcode. */
5682 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
5684 /* Flag that indicates the initial value of the is_stmt_start flag.
5685 In the present implementation, we do not mark any lines as
5686 the beginning of a source statement, because that information
5687 is not made available by the GCC front-end. */
5688 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
5690 #ifdef DWARF2_DEBUGGING_INFO
5691 /* This location is used by calc_die_sizes() to keep track
5692 the offset of each DIE within the .debug_info section. */
5693 static unsigned long next_die_offset;
5694 #endif
5696 /* Record the root of the DIE's built for the current compilation unit. */
5697 static GTY(()) dw_die_ref comp_unit_die;
5699 /* A list of type DIEs that have been separated into comdat sections. */
5700 static GTY(()) comdat_type_node *comdat_type_list;
5702 /* A list of DIEs with a NULL parent waiting to be relocated. */
5703 static GTY(()) limbo_die_node *limbo_die_list;
5705 /* A list of DIEs for which we may have to generate
5706 DW_AT_MIPS_linkage_name once their DECL_ASSEMBLER_NAMEs are
5707 set. */
5708 static GTY(()) limbo_die_node *deferred_asm_name;
5710 /* Filenames referenced by this compilation unit. */
5711 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
5713 /* A hash table of references to DIE's that describe declarations.
5714 The key is a DECL_UID() which is a unique number identifying each decl. */
5715 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
5717 /* A hash table of references to DIE's that describe COMMON blocks.
5718 The key is DECL_UID() ^ die_parent. */
5719 static GTY ((param_is (struct die_struct))) htab_t common_block_die_table;
5721 typedef struct GTY(()) die_arg_entry_struct {
5722 dw_die_ref die;
5723 tree arg;
5724 } die_arg_entry;
5726 DEF_VEC_O(die_arg_entry);
5727 DEF_VEC_ALLOC_O(die_arg_entry,gc);
5729 /* Node of the variable location list. */
5730 struct GTY ((chain_next ("%h.next"))) var_loc_node {
5731 rtx GTY (()) var_loc_note;
5732 const char * GTY (()) label;
5733 const char * GTY (()) section_label;
5734 struct var_loc_node * GTY (()) next;
5737 /* Variable location list. */
5738 struct GTY (()) var_loc_list_def {
5739 struct var_loc_node * GTY (()) first;
5741 /* Do not mark the last element of the chained list because
5742 it is marked through the chain. */
5743 struct var_loc_node * GTY ((skip ("%h"))) last;
5745 /* DECL_UID of the variable decl. */
5746 unsigned int decl_id;
5748 typedef struct var_loc_list_def var_loc_list;
5751 /* Table of decl location linked lists. */
5752 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
5754 /* A pointer to the base of a list of references to DIE's that
5755 are uniquely identified by their tag, presence/absence of
5756 children DIE's, and list of attribute/value pairs. */
5757 static GTY((length ("abbrev_die_table_allocated")))
5758 dw_die_ref *abbrev_die_table;
5760 /* Number of elements currently allocated for abbrev_die_table. */
5761 static GTY(()) unsigned abbrev_die_table_allocated;
5763 /* Number of elements in type_die_table currently in use. */
5764 static GTY(()) unsigned abbrev_die_table_in_use;
5766 /* Size (in elements) of increments by which we may expand the
5767 abbrev_die_table. */
5768 #define ABBREV_DIE_TABLE_INCREMENT 256
5770 /* A pointer to the base of a table that contains line information
5771 for each source code line in .text in the compilation unit. */
5772 static GTY((length ("line_info_table_allocated")))
5773 dw_line_info_ref line_info_table;
5775 /* Number of elements currently allocated for line_info_table. */
5776 static GTY(()) unsigned line_info_table_allocated;
5778 /* Number of elements in line_info_table currently in use. */
5779 static GTY(()) unsigned line_info_table_in_use;
5781 /* A pointer to the base of a table that contains line information
5782 for each source code line outside of .text in the compilation unit. */
5783 static GTY ((length ("separate_line_info_table_allocated")))
5784 dw_separate_line_info_ref separate_line_info_table;
5786 /* Number of elements currently allocated for separate_line_info_table. */
5787 static GTY(()) unsigned separate_line_info_table_allocated;
5789 /* Number of elements in separate_line_info_table currently in use. */
5790 static GTY(()) unsigned separate_line_info_table_in_use;
5792 /* Size (in elements) of increments by which we may expand the
5793 line_info_table. */
5794 #define LINE_INFO_TABLE_INCREMENT 1024
5796 /* A pointer to the base of a table that contains a list of publicly
5797 accessible names. */
5798 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
5800 /* A pointer to the base of a table that contains a list of publicly
5801 accessible types. */
5802 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
5804 /* Array of dies for which we should generate .debug_arange info. */
5805 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
5807 /* Number of elements currently allocated for arange_table. */
5808 static GTY(()) unsigned arange_table_allocated;
5810 /* Number of elements in arange_table currently in use. */
5811 static GTY(()) unsigned arange_table_in_use;
5813 /* Size (in elements) of increments by which we may expand the
5814 arange_table. */
5815 #define ARANGE_TABLE_INCREMENT 64
5817 /* Array of dies for which we should generate .debug_ranges info. */
5818 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
5820 /* Number of elements currently allocated for ranges_table. */
5821 static GTY(()) unsigned ranges_table_allocated;
5823 /* Number of elements in ranges_table currently in use. */
5824 static GTY(()) unsigned ranges_table_in_use;
5826 /* Array of pairs of labels referenced in ranges_table. */
5827 static GTY ((length ("ranges_by_label_allocated")))
5828 dw_ranges_by_label_ref ranges_by_label;
5830 /* Number of elements currently allocated for ranges_by_label. */
5831 static GTY(()) unsigned ranges_by_label_allocated;
5833 /* Number of elements in ranges_by_label currently in use. */
5834 static GTY(()) unsigned ranges_by_label_in_use;
5836 /* Size (in elements) of increments by which we may expand the
5837 ranges_table. */
5838 #define RANGES_TABLE_INCREMENT 64
5840 /* Whether we have location lists that need outputting */
5841 static GTY(()) bool have_location_lists;
5843 /* Unique label counter. */
5844 static GTY(()) unsigned int loclabel_num;
5846 /* Unique label counter for point-of-call tables. */
5847 static GTY(()) unsigned int poc_label_num;
5849 /* The direct call table structure. */
5851 typedef struct GTY(()) dcall_struct {
5852 unsigned int poc_label_num;
5853 tree poc_decl;
5854 dw_die_ref targ_die;
5856 dcall_entry;
5858 DEF_VEC_O(dcall_entry);
5859 DEF_VEC_ALLOC_O(dcall_entry, gc);
5861 /* The virtual call table structure. */
5863 typedef struct GTY(()) vcall_struct {
5864 unsigned int poc_label_num;
5865 unsigned int vtable_slot;
5867 vcall_entry;
5869 DEF_VEC_O(vcall_entry);
5870 DEF_VEC_ALLOC_O(vcall_entry, gc);
5872 /* Pointers to the direct and virtual call tables. */
5873 static GTY (()) VEC (dcall_entry, gc) * dcall_table = NULL;
5874 static GTY (()) VEC (vcall_entry, gc) * vcall_table = NULL;
5876 /* A hash table to map INSN_UIDs to vtable slot indexes. */
5878 struct GTY (()) vcall_insn {
5879 int insn_uid;
5880 unsigned int vtable_slot;
5883 static GTY ((param_is (struct vcall_insn))) htab_t vcall_insn_table;
5885 #ifdef DWARF2_DEBUGGING_INFO
5886 /* Record whether the function being analyzed contains inlined functions. */
5887 static int current_function_has_inlines;
5888 #endif
5889 #if 0 && defined (MIPS_DEBUGGING_INFO)
5890 static int comp_unit_has_inlines;
5891 #endif
5893 /* The last file entry emitted by maybe_emit_file(). */
5894 static GTY(()) struct dwarf_file_data * last_emitted_file;
5896 /* Number of internal labels generated by gen_internal_sym(). */
5897 static GTY(()) int label_num;
5899 /* Cached result of previous call to lookup_filename. */
5900 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
5902 static GTY(()) VEC(die_arg_entry,gc) *tmpl_value_parm_die_table;
5904 #ifdef DWARF2_DEBUGGING_INFO
5906 /* Offset from the "steady-state frame pointer" to the frame base,
5907 within the current function. */
5908 static HOST_WIDE_INT frame_pointer_fb_offset;
5910 /* Forward declarations for functions defined in this file. */
5912 static int is_pseudo_reg (const_rtx);
5913 static tree type_main_variant (tree);
5914 static int is_tagged_type (const_tree);
5915 static const char *dwarf_tag_name (unsigned);
5916 static const char *dwarf_attr_name (unsigned);
5917 static const char *dwarf_form_name (unsigned);
5918 static tree decl_ultimate_origin (const_tree);
5919 static tree decl_class_context (tree);
5920 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
5921 static inline enum dw_val_class AT_class (dw_attr_ref);
5922 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
5923 static inline unsigned AT_flag (dw_attr_ref);
5924 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
5925 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
5926 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
5927 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
5928 static void add_AT_double (dw_die_ref, enum dwarf_attribute,
5929 HOST_WIDE_INT, unsigned HOST_WIDE_INT);
5930 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
5931 unsigned int, unsigned char *);
5932 static void add_AT_data8 (dw_die_ref, enum dwarf_attribute, unsigned char *);
5933 static hashval_t debug_str_do_hash (const void *);
5934 static int debug_str_eq (const void *, const void *);
5935 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
5936 static inline const char *AT_string (dw_attr_ref);
5937 static enum dwarf_form AT_string_form (dw_attr_ref);
5938 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
5939 static void add_AT_specification (dw_die_ref, dw_die_ref);
5940 static inline dw_die_ref AT_ref (dw_attr_ref);
5941 static inline int AT_ref_external (dw_attr_ref);
5942 static inline void set_AT_ref_external (dw_attr_ref, int);
5943 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
5944 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
5945 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
5946 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
5947 dw_loc_list_ref);
5948 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
5949 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
5950 static inline rtx AT_addr (dw_attr_ref);
5951 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
5952 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
5953 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
5954 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
5955 unsigned HOST_WIDE_INT);
5956 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
5957 unsigned long);
5958 static inline const char *AT_lbl (dw_attr_ref);
5959 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
5960 static const char *get_AT_low_pc (dw_die_ref);
5961 static const char *get_AT_hi_pc (dw_die_ref);
5962 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
5963 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
5964 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
5965 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
5966 static bool is_c_family (void);
5967 static bool is_cxx (void);
5968 static bool is_java (void);
5969 static bool is_fortran (void);
5970 static bool is_ada (void);
5971 static void remove_AT (dw_die_ref, enum dwarf_attribute);
5972 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
5973 static void add_child_die (dw_die_ref, dw_die_ref);
5974 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
5975 static dw_die_ref lookup_type_die (tree);
5976 static void equate_type_number_to_die (tree, dw_die_ref);
5977 static hashval_t decl_die_table_hash (const void *);
5978 static int decl_die_table_eq (const void *, const void *);
5979 static dw_die_ref lookup_decl_die (tree);
5980 static hashval_t common_block_die_table_hash (const void *);
5981 static int common_block_die_table_eq (const void *, const void *);
5982 static hashval_t decl_loc_table_hash (const void *);
5983 static int decl_loc_table_eq (const void *, const void *);
5984 static var_loc_list *lookup_decl_loc (const_tree);
5985 static void equate_decl_number_to_die (tree, dw_die_ref);
5986 static void add_var_loc_to_decl (tree, struct var_loc_node *);
5987 static void print_spaces (FILE *);
5988 static void print_die (dw_die_ref, FILE *);
5989 static void print_dwarf_line_table (FILE *);
5990 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
5991 static dw_die_ref pop_compile_unit (dw_die_ref);
5992 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
5993 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
5994 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
5995 static void checksum_sleb128 (HOST_WIDE_INT, struct md5_ctx *);
5996 static void checksum_uleb128 (unsigned HOST_WIDE_INT, struct md5_ctx *);
5997 static void loc_checksum_ordered (dw_loc_descr_ref, struct md5_ctx *);
5998 static void attr_checksum_ordered (enum dwarf_tag, dw_attr_ref,
5999 struct md5_ctx *, int *);
6000 struct checksum_attributes;
6001 static void collect_checksum_attributes (struct checksum_attributes *, dw_die_ref);
6002 static void die_checksum_ordered (dw_die_ref, struct md5_ctx *, int *);
6003 static void checksum_die_context (dw_die_ref, struct md5_ctx *);
6004 static void generate_type_signature (dw_die_ref, comdat_type_node *);
6005 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
6006 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
6007 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
6008 static int same_die_p (dw_die_ref, dw_die_ref, int *);
6009 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
6010 static void compute_section_prefix (dw_die_ref);
6011 static int is_type_die (dw_die_ref);
6012 static int is_comdat_die (dw_die_ref);
6013 static int is_symbol_die (dw_die_ref);
6014 static void assign_symbol_names (dw_die_ref);
6015 static void break_out_includes (dw_die_ref);
6016 static int is_declaration_die (dw_die_ref);
6017 static int should_move_die_to_comdat (dw_die_ref);
6018 static dw_die_ref clone_as_declaration (dw_die_ref);
6019 static dw_die_ref clone_die (dw_die_ref);
6020 static dw_die_ref clone_tree (dw_die_ref);
6021 static void copy_declaration_context (dw_die_ref, dw_die_ref);
6022 static void generate_skeleton_ancestor_tree (skeleton_chain_node *);
6023 static void generate_skeleton_bottom_up (skeleton_chain_node *);
6024 static dw_die_ref generate_skeleton (dw_die_ref);
6025 static dw_die_ref remove_child_or_replace_with_skeleton (dw_die_ref,
6026 dw_die_ref);
6027 static void break_out_comdat_types (dw_die_ref);
6028 static dw_die_ref copy_ancestor_tree (dw_die_ref, dw_die_ref, htab_t);
6029 static void copy_decls_walk (dw_die_ref, dw_die_ref, htab_t);
6030 static void copy_decls_for_unworthy_types (dw_die_ref);
6032 static hashval_t htab_cu_hash (const void *);
6033 static int htab_cu_eq (const void *, const void *);
6034 static void htab_cu_del (void *);
6035 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
6036 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
6037 static void add_sibling_attributes (dw_die_ref);
6038 static void build_abbrev_table (dw_die_ref);
6039 static void output_location_lists (dw_die_ref);
6040 static int constant_size (unsigned HOST_WIDE_INT);
6041 static unsigned long size_of_die (dw_die_ref);
6042 static void calc_die_sizes (dw_die_ref);
6043 static void mark_dies (dw_die_ref);
6044 static void unmark_dies (dw_die_ref);
6045 static void unmark_all_dies (dw_die_ref);
6046 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
6047 static unsigned long size_of_aranges (void);
6048 static enum dwarf_form value_format (dw_attr_ref);
6049 static void output_value_format (dw_attr_ref);
6050 static void output_abbrev_section (void);
6051 static void output_die_symbol (dw_die_ref);
6052 static void output_die (dw_die_ref);
6053 static void output_compilation_unit_header (void);
6054 static void output_comp_unit (dw_die_ref, int);
6055 static void output_comdat_type_unit (comdat_type_node *);
6056 static const char *dwarf2_name (tree, int);
6057 static void add_pubname (tree, dw_die_ref);
6058 static void add_pubname_string (const char *, dw_die_ref);
6059 static void add_pubtype (tree, dw_die_ref);
6060 static void output_pubnames (VEC (pubname_entry,gc) *);
6061 static void add_arange (tree, dw_die_ref);
6062 static void output_aranges (void);
6063 static unsigned int add_ranges_num (int);
6064 static unsigned int add_ranges (const_tree);
6065 static void add_ranges_by_labels (dw_die_ref, const char *, const char *,
6066 bool *);
6067 static void output_ranges (void);
6068 static void output_line_info (void);
6069 static void output_file_names (void);
6070 static dw_die_ref base_type_die (tree);
6071 static int is_base_type (tree);
6072 static dw_die_ref subrange_type_die (tree, tree, tree, dw_die_ref);
6073 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
6074 static dw_die_ref generic_parameter_die (tree, tree, bool, dw_die_ref);
6075 static dw_die_ref template_parameter_pack_die (tree, tree, dw_die_ref);
6076 static int type_is_enum (const_tree);
6077 static unsigned int dbx_reg_number (const_rtx);
6078 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
6079 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
6080 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
6081 enum var_init_status);
6082 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
6083 enum var_init_status);
6084 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT,
6085 enum var_init_status);
6086 static int is_based_loc (const_rtx);
6087 static int resolve_one_addr (rtx *, void *);
6088 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode,
6089 enum var_init_status);
6090 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
6091 enum var_init_status);
6092 static dw_loc_descr_ref loc_descriptor (rtx, enum machine_mode mode,
6093 enum var_init_status);
6094 static dw_loc_list_ref loc_list_from_tree (tree, int);
6095 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
6096 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
6097 static tree field_type (const_tree);
6098 static unsigned int simple_type_align_in_bits (const_tree);
6099 static unsigned int simple_decl_align_in_bits (const_tree);
6100 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
6101 static HOST_WIDE_INT field_byte_offset (const_tree);
6102 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
6103 dw_loc_list_ref);
6104 static void add_data_member_location_attribute (dw_die_ref, tree);
6105 static bool add_const_value_attribute (dw_die_ref, rtx);
6106 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
6107 static void insert_float (const_rtx, unsigned char *);
6108 static rtx rtl_for_decl_location (tree);
6109 static bool add_location_or_const_value_attribute (dw_die_ref, tree,
6110 enum dwarf_attribute);
6111 static bool tree_add_const_value_attribute (dw_die_ref, tree);
6112 static bool tree_add_const_value_attribute_for_decl (dw_die_ref, tree);
6113 static void add_name_attribute (dw_die_ref, const char *);
6114 static void add_comp_dir_attribute (dw_die_ref);
6115 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
6116 static void add_subscript_info (dw_die_ref, tree, bool);
6117 static void add_byte_size_attribute (dw_die_ref, tree);
6118 static void add_bit_offset_attribute (dw_die_ref, tree);
6119 static void add_bit_size_attribute (dw_die_ref, tree);
6120 static void add_prototyped_attribute (dw_die_ref, tree);
6121 static dw_die_ref add_abstract_origin_attribute (dw_die_ref, tree);
6122 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
6123 static void add_src_coords_attributes (dw_die_ref, tree);
6124 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
6125 static void push_decl_scope (tree);
6126 static void pop_decl_scope (void);
6127 static dw_die_ref scope_die_for (tree, dw_die_ref);
6128 static inline int local_scope_p (dw_die_ref);
6129 static inline int class_scope_p (dw_die_ref);
6130 static inline int class_or_namespace_scope_p (dw_die_ref);
6131 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
6132 static void add_calling_convention_attribute (dw_die_ref, tree);
6133 static const char *type_tag (const_tree);
6134 static tree member_declared_type (const_tree);
6135 #if 0
6136 static const char *decl_start_label (tree);
6137 #endif
6138 static void gen_array_type_die (tree, dw_die_ref);
6139 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
6140 #if 0
6141 static void gen_entry_point_die (tree, dw_die_ref);
6142 #endif
6143 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
6144 static dw_die_ref gen_formal_parameter_die (tree, tree, bool, dw_die_ref);
6145 static dw_die_ref gen_formal_parameter_pack_die (tree, tree, dw_die_ref, tree*);
6146 static void gen_unspecified_parameters_die (tree, dw_die_ref);
6147 static void gen_formal_types_die (tree, dw_die_ref);
6148 static void gen_subprogram_die (tree, dw_die_ref);
6149 static void gen_variable_die (tree, tree, dw_die_ref);
6150 static void gen_const_die (tree, dw_die_ref);
6151 static void gen_label_die (tree, dw_die_ref);
6152 static void gen_lexical_block_die (tree, dw_die_ref, int);
6153 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
6154 static void gen_field_die (tree, dw_die_ref);
6155 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
6156 static dw_die_ref gen_compile_unit_die (const char *);
6157 static void gen_inheritance_die (tree, tree, dw_die_ref);
6158 static void gen_member_die (tree, dw_die_ref);
6159 static void gen_struct_or_union_type_die (tree, dw_die_ref,
6160 enum debug_info_usage);
6161 static void gen_subroutine_type_die (tree, dw_die_ref);
6162 static void gen_typedef_die (tree, dw_die_ref);
6163 static void gen_type_die (tree, dw_die_ref);
6164 static void gen_block_die (tree, dw_die_ref, int);
6165 static void decls_for_scope (tree, dw_die_ref, int);
6166 static int is_redundant_typedef (const_tree);
6167 static inline dw_die_ref get_context_die (tree);
6168 static void gen_namespace_die (tree, dw_die_ref);
6169 static void gen_decl_die (tree, tree, dw_die_ref);
6170 static dw_die_ref force_decl_die (tree);
6171 static dw_die_ref force_type_die (tree);
6172 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
6173 static dw_die_ref declare_in_namespace (tree, dw_die_ref);
6174 static struct dwarf_file_data * lookup_filename (const char *);
6175 static void retry_incomplete_types (void);
6176 static void gen_type_die_for_member (tree, tree, dw_die_ref);
6177 static void gen_generic_params_dies (tree);
6178 static void splice_child_die (dw_die_ref, dw_die_ref);
6179 static int file_info_cmp (const void *, const void *);
6180 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
6181 const char *, const char *);
6182 static void output_loc_list (dw_loc_list_ref);
6183 static char *gen_internal_sym (const char *);
6185 static void prune_unmark_dies (dw_die_ref);
6186 static void prune_unused_types_mark (dw_die_ref, int);
6187 static void prune_unused_types_walk (dw_die_ref);
6188 static void prune_unused_types_walk_attribs (dw_die_ref);
6189 static void prune_unused_types_prune (dw_die_ref);
6190 static void prune_unused_types (void);
6191 static int maybe_emit_file (struct dwarf_file_data *fd);
6192 static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref, tree);
6193 static void gen_remaining_tmpl_value_param_die_attribute (void);
6195 /* Section names used to hold DWARF debugging information. */
6196 #ifndef DEBUG_INFO_SECTION
6197 #define DEBUG_INFO_SECTION ".debug_info"
6198 #endif
6199 #ifndef DEBUG_ABBREV_SECTION
6200 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
6201 #endif
6202 #ifndef DEBUG_ARANGES_SECTION
6203 #define DEBUG_ARANGES_SECTION ".debug_aranges"
6204 #endif
6205 #ifndef DEBUG_MACINFO_SECTION
6206 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
6207 #endif
6208 #ifndef DEBUG_LINE_SECTION
6209 #define DEBUG_LINE_SECTION ".debug_line"
6210 #endif
6211 #ifndef DEBUG_LOC_SECTION
6212 #define DEBUG_LOC_SECTION ".debug_loc"
6213 #endif
6214 #ifndef DEBUG_PUBNAMES_SECTION
6215 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
6216 #endif
6217 #ifndef DEBUG_PUBTYPES_SECTION
6218 #define DEBUG_PUBTYPES_SECTION ".debug_pubtypes"
6219 #endif
6220 #ifndef DEBUG_DCALL_SECTION
6221 #define DEBUG_DCALL_SECTION ".debug_dcall"
6222 #endif
6223 #ifndef DEBUG_VCALL_SECTION
6224 #define DEBUG_VCALL_SECTION ".debug_vcall"
6225 #endif
6226 #ifndef DEBUG_STR_SECTION
6227 #define DEBUG_STR_SECTION ".debug_str"
6228 #endif
6229 #ifndef DEBUG_RANGES_SECTION
6230 #define DEBUG_RANGES_SECTION ".debug_ranges"
6231 #endif
6233 /* Standard ELF section names for compiled code and data. */
6234 #ifndef TEXT_SECTION_NAME
6235 #define TEXT_SECTION_NAME ".text"
6236 #endif
6238 /* Section flags for .debug_str section. */
6239 #define DEBUG_STR_SECTION_FLAGS \
6240 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
6241 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
6242 : SECTION_DEBUG)
6244 /* Labels we insert at beginning sections we can reference instead of
6245 the section names themselves. */
6247 #ifndef TEXT_SECTION_LABEL
6248 #define TEXT_SECTION_LABEL "Ltext"
6249 #endif
6250 #ifndef COLD_TEXT_SECTION_LABEL
6251 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
6252 #endif
6253 #ifndef DEBUG_LINE_SECTION_LABEL
6254 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
6255 #endif
6256 #ifndef DEBUG_INFO_SECTION_LABEL
6257 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
6258 #endif
6259 #ifndef DEBUG_ABBREV_SECTION_LABEL
6260 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
6261 #endif
6262 #ifndef DEBUG_LOC_SECTION_LABEL
6263 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
6264 #endif
6265 #ifndef DEBUG_RANGES_SECTION_LABEL
6266 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
6267 #endif
6268 #ifndef DEBUG_MACINFO_SECTION_LABEL
6269 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
6270 #endif
6272 /* Definitions of defaults for formats and names of various special
6273 (artificial) labels which may be generated within this file (when the -g
6274 options is used and DWARF2_DEBUGGING_INFO is in effect.
6275 If necessary, these may be overridden from within the tm.h file, but
6276 typically, overriding these defaults is unnecessary. */
6278 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
6279 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6280 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6281 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
6282 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6283 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6284 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6285 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6286 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6287 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
6289 #ifndef TEXT_END_LABEL
6290 #define TEXT_END_LABEL "Letext"
6291 #endif
6292 #ifndef COLD_END_LABEL
6293 #define COLD_END_LABEL "Letext_cold"
6294 #endif
6295 #ifndef BLOCK_BEGIN_LABEL
6296 #define BLOCK_BEGIN_LABEL "LBB"
6297 #endif
6298 #ifndef BLOCK_END_LABEL
6299 #define BLOCK_END_LABEL "LBE"
6300 #endif
6301 #ifndef LINE_CODE_LABEL
6302 #define LINE_CODE_LABEL "LM"
6303 #endif
6304 #ifndef SEPARATE_LINE_CODE_LABEL
6305 #define SEPARATE_LINE_CODE_LABEL "LSM"
6306 #endif
6309 /* We allow a language front-end to designate a function that is to be
6310 called to "demangle" any name before it is put into a DIE. */
6312 static const char *(*demangle_name_func) (const char *);
6314 void
6315 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
6317 demangle_name_func = func;
6320 /* Test if rtl node points to a pseudo register. */
6322 static inline int
6323 is_pseudo_reg (const_rtx rtl)
6325 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
6326 || (GET_CODE (rtl) == SUBREG
6327 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
6330 /* Return a reference to a type, with its const and volatile qualifiers
6331 removed. */
6333 static inline tree
6334 type_main_variant (tree type)
6336 type = TYPE_MAIN_VARIANT (type);
6338 /* ??? There really should be only one main variant among any group of
6339 variants of a given type (and all of the MAIN_VARIANT values for all
6340 members of the group should point to that one type) but sometimes the C
6341 front-end messes this up for array types, so we work around that bug
6342 here. */
6343 if (TREE_CODE (type) == ARRAY_TYPE)
6344 while (type != TYPE_MAIN_VARIANT (type))
6345 type = TYPE_MAIN_VARIANT (type);
6347 return type;
6350 /* Return nonzero if the given type node represents a tagged type. */
6352 static inline int
6353 is_tagged_type (const_tree type)
6355 enum tree_code code = TREE_CODE (type);
6357 return (code == RECORD_TYPE || code == UNION_TYPE
6358 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
6361 /* Convert a DIE tag into its string name. */
6363 static const char *
6364 dwarf_tag_name (unsigned int tag)
6366 switch (tag)
6368 case DW_TAG_padding:
6369 return "DW_TAG_padding";
6370 case DW_TAG_array_type:
6371 return "DW_TAG_array_type";
6372 case DW_TAG_class_type:
6373 return "DW_TAG_class_type";
6374 case DW_TAG_entry_point:
6375 return "DW_TAG_entry_point";
6376 case DW_TAG_enumeration_type:
6377 return "DW_TAG_enumeration_type";
6378 case DW_TAG_formal_parameter:
6379 return "DW_TAG_formal_parameter";
6380 case DW_TAG_imported_declaration:
6381 return "DW_TAG_imported_declaration";
6382 case DW_TAG_label:
6383 return "DW_TAG_label";
6384 case DW_TAG_lexical_block:
6385 return "DW_TAG_lexical_block";
6386 case DW_TAG_member:
6387 return "DW_TAG_member";
6388 case DW_TAG_pointer_type:
6389 return "DW_TAG_pointer_type";
6390 case DW_TAG_reference_type:
6391 return "DW_TAG_reference_type";
6392 case DW_TAG_compile_unit:
6393 return "DW_TAG_compile_unit";
6394 case DW_TAG_string_type:
6395 return "DW_TAG_string_type";
6396 case DW_TAG_structure_type:
6397 return "DW_TAG_structure_type";
6398 case DW_TAG_subroutine_type:
6399 return "DW_TAG_subroutine_type";
6400 case DW_TAG_typedef:
6401 return "DW_TAG_typedef";
6402 case DW_TAG_union_type:
6403 return "DW_TAG_union_type";
6404 case DW_TAG_unspecified_parameters:
6405 return "DW_TAG_unspecified_parameters";
6406 case DW_TAG_variant:
6407 return "DW_TAG_variant";
6408 case DW_TAG_common_block:
6409 return "DW_TAG_common_block";
6410 case DW_TAG_common_inclusion:
6411 return "DW_TAG_common_inclusion";
6412 case DW_TAG_inheritance:
6413 return "DW_TAG_inheritance";
6414 case DW_TAG_inlined_subroutine:
6415 return "DW_TAG_inlined_subroutine";
6416 case DW_TAG_module:
6417 return "DW_TAG_module";
6418 case DW_TAG_ptr_to_member_type:
6419 return "DW_TAG_ptr_to_member_type";
6420 case DW_TAG_set_type:
6421 return "DW_TAG_set_type";
6422 case DW_TAG_subrange_type:
6423 return "DW_TAG_subrange_type";
6424 case DW_TAG_with_stmt:
6425 return "DW_TAG_with_stmt";
6426 case DW_TAG_access_declaration:
6427 return "DW_TAG_access_declaration";
6428 case DW_TAG_base_type:
6429 return "DW_TAG_base_type";
6430 case DW_TAG_catch_block:
6431 return "DW_TAG_catch_block";
6432 case DW_TAG_const_type:
6433 return "DW_TAG_const_type";
6434 case DW_TAG_constant:
6435 return "DW_TAG_constant";
6436 case DW_TAG_enumerator:
6437 return "DW_TAG_enumerator";
6438 case DW_TAG_file_type:
6439 return "DW_TAG_file_type";
6440 case DW_TAG_friend:
6441 return "DW_TAG_friend";
6442 case DW_TAG_namelist:
6443 return "DW_TAG_namelist";
6444 case DW_TAG_namelist_item:
6445 return "DW_TAG_namelist_item";
6446 case DW_TAG_packed_type:
6447 return "DW_TAG_packed_type";
6448 case DW_TAG_subprogram:
6449 return "DW_TAG_subprogram";
6450 case DW_TAG_template_type_param:
6451 return "DW_TAG_template_type_param";
6452 case DW_TAG_template_value_param:
6453 return "DW_TAG_template_value_param";
6454 case DW_TAG_thrown_type:
6455 return "DW_TAG_thrown_type";
6456 case DW_TAG_try_block:
6457 return "DW_TAG_try_block";
6458 case DW_TAG_variant_part:
6459 return "DW_TAG_variant_part";
6460 case DW_TAG_variable:
6461 return "DW_TAG_variable";
6462 case DW_TAG_volatile_type:
6463 return "DW_TAG_volatile_type";
6464 case DW_TAG_dwarf_procedure:
6465 return "DW_TAG_dwarf_procedure";
6466 case DW_TAG_restrict_type:
6467 return "DW_TAG_restrict_type";
6468 case DW_TAG_interface_type:
6469 return "DW_TAG_interface_type";
6470 case DW_TAG_namespace:
6471 return "DW_TAG_namespace";
6472 case DW_TAG_imported_module:
6473 return "DW_TAG_imported_module";
6474 case DW_TAG_unspecified_type:
6475 return "DW_TAG_unspecified_type";
6476 case DW_TAG_partial_unit:
6477 return "DW_TAG_partial_unit";
6478 case DW_TAG_imported_unit:
6479 return "DW_TAG_imported_unit";
6480 case DW_TAG_condition:
6481 return "DW_TAG_condition";
6482 case DW_TAG_shared_type:
6483 return "DW_TAG_shared_type";
6484 case DW_TAG_type_unit:
6485 return "DW_TAG_type_unit";
6486 case DW_TAG_rvalue_reference_type:
6487 return "DW_TAG_rvalue_reference_type";
6488 case DW_TAG_template_alias:
6489 return "DW_TAG_template_alias";
6490 case DW_TAG_GNU_template_parameter_pack:
6491 return "DW_TAG_GNU_template_parameter_pack";
6492 case DW_TAG_GNU_formal_parameter_pack:
6493 return "DW_TAG_GNU_formal_parameter_pack";
6494 case DW_TAG_MIPS_loop:
6495 return "DW_TAG_MIPS_loop";
6496 case DW_TAG_format_label:
6497 return "DW_TAG_format_label";
6498 case DW_TAG_function_template:
6499 return "DW_TAG_function_template";
6500 case DW_TAG_class_template:
6501 return "DW_TAG_class_template";
6502 case DW_TAG_GNU_BINCL:
6503 return "DW_TAG_GNU_BINCL";
6504 case DW_TAG_GNU_EINCL:
6505 return "DW_TAG_GNU_EINCL";
6506 case DW_TAG_GNU_template_template_param:
6507 return "DW_TAG_GNU_template_template_param";
6508 default:
6509 return "DW_TAG_<unknown>";
6513 /* Convert a DWARF attribute code into its string name. */
6515 static const char *
6516 dwarf_attr_name (unsigned int attr)
6518 switch (attr)
6520 case DW_AT_sibling:
6521 return "DW_AT_sibling";
6522 case DW_AT_location:
6523 return "DW_AT_location";
6524 case DW_AT_name:
6525 return "DW_AT_name";
6526 case DW_AT_ordering:
6527 return "DW_AT_ordering";
6528 case DW_AT_subscr_data:
6529 return "DW_AT_subscr_data";
6530 case DW_AT_byte_size:
6531 return "DW_AT_byte_size";
6532 case DW_AT_bit_offset:
6533 return "DW_AT_bit_offset";
6534 case DW_AT_bit_size:
6535 return "DW_AT_bit_size";
6536 case DW_AT_element_list:
6537 return "DW_AT_element_list";
6538 case DW_AT_stmt_list:
6539 return "DW_AT_stmt_list";
6540 case DW_AT_low_pc:
6541 return "DW_AT_low_pc";
6542 case DW_AT_high_pc:
6543 return "DW_AT_high_pc";
6544 case DW_AT_language:
6545 return "DW_AT_language";
6546 case DW_AT_member:
6547 return "DW_AT_member";
6548 case DW_AT_discr:
6549 return "DW_AT_discr";
6550 case DW_AT_discr_value:
6551 return "DW_AT_discr_value";
6552 case DW_AT_visibility:
6553 return "DW_AT_visibility";
6554 case DW_AT_import:
6555 return "DW_AT_import";
6556 case DW_AT_string_length:
6557 return "DW_AT_string_length";
6558 case DW_AT_common_reference:
6559 return "DW_AT_common_reference";
6560 case DW_AT_comp_dir:
6561 return "DW_AT_comp_dir";
6562 case DW_AT_const_value:
6563 return "DW_AT_const_value";
6564 case DW_AT_containing_type:
6565 return "DW_AT_containing_type";
6566 case DW_AT_default_value:
6567 return "DW_AT_default_value";
6568 case DW_AT_inline:
6569 return "DW_AT_inline";
6570 case DW_AT_is_optional:
6571 return "DW_AT_is_optional";
6572 case DW_AT_lower_bound:
6573 return "DW_AT_lower_bound";
6574 case DW_AT_producer:
6575 return "DW_AT_producer";
6576 case DW_AT_prototyped:
6577 return "DW_AT_prototyped";
6578 case DW_AT_return_addr:
6579 return "DW_AT_return_addr";
6580 case DW_AT_start_scope:
6581 return "DW_AT_start_scope";
6582 case DW_AT_bit_stride:
6583 return "DW_AT_bit_stride";
6584 case DW_AT_upper_bound:
6585 return "DW_AT_upper_bound";
6586 case DW_AT_abstract_origin:
6587 return "DW_AT_abstract_origin";
6588 case DW_AT_accessibility:
6589 return "DW_AT_accessibility";
6590 case DW_AT_address_class:
6591 return "DW_AT_address_class";
6592 case DW_AT_artificial:
6593 return "DW_AT_artificial";
6594 case DW_AT_base_types:
6595 return "DW_AT_base_types";
6596 case DW_AT_calling_convention:
6597 return "DW_AT_calling_convention";
6598 case DW_AT_count:
6599 return "DW_AT_count";
6600 case DW_AT_data_member_location:
6601 return "DW_AT_data_member_location";
6602 case DW_AT_decl_column:
6603 return "DW_AT_decl_column";
6604 case DW_AT_decl_file:
6605 return "DW_AT_decl_file";
6606 case DW_AT_decl_line:
6607 return "DW_AT_decl_line";
6608 case DW_AT_declaration:
6609 return "DW_AT_declaration";
6610 case DW_AT_discr_list:
6611 return "DW_AT_discr_list";
6612 case DW_AT_encoding:
6613 return "DW_AT_encoding";
6614 case DW_AT_external:
6615 return "DW_AT_external";
6616 case DW_AT_explicit:
6617 return "DW_AT_explicit";
6618 case DW_AT_frame_base:
6619 return "DW_AT_frame_base";
6620 case DW_AT_friend:
6621 return "DW_AT_friend";
6622 case DW_AT_identifier_case:
6623 return "DW_AT_identifier_case";
6624 case DW_AT_macro_info:
6625 return "DW_AT_macro_info";
6626 case DW_AT_namelist_items:
6627 return "DW_AT_namelist_items";
6628 case DW_AT_priority:
6629 return "DW_AT_priority";
6630 case DW_AT_segment:
6631 return "DW_AT_segment";
6632 case DW_AT_specification:
6633 return "DW_AT_specification";
6634 case DW_AT_static_link:
6635 return "DW_AT_static_link";
6636 case DW_AT_type:
6637 return "DW_AT_type";
6638 case DW_AT_use_location:
6639 return "DW_AT_use_location";
6640 case DW_AT_variable_parameter:
6641 return "DW_AT_variable_parameter";
6642 case DW_AT_virtuality:
6643 return "DW_AT_virtuality";
6644 case DW_AT_vtable_elem_location:
6645 return "DW_AT_vtable_elem_location";
6647 case DW_AT_allocated:
6648 return "DW_AT_allocated";
6649 case DW_AT_associated:
6650 return "DW_AT_associated";
6651 case DW_AT_data_location:
6652 return "DW_AT_data_location";
6653 case DW_AT_byte_stride:
6654 return "DW_AT_byte_stride";
6655 case DW_AT_entry_pc:
6656 return "DW_AT_entry_pc";
6657 case DW_AT_use_UTF8:
6658 return "DW_AT_use_UTF8";
6659 case DW_AT_extension:
6660 return "DW_AT_extension";
6661 case DW_AT_ranges:
6662 return "DW_AT_ranges";
6663 case DW_AT_trampoline:
6664 return "DW_AT_trampoline";
6665 case DW_AT_call_column:
6666 return "DW_AT_call_column";
6667 case DW_AT_call_file:
6668 return "DW_AT_call_file";
6669 case DW_AT_call_line:
6670 return "DW_AT_call_line";
6672 case DW_AT_signature:
6673 return "DW_AT_signature";
6674 case DW_AT_main_subprogram:
6675 return "DW_AT_main_subprogram";
6676 case DW_AT_data_bit_offset:
6677 return "DW_AT_data_bit_offset";
6678 case DW_AT_const_expr:
6679 return "DW_AT_const_expr";
6680 case DW_AT_enum_class:
6681 return "DW_AT_enum_class";
6682 case DW_AT_linkage_name:
6683 return "DW_AT_linkage_name";
6685 case DW_AT_MIPS_fde:
6686 return "DW_AT_MIPS_fde";
6687 case DW_AT_MIPS_loop_begin:
6688 return "DW_AT_MIPS_loop_begin";
6689 case DW_AT_MIPS_tail_loop_begin:
6690 return "DW_AT_MIPS_tail_loop_begin";
6691 case DW_AT_MIPS_epilog_begin:
6692 return "DW_AT_MIPS_epilog_begin";
6693 case DW_AT_MIPS_loop_unroll_factor:
6694 return "DW_AT_MIPS_loop_unroll_factor";
6695 case DW_AT_MIPS_software_pipeline_depth:
6696 return "DW_AT_MIPS_software_pipeline_depth";
6697 case DW_AT_MIPS_linkage_name:
6698 return "DW_AT_MIPS_linkage_name";
6699 case DW_AT_MIPS_stride:
6700 return "DW_AT_MIPS_stride";
6701 case DW_AT_MIPS_abstract_name:
6702 return "DW_AT_MIPS_abstract_name";
6703 case DW_AT_MIPS_clone_origin:
6704 return "DW_AT_MIPS_clone_origin";
6705 case DW_AT_MIPS_has_inlines:
6706 return "DW_AT_MIPS_has_inlines";
6708 case DW_AT_sf_names:
6709 return "DW_AT_sf_names";
6710 case DW_AT_src_info:
6711 return "DW_AT_src_info";
6712 case DW_AT_mac_info:
6713 return "DW_AT_mac_info";
6714 case DW_AT_src_coords:
6715 return "DW_AT_src_coords";
6716 case DW_AT_body_begin:
6717 return "DW_AT_body_begin";
6718 case DW_AT_body_end:
6719 return "DW_AT_body_end";
6720 case DW_AT_GNU_vector:
6721 return "DW_AT_GNU_vector";
6722 case DW_AT_GNU_guarded_by:
6723 return "DW_AT_GNU_guarded_by";
6724 case DW_AT_GNU_pt_guarded_by:
6725 return "DW_AT_GNU_pt_guarded_by";
6726 case DW_AT_GNU_guarded:
6727 return "DW_AT_GNU_guarded";
6728 case DW_AT_GNU_pt_guarded:
6729 return "DW_AT_GNU_pt_guarded";
6730 case DW_AT_GNU_locks_excluded:
6731 return "DW_AT_GNU_locks_excluded";
6732 case DW_AT_GNU_exclusive_locks_required:
6733 return "DW_AT_GNU_exclusive_locks_required";
6734 case DW_AT_GNU_shared_locks_required:
6735 return "DW_AT_GNU_shared_locks_required";
6736 case DW_AT_GNU_odr_signature:
6737 return "DW_AT_GNU_odr_signature";
6738 case DW_AT_GNU_template_name:
6739 return "DW_AT_GNU_template_name";
6741 case DW_AT_VMS_rtnbeg_pd_address:
6742 return "DW_AT_VMS_rtnbeg_pd_address";
6744 default:
6745 return "DW_AT_<unknown>";
6749 /* Convert a DWARF value form code into its string name. */
6751 static const char *
6752 dwarf_form_name (unsigned int form)
6754 switch (form)
6756 case DW_FORM_addr:
6757 return "DW_FORM_addr";
6758 case DW_FORM_block2:
6759 return "DW_FORM_block2";
6760 case DW_FORM_block4:
6761 return "DW_FORM_block4";
6762 case DW_FORM_data2:
6763 return "DW_FORM_data2";
6764 case DW_FORM_data4:
6765 return "DW_FORM_data4";
6766 case DW_FORM_data8:
6767 return "DW_FORM_data8";
6768 case DW_FORM_string:
6769 return "DW_FORM_string";
6770 case DW_FORM_block:
6771 return "DW_FORM_block";
6772 case DW_FORM_block1:
6773 return "DW_FORM_block1";
6774 case DW_FORM_data1:
6775 return "DW_FORM_data1";
6776 case DW_FORM_flag:
6777 return "DW_FORM_flag";
6778 case DW_FORM_sdata:
6779 return "DW_FORM_sdata";
6780 case DW_FORM_strp:
6781 return "DW_FORM_strp";
6782 case DW_FORM_udata:
6783 return "DW_FORM_udata";
6784 case DW_FORM_ref_addr:
6785 return "DW_FORM_ref_addr";
6786 case DW_FORM_ref1:
6787 return "DW_FORM_ref1";
6788 case DW_FORM_ref2:
6789 return "DW_FORM_ref2";
6790 case DW_FORM_ref4:
6791 return "DW_FORM_ref4";
6792 case DW_FORM_ref8:
6793 return "DW_FORM_ref8";
6794 case DW_FORM_ref_udata:
6795 return "DW_FORM_ref_udata";
6796 case DW_FORM_indirect:
6797 return "DW_FORM_indirect";
6798 case DW_FORM_sec_offset:
6799 return "DW_FORM_sec_offset";
6800 case DW_FORM_exprloc:
6801 return "DW_FORM_exprloc";
6802 case DW_FORM_flag_present:
6803 return "DW_FORM_flag_present";
6804 case DW_FORM_ref_sig8:
6805 return "DW_FORM_ref_sig8";
6806 default:
6807 return "DW_FORM_<unknown>";
6811 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
6812 instance of an inlined instance of a decl which is local to an inline
6813 function, so we have to trace all of the way back through the origin chain
6814 to find out what sort of node actually served as the original seed for the
6815 given block. */
6817 static tree
6818 decl_ultimate_origin (const_tree decl)
6820 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
6821 return NULL_TREE;
6823 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
6824 nodes in the function to point to themselves; ignore that if
6825 we're trying to output the abstract instance of this function. */
6826 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
6827 return NULL_TREE;
6829 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
6830 most distant ancestor, this should never happen. */
6831 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
6833 return DECL_ABSTRACT_ORIGIN (decl);
6836 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
6837 of a virtual function may refer to a base class, so we check the 'this'
6838 parameter. */
6840 static tree
6841 decl_class_context (tree decl)
6843 tree context = NULL_TREE;
6845 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
6846 context = DECL_CONTEXT (decl);
6847 else
6848 context = TYPE_MAIN_VARIANT
6849 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6851 if (context && !TYPE_P (context))
6852 context = NULL_TREE;
6854 return context;
6857 /* Add an attribute/value pair to a DIE. */
6859 static inline void
6860 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
6862 /* Maybe this should be an assert? */
6863 if (die == NULL)
6864 return;
6866 if (die->die_attr == NULL)
6867 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
6868 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
6871 static inline enum dw_val_class
6872 AT_class (dw_attr_ref a)
6874 return a->dw_attr_val.val_class;
6877 /* Add a flag value attribute to a DIE. */
6879 static inline void
6880 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
6882 dw_attr_node attr;
6884 attr.dw_attr = attr_kind;
6885 attr.dw_attr_val.val_class = dw_val_class_flag;
6886 attr.dw_attr_val.v.val_flag = flag;
6887 add_dwarf_attr (die, &attr);
6890 static inline unsigned
6891 AT_flag (dw_attr_ref a)
6893 gcc_assert (a && AT_class (a) == dw_val_class_flag);
6894 return a->dw_attr_val.v.val_flag;
6897 /* Add a signed integer attribute value to a DIE. */
6899 static inline void
6900 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
6902 dw_attr_node attr;
6904 attr.dw_attr = attr_kind;
6905 attr.dw_attr_val.val_class = dw_val_class_const;
6906 attr.dw_attr_val.v.val_int = int_val;
6907 add_dwarf_attr (die, &attr);
6910 static inline HOST_WIDE_INT
6911 AT_int (dw_attr_ref a)
6913 gcc_assert (a && AT_class (a) == dw_val_class_const);
6914 return a->dw_attr_val.v.val_int;
6917 /* Add an unsigned integer attribute value to a DIE. */
6919 static inline void
6920 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
6921 unsigned HOST_WIDE_INT unsigned_val)
6923 dw_attr_node attr;
6925 attr.dw_attr = attr_kind;
6926 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
6927 attr.dw_attr_val.v.val_unsigned = unsigned_val;
6928 add_dwarf_attr (die, &attr);
6931 static inline unsigned HOST_WIDE_INT
6932 AT_unsigned (dw_attr_ref a)
6934 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
6935 return a->dw_attr_val.v.val_unsigned;
6938 /* Add an unsigned double integer attribute value to a DIE. */
6940 static inline void
6941 add_AT_double (dw_die_ref die, enum dwarf_attribute attr_kind,
6942 HOST_WIDE_INT high, unsigned HOST_WIDE_INT low)
6944 dw_attr_node attr;
6946 attr.dw_attr = attr_kind;
6947 attr.dw_attr_val.val_class = dw_val_class_const_double;
6948 attr.dw_attr_val.v.val_double.high = high;
6949 attr.dw_attr_val.v.val_double.low = low;
6950 add_dwarf_attr (die, &attr);
6953 /* Add a floating point attribute value to a DIE and return it. */
6955 static inline void
6956 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
6957 unsigned int length, unsigned int elt_size, unsigned char *array)
6959 dw_attr_node attr;
6961 attr.dw_attr = attr_kind;
6962 attr.dw_attr_val.val_class = dw_val_class_vec;
6963 attr.dw_attr_val.v.val_vec.length = length;
6964 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
6965 attr.dw_attr_val.v.val_vec.array = array;
6966 add_dwarf_attr (die, &attr);
6969 /* Add an 8-byte data attribute value to a DIE. */
6971 static inline void
6972 add_AT_data8 (dw_die_ref die, enum dwarf_attribute attr_kind,
6973 unsigned char data8[8])
6975 dw_attr_node attr;
6977 attr.dw_attr = attr_kind;
6978 attr.dw_attr_val.val_class = dw_val_class_data8;
6979 memcpy (attr.dw_attr_val.v.val_data8, data8, 8);
6980 add_dwarf_attr (die, &attr);
6983 /* Hash and equality functions for debug_str_hash. */
6985 static hashval_t
6986 debug_str_do_hash (const void *x)
6988 return htab_hash_string (((const struct indirect_string_node *)x)->str);
6991 static int
6992 debug_str_eq (const void *x1, const void *x2)
6994 return strcmp ((((const struct indirect_string_node *)x1)->str),
6995 (const char *)x2) == 0;
6998 /* Add STR to the indirect string hash table. */
7000 static struct indirect_string_node *
7001 find_AT_string (const char *str)
7003 struct indirect_string_node *node;
7004 void **slot;
7006 if (! debug_str_hash)
7007 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
7008 debug_str_eq, NULL);
7010 slot = htab_find_slot_with_hash (debug_str_hash, str,
7011 htab_hash_string (str), INSERT);
7012 if (*slot == NULL)
7014 node = (struct indirect_string_node *)
7015 ggc_alloc_cleared (sizeof (struct indirect_string_node));
7016 node->str = ggc_strdup (str);
7017 *slot = node;
7019 else
7020 node = (struct indirect_string_node *) *slot;
7022 node->refcount++;
7023 return node;
7026 /* Add a string attribute value to a DIE. */
7028 static inline void
7029 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
7031 dw_attr_node attr;
7032 struct indirect_string_node *node;
7034 node = find_AT_string (str);
7036 attr.dw_attr = attr_kind;
7037 attr.dw_attr_val.val_class = dw_val_class_str;
7038 attr.dw_attr_val.v.val_str = node;
7039 add_dwarf_attr (die, &attr);
7042 /* Create a label for an indirect string node, ensuring it is going to
7043 be output, unless its reference count goes down to zero. */
7045 static inline void
7046 gen_label_for_indirect_string (struct indirect_string_node *node)
7048 char label[32];
7050 if (node->label)
7051 return;
7053 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
7054 ++dw2_string_counter;
7055 node->label = xstrdup (label);
7058 /* Create a SYMBOL_REF rtx whose value is the initial address of a
7059 debug string STR. */
7061 static inline rtx
7062 get_debug_string_label (const char *str)
7064 struct indirect_string_node *node = find_AT_string (str);
7066 debug_str_hash_forced = true;
7068 gen_label_for_indirect_string (node);
7070 return gen_rtx_SYMBOL_REF (Pmode, node->label);
7073 static inline const char *
7074 AT_string (dw_attr_ref a)
7076 gcc_assert (a && AT_class (a) == dw_val_class_str);
7077 return a->dw_attr_val.v.val_str->str;
7080 /* Find out whether a string should be output inline in DIE
7081 or out-of-line in .debug_str section. */
7083 static enum dwarf_form
7084 AT_string_form (dw_attr_ref a)
7086 struct indirect_string_node *node;
7087 unsigned int len;
7089 gcc_assert (a && AT_class (a) == dw_val_class_str);
7091 node = a->dw_attr_val.v.val_str;
7092 if (node->form)
7093 return node->form;
7095 len = strlen (node->str) + 1;
7097 /* If the string is shorter or equal to the size of the reference, it is
7098 always better to put it inline. */
7099 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
7100 return node->form = DW_FORM_string;
7102 /* If we cannot expect the linker to merge strings in .debug_str
7103 section, only put it into .debug_str if it is worth even in this
7104 single module. */
7105 if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
7106 || ((debug_str_section->common.flags & SECTION_MERGE) == 0
7107 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len))
7108 return node->form = DW_FORM_string;
7110 gen_label_for_indirect_string (node);
7112 return node->form = DW_FORM_strp;
7115 /* Add a DIE reference attribute value to a DIE. */
7117 static inline void
7118 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
7120 dw_attr_node attr;
7122 attr.dw_attr = attr_kind;
7123 attr.dw_attr_val.val_class = dw_val_class_die_ref;
7124 attr.dw_attr_val.v.val_die_ref.die = targ_die;
7125 attr.dw_attr_val.v.val_die_ref.external = 0;
7126 add_dwarf_attr (die, &attr);
7129 /* Add an AT_specification attribute to a DIE, and also make the back
7130 pointer from the specification to the definition. */
7132 static inline void
7133 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
7135 add_AT_die_ref (die, DW_AT_specification, targ_die);
7136 gcc_assert (!targ_die->die_definition);
7137 targ_die->die_definition = die;
7140 static inline dw_die_ref
7141 AT_ref (dw_attr_ref a)
7143 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
7144 return a->dw_attr_val.v.val_die_ref.die;
7147 static inline int
7148 AT_ref_external (dw_attr_ref a)
7150 if (a && AT_class (a) == dw_val_class_die_ref)
7151 return a->dw_attr_val.v.val_die_ref.external;
7153 return 0;
7156 static inline void
7157 set_AT_ref_external (dw_attr_ref a, int i)
7159 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
7160 a->dw_attr_val.v.val_die_ref.external = i;
7163 /* Add an FDE reference attribute value to a DIE. */
7165 static inline void
7166 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
7168 dw_attr_node attr;
7170 attr.dw_attr = attr_kind;
7171 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
7172 attr.dw_attr_val.v.val_fde_index = targ_fde;
7173 add_dwarf_attr (die, &attr);
7176 /* Add a location description attribute value to a DIE. */
7178 static inline void
7179 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
7181 dw_attr_node attr;
7183 attr.dw_attr = attr_kind;
7184 attr.dw_attr_val.val_class = dw_val_class_loc;
7185 attr.dw_attr_val.v.val_loc = loc;
7186 add_dwarf_attr (die, &attr);
7189 static inline dw_loc_descr_ref
7190 AT_loc (dw_attr_ref a)
7192 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7193 return a->dw_attr_val.v.val_loc;
7196 static inline void
7197 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
7199 dw_attr_node attr;
7201 attr.dw_attr = attr_kind;
7202 attr.dw_attr_val.val_class = dw_val_class_loc_list;
7203 attr.dw_attr_val.v.val_loc_list = loc_list;
7204 add_dwarf_attr (die, &attr);
7205 have_location_lists = true;
7208 static inline dw_loc_list_ref
7209 AT_loc_list (dw_attr_ref a)
7211 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
7212 return a->dw_attr_val.v.val_loc_list;
7215 static inline dw_loc_list_ref *
7216 AT_loc_list_ptr (dw_attr_ref a)
7218 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
7219 return &a->dw_attr_val.v.val_loc_list;
7222 /* Add an address constant attribute value to a DIE. */
7224 static inline void
7225 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
7227 dw_attr_node attr;
7229 attr.dw_attr = attr_kind;
7230 attr.dw_attr_val.val_class = dw_val_class_addr;
7231 attr.dw_attr_val.v.val_addr = addr;
7232 add_dwarf_attr (die, &attr);
7235 /* Get the RTX from to an address DIE attribute. */
7237 static inline rtx
7238 AT_addr (dw_attr_ref a)
7240 gcc_assert (a && AT_class (a) == dw_val_class_addr);
7241 return a->dw_attr_val.v.val_addr;
7244 /* Add a file attribute value to a DIE. */
7246 static inline void
7247 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
7248 struct dwarf_file_data *fd)
7250 dw_attr_node attr;
7252 attr.dw_attr = attr_kind;
7253 attr.dw_attr_val.val_class = dw_val_class_file;
7254 attr.dw_attr_val.v.val_file = fd;
7255 add_dwarf_attr (die, &attr);
7258 /* Get the dwarf_file_data from a file DIE attribute. */
7260 static inline struct dwarf_file_data *
7261 AT_file (dw_attr_ref a)
7263 gcc_assert (a && AT_class (a) == dw_val_class_file);
7264 return a->dw_attr_val.v.val_file;
7267 /* Add a label identifier attribute value to a DIE. */
7269 static inline void
7270 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
7272 dw_attr_node attr;
7274 attr.dw_attr = attr_kind;
7275 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
7276 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
7277 add_dwarf_attr (die, &attr);
7280 /* Add a section offset attribute value to a DIE, an offset into the
7281 debug_line section. */
7283 static inline void
7284 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
7285 const char *label)
7287 dw_attr_node attr;
7289 attr.dw_attr = attr_kind;
7290 attr.dw_attr_val.val_class = dw_val_class_lineptr;
7291 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
7292 add_dwarf_attr (die, &attr);
7295 /* Add a section offset attribute value to a DIE, an offset into the
7296 debug_macinfo section. */
7298 static inline void
7299 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
7300 const char *label)
7302 dw_attr_node attr;
7304 attr.dw_attr = attr_kind;
7305 attr.dw_attr_val.val_class = dw_val_class_macptr;
7306 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
7307 add_dwarf_attr (die, &attr);
7310 /* Add an offset attribute value to a DIE. */
7312 static inline void
7313 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
7314 unsigned HOST_WIDE_INT offset)
7316 dw_attr_node attr;
7318 attr.dw_attr = attr_kind;
7319 attr.dw_attr_val.val_class = dw_val_class_offset;
7320 attr.dw_attr_val.v.val_offset = offset;
7321 add_dwarf_attr (die, &attr);
7324 /* Add an range_list attribute value to a DIE. */
7326 static void
7327 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
7328 long unsigned int offset)
7330 dw_attr_node attr;
7332 attr.dw_attr = attr_kind;
7333 attr.dw_attr_val.val_class = dw_val_class_range_list;
7334 attr.dw_attr_val.v.val_offset = offset;
7335 add_dwarf_attr (die, &attr);
7338 static inline const char *
7339 AT_lbl (dw_attr_ref a)
7341 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
7342 || AT_class (a) == dw_val_class_lineptr
7343 || AT_class (a) == dw_val_class_macptr));
7344 return a->dw_attr_val.v.val_lbl_id;
7347 /* Get the attribute of type attr_kind. */
7349 static dw_attr_ref
7350 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
7352 dw_attr_ref a;
7353 unsigned ix;
7354 dw_die_ref spec = NULL;
7356 if (! die)
7357 return NULL;
7359 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7360 if (a->dw_attr == attr_kind)
7361 return a;
7362 else if (a->dw_attr == DW_AT_specification
7363 || a->dw_attr == DW_AT_abstract_origin)
7364 spec = AT_ref (a);
7366 if (spec)
7367 return get_AT (spec, attr_kind);
7369 return NULL;
7372 /* Return the "low pc" attribute value, typically associated with a subprogram
7373 DIE. Return null if the "low pc" attribute is either not present, or if it
7374 cannot be represented as an assembler label identifier. */
7376 static inline const char *
7377 get_AT_low_pc (dw_die_ref die)
7379 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
7381 return a ? AT_lbl (a) : NULL;
7384 /* Return the "high pc" attribute value, typically associated with a subprogram
7385 DIE. Return null if the "high pc" attribute is either not present, or if it
7386 cannot be represented as an assembler label identifier. */
7388 static inline const char *
7389 get_AT_hi_pc (dw_die_ref die)
7391 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
7393 return a ? AT_lbl (a) : NULL;
7396 /* Return the value of the string attribute designated by ATTR_KIND, or
7397 NULL if it is not present. */
7399 static inline const char *
7400 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
7402 dw_attr_ref a = get_AT (die, attr_kind);
7404 return a ? AT_string (a) : NULL;
7407 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
7408 if it is not present. */
7410 static inline int
7411 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
7413 dw_attr_ref a = get_AT (die, attr_kind);
7415 return a ? AT_flag (a) : 0;
7418 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
7419 if it is not present. */
7421 static inline unsigned
7422 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
7424 dw_attr_ref a = get_AT (die, attr_kind);
7426 return a ? AT_unsigned (a) : 0;
7429 static inline dw_die_ref
7430 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
7432 dw_attr_ref a = get_AT (die, attr_kind);
7434 return a ? AT_ref (a) : NULL;
7437 static inline struct dwarf_file_data *
7438 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
7440 dw_attr_ref a = get_AT (die, attr_kind);
7442 return a ? AT_file (a) : NULL;
7445 /* Return TRUE if the language is C or C++. */
7447 static inline bool
7448 is_c_family (void)
7450 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
7452 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
7453 || lang == DW_LANG_C99
7454 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
7457 /* Return TRUE if the language is C++. */
7459 static inline bool
7460 is_cxx (void)
7462 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
7464 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
7467 /* Return TRUE if the language is Fortran. */
7469 static inline bool
7470 is_fortran (void)
7472 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
7474 return (lang == DW_LANG_Fortran77
7475 || lang == DW_LANG_Fortran90
7476 || lang == DW_LANG_Fortran95);
7479 /* Return TRUE if the language is Java. */
7481 static inline bool
7482 is_java (void)
7484 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
7486 return lang == DW_LANG_Java;
7489 /* Return TRUE if the language is Ada. */
7491 static inline bool
7492 is_ada (void)
7494 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
7496 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
7499 /* Remove the specified attribute if present. */
7501 static void
7502 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
7504 dw_attr_ref a;
7505 unsigned ix;
7507 if (! die)
7508 return;
7510 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7511 if (a->dw_attr == attr_kind)
7513 if (AT_class (a) == dw_val_class_str)
7514 if (a->dw_attr_val.v.val_str->refcount)
7515 a->dw_attr_val.v.val_str->refcount--;
7517 /* VEC_ordered_remove should help reduce the number of abbrevs
7518 that are needed. */
7519 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
7520 return;
7524 /* Remove CHILD from its parent. PREV must have the property that
7525 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
7527 static void
7528 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
7530 gcc_assert (child->die_parent == prev->die_parent);
7531 gcc_assert (prev->die_sib == child);
7532 if (prev == child)
7534 gcc_assert (child->die_parent->die_child == child);
7535 prev = NULL;
7537 else
7538 prev->die_sib = child->die_sib;
7539 if (child->die_parent->die_child == child)
7540 child->die_parent->die_child = prev;
7543 /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that
7544 PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */
7546 static void
7547 replace_child (dw_die_ref old_child, dw_die_ref new_child, dw_die_ref prev)
7549 dw_die_ref parent = old_child->die_parent;
7551 gcc_assert (parent == prev->die_parent);
7552 gcc_assert (prev->die_sib == old_child);
7554 new_child->die_parent = parent;
7555 if (prev == old_child)
7557 gcc_assert (parent->die_child == old_child);
7558 new_child->die_sib = new_child;
7560 else
7562 prev->die_sib = new_child;
7563 new_child->die_sib = old_child->die_sib;
7565 if (old_child->die_parent->die_child == old_child)
7566 old_child->die_parent->die_child = new_child;
7569 /* Move all children from OLD_PARENT to NEW_PARENT. */
7571 static void
7572 move_all_children (dw_die_ref old_parent, dw_die_ref new_parent)
7574 dw_die_ref c;
7575 new_parent->die_child = old_parent->die_child;
7576 old_parent->die_child = NULL;
7577 FOR_EACH_CHILD (new_parent, c, c->die_parent = new_parent);
7580 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
7581 matches TAG. */
7583 static void
7584 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
7586 dw_die_ref c;
7588 c = die->die_child;
7589 if (c) do {
7590 dw_die_ref prev = c;
7591 c = c->die_sib;
7592 while (c->die_tag == tag)
7594 remove_child_with_prev (c, prev);
7595 /* Might have removed every child. */
7596 if (c == c->die_sib)
7597 return;
7598 c = c->die_sib;
7600 } while (c != die->die_child);
7603 /* Add a CHILD_DIE as the last child of DIE. */
7605 static void
7606 add_child_die (dw_die_ref die, dw_die_ref child_die)
7608 /* FIXME this should probably be an assert. */
7609 if (! die || ! child_die)
7610 return;
7611 gcc_assert (die != child_die);
7613 child_die->die_parent = die;
7614 if (die->die_child)
7616 child_die->die_sib = die->die_child->die_sib;
7617 die->die_child->die_sib = child_die;
7619 else
7620 child_die->die_sib = child_die;
7621 die->die_child = child_die;
7624 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
7625 is the specification, to the end of PARENT's list of children.
7626 This is done by removing and re-adding it. */
7628 static void
7629 splice_child_die (dw_die_ref parent, dw_die_ref child)
7631 dw_die_ref p;
7633 /* We want the declaration DIE from inside the class, not the
7634 specification DIE at toplevel. */
7635 if (child->die_parent != parent)
7637 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
7639 if (tmp)
7640 child = tmp;
7643 gcc_assert (child->die_parent == parent
7644 || (child->die_parent
7645 == get_AT_ref (parent, DW_AT_specification)));
7647 for (p = child->die_parent->die_child; ; p = p->die_sib)
7648 if (p->die_sib == child)
7650 remove_child_with_prev (child, p);
7651 break;
7654 add_child_die (parent, child);
7657 /* Return a pointer to a newly created DIE node. */
7659 static inline dw_die_ref
7660 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
7662 dw_die_ref die = GGC_CNEW (die_node);
7664 die->die_tag = tag_value;
7666 if (parent_die != NULL)
7667 add_child_die (parent_die, die);
7668 else
7670 limbo_die_node *limbo_node;
7672 limbo_node = GGC_CNEW (limbo_die_node);
7673 limbo_node->die = die;
7674 limbo_node->created_for = t;
7675 limbo_node->next = limbo_die_list;
7676 limbo_die_list = limbo_node;
7679 return die;
7682 /* Return the DIE associated with the given type specifier. */
7684 static inline dw_die_ref
7685 lookup_type_die (tree type)
7687 return TYPE_SYMTAB_DIE (type);
7690 /* Equate a DIE to a given type specifier. */
7692 static inline void
7693 equate_type_number_to_die (tree type, dw_die_ref type_die)
7695 TYPE_SYMTAB_DIE (type) = type_die;
7698 /* Returns a hash value for X (which really is a die_struct). */
7700 static hashval_t
7701 decl_die_table_hash (const void *x)
7703 return (hashval_t) ((const_dw_die_ref) x)->decl_id;
7706 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
7708 static int
7709 decl_die_table_eq (const void *x, const void *y)
7711 return (((const_dw_die_ref) x)->decl_id == DECL_UID ((const_tree) y));
7714 /* Return the DIE associated with a given declaration. */
7716 static inline dw_die_ref
7717 lookup_decl_die (tree decl)
7719 return (dw_die_ref) htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
7722 /* Returns a hash value for X (which really is a var_loc_list). */
7724 static hashval_t
7725 decl_loc_table_hash (const void *x)
7727 return (hashval_t) ((const var_loc_list *) x)->decl_id;
7730 /* Return nonzero if decl_id of var_loc_list X is the same as
7731 UID of decl *Y. */
7733 static int
7734 decl_loc_table_eq (const void *x, const void *y)
7736 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const_tree) y));
7739 /* Return the var_loc list associated with a given declaration. */
7741 static inline var_loc_list *
7742 lookup_decl_loc (const_tree decl)
7744 if (!decl_loc_table)
7745 return NULL;
7746 return (var_loc_list *)
7747 htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
7750 /* Equate a DIE to a particular declaration. */
7752 static void
7753 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
7755 unsigned int decl_id = DECL_UID (decl);
7756 void **slot;
7758 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
7759 *slot = decl_die;
7760 decl_die->decl_id = decl_id;
7763 /* Add a variable location node to the linked list for DECL. */
7765 static void
7766 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
7768 unsigned int decl_id = DECL_UID (decl);
7769 var_loc_list *temp;
7770 void **slot;
7772 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
7773 if (*slot == NULL)
7775 temp = GGC_CNEW (var_loc_list);
7776 temp->decl_id = decl_id;
7777 *slot = temp;
7779 else
7780 temp = (var_loc_list *) *slot;
7782 if (temp->last)
7784 /* If the current location is the same as the end of the list,
7785 and either both or neither of the locations is uninitialized,
7786 we have nothing to do. */
7787 if ((!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
7788 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
7789 || ((NOTE_VAR_LOCATION_STATUS (temp->last->var_loc_note)
7790 != NOTE_VAR_LOCATION_STATUS (loc->var_loc_note))
7791 && ((NOTE_VAR_LOCATION_STATUS (temp->last->var_loc_note)
7792 == VAR_INIT_STATUS_UNINITIALIZED)
7793 || (NOTE_VAR_LOCATION_STATUS (loc->var_loc_note)
7794 == VAR_INIT_STATUS_UNINITIALIZED))))
7796 /* Add LOC to the end of list and update LAST. */
7797 temp->last->next = loc;
7798 temp->last = loc;
7801 else
7803 temp->first = loc;
7804 temp->last = loc;
7808 /* Keep track of the number of spaces used to indent the
7809 output of the debugging routines that print the structure of
7810 the DIE internal representation. */
7811 static int print_indent;
7813 /* Indent the line the number of spaces given by print_indent. */
7815 static inline void
7816 print_spaces (FILE *outfile)
7818 fprintf (outfile, "%*s", print_indent, "");
7821 /* Print a type signature in hex. */
7823 static inline void
7824 print_signature (FILE *outfile, char *sig)
7826 int i;
7828 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
7829 fprintf (outfile, "%02x", sig[i] & 0xff);
7832 /* Print the information associated with a given DIE, and its children.
7833 This routine is a debugging aid only. */
7835 static void
7836 print_die (dw_die_ref die, FILE *outfile)
7838 dw_attr_ref a;
7839 dw_die_ref c;
7840 unsigned ix;
7842 print_spaces (outfile);
7843 fprintf (outfile, "DIE %4ld: %s\n",
7844 die->die_offset, dwarf_tag_name (die->die_tag));
7845 print_spaces (outfile);
7846 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
7847 fprintf (outfile, " offset: %ld\n", die->die_offset);
7848 if (dwarf_version >= 4 && die->die_id.die_type_node)
7850 print_spaces (outfile);
7851 fprintf (outfile, " signature: ");
7852 print_signature (outfile, die->die_id.die_type_node->signature);
7853 fprintf (outfile, "\n");
7856 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7858 print_spaces (outfile);
7859 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
7861 switch (AT_class (a))
7863 case dw_val_class_addr:
7864 fprintf (outfile, "address");
7865 break;
7866 case dw_val_class_offset:
7867 fprintf (outfile, "offset");
7868 break;
7869 case dw_val_class_loc:
7870 fprintf (outfile, "location descriptor");
7871 break;
7872 case dw_val_class_loc_list:
7873 fprintf (outfile, "location list -> label:%s",
7874 AT_loc_list (a)->ll_symbol);
7875 break;
7876 case dw_val_class_range_list:
7877 fprintf (outfile, "range list");
7878 break;
7879 case dw_val_class_const:
7880 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
7881 break;
7882 case dw_val_class_unsigned_const:
7883 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
7884 break;
7885 case dw_val_class_const_double:
7886 fprintf (outfile, "constant ("HOST_WIDE_INT_PRINT_DEC","\
7887 HOST_WIDE_INT_PRINT_UNSIGNED")",
7888 a->dw_attr_val.v.val_double.high,
7889 a->dw_attr_val.v.val_double.low);
7890 break;
7891 case dw_val_class_vec:
7892 fprintf (outfile, "floating-point or vector constant");
7893 break;
7894 case dw_val_class_flag:
7895 fprintf (outfile, "%u", AT_flag (a));
7896 break;
7897 case dw_val_class_die_ref:
7898 if (AT_ref (a) != NULL)
7900 if (dwarf_version >= 4 && AT_ref (a)->die_id.die_type_node)
7902 fprintf (outfile, "die -> signature: ");
7903 print_signature (outfile,
7904 AT_ref (a)->die_id.die_type_node->signature);
7906 else if (dwarf_version < 4 && AT_ref (a)->die_id.die_symbol)
7907 fprintf (outfile, "die -> label: %s",
7908 AT_ref (a)->die_id.die_symbol);
7909 else
7910 fprintf (outfile, "die -> %ld", AT_ref (a)->die_offset);
7912 else
7913 fprintf (outfile, "die -> <null>");
7914 break;
7915 case dw_val_class_lbl_id:
7916 case dw_val_class_lineptr:
7917 case dw_val_class_macptr:
7918 fprintf (outfile, "label: %s", AT_lbl (a));
7919 break;
7920 case dw_val_class_str:
7921 if (AT_string (a) != NULL)
7922 fprintf (outfile, "\"%s\"", AT_string (a));
7923 else
7924 fprintf (outfile, "<null>");
7925 break;
7926 case dw_val_class_file:
7927 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
7928 AT_file (a)->emitted_number);
7929 break;
7930 case dw_val_class_data8:
7932 int i;
7934 for (i = 0; i < 8; i++)
7935 fprintf (outfile, "%02x", a->dw_attr_val.v.val_data8[i]);
7936 break;
7938 default:
7939 break;
7942 fprintf (outfile, "\n");
7945 if (die->die_child != NULL)
7947 print_indent += 4;
7948 FOR_EACH_CHILD (die, c, print_die (c, outfile));
7949 print_indent -= 4;
7951 if (print_indent == 0)
7952 fprintf (outfile, "\n");
7955 /* Print the contents of the source code line number correspondence table.
7956 This routine is a debugging aid only. */
7958 static void
7959 print_dwarf_line_table (FILE *outfile)
7961 unsigned i;
7962 dw_line_info_ref line_info;
7964 fprintf (outfile, "\n\nDWARF source line information\n");
7965 for (i = 1; i < line_info_table_in_use; i++)
7967 line_info = &line_info_table[i];
7968 fprintf (outfile, "%5d: %4ld %6ld\n", i,
7969 line_info->dw_file_num,
7970 line_info->dw_line_num);
7973 fprintf (outfile, "\n\n");
7976 /* Print the information collected for a given DIE. */
7978 void
7979 debug_dwarf_die (dw_die_ref die)
7981 print_die (die, stderr);
7984 /* Print all DWARF information collected for the compilation unit.
7985 This routine is a debugging aid only. */
7987 void
7988 debug_dwarf (void)
7990 print_indent = 0;
7991 print_die (comp_unit_die, stderr);
7992 if (! DWARF2_ASM_LINE_DEBUG_INFO)
7993 print_dwarf_line_table (stderr);
7996 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
7997 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
7998 DIE that marks the start of the DIEs for this include file. */
8000 static dw_die_ref
8001 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
8003 const char *filename = get_AT_string (bincl_die, DW_AT_name);
8004 dw_die_ref new_unit = gen_compile_unit_die (filename);
8006 new_unit->die_sib = old_unit;
8007 return new_unit;
8010 /* Close an include-file CU and reopen the enclosing one. */
8012 static dw_die_ref
8013 pop_compile_unit (dw_die_ref old_unit)
8015 dw_die_ref new_unit = old_unit->die_sib;
8017 old_unit->die_sib = NULL;
8018 return new_unit;
8021 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
8022 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
8024 /* Calculate the checksum of a location expression. */
8026 static inline void
8027 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
8029 int tem;
8031 tem = (loc->dtprel << 8) | ((unsigned int) loc->dw_loc_opc);
8032 CHECKSUM (tem);
8033 CHECKSUM (loc->dw_loc_oprnd1);
8034 CHECKSUM (loc->dw_loc_oprnd2);
8037 /* Calculate the checksum of an attribute. */
8039 static void
8040 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
8042 dw_loc_descr_ref loc;
8043 rtx r;
8045 CHECKSUM (at->dw_attr);
8047 /* We don't care that this was compiled with a different compiler
8048 snapshot; if the output is the same, that's what matters. */
8049 if (at->dw_attr == DW_AT_producer)
8050 return;
8052 switch (AT_class (at))
8054 case dw_val_class_const:
8055 CHECKSUM (at->dw_attr_val.v.val_int);
8056 break;
8057 case dw_val_class_unsigned_const:
8058 CHECKSUM (at->dw_attr_val.v.val_unsigned);
8059 break;
8060 case dw_val_class_const_double:
8061 CHECKSUM (at->dw_attr_val.v.val_double);
8062 break;
8063 case dw_val_class_vec:
8064 CHECKSUM (at->dw_attr_val.v.val_vec);
8065 break;
8066 case dw_val_class_flag:
8067 CHECKSUM (at->dw_attr_val.v.val_flag);
8068 break;
8069 case dw_val_class_str:
8070 CHECKSUM_STRING (AT_string (at));
8071 break;
8073 case dw_val_class_addr:
8074 r = AT_addr (at);
8075 gcc_assert (GET_CODE (r) == SYMBOL_REF);
8076 CHECKSUM_STRING (XSTR (r, 0));
8077 break;
8079 case dw_val_class_offset:
8080 CHECKSUM (at->dw_attr_val.v.val_offset);
8081 break;
8083 case dw_val_class_loc:
8084 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
8085 loc_checksum (loc, ctx);
8086 break;
8088 case dw_val_class_die_ref:
8089 die_checksum (AT_ref (at), ctx, mark);
8090 break;
8092 case dw_val_class_fde_ref:
8093 case dw_val_class_lbl_id:
8094 case dw_val_class_lineptr:
8095 case dw_val_class_macptr:
8096 break;
8098 case dw_val_class_file:
8099 CHECKSUM_STRING (AT_file (at)->filename);
8100 break;
8102 case dw_val_class_data8:
8103 CHECKSUM (at->dw_attr_val.v.val_data8);
8104 break;
8106 default:
8107 break;
8111 /* Calculate the checksum of a DIE. */
8113 static void
8114 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
8116 dw_die_ref c;
8117 dw_attr_ref a;
8118 unsigned ix;
8120 /* To avoid infinite recursion. */
8121 if (die->die_mark)
8123 CHECKSUM (die->die_mark);
8124 return;
8126 die->die_mark = ++(*mark);
8128 CHECKSUM (die->die_tag);
8130 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
8131 attr_checksum (a, ctx, mark);
8133 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
8136 #undef CHECKSUM
8137 #undef CHECKSUM_STRING
8139 /* For DWARF-4 types, include the trailing NULL when checksumming strings. */
8140 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
8141 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
8142 #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
8143 #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
8144 #define CHECKSUM_ATTR(FOO) \
8145 if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)
8147 /* Calculate the checksum of a number in signed LEB128 format. */
8149 static void
8150 checksum_sleb128 (HOST_WIDE_INT value, struct md5_ctx *ctx)
8152 unsigned char byte;
8153 bool more;
8155 while (1)
8157 byte = (value & 0x7f);
8158 value >>= 7;
8159 more = !((value == 0 && (byte & 0x40) == 0)
8160 || (value == -1 && (byte & 0x40) != 0));
8161 if (more)
8162 byte |= 0x80;
8163 CHECKSUM (byte);
8164 if (!more)
8165 break;
8169 /* Calculate the checksum of a number in unsigned LEB128 format. */
8171 static void
8172 checksum_uleb128 (unsigned HOST_WIDE_INT value, struct md5_ctx *ctx)
8174 while (1)
8176 unsigned char byte = (value & 0x7f);
8177 value >>= 7;
8178 if (value != 0)
8179 /* More bytes to follow. */
8180 byte |= 0x80;
8181 CHECKSUM (byte);
8182 if (value == 0)
8183 break;
8187 /* Checksum the context of the DIE. This adds the names of any
8188 surrounding namespaces or structures to the checksum. */
8190 static void
8191 checksum_die_context (dw_die_ref die, struct md5_ctx *ctx)
8193 const char *name;
8194 dw_die_ref spec;
8195 int tag = die->die_tag;
8197 if (tag != DW_TAG_namespace
8198 && tag != DW_TAG_structure_type
8199 && tag != DW_TAG_class_type)
8200 return;
8202 name = get_AT_string (die, DW_AT_name);
8204 spec = get_AT_ref (die, DW_AT_specification);
8205 if (spec != NULL)
8206 die = spec;
8208 if (die->die_parent != NULL)
8209 checksum_die_context (die->die_parent, ctx);
8211 CHECKSUM_ULEB128 ('C');
8212 CHECKSUM_ULEB128 (tag);
8213 if (name != NULL)
8214 CHECKSUM_STRING (name);
8217 /* Calculate the checksum of a location expression. */
8219 static inline void
8220 loc_checksum_ordered (dw_loc_descr_ref loc, struct md5_ctx *ctx)
8222 /* Special case for lone DW_OP_plus_uconst: checksum as if the location
8223 were emitted as a DW_FORM_sdata instead of a location expression. */
8224 if (loc->dw_loc_opc == DW_OP_plus_uconst && loc->dw_loc_next == NULL)
8226 CHECKSUM_ULEB128 (DW_FORM_sdata);
8227 CHECKSUM_SLEB128 ((HOST_WIDE_INT) loc->dw_loc_oprnd1.v.val_unsigned);
8228 return;
8231 /* Otherwise, just checksum the raw location expression. */
8232 while (loc != NULL)
8234 CHECKSUM_ULEB128 (loc->dw_loc_opc);
8235 CHECKSUM (loc->dw_loc_oprnd1);
8236 CHECKSUM (loc->dw_loc_oprnd2);
8237 loc = loc->dw_loc_next;
8241 /* Calculate the checksum of an attribute. */
8243 static void
8244 attr_checksum_ordered (enum dwarf_tag tag, dw_attr_ref at,
8245 struct md5_ctx *ctx, int *mark)
8247 dw_loc_descr_ref loc;
8248 rtx r;
8250 if (AT_class (at) == dw_val_class_die_ref)
8252 dw_die_ref target_die = AT_ref (at);
8254 /* For pointer and reference types, we checksum only the (qualified)
8255 name of the target type (if there is a name). For friend entries,
8256 we checksum only the (qualified) name of the target type or function.
8257 This allows the checksum to remain the same whether the target type
8258 is complete or not. */
8259 if ((at->dw_attr == DW_AT_type
8260 && (tag == DW_TAG_pointer_type
8261 || tag == DW_TAG_reference_type
8262 || tag == DW_TAG_ptr_to_member_type))
8263 || (at->dw_attr == DW_AT_friend
8264 && tag == DW_TAG_friend))
8266 dw_attr_ref name_attr = get_AT (target_die, DW_AT_name);
8268 if (name_attr != NULL)
8270 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
8272 if (decl == NULL)
8273 decl = target_die;
8274 CHECKSUM_ULEB128 ('N');
8275 CHECKSUM_ULEB128 (at->dw_attr);
8276 if (decl->die_parent != NULL)
8277 checksum_die_context (decl->die_parent, ctx);
8278 CHECKSUM_ULEB128 ('E');
8279 CHECKSUM_STRING (AT_string (name_attr));
8280 return;
8284 /* For all other references to another DIE, we check to see if the
8285 target DIE has already been visited. If it has, we emit a
8286 backward reference; if not, we descend recursively. */
8287 if (target_die->die_mark > 0)
8289 CHECKSUM_ULEB128 ('R');
8290 CHECKSUM_ULEB128 (at->dw_attr);
8291 CHECKSUM_ULEB128 (target_die->die_mark);
8293 else
8295 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
8297 if (decl == NULL)
8298 decl = target_die;
8299 target_die->die_mark = ++(*mark);
8300 CHECKSUM_ULEB128 ('T');
8301 CHECKSUM_ULEB128 (at->dw_attr);
8302 if (decl->die_parent != NULL)
8303 checksum_die_context (decl->die_parent, ctx);
8304 die_checksum_ordered (target_die, ctx, mark);
8306 return;
8309 CHECKSUM_ULEB128 ('A');
8310 CHECKSUM_ULEB128 (at->dw_attr);
8312 switch (AT_class (at))
8314 case dw_val_class_const:
8315 CHECKSUM_ULEB128 (DW_FORM_sdata);
8316 CHECKSUM_SLEB128 (at->dw_attr_val.v.val_int);
8317 break;
8319 case dw_val_class_unsigned_const:
8320 CHECKSUM_ULEB128 (DW_FORM_sdata);
8321 CHECKSUM_SLEB128 ((int) at->dw_attr_val.v.val_unsigned);
8322 break;
8324 case dw_val_class_const_double:
8325 CHECKSUM_ULEB128 (DW_FORM_block);
8326 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_double));
8327 CHECKSUM (at->dw_attr_val.v.val_double);
8328 break;
8330 case dw_val_class_vec:
8331 CHECKSUM_ULEB128 (DW_FORM_block);
8332 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_vec));
8333 CHECKSUM (at->dw_attr_val.v.val_vec);
8334 break;
8336 case dw_val_class_flag:
8337 CHECKSUM_ULEB128 (DW_FORM_flag);
8338 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_flag ? 1 : 0);
8339 break;
8341 case dw_val_class_str:
8342 CHECKSUM_ULEB128 (DW_FORM_string);
8343 CHECKSUM_STRING (AT_string (at));
8344 break;
8346 case dw_val_class_addr:
8347 r = AT_addr (at);
8348 gcc_assert (GET_CODE (r) == SYMBOL_REF);
8349 CHECKSUM_ULEB128 (DW_FORM_string);
8350 CHECKSUM_STRING (XSTR (r, 0));
8351 break;
8353 case dw_val_class_offset:
8354 CHECKSUM_ULEB128 (DW_FORM_sdata);
8355 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_offset);
8356 break;
8358 case dw_val_class_loc:
8359 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
8360 loc_checksum_ordered (loc, ctx);
8361 break;
8363 case dw_val_class_fde_ref:
8364 case dw_val_class_lbl_id:
8365 case dw_val_class_lineptr:
8366 case dw_val_class_macptr:
8367 break;
8369 case dw_val_class_file:
8370 CHECKSUM_ULEB128 (DW_FORM_string);
8371 CHECKSUM_STRING (AT_file (at)->filename);
8372 break;
8374 case dw_val_class_data8:
8375 CHECKSUM (at->dw_attr_val.v.val_data8);
8376 break;
8378 default:
8379 break;
8383 struct checksum_attributes
8385 dw_attr_ref at_name;
8386 dw_attr_ref at_type;
8387 dw_attr_ref at_friend;
8388 dw_attr_ref at_accessibility;
8389 dw_attr_ref at_address_class;
8390 dw_attr_ref at_allocated;
8391 dw_attr_ref at_artificial;
8392 dw_attr_ref at_associated;
8393 dw_attr_ref at_binary_scale;
8394 dw_attr_ref at_bit_offset;
8395 dw_attr_ref at_bit_size;
8396 dw_attr_ref at_bit_stride;
8397 dw_attr_ref at_byte_size;
8398 dw_attr_ref at_byte_stride;
8399 dw_attr_ref at_const_value;
8400 dw_attr_ref at_containing_type;
8401 dw_attr_ref at_count;
8402 dw_attr_ref at_data_location;
8403 dw_attr_ref at_data_member_location;
8404 dw_attr_ref at_decimal_scale;
8405 dw_attr_ref at_decimal_sign;
8406 dw_attr_ref at_default_value;
8407 dw_attr_ref at_digit_count;
8408 dw_attr_ref at_discr;
8409 dw_attr_ref at_discr_list;
8410 dw_attr_ref at_discr_value;
8411 dw_attr_ref at_encoding;
8412 dw_attr_ref at_endianity;
8413 dw_attr_ref at_explicit;
8414 dw_attr_ref at_is_optional;
8415 dw_attr_ref at_location;
8416 dw_attr_ref at_lower_bound;
8417 dw_attr_ref at_mutable;
8418 dw_attr_ref at_ordering;
8419 dw_attr_ref at_picture_string;
8420 dw_attr_ref at_prototyped;
8421 dw_attr_ref at_small;
8422 dw_attr_ref at_segment;
8423 dw_attr_ref at_string_length;
8424 dw_attr_ref at_threads_scaled;
8425 dw_attr_ref at_upper_bound;
8426 dw_attr_ref at_use_location;
8427 dw_attr_ref at_use_UTF8;
8428 dw_attr_ref at_variable_parameter;
8429 dw_attr_ref at_virtuality;
8430 dw_attr_ref at_visibility;
8431 dw_attr_ref at_vtable_elem_location;
8434 /* Collect the attributes that we will want to use for the checksum. */
8436 static void
8437 collect_checksum_attributes (struct checksum_attributes *attrs, dw_die_ref die)
8439 dw_attr_ref a;
8440 unsigned ix;
8442 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
8444 switch (a->dw_attr)
8446 case DW_AT_name:
8447 attrs->at_name = a;
8448 break;
8449 case DW_AT_type:
8450 attrs->at_type = a;
8451 break;
8452 case DW_AT_friend:
8453 attrs->at_friend = a;
8454 break;
8455 case DW_AT_accessibility:
8456 attrs->at_accessibility = a;
8457 break;
8458 case DW_AT_address_class:
8459 attrs->at_address_class = a;
8460 break;
8461 case DW_AT_allocated:
8462 attrs->at_allocated = a;
8463 break;
8464 case DW_AT_artificial:
8465 attrs->at_artificial = a;
8466 break;
8467 case DW_AT_associated:
8468 attrs->at_associated = a;
8469 break;
8470 case DW_AT_binary_scale:
8471 attrs->at_binary_scale = a;
8472 break;
8473 case DW_AT_bit_offset:
8474 attrs->at_bit_offset = a;
8475 break;
8476 case DW_AT_bit_size:
8477 attrs->at_bit_size = a;
8478 break;
8479 case DW_AT_bit_stride:
8480 attrs->at_bit_stride = a;
8481 break;
8482 case DW_AT_byte_size:
8483 attrs->at_byte_size = a;
8484 break;
8485 case DW_AT_byte_stride:
8486 attrs->at_byte_stride = a;
8487 break;
8488 case DW_AT_const_value:
8489 attrs->at_const_value = a;
8490 break;
8491 case DW_AT_containing_type:
8492 attrs->at_containing_type = a;
8493 break;
8494 case DW_AT_count:
8495 attrs->at_count = a;
8496 break;
8497 case DW_AT_data_location:
8498 attrs->at_data_location = a;
8499 break;
8500 case DW_AT_data_member_location:
8501 attrs->at_data_member_location = a;
8502 break;
8503 case DW_AT_decimal_scale:
8504 attrs->at_decimal_scale = a;
8505 break;
8506 case DW_AT_decimal_sign:
8507 attrs->at_decimal_sign = a;
8508 break;
8509 case DW_AT_default_value:
8510 attrs->at_default_value = a;
8511 break;
8512 case DW_AT_digit_count:
8513 attrs->at_digit_count = a;
8514 break;
8515 case DW_AT_discr:
8516 attrs->at_discr = a;
8517 break;
8518 case DW_AT_discr_list:
8519 attrs->at_discr_list = a;
8520 break;
8521 case DW_AT_discr_value:
8522 attrs->at_discr_value = a;
8523 break;
8524 case DW_AT_encoding:
8525 attrs->at_encoding = a;
8526 break;
8527 case DW_AT_endianity:
8528 attrs->at_endianity = a;
8529 break;
8530 case DW_AT_explicit:
8531 attrs->at_explicit = a;
8532 break;
8533 case DW_AT_is_optional:
8534 attrs->at_is_optional = a;
8535 break;
8536 case DW_AT_location:
8537 attrs->at_location = a;
8538 break;
8539 case DW_AT_lower_bound:
8540 attrs->at_lower_bound = a;
8541 break;
8542 case DW_AT_mutable:
8543 attrs->at_mutable = a;
8544 break;
8545 case DW_AT_ordering:
8546 attrs->at_ordering = a;
8547 break;
8548 case DW_AT_picture_string:
8549 attrs->at_picture_string = a;
8550 break;
8551 case DW_AT_prototyped:
8552 attrs->at_prototyped = a;
8553 break;
8554 case DW_AT_small:
8555 attrs->at_small = a;
8556 break;
8557 case DW_AT_segment:
8558 attrs->at_segment = a;
8559 break;
8560 case DW_AT_string_length:
8561 attrs->at_string_length = a;
8562 break;
8563 case DW_AT_threads_scaled:
8564 attrs->at_threads_scaled = a;
8565 break;
8566 case DW_AT_upper_bound:
8567 attrs->at_upper_bound = a;
8568 break;
8569 case DW_AT_use_location:
8570 attrs->at_use_location = a;
8571 break;
8572 case DW_AT_use_UTF8:
8573 attrs->at_use_UTF8 = a;
8574 break;
8575 case DW_AT_variable_parameter:
8576 attrs->at_variable_parameter = a;
8577 break;
8578 case DW_AT_virtuality:
8579 attrs->at_virtuality = a;
8580 break;
8581 case DW_AT_visibility:
8582 attrs->at_visibility = a;
8583 break;
8584 case DW_AT_vtable_elem_location:
8585 attrs->at_vtable_elem_location = a;
8586 break;
8587 default:
8588 break;
8593 /* Calculate the checksum of a DIE, using an ordered subset of attributes. */
8595 static void
8596 die_checksum_ordered (dw_die_ref die, struct md5_ctx *ctx, int *mark)
8598 dw_die_ref c;
8599 dw_die_ref decl;
8600 struct checksum_attributes attrs;
8602 CHECKSUM_ULEB128 ('D');
8603 CHECKSUM_ULEB128 (die->die_tag);
8605 memset (&attrs, 0, sizeof (attrs));
8607 decl = get_AT_ref (die, DW_AT_specification);
8608 if (decl != NULL)
8609 collect_checksum_attributes (&attrs, decl);
8610 collect_checksum_attributes (&attrs, die);
8612 CHECKSUM_ATTR (attrs.at_name);
8613 CHECKSUM_ATTR (attrs.at_accessibility);
8614 CHECKSUM_ATTR (attrs.at_address_class);
8615 CHECKSUM_ATTR (attrs.at_allocated);
8616 CHECKSUM_ATTR (attrs.at_artificial);
8617 CHECKSUM_ATTR (attrs.at_associated);
8618 CHECKSUM_ATTR (attrs.at_binary_scale);
8619 CHECKSUM_ATTR (attrs.at_bit_offset);
8620 CHECKSUM_ATTR (attrs.at_bit_size);
8621 CHECKSUM_ATTR (attrs.at_bit_stride);
8622 CHECKSUM_ATTR (attrs.at_byte_size);
8623 CHECKSUM_ATTR (attrs.at_byte_stride);
8624 CHECKSUM_ATTR (attrs.at_const_value);
8625 CHECKSUM_ATTR (attrs.at_containing_type);
8626 CHECKSUM_ATTR (attrs.at_count);
8627 CHECKSUM_ATTR (attrs.at_data_location);
8628 CHECKSUM_ATTR (attrs.at_data_member_location);
8629 CHECKSUM_ATTR (attrs.at_decimal_scale);
8630 CHECKSUM_ATTR (attrs.at_decimal_sign);
8631 CHECKSUM_ATTR (attrs.at_default_value);
8632 CHECKSUM_ATTR (attrs.at_digit_count);
8633 CHECKSUM_ATTR (attrs.at_discr);
8634 CHECKSUM_ATTR (attrs.at_discr_list);
8635 CHECKSUM_ATTR (attrs.at_discr_value);
8636 CHECKSUM_ATTR (attrs.at_encoding);
8637 CHECKSUM_ATTR (attrs.at_endianity);
8638 CHECKSUM_ATTR (attrs.at_explicit);
8639 CHECKSUM_ATTR (attrs.at_is_optional);
8640 CHECKSUM_ATTR (attrs.at_location);
8641 CHECKSUM_ATTR (attrs.at_lower_bound);
8642 CHECKSUM_ATTR (attrs.at_mutable);
8643 CHECKSUM_ATTR (attrs.at_ordering);
8644 CHECKSUM_ATTR (attrs.at_picture_string);
8645 CHECKSUM_ATTR (attrs.at_prototyped);
8646 CHECKSUM_ATTR (attrs.at_small);
8647 CHECKSUM_ATTR (attrs.at_segment);
8648 CHECKSUM_ATTR (attrs.at_string_length);
8649 CHECKSUM_ATTR (attrs.at_threads_scaled);
8650 CHECKSUM_ATTR (attrs.at_upper_bound);
8651 CHECKSUM_ATTR (attrs.at_use_location);
8652 CHECKSUM_ATTR (attrs.at_use_UTF8);
8653 CHECKSUM_ATTR (attrs.at_variable_parameter);
8654 CHECKSUM_ATTR (attrs.at_virtuality);
8655 CHECKSUM_ATTR (attrs.at_visibility);
8656 CHECKSUM_ATTR (attrs.at_vtable_elem_location);
8657 CHECKSUM_ATTR (attrs.at_type);
8658 CHECKSUM_ATTR (attrs.at_friend);
8660 /* Checksum the child DIEs, except for nested types and member functions. */
8661 c = die->die_child;
8662 if (c) do {
8663 dw_attr_ref name_attr;
8665 c = c->die_sib;
8666 name_attr = get_AT (c, DW_AT_name);
8667 if ((is_type_die (c) || c->die_tag == DW_TAG_subprogram)
8668 && name_attr != NULL)
8670 CHECKSUM_ULEB128 ('S');
8671 CHECKSUM_ULEB128 (c->die_tag);
8672 CHECKSUM_STRING (AT_string (name_attr));
8674 else
8676 /* Mark this DIE so it gets processed when unmarking. */
8677 if (c->die_mark == 0)
8678 c->die_mark = -1;
8679 die_checksum_ordered (c, ctx, mark);
8681 } while (c != die->die_child);
8683 CHECKSUM_ULEB128 (0);
8686 #undef CHECKSUM
8687 #undef CHECKSUM_STRING
8688 #undef CHECKSUM_ATTR
8689 #undef CHECKSUM_LEB128
8690 #undef CHECKSUM_ULEB128
8692 /* Generate the type signature for DIE. This is computed by generating an
8693 MD5 checksum over the DIE's tag, its relevant attributes, and its
8694 children. Attributes that are references to other DIEs are processed
8695 by recursion, using the MARK field to prevent infinite recursion.
8696 If the DIE is nested inside a namespace or another type, we also
8697 need to include that context in the signature. The lower 64 bits
8698 of the resulting MD5 checksum comprise the signature. */
8700 static void
8701 generate_type_signature (dw_die_ref die, comdat_type_node *type_node)
8703 int mark;
8704 const char *name;
8705 unsigned char checksum[16];
8706 struct md5_ctx ctx;
8707 dw_die_ref decl;
8709 name = get_AT_string (die, DW_AT_name);
8710 decl = get_AT_ref (die, DW_AT_specification);
8712 /* First, compute a signature for just the type name (and its surrounding
8713 context, if any. This is stored in the type unit DIE for link-time
8714 ODR (one-definition rule) checking. */
8716 if (is_cxx() && name != NULL)
8718 md5_init_ctx (&ctx);
8720 /* Checksum the names of surrounding namespaces and structures. */
8721 if (decl != NULL && decl->die_parent != NULL)
8722 checksum_die_context (decl->die_parent, &ctx);
8724 md5_process_bytes (&die->die_tag, sizeof (die->die_tag), &ctx);
8725 md5_process_bytes (name, strlen (name) + 1, &ctx);
8726 md5_finish_ctx (&ctx, checksum);
8728 add_AT_data8 (type_node->root_die, DW_AT_GNU_odr_signature, &checksum[8]);
8731 /* Next, compute the complete type signature. */
8733 md5_init_ctx (&ctx);
8734 mark = 1;
8735 die->die_mark = mark;
8737 /* Checksum the names of surrounding namespaces and structures. */
8738 if (decl != NULL && decl->die_parent != NULL)
8739 checksum_die_context (decl->die_parent, &ctx);
8741 /* Checksum the DIE and its children. */
8742 die_checksum_ordered (die, &ctx, &mark);
8743 unmark_all_dies (die);
8744 md5_finish_ctx (&ctx, checksum);
8746 /* Store the signature in the type node and link the type DIE and the
8747 type node together. */
8748 memcpy (type_node->signature, &checksum[16 - DWARF_TYPE_SIGNATURE_SIZE],
8749 DWARF_TYPE_SIGNATURE_SIZE);
8750 die->die_id.die_type_node = type_node;
8751 type_node->type_die = die;
8753 /* If the DIE is a specification, link its declaration to the type node
8754 as well. */
8755 if (decl != NULL)
8756 decl->die_id.die_type_node = type_node;
8759 /* Do the location expressions look same? */
8760 static inline int
8761 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
8763 return loc1->dw_loc_opc == loc2->dw_loc_opc
8764 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
8765 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
8768 /* Do the values look the same? */
8769 static int
8770 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
8772 dw_loc_descr_ref loc1, loc2;
8773 rtx r1, r2;
8775 if (v1->val_class != v2->val_class)
8776 return 0;
8778 switch (v1->val_class)
8780 case dw_val_class_const:
8781 return v1->v.val_int == v2->v.val_int;
8782 case dw_val_class_unsigned_const:
8783 return v1->v.val_unsigned == v2->v.val_unsigned;
8784 case dw_val_class_const_double:
8785 return v1->v.val_double.high == v2->v.val_double.high
8786 && v1->v.val_double.low == v2->v.val_double.low;
8787 case dw_val_class_vec:
8788 if (v1->v.val_vec.length != v2->v.val_vec.length
8789 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
8790 return 0;
8791 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
8792 v1->v.val_vec.length * v1->v.val_vec.elt_size))
8793 return 0;
8794 return 1;
8795 case dw_val_class_flag:
8796 return v1->v.val_flag == v2->v.val_flag;
8797 case dw_val_class_str:
8798 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
8800 case dw_val_class_addr:
8801 r1 = v1->v.val_addr;
8802 r2 = v2->v.val_addr;
8803 if (GET_CODE (r1) != GET_CODE (r2))
8804 return 0;
8805 return !rtx_equal_p (r1, r2);
8807 case dw_val_class_offset:
8808 return v1->v.val_offset == v2->v.val_offset;
8810 case dw_val_class_loc:
8811 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
8812 loc1 && loc2;
8813 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
8814 if (!same_loc_p (loc1, loc2, mark))
8815 return 0;
8816 return !loc1 && !loc2;
8818 case dw_val_class_die_ref:
8819 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
8821 case dw_val_class_fde_ref:
8822 case dw_val_class_lbl_id:
8823 case dw_val_class_lineptr:
8824 case dw_val_class_macptr:
8825 return 1;
8827 case dw_val_class_file:
8828 return v1->v.val_file == v2->v.val_file;
8830 case dw_val_class_data8:
8831 return !memcmp (v1->v.val_data8, v2->v.val_data8, 8);
8833 default:
8834 return 1;
8838 /* Do the attributes look the same? */
8840 static int
8841 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
8843 if (at1->dw_attr != at2->dw_attr)
8844 return 0;
8846 /* We don't care that this was compiled with a different compiler
8847 snapshot; if the output is the same, that's what matters. */
8848 if (at1->dw_attr == DW_AT_producer)
8849 return 1;
8851 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
8854 /* Do the dies look the same? */
8856 static int
8857 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
8859 dw_die_ref c1, c2;
8860 dw_attr_ref a1;
8861 unsigned ix;
8863 /* To avoid infinite recursion. */
8864 if (die1->die_mark)
8865 return die1->die_mark == die2->die_mark;
8866 die1->die_mark = die2->die_mark = ++(*mark);
8868 if (die1->die_tag != die2->die_tag)
8869 return 0;
8871 if (VEC_length (dw_attr_node, die1->die_attr)
8872 != VEC_length (dw_attr_node, die2->die_attr))
8873 return 0;
8875 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
8876 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
8877 return 0;
8879 c1 = die1->die_child;
8880 c2 = die2->die_child;
8881 if (! c1)
8883 if (c2)
8884 return 0;
8886 else
8887 for (;;)
8889 if (!same_die_p (c1, c2, mark))
8890 return 0;
8891 c1 = c1->die_sib;
8892 c2 = c2->die_sib;
8893 if (c1 == die1->die_child)
8895 if (c2 == die2->die_child)
8896 break;
8897 else
8898 return 0;
8902 return 1;
8905 /* Do the dies look the same? Wrapper around same_die_p. */
8907 static int
8908 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
8910 int mark = 0;
8911 int ret = same_die_p (die1, die2, &mark);
8913 unmark_all_dies (die1);
8914 unmark_all_dies (die2);
8916 return ret;
8919 /* The prefix to attach to symbols on DIEs in the current comdat debug
8920 info section. */
8921 static char *comdat_symbol_id;
8923 /* The index of the current symbol within the current comdat CU. */
8924 static unsigned int comdat_symbol_number;
8926 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
8927 children, and set comdat_symbol_id accordingly. */
8929 static void
8930 compute_section_prefix (dw_die_ref unit_die)
8932 const char *die_name = get_AT_string (unit_die, DW_AT_name);
8933 const char *base = die_name ? lbasename (die_name) : "anonymous";
8934 char *name = XALLOCAVEC (char, strlen (base) + 64);
8935 char *p;
8936 int i, mark;
8937 unsigned char checksum[16];
8938 struct md5_ctx ctx;
8940 /* Compute the checksum of the DIE, then append part of it as hex digits to
8941 the name filename of the unit. */
8943 md5_init_ctx (&ctx);
8944 mark = 0;
8945 die_checksum (unit_die, &ctx, &mark);
8946 unmark_all_dies (unit_die);
8947 md5_finish_ctx (&ctx, checksum);
8949 sprintf (name, "%s.", base);
8950 clean_symbol_name (name);
8952 p = name + strlen (name);
8953 for (i = 0; i < 4; i++)
8955 sprintf (p, "%.2x", checksum[i]);
8956 p += 2;
8959 comdat_symbol_id = unit_die->die_id.die_symbol = xstrdup (name);
8960 comdat_symbol_number = 0;
8963 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
8965 static int
8966 is_type_die (dw_die_ref die)
8968 switch (die->die_tag)
8970 case DW_TAG_array_type:
8971 case DW_TAG_class_type:
8972 case DW_TAG_interface_type:
8973 case DW_TAG_enumeration_type:
8974 case DW_TAG_pointer_type:
8975 case DW_TAG_reference_type:
8976 case DW_TAG_string_type:
8977 case DW_TAG_structure_type:
8978 case DW_TAG_subroutine_type:
8979 case DW_TAG_union_type:
8980 case DW_TAG_ptr_to_member_type:
8981 case DW_TAG_set_type:
8982 case DW_TAG_subrange_type:
8983 case DW_TAG_base_type:
8984 case DW_TAG_const_type:
8985 case DW_TAG_file_type:
8986 case DW_TAG_packed_type:
8987 case DW_TAG_volatile_type:
8988 case DW_TAG_typedef:
8989 return 1;
8990 default:
8991 return 0;
8995 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
8996 Basically, we want to choose the bits that are likely to be shared between
8997 compilations (types) and leave out the bits that are specific to individual
8998 compilations (functions). */
9000 static int
9001 is_comdat_die (dw_die_ref c)
9003 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
9004 we do for stabs. The advantage is a greater likelihood of sharing between
9005 objects that don't include headers in the same order (and therefore would
9006 put the base types in a different comdat). jason 8/28/00 */
9008 if (c->die_tag == DW_TAG_base_type)
9009 return 0;
9011 if (c->die_tag == DW_TAG_pointer_type
9012 || c->die_tag == DW_TAG_reference_type
9013 || c->die_tag == DW_TAG_const_type
9014 || c->die_tag == DW_TAG_volatile_type)
9016 dw_die_ref t = get_AT_ref (c, DW_AT_type);
9018 return t ? is_comdat_die (t) : 0;
9021 return is_type_die (c);
9024 /* Returns 1 iff C is the sort of DIE that might be referred to from another
9025 compilation unit. */
9027 static int
9028 is_symbol_die (dw_die_ref c)
9030 return (is_type_die (c)
9031 || is_declaration_die (c)
9032 || c->die_tag == DW_TAG_namespace
9033 || c->die_tag == DW_TAG_module);
9036 static char *
9037 gen_internal_sym (const char *prefix)
9039 char buf[256];
9041 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
9042 return xstrdup (buf);
9045 /* Assign symbols to all worthy DIEs under DIE. */
9047 static void
9048 assign_symbol_names (dw_die_ref die)
9050 dw_die_ref c;
9052 if (is_symbol_die (die))
9054 if (comdat_symbol_id)
9056 char *p = XALLOCAVEC (char, strlen (comdat_symbol_id) + 64);
9058 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
9059 comdat_symbol_id, comdat_symbol_number++);
9060 die->die_id.die_symbol = xstrdup (p);
9062 else
9063 die->die_id.die_symbol = gen_internal_sym ("LDIE");
9066 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
9069 struct cu_hash_table_entry
9071 dw_die_ref cu;
9072 unsigned min_comdat_num, max_comdat_num;
9073 struct cu_hash_table_entry *next;
9076 /* Routines to manipulate hash table of CUs. */
9077 static hashval_t
9078 htab_cu_hash (const void *of)
9080 const struct cu_hash_table_entry *const entry =
9081 (const struct cu_hash_table_entry *) of;
9083 return htab_hash_string (entry->cu->die_id.die_symbol);
9086 static int
9087 htab_cu_eq (const void *of1, const void *of2)
9089 const struct cu_hash_table_entry *const entry1 =
9090 (const struct cu_hash_table_entry *) of1;
9091 const struct die_struct *const entry2 = (const struct die_struct *) of2;
9093 return !strcmp (entry1->cu->die_id.die_symbol, entry2->die_id.die_symbol);
9096 static void
9097 htab_cu_del (void *what)
9099 struct cu_hash_table_entry *next,
9100 *entry = (struct cu_hash_table_entry *) what;
9102 while (entry)
9104 next = entry->next;
9105 free (entry);
9106 entry = next;
9110 /* Check whether we have already seen this CU and set up SYM_NUM
9111 accordingly. */
9112 static int
9113 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
9115 struct cu_hash_table_entry dummy;
9116 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
9118 dummy.max_comdat_num = 0;
9120 slot = (struct cu_hash_table_entry **)
9121 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_id.die_symbol),
9122 INSERT);
9123 entry = *slot;
9125 for (; entry; last = entry, entry = entry->next)
9127 if (same_die_p_wrap (cu, entry->cu))
9128 break;
9131 if (entry)
9133 *sym_num = entry->min_comdat_num;
9134 return 1;
9137 entry = XCNEW (struct cu_hash_table_entry);
9138 entry->cu = cu;
9139 entry->min_comdat_num = *sym_num = last->max_comdat_num;
9140 entry->next = *slot;
9141 *slot = entry;
9143 return 0;
9146 /* Record SYM_NUM to record of CU in HTABLE. */
9147 static void
9148 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
9150 struct cu_hash_table_entry **slot, *entry;
9152 slot = (struct cu_hash_table_entry **)
9153 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_id.die_symbol),
9154 NO_INSERT);
9155 entry = *slot;
9157 entry->max_comdat_num = sym_num;
9160 /* Traverse the DIE (which is always comp_unit_die), and set up
9161 additional compilation units for each of the include files we see
9162 bracketed by BINCL/EINCL. */
9164 static void
9165 break_out_includes (dw_die_ref die)
9167 dw_die_ref c;
9168 dw_die_ref unit = NULL;
9169 limbo_die_node *node, **pnode;
9170 htab_t cu_hash_table;
9172 c = die->die_child;
9173 if (c) do {
9174 dw_die_ref prev = c;
9175 c = c->die_sib;
9176 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
9177 || (unit && is_comdat_die (c)))
9179 dw_die_ref next = c->die_sib;
9181 /* This DIE is for a secondary CU; remove it from the main one. */
9182 remove_child_with_prev (c, prev);
9184 if (c->die_tag == DW_TAG_GNU_BINCL)
9185 unit = push_new_compile_unit (unit, c);
9186 else if (c->die_tag == DW_TAG_GNU_EINCL)
9187 unit = pop_compile_unit (unit);
9188 else
9189 add_child_die (unit, c);
9190 c = next;
9191 if (c == die->die_child)
9192 break;
9194 } while (c != die->die_child);
9196 #if 0
9197 /* We can only use this in debugging, since the frontend doesn't check
9198 to make sure that we leave every include file we enter. */
9199 gcc_assert (!unit);
9200 #endif
9202 assign_symbol_names (die);
9203 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
9204 for (node = limbo_die_list, pnode = &limbo_die_list;
9205 node;
9206 node = node->next)
9208 int is_dupl;
9210 compute_section_prefix (node->die);
9211 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
9212 &comdat_symbol_number);
9213 assign_symbol_names (node->die);
9214 if (is_dupl)
9215 *pnode = node->next;
9216 else
9218 pnode = &node->next;
9219 record_comdat_symbol_number (node->die, cu_hash_table,
9220 comdat_symbol_number);
9223 htab_delete (cu_hash_table);
9226 /* Return non-zero if this DIE is a declaration. */
9228 static int
9229 is_declaration_die (dw_die_ref die)
9231 dw_attr_ref a;
9232 unsigned ix;
9234 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
9235 if (a->dw_attr == DW_AT_declaration)
9236 return 1;
9238 return 0;
9241 /* Return non-zero if this is a type DIE that should be moved to a
9242 COMDAT .debug_types section. */
9244 static int
9245 should_move_die_to_comdat (dw_die_ref die)
9247 switch (die->die_tag)
9249 case DW_TAG_class_type:
9250 case DW_TAG_structure_type:
9251 case DW_TAG_enumeration_type:
9252 case DW_TAG_union_type:
9253 /* Don't move declarations or inlined instances. */
9254 if (is_declaration_die (die) || get_AT (die, DW_AT_abstract_origin))
9255 return 0;
9256 return 1;
9257 case DW_TAG_array_type:
9258 case DW_TAG_interface_type:
9259 case DW_TAG_pointer_type:
9260 case DW_TAG_reference_type:
9261 case DW_TAG_string_type:
9262 case DW_TAG_subroutine_type:
9263 case DW_TAG_ptr_to_member_type:
9264 case DW_TAG_set_type:
9265 case DW_TAG_subrange_type:
9266 case DW_TAG_base_type:
9267 case DW_TAG_const_type:
9268 case DW_TAG_file_type:
9269 case DW_TAG_packed_type:
9270 case DW_TAG_volatile_type:
9271 case DW_TAG_typedef:
9272 default:
9273 return 0;
9277 /* Make a clone of DIE. */
9279 static dw_die_ref
9280 clone_die (dw_die_ref die)
9282 dw_die_ref clone;
9283 dw_attr_ref a;
9284 unsigned ix;
9286 clone = GGC_CNEW (die_node);
9287 clone->die_tag = die->die_tag;
9289 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
9290 add_dwarf_attr (clone, a);
9292 return clone;
9295 /* Make a clone of the tree rooted at DIE. */
9297 static dw_die_ref
9298 clone_tree (dw_die_ref die)
9300 dw_die_ref c;
9301 dw_die_ref clone = clone_die (die);
9303 FOR_EACH_CHILD (die, c, add_child_die (clone, clone_tree(c)));
9305 return clone;
9308 /* Make a clone of DIE as a declaration. */
9310 static dw_die_ref
9311 clone_as_declaration (dw_die_ref die)
9313 dw_die_ref clone;
9314 dw_die_ref decl;
9315 dw_attr_ref a;
9316 unsigned ix;
9318 /* If the DIE is already a declaration, just clone it. */
9319 if (is_declaration_die (die))
9320 return clone_die (die);
9322 /* If the DIE is a specification, just clone its declaration DIE. */
9323 decl = get_AT_ref (die, DW_AT_specification);
9324 if (decl != NULL)
9325 return clone_die (decl);
9327 clone = GGC_CNEW (die_node);
9328 clone->die_tag = die->die_tag;
9330 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
9332 /* We don't want to copy over all attributes.
9333 For example we don't want DW_AT_byte_size because otherwise we will no
9334 longer have a declaration and GDB will treat it as a definition. */
9336 switch (a->dw_attr)
9338 case DW_AT_artificial:
9339 case DW_AT_containing_type:
9340 case DW_AT_external:
9341 case DW_AT_name:
9342 case DW_AT_type:
9343 case DW_AT_virtuality:
9344 case DW_AT_MIPS_linkage_name:
9345 add_dwarf_attr (clone, a);
9346 break;
9347 case DW_AT_byte_size:
9348 default:
9349 break;
9353 if (die->die_id.die_type_node)
9354 add_AT_die_ref (clone, DW_AT_signature, die);
9356 add_AT_flag (clone, DW_AT_declaration, 1);
9357 return clone;
9360 /* Copy the declaration context to the new compile unit DIE. This includes
9361 any surrounding namespace or type declarations. If the DIE has an
9362 AT_specification attribute, it also includes attributes and children
9363 attached to the specification. */
9365 static void
9366 copy_declaration_context (dw_die_ref unit, dw_die_ref die)
9368 dw_die_ref decl;
9369 dw_die_ref new_decl;
9371 decl = get_AT_ref (die, DW_AT_specification);
9372 if (decl == NULL)
9373 decl = die;
9374 else
9376 unsigned ix;
9377 dw_die_ref c;
9378 dw_attr_ref a;
9380 /* Copy the type node pointer from the new DIE to the original
9381 declaration DIE so we can forward references later. */
9382 decl->die_id.die_type_node = die->die_id.die_type_node;
9384 remove_AT (die, DW_AT_specification);
9386 for (ix = 0; VEC_iterate (dw_attr_node, decl->die_attr, ix, a); ix++)
9388 if (a->dw_attr != DW_AT_name
9389 && a->dw_attr != DW_AT_declaration
9390 && a->dw_attr != DW_AT_external)
9391 add_dwarf_attr (die, a);
9394 FOR_EACH_CHILD (decl, c, add_child_die (die, clone_tree(c)));
9397 if (decl->die_parent != NULL
9398 && decl->die_parent->die_tag != DW_TAG_compile_unit
9399 && decl->die_parent->die_tag != DW_TAG_type_unit)
9401 new_decl = copy_ancestor_tree (unit, decl, NULL);
9402 if (new_decl != NULL)
9404 remove_AT (new_decl, DW_AT_signature);
9405 add_AT_specification (die, new_decl);
9410 /* Generate the skeleton ancestor tree for the given NODE, then clone
9411 the DIE and add the clone into the tree. */
9413 static void
9414 generate_skeleton_ancestor_tree (skeleton_chain_node *node)
9416 if (node->new_die != NULL)
9417 return;
9419 node->new_die = clone_as_declaration (node->old_die);
9421 if (node->parent != NULL)
9423 generate_skeleton_ancestor_tree (node->parent);
9424 add_child_die (node->parent->new_die, node->new_die);
9428 /* Generate a skeleton tree of DIEs containing any declarations that are
9429 found in the original tree. We traverse the tree looking for declaration
9430 DIEs, and construct the skeleton from the bottom up whenever we find one. */
9432 static void
9433 generate_skeleton_bottom_up (skeleton_chain_node *parent)
9435 skeleton_chain_node node;
9436 dw_die_ref c;
9437 dw_die_ref first;
9438 dw_die_ref prev = NULL;
9439 dw_die_ref next = NULL;
9441 node.parent = parent;
9443 first = c = parent->old_die->die_child;
9444 if (c)
9445 next = c->die_sib;
9446 if (c) do {
9447 if (prev == NULL || prev->die_sib == c)
9448 prev = c;
9449 c = next;
9450 next = (c == first ? NULL : c->die_sib);
9451 node.old_die = c;
9452 node.new_die = NULL;
9453 if (is_declaration_die (c))
9455 /* Clone the existing DIE, move the original to the skeleton
9456 tree (which is in the main CU), and put the clone, with
9457 all the original's children, where the original came from. */
9458 dw_die_ref clone = clone_die (c);
9459 move_all_children (c, clone);
9461 replace_child (c, clone, prev);
9462 generate_skeleton_ancestor_tree (parent);
9463 add_child_die (parent->new_die, c);
9464 node.new_die = c;
9465 c = clone;
9467 generate_skeleton_bottom_up (&node);
9468 } while (next != NULL);
9471 /* Wrapper function for generate_skeleton_bottom_up. */
9473 static dw_die_ref
9474 generate_skeleton (dw_die_ref die)
9476 skeleton_chain_node node;
9478 node.old_die = die;
9479 node.new_die = NULL;
9480 node.parent = NULL;
9482 /* If this type definition is nested inside another type,
9483 always leave at least a declaration in its place. */
9484 if (die->die_parent != NULL && is_type_die (die->die_parent))
9485 node.new_die = clone_as_declaration (die);
9487 generate_skeleton_bottom_up (&node);
9488 return node.new_die;
9491 /* Remove the DIE from its parent, possibly replacing it with a cloned
9492 declaration. The original DIE will be moved to a new compile unit
9493 so that existing references to it follow it to the new location. If
9494 any of the original DIE's descendants is a declaration, we need to
9495 replace the original DIE with a skeleton tree and move the
9496 declarations back into the skeleton tree. */
9498 static dw_die_ref
9499 remove_child_or_replace_with_skeleton (dw_die_ref child, dw_die_ref prev)
9501 dw_die_ref skeleton;
9503 skeleton = generate_skeleton (child);
9504 if (skeleton == NULL)
9505 remove_child_with_prev (child, prev);
9506 else
9508 skeleton->die_id.die_type_node = child->die_id.die_type_node;
9509 replace_child (child, skeleton, prev);
9512 return skeleton;
9515 /* Traverse the DIE and set up additional .debug_types sections for each
9516 type worthy of being placed in a COMDAT section. */
9518 static void
9519 break_out_comdat_types (dw_die_ref die)
9521 dw_die_ref c;
9522 dw_die_ref first;
9523 dw_die_ref prev = NULL;
9524 dw_die_ref next = NULL;
9525 dw_die_ref unit = NULL;
9527 first = c = die->die_child;
9528 if (c)
9529 next = c->die_sib;
9530 if (c) do {
9531 if (prev == NULL || prev->die_sib == c)
9532 prev = c;
9533 c = next;
9534 next = (c == first ? NULL : c->die_sib);
9535 if (should_move_die_to_comdat (c))
9537 dw_die_ref replacement;
9538 comdat_type_node_ref type_node;
9540 /* Create a new type unit DIE as the root for the new tree, and
9541 add it to the list of comdat types. */
9542 unit = new_die (DW_TAG_type_unit, NULL, NULL);
9543 add_AT_unsigned (unit, DW_AT_language,
9544 get_AT_unsigned (comp_unit_die, DW_AT_language));
9545 type_node = GGC_CNEW (comdat_type_node);
9546 type_node->root_die = unit;
9547 type_node->next = comdat_type_list;
9548 comdat_type_list = type_node;
9550 /* Generate the type signature. */
9551 generate_type_signature (c, type_node);
9553 /* Copy the declaration context, attributes, and children of the
9554 declaration into the new compile unit DIE. */
9555 copy_declaration_context (unit, c);
9557 /* Remove this DIE from the main CU. */
9558 replacement = remove_child_or_replace_with_skeleton (c, prev);
9560 /* Break out nested types into their own type units. */
9561 break_out_comdat_types (c);
9563 /* Add the DIE to the new compunit. */
9564 add_child_die (unit, c);
9566 if (replacement != NULL)
9567 c = replacement;
9569 else if (c->die_tag == DW_TAG_namespace
9570 || c->die_tag == DW_TAG_class_type
9571 || c->die_tag == DW_TAG_structure_type
9572 || c->die_tag == DW_TAG_union_type)
9574 /* Look for nested types that can be broken out. */
9575 break_out_comdat_types (c);
9577 } while (next != NULL);
9580 /* Structure to map a DIE in one CU to its copy in a comdat type unit. */
9582 struct decl_table_entry
9584 dw_die_ref orig;
9585 dw_die_ref copy;
9588 /* Routines to manipulate hash table of copied declarations. */
9590 static hashval_t
9591 htab_decl_hash (const void *of)
9593 const struct decl_table_entry *const entry =
9594 (const struct decl_table_entry *) of;
9596 return htab_hash_pointer (entry->orig);
9599 static int
9600 htab_decl_eq (const void *of1, const void *of2)
9602 const struct decl_table_entry *const entry1 =
9603 (const struct decl_table_entry *) of1;
9604 const struct die_struct *const entry2 = (const struct die_struct *) of2;
9606 return entry1->orig == entry2;
9609 static void
9610 htab_decl_del (void *what)
9612 struct decl_table_entry *entry = (struct decl_table_entry *) what;
9614 free (entry);
9617 /* Copy DIE and its ancestors, up to, but not including, the compile unit
9618 or type unit entry, to a new tree. Adds the new tree to UNIT and returns
9619 a pointer to the copy of DIE. If DECL_TABLE is provided, it is used
9620 to check if the ancestor has already been copied into UNIT. */
9622 static dw_die_ref
9623 copy_ancestor_tree (dw_die_ref unit, dw_die_ref die, htab_t decl_table)
9625 dw_die_ref parent = die->die_parent;
9626 dw_die_ref new_parent = unit;
9627 dw_die_ref copy;
9628 void **slot = NULL;
9629 struct decl_table_entry *entry = NULL;
9631 if (decl_table)
9633 /* Check if the entry has already been copied to UNIT. */
9634 slot = htab_find_slot_with_hash (decl_table, die,
9635 htab_hash_pointer (die), INSERT);
9636 if (*slot != HTAB_EMPTY_ENTRY)
9638 entry = (struct decl_table_entry *) *slot;
9639 return entry->copy;
9642 /* Record in DECL_TABLE that DIE has been copied to UNIT. */
9643 entry = XCNEW (struct decl_table_entry);
9644 entry->orig = die;
9645 entry->copy = NULL;
9646 *slot = entry;
9649 if (parent != NULL)
9651 dw_die_ref spec = get_AT_ref (parent, DW_AT_specification);
9652 if (spec != NULL)
9653 parent = spec;
9654 if (parent->die_tag != DW_TAG_compile_unit
9655 && parent->die_tag != DW_TAG_type_unit)
9656 new_parent = copy_ancestor_tree (unit, parent, decl_table);
9659 copy = clone_as_declaration (die);
9660 add_child_die (new_parent, copy);
9662 if (decl_table != NULL)
9664 /* Make sure the copy is marked as part of the type unit. */
9665 copy->die_mark = 1;
9666 /* Record the pointer to the copy. */
9667 entry->copy = copy;
9670 return copy;
9673 /* Walk the DIE and its children, looking for references to incomplete
9674 or trivial types that are unmarked (i.e., that are not in the current
9675 type_unit). */
9677 static void
9678 copy_decls_walk (dw_die_ref unit, dw_die_ref die, htab_t decl_table)
9680 dw_die_ref c;
9681 dw_attr_ref a;
9682 unsigned ix;
9684 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
9686 if (AT_class (a) == dw_val_class_die_ref)
9688 dw_die_ref targ = AT_ref (a);
9689 comdat_type_node_ref type_node = targ->die_id.die_type_node;
9690 void **slot;
9691 struct decl_table_entry *entry;
9693 if (targ->die_mark != 0 || type_node != NULL)
9694 continue;
9696 slot = htab_find_slot_with_hash (decl_table, targ,
9697 htab_hash_pointer (targ), INSERT);
9699 if (*slot != HTAB_EMPTY_ENTRY)
9701 /* TARG has already been copied, so we just need to
9702 modify the reference to point to the copy. */
9703 entry = (struct decl_table_entry *) *slot;
9704 a->dw_attr_val.v.val_die_ref.die = entry->copy;
9706 else
9708 dw_die_ref parent = unit;
9709 dw_die_ref copy = clone_tree (targ);
9711 /* Make sure the cloned tree is marked as part of the
9712 type unit. */
9713 mark_dies (copy);
9715 /* Record in DECL_TABLE that TARG has been copied.
9716 Need to do this now, before the recursive call,
9717 because DECL_TABLE may be expanded and SLOT
9718 would no longer be a valid pointer. */
9719 entry = XCNEW (struct decl_table_entry);
9720 entry->orig = targ;
9721 entry->copy = copy;
9722 *slot = entry;
9724 /* If TARG has surrounding context, copy its ancestor tree
9725 into the new type unit. */
9726 if (targ->die_parent != NULL
9727 && targ->die_parent->die_tag != DW_TAG_compile_unit
9728 && targ->die_parent->die_tag != DW_TAG_type_unit)
9729 parent = copy_ancestor_tree (unit, targ->die_parent,
9730 decl_table);
9732 add_child_die (parent, copy);
9733 a->dw_attr_val.v.val_die_ref.die = copy;
9735 /* Make sure the newly-copied DIE is walked. If it was
9736 installed in a previously-added context, it won't
9737 get visited otherwise. */
9738 if (parent != unit)
9739 copy_decls_walk (unit, parent, decl_table);
9744 FOR_EACH_CHILD (die, c, copy_decls_walk (unit, c, decl_table));
9747 /* Copy declarations for "unworthy" types into the new comdat section.
9748 Incomplete types, modified types, and certain other types aren't broken
9749 out into comdat sections of their own, so they don't have a signature,
9750 and we need to copy the declaration into the same section so that we
9751 don't have an external reference. */
9753 static void
9754 copy_decls_for_unworthy_types (dw_die_ref unit)
9756 htab_t decl_table;
9758 mark_dies (unit);
9759 decl_table = htab_create (10, htab_decl_hash, htab_decl_eq, htab_decl_del);
9760 copy_decls_walk (unit, unit, decl_table);
9761 htab_delete (decl_table);
9762 unmark_dies (unit);
9765 /* Traverse the DIE and add a sibling attribute if it may have the
9766 effect of speeding up access to siblings. To save some space,
9767 avoid generating sibling attributes for DIE's without children. */
9769 static void
9770 add_sibling_attributes (dw_die_ref die)
9772 dw_die_ref c;
9774 if (! die->die_child)
9775 return;
9777 if (die->die_parent && die != die->die_parent->die_child)
9778 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
9780 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
9783 /* Output all location lists for the DIE and its children. */
9785 static void
9786 output_location_lists (dw_die_ref die)
9788 dw_die_ref c;
9789 dw_attr_ref a;
9790 unsigned ix;
9792 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
9793 if (AT_class (a) == dw_val_class_loc_list)
9794 output_loc_list (AT_loc_list (a));
9796 FOR_EACH_CHILD (die, c, output_location_lists (c));
9799 /* The format of each DIE (and its attribute value pairs) is encoded in an
9800 abbreviation table. This routine builds the abbreviation table and assigns
9801 a unique abbreviation id for each abbreviation entry. The children of each
9802 die are visited recursively. */
9804 static void
9805 build_abbrev_table (dw_die_ref die)
9807 unsigned long abbrev_id;
9808 unsigned int n_alloc;
9809 dw_die_ref c;
9810 dw_attr_ref a;
9811 unsigned ix;
9813 /* Scan the DIE references, and mark as external any that refer to
9814 DIEs from other CUs (i.e. those which are not marked). */
9815 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
9816 if (AT_class (a) == dw_val_class_die_ref
9817 && AT_ref (a)->die_mark == 0)
9819 gcc_assert (dwarf_version >= 4 || AT_ref (a)->die_id.die_symbol);
9820 set_AT_ref_external (a, 1);
9823 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
9825 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
9826 dw_attr_ref die_a, abbrev_a;
9827 unsigned ix;
9828 bool ok = true;
9830 if (abbrev->die_tag != die->die_tag)
9831 continue;
9832 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
9833 continue;
9835 if (VEC_length (dw_attr_node, abbrev->die_attr)
9836 != VEC_length (dw_attr_node, die->die_attr))
9837 continue;
9839 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
9841 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
9842 if ((abbrev_a->dw_attr != die_a->dw_attr)
9843 || (value_format (abbrev_a) != value_format (die_a)))
9845 ok = false;
9846 break;
9849 if (ok)
9850 break;
9853 if (abbrev_id >= abbrev_die_table_in_use)
9855 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
9857 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
9858 abbrev_die_table = GGC_RESIZEVEC (dw_die_ref, abbrev_die_table,
9859 n_alloc);
9861 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
9862 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
9863 abbrev_die_table_allocated = n_alloc;
9866 ++abbrev_die_table_in_use;
9867 abbrev_die_table[abbrev_id] = die;
9870 die->die_abbrev = abbrev_id;
9871 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
9874 /* Return the power-of-two number of bytes necessary to represent VALUE. */
9876 static int
9877 constant_size (unsigned HOST_WIDE_INT value)
9879 int log;
9881 if (value == 0)
9882 log = 0;
9883 else
9884 log = floor_log2 (value);
9886 log = log / 8;
9887 log = 1 << (floor_log2 (log) + 1);
9889 return log;
9892 /* Return the size of a DIE as it is represented in the
9893 .debug_info section. */
9895 static unsigned long
9896 size_of_die (dw_die_ref die)
9898 unsigned long size = 0;
9899 dw_attr_ref a;
9900 unsigned ix;
9902 size += size_of_uleb128 (die->die_abbrev);
9903 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
9905 switch (AT_class (a))
9907 case dw_val_class_addr:
9908 size += DWARF2_ADDR_SIZE;
9909 break;
9910 case dw_val_class_offset:
9911 size += DWARF_OFFSET_SIZE;
9912 break;
9913 case dw_val_class_loc:
9915 unsigned long lsize = size_of_locs (AT_loc (a));
9917 /* Block length. */
9918 size += constant_size (lsize);
9919 size += lsize;
9921 break;
9922 case dw_val_class_loc_list:
9923 size += DWARF_OFFSET_SIZE;
9924 break;
9925 case dw_val_class_range_list:
9926 size += DWARF_OFFSET_SIZE;
9927 break;
9928 case dw_val_class_const:
9929 size += size_of_sleb128 (AT_int (a));
9930 break;
9931 case dw_val_class_unsigned_const:
9932 size += constant_size (AT_unsigned (a));
9933 break;
9934 case dw_val_class_const_double:
9935 size += 2 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
9936 if (HOST_BITS_PER_WIDE_INT >= 64)
9937 size++; /* block */
9938 break;
9939 case dw_val_class_vec:
9940 size += constant_size (a->dw_attr_val.v.val_vec.length
9941 * a->dw_attr_val.v.val_vec.elt_size)
9942 + a->dw_attr_val.v.val_vec.length
9943 * a->dw_attr_val.v.val_vec.elt_size; /* block */
9944 break;
9945 case dw_val_class_flag:
9946 size += 1;
9947 break;
9948 case dw_val_class_die_ref:
9949 if (AT_ref_external (a))
9951 /* In DWARF4, we use DW_FORM_sig8; for earlier versions
9952 we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr
9953 is sized by target address length, whereas in DWARF3
9954 it's always sized as an offset. */
9955 if (dwarf_version >= 4)
9956 size += DWARF_TYPE_SIGNATURE_SIZE;
9957 else if (dwarf_version == 2)
9958 size += DWARF2_ADDR_SIZE;
9959 else
9960 size += DWARF_OFFSET_SIZE;
9962 else
9963 size += DWARF_OFFSET_SIZE;
9964 break;
9965 case dw_val_class_fde_ref:
9966 size += DWARF_OFFSET_SIZE;
9967 break;
9968 case dw_val_class_lbl_id:
9969 size += DWARF2_ADDR_SIZE;
9970 break;
9971 case dw_val_class_lineptr:
9972 case dw_val_class_macptr:
9973 size += DWARF_OFFSET_SIZE;
9974 break;
9975 case dw_val_class_str:
9976 if (AT_string_form (a) == DW_FORM_strp)
9977 size += DWARF_OFFSET_SIZE;
9978 else
9979 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
9980 break;
9981 case dw_val_class_file:
9982 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
9983 break;
9984 case dw_val_class_data8:
9985 size += 8;
9986 break;
9987 default:
9988 gcc_unreachable ();
9992 return size;
9995 /* Size the debugging information associated with a given DIE. Visits the
9996 DIE's children recursively. Updates the global variable next_die_offset, on
9997 each time through. Uses the current value of next_die_offset to update the
9998 die_offset field in each DIE. */
10000 static void
10001 calc_die_sizes (dw_die_ref die)
10003 dw_die_ref c;
10005 die->die_offset = next_die_offset;
10006 next_die_offset += size_of_die (die);
10008 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
10010 if (die->die_child != NULL)
10011 /* Count the null byte used to terminate sibling lists. */
10012 next_die_offset += 1;
10015 /* Set the marks for a die and its children. We do this so
10016 that we know whether or not a reference needs to use FORM_ref_addr; only
10017 DIEs in the same CU will be marked. We used to clear out the offset
10018 and use that as the flag, but ran into ordering problems. */
10020 static void
10021 mark_dies (dw_die_ref die)
10023 dw_die_ref c;
10025 gcc_assert (!die->die_mark);
10027 die->die_mark = 1;
10028 FOR_EACH_CHILD (die, c, mark_dies (c));
10031 /* Clear the marks for a die and its children. */
10033 static void
10034 unmark_dies (dw_die_ref die)
10036 dw_die_ref c;
10038 if (dwarf_version < 4)
10039 gcc_assert (die->die_mark);
10041 die->die_mark = 0;
10042 FOR_EACH_CHILD (die, c, unmark_dies (c));
10045 /* Clear the marks for a die, its children and referred dies. */
10047 static void
10048 unmark_all_dies (dw_die_ref die)
10050 dw_die_ref c;
10051 dw_attr_ref a;
10052 unsigned ix;
10054 if (!die->die_mark)
10055 return;
10056 die->die_mark = 0;
10058 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
10060 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
10061 if (AT_class (a) == dw_val_class_die_ref)
10062 unmark_all_dies (AT_ref (a));
10065 /* Return the size of the .debug_pubnames or .debug_pubtypes table
10066 generated for the compilation unit. */
10068 static unsigned long
10069 size_of_pubnames (VEC (pubname_entry, gc) * names)
10071 unsigned long size;
10072 unsigned i;
10073 pubname_ref p;
10075 size = DWARF_PUBNAMES_HEADER_SIZE;
10076 for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
10077 if (names != pubtype_table
10078 || p->die->die_offset != 0
10079 || !flag_eliminate_unused_debug_types)
10080 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
10082 size += DWARF_OFFSET_SIZE;
10083 return size;
10086 /* Return the size of the information in the .debug_aranges section. */
10088 static unsigned long
10089 size_of_aranges (void)
10091 unsigned long size;
10093 size = DWARF_ARANGES_HEADER_SIZE;
10095 /* Count the address/length pair for this compilation unit. */
10096 if (text_section_used)
10097 size += 2 * DWARF2_ADDR_SIZE;
10098 if (cold_text_section_used)
10099 size += 2 * DWARF2_ADDR_SIZE;
10100 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
10102 /* Count the two zero words used to terminated the address range table. */
10103 size += 2 * DWARF2_ADDR_SIZE;
10104 return size;
10107 /* Select the encoding of an attribute value. */
10109 static enum dwarf_form
10110 value_format (dw_attr_ref a)
10112 switch (a->dw_attr_val.val_class)
10114 case dw_val_class_addr:
10115 /* Only very few attributes allow DW_FORM_addr. */
10116 switch (a->dw_attr)
10118 case DW_AT_low_pc:
10119 case DW_AT_high_pc:
10120 case DW_AT_entry_pc:
10121 case DW_AT_trampoline:
10122 return DW_FORM_addr;
10123 default:
10124 break;
10126 switch (DWARF2_ADDR_SIZE)
10128 case 1:
10129 return DW_FORM_data1;
10130 case 2:
10131 return DW_FORM_data2;
10132 case 4:
10133 return DW_FORM_data4;
10134 case 8:
10135 return DW_FORM_data8;
10136 default:
10137 gcc_unreachable ();
10139 case dw_val_class_range_list:
10140 case dw_val_class_offset:
10141 case dw_val_class_loc_list:
10142 switch (DWARF_OFFSET_SIZE)
10144 case 4:
10145 return DW_FORM_data4;
10146 case 8:
10147 return DW_FORM_data8;
10148 default:
10149 gcc_unreachable ();
10151 case dw_val_class_loc:
10152 switch (constant_size (size_of_locs (AT_loc (a))))
10154 case 1:
10155 return DW_FORM_block1;
10156 case 2:
10157 return DW_FORM_block2;
10158 default:
10159 gcc_unreachable ();
10161 case dw_val_class_const:
10162 return DW_FORM_sdata;
10163 case dw_val_class_unsigned_const:
10164 switch (constant_size (AT_unsigned (a)))
10166 case 1:
10167 return DW_FORM_data1;
10168 case 2:
10169 return DW_FORM_data2;
10170 case 4:
10171 return DW_FORM_data4;
10172 case 8:
10173 return DW_FORM_data8;
10174 default:
10175 gcc_unreachable ();
10177 case dw_val_class_const_double:
10178 switch (HOST_BITS_PER_WIDE_INT)
10180 case 8:
10181 return DW_FORM_data2;
10182 case 16:
10183 return DW_FORM_data4;
10184 case 32:
10185 return DW_FORM_data8;
10186 case 64:
10187 default:
10188 return DW_FORM_block1;
10190 case dw_val_class_vec:
10191 switch (constant_size (a->dw_attr_val.v.val_vec.length
10192 * a->dw_attr_val.v.val_vec.elt_size))
10194 case 1:
10195 return DW_FORM_block1;
10196 case 2:
10197 return DW_FORM_block2;
10198 case 4:
10199 return DW_FORM_block4;
10200 default:
10201 gcc_unreachable ();
10203 case dw_val_class_flag:
10204 return DW_FORM_flag;
10205 case dw_val_class_die_ref:
10206 if (AT_ref_external (a))
10207 return dwarf_version >= 4 ? DW_FORM_sig8 : DW_FORM_ref_addr;
10208 else
10209 return DW_FORM_ref;
10210 case dw_val_class_fde_ref:
10211 return DW_FORM_data;
10212 case dw_val_class_lbl_id:
10213 return DW_FORM_addr;
10214 case dw_val_class_lineptr:
10215 case dw_val_class_macptr:
10216 return DW_FORM_data;
10217 case dw_val_class_str:
10218 return AT_string_form (a);
10219 case dw_val_class_file:
10220 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
10222 case 1:
10223 return DW_FORM_data1;
10224 case 2:
10225 return DW_FORM_data2;
10226 case 4:
10227 return DW_FORM_data4;
10228 default:
10229 gcc_unreachable ();
10232 case dw_val_class_data8:
10233 return DW_FORM_data8;
10235 default:
10236 gcc_unreachable ();
10240 /* Output the encoding of an attribute value. */
10242 static void
10243 output_value_format (dw_attr_ref a)
10245 enum dwarf_form form = value_format (a);
10247 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
10250 /* Output the .debug_abbrev section which defines the DIE abbreviation
10251 table. */
10253 static void
10254 output_abbrev_section (void)
10256 unsigned long abbrev_id;
10258 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
10260 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
10261 unsigned ix;
10262 dw_attr_ref a_attr;
10264 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
10265 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
10266 dwarf_tag_name (abbrev->die_tag));
10268 if (abbrev->die_child != NULL)
10269 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
10270 else
10271 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
10273 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
10274 ix++)
10276 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
10277 dwarf_attr_name (a_attr->dw_attr));
10278 output_value_format (a_attr);
10281 dw2_asm_output_data (1, 0, NULL);
10282 dw2_asm_output_data (1, 0, NULL);
10285 /* Terminate the table. */
10286 dw2_asm_output_data (1, 0, NULL);
10289 /* Output a symbol we can use to refer to this DIE from another CU. */
10291 static inline void
10292 output_die_symbol (dw_die_ref die)
10294 char *sym = die->die_id.die_symbol;
10296 if (sym == 0)
10297 return;
10299 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
10300 /* We make these global, not weak; if the target doesn't support
10301 .linkonce, it doesn't support combining the sections, so debugging
10302 will break. */
10303 targetm.asm_out.globalize_label (asm_out_file, sym);
10305 ASM_OUTPUT_LABEL (asm_out_file, sym);
10308 /* Return a new location list, given the begin and end range, and the
10309 expression. */
10311 static inline dw_loc_list_ref
10312 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
10313 const char *section)
10315 dw_loc_list_ref retlist = GGC_CNEW (dw_loc_list_node);
10317 retlist->begin = begin;
10318 retlist->end = end;
10319 retlist->expr = expr;
10320 retlist->section = section;
10322 return retlist;
10325 /* Generate a new internal symbol for this location list node, if it
10326 hasn't got one yet. */
10328 static inline void
10329 gen_llsym (dw_loc_list_ref list)
10331 gcc_assert (!list->ll_symbol);
10332 list->ll_symbol = gen_internal_sym ("LLST");
10335 /* Output the location list given to us. */
10337 static void
10338 output_loc_list (dw_loc_list_ref list_head)
10340 dw_loc_list_ref curr = list_head;
10342 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
10344 /* Walk the location list, and output each range + expression. */
10345 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
10347 unsigned long size;
10348 /* Don't output an entry that starts and ends at the same address. */
10349 if (strcmp (curr->begin, curr->end) == 0)
10350 continue;
10351 if (!have_multiple_function_sections)
10353 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
10354 "Location list begin address (%s)",
10355 list_head->ll_symbol);
10356 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
10357 "Location list end address (%s)",
10358 list_head->ll_symbol);
10360 else
10362 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
10363 "Location list begin address (%s)",
10364 list_head->ll_symbol);
10365 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
10366 "Location list end address (%s)",
10367 list_head->ll_symbol);
10369 size = size_of_locs (curr->expr);
10371 /* Output the block length for this list of location operations. */
10372 gcc_assert (size <= 0xffff);
10373 dw2_asm_output_data (2, size, "%s", "Location expression size");
10375 output_loc_sequence (curr->expr);
10378 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
10379 "Location list terminator begin (%s)",
10380 list_head->ll_symbol);
10381 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
10382 "Location list terminator end (%s)",
10383 list_head->ll_symbol);
10386 /* Output a type signature. */
10388 static inline void
10389 output_signature (const char *sig, const char *name)
10391 int i;
10393 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
10394 dw2_asm_output_data (1, sig[i], i == 0 ? "%s" : NULL, name);
10397 /* Output the DIE and its attributes. Called recursively to generate
10398 the definitions of each child DIE. */
10400 static void
10401 output_die (dw_die_ref die)
10403 dw_attr_ref a;
10404 dw_die_ref c;
10405 unsigned long size;
10406 unsigned ix;
10408 /* If someone in another CU might refer to us, set up a symbol for
10409 them to point to. */
10410 if (dwarf_version < 4 && die->die_id.die_symbol)
10411 output_die_symbol (die);
10413 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
10414 (unsigned long)die->die_offset,
10415 dwarf_tag_name (die->die_tag));
10417 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
10419 const char *name = dwarf_attr_name (a->dw_attr);
10421 switch (AT_class (a))
10423 case dw_val_class_addr:
10424 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
10425 break;
10427 case dw_val_class_offset:
10428 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
10429 "%s", name);
10430 break;
10432 case dw_val_class_range_list:
10434 char *p = strchr (ranges_section_label, '\0');
10436 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
10437 a->dw_attr_val.v.val_offset);
10438 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
10439 debug_ranges_section, "%s", name);
10440 *p = '\0';
10442 break;
10444 case dw_val_class_loc:
10445 size = size_of_locs (AT_loc (a));
10447 /* Output the block length for this list of location operations. */
10448 dw2_asm_output_data (constant_size (size), size, "%s", name);
10450 output_loc_sequence (AT_loc (a));
10451 break;
10453 case dw_val_class_const:
10454 /* ??? It would be slightly more efficient to use a scheme like is
10455 used for unsigned constants below, but gdb 4.x does not sign
10456 extend. Gdb 5.x does sign extend. */
10457 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
10458 break;
10460 case dw_val_class_unsigned_const:
10461 dw2_asm_output_data (constant_size (AT_unsigned (a)),
10462 AT_unsigned (a), "%s", name);
10463 break;
10465 case dw_val_class_const_double:
10467 unsigned HOST_WIDE_INT first, second;
10469 if (HOST_BITS_PER_WIDE_INT >= 64)
10470 dw2_asm_output_data (1,
10471 2 * HOST_BITS_PER_WIDE_INT
10472 / HOST_BITS_PER_CHAR,
10473 NULL);
10475 if (WORDS_BIG_ENDIAN)
10477 first = a->dw_attr_val.v.val_double.high;
10478 second = a->dw_attr_val.v.val_double.low;
10480 else
10482 first = a->dw_attr_val.v.val_double.low;
10483 second = a->dw_attr_val.v.val_double.high;
10486 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
10487 first, name);
10488 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
10489 second, NULL);
10491 break;
10493 case dw_val_class_vec:
10495 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
10496 unsigned int len = a->dw_attr_val.v.val_vec.length;
10497 unsigned int i;
10498 unsigned char *p;
10500 dw2_asm_output_data (constant_size (len * elt_size),
10501 len * elt_size, "%s", name);
10502 if (elt_size > sizeof (HOST_WIDE_INT))
10504 elt_size /= 2;
10505 len *= 2;
10507 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
10508 i < len;
10509 i++, p += elt_size)
10510 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
10511 "fp or vector constant word %u", i);
10512 break;
10515 case dw_val_class_flag:
10516 dw2_asm_output_data (1, AT_flag (a), "%s", name);
10517 break;
10519 case dw_val_class_loc_list:
10521 char *sym = AT_loc_list (a)->ll_symbol;
10523 gcc_assert (sym);
10524 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
10525 "%s", name);
10527 break;
10529 case dw_val_class_die_ref:
10530 if (AT_ref_external (a))
10532 if (dwarf_version >= 4)
10534 comdat_type_node_ref type_node =
10535 AT_ref (a)->die_id.die_type_node;
10537 gcc_assert (type_node);
10538 output_signature (type_node->signature, name);
10540 else
10542 char *sym = AT_ref (a)->die_id.die_symbol;
10543 int size;
10545 gcc_assert (sym);
10546 /* In DWARF2, DW_FORM_ref_addr is sized by target address
10547 length, whereas in DWARF3 it's always sized as an
10548 offset. */
10549 if (dwarf_version == 2)
10550 size = DWARF2_ADDR_SIZE;
10551 else
10552 size = DWARF_OFFSET_SIZE;
10553 dw2_asm_output_offset (size, sym, debug_info_section, "%s",
10554 name);
10557 else
10559 gcc_assert (AT_ref (a)->die_offset);
10560 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
10561 "%s", name);
10563 break;
10565 case dw_val_class_fde_ref:
10567 char l1[20];
10569 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
10570 a->dw_attr_val.v.val_fde_index * 2);
10571 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
10572 "%s", name);
10574 break;
10576 case dw_val_class_lbl_id:
10577 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
10578 break;
10580 case dw_val_class_lineptr:
10581 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
10582 debug_line_section, "%s", name);
10583 break;
10585 case dw_val_class_macptr:
10586 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
10587 debug_macinfo_section, "%s", name);
10588 break;
10590 case dw_val_class_str:
10591 if (AT_string_form (a) == DW_FORM_strp)
10592 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
10593 a->dw_attr_val.v.val_str->label,
10594 debug_str_section,
10595 "%s: \"%s\"", name, AT_string (a));
10596 else
10597 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
10598 break;
10600 case dw_val_class_file:
10602 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
10604 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
10605 a->dw_attr_val.v.val_file->filename);
10606 break;
10609 case dw_val_class_data8:
10611 int i;
10613 for (i = 0; i < 8; i++)
10614 dw2_asm_output_data (1, a->dw_attr_val.v.val_data8[i],
10615 i == 0 ? "%s" : NULL, name);
10616 break;
10619 default:
10620 gcc_unreachable ();
10624 FOR_EACH_CHILD (die, c, output_die (c));
10626 /* Add null byte to terminate sibling list. */
10627 if (die->die_child != NULL)
10628 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
10629 (unsigned long) die->die_offset);
10632 /* Output the compilation unit that appears at the beginning of the
10633 .debug_info section, and precedes the DIE descriptions. */
10635 static void
10636 output_compilation_unit_header (void)
10638 int ver = dwarf_version;
10640 /* Don't mark the output as DWARF-4 until we make full use of the
10641 version 4 extensions, and gdb supports them. For now, -gdwarf-4
10642 selects only a few extensions from the DWARF-4 spec. */
10643 if (ver > 3)
10644 ver = 3;
10645 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10646 dw2_asm_output_data (4, 0xffffffff,
10647 "Initial length escape value indicating 64-bit DWARF extension");
10648 dw2_asm_output_data (DWARF_OFFSET_SIZE,
10649 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
10650 "Length of Compilation Unit Info");
10651 dw2_asm_output_data (2, ver, "DWARF version number");
10652 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
10653 debug_abbrev_section,
10654 "Offset Into Abbrev. Section");
10655 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
10658 /* Output the compilation unit DIE and its children. */
10660 static void
10661 output_comp_unit (dw_die_ref die, int output_if_empty)
10663 const char *secname;
10664 char *oldsym, *tmp;
10666 /* Unless we are outputting main CU, we may throw away empty ones. */
10667 if (!output_if_empty && die->die_child == NULL)
10668 return;
10670 /* Even if there are no children of this DIE, we must output the information
10671 about the compilation unit. Otherwise, on an empty translation unit, we
10672 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
10673 will then complain when examining the file. First mark all the DIEs in
10674 this CU so we know which get local refs. */
10675 mark_dies (die);
10677 build_abbrev_table (die);
10679 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
10680 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
10681 calc_die_sizes (die);
10683 oldsym = die->die_id.die_symbol;
10684 if (oldsym)
10686 tmp = XALLOCAVEC (char, strlen (oldsym) + 24);
10688 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
10689 secname = tmp;
10690 die->die_id.die_symbol = NULL;
10691 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
10693 else
10694 switch_to_section (debug_info_section);
10696 /* Output debugging information. */
10697 output_compilation_unit_header ();
10698 output_die (die);
10700 /* Leave the marks on the main CU, so we can check them in
10701 output_pubnames. */
10702 if (oldsym)
10704 unmark_dies (die);
10705 die->die_id.die_symbol = oldsym;
10709 /* Output a comdat type unit DIE and its children. */
10711 static void
10712 output_comdat_type_unit (comdat_type_node *node)
10714 const char *secname;
10715 char *tmp;
10716 int i;
10717 #if defined (OBJECT_FORMAT_ELF)
10718 tree comdat_key;
10719 #endif
10721 /* First mark all the DIEs in this CU so we know which get local refs. */
10722 mark_dies (node->root_die);
10724 build_abbrev_table (node->root_die);
10726 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
10727 next_die_offset = DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE;
10728 calc_die_sizes (node->root_die);
10730 #if defined (OBJECT_FORMAT_ELF)
10731 secname = ".debug_types";
10732 tmp = XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE * 2);
10733 sprintf (tmp, "wt.");
10734 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
10735 sprintf (tmp + 3 + i * 2, "%02x", node->signature[i] & 0xff);
10736 comdat_key = get_identifier (tmp);
10737 targetm.asm_out.named_section (secname,
10738 SECTION_DEBUG | SECTION_LINKONCE,
10739 comdat_key);
10740 #else
10741 tmp = XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE * 2);
10742 sprintf (tmp, ".gnu.linkonce.wt.");
10743 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
10744 sprintf (tmp + 17 + i * 2, "%02x", node->signature[i] & 0xff);
10745 secname = tmp;
10746 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
10747 #endif
10749 /* Output debugging information. */
10750 output_compilation_unit_header ();
10751 output_signature (node->signature, "Type Signature");
10752 dw2_asm_output_data (DWARF_OFFSET_SIZE, node->type_die->die_offset,
10753 "Offset to Type DIE");
10754 output_die (node->root_die);
10756 unmark_dies (node->root_die);
10759 /* Return the DWARF2/3 pubname associated with a decl. */
10761 static const char *
10762 dwarf2_name (tree decl, int scope)
10764 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
10767 /* Add a new entry to .debug_pubnames if appropriate. */
10769 static void
10770 add_pubname_string (const char *str, dw_die_ref die)
10772 pubname_entry e;
10774 e.die = die;
10775 e.name = xstrdup (str);
10776 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
10779 static void
10780 add_pubname (tree decl, dw_die_ref die)
10782 if (TREE_PUBLIC (decl))
10784 const char *name = dwarf2_name (decl, 1);
10785 if (name)
10786 add_pubname_string (name, die);
10790 /* Add a new entry to .debug_pubtypes if appropriate. */
10792 static void
10793 add_pubtype (tree decl, dw_die_ref die)
10795 pubname_entry e;
10797 e.name = NULL;
10798 if ((TREE_PUBLIC (decl)
10799 || die->die_parent == comp_unit_die)
10800 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
10802 e.die = die;
10803 if (TYPE_P (decl))
10805 if (TYPE_NAME (decl))
10807 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
10808 e.name = IDENTIFIER_POINTER (TYPE_NAME (decl));
10809 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
10810 && DECL_NAME (TYPE_NAME (decl)))
10811 e.name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl)));
10812 else
10813 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
10816 else
10818 e.name = dwarf2_name (decl, 1);
10819 if (e.name)
10820 e.name = xstrdup (e.name);
10823 /* If we don't have a name for the type, there's no point in adding
10824 it to the table. */
10825 if (e.name && e.name[0] != '\0')
10826 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
10830 /* Output the public names table used to speed up access to externally
10831 visible names; or the public types table used to find type definitions. */
10833 static void
10834 output_pubnames (VEC (pubname_entry, gc) * names)
10836 unsigned i;
10837 unsigned long pubnames_length = size_of_pubnames (names);
10838 pubname_ref pub;
10840 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10841 dw2_asm_output_data (4, 0xffffffff,
10842 "Initial length escape value indicating 64-bit DWARF extension");
10843 if (names == pubname_table)
10844 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
10845 "Length of Public Names Info");
10846 else
10847 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
10848 "Length of Public Type Names Info");
10849 /* Version number for pubnames/pubtypes is still 2, even in DWARF3. */
10850 dw2_asm_output_data (2, 2, "DWARF Version");
10851 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
10852 debug_info_section,
10853 "Offset of Compilation Unit Info");
10854 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
10855 "Compilation Unit Length");
10857 for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
10859 /* We shouldn't see pubnames for DIEs outside of the main CU. */
10860 if (names == pubname_table)
10861 gcc_assert (pub->die->die_mark);
10863 if (names != pubtype_table
10864 || pub->die->die_offset != 0
10865 || !flag_eliminate_unused_debug_types)
10867 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
10868 "DIE offset");
10870 dw2_asm_output_nstring (pub->name, -1, "external name");
10874 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
10877 /* Add a new entry to .debug_aranges if appropriate. */
10879 static void
10880 add_arange (tree decl, dw_die_ref die)
10882 if (! DECL_SECTION_NAME (decl))
10883 return;
10885 if (arange_table_in_use == arange_table_allocated)
10887 arange_table_allocated += ARANGE_TABLE_INCREMENT;
10888 arange_table = GGC_RESIZEVEC (dw_die_ref, arange_table,
10889 arange_table_allocated);
10890 memset (arange_table + arange_table_in_use, 0,
10891 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
10894 arange_table[arange_table_in_use++] = die;
10897 /* Output the information that goes into the .debug_aranges table.
10898 Namely, define the beginning and ending address range of the
10899 text section generated for this compilation unit. */
10901 static void
10902 output_aranges (void)
10904 unsigned i;
10905 unsigned long aranges_length = size_of_aranges ();
10907 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10908 dw2_asm_output_data (4, 0xffffffff,
10909 "Initial length escape value indicating 64-bit DWARF extension");
10910 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
10911 "Length of Address Ranges Info");
10912 /* Version number for aranges is still 2, even in DWARF3. */
10913 dw2_asm_output_data (2, 2, "DWARF Version");
10914 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
10915 debug_info_section,
10916 "Offset of Compilation Unit Info");
10917 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
10918 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
10920 /* We need to align to twice the pointer size here. */
10921 if (DWARF_ARANGES_PAD_SIZE)
10923 /* Pad using a 2 byte words so that padding is correct for any
10924 pointer size. */
10925 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
10926 2 * DWARF2_ADDR_SIZE);
10927 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
10928 dw2_asm_output_data (2, 0, NULL);
10931 /* It is necessary not to output these entries if the sections were
10932 not used; if the sections were not used, the length will be 0 and
10933 the address may end up as 0 if the section is discarded by ld
10934 --gc-sections, leaving an invalid (0, 0) entry that can be
10935 confused with the terminator. */
10936 if (text_section_used)
10938 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
10939 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
10940 text_section_label, "Length");
10942 if (cold_text_section_used)
10944 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
10945 "Address");
10946 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
10947 cold_text_section_label, "Length");
10950 for (i = 0; i < arange_table_in_use; i++)
10952 dw_die_ref die = arange_table[i];
10954 /* We shouldn't see aranges for DIEs outside of the main CU. */
10955 gcc_assert (die->die_mark);
10957 if (die->die_tag == DW_TAG_subprogram)
10959 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
10960 "Address");
10961 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
10962 get_AT_low_pc (die), "Length");
10964 else
10966 /* A static variable; extract the symbol from DW_AT_location.
10967 Note that this code isn't currently hit, as we only emit
10968 aranges for functions (jason 9/23/99). */
10969 dw_attr_ref a = get_AT (die, DW_AT_location);
10970 dw_loc_descr_ref loc;
10972 gcc_assert (a && AT_class (a) == dw_val_class_loc);
10974 loc = AT_loc (a);
10975 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
10977 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
10978 loc->dw_loc_oprnd1.v.val_addr, "Address");
10979 dw2_asm_output_data (DWARF2_ADDR_SIZE,
10980 get_AT_unsigned (die, DW_AT_byte_size),
10981 "Length");
10985 /* Output the terminator words. */
10986 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
10987 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
10990 /* Add a new entry to .debug_ranges. Return the offset at which it
10991 was placed. */
10993 static unsigned int
10994 add_ranges_num (int num)
10996 unsigned int in_use = ranges_table_in_use;
10998 if (in_use == ranges_table_allocated)
11000 ranges_table_allocated += RANGES_TABLE_INCREMENT;
11001 ranges_table = GGC_RESIZEVEC (struct dw_ranges_struct, ranges_table,
11002 ranges_table_allocated);
11003 memset (ranges_table + ranges_table_in_use, 0,
11004 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
11007 ranges_table[in_use].num = num;
11008 ranges_table_in_use = in_use + 1;
11010 return in_use * 2 * DWARF2_ADDR_SIZE;
11013 /* Add a new entry to .debug_ranges corresponding to a block, or a
11014 range terminator if BLOCK is NULL. */
11016 static unsigned int
11017 add_ranges (const_tree block)
11019 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0);
11022 /* Add a new entry to .debug_ranges corresponding to a pair of
11023 labels. */
11025 static void
11026 add_ranges_by_labels (dw_die_ref die, const char *begin, const char *end,
11027 bool *added)
11029 unsigned int in_use = ranges_by_label_in_use;
11030 unsigned int offset;
11032 if (in_use == ranges_by_label_allocated)
11034 ranges_by_label_allocated += RANGES_TABLE_INCREMENT;
11035 ranges_by_label = GGC_RESIZEVEC (struct dw_ranges_by_label_struct,
11036 ranges_by_label,
11037 ranges_by_label_allocated);
11038 memset (ranges_by_label + ranges_by_label_in_use, 0,
11039 RANGES_TABLE_INCREMENT
11040 * sizeof (struct dw_ranges_by_label_struct));
11043 ranges_by_label[in_use].begin = begin;
11044 ranges_by_label[in_use].end = end;
11045 ranges_by_label_in_use = in_use + 1;
11047 offset = add_ranges_num (-(int)in_use - 1);
11048 if (!*added)
11050 add_AT_range_list (die, DW_AT_ranges, offset);
11051 *added = true;
11055 static void
11056 output_ranges (void)
11058 unsigned i;
11059 static const char *const start_fmt = "Offset 0x%x";
11060 const char *fmt = start_fmt;
11062 for (i = 0; i < ranges_table_in_use; i++)
11064 int block_num = ranges_table[i].num;
11066 if (block_num > 0)
11068 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
11069 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
11071 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
11072 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
11074 /* If all code is in the text section, then the compilation
11075 unit base address defaults to DW_AT_low_pc, which is the
11076 base of the text section. */
11077 if (!have_multiple_function_sections)
11079 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
11080 text_section_label,
11081 fmt, i * 2 * DWARF2_ADDR_SIZE);
11082 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
11083 text_section_label, NULL);
11086 /* Otherwise, the compilation unit base address is zero,
11087 which allows us to use absolute addresses, and not worry
11088 about whether the target supports cross-section
11089 arithmetic. */
11090 else
11092 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11093 fmt, i * 2 * DWARF2_ADDR_SIZE);
11094 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
11097 fmt = NULL;
11100 /* Negative block_num stands for an index into ranges_by_label. */
11101 else if (block_num < 0)
11103 int lab_idx = - block_num - 1;
11105 if (!have_multiple_function_sections)
11107 gcc_unreachable ();
11108 #if 0
11109 /* If we ever use add_ranges_by_labels () for a single
11110 function section, all we have to do is to take out
11111 the #if 0 above. */
11112 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
11113 ranges_by_label[lab_idx].begin,
11114 text_section_label,
11115 fmt, i * 2 * DWARF2_ADDR_SIZE);
11116 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
11117 ranges_by_label[lab_idx].end,
11118 text_section_label, NULL);
11119 #endif
11121 else
11123 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
11124 ranges_by_label[lab_idx].begin,
11125 fmt, i * 2 * DWARF2_ADDR_SIZE);
11126 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
11127 ranges_by_label[lab_idx].end,
11128 NULL);
11131 else
11133 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11134 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11135 fmt = start_fmt;
11140 /* Data structure containing information about input files. */
11141 struct file_info
11143 const char *path; /* Complete file name. */
11144 const char *fname; /* File name part. */
11145 int length; /* Length of entire string. */
11146 struct dwarf_file_data * file_idx; /* Index in input file table. */
11147 int dir_idx; /* Index in directory table. */
11150 /* Data structure containing information about directories with source
11151 files. */
11152 struct dir_info
11154 const char *path; /* Path including directory name. */
11155 int length; /* Path length. */
11156 int prefix; /* Index of directory entry which is a prefix. */
11157 int count; /* Number of files in this directory. */
11158 int dir_idx; /* Index of directory used as base. */
11161 /* Callback function for file_info comparison. We sort by looking at
11162 the directories in the path. */
11164 static int
11165 file_info_cmp (const void *p1, const void *p2)
11167 const struct file_info *const s1 = (const struct file_info *) p1;
11168 const struct file_info *const s2 = (const struct file_info *) p2;
11169 const unsigned char *cp1;
11170 const unsigned char *cp2;
11172 /* Take care of file names without directories. We need to make sure that
11173 we return consistent values to qsort since some will get confused if
11174 we return the same value when identical operands are passed in opposite
11175 orders. So if neither has a directory, return 0 and otherwise return
11176 1 or -1 depending on which one has the directory. */
11177 if ((s1->path == s1->fname || s2->path == s2->fname))
11178 return (s2->path == s2->fname) - (s1->path == s1->fname);
11180 cp1 = (const unsigned char *) s1->path;
11181 cp2 = (const unsigned char *) s2->path;
11183 while (1)
11185 ++cp1;
11186 ++cp2;
11187 /* Reached the end of the first path? If so, handle like above. */
11188 if ((cp1 == (const unsigned char *) s1->fname)
11189 || (cp2 == (const unsigned char *) s2->fname))
11190 return ((cp2 == (const unsigned char *) s2->fname)
11191 - (cp1 == (const unsigned char *) s1->fname));
11193 /* Character of current path component the same? */
11194 else if (*cp1 != *cp2)
11195 return *cp1 - *cp2;
11199 struct file_name_acquire_data
11201 struct file_info *files;
11202 int used_files;
11203 int max_files;
11206 /* Traversal function for the hash table. */
11208 static int
11209 file_name_acquire (void ** slot, void *data)
11211 struct file_name_acquire_data *fnad = (struct file_name_acquire_data *) data;
11212 struct dwarf_file_data *d = (struct dwarf_file_data *) *slot;
11213 struct file_info *fi;
11214 const char *f;
11216 gcc_assert (fnad->max_files >= d->emitted_number);
11218 if (! d->emitted_number)
11219 return 1;
11221 gcc_assert (fnad->max_files != fnad->used_files);
11223 fi = fnad->files + fnad->used_files++;
11225 /* Skip all leading "./". */
11226 f = d->filename;
11227 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
11228 f += 2;
11230 /* Create a new array entry. */
11231 fi->path = f;
11232 fi->length = strlen (f);
11233 fi->file_idx = d;
11235 /* Search for the file name part. */
11236 f = strrchr (f, DIR_SEPARATOR);
11237 #if defined (DIR_SEPARATOR_2)
11239 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
11241 if (g != NULL)
11243 if (f == NULL || f < g)
11244 f = g;
11247 #endif
11249 fi->fname = f == NULL ? fi->path : f + 1;
11250 return 1;
11253 /* Output the directory table and the file name table. We try to minimize
11254 the total amount of memory needed. A heuristic is used to avoid large
11255 slowdowns with many input files. */
11257 static void
11258 output_file_names (void)
11260 struct file_name_acquire_data fnad;
11261 int numfiles;
11262 struct file_info *files;
11263 struct dir_info *dirs;
11264 int *saved;
11265 int *savehere;
11266 int *backmap;
11267 int ndirs;
11268 int idx_offset;
11269 int i;
11271 if (!last_emitted_file)
11273 dw2_asm_output_data (1, 0, "End directory table");
11274 dw2_asm_output_data (1, 0, "End file name table");
11275 return;
11278 numfiles = last_emitted_file->emitted_number;
11280 /* Allocate the various arrays we need. */
11281 files = XALLOCAVEC (struct file_info, numfiles);
11282 dirs = XALLOCAVEC (struct dir_info, numfiles);
11284 fnad.files = files;
11285 fnad.used_files = 0;
11286 fnad.max_files = numfiles;
11287 htab_traverse (file_table, file_name_acquire, &fnad);
11288 gcc_assert (fnad.used_files == fnad.max_files);
11290 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
11292 /* Find all the different directories used. */
11293 dirs[0].path = files[0].path;
11294 dirs[0].length = files[0].fname - files[0].path;
11295 dirs[0].prefix = -1;
11296 dirs[0].count = 1;
11297 dirs[0].dir_idx = 0;
11298 files[0].dir_idx = 0;
11299 ndirs = 1;
11301 for (i = 1; i < numfiles; i++)
11302 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
11303 && memcmp (dirs[ndirs - 1].path, files[i].path,
11304 dirs[ndirs - 1].length) == 0)
11306 /* Same directory as last entry. */
11307 files[i].dir_idx = ndirs - 1;
11308 ++dirs[ndirs - 1].count;
11310 else
11312 int j;
11314 /* This is a new directory. */
11315 dirs[ndirs].path = files[i].path;
11316 dirs[ndirs].length = files[i].fname - files[i].path;
11317 dirs[ndirs].count = 1;
11318 dirs[ndirs].dir_idx = ndirs;
11319 files[i].dir_idx = ndirs;
11321 /* Search for a prefix. */
11322 dirs[ndirs].prefix = -1;
11323 for (j = 0; j < ndirs; j++)
11324 if (dirs[j].length < dirs[ndirs].length
11325 && dirs[j].length > 1
11326 && (dirs[ndirs].prefix == -1
11327 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
11328 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
11329 dirs[ndirs].prefix = j;
11331 ++ndirs;
11334 /* Now to the actual work. We have to find a subset of the directories which
11335 allow expressing the file name using references to the directory table
11336 with the least amount of characters. We do not do an exhaustive search
11337 where we would have to check out every combination of every single
11338 possible prefix. Instead we use a heuristic which provides nearly optimal
11339 results in most cases and never is much off. */
11340 saved = XALLOCAVEC (int, ndirs);
11341 savehere = XALLOCAVEC (int, ndirs);
11343 memset (saved, '\0', ndirs * sizeof (saved[0]));
11344 for (i = 0; i < ndirs; i++)
11346 int j;
11347 int total;
11349 /* We can always save some space for the current directory. But this
11350 does not mean it will be enough to justify adding the directory. */
11351 savehere[i] = dirs[i].length;
11352 total = (savehere[i] - saved[i]) * dirs[i].count;
11354 for (j = i + 1; j < ndirs; j++)
11356 savehere[j] = 0;
11357 if (saved[j] < dirs[i].length)
11359 /* Determine whether the dirs[i] path is a prefix of the
11360 dirs[j] path. */
11361 int k;
11363 k = dirs[j].prefix;
11364 while (k != -1 && k != (int) i)
11365 k = dirs[k].prefix;
11367 if (k == (int) i)
11369 /* Yes it is. We can possibly save some memory by
11370 writing the filenames in dirs[j] relative to
11371 dirs[i]. */
11372 savehere[j] = dirs[i].length;
11373 total += (savehere[j] - saved[j]) * dirs[j].count;
11378 /* Check whether we can save enough to justify adding the dirs[i]
11379 directory. */
11380 if (total > dirs[i].length + 1)
11382 /* It's worthwhile adding. */
11383 for (j = i; j < ndirs; j++)
11384 if (savehere[j] > 0)
11386 /* Remember how much we saved for this directory so far. */
11387 saved[j] = savehere[j];
11389 /* Remember the prefix directory. */
11390 dirs[j].dir_idx = i;
11395 /* Emit the directory name table. */
11396 idx_offset = dirs[0].length > 0 ? 1 : 0;
11397 for (i = 1 - idx_offset; i < ndirs; i++)
11398 dw2_asm_output_nstring (dirs[i].path,
11399 dirs[i].length
11400 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
11401 "Directory Entry: 0x%x", i + idx_offset);
11403 dw2_asm_output_data (1, 0, "End directory table");
11405 /* We have to emit them in the order of emitted_number since that's
11406 used in the debug info generation. To do this efficiently we
11407 generate a back-mapping of the indices first. */
11408 backmap = XALLOCAVEC (int, numfiles);
11409 for (i = 0; i < numfiles; i++)
11410 backmap[files[i].file_idx->emitted_number - 1] = i;
11412 /* Now write all the file names. */
11413 for (i = 0; i < numfiles; i++)
11415 int file_idx = backmap[i];
11416 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
11418 #ifdef VMS_DEBUGGING_INFO
11419 #define MAX_VMS_VERSION_LEN 6 /* ";32768" */
11421 /* Setting these fields can lead to debugger miscomparisons,
11422 but VMS Debug requires them to be set correctly. */
11424 int ver;
11425 long long cdt;
11426 long siz;
11427 int maxfilelen = strlen (files[file_idx].path)
11428 + dirs[dir_idx].length
11429 + MAX_VMS_VERSION_LEN + 1;
11430 char *filebuf = XALLOCAVEC (char, maxfilelen);
11432 vms_file_stats_name (files[file_idx].path, 0, 0, 0, &ver);
11433 snprintf (filebuf, maxfilelen, "%s;%d",
11434 files[file_idx].path + dirs[dir_idx].length, ver);
11436 dw2_asm_output_nstring
11437 (filebuf, -1, "File Entry: 0x%x", (unsigned) i + 1);
11439 /* Include directory index. */
11440 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
11442 /* Modification time. */
11443 dw2_asm_output_data_uleb128
11444 ((vms_file_stats_name (files[file_idx].path, &cdt, 0, 0, 0) == 0)
11445 ? cdt : 0,
11446 NULL);
11448 /* File length in bytes. */
11449 dw2_asm_output_data_uleb128
11450 ((vms_file_stats_name (files[file_idx].path, 0, &siz, 0, 0) == 0)
11451 ? siz : 0,
11452 NULL);
11453 #else
11454 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
11455 "File Entry: 0x%x", (unsigned) i + 1);
11457 /* Include directory index. */
11458 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
11460 /* Modification time. */
11461 dw2_asm_output_data_uleb128 (0, NULL);
11463 /* File length in bytes. */
11464 dw2_asm_output_data_uleb128 (0, NULL);
11465 #endif
11468 dw2_asm_output_data (1, 0, "End file name table");
11472 /* Output the source line number correspondence information. This
11473 information goes into the .debug_line section. */
11475 static void
11476 output_line_info (void)
11478 char l1[20], l2[20], p1[20], p2[20];
11479 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
11480 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
11481 unsigned opc;
11482 unsigned n_op_args;
11483 unsigned long lt_index;
11484 unsigned long current_line;
11485 long line_offset;
11486 long line_delta;
11487 unsigned long current_file;
11488 unsigned long function;
11489 int ver = dwarf_version;
11491 /* Don't mark the output as DWARF-4 until we make full use of the
11492 version 4 extensions, and gdb supports them. For now, -gdwarf-4
11493 selects only a few extensions from the DWARF-4 spec. */
11494 if (ver > 3)
11495 ver = 3;
11497 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
11498 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
11499 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
11500 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
11502 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
11503 dw2_asm_output_data (4, 0xffffffff,
11504 "Initial length escape value indicating 64-bit DWARF extension");
11505 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
11506 "Length of Source Line Info");
11507 ASM_OUTPUT_LABEL (asm_out_file, l1);
11509 dw2_asm_output_data (2, ver, "DWARF Version");
11510 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
11511 ASM_OUTPUT_LABEL (asm_out_file, p1);
11513 /* Define the architecture-dependent minimum instruction length (in
11514 bytes). In this implementation of DWARF, this field is used for
11515 information purposes only. Since GCC generates assembly language,
11516 we have no a priori knowledge of how many instruction bytes are
11517 generated for each source line, and therefore can use only the
11518 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
11519 commands. Accordingly, we fix this as `1', which is "correct
11520 enough" for all architectures, and don't let the target override. */
11521 dw2_asm_output_data (1, 1,
11522 "Minimum Instruction Length");
11524 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
11525 "Default is_stmt_start flag");
11526 dw2_asm_output_data (1, DWARF_LINE_BASE,
11527 "Line Base Value (Special Opcodes)");
11528 dw2_asm_output_data (1, DWARF_LINE_RANGE,
11529 "Line Range Value (Special Opcodes)");
11530 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
11531 "Special Opcode Base");
11533 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
11535 switch (opc)
11537 case DW_LNS_advance_pc:
11538 case DW_LNS_advance_line:
11539 case DW_LNS_set_file:
11540 case DW_LNS_set_column:
11541 case DW_LNS_fixed_advance_pc:
11542 n_op_args = 1;
11543 break;
11544 default:
11545 n_op_args = 0;
11546 break;
11549 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
11550 opc, n_op_args);
11553 /* Write out the information about the files we use. */
11554 output_file_names ();
11555 ASM_OUTPUT_LABEL (asm_out_file, p2);
11557 /* We used to set the address register to the first location in the text
11558 section here, but that didn't accomplish anything since we already
11559 have a line note for the opening brace of the first function. */
11561 /* Generate the line number to PC correspondence table, encoded as
11562 a series of state machine operations. */
11563 current_file = 1;
11564 current_line = 1;
11566 if (cfun && in_cold_section_p)
11567 strcpy (prev_line_label, crtl->subsections.cold_section_label);
11568 else
11569 strcpy (prev_line_label, text_section_label);
11570 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
11572 dw_line_info_ref line_info = &line_info_table[lt_index];
11574 #if 0
11575 /* Disable this optimization for now; GDB wants to see two line notes
11576 at the beginning of a function so it can find the end of the
11577 prologue. */
11579 /* Don't emit anything for redundant notes. Just updating the
11580 address doesn't accomplish anything, because we already assume
11581 that anything after the last address is this line. */
11582 if (line_info->dw_line_num == current_line
11583 && line_info->dw_file_num == current_file)
11584 continue;
11585 #endif
11587 /* Emit debug info for the address of the current line.
11589 Unfortunately, we have little choice here currently, and must always
11590 use the most general form. GCC does not know the address delta
11591 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
11592 attributes which will give an upper bound on the address range. We
11593 could perhaps use length attributes to determine when it is safe to
11594 use DW_LNS_fixed_advance_pc. */
11596 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
11597 if (0)
11599 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
11600 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
11601 "DW_LNS_fixed_advance_pc");
11602 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
11604 else
11606 /* This can handle any delta. This takes
11607 4+DWARF2_ADDR_SIZE bytes. */
11608 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
11609 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
11610 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
11611 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
11614 strcpy (prev_line_label, line_label);
11616 /* Emit debug info for the source file of the current line, if
11617 different from the previous line. */
11618 if (line_info->dw_file_num != current_file)
11620 current_file = line_info->dw_file_num;
11621 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
11622 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
11625 /* Emit debug info for the current line number, choosing the encoding
11626 that uses the least amount of space. */
11627 if (line_info->dw_line_num != current_line)
11629 line_offset = line_info->dw_line_num - current_line;
11630 line_delta = line_offset - DWARF_LINE_BASE;
11631 current_line = line_info->dw_line_num;
11632 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
11633 /* This can handle deltas from -10 to 234, using the current
11634 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
11635 takes 1 byte. */
11636 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
11637 "line %lu", current_line);
11638 else
11640 /* This can handle any delta. This takes at least 4 bytes,
11641 depending on the value being encoded. */
11642 dw2_asm_output_data (1, DW_LNS_advance_line,
11643 "advance to line %lu", current_line);
11644 dw2_asm_output_data_sleb128 (line_offset, NULL);
11645 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
11648 else
11649 /* We still need to start a new row, so output a copy insn. */
11650 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
11653 /* Emit debug info for the address of the end of the function. */
11654 if (0)
11656 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
11657 "DW_LNS_fixed_advance_pc");
11658 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
11660 else
11662 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
11663 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
11664 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
11665 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
11668 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
11669 dw2_asm_output_data_uleb128 (1, NULL);
11670 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
11672 function = 0;
11673 current_file = 1;
11674 current_line = 1;
11675 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
11677 dw_separate_line_info_ref line_info
11678 = &separate_line_info_table[lt_index];
11680 #if 0
11681 /* Don't emit anything for redundant notes. */
11682 if (line_info->dw_line_num == current_line
11683 && line_info->dw_file_num == current_file
11684 && line_info->function == function)
11685 goto cont;
11686 #endif
11688 /* Emit debug info for the address of the current line. If this is
11689 a new function, or the first line of a function, then we need
11690 to handle it differently. */
11691 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
11692 lt_index);
11693 if (function != line_info->function)
11695 function = line_info->function;
11697 /* Set the address register to the first line in the function. */
11698 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
11699 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
11700 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
11701 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
11703 else
11705 /* ??? See the DW_LNS_advance_pc comment above. */
11706 if (0)
11708 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
11709 "DW_LNS_fixed_advance_pc");
11710 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
11712 else
11714 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
11715 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
11716 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
11717 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
11721 strcpy (prev_line_label, line_label);
11723 /* Emit debug info for the source file of the current line, if
11724 different from the previous line. */
11725 if (line_info->dw_file_num != current_file)
11727 current_file = line_info->dw_file_num;
11728 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
11729 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
11732 /* Emit debug info for the current line number, choosing the encoding
11733 that uses the least amount of space. */
11734 if (line_info->dw_line_num != current_line)
11736 line_offset = line_info->dw_line_num - current_line;
11737 line_delta = line_offset - DWARF_LINE_BASE;
11738 current_line = line_info->dw_line_num;
11739 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
11740 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
11741 "line %lu", current_line);
11742 else
11744 dw2_asm_output_data (1, DW_LNS_advance_line,
11745 "advance to line %lu", current_line);
11746 dw2_asm_output_data_sleb128 (line_offset, NULL);
11747 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
11750 else
11751 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
11753 #if 0
11754 cont:
11755 #endif
11757 lt_index++;
11759 /* If we're done with a function, end its sequence. */
11760 if (lt_index == separate_line_info_table_in_use
11761 || separate_line_info_table[lt_index].function != function)
11763 current_file = 1;
11764 current_line = 1;
11766 /* Emit debug info for the address of the end of the function. */
11767 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
11768 if (0)
11770 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
11771 "DW_LNS_fixed_advance_pc");
11772 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
11774 else
11776 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
11777 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
11778 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
11779 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
11782 /* Output the marker for the end of this sequence. */
11783 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
11784 dw2_asm_output_data_uleb128 (1, NULL);
11785 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
11789 /* Output the marker for the end of the line number info. */
11790 ASM_OUTPUT_LABEL (asm_out_file, l2);
11793 /* Return the size of the .debug_dcall table for the compilation unit. */
11795 static unsigned long
11796 size_of_dcall_table (void)
11798 unsigned long size;
11799 unsigned int i;
11800 dcall_entry *p;
11801 tree last_poc_decl = NULL;
11803 /* Header: version + debug info section pointer + pointer size. */
11804 size = 2 + DWARF_OFFSET_SIZE + 1;
11806 /* Each entry: code label + DIE offset. */
11807 for (i = 0; VEC_iterate (dcall_entry, dcall_table, i, p); i++)
11809 gcc_assert (p->targ_die != NULL);
11810 /* Insert a "from" entry when the point-of-call DIE offset changes. */
11811 if (p->poc_decl != last_poc_decl)
11813 dw_die_ref poc_die = lookup_decl_die (p->poc_decl);
11814 gcc_assert (poc_die);
11815 last_poc_decl = p->poc_decl;
11816 if (poc_die)
11817 size += (DWARF_OFFSET_SIZE
11818 + size_of_uleb128 (poc_die->die_offset));
11820 size += DWARF_OFFSET_SIZE + size_of_uleb128 (p->targ_die->die_offset);
11823 return size;
11826 /* Output the direct call table used to disambiguate PC values when
11827 identical function have been merged. */
11829 static void
11830 output_dcall_table (void)
11832 unsigned i;
11833 unsigned long dcall_length = size_of_dcall_table ();
11834 dcall_entry *p;
11835 char poc_label[MAX_ARTIFICIAL_LABEL_BYTES];
11836 tree last_poc_decl = NULL;
11838 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
11839 dw2_asm_output_data (4, 0xffffffff,
11840 "Initial length escape value indicating 64-bit DWARF extension");
11841 dw2_asm_output_data (DWARF_OFFSET_SIZE, dcall_length,
11842 "Length of Direct Call Table");
11843 dw2_asm_output_data (2, 4, "Version number");
11844 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
11845 debug_info_section,
11846 "Offset of Compilation Unit Info");
11847 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
11849 for (i = 0; VEC_iterate (dcall_entry, dcall_table, i, p); i++)
11851 /* Insert a "from" entry when the point-of-call DIE offset changes. */
11852 if (p->poc_decl != last_poc_decl)
11854 dw_die_ref poc_die = lookup_decl_die (p->poc_decl);
11855 last_poc_decl = p->poc_decl;
11856 if (poc_die)
11858 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, "New caller");
11859 dw2_asm_output_data_uleb128 (poc_die->die_offset,
11860 "Caller DIE offset");
11863 ASM_GENERATE_INTERNAL_LABEL (poc_label, "LPOC", p->poc_label_num);
11864 dw2_asm_output_addr (DWARF_OFFSET_SIZE, poc_label, "Point of call");
11865 dw2_asm_output_data_uleb128 (p->targ_die->die_offset,
11866 "Callee DIE offset");
11870 /* Return the size of the .debug_vcall table for the compilation unit. */
11872 static unsigned long
11873 size_of_vcall_table (void)
11875 unsigned long size;
11876 unsigned int i;
11877 vcall_entry *p;
11879 /* Header: version + pointer size. */
11880 size = 2 + 1;
11882 /* Each entry: code label + vtable slot index. */
11883 for (i = 0; VEC_iterate (vcall_entry, vcall_table, i, p); i++)
11884 size += DWARF_OFFSET_SIZE + size_of_uleb128 (p->vtable_slot);
11886 return size;
11889 /* Output the virtual call table used to disambiguate PC values when
11890 identical function have been merged. */
11892 static void
11893 output_vcall_table (void)
11895 unsigned i;
11896 unsigned long vcall_length = size_of_vcall_table ();
11897 vcall_entry *p;
11898 char poc_label[MAX_ARTIFICIAL_LABEL_BYTES];
11900 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
11901 dw2_asm_output_data (4, 0xffffffff,
11902 "Initial length escape value indicating 64-bit DWARF extension");
11903 dw2_asm_output_data (DWARF_OFFSET_SIZE, vcall_length,
11904 "Length of Virtual Call Table");
11905 dw2_asm_output_data (2, 4, "Version number");
11906 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
11908 for (i = 0; VEC_iterate (vcall_entry, vcall_table, i, p); i++)
11910 ASM_GENERATE_INTERNAL_LABEL (poc_label, "LPOC", p->poc_label_num);
11911 dw2_asm_output_addr (DWARF_OFFSET_SIZE, poc_label, "Point of call");
11912 dw2_asm_output_data_uleb128 (p->vtable_slot, "Vtable slot");
11916 /* Given a pointer to a tree node for some base type, return a pointer to
11917 a DIE that describes the given type.
11919 This routine must only be called for GCC type nodes that correspond to
11920 Dwarf base (fundamental) types. */
11922 static dw_die_ref
11923 base_type_die (tree type)
11925 dw_die_ref base_type_result;
11926 enum dwarf_type encoding;
11928 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
11929 return 0;
11931 /* If this is a subtype that should not be emitted as a subrange type,
11932 use the base type. See subrange_type_for_debug_p. */
11933 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
11934 type = TREE_TYPE (type);
11936 switch (TREE_CODE (type))
11938 case INTEGER_TYPE:
11939 if (TYPE_STRING_FLAG (type))
11941 if (TYPE_UNSIGNED (type))
11942 encoding = DW_ATE_unsigned_char;
11943 else
11944 encoding = DW_ATE_signed_char;
11946 else if (TYPE_UNSIGNED (type))
11947 encoding = DW_ATE_unsigned;
11948 else
11949 encoding = DW_ATE_signed;
11950 break;
11952 case REAL_TYPE:
11953 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
11955 if (dwarf_version >= 3 || !dwarf_strict)
11956 encoding = DW_ATE_decimal_float;
11957 else
11958 encoding = DW_ATE_lo_user;
11960 else
11961 encoding = DW_ATE_float;
11962 break;
11964 case FIXED_POINT_TYPE:
11965 if (!(dwarf_version >= 3 || !dwarf_strict))
11966 encoding = DW_ATE_lo_user;
11967 else if (TYPE_UNSIGNED (type))
11968 encoding = DW_ATE_unsigned_fixed;
11969 else
11970 encoding = DW_ATE_signed_fixed;
11971 break;
11973 /* Dwarf2 doesn't know anything about complex ints, so use
11974 a user defined type for it. */
11975 case COMPLEX_TYPE:
11976 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
11977 encoding = DW_ATE_complex_float;
11978 else
11979 encoding = DW_ATE_lo_user;
11980 break;
11982 case BOOLEAN_TYPE:
11983 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
11984 encoding = DW_ATE_boolean;
11985 break;
11987 default:
11988 /* No other TREE_CODEs are Dwarf fundamental types. */
11989 gcc_unreachable ();
11992 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
11994 /* This probably indicates a bug. */
11995 if (! TYPE_NAME (type))
11996 add_name_attribute (base_type_result, "__unknown__");
11998 add_AT_unsigned (base_type_result, DW_AT_byte_size,
11999 int_size_in_bytes (type));
12000 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
12002 return base_type_result;
12005 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
12006 given input type is a Dwarf "fundamental" type. Otherwise return null. */
12008 static inline int
12009 is_base_type (tree type)
12011 switch (TREE_CODE (type))
12013 case ERROR_MARK:
12014 case VOID_TYPE:
12015 case INTEGER_TYPE:
12016 case REAL_TYPE:
12017 case FIXED_POINT_TYPE:
12018 case COMPLEX_TYPE:
12019 case BOOLEAN_TYPE:
12020 return 1;
12022 case ARRAY_TYPE:
12023 case RECORD_TYPE:
12024 case UNION_TYPE:
12025 case QUAL_UNION_TYPE:
12026 case ENUMERAL_TYPE:
12027 case FUNCTION_TYPE:
12028 case METHOD_TYPE:
12029 case POINTER_TYPE:
12030 case REFERENCE_TYPE:
12031 case OFFSET_TYPE:
12032 case LANG_TYPE:
12033 case VECTOR_TYPE:
12034 return 0;
12036 default:
12037 gcc_unreachable ();
12040 return 0;
12043 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
12044 node, return the size in bits for the type if it is a constant, or else
12045 return the alignment for the type if the type's size is not constant, or
12046 else return BITS_PER_WORD if the type actually turns out to be an
12047 ERROR_MARK node. */
12049 static inline unsigned HOST_WIDE_INT
12050 simple_type_size_in_bits (const_tree type)
12052 if (TREE_CODE (type) == ERROR_MARK)
12053 return BITS_PER_WORD;
12054 else if (TYPE_SIZE (type) == NULL_TREE)
12055 return 0;
12056 else if (host_integerp (TYPE_SIZE (type), 1))
12057 return tree_low_cst (TYPE_SIZE (type), 1);
12058 else
12059 return TYPE_ALIGN (type);
12062 /* Given a pointer to a tree node for a subrange type, return a pointer
12063 to a DIE that describes the given type. */
12065 static dw_die_ref
12066 subrange_type_die (tree type, tree low, tree high, dw_die_ref context_die)
12068 dw_die_ref subrange_die;
12069 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
12071 if (context_die == NULL)
12072 context_die = comp_unit_die;
12074 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
12076 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
12078 /* The size of the subrange type and its base type do not match,
12079 so we need to generate a size attribute for the subrange type. */
12080 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
12083 if (low)
12084 add_bound_info (subrange_die, DW_AT_lower_bound, low);
12085 if (high)
12086 add_bound_info (subrange_die, DW_AT_upper_bound, high);
12088 return subrange_die;
12091 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
12092 entry that chains various modifiers in front of the given type. */
12094 static dw_die_ref
12095 modified_type_die (tree type, int is_const_type, int is_volatile_type,
12096 dw_die_ref context_die)
12098 enum tree_code code = TREE_CODE (type);
12099 dw_die_ref mod_type_die;
12100 dw_die_ref sub_die = NULL;
12101 tree item_type = NULL;
12102 tree qualified_type;
12103 tree name, low, high;
12105 if (code == ERROR_MARK)
12106 return NULL;
12108 /* See if we already have the appropriately qualified variant of
12109 this type. */
12110 qualified_type
12111 = get_qualified_type (type,
12112 ((is_const_type ? TYPE_QUAL_CONST : 0)
12113 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
12115 /* If we do, then we can just use its DIE, if it exists. */
12116 if (qualified_type)
12118 mod_type_die = lookup_type_die (qualified_type);
12119 if (mod_type_die)
12120 return mod_type_die;
12123 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
12125 /* Handle C typedef types. */
12126 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
12128 tree dtype = TREE_TYPE (name);
12130 if (qualified_type == dtype)
12132 /* For a named type, use the typedef. */
12133 gen_type_die (qualified_type, context_die);
12134 return lookup_type_die (qualified_type);
12136 else if (is_const_type < TYPE_READONLY (dtype)
12137 || is_volatile_type < TYPE_VOLATILE (dtype)
12138 || (is_const_type <= TYPE_READONLY (dtype)
12139 && is_volatile_type <= TYPE_VOLATILE (dtype)
12140 && DECL_ORIGINAL_TYPE (name) != type))
12141 /* cv-unqualified version of named type. Just use the unnamed
12142 type to which it refers. */
12143 return modified_type_die (DECL_ORIGINAL_TYPE (name),
12144 is_const_type, is_volatile_type,
12145 context_die);
12146 /* Else cv-qualified version of named type; fall through. */
12149 if (is_const_type)
12151 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
12152 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
12154 else if (is_volatile_type)
12156 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
12157 sub_die = modified_type_die (type, 0, 0, context_die);
12159 else if (code == POINTER_TYPE)
12161 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
12162 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
12163 simple_type_size_in_bits (type) / BITS_PER_UNIT);
12164 item_type = TREE_TYPE (type);
12165 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (item_type)))
12166 add_AT_unsigned (mod_type_die, DW_AT_address_class,
12167 TYPE_ADDR_SPACE (item_type));
12169 else if (code == REFERENCE_TYPE)
12171 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
12172 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
12173 simple_type_size_in_bits (type) / BITS_PER_UNIT);
12174 item_type = TREE_TYPE (type);
12175 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (item_type)))
12176 add_AT_unsigned (mod_type_die, DW_AT_address_class,
12177 TYPE_ADDR_SPACE (item_type));
12179 else if (code == INTEGER_TYPE
12180 && TREE_TYPE (type) != NULL_TREE
12181 && subrange_type_for_debug_p (type, &low, &high))
12183 mod_type_die = subrange_type_die (type, low, high, context_die);
12184 item_type = TREE_TYPE (type);
12186 else if (is_base_type (type))
12187 mod_type_die = base_type_die (type);
12188 else
12190 gen_type_die (type, context_die);
12192 /* We have to get the type_main_variant here (and pass that to the
12193 `lookup_type_die' routine) because the ..._TYPE node we have
12194 might simply be a *copy* of some original type node (where the
12195 copy was created to help us keep track of typedef names) and
12196 that copy might have a different TYPE_UID from the original
12197 ..._TYPE node. */
12198 if (TREE_CODE (type) != VECTOR_TYPE)
12199 return lookup_type_die (type_main_variant (type));
12200 else
12201 /* Vectors have the debugging information in the type,
12202 not the main variant. */
12203 return lookup_type_die (type);
12206 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
12207 don't output a DW_TAG_typedef, since there isn't one in the
12208 user's program; just attach a DW_AT_name to the type.
12209 Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
12210 if the base type already has the same name. */
12211 if (name
12212 && ((TREE_CODE (name) != TYPE_DECL
12213 && (qualified_type == TYPE_MAIN_VARIANT (type)
12214 || (!is_const_type && !is_volatile_type)))
12215 || (TREE_CODE (name) == TYPE_DECL
12216 && TREE_TYPE (name) == qualified_type
12217 && DECL_NAME (name))))
12219 if (TREE_CODE (name) == TYPE_DECL)
12220 /* Could just call add_name_and_src_coords_attributes here,
12221 but since this is a builtin type it doesn't have any
12222 useful source coordinates anyway. */
12223 name = DECL_NAME (name);
12224 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
12227 if (qualified_type)
12228 equate_type_number_to_die (qualified_type, mod_type_die);
12230 if (item_type)
12231 /* We must do this after the equate_type_number_to_die call, in case
12232 this is a recursive type. This ensures that the modified_type_die
12233 recursion will terminate even if the type is recursive. Recursive
12234 types are possible in Ada. */
12235 sub_die = modified_type_die (item_type,
12236 TYPE_READONLY (item_type),
12237 TYPE_VOLATILE (item_type),
12238 context_die);
12240 if (sub_die != NULL)
12241 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
12243 return mod_type_die;
12246 /* Generate DIEs for the generic parameters of T.
12247 T must be either a generic type or a generic function.
12248 See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */
12250 static void
12251 gen_generic_params_dies (tree t)
12253 tree parms, args;
12254 int parms_num, i;
12255 dw_die_ref die = NULL;
12257 if (!t || (TYPE_P (t) && !COMPLETE_TYPE_P (t)))
12258 return;
12260 if (TYPE_P (t))
12261 die = lookup_type_die (t);
12262 else if (DECL_P (t))
12263 die = lookup_decl_die (t);
12265 gcc_assert (die);
12267 parms = lang_hooks.get_innermost_generic_parms (t);
12268 if (!parms)
12269 /* T has no generic parameter. It means T is neither a generic type
12270 or function. End of story. */
12271 return;
12273 parms_num = TREE_VEC_LENGTH (parms);
12274 args = lang_hooks.get_innermost_generic_args (t);
12275 for (i = 0; i < parms_num; i++)
12277 tree parm, arg, arg_pack_elems;
12279 parm = TREE_VEC_ELT (parms, i);
12280 arg = TREE_VEC_ELT (args, i);
12281 arg_pack_elems = lang_hooks.types.get_argument_pack_elems (arg);
12282 gcc_assert (parm && TREE_VALUE (parm) && arg);
12284 if (parm && TREE_VALUE (parm) && arg)
12286 /* If PARM represents a template parameter pack,
12287 emit a DW_TAG_GNU_template_parameter_pack DIE, followed
12288 by DW_TAG_template_*_parameter DIEs for the argument
12289 pack elements of ARG. Note that ARG would then be
12290 an argument pack. */
12291 if (arg_pack_elems)
12292 template_parameter_pack_die (TREE_VALUE (parm),
12293 arg_pack_elems,
12294 die);
12295 else
12296 generic_parameter_die (TREE_VALUE (parm), arg,
12297 true /* Emit DW_AT_name */, die);
12302 /* Create and return a DIE for PARM which should be
12303 the representation of a generic type parameter.
12304 For instance, in the C++ front end, PARM would be a template parameter.
12305 ARG is the argument to PARM.
12306 EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
12307 name of the PARM.
12308 PARENT_DIE is the parent DIE which the new created DIE should be added to,
12309 as a child node. */
12311 static dw_die_ref
12312 generic_parameter_die (tree parm, tree arg,
12313 bool emit_name_p,
12314 dw_die_ref parent_die)
12316 dw_die_ref tmpl_die = NULL;
12317 const char *name = NULL;
12319 if (!parm || !DECL_NAME (parm) || !arg)
12320 return NULL;
12322 /* We support non-type generic parameters and arguments,
12323 type generic parameters and arguments, as well as
12324 generic generic parameters (a.k.a. template template parameters in C++)
12325 and arguments. */
12326 if (TREE_CODE (parm) == PARM_DECL)
12327 /* PARM is a nontype generic parameter */
12328 tmpl_die = new_die (DW_TAG_template_value_param, parent_die, parm);
12329 else if (TREE_CODE (parm) == TYPE_DECL)
12330 /* PARM is a type generic parameter. */
12331 tmpl_die = new_die (DW_TAG_template_type_param, parent_die, parm);
12332 else if (lang_hooks.decls.generic_generic_parameter_decl_p (parm))
12333 /* PARM is a generic generic parameter.
12334 Its DIE is a GNU extension. It shall have a
12335 DW_AT_name attribute to represent the name of the template template
12336 parameter, and a DW_AT_GNU_template_name attribute to represent the
12337 name of the template template argument. */
12338 tmpl_die = new_die (DW_TAG_GNU_template_template_param,
12339 parent_die, parm);
12340 else
12341 gcc_unreachable ();
12343 if (tmpl_die)
12345 tree tmpl_type;
12347 /* If PARM is a generic parameter pack, it means we are
12348 emitting debug info for a template argument pack element.
12349 In other terms, ARG is a template argument pack element.
12350 In that case, we don't emit any DW_AT_name attribute for
12351 the die. */
12352 if (emit_name_p)
12354 name = IDENTIFIER_POINTER (DECL_NAME (parm));
12355 gcc_assert (name);
12356 add_AT_string (tmpl_die, DW_AT_name, name);
12359 if (!lang_hooks.decls.generic_generic_parameter_decl_p (parm))
12361 /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
12362 TMPL_DIE should have a child DW_AT_type attribute that is set
12363 to the type of the argument to PARM, which is ARG.
12364 If PARM is a type generic parameter, TMPL_DIE should have a
12365 child DW_AT_type that is set to ARG. */
12366 tmpl_type = TYPE_P (arg) ? arg : TREE_TYPE (arg);
12367 add_type_attribute (tmpl_die, tmpl_type, 0,
12368 TREE_THIS_VOLATILE (tmpl_type),
12369 parent_die);
12371 else
12373 /* So TMPL_DIE is a DIE representing a
12374 a generic generic template parameter, a.k.a template template
12375 parameter in C++ and arg is a template. */
12377 /* The DW_AT_GNU_template_name attribute of the DIE must be set
12378 to the name of the argument. */
12379 name = dwarf2_name (TYPE_P (arg) ? TYPE_NAME (arg) : arg, 1);
12380 if (name)
12381 add_AT_string (tmpl_die, DW_AT_GNU_template_name, name);
12384 if (TREE_CODE (parm) == PARM_DECL)
12385 /* So PARM is a non-type generic parameter.
12386 DWARF3 5.6.8 says we must set a DW_AT_const_value child
12387 attribute of TMPL_DIE which value represents the value
12388 of ARG.
12389 We must be careful here:
12390 The value of ARG might reference some function decls.
12391 We might currently be emitting debug info for a generic
12392 type and types are emitted before function decls, we don't
12393 know if the function decls referenced by ARG will actually be
12394 emitted after cgraph computations.
12395 So must defer the generation of the DW_AT_const_value to
12396 after cgraph is ready. */
12397 append_entry_to_tmpl_value_parm_die_table (tmpl_die, arg);
12400 return tmpl_die;
12403 /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing.
12404 PARM_PACK must be a template parameter pack. The returned DIE
12405 will be child DIE of PARENT_DIE. */
12407 static dw_die_ref
12408 template_parameter_pack_die (tree parm_pack,
12409 tree parm_pack_args,
12410 dw_die_ref parent_die)
12412 dw_die_ref die;
12413 int j;
12415 gcc_assert (parent_die && parm_pack);
12417 die = new_die (DW_TAG_GNU_template_parameter_pack, parent_die, parm_pack);
12418 add_name_and_src_coords_attributes (die, parm_pack);
12419 for (j = 0; j < TREE_VEC_LENGTH (parm_pack_args); j++)
12420 generic_parameter_die (parm_pack,
12421 TREE_VEC_ELT (parm_pack_args, j),
12422 false /* Don't emit DW_AT_name */,
12423 die);
12424 return die;
12427 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
12428 an enumerated type. */
12430 static inline int
12431 type_is_enum (const_tree type)
12433 return TREE_CODE (type) == ENUMERAL_TYPE;
12436 /* Return the DBX register number described by a given RTL node. */
12438 static unsigned int
12439 dbx_reg_number (const_rtx rtl)
12441 unsigned regno = REGNO (rtl);
12443 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
12445 #ifdef LEAF_REG_REMAP
12446 if (current_function_uses_only_leaf_regs)
12448 int leaf_reg = LEAF_REG_REMAP (regno);
12449 if (leaf_reg != -1)
12450 regno = (unsigned) leaf_reg;
12452 #endif
12454 return DBX_REGISTER_NUMBER (regno);
12457 /* Optionally add a DW_OP_piece term to a location description expression.
12458 DW_OP_piece is only added if the location description expression already
12459 doesn't end with DW_OP_piece. */
12461 static void
12462 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
12464 dw_loc_descr_ref loc;
12466 if (*list_head != NULL)
12468 /* Find the end of the chain. */
12469 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
12472 if (loc->dw_loc_opc != DW_OP_piece)
12473 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
12477 /* Return a location descriptor that designates a machine register or
12478 zero if there is none. */
12480 static dw_loc_descr_ref
12481 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
12483 rtx regs;
12485 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
12486 return 0;
12488 regs = targetm.dwarf_register_span (rtl);
12490 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
12491 return multiple_reg_loc_descriptor (rtl, regs, initialized);
12492 else
12493 return one_reg_loc_descriptor (dbx_reg_number (rtl), initialized);
12496 /* Return a location descriptor that designates a machine register for
12497 a given hard register number. */
12499 static dw_loc_descr_ref
12500 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
12502 dw_loc_descr_ref reg_loc_descr;
12504 if (regno <= 31)
12505 reg_loc_descr
12506 = new_loc_descr ((enum dwarf_location_atom) (DW_OP_reg0 + regno), 0, 0);
12507 else
12508 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
12510 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
12511 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
12513 return reg_loc_descr;
12516 /* Given an RTL of a register, return a location descriptor that
12517 designates a value that spans more than one register. */
12519 static dw_loc_descr_ref
12520 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
12521 enum var_init_status initialized)
12523 int nregs, size, i;
12524 unsigned reg;
12525 dw_loc_descr_ref loc_result = NULL;
12527 reg = REGNO (rtl);
12528 #ifdef LEAF_REG_REMAP
12529 if (current_function_uses_only_leaf_regs)
12531 int leaf_reg = LEAF_REG_REMAP (reg);
12532 if (leaf_reg != -1)
12533 reg = (unsigned) leaf_reg;
12535 #endif
12536 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
12537 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
12539 /* Simple, contiguous registers. */
12540 if (regs == NULL_RTX)
12542 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
12544 loc_result = NULL;
12545 while (nregs--)
12547 dw_loc_descr_ref t;
12549 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
12550 VAR_INIT_STATUS_INITIALIZED);
12551 add_loc_descr (&loc_result, t);
12552 add_loc_descr_op_piece (&loc_result, size);
12553 ++reg;
12555 return loc_result;
12558 /* Now onto stupid register sets in non contiguous locations. */
12560 gcc_assert (GET_CODE (regs) == PARALLEL);
12562 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
12563 loc_result = NULL;
12565 for (i = 0; i < XVECLEN (regs, 0); ++i)
12567 dw_loc_descr_ref t;
12569 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)),
12570 VAR_INIT_STATUS_INITIALIZED);
12571 add_loc_descr (&loc_result, t);
12572 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
12573 add_loc_descr_op_piece (&loc_result, size);
12576 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
12577 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
12578 return loc_result;
12581 #endif /* DWARF2_DEBUGGING_INFO */
12583 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
12585 /* Return a location descriptor that designates a constant. */
12587 static dw_loc_descr_ref
12588 int_loc_descriptor (HOST_WIDE_INT i)
12590 enum dwarf_location_atom op;
12592 /* Pick the smallest representation of a constant, rather than just
12593 defaulting to the LEB encoding. */
12594 if (i >= 0)
12596 if (i <= 31)
12597 op = (enum dwarf_location_atom) (DW_OP_lit0 + i);
12598 else if (i <= 0xff)
12599 op = DW_OP_const1u;
12600 else if (i <= 0xffff)
12601 op = DW_OP_const2u;
12602 else if (HOST_BITS_PER_WIDE_INT == 32
12603 || i <= 0xffffffff)
12604 op = DW_OP_const4u;
12605 else
12606 op = DW_OP_constu;
12608 else
12610 if (i >= -0x80)
12611 op = DW_OP_const1s;
12612 else if (i >= -0x8000)
12613 op = DW_OP_const2s;
12614 else if (HOST_BITS_PER_WIDE_INT == 32
12615 || i >= -0x80000000)
12616 op = DW_OP_const4s;
12617 else
12618 op = DW_OP_consts;
12621 return new_loc_descr (op, i, 0);
12623 #endif
12625 #ifdef DWARF2_DEBUGGING_INFO
12626 /* Return loc description representing "address" of integer value.
12627 This can appear only as toplevel expression. */
12629 static dw_loc_descr_ref
12630 address_of_int_loc_descriptor (int size, HOST_WIDE_INT i)
12632 int litsize;
12633 dw_loc_descr_ref loc_result = NULL;
12635 if (!(dwarf_version >= 4 || !dwarf_strict))
12636 return NULL;
12638 if (i >= 0)
12640 if (i <= 31)
12641 litsize = 1;
12642 else if (i <= 0xff)
12643 litsize = 2;
12644 else if (i <= 0xffff)
12645 litsize = 3;
12646 else if (HOST_BITS_PER_WIDE_INT == 32
12647 || i <= 0xffffffff)
12648 litsize = 5;
12649 else
12650 litsize = 1 + size_of_uleb128 ((unsigned HOST_WIDE_INT) i);
12652 else
12654 if (i >= -0x80)
12655 litsize = 2;
12656 else if (i >= -0x8000)
12657 litsize = 3;
12658 else if (HOST_BITS_PER_WIDE_INT == 32
12659 || i >= -0x80000000)
12660 litsize = 5;
12661 else
12662 litsize = 1 + size_of_sleb128 (i);
12664 /* Determine if DW_OP_stack_value or DW_OP_implicit_value
12665 is more compact. For DW_OP_stack_value we need:
12666 litsize + 1 (DW_OP_stack_value)
12667 and for DW_OP_implicit_value:
12668 1 (DW_OP_implicit_value) + 1 (length) + size. */
12669 if ((int) DWARF2_ADDR_SIZE >= size && litsize + 1 <= 1 + 1 + size)
12671 loc_result = int_loc_descriptor (i);
12672 add_loc_descr (&loc_result,
12673 new_loc_descr (DW_OP_stack_value, 0, 0));
12674 return loc_result;
12677 loc_result = new_loc_descr (DW_OP_implicit_value,
12678 size, 0);
12679 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
12680 loc_result->dw_loc_oprnd2.v.val_int = i;
12681 return loc_result;
12684 /* Return a location descriptor that designates a base+offset location. */
12686 static dw_loc_descr_ref
12687 based_loc_descr (rtx reg, HOST_WIDE_INT offset,
12688 enum var_init_status initialized)
12690 unsigned int regno;
12691 dw_loc_descr_ref result;
12692 dw_fde_ref fde = current_fde ();
12694 /* We only use "frame base" when we're sure we're talking about the
12695 post-prologue local stack frame. We do this by *not* running
12696 register elimination until this point, and recognizing the special
12697 argument pointer and soft frame pointer rtx's. */
12698 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
12700 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
12702 if (elim != reg)
12704 if (GET_CODE (elim) == PLUS)
12706 offset += INTVAL (XEXP (elim, 1));
12707 elim = XEXP (elim, 0);
12709 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
12710 && (elim == hard_frame_pointer_rtx
12711 || elim == stack_pointer_rtx))
12712 || elim == (frame_pointer_needed
12713 ? hard_frame_pointer_rtx
12714 : stack_pointer_rtx));
12716 /* If drap register is used to align stack, use frame
12717 pointer + offset to access stack variables. If stack
12718 is aligned without drap, use stack pointer + offset to
12719 access stack variables. */
12720 if (crtl->stack_realign_tried
12721 && reg == frame_pointer_rtx)
12723 int base_reg
12724 = DWARF_FRAME_REGNUM ((fde && fde->drap_reg != INVALID_REGNUM)
12725 ? HARD_FRAME_POINTER_REGNUM
12726 : STACK_POINTER_REGNUM);
12727 return new_reg_loc_descr (base_reg, offset);
12730 offset += frame_pointer_fb_offset;
12731 return new_loc_descr (DW_OP_fbreg, offset, 0);
12734 else if (fde
12735 && fde->drap_reg != INVALID_REGNUM
12736 && (fde->drap_reg == REGNO (reg)
12737 || fde->vdrap_reg == REGNO (reg)))
12739 /* Use cfa+offset to represent the location of arguments passed
12740 on stack when drap is used to align stack. */
12741 return new_loc_descr (DW_OP_fbreg, offset, 0);
12744 regno = dbx_reg_number (reg);
12745 if (regno <= 31)
12746 result = new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + regno),
12747 offset, 0);
12748 else
12749 result = new_loc_descr (DW_OP_bregx, regno, offset);
12751 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
12752 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
12754 return result;
12757 /* Return true if this RTL expression describes a base+offset calculation. */
12759 static inline int
12760 is_based_loc (const_rtx rtl)
12762 return (GET_CODE (rtl) == PLUS
12763 && ((REG_P (XEXP (rtl, 0))
12764 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
12765 && CONST_INT_P (XEXP (rtl, 1)))));
12768 /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
12769 failed. */
12771 static dw_loc_descr_ref
12772 tls_mem_loc_descriptor (rtx mem)
12774 tree base;
12775 dw_loc_descr_ref loc_result;
12777 if (MEM_EXPR (mem) == NULL_TREE || MEM_OFFSET (mem) == NULL_RTX)
12778 return NULL;
12780 base = get_base_address (MEM_EXPR (mem));
12781 if (base == NULL
12782 || TREE_CODE (base) != VAR_DECL
12783 || !DECL_THREAD_LOCAL_P (base))
12784 return NULL;
12786 loc_result = loc_descriptor_from_tree (MEM_EXPR (mem), 1);
12787 if (loc_result == NULL)
12788 return NULL;
12790 if (INTVAL (MEM_OFFSET (mem)))
12791 loc_descr_plus_const (&loc_result, INTVAL (MEM_OFFSET (mem)));
12793 return loc_result;
12796 /* Output debug info about reason why we failed to expand expression as dwarf
12797 expression. */
12799 static void
12800 expansion_failed (tree expr, rtx rtl, char const *reason)
12802 if (dump_file && (dump_flags & TDF_DETAILS))
12804 fprintf (dump_file, "Failed to expand as dwarf: ");
12805 if (expr)
12806 print_generic_expr (dump_file, expr, dump_flags);
12807 if (rtl)
12809 fprintf (dump_file, "\n");
12810 print_rtl (dump_file, rtl);
12812 fprintf (dump_file, "\nReason: %s\n", reason);
12816 /* Helper function for const_ok_for_output, called either directly
12817 or via for_each_rtx. */
12819 static int
12820 const_ok_for_output_1 (rtx *rtlp, void *data ATTRIBUTE_UNUSED)
12822 rtx rtl = *rtlp;
12824 if (GET_CODE (rtl) != SYMBOL_REF)
12825 return 0;
12827 if (CONSTANT_POOL_ADDRESS_P (rtl))
12829 bool marked;
12830 get_pool_constant_mark (rtl, &marked);
12831 /* If all references to this pool constant were optimized away,
12832 it was not output and thus we can't represent it. */
12833 if (!marked)
12835 expansion_failed (NULL_TREE, rtl,
12836 "Constant was removed from constant pool.\n");
12837 return 1;
12841 if (SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
12842 return 1;
12844 /* Avoid references to external symbols in debug info, on several targets
12845 the linker might even refuse to link when linking a shared library,
12846 and in many other cases the relocations for .debug_info/.debug_loc are
12847 dropped, so the address becomes zero anyway. Hidden symbols, guaranteed
12848 to be defined within the same shared library or executable are fine. */
12849 if (SYMBOL_REF_EXTERNAL_P (rtl))
12851 tree decl = SYMBOL_REF_DECL (rtl);
12853 if (decl == NULL || !targetm.binds_local_p (decl))
12855 expansion_failed (NULL_TREE, rtl,
12856 "Symbol not defined in current TU.\n");
12857 return 1;
12861 return 0;
12864 /* Return true if constant RTL can be emitted in DW_OP_addr or
12865 DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or
12866 non-marked constant pool SYMBOL_REFs can't be referenced in it. */
12868 static bool
12869 const_ok_for_output (rtx rtl)
12871 if (GET_CODE (rtl) == SYMBOL_REF)
12872 return const_ok_for_output_1 (&rtl, NULL) == 0;
12874 if (GET_CODE (rtl) == CONST)
12875 return for_each_rtx (&XEXP (rtl, 0), const_ok_for_output_1, NULL) == 0;
12877 return true;
12880 /* The following routine converts the RTL for a variable or parameter
12881 (resident in memory) into an equivalent Dwarf representation of a
12882 mechanism for getting the address of that same variable onto the top of a
12883 hypothetical "address evaluation" stack.
12885 When creating memory location descriptors, we are effectively transforming
12886 the RTL for a memory-resident object into its Dwarf postfix expression
12887 equivalent. This routine recursively descends an RTL tree, turning
12888 it into Dwarf postfix code as it goes.
12890 MODE is the mode of the memory reference, needed to handle some
12891 autoincrement addressing modes.
12893 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
12894 location list for RTL.
12896 Return 0 if we can't represent the location. */
12898 static dw_loc_descr_ref
12899 mem_loc_descriptor (rtx rtl, enum machine_mode mode,
12900 enum var_init_status initialized)
12902 dw_loc_descr_ref mem_loc_result = NULL;
12903 enum dwarf_location_atom op;
12904 dw_loc_descr_ref op0, op1;
12906 /* Note that for a dynamically sized array, the location we will generate a
12907 description of here will be the lowest numbered location which is
12908 actually within the array. That's *not* necessarily the same as the
12909 zeroth element of the array. */
12911 rtl = targetm.delegitimize_address (rtl);
12913 switch (GET_CODE (rtl))
12915 case POST_INC:
12916 case POST_DEC:
12917 case POST_MODIFY:
12918 return mem_loc_descriptor (XEXP (rtl, 0), mode, initialized);
12920 case SUBREG:
12921 /* The case of a subreg may arise when we have a local (register)
12922 variable or a formal (register) parameter which doesn't quite fill
12923 up an entire register. For now, just assume that it is
12924 legitimate to make the Dwarf info refer to the whole register which
12925 contains the given subreg. */
12926 if (!subreg_lowpart_p (rtl))
12927 break;
12928 rtl = SUBREG_REG (rtl);
12929 if (GET_MODE_SIZE (GET_MODE (rtl)) > DWARF2_ADDR_SIZE)
12930 break;
12931 if (GET_MODE_CLASS (GET_MODE (rtl)) != MODE_INT)
12932 break;
12933 mem_loc_result = mem_loc_descriptor (rtl, mode, initialized);
12934 break;
12936 case REG:
12937 /* Whenever a register number forms a part of the description of the
12938 method for calculating the (dynamic) address of a memory resident
12939 object, DWARF rules require the register number be referred to as
12940 a "base register". This distinction is not based in any way upon
12941 what category of register the hardware believes the given register
12942 belongs to. This is strictly DWARF terminology we're dealing with
12943 here. Note that in cases where the location of a memory-resident
12944 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
12945 OP_CONST (0)) the actual DWARF location descriptor that we generate
12946 may just be OP_BASEREG (basereg). This may look deceptively like
12947 the object in question was allocated to a register (rather than in
12948 memory) so DWARF consumers need to be aware of the subtle
12949 distinction between OP_REG and OP_BASEREG. */
12950 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
12951 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
12952 else if (stack_realign_drap
12953 && crtl->drap_reg
12954 && crtl->args.internal_arg_pointer == rtl
12955 && REGNO (crtl->drap_reg) < FIRST_PSEUDO_REGISTER)
12957 /* If RTL is internal_arg_pointer, which has been optimized
12958 out, use DRAP instead. */
12959 mem_loc_result = based_loc_descr (crtl->drap_reg, 0,
12960 VAR_INIT_STATUS_INITIALIZED);
12962 break;
12964 case SIGN_EXTEND:
12965 case ZERO_EXTEND:
12966 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
12967 VAR_INIT_STATUS_INITIALIZED);
12968 if (op0 == 0)
12969 break;
12970 else
12972 int shift = DWARF2_ADDR_SIZE
12973 - GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)));
12974 shift *= BITS_PER_UNIT;
12975 if (GET_CODE (rtl) == SIGN_EXTEND)
12976 op = DW_OP_shra;
12977 else
12978 op = DW_OP_shr;
12979 mem_loc_result = op0;
12980 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
12981 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
12982 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
12983 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
12985 break;
12987 case MEM:
12988 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
12989 VAR_INIT_STATUS_INITIALIZED);
12990 if (mem_loc_result == NULL)
12991 mem_loc_result = tls_mem_loc_descriptor (rtl);
12992 if (mem_loc_result != 0)
12993 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
12994 break;
12996 case LO_SUM:
12997 rtl = XEXP (rtl, 1);
12999 /* ... fall through ... */
13001 case LABEL_REF:
13002 /* Some ports can transform a symbol ref into a label ref, because
13003 the symbol ref is too far away and has to be dumped into a constant
13004 pool. */
13005 case CONST:
13006 case SYMBOL_REF:
13007 /* Alternatively, the symbol in the constant pool might be referenced
13008 by a different symbol. */
13009 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
13011 bool marked;
13012 rtx tmp = get_pool_constant_mark (rtl, &marked);
13014 if (GET_CODE (tmp) == SYMBOL_REF)
13016 rtl = tmp;
13017 if (CONSTANT_POOL_ADDRESS_P (tmp))
13018 get_pool_constant_mark (tmp, &marked);
13019 else
13020 marked = true;
13023 /* If all references to this pool constant were optimized away,
13024 it was not output and thus we can't represent it.
13025 FIXME: might try to use DW_OP_const_value here, though
13026 DW_OP_piece complicates it. */
13027 if (!marked)
13029 expansion_failed (NULL_TREE, rtl,
13030 "Constant was removed from constant pool.\n");
13031 return 0;
13035 if (GET_CODE (rtl) == SYMBOL_REF
13036 && SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
13038 dw_loc_descr_ref temp;
13040 /* If this is not defined, we have no way to emit the data. */
13041 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
13042 break;
13044 temp = new_loc_descr (DW_OP_addr, 0, 0);
13045 temp->dw_loc_oprnd1.val_class = dw_val_class_addr;
13046 temp->dw_loc_oprnd1.v.val_addr = rtl;
13047 temp->dtprel = true;
13049 mem_loc_result = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
13050 add_loc_descr (&mem_loc_result, temp);
13052 break;
13055 if (!const_ok_for_output (rtl))
13056 break;
13058 symref:
13059 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
13060 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
13061 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
13062 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
13063 break;
13065 case CONCAT:
13066 case CONCATN:
13067 case VAR_LOCATION:
13068 expansion_failed (NULL_TREE, rtl,
13069 "CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
13070 return 0;
13072 case PRE_MODIFY:
13073 /* Extract the PLUS expression nested inside and fall into
13074 PLUS code below. */
13075 rtl = XEXP (rtl, 1);
13076 goto plus;
13078 case PRE_INC:
13079 case PRE_DEC:
13080 /* Turn these into a PLUS expression and fall into the PLUS code
13081 below. */
13082 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
13083 GEN_INT (GET_CODE (rtl) == PRE_INC
13084 ? GET_MODE_UNIT_SIZE (mode)
13085 : -GET_MODE_UNIT_SIZE (mode)));
13087 /* ... fall through ... */
13089 case PLUS:
13090 plus:
13091 if (is_based_loc (rtl))
13092 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
13093 INTVAL (XEXP (rtl, 1)),
13094 VAR_INIT_STATUS_INITIALIZED);
13095 else
13097 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
13098 VAR_INIT_STATUS_INITIALIZED);
13099 if (mem_loc_result == 0)
13100 break;
13102 if (CONST_INT_P (XEXP (rtl, 1)))
13103 loc_descr_plus_const (&mem_loc_result, INTVAL (XEXP (rtl, 1)));
13104 else
13106 dw_loc_descr_ref mem_loc_result2
13107 = mem_loc_descriptor (XEXP (rtl, 1), mode,
13108 VAR_INIT_STATUS_INITIALIZED);
13109 if (mem_loc_result2 == 0)
13110 break;
13111 add_loc_descr (&mem_loc_result, mem_loc_result2);
13112 add_loc_descr (&mem_loc_result,
13113 new_loc_descr (DW_OP_plus, 0, 0));
13116 break;
13118 /* If a pseudo-reg is optimized away, it is possible for it to
13119 be replaced with a MEM containing a multiply or shift. */
13120 case MINUS:
13121 op = DW_OP_minus;
13122 goto do_binop;
13124 case MULT:
13125 op = DW_OP_mul;
13126 goto do_binop;
13128 case DIV:
13129 op = DW_OP_div;
13130 goto do_binop;
13132 case MOD:
13133 op = DW_OP_mod;
13134 goto do_binop;
13136 case ASHIFT:
13137 op = DW_OP_shl;
13138 goto do_binop;
13140 case ASHIFTRT:
13141 op = DW_OP_shra;
13142 goto do_binop;
13144 case LSHIFTRT:
13145 op = DW_OP_shr;
13146 goto do_binop;
13148 case AND:
13149 op = DW_OP_and;
13150 goto do_binop;
13152 case IOR:
13153 op = DW_OP_or;
13154 goto do_binop;
13156 case XOR:
13157 op = DW_OP_xor;
13158 goto do_binop;
13160 do_binop:
13161 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13162 VAR_INIT_STATUS_INITIALIZED);
13163 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
13164 VAR_INIT_STATUS_INITIALIZED);
13166 if (op0 == 0 || op1 == 0)
13167 break;
13169 mem_loc_result = op0;
13170 add_loc_descr (&mem_loc_result, op1);
13171 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13172 break;
13174 case NOT:
13175 op = DW_OP_not;
13176 goto do_unop;
13178 case ABS:
13179 op = DW_OP_abs;
13180 goto do_unop;
13182 case NEG:
13183 op = DW_OP_neg;
13184 goto do_unop;
13186 do_unop:
13187 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13188 VAR_INIT_STATUS_INITIALIZED);
13190 if (op0 == 0)
13191 break;
13193 mem_loc_result = op0;
13194 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13195 break;
13197 case CONST_INT:
13198 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
13199 break;
13201 case EQ:
13202 op = DW_OP_eq;
13203 goto do_scompare;
13205 case GE:
13206 op = DW_OP_ge;
13207 goto do_scompare;
13209 case GT:
13210 op = DW_OP_gt;
13211 goto do_scompare;
13213 case LE:
13214 op = DW_OP_le;
13215 goto do_scompare;
13217 case LT:
13218 op = DW_OP_lt;
13219 goto do_scompare;
13221 case NE:
13222 op = DW_OP_ne;
13223 goto do_scompare;
13225 do_scompare:
13226 if (GET_MODE_CLASS (GET_MODE (XEXP (rtl, 0))) != MODE_INT
13227 || GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) > DWARF2_ADDR_SIZE
13228 || GET_MODE (XEXP (rtl, 0)) != GET_MODE (XEXP (rtl, 1)))
13229 break;
13231 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13232 VAR_INIT_STATUS_INITIALIZED);
13233 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
13234 VAR_INIT_STATUS_INITIALIZED);
13236 if (op0 == 0 || op1 == 0)
13237 break;
13239 if (GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) < DWARF2_ADDR_SIZE)
13241 int shift = DWARF2_ADDR_SIZE
13242 - GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)));
13243 shift *= BITS_PER_UNIT;
13244 add_loc_descr (&op0, int_loc_descriptor (shift));
13245 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
13246 if (CONST_INT_P (XEXP (rtl, 1)))
13247 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift);
13248 else
13250 add_loc_descr (&op1, int_loc_descriptor (shift));
13251 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
13255 do_compare:
13256 mem_loc_result = op0;
13257 add_loc_descr (&mem_loc_result, op1);
13258 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13259 if (STORE_FLAG_VALUE != 1)
13261 add_loc_descr (&mem_loc_result,
13262 int_loc_descriptor (STORE_FLAG_VALUE));
13263 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
13265 break;
13267 case GEU:
13268 op = DW_OP_ge;
13269 goto do_ucompare;
13271 case GTU:
13272 op = DW_OP_gt;
13273 goto do_ucompare;
13275 case LEU:
13276 op = DW_OP_le;
13277 goto do_ucompare;
13279 case LTU:
13280 op = DW_OP_lt;
13281 goto do_ucompare;
13283 do_ucompare:
13284 if (GET_MODE_CLASS (GET_MODE (XEXP (rtl, 0))) != MODE_INT
13285 || GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) > DWARF2_ADDR_SIZE
13286 || GET_MODE (XEXP (rtl, 0)) != GET_MODE (XEXP (rtl, 1)))
13287 break;
13289 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13290 VAR_INIT_STATUS_INITIALIZED);
13291 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
13292 VAR_INIT_STATUS_INITIALIZED);
13294 if (op0 == 0 || op1 == 0)
13295 break;
13297 if (GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) < DWARF2_ADDR_SIZE)
13299 HOST_WIDE_INT mask = GET_MODE_MASK (GET_MODE (XEXP (rtl, 0)));
13300 add_loc_descr (&op0, int_loc_descriptor (mask));
13301 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
13302 if (CONST_INT_P (XEXP (rtl, 1)))
13303 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) & mask);
13304 else
13306 add_loc_descr (&op1, int_loc_descriptor (mask));
13307 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
13310 else
13312 HOST_WIDE_INT bias = 1;
13313 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
13314 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
13315 if (CONST_INT_P (XEXP (rtl, 1)))
13316 op1 = int_loc_descriptor ((unsigned HOST_WIDE_INT) bias
13317 + INTVAL (XEXP (rtl, 1)));
13318 else
13319 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0));
13321 goto do_compare;
13323 case SMIN:
13324 case SMAX:
13325 case UMIN:
13326 case UMAX:
13327 if (GET_MODE_CLASS (GET_MODE (XEXP (rtl, 0))) != MODE_INT
13328 || GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) > DWARF2_ADDR_SIZE
13329 || GET_MODE (XEXP (rtl, 0)) != GET_MODE (XEXP (rtl, 1)))
13330 break;
13332 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13333 VAR_INIT_STATUS_INITIALIZED);
13334 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
13335 VAR_INIT_STATUS_INITIALIZED);
13337 if (op0 == 0 || op1 == 0)
13338 break;
13340 add_loc_descr (&op0, new_loc_descr (DW_OP_dup, 0, 0));
13341 add_loc_descr (&op1, new_loc_descr (DW_OP_swap, 0, 0));
13342 add_loc_descr (&op1, new_loc_descr (DW_OP_over, 0, 0));
13343 if (GET_CODE (rtl) == UMIN || GET_CODE (rtl) == UMAX)
13345 if (GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) < DWARF2_ADDR_SIZE)
13347 HOST_WIDE_INT mask = GET_MODE_MASK (GET_MODE (XEXP (rtl, 0)));
13348 add_loc_descr (&op0, int_loc_descriptor (mask));
13349 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
13350 add_loc_descr (&op1, int_loc_descriptor (mask));
13351 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
13353 else
13355 HOST_WIDE_INT bias = 1;
13356 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
13357 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
13358 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0));
13361 else if (GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) < DWARF2_ADDR_SIZE)
13363 int shift = DWARF2_ADDR_SIZE
13364 - GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)));
13365 shift *= BITS_PER_UNIT;
13366 add_loc_descr (&op0, int_loc_descriptor (shift));
13367 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
13368 add_loc_descr (&op1, int_loc_descriptor (shift));
13369 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
13372 if (GET_CODE (rtl) == SMIN || GET_CODE (rtl) == UMIN)
13373 op = DW_OP_lt;
13374 else
13375 op = DW_OP_gt;
13376 mem_loc_result = op0;
13377 add_loc_descr (&mem_loc_result, op1);
13378 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13380 dw_loc_descr_ref bra_node, drop_node;
13382 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
13383 add_loc_descr (&mem_loc_result, bra_node);
13384 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_swap, 0, 0));
13385 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
13386 add_loc_descr (&mem_loc_result, drop_node);
13387 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
13388 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
13390 break;
13392 case ZERO_EXTRACT:
13393 case SIGN_EXTRACT:
13394 if (CONST_INT_P (XEXP (rtl, 1))
13395 && CONST_INT_P (XEXP (rtl, 2))
13396 && ((unsigned) INTVAL (XEXP (rtl, 1))
13397 + (unsigned) INTVAL (XEXP (rtl, 2))
13398 <= GET_MODE_BITSIZE (GET_MODE (rtl)))
13399 && GET_MODE_BITSIZE (GET_MODE (rtl)) <= DWARF2_ADDR_SIZE
13400 && GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0))) <= DWARF2_ADDR_SIZE)
13402 int shift, size;
13403 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13404 VAR_INIT_STATUS_INITIALIZED);
13405 if (op0 == 0)
13406 break;
13407 if (GET_CODE (rtl) == SIGN_EXTRACT)
13408 op = DW_OP_shra;
13409 else
13410 op = DW_OP_shr;
13411 mem_loc_result = op0;
13412 size = INTVAL (XEXP (rtl, 1));
13413 shift = INTVAL (XEXP (rtl, 2));
13414 if (BITS_BIG_ENDIAN)
13415 shift = GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
13416 - shift - size;
13417 if (shift + size != (int) DWARF2_ADDR_SIZE)
13419 add_loc_descr (&mem_loc_result,
13420 int_loc_descriptor (DWARF2_ADDR_SIZE
13421 - shift - size));
13422 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
13424 if (size != (int) DWARF2_ADDR_SIZE)
13426 add_loc_descr (&mem_loc_result,
13427 int_loc_descriptor (DWARF2_ADDR_SIZE - size));
13428 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13431 break;
13433 case COMPARE:
13434 case IF_THEN_ELSE:
13435 case ROTATE:
13436 case ROTATERT:
13437 case TRUNCATE:
13438 /* In theory, we could implement the above. */
13439 /* DWARF cannot represent the unsigned compare operations
13440 natively. */
13441 case SS_TRUNCATE:
13442 case US_TRUNCATE:
13443 case SS_MULT:
13444 case US_MULT:
13445 case SS_DIV:
13446 case US_DIV:
13447 case UDIV:
13448 case UMOD:
13449 case UNORDERED:
13450 case ORDERED:
13451 case UNEQ:
13452 case UNGE:
13453 case UNGT:
13454 case UNLE:
13455 case UNLT:
13456 case LTGT:
13457 case FLOAT_EXTEND:
13458 case FLOAT_TRUNCATE:
13459 case FLOAT:
13460 case UNSIGNED_FLOAT:
13461 case FIX:
13462 case UNSIGNED_FIX:
13463 case FRACT_CONVERT:
13464 case UNSIGNED_FRACT_CONVERT:
13465 case SAT_FRACT:
13466 case UNSIGNED_SAT_FRACT:
13467 case SQRT:
13468 case BSWAP:
13469 case FFS:
13470 case CLZ:
13471 case CTZ:
13472 case POPCOUNT:
13473 case PARITY:
13474 case ASM_OPERANDS:
13475 case UNSPEC:
13476 case HIGH:
13477 /* If delegitimize_address couldn't do anything with the UNSPEC, we
13478 can't express it in the debug info. This can happen e.g. with some
13479 TLS UNSPECs. */
13480 break;
13482 case CONST_STRING:
13483 resolve_one_addr (&rtl, NULL);
13484 goto symref;
13486 default:
13487 #ifdef ENABLE_CHECKING
13488 print_rtl (stderr, rtl);
13489 gcc_unreachable ();
13490 #else
13491 break;
13492 #endif
13495 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
13496 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13498 return mem_loc_result;
13501 /* Return a descriptor that describes the concatenation of two locations.
13502 This is typically a complex variable. */
13504 static dw_loc_descr_ref
13505 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
13507 dw_loc_descr_ref cc_loc_result = NULL;
13508 dw_loc_descr_ref x0_ref
13509 = loc_descriptor (x0, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13510 dw_loc_descr_ref x1_ref
13511 = loc_descriptor (x1, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13513 if (x0_ref == 0 || x1_ref == 0)
13514 return 0;
13516 cc_loc_result = x0_ref;
13517 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
13519 add_loc_descr (&cc_loc_result, x1_ref);
13520 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
13522 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
13523 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13525 return cc_loc_result;
13528 /* Return a descriptor that describes the concatenation of N
13529 locations. */
13531 static dw_loc_descr_ref
13532 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
13534 unsigned int i;
13535 dw_loc_descr_ref cc_loc_result = NULL;
13536 unsigned int n = XVECLEN (concatn, 0);
13538 for (i = 0; i < n; ++i)
13540 dw_loc_descr_ref ref;
13541 rtx x = XVECEXP (concatn, 0, i);
13543 ref = loc_descriptor (x, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13544 if (ref == NULL)
13545 return NULL;
13547 add_loc_descr (&cc_loc_result, ref);
13548 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
13551 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
13552 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13554 return cc_loc_result;
13557 /* Output a proper Dwarf location descriptor for a variable or parameter
13558 which is either allocated in a register or in a memory location. For a
13559 register, we just generate an OP_REG and the register number. For a
13560 memory location we provide a Dwarf postfix expression describing how to
13561 generate the (dynamic) address of the object onto the address stack.
13563 MODE is mode of the decl if this loc_descriptor is going to be used in
13564 .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
13565 allowed, VOIDmode otherwise.
13567 If we don't know how to describe it, return 0. */
13569 static dw_loc_descr_ref
13570 loc_descriptor (rtx rtl, enum machine_mode mode,
13571 enum var_init_status initialized)
13573 dw_loc_descr_ref loc_result = NULL;
13575 switch (GET_CODE (rtl))
13577 case SUBREG:
13578 /* The case of a subreg may arise when we have a local (register)
13579 variable or a formal (register) parameter which doesn't quite fill
13580 up an entire register. For now, just assume that it is
13581 legitimate to make the Dwarf info refer to the whole register which
13582 contains the given subreg. */
13583 loc_result = loc_descriptor (SUBREG_REG (rtl), mode, initialized);
13584 break;
13586 case REG:
13587 loc_result = reg_loc_descriptor (rtl, initialized);
13588 break;
13590 case SIGN_EXTEND:
13591 case ZERO_EXTEND:
13592 loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
13593 break;
13595 case MEM:
13596 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
13597 initialized);
13598 if (loc_result == NULL)
13599 loc_result = tls_mem_loc_descriptor (rtl);
13600 break;
13602 case CONCAT:
13603 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
13604 initialized);
13605 break;
13607 case CONCATN:
13608 loc_result = concatn_loc_descriptor (rtl, initialized);
13609 break;
13611 case VAR_LOCATION:
13612 /* Single part. */
13613 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
13615 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), mode,
13616 initialized);
13617 break;
13620 rtl = XEXP (rtl, 1);
13621 /* FALLTHRU */
13623 case PARALLEL:
13625 rtvec par_elems = XVEC (rtl, 0);
13626 int num_elem = GET_NUM_ELEM (par_elems);
13627 enum machine_mode mode;
13628 int i;
13630 /* Create the first one, so we have something to add to. */
13631 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
13632 VOIDmode, initialized);
13633 if (loc_result == NULL)
13634 return NULL;
13635 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
13636 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
13637 for (i = 1; i < num_elem; i++)
13639 dw_loc_descr_ref temp;
13641 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
13642 VOIDmode, initialized);
13643 if (temp == NULL)
13644 return NULL;
13645 add_loc_descr (&loc_result, temp);
13646 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
13647 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
13650 break;
13652 case CONST_INT:
13653 if (mode != VOIDmode && mode != BLKmode)
13654 loc_result = address_of_int_loc_descriptor (GET_MODE_SIZE (mode),
13655 INTVAL (rtl));
13656 break;
13658 case CONST_DOUBLE:
13659 if (mode == VOIDmode)
13660 mode = GET_MODE (rtl);
13662 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
13664 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
13666 /* Note that a CONST_DOUBLE rtx could represent either an integer
13667 or a floating-point constant. A CONST_DOUBLE is used whenever
13668 the constant requires more than one word in order to be
13669 adequately represented. We output CONST_DOUBLEs as blocks. */
13670 loc_result = new_loc_descr (DW_OP_implicit_value,
13671 GET_MODE_SIZE (mode), 0);
13672 if (SCALAR_FLOAT_MODE_P (mode))
13674 unsigned int length = GET_MODE_SIZE (mode);
13675 unsigned char *array = GGC_NEWVEC (unsigned char, length);
13677 insert_float (rtl, array);
13678 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
13679 loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
13680 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
13681 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
13683 else
13685 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const_double;
13686 loc_result->dw_loc_oprnd2.v.val_double.high
13687 = CONST_DOUBLE_HIGH (rtl);
13688 loc_result->dw_loc_oprnd2.v.val_double.low
13689 = CONST_DOUBLE_LOW (rtl);
13692 break;
13694 case CONST_VECTOR:
13695 if (mode == VOIDmode)
13696 mode = GET_MODE (rtl);
13698 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
13700 unsigned int elt_size = GET_MODE_UNIT_SIZE (GET_MODE (rtl));
13701 unsigned int length = CONST_VECTOR_NUNITS (rtl);
13702 unsigned char *array = GGC_NEWVEC (unsigned char, length * elt_size);
13703 unsigned int i;
13704 unsigned char *p;
13706 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
13707 switch (GET_MODE_CLASS (mode))
13709 case MODE_VECTOR_INT:
13710 for (i = 0, p = array; i < length; i++, p += elt_size)
13712 rtx elt = CONST_VECTOR_ELT (rtl, i);
13713 HOST_WIDE_INT lo, hi;
13715 switch (GET_CODE (elt))
13717 case CONST_INT:
13718 lo = INTVAL (elt);
13719 hi = -(lo < 0);
13720 break;
13722 case CONST_DOUBLE:
13723 lo = CONST_DOUBLE_LOW (elt);
13724 hi = CONST_DOUBLE_HIGH (elt);
13725 break;
13727 default:
13728 gcc_unreachable ();
13731 if (elt_size <= sizeof (HOST_WIDE_INT))
13732 insert_int (lo, elt_size, p);
13733 else
13735 unsigned char *p0 = p;
13736 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
13738 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
13739 if (WORDS_BIG_ENDIAN)
13741 p0 = p1;
13742 p1 = p;
13744 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
13745 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
13748 break;
13750 case MODE_VECTOR_FLOAT:
13751 for (i = 0, p = array; i < length; i++, p += elt_size)
13753 rtx elt = CONST_VECTOR_ELT (rtl, i);
13754 insert_float (elt, p);
13756 break;
13758 default:
13759 gcc_unreachable ();
13762 loc_result = new_loc_descr (DW_OP_implicit_value,
13763 length * elt_size, 0);
13764 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
13765 loc_result->dw_loc_oprnd2.v.val_vec.length = length;
13766 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
13767 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
13769 break;
13771 case CONST:
13772 if (mode == VOIDmode
13773 || GET_CODE (XEXP (rtl, 0)) == CONST_INT
13774 || GET_CODE (XEXP (rtl, 0)) == CONST_DOUBLE
13775 || GET_CODE (XEXP (rtl, 0)) == CONST_VECTOR)
13777 loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
13778 break;
13780 /* FALLTHROUGH */
13781 case SYMBOL_REF:
13782 if (!const_ok_for_output (rtl))
13783 break;
13784 case LABEL_REF:
13785 if (mode != VOIDmode && GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE
13786 && (dwarf_version >= 4 || !dwarf_strict))
13788 loc_result = new_loc_descr (DW_OP_addr, 0, 0);
13789 loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
13790 loc_result->dw_loc_oprnd1.v.val_addr = rtl;
13791 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
13792 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
13794 break;
13796 default:
13797 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE (rtl) == mode
13798 && GET_MODE_SIZE (GET_MODE (rtl)) <= DWARF2_ADDR_SIZE
13799 && (dwarf_version >= 4 || !dwarf_strict))
13801 /* Value expression. */
13802 loc_result = mem_loc_descriptor (rtl, VOIDmode, initialized);
13803 if (loc_result)
13804 add_loc_descr (&loc_result,
13805 new_loc_descr (DW_OP_stack_value, 0, 0));
13807 break;
13810 return loc_result;
13813 /* We need to figure out what section we should use as the base for the
13814 address ranges where a given location is valid.
13815 1. If this particular DECL has a section associated with it, use that.
13816 2. If this function has a section associated with it, use that.
13817 3. Otherwise, use the text section.
13818 XXX: If you split a variable across multiple sections, we won't notice. */
13820 static const char *
13821 secname_for_decl (const_tree decl)
13823 const char *secname;
13825 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
13827 tree sectree = DECL_SECTION_NAME (decl);
13828 secname = TREE_STRING_POINTER (sectree);
13830 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
13832 tree sectree = DECL_SECTION_NAME (current_function_decl);
13833 secname = TREE_STRING_POINTER (sectree);
13835 else if (cfun && in_cold_section_p)
13836 secname = crtl->subsections.cold_section_label;
13837 else
13838 secname = text_section_label;
13840 return secname;
13843 /* Return true when DECL_BY_REFERENCE is defined and set for DECL. */
13845 static bool
13846 decl_by_reference_p (tree decl)
13848 return ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL
13849 || TREE_CODE (decl) == VAR_DECL)
13850 && DECL_BY_REFERENCE (decl));
13853 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
13854 for VARLOC. */
13856 static dw_loc_descr_ref
13857 dw_loc_list_1 (tree loc, rtx varloc, int want_address,
13858 enum var_init_status initialized)
13860 int have_address = 0;
13861 dw_loc_descr_ref descr;
13862 enum machine_mode mode;
13864 if (want_address != 2)
13866 gcc_assert (GET_CODE (varloc) == VAR_LOCATION);
13867 /* Single part. */
13868 if (GET_CODE (XEXP (varloc, 1)) != PARALLEL)
13870 varloc = XEXP (XEXP (varloc, 1), 0);
13871 mode = GET_MODE (varloc);
13872 if (MEM_P (varloc))
13874 varloc = XEXP (varloc, 0);
13875 have_address = 1;
13877 descr = mem_loc_descriptor (varloc, mode, initialized);
13879 else
13880 return 0;
13882 else
13884 descr = loc_descriptor (varloc, DECL_MODE (loc), initialized);
13885 have_address = 1;
13888 if (!descr)
13889 return 0;
13891 if (want_address == 2 && !have_address
13892 && (dwarf_version >= 4 || !dwarf_strict))
13894 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
13896 expansion_failed (loc, NULL_RTX,
13897 "DWARF address size mismatch");
13898 return 0;
13900 add_loc_descr (&descr, new_loc_descr (DW_OP_stack_value, 0, 0));
13901 have_address = 1;
13903 /* Show if we can't fill the request for an address. */
13904 if (want_address && !have_address)
13906 expansion_failed (loc, NULL_RTX,
13907 "Want address and only have value");
13908 return 0;
13911 /* If we've got an address and don't want one, dereference. */
13912 if (!want_address && have_address)
13914 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
13915 enum dwarf_location_atom op;
13917 if (size > DWARF2_ADDR_SIZE || size == -1)
13919 expansion_failed (loc, NULL_RTX,
13920 "DWARF address size mismatch");
13921 return 0;
13923 else if (size == DWARF2_ADDR_SIZE)
13924 op = DW_OP_deref;
13925 else
13926 op = DW_OP_deref_size;
13928 add_loc_descr (&descr, new_loc_descr (op, size, 0));
13931 return descr;
13934 /* Return the dwarf representation of the location list LOC_LIST of
13935 DECL. WANT_ADDRESS has the same meaning as in loc_list_from_tree
13936 function. */
13938 static dw_loc_list_ref
13939 dw_loc_list (var_loc_list *loc_list, tree decl, int want_address)
13941 const char *endname, *secname;
13942 rtx varloc;
13943 enum var_init_status initialized;
13944 struct var_loc_node *node;
13945 dw_loc_descr_ref descr;
13946 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
13947 dw_loc_list_ref list = NULL;
13948 dw_loc_list_ref *listp = &list;
13950 /* Now that we know what section we are using for a base,
13951 actually construct the list of locations.
13952 The first location information is what is passed to the
13953 function that creates the location list, and the remaining
13954 locations just get added on to that list.
13955 Note that we only know the start address for a location
13956 (IE location changes), so to build the range, we use
13957 the range [current location start, next location start].
13958 This means we have to special case the last node, and generate
13959 a range of [last location start, end of function label]. */
13961 secname = secname_for_decl (decl);
13963 for (node = loc_list->first; node->next; node = node->next)
13964 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
13966 /* The variable has a location between NODE->LABEL and
13967 NODE->NEXT->LABEL. */
13968 initialized = NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
13969 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
13970 descr = dw_loc_list_1 (decl, varloc, want_address, initialized);
13971 if (descr)
13973 *listp = new_loc_list (descr, node->label, node->next->label,
13974 secname);
13975 listp = &(*listp)->dw_loc_next;
13979 /* If the variable has a location at the last label
13980 it keeps its location until the end of function. */
13981 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
13983 initialized = NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
13984 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
13985 descr = dw_loc_list_1 (decl, varloc, want_address, initialized);
13986 if (descr)
13988 if (!current_function_decl)
13989 endname = text_end_label;
13990 else
13992 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
13993 current_function_funcdef_no);
13994 endname = ggc_strdup (label_id);
13997 *listp = new_loc_list (descr, node->label, endname, secname);
13998 listp = &(*listp)->dw_loc_next;
14002 /* Try to avoid the overhead of a location list emitting a location
14003 expression instead, but only if we didn't have more than one
14004 location entry in the first place. If some entries were not
14005 representable, we don't want to pretend a single entry that was
14006 applies to the entire scope in which the variable is
14007 available. */
14008 if (list && loc_list->first->next)
14009 gen_llsym (list);
14011 return list;
14014 /* Return if the loc_list has only single element and thus can be represented
14015 as location description. */
14017 static bool
14018 single_element_loc_list_p (dw_loc_list_ref list)
14020 gcc_assert (!list->dw_loc_next || list->ll_symbol);
14021 return !list->ll_symbol;
14024 /* To each location in list LIST add loc descr REF. */
14026 static void
14027 add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
14029 dw_loc_descr_ref copy;
14030 add_loc_descr (&list->expr, ref);
14031 list = list->dw_loc_next;
14032 while (list)
14034 copy = GGC_CNEW (dw_loc_descr_node);
14035 memcpy (copy, ref, sizeof (dw_loc_descr_node));
14036 add_loc_descr (&list->expr, copy);
14037 while (copy->dw_loc_next)
14039 dw_loc_descr_ref new_copy = GGC_CNEW (dw_loc_descr_node);
14040 memcpy (new_copy, copy->dw_loc_next, sizeof (dw_loc_descr_node));
14041 copy->dw_loc_next = new_copy;
14042 copy = new_copy;
14044 list = list->dw_loc_next;
14048 /* Given two lists RET and LIST
14049 produce location list that is result of adding expression in LIST
14050 to expression in RET on each possition in program.
14051 Might be destructive on both RET and LIST.
14053 TODO: We handle only simple cases of RET or LIST having at most one
14054 element. General case would inolve sorting the lists in program order
14055 and merging them that will need some additional work.
14056 Adding that will improve quality of debug info especially for SRA-ed
14057 structures. */
14059 static void
14060 add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list)
14062 if (!list)
14063 return;
14064 if (!*ret)
14066 *ret = list;
14067 return;
14069 if (!list->dw_loc_next)
14071 add_loc_descr_to_each (*ret, list->expr);
14072 return;
14074 if (!(*ret)->dw_loc_next)
14076 add_loc_descr_to_each (list, (*ret)->expr);
14077 *ret = list;
14078 return;
14080 expansion_failed (NULL_TREE, NULL_RTX,
14081 "Don't know how to merge two non-trivial"
14082 " location lists.\n");
14083 *ret = NULL;
14084 return;
14087 /* LOC is constant expression. Try a luck, look it up in constant
14088 pool and return its loc_descr of its address. */
14090 static dw_loc_descr_ref
14091 cst_pool_loc_descr (tree loc)
14093 /* Get an RTL for this, if something has been emitted. */
14094 rtx rtl = lookup_constant_def (loc);
14095 enum machine_mode mode;
14097 if (!rtl || !MEM_P (rtl))
14099 gcc_assert (!rtl);
14100 return 0;
14102 gcc_assert (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF);
14104 /* TODO: We might get more coverage if we was actually delaying expansion
14105 of all expressions till end of compilation when constant pools are fully
14106 populated. */
14107 if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl, 0))))
14109 expansion_failed (loc, NULL_RTX,
14110 "CST value in contant pool but not marked.");
14111 return 0;
14113 mode = GET_MODE (rtl);
14114 rtl = XEXP (rtl, 0);
14115 return mem_loc_descriptor (rtl, mode, VAR_INIT_STATUS_INITIALIZED);
14118 /* Return dw_loc_list representing address of addr_expr LOC
14119 by looking for innder INDIRECT_REF expression and turing it
14120 into simple arithmetics. */
14122 static dw_loc_list_ref
14123 loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc, bool toplev)
14125 tree obj, offset;
14126 HOST_WIDE_INT bitsize, bitpos, bytepos;
14127 enum machine_mode mode;
14128 int volatilep;
14129 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
14130 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
14132 obj = get_inner_reference (TREE_OPERAND (loc, 0),
14133 &bitsize, &bitpos, &offset, &mode,
14134 &unsignedp, &volatilep, false);
14135 STRIP_NOPS (obj);
14136 if (bitpos % BITS_PER_UNIT)
14138 expansion_failed (loc, NULL_RTX, "bitfield access");
14139 return 0;
14141 if (!INDIRECT_REF_P (obj))
14143 expansion_failed (obj,
14144 NULL_RTX, "no indirect ref in inner refrence");
14145 return 0;
14147 if (!offset && !bitpos)
14148 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), toplev ? 2 : 1);
14149 else if (toplev
14150 && int_size_in_bytes (TREE_TYPE (loc)) <= DWARF2_ADDR_SIZE
14151 && (dwarf_version >= 4 || !dwarf_strict))
14153 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), 0);
14154 if (!list_ret)
14155 return 0;
14156 if (offset)
14158 /* Variable offset. */
14159 list_ret1 = loc_list_from_tree (offset, 0);
14160 if (list_ret1 == 0)
14161 return 0;
14162 add_loc_list (&list_ret, list_ret1);
14163 if (!list_ret)
14164 return 0;
14165 add_loc_descr_to_each (list_ret,
14166 new_loc_descr (DW_OP_plus, 0, 0));
14168 bytepos = bitpos / BITS_PER_UNIT;
14169 if (bytepos > 0)
14170 add_loc_descr_to_each (list_ret,
14171 new_loc_descr (DW_OP_plus_uconst,
14172 bytepos, 0));
14173 else if (bytepos < 0)
14174 loc_list_plus_const (list_ret, bytepos);
14175 add_loc_descr_to_each (list_ret,
14176 new_loc_descr (DW_OP_stack_value, 0, 0));
14178 return list_ret;
14182 /* Generate Dwarf location list representing LOC.
14183 If WANT_ADDRESS is false, expression computing LOC will be computed
14184 If WANT_ADDRESS is 1, expression computing address of LOC will be returned
14185 if WANT_ADDRESS is 2, expression computing address useable in location
14186 will be returned (i.e. DW_OP_reg can be used
14187 to refer to register values). */
14189 static dw_loc_list_ref
14190 loc_list_from_tree (tree loc, int want_address)
14192 dw_loc_descr_ref ret = NULL, ret1 = NULL;
14193 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
14194 int have_address = 0;
14195 enum dwarf_location_atom op;
14197 /* ??? Most of the time we do not take proper care for sign/zero
14198 extending the values properly. Hopefully this won't be a real
14199 problem... */
14201 switch (TREE_CODE (loc))
14203 case ERROR_MARK:
14204 expansion_failed (loc, NULL_RTX, "ERROR_MARK");
14205 return 0;
14207 case PLACEHOLDER_EXPR:
14208 /* This case involves extracting fields from an object to determine the
14209 position of other fields. We don't try to encode this here. The
14210 only user of this is Ada, which encodes the needed information using
14211 the names of types. */
14212 expansion_failed (loc, NULL_RTX, "PLACEHOLDER_EXPR");
14213 return 0;
14215 case CALL_EXPR:
14216 expansion_failed (loc, NULL_RTX, "CALL_EXPR");
14217 /* There are no opcodes for these operations. */
14218 return 0;
14220 case PREINCREMENT_EXPR:
14221 case PREDECREMENT_EXPR:
14222 case POSTINCREMENT_EXPR:
14223 case POSTDECREMENT_EXPR:
14224 expansion_failed (loc, NULL_RTX, "PRE/POST INDCREMENT/DECREMENT");
14225 /* There are no opcodes for these operations. */
14226 return 0;
14228 case ADDR_EXPR:
14229 /* If we already want an address, see if there is INDIRECT_REF inside
14230 e.g. for &this->field. */
14231 if (want_address)
14233 list_ret = loc_list_for_address_of_addr_expr_of_indirect_ref
14234 (loc, want_address == 2);
14235 if (list_ret)
14236 have_address = 1;
14237 else if (decl_address_ip_invariant_p (TREE_OPERAND (loc, 0))
14238 && (ret = cst_pool_loc_descr (loc)))
14239 have_address = 1;
14241 /* Otherwise, process the argument and look for the address. */
14242 if (!list_ret && !ret)
14243 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 1);
14244 else
14246 if (want_address)
14247 expansion_failed (loc, NULL_RTX, "need address of ADDR_EXPR");
14248 return NULL;
14250 break;
14252 case VAR_DECL:
14253 if (DECL_THREAD_LOCAL_P (loc))
14255 rtx rtl;
14256 enum dwarf_location_atom first_op;
14257 enum dwarf_location_atom second_op;
14258 bool dtprel = false;
14260 if (targetm.have_tls)
14262 /* If this is not defined, we have no way to emit the
14263 data. */
14264 if (!targetm.asm_out.output_dwarf_dtprel)
14265 return 0;
14267 /* The way DW_OP_GNU_push_tls_address is specified, we
14268 can only look up addresses of objects in the current
14269 module. */
14270 if (DECL_EXTERNAL (loc) && !targetm.binds_local_p (loc))
14271 return 0;
14272 first_op = DW_OP_addr;
14273 dtprel = true;
14274 second_op = DW_OP_GNU_push_tls_address;
14276 else
14278 if (!targetm.emutls.debug_form_tls_address
14279 || !(dwarf_version >= 3 || !dwarf_strict))
14280 return 0;
14281 loc = emutls_decl (loc);
14282 first_op = DW_OP_addr;
14283 second_op = DW_OP_form_tls_address;
14286 rtl = rtl_for_decl_location (loc);
14287 if (rtl == NULL_RTX)
14288 return 0;
14290 if (!MEM_P (rtl))
14291 return 0;
14292 rtl = XEXP (rtl, 0);
14293 if (! CONSTANT_P (rtl))
14294 return 0;
14296 ret = new_loc_descr (first_op, 0, 0);
14297 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
14298 ret->dw_loc_oprnd1.v.val_addr = rtl;
14299 ret->dtprel = dtprel;
14301 ret1 = new_loc_descr (second_op, 0, 0);
14302 add_loc_descr (&ret, ret1);
14304 have_address = 1;
14305 break;
14307 /* FALLTHRU */
14309 case PARM_DECL:
14310 if (DECL_HAS_VALUE_EXPR_P (loc))
14311 return loc_list_from_tree (DECL_VALUE_EXPR (loc),
14312 want_address);
14313 /* FALLTHRU */
14315 case RESULT_DECL:
14316 case FUNCTION_DECL:
14318 rtx rtl;
14319 var_loc_list *loc_list = lookup_decl_loc (loc);
14321 if (loc_list && loc_list->first)
14323 list_ret = dw_loc_list (loc_list, loc, want_address);
14324 have_address = want_address != 0;
14325 break;
14327 rtl = rtl_for_decl_location (loc);
14328 if (rtl == NULL_RTX)
14330 expansion_failed (loc, NULL_RTX, "DECL has no RTL");
14331 return 0;
14333 else if (CONST_INT_P (rtl))
14335 HOST_WIDE_INT val = INTVAL (rtl);
14336 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
14337 val &= GET_MODE_MASK (DECL_MODE (loc));
14338 ret = int_loc_descriptor (val);
14340 else if (GET_CODE (rtl) == CONST_STRING)
14342 expansion_failed (loc, NULL_RTX, "CONST_STRING");
14343 return 0;
14345 else if (CONSTANT_P (rtl) && const_ok_for_output (rtl))
14347 ret = new_loc_descr (DW_OP_addr, 0, 0);
14348 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
14349 ret->dw_loc_oprnd1.v.val_addr = rtl;
14351 else
14353 enum machine_mode mode;
14355 /* Certain constructs can only be represented at top-level. */
14356 if (want_address == 2)
14358 ret = loc_descriptor (rtl, VOIDmode,
14359 VAR_INIT_STATUS_INITIALIZED);
14360 have_address = 1;
14362 else
14364 mode = GET_MODE (rtl);
14365 if (MEM_P (rtl))
14367 rtl = XEXP (rtl, 0);
14368 have_address = 1;
14370 ret = mem_loc_descriptor (rtl, mode, VAR_INIT_STATUS_INITIALIZED);
14372 if (!ret)
14373 expansion_failed (loc, rtl,
14374 "failed to produce loc descriptor for rtl");
14377 break;
14379 case INDIRECT_REF:
14380 case ALIGN_INDIRECT_REF:
14381 case MISALIGNED_INDIRECT_REF:
14382 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
14383 have_address = 1;
14384 break;
14386 case COMPOUND_EXPR:
14387 return loc_list_from_tree (TREE_OPERAND (loc, 1), want_address);
14389 CASE_CONVERT:
14390 case VIEW_CONVERT_EXPR:
14391 case SAVE_EXPR:
14392 case MODIFY_EXPR:
14393 return loc_list_from_tree (TREE_OPERAND (loc, 0), want_address);
14395 case COMPONENT_REF:
14396 case BIT_FIELD_REF:
14397 case ARRAY_REF:
14398 case ARRAY_RANGE_REF:
14399 case REALPART_EXPR:
14400 case IMAGPART_EXPR:
14402 tree obj, offset;
14403 HOST_WIDE_INT bitsize, bitpos, bytepos;
14404 enum machine_mode mode;
14405 int volatilep;
14406 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
14408 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
14409 &unsignedp, &volatilep, false);
14411 gcc_assert (obj != loc);
14413 list_ret = loc_list_from_tree (obj,
14414 want_address == 2
14415 && !bitpos && !offset ? 2 : 1);
14416 /* TODO: We can extract value of the small expression via shifting even
14417 for nonzero bitpos. */
14418 if (list_ret == 0)
14419 return 0;
14420 if (bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
14422 expansion_failed (loc, NULL_RTX,
14423 "bitfield access");
14424 return 0;
14427 if (offset != NULL_TREE)
14429 /* Variable offset. */
14430 list_ret1 = loc_list_from_tree (offset, 0);
14431 if (list_ret1 == 0)
14432 return 0;
14433 add_loc_list (&list_ret, list_ret1);
14434 if (!list_ret)
14435 return 0;
14436 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus, 0, 0));
14439 bytepos = bitpos / BITS_PER_UNIT;
14440 if (bytepos > 0)
14441 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
14442 else if (bytepos < 0)
14443 loc_list_plus_const (list_ret, bytepos);
14445 have_address = 1;
14446 break;
14449 case INTEGER_CST:
14450 if ((want_address || !host_integerp (loc, 0))
14451 && (ret = cst_pool_loc_descr (loc)))
14452 have_address = 1;
14453 else if (want_address == 2
14454 && host_integerp (loc, 0)
14455 && (ret = address_of_int_loc_descriptor
14456 (int_size_in_bytes (TREE_TYPE (loc)),
14457 tree_low_cst (loc, 0))))
14458 have_address = 1;
14459 else if (host_integerp (loc, 0))
14460 ret = int_loc_descriptor (tree_low_cst (loc, 0));
14461 else
14463 expansion_failed (loc, NULL_RTX,
14464 "Integer operand is not host integer");
14465 return 0;
14467 break;
14469 case CONSTRUCTOR:
14470 case REAL_CST:
14471 case STRING_CST:
14472 case COMPLEX_CST:
14473 if ((ret = cst_pool_loc_descr (loc)))
14474 have_address = 1;
14475 else
14476 /* We can construct small constants here using int_loc_descriptor. */
14477 expansion_failed (loc, NULL_RTX,
14478 "constructor or constant not in constant pool");
14479 break;
14481 case TRUTH_AND_EXPR:
14482 case TRUTH_ANDIF_EXPR:
14483 case BIT_AND_EXPR:
14484 op = DW_OP_and;
14485 goto do_binop;
14487 case TRUTH_XOR_EXPR:
14488 case BIT_XOR_EXPR:
14489 op = DW_OP_xor;
14490 goto do_binop;
14492 case TRUTH_OR_EXPR:
14493 case TRUTH_ORIF_EXPR:
14494 case BIT_IOR_EXPR:
14495 op = DW_OP_or;
14496 goto do_binop;
14498 case FLOOR_DIV_EXPR:
14499 case CEIL_DIV_EXPR:
14500 case ROUND_DIV_EXPR:
14501 case TRUNC_DIV_EXPR:
14502 op = DW_OP_div;
14503 goto do_binop;
14505 case MINUS_EXPR:
14506 op = DW_OP_minus;
14507 goto do_binop;
14509 case FLOOR_MOD_EXPR:
14510 case CEIL_MOD_EXPR:
14511 case ROUND_MOD_EXPR:
14512 case TRUNC_MOD_EXPR:
14513 op = DW_OP_mod;
14514 goto do_binop;
14516 case MULT_EXPR:
14517 op = DW_OP_mul;
14518 goto do_binop;
14520 case LSHIFT_EXPR:
14521 op = DW_OP_shl;
14522 goto do_binop;
14524 case RSHIFT_EXPR:
14525 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
14526 goto do_binop;
14528 case POINTER_PLUS_EXPR:
14529 case PLUS_EXPR:
14530 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
14531 && host_integerp (TREE_OPERAND (loc, 1), 0))
14533 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
14534 if (list_ret == 0)
14535 return 0;
14537 loc_list_plus_const (list_ret, tree_low_cst (TREE_OPERAND (loc, 1), 0));
14538 break;
14541 op = DW_OP_plus;
14542 goto do_binop;
14544 case LE_EXPR:
14545 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14546 return 0;
14548 op = DW_OP_le;
14549 goto do_binop;
14551 case GE_EXPR:
14552 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14553 return 0;
14555 op = DW_OP_ge;
14556 goto do_binop;
14558 case LT_EXPR:
14559 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14560 return 0;
14562 op = DW_OP_lt;
14563 goto do_binop;
14565 case GT_EXPR:
14566 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14567 return 0;
14569 op = DW_OP_gt;
14570 goto do_binop;
14572 case EQ_EXPR:
14573 op = DW_OP_eq;
14574 goto do_binop;
14576 case NE_EXPR:
14577 op = DW_OP_ne;
14578 goto do_binop;
14580 do_binop:
14581 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
14582 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0);
14583 if (list_ret == 0 || list_ret1 == 0)
14584 return 0;
14586 add_loc_list (&list_ret, list_ret1);
14587 if (list_ret == 0)
14588 return 0;
14589 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
14590 break;
14592 case TRUTH_NOT_EXPR:
14593 case BIT_NOT_EXPR:
14594 op = DW_OP_not;
14595 goto do_unop;
14597 case ABS_EXPR:
14598 op = DW_OP_abs;
14599 goto do_unop;
14601 case NEGATE_EXPR:
14602 op = DW_OP_neg;
14603 goto do_unop;
14605 do_unop:
14606 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
14607 if (list_ret == 0)
14608 return 0;
14610 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
14611 break;
14613 case MIN_EXPR:
14614 case MAX_EXPR:
14616 const enum tree_code code =
14617 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
14619 loc = build3 (COND_EXPR, TREE_TYPE (loc),
14620 build2 (code, integer_type_node,
14621 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
14622 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
14625 /* ... fall through ... */
14627 case COND_EXPR:
14629 dw_loc_descr_ref lhs
14630 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
14631 dw_loc_list_ref rhs
14632 = loc_list_from_tree (TREE_OPERAND (loc, 2), 0);
14633 dw_loc_descr_ref bra_node, jump_node, tmp;
14635 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
14636 if (list_ret == 0 || lhs == 0 || rhs == 0)
14637 return 0;
14639 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
14640 add_loc_descr_to_each (list_ret, bra_node);
14642 add_loc_list (&list_ret, rhs);
14643 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
14644 add_loc_descr_to_each (list_ret, jump_node);
14646 add_loc_descr_to_each (list_ret, lhs);
14647 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
14648 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
14650 /* ??? Need a node to point the skip at. Use a nop. */
14651 tmp = new_loc_descr (DW_OP_nop, 0, 0);
14652 add_loc_descr_to_each (list_ret, tmp);
14653 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
14654 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
14656 break;
14658 case FIX_TRUNC_EXPR:
14659 return 0;
14661 default:
14662 /* Leave front-end specific codes as simply unknown. This comes
14663 up, for instance, with the C STMT_EXPR. */
14664 if ((unsigned int) TREE_CODE (loc)
14665 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
14667 expansion_failed (loc, NULL_RTX,
14668 "language specific tree node");
14669 return 0;
14672 #ifdef ENABLE_CHECKING
14673 /* Otherwise this is a generic code; we should just lists all of
14674 these explicitly. We forgot one. */
14675 gcc_unreachable ();
14676 #else
14677 /* In a release build, we want to degrade gracefully: better to
14678 generate incomplete debugging information than to crash. */
14679 return NULL;
14680 #endif
14683 if (!ret && !list_ret)
14684 return 0;
14686 if (want_address == 2 && !have_address
14687 && (dwarf_version >= 4 || !dwarf_strict))
14689 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
14691 expansion_failed (loc, NULL_RTX,
14692 "DWARF address size mismatch");
14693 return 0;
14695 if (ret)
14696 add_loc_descr (&ret, new_loc_descr (DW_OP_stack_value, 0, 0));
14697 else
14698 add_loc_descr_to_each (list_ret,
14699 new_loc_descr (DW_OP_stack_value, 0, 0));
14700 have_address = 1;
14702 /* Show if we can't fill the request for an address. */
14703 if (want_address && !have_address)
14705 expansion_failed (loc, NULL_RTX,
14706 "Want address and only have value");
14707 return 0;
14710 gcc_assert (!ret || !list_ret);
14712 /* If we've got an address and don't want one, dereference. */
14713 if (!want_address && have_address)
14715 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
14717 if (size > DWARF2_ADDR_SIZE || size == -1)
14719 expansion_failed (loc, NULL_RTX,
14720 "DWARF address size mismatch");
14721 return 0;
14723 else if (size == DWARF2_ADDR_SIZE)
14724 op = DW_OP_deref;
14725 else
14726 op = DW_OP_deref_size;
14728 if (ret)
14729 add_loc_descr (&ret, new_loc_descr (op, size, 0));
14730 else
14731 add_loc_descr_to_each (list_ret, new_loc_descr (op, size, 0));
14733 if (ret)
14734 list_ret = new_loc_list (ret, NULL, NULL, NULL);
14736 return list_ret;
14739 /* Same as above but return only single location expression. */
14740 static dw_loc_descr_ref
14741 loc_descriptor_from_tree (tree loc, int want_address)
14743 dw_loc_list_ref ret = loc_list_from_tree (loc, want_address);
14744 if (!ret)
14745 return NULL;
14746 if (ret->dw_loc_next)
14748 expansion_failed (loc, NULL_RTX,
14749 "Location list where only loc descriptor needed");
14750 return NULL;
14752 return ret->expr;
14755 /* Given a value, round it up to the lowest multiple of `boundary'
14756 which is not less than the value itself. */
14758 static inline HOST_WIDE_INT
14759 ceiling (HOST_WIDE_INT value, unsigned int boundary)
14761 return (((value + boundary - 1) / boundary) * boundary);
14764 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
14765 pointer to the declared type for the relevant field variable, or return
14766 `integer_type_node' if the given node turns out to be an
14767 ERROR_MARK node. */
14769 static inline tree
14770 field_type (const_tree decl)
14772 tree type;
14774 if (TREE_CODE (decl) == ERROR_MARK)
14775 return integer_type_node;
14777 type = DECL_BIT_FIELD_TYPE (decl);
14778 if (type == NULL_TREE)
14779 type = TREE_TYPE (decl);
14781 return type;
14784 /* Given a pointer to a tree node, return the alignment in bits for
14785 it, or else return BITS_PER_WORD if the node actually turns out to
14786 be an ERROR_MARK node. */
14788 static inline unsigned
14789 simple_type_align_in_bits (const_tree type)
14791 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
14794 static inline unsigned
14795 simple_decl_align_in_bits (const_tree decl)
14797 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
14800 /* Return the result of rounding T up to ALIGN. */
14802 static inline HOST_WIDE_INT
14803 round_up_to_align (HOST_WIDE_INT t, unsigned int align)
14805 /* We must be careful if T is negative because HOST_WIDE_INT can be
14806 either "above" or "below" unsigned int as per the C promotion
14807 rules, depending on the host, thus making the signedness of the
14808 direct multiplication and division unpredictable. */
14809 unsigned HOST_WIDE_INT u = (unsigned HOST_WIDE_INT) t;
14811 u += align - 1;
14812 u /= align;
14813 u *= align;
14815 return (HOST_WIDE_INT) u;
14818 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
14819 lowest addressed byte of the "containing object" for the given FIELD_DECL,
14820 or return 0 if we are unable to determine what that offset is, either
14821 because the argument turns out to be a pointer to an ERROR_MARK node, or
14822 because the offset is actually variable. (We can't handle the latter case
14823 just yet). */
14825 static HOST_WIDE_INT
14826 field_byte_offset (const_tree decl)
14828 HOST_WIDE_INT object_offset_in_bits;
14829 HOST_WIDE_INT bitpos_int;
14831 if (TREE_CODE (decl) == ERROR_MARK)
14832 return 0;
14834 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
14836 /* We cannot yet cope with fields whose positions are variable, so
14837 for now, when we see such things, we simply return 0. Someday, we may
14838 be able to handle such cases, but it will be damn difficult. */
14839 if (! host_integerp (bit_position (decl), 0))
14840 return 0;
14842 bitpos_int = int_bit_position (decl);
14844 #ifdef PCC_BITFIELD_TYPE_MATTERS
14845 if (PCC_BITFIELD_TYPE_MATTERS)
14847 tree type;
14848 tree field_size_tree;
14849 HOST_WIDE_INT deepest_bitpos;
14850 unsigned HOST_WIDE_INT field_size_in_bits;
14851 unsigned int type_align_in_bits;
14852 unsigned int decl_align_in_bits;
14853 unsigned HOST_WIDE_INT type_size_in_bits;
14855 type = field_type (decl);
14856 type_size_in_bits = simple_type_size_in_bits (type);
14857 type_align_in_bits = simple_type_align_in_bits (type);
14859 field_size_tree = DECL_SIZE (decl);
14861 /* The size could be unspecified if there was an error, or for
14862 a flexible array member. */
14863 if (!field_size_tree)
14864 field_size_tree = bitsize_zero_node;
14866 /* If the size of the field is not constant, use the type size. */
14867 if (host_integerp (field_size_tree, 1))
14868 field_size_in_bits = tree_low_cst (field_size_tree, 1);
14869 else
14870 field_size_in_bits = type_size_in_bits;
14872 decl_align_in_bits = simple_decl_align_in_bits (decl);
14874 /* The GCC front-end doesn't make any attempt to keep track of the
14875 starting bit offset (relative to the start of the containing
14876 structure type) of the hypothetical "containing object" for a
14877 bit-field. Thus, when computing the byte offset value for the
14878 start of the "containing object" of a bit-field, we must deduce
14879 this information on our own. This can be rather tricky to do in
14880 some cases. For example, handling the following structure type
14881 definition when compiling for an i386/i486 target (which only
14882 aligns long long's to 32-bit boundaries) can be very tricky:
14884 struct S { int field1; long long field2:31; };
14886 Fortunately, there is a simple rule-of-thumb which can be used
14887 in such cases. When compiling for an i386/i486, GCC will
14888 allocate 8 bytes for the structure shown above. It decides to
14889 do this based upon one simple rule for bit-field allocation.
14890 GCC allocates each "containing object" for each bit-field at
14891 the first (i.e. lowest addressed) legitimate alignment boundary
14892 (based upon the required minimum alignment for the declared
14893 type of the field) which it can possibly use, subject to the
14894 condition that there is still enough available space remaining
14895 in the containing object (when allocated at the selected point)
14896 to fully accommodate all of the bits of the bit-field itself.
14898 This simple rule makes it obvious why GCC allocates 8 bytes for
14899 each object of the structure type shown above. When looking
14900 for a place to allocate the "containing object" for `field2',
14901 the compiler simply tries to allocate a 64-bit "containing
14902 object" at each successive 32-bit boundary (starting at zero)
14903 until it finds a place to allocate that 64- bit field such that
14904 at least 31 contiguous (and previously unallocated) bits remain
14905 within that selected 64 bit field. (As it turns out, for the
14906 example above, the compiler finds it is OK to allocate the
14907 "containing object" 64-bit field at bit-offset zero within the
14908 structure type.)
14910 Here we attempt to work backwards from the limited set of facts
14911 we're given, and we try to deduce from those facts, where GCC
14912 must have believed that the containing object started (within
14913 the structure type). The value we deduce is then used (by the
14914 callers of this routine) to generate DW_AT_location and
14915 DW_AT_bit_offset attributes for fields (both bit-fields and, in
14916 the case of DW_AT_location, regular fields as well). */
14918 /* Figure out the bit-distance from the start of the structure to
14919 the "deepest" bit of the bit-field. */
14920 deepest_bitpos = bitpos_int + field_size_in_bits;
14922 /* This is the tricky part. Use some fancy footwork to deduce
14923 where the lowest addressed bit of the containing object must
14924 be. */
14925 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
14927 /* Round up to type_align by default. This works best for
14928 bitfields. */
14929 object_offset_in_bits
14930 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
14932 if (object_offset_in_bits > bitpos_int)
14934 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
14936 /* Round up to decl_align instead. */
14937 object_offset_in_bits
14938 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
14941 else
14942 #endif
14943 object_offset_in_bits = bitpos_int;
14945 return object_offset_in_bits / BITS_PER_UNIT;
14948 /* The following routines define various Dwarf attributes and any data
14949 associated with them. */
14951 /* Add a location description attribute value to a DIE.
14953 This emits location attributes suitable for whole variables and
14954 whole parameters. Note that the location attributes for struct fields are
14955 generated by the routine `data_member_location_attribute' below. */
14957 static inline void
14958 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
14959 dw_loc_list_ref descr)
14961 if (descr == 0)
14962 return;
14963 if (single_element_loc_list_p (descr))
14964 add_AT_loc (die, attr_kind, descr->expr);
14965 else
14966 add_AT_loc_list (die, attr_kind, descr);
14969 /* Attach the specialized form of location attribute used for data members of
14970 struct and union types. In the special case of a FIELD_DECL node which
14971 represents a bit-field, the "offset" part of this special location
14972 descriptor must indicate the distance in bytes from the lowest-addressed
14973 byte of the containing struct or union type to the lowest-addressed byte of
14974 the "containing object" for the bit-field. (See the `field_byte_offset'
14975 function above).
14977 For any given bit-field, the "containing object" is a hypothetical object
14978 (of some integral or enum type) within which the given bit-field lives. The
14979 type of this hypothetical "containing object" is always the same as the
14980 declared type of the individual bit-field itself (for GCC anyway... the
14981 DWARF spec doesn't actually mandate this). Note that it is the size (in
14982 bytes) of the hypothetical "containing object" which will be given in the
14983 DW_AT_byte_size attribute for this bit-field. (See the
14984 `byte_size_attribute' function below.) It is also used when calculating the
14985 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
14986 function below.) */
14988 static void
14989 add_data_member_location_attribute (dw_die_ref die, tree decl)
14991 HOST_WIDE_INT offset;
14992 dw_loc_descr_ref loc_descr = 0;
14994 if (TREE_CODE (decl) == TREE_BINFO)
14996 /* We're working on the TAG_inheritance for a base class. */
14997 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
14999 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
15000 aren't at a fixed offset from all (sub)objects of the same
15001 type. We need to extract the appropriate offset from our
15002 vtable. The following dwarf expression means
15004 BaseAddr = ObAddr + *((*ObAddr) - Offset)
15006 This is specific to the V3 ABI, of course. */
15008 dw_loc_descr_ref tmp;
15010 /* Make a copy of the object address. */
15011 tmp = new_loc_descr (DW_OP_dup, 0, 0);
15012 add_loc_descr (&loc_descr, tmp);
15014 /* Extract the vtable address. */
15015 tmp = new_loc_descr (DW_OP_deref, 0, 0);
15016 add_loc_descr (&loc_descr, tmp);
15018 /* Calculate the address of the offset. */
15019 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
15020 gcc_assert (offset < 0);
15022 tmp = int_loc_descriptor (-offset);
15023 add_loc_descr (&loc_descr, tmp);
15024 tmp = new_loc_descr (DW_OP_minus, 0, 0);
15025 add_loc_descr (&loc_descr, tmp);
15027 /* Extract the offset. */
15028 tmp = new_loc_descr (DW_OP_deref, 0, 0);
15029 add_loc_descr (&loc_descr, tmp);
15031 /* Add it to the object address. */
15032 tmp = new_loc_descr (DW_OP_plus, 0, 0);
15033 add_loc_descr (&loc_descr, tmp);
15035 else
15036 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
15038 else
15039 offset = field_byte_offset (decl);
15041 if (! loc_descr)
15043 if (dwarf_version > 2)
15045 /* Don't need to output a location expression, just the constant. */
15046 add_AT_int (die, DW_AT_data_member_location, offset);
15047 return;
15049 else
15051 enum dwarf_location_atom op;
15053 /* The DWARF2 standard says that we should assume that the structure
15054 address is already on the stack, so we can specify a structure
15055 field address by using DW_OP_plus_uconst. */
15057 #ifdef MIPS_DEBUGGING_INFO
15058 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
15059 operator correctly. It works only if we leave the offset on the
15060 stack. */
15061 op = DW_OP_constu;
15062 #else
15063 op = DW_OP_plus_uconst;
15064 #endif
15066 loc_descr = new_loc_descr (op, offset, 0);
15070 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
15073 /* Writes integer values to dw_vec_const array. */
15075 static void
15076 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
15078 while (size != 0)
15080 *dest++ = val & 0xff;
15081 val >>= 8;
15082 --size;
15086 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
15088 static HOST_WIDE_INT
15089 extract_int (const unsigned char *src, unsigned int size)
15091 HOST_WIDE_INT val = 0;
15093 src += size;
15094 while (size != 0)
15096 val <<= 8;
15097 val |= *--src & 0xff;
15098 --size;
15100 return val;
15103 /* Writes floating point values to dw_vec_const array. */
15105 static void
15106 insert_float (const_rtx rtl, unsigned char *array)
15108 REAL_VALUE_TYPE rv;
15109 long val[4];
15110 int i;
15112 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
15113 real_to_target (val, &rv, GET_MODE (rtl));
15115 /* real_to_target puts 32-bit pieces in each long. Pack them. */
15116 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
15118 insert_int (val[i], 4, array);
15119 array += 4;
15123 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
15124 does not have a "location" either in memory or in a register. These
15125 things can arise in GNU C when a constant is passed as an actual parameter
15126 to an inlined function. They can also arise in C++ where declared
15127 constants do not necessarily get memory "homes". */
15129 static bool
15130 add_const_value_attribute (dw_die_ref die, rtx rtl)
15132 switch (GET_CODE (rtl))
15134 case CONST_INT:
15136 HOST_WIDE_INT val = INTVAL (rtl);
15138 if (val < 0)
15139 add_AT_int (die, DW_AT_const_value, val);
15140 else
15141 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
15143 return true;
15145 case CONST_DOUBLE:
15146 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
15147 floating-point constant. A CONST_DOUBLE is used whenever the
15148 constant requires more than one word in order to be adequately
15149 represented. */
15151 enum machine_mode mode = GET_MODE (rtl);
15153 if (SCALAR_FLOAT_MODE_P (mode))
15155 unsigned int length = GET_MODE_SIZE (mode);
15156 unsigned char *array = GGC_NEWVEC (unsigned char, length);
15158 insert_float (rtl, array);
15159 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
15161 else
15162 add_AT_double (die, DW_AT_const_value,
15163 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
15165 return true;
15167 case CONST_VECTOR:
15169 enum machine_mode mode = GET_MODE (rtl);
15170 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
15171 unsigned int length = CONST_VECTOR_NUNITS (rtl);
15172 unsigned char *array = GGC_NEWVEC (unsigned char, length * elt_size);
15173 unsigned int i;
15174 unsigned char *p;
15176 switch (GET_MODE_CLASS (mode))
15178 case MODE_VECTOR_INT:
15179 for (i = 0, p = array; i < length; i++, p += elt_size)
15181 rtx elt = CONST_VECTOR_ELT (rtl, i);
15182 HOST_WIDE_INT lo, hi;
15184 switch (GET_CODE (elt))
15186 case CONST_INT:
15187 lo = INTVAL (elt);
15188 hi = -(lo < 0);
15189 break;
15191 case CONST_DOUBLE:
15192 lo = CONST_DOUBLE_LOW (elt);
15193 hi = CONST_DOUBLE_HIGH (elt);
15194 break;
15196 default:
15197 gcc_unreachable ();
15200 if (elt_size <= sizeof (HOST_WIDE_INT))
15201 insert_int (lo, elt_size, p);
15202 else
15204 unsigned char *p0 = p;
15205 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
15207 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
15208 if (WORDS_BIG_ENDIAN)
15210 p0 = p1;
15211 p1 = p;
15213 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
15214 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
15217 break;
15219 case MODE_VECTOR_FLOAT:
15220 for (i = 0, p = array; i < length; i++, p += elt_size)
15222 rtx elt = CONST_VECTOR_ELT (rtl, i);
15223 insert_float (elt, p);
15225 break;
15227 default:
15228 gcc_unreachable ();
15231 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
15233 return true;
15235 case CONST_STRING:
15236 if (dwarf_version >= 4 || !dwarf_strict)
15238 dw_loc_descr_ref loc_result;
15239 resolve_one_addr (&rtl, NULL);
15240 rtl_addr:
15241 loc_result = new_loc_descr (DW_OP_addr, 0, 0);
15242 loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
15243 loc_result->dw_loc_oprnd1.v.val_addr = rtl;
15244 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
15245 add_AT_loc (die, DW_AT_location, loc_result);
15246 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
15247 return true;
15249 return false;
15251 case CONST:
15252 if (CONSTANT_P (XEXP (rtl, 0)))
15253 return add_const_value_attribute (die, XEXP (rtl, 0));
15254 /* FALLTHROUGH */
15255 case SYMBOL_REF:
15256 if (!const_ok_for_output (rtl))
15257 return false;
15258 case LABEL_REF:
15259 if (dwarf_version >= 4 || !dwarf_strict)
15260 goto rtl_addr;
15261 return false;
15263 case PLUS:
15264 /* In cases where an inlined instance of an inline function is passed
15265 the address of an `auto' variable (which is local to the caller) we
15266 can get a situation where the DECL_RTL of the artificial local
15267 variable (for the inlining) which acts as a stand-in for the
15268 corresponding formal parameter (of the inline function) will look
15269 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
15270 exactly a compile-time constant expression, but it isn't the address
15271 of the (artificial) local variable either. Rather, it represents the
15272 *value* which the artificial local variable always has during its
15273 lifetime. We currently have no way to represent such quasi-constant
15274 values in Dwarf, so for now we just punt and generate nothing. */
15275 return false;
15277 case HIGH:
15278 case CONST_FIXED:
15279 return false;
15281 case MEM:
15282 if (GET_CODE (XEXP (rtl, 0)) == CONST_STRING
15283 && MEM_READONLY_P (rtl)
15284 && GET_MODE (rtl) == BLKmode)
15286 add_AT_string (die, DW_AT_const_value, XSTR (XEXP (rtl, 0), 0));
15287 return true;
15289 return false;
15291 default:
15292 /* No other kinds of rtx should be possible here. */
15293 gcc_unreachable ();
15295 return false;
15298 /* Determine whether the evaluation of EXPR references any variables
15299 or functions which aren't otherwise used (and therefore may not be
15300 output). */
15301 static tree
15302 reference_to_unused (tree * tp, int * walk_subtrees,
15303 void * data ATTRIBUTE_UNUSED)
15305 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
15306 *walk_subtrees = 0;
15308 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
15309 && ! TREE_ASM_WRITTEN (*tp))
15310 return *tp;
15311 /* ??? The C++ FE emits debug information for using decls, so
15312 putting gcc_unreachable here falls over. See PR31899. For now
15313 be conservative. */
15314 else if (!cgraph_global_info_ready
15315 && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
15316 return *tp;
15317 else if (TREE_CODE (*tp) == VAR_DECL)
15319 struct varpool_node *node = varpool_node (*tp);
15320 if (!node->needed)
15321 return *tp;
15323 else if (TREE_CODE (*tp) == FUNCTION_DECL
15324 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
15326 /* The call graph machinery must have finished analyzing,
15327 optimizing and gimplifying the CU by now.
15328 So if *TP has no call graph node associated
15329 to it, it means *TP will not be emitted. */
15330 if (!cgraph_get_node (*tp))
15331 return *tp;
15333 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
15334 return *tp;
15336 return NULL_TREE;
15339 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
15340 for use in a later add_const_value_attribute call. */
15342 static rtx
15343 rtl_for_decl_init (tree init, tree type)
15345 rtx rtl = NULL_RTX;
15347 /* If a variable is initialized with a string constant without embedded
15348 zeros, build CONST_STRING. */
15349 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
15351 tree enttype = TREE_TYPE (type);
15352 tree domain = TYPE_DOMAIN (type);
15353 enum machine_mode mode = TYPE_MODE (enttype);
15355 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
15356 && domain
15357 && integer_zerop (TYPE_MIN_VALUE (domain))
15358 && compare_tree_int (TYPE_MAX_VALUE (domain),
15359 TREE_STRING_LENGTH (init) - 1) == 0
15360 && ((size_t) TREE_STRING_LENGTH (init)
15361 == strlen (TREE_STRING_POINTER (init)) + 1))
15363 rtl = gen_rtx_CONST_STRING (VOIDmode,
15364 ggc_strdup (TREE_STRING_POINTER (init)));
15365 rtl = gen_rtx_MEM (BLKmode, rtl);
15366 MEM_READONLY_P (rtl) = 1;
15369 /* Other aggregates, and complex values, could be represented using
15370 CONCAT: FIXME! */
15371 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
15373 /* Vectors only work if their mode is supported by the target.
15374 FIXME: generic vectors ought to work too. */
15375 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
15377 /* If the initializer is something that we know will expand into an
15378 immediate RTL constant, expand it now. We must be careful not to
15379 reference variables which won't be output. */
15380 else if (initializer_constant_valid_p (init, type)
15381 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
15383 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
15384 possible. */
15385 if (TREE_CODE (type) == VECTOR_TYPE)
15386 switch (TREE_CODE (init))
15388 case VECTOR_CST:
15389 break;
15390 case CONSTRUCTOR:
15391 if (TREE_CONSTANT (init))
15393 VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (init);
15394 bool constant_p = true;
15395 tree value;
15396 unsigned HOST_WIDE_INT ix;
15398 /* Even when ctor is constant, it might contain non-*_CST
15399 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
15400 belong into VECTOR_CST nodes. */
15401 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
15402 if (!CONSTANT_CLASS_P (value))
15404 constant_p = false;
15405 break;
15408 if (constant_p)
15410 init = build_vector_from_ctor (type, elts);
15411 break;
15414 /* FALLTHRU */
15416 default:
15417 return NULL;
15420 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
15422 /* If expand_expr returns a MEM, it wasn't immediate. */
15423 gcc_assert (!rtl || !MEM_P (rtl));
15426 return rtl;
15429 /* Generate RTL for the variable DECL to represent its location. */
15431 static rtx
15432 rtl_for_decl_location (tree decl)
15434 rtx rtl;
15436 /* Here we have to decide where we are going to say the parameter "lives"
15437 (as far as the debugger is concerned). We only have a couple of
15438 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
15440 DECL_RTL normally indicates where the parameter lives during most of the
15441 activation of the function. If optimization is enabled however, this
15442 could be either NULL or else a pseudo-reg. Both of those cases indicate
15443 that the parameter doesn't really live anywhere (as far as the code
15444 generation parts of GCC are concerned) during most of the function's
15445 activation. That will happen (for example) if the parameter is never
15446 referenced within the function.
15448 We could just generate a location descriptor here for all non-NULL
15449 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
15450 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
15451 where DECL_RTL is NULL or is a pseudo-reg.
15453 Note however that we can only get away with using DECL_INCOMING_RTL as
15454 a backup substitute for DECL_RTL in certain limited cases. In cases
15455 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
15456 we can be sure that the parameter was passed using the same type as it is
15457 declared to have within the function, and that its DECL_INCOMING_RTL
15458 points us to a place where a value of that type is passed.
15460 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
15461 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
15462 because in these cases DECL_INCOMING_RTL points us to a value of some
15463 type which is *different* from the type of the parameter itself. Thus,
15464 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
15465 such cases, the debugger would end up (for example) trying to fetch a
15466 `float' from a place which actually contains the first part of a
15467 `double'. That would lead to really incorrect and confusing
15468 output at debug-time.
15470 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
15471 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
15472 are a couple of exceptions however. On little-endian machines we can
15473 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
15474 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
15475 an integral type that is smaller than TREE_TYPE (decl). These cases arise
15476 when (on a little-endian machine) a non-prototyped function has a
15477 parameter declared to be of type `short' or `char'. In such cases,
15478 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
15479 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
15480 passed `int' value. If the debugger then uses that address to fetch
15481 a `short' or a `char' (on a little-endian machine) the result will be
15482 the correct data, so we allow for such exceptional cases below.
15484 Note that our goal here is to describe the place where the given formal
15485 parameter lives during most of the function's activation (i.e. between the
15486 end of the prologue and the start of the epilogue). We'll do that as best
15487 as we can. Note however that if the given formal parameter is modified
15488 sometime during the execution of the function, then a stack backtrace (at
15489 debug-time) will show the function as having been called with the *new*
15490 value rather than the value which was originally passed in. This happens
15491 rarely enough that it is not a major problem, but it *is* a problem, and
15492 I'd like to fix it.
15494 A future version of dwarf2out.c may generate two additional attributes for
15495 any given DW_TAG_formal_parameter DIE which will describe the "passed
15496 type" and the "passed location" for the given formal parameter in addition
15497 to the attributes we now generate to indicate the "declared type" and the
15498 "active location" for each parameter. This additional set of attributes
15499 could be used by debuggers for stack backtraces. Separately, note that
15500 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
15501 This happens (for example) for inlined-instances of inline function formal
15502 parameters which are never referenced. This really shouldn't be
15503 happening. All PARM_DECL nodes should get valid non-NULL
15504 DECL_INCOMING_RTL values. FIXME. */
15506 /* Use DECL_RTL as the "location" unless we find something better. */
15507 rtl = DECL_RTL_IF_SET (decl);
15509 /* When generating abstract instances, ignore everything except
15510 constants, symbols living in memory, and symbols living in
15511 fixed registers. */
15512 if (! reload_completed)
15514 if (rtl
15515 && (CONSTANT_P (rtl)
15516 || (MEM_P (rtl)
15517 && CONSTANT_P (XEXP (rtl, 0)))
15518 || (REG_P (rtl)
15519 && TREE_CODE (decl) == VAR_DECL
15520 && TREE_STATIC (decl))))
15522 rtl = targetm.delegitimize_address (rtl);
15523 return rtl;
15525 rtl = NULL_RTX;
15527 else if (TREE_CODE (decl) == PARM_DECL)
15529 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
15531 tree declared_type = TREE_TYPE (decl);
15532 tree passed_type = DECL_ARG_TYPE (decl);
15533 enum machine_mode dmode = TYPE_MODE (declared_type);
15534 enum machine_mode pmode = TYPE_MODE (passed_type);
15536 /* This decl represents a formal parameter which was optimized out.
15537 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
15538 all cases where (rtl == NULL_RTX) just below. */
15539 if (dmode == pmode)
15540 rtl = DECL_INCOMING_RTL (decl);
15541 else if (SCALAR_INT_MODE_P (dmode)
15542 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
15543 && DECL_INCOMING_RTL (decl))
15545 rtx inc = DECL_INCOMING_RTL (decl);
15546 if (REG_P (inc))
15547 rtl = inc;
15548 else if (MEM_P (inc))
15550 if (BYTES_BIG_ENDIAN)
15551 rtl = adjust_address_nv (inc, dmode,
15552 GET_MODE_SIZE (pmode)
15553 - GET_MODE_SIZE (dmode));
15554 else
15555 rtl = inc;
15560 /* If the parm was passed in registers, but lives on the stack, then
15561 make a big endian correction if the mode of the type of the
15562 parameter is not the same as the mode of the rtl. */
15563 /* ??? This is the same series of checks that are made in dbxout.c before
15564 we reach the big endian correction code there. It isn't clear if all
15565 of these checks are necessary here, but keeping them all is the safe
15566 thing to do. */
15567 else if (MEM_P (rtl)
15568 && XEXP (rtl, 0) != const0_rtx
15569 && ! CONSTANT_P (XEXP (rtl, 0))
15570 /* Not passed in memory. */
15571 && !MEM_P (DECL_INCOMING_RTL (decl))
15572 /* Not passed by invisible reference. */
15573 && (!REG_P (XEXP (rtl, 0))
15574 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
15575 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
15576 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
15577 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
15578 #endif
15580 /* Big endian correction check. */
15581 && BYTES_BIG_ENDIAN
15582 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
15583 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
15584 < UNITS_PER_WORD))
15586 int offset = (UNITS_PER_WORD
15587 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
15589 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
15590 plus_constant (XEXP (rtl, 0), offset));
15593 else if (TREE_CODE (decl) == VAR_DECL
15594 && rtl
15595 && MEM_P (rtl)
15596 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
15597 && BYTES_BIG_ENDIAN)
15599 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
15600 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
15602 /* If a variable is declared "register" yet is smaller than
15603 a register, then if we store the variable to memory, it
15604 looks like we're storing a register-sized value, when in
15605 fact we are not. We need to adjust the offset of the
15606 storage location to reflect the actual value's bytes,
15607 else gdb will not be able to display it. */
15608 if (rsize > dsize)
15609 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
15610 plus_constant (XEXP (rtl, 0), rsize-dsize));
15613 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
15614 and will have been substituted directly into all expressions that use it.
15615 C does not have such a concept, but C++ and other languages do. */
15616 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
15617 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
15619 if (rtl)
15620 rtl = targetm.delegitimize_address (rtl);
15622 /* If we don't look past the constant pool, we risk emitting a
15623 reference to a constant pool entry that isn't referenced from
15624 code, and thus is not emitted. */
15625 if (rtl)
15626 rtl = avoid_constant_pool_reference (rtl);
15628 /* Try harder to get a rtl. If this symbol ends up not being emitted
15629 in the current CU, resolve_addr will remove the expression referencing
15630 it. */
15631 if (rtl == NULL_RTX
15632 && TREE_CODE (decl) == VAR_DECL
15633 && !DECL_EXTERNAL (decl)
15634 && TREE_STATIC (decl)
15635 && DECL_NAME (decl)
15636 && !DECL_HARD_REGISTER (decl)
15637 && DECL_MODE (decl) != VOIDmode)
15639 rtl = DECL_RTL (decl);
15640 /* Reset DECL_RTL back, as various parts of the compiler expects
15641 DECL_RTL set meaning it is actually going to be output. */
15642 SET_DECL_RTL (decl, NULL);
15643 if (!MEM_P (rtl)
15644 || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF
15645 || SYMBOL_REF_DECL (XEXP (rtl, 0)) != decl)
15646 rtl = NULL_RTX;
15649 return rtl;
15652 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_TREE is
15653 returned. If so, the decl for the COMMON block is returned, and the
15654 value is the offset into the common block for the symbol. */
15656 static tree
15657 fortran_common (tree decl, HOST_WIDE_INT *value)
15659 tree val_expr, cvar;
15660 enum machine_mode mode;
15661 HOST_WIDE_INT bitsize, bitpos;
15662 tree offset;
15663 int volatilep = 0, unsignedp = 0;
15665 /* If the decl isn't a VAR_DECL, or if it isn't static, or if
15666 it does not have a value (the offset into the common area), or if it
15667 is thread local (as opposed to global) then it isn't common, and shouldn't
15668 be handled as such. */
15669 if (TREE_CODE (decl) != VAR_DECL
15670 || !TREE_STATIC (decl)
15671 || !DECL_HAS_VALUE_EXPR_P (decl)
15672 || !is_fortran ())
15673 return NULL_TREE;
15675 val_expr = DECL_VALUE_EXPR (decl);
15676 if (TREE_CODE (val_expr) != COMPONENT_REF)
15677 return NULL_TREE;
15679 cvar = get_inner_reference (val_expr, &bitsize, &bitpos, &offset,
15680 &mode, &unsignedp, &volatilep, true);
15682 if (cvar == NULL_TREE
15683 || TREE_CODE (cvar) != VAR_DECL
15684 || DECL_ARTIFICIAL (cvar)
15685 || !TREE_PUBLIC (cvar))
15686 return NULL_TREE;
15688 *value = 0;
15689 if (offset != NULL)
15691 if (!host_integerp (offset, 0))
15692 return NULL_TREE;
15693 *value = tree_low_cst (offset, 0);
15695 if (bitpos != 0)
15696 *value += bitpos / BITS_PER_UNIT;
15698 return cvar;
15701 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
15702 data attribute for a variable or a parameter. We generate the
15703 DW_AT_const_value attribute only in those cases where the given variable
15704 or parameter does not have a true "location" either in memory or in a
15705 register. This can happen (for example) when a constant is passed as an
15706 actual argument in a call to an inline function. (It's possible that
15707 these things can crop up in other ways also.) Note that one type of
15708 constant value which can be passed into an inlined function is a constant
15709 pointer. This can happen for example if an actual argument in an inlined
15710 function call evaluates to a compile-time constant address. */
15712 static bool
15713 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
15714 enum dwarf_attribute attr)
15716 rtx rtl;
15717 dw_loc_list_ref list;
15718 var_loc_list *loc_list;
15720 if (TREE_CODE (decl) == ERROR_MARK)
15721 return false;
15723 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
15724 || TREE_CODE (decl) == RESULT_DECL);
15726 /* Try to get some constant RTL for this decl, and use that as the value of
15727 the location. */
15729 rtl = rtl_for_decl_location (decl);
15730 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
15731 && add_const_value_attribute (die, rtl))
15732 return true;
15734 /* See if we have single element location list that is equivalent to
15735 a constant value. That way we are better to use add_const_value_attribute
15736 rather than expanding constant value equivalent. */
15737 loc_list = lookup_decl_loc (decl);
15738 if (loc_list
15739 && loc_list->first
15740 && loc_list->first == loc_list->last
15741 && NOTE_VAR_LOCATION (loc_list->first->var_loc_note)
15742 && NOTE_VAR_LOCATION_LOC (loc_list->first->var_loc_note))
15744 struct var_loc_node *node;
15746 node = loc_list->first;
15747 rtl = NOTE_VAR_LOCATION_LOC (node->var_loc_note);
15748 if (GET_CODE (rtl) != PARALLEL)
15749 rtl = XEXP (rtl, 0);
15750 if ((CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
15751 && add_const_value_attribute (die, rtl))
15752 return true;
15754 list = loc_list_from_tree (decl, decl_by_reference_p (decl) ? 0 : 2);
15755 if (list)
15757 add_AT_location_description (die, attr, list);
15758 return true;
15760 /* None of that worked, so it must not really have a location;
15761 try adding a constant value attribute from the DECL_INITIAL. */
15762 return tree_add_const_value_attribute_for_decl (die, decl);
15765 /* Add VARIABLE and DIE into deferred locations list. */
15767 static void
15768 defer_location (tree variable, dw_die_ref die)
15770 deferred_locations entry;
15771 entry.variable = variable;
15772 entry.die = die;
15773 VEC_safe_push (deferred_locations, gc, deferred_locations_list, &entry);
15776 /* Helper function for tree_add_const_value_attribute. Natively encode
15777 initializer INIT into an array. Return true if successful. */
15779 static bool
15780 native_encode_initializer (tree init, unsigned char *array, int size)
15782 tree type;
15784 if (init == NULL_TREE)
15785 return false;
15787 STRIP_NOPS (init);
15788 switch (TREE_CODE (init))
15790 case STRING_CST:
15791 type = TREE_TYPE (init);
15792 if (TREE_CODE (type) == ARRAY_TYPE)
15794 tree enttype = TREE_TYPE (type);
15795 enum machine_mode mode = TYPE_MODE (enttype);
15797 if (GET_MODE_CLASS (mode) != MODE_INT || GET_MODE_SIZE (mode) != 1)
15798 return false;
15799 if (int_size_in_bytes (type) != size)
15800 return false;
15801 if (size > TREE_STRING_LENGTH (init))
15803 memcpy (array, TREE_STRING_POINTER (init),
15804 TREE_STRING_LENGTH (init));
15805 memset (array + TREE_STRING_LENGTH (init),
15806 '\0', size - TREE_STRING_LENGTH (init));
15808 else
15809 memcpy (array, TREE_STRING_POINTER (init), size);
15810 return true;
15812 return false;
15813 case CONSTRUCTOR:
15814 type = TREE_TYPE (init);
15815 if (int_size_in_bytes (type) != size)
15816 return false;
15817 if (TREE_CODE (type) == ARRAY_TYPE)
15819 HOST_WIDE_INT min_index;
15820 unsigned HOST_WIDE_INT cnt;
15821 int curpos = 0, fieldsize;
15822 constructor_elt *ce;
15824 if (TYPE_DOMAIN (type) == NULL_TREE
15825 || !host_integerp (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), 0))
15826 return false;
15828 fieldsize = int_size_in_bytes (TREE_TYPE (type));
15829 if (fieldsize <= 0)
15830 return false;
15832 min_index = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), 0);
15833 memset (array, '\0', size);
15834 for (cnt = 0;
15835 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (init), cnt, ce);
15836 cnt++)
15838 tree val = ce->value;
15839 tree index = ce->index;
15840 int pos = curpos;
15841 if (index && TREE_CODE (index) == RANGE_EXPR)
15842 pos = (tree_low_cst (TREE_OPERAND (index, 0), 0) - min_index)
15843 * fieldsize;
15844 else if (index)
15845 pos = (tree_low_cst (index, 0) - min_index) * fieldsize;
15847 if (val)
15849 STRIP_NOPS (val);
15850 if (!native_encode_initializer (val, array + pos, fieldsize))
15851 return false;
15853 curpos = pos + fieldsize;
15854 if (index && TREE_CODE (index) == RANGE_EXPR)
15856 int count = tree_low_cst (TREE_OPERAND (index, 1), 0)
15857 - tree_low_cst (TREE_OPERAND (index, 0), 0);
15858 while (count > 0)
15860 if (val)
15861 memcpy (array + curpos, array + pos, fieldsize);
15862 curpos += fieldsize;
15865 gcc_assert (curpos <= size);
15867 return true;
15869 else if (TREE_CODE (type) == RECORD_TYPE
15870 || TREE_CODE (type) == UNION_TYPE)
15872 tree field = NULL_TREE;
15873 unsigned HOST_WIDE_INT cnt;
15874 constructor_elt *ce;
15876 if (int_size_in_bytes (type) != size)
15877 return false;
15879 if (TREE_CODE (type) == RECORD_TYPE)
15880 field = TYPE_FIELDS (type);
15882 for (cnt = 0;
15883 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (init), cnt, ce);
15884 cnt++, field = field ? TREE_CHAIN (field) : 0)
15886 tree val = ce->value;
15887 int pos, fieldsize;
15889 if (ce->index != 0)
15890 field = ce->index;
15892 if (val)
15893 STRIP_NOPS (val);
15895 if (field == NULL_TREE || DECL_BIT_FIELD (field))
15896 return false;
15898 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
15899 && TYPE_DOMAIN (TREE_TYPE (field))
15900 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
15901 return false;
15902 else if (DECL_SIZE_UNIT (field) == NULL_TREE
15903 || !host_integerp (DECL_SIZE_UNIT (field), 0))
15904 return false;
15905 fieldsize = tree_low_cst (DECL_SIZE_UNIT (field), 0);
15906 pos = int_byte_position (field);
15907 gcc_assert (pos + fieldsize <= size);
15908 if (val
15909 && !native_encode_initializer (val, array + pos, fieldsize))
15910 return false;
15912 return true;
15914 return false;
15915 case VIEW_CONVERT_EXPR:
15916 case NON_LVALUE_EXPR:
15917 return native_encode_initializer (TREE_OPERAND (init, 0), array, size);
15918 default:
15919 return native_encode_expr (init, array, size) == size;
15923 /* Attach a DW_AT_const_value attribute to DIE. The value of the
15924 attribute is the const value T. */
15926 static bool
15927 tree_add_const_value_attribute (dw_die_ref die, tree t)
15929 tree init;
15930 tree type = TREE_TYPE (t);
15931 rtx rtl;
15933 if (!t || !TREE_TYPE (t) || TREE_TYPE (t) == error_mark_node)
15934 return false;
15936 init = t;
15937 gcc_assert (!DECL_P (init));
15939 rtl = rtl_for_decl_init (init, type);
15940 if (rtl)
15941 return add_const_value_attribute (die, rtl);
15942 /* If the host and target are sane, try harder. */
15943 else if (CHAR_BIT == 8 && BITS_PER_UNIT == 8
15944 && initializer_constant_valid_p (init, type))
15946 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (init));
15947 if (size > 0 && (int) size == size)
15949 unsigned char *array = GGC_CNEWVEC (unsigned char, size);
15951 if (native_encode_initializer (init, array, size))
15953 add_AT_vec (die, DW_AT_const_value, size, 1, array);
15954 return true;
15958 return false;
15961 /* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
15962 attribute is the const value of T, where T is an integral constant
15963 variable with static storage duration
15964 (so it can't be a PARM_DECL or a RESULT_DECL). */
15966 static bool
15967 tree_add_const_value_attribute_for_decl (dw_die_ref var_die, tree decl)
15970 if (!decl
15971 || (TREE_CODE (decl) != VAR_DECL
15972 && TREE_CODE (decl) != CONST_DECL))
15973 return false;
15975 if (TREE_READONLY (decl)
15976 && ! TREE_THIS_VOLATILE (decl)
15977 && DECL_INITIAL (decl))
15978 /* OK */;
15979 else
15980 return false;
15982 /* Don't add DW_AT_const_value if abstract origin already has one. */
15983 if (get_AT (var_die, DW_AT_const_value))
15984 return false;
15986 return tree_add_const_value_attribute (var_die, DECL_INITIAL (decl));
15989 /* Convert the CFI instructions for the current function into a
15990 location list. This is used for DW_AT_frame_base when we targeting
15991 a dwarf2 consumer that does not support the dwarf3
15992 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
15993 expressions. */
15995 static dw_loc_list_ref
15996 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
15998 dw_fde_ref fde;
15999 dw_loc_list_ref list, *list_tail;
16000 dw_cfi_ref cfi;
16001 dw_cfa_location last_cfa, next_cfa;
16002 const char *start_label, *last_label, *section;
16003 dw_cfa_location remember;
16005 fde = current_fde ();
16006 gcc_assert (fde != NULL);
16008 section = secname_for_decl (current_function_decl);
16009 list_tail = &list;
16010 list = NULL;
16012 memset (&next_cfa, 0, sizeof (next_cfa));
16013 next_cfa.reg = INVALID_REGNUM;
16014 remember = next_cfa;
16016 start_label = fde->dw_fde_begin;
16018 /* ??? Bald assumption that the CIE opcode list does not contain
16019 advance opcodes. */
16020 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
16021 lookup_cfa_1 (cfi, &next_cfa, &remember);
16023 last_cfa = next_cfa;
16024 last_label = start_label;
16026 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
16027 switch (cfi->dw_cfi_opc)
16029 case DW_CFA_set_loc:
16030 case DW_CFA_advance_loc1:
16031 case DW_CFA_advance_loc2:
16032 case DW_CFA_advance_loc4:
16033 if (!cfa_equal_p (&last_cfa, &next_cfa))
16035 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16036 start_label, last_label, section);
16038 list_tail = &(*list_tail)->dw_loc_next;
16039 last_cfa = next_cfa;
16040 start_label = last_label;
16042 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
16043 break;
16045 case DW_CFA_advance_loc:
16046 /* The encoding is complex enough that we should never emit this. */
16047 gcc_unreachable ();
16049 default:
16050 lookup_cfa_1 (cfi, &next_cfa, &remember);
16051 break;
16054 if (!cfa_equal_p (&last_cfa, &next_cfa))
16056 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16057 start_label, last_label, section);
16058 list_tail = &(*list_tail)->dw_loc_next;
16059 start_label = last_label;
16062 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
16063 start_label, fde->dw_fde_end, section);
16065 if (list && list->dw_loc_next)
16066 gen_llsym (list);
16068 return list;
16071 /* Compute a displacement from the "steady-state frame pointer" to the
16072 frame base (often the same as the CFA), and store it in
16073 frame_pointer_fb_offset. OFFSET is added to the displacement
16074 before the latter is negated. */
16076 static void
16077 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
16079 rtx reg, elim;
16081 #ifdef FRAME_POINTER_CFA_OFFSET
16082 reg = frame_pointer_rtx;
16083 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
16084 #else
16085 reg = arg_pointer_rtx;
16086 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
16087 #endif
16089 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
16090 if (GET_CODE (elim) == PLUS)
16092 offset += INTVAL (XEXP (elim, 1));
16093 elim = XEXP (elim, 0);
16096 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
16097 && (elim == hard_frame_pointer_rtx
16098 || elim == stack_pointer_rtx))
16099 || elim == (frame_pointer_needed
16100 ? hard_frame_pointer_rtx
16101 : stack_pointer_rtx));
16103 frame_pointer_fb_offset = -offset;
16106 /* Generate a DW_AT_name attribute given some string value to be included as
16107 the value of the attribute. */
16109 static void
16110 add_name_attribute (dw_die_ref die, const char *name_string)
16112 if (name_string != NULL && *name_string != 0)
16114 if (demangle_name_func)
16115 name_string = (*demangle_name_func) (name_string);
16117 add_AT_string (die, DW_AT_name, name_string);
16121 /* Generate a DW_AT_comp_dir attribute for DIE. */
16123 static void
16124 add_comp_dir_attribute (dw_die_ref die)
16126 const char *wd = get_src_pwd ();
16127 char *wd1;
16129 if (wd == NULL)
16130 return;
16132 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR)
16134 int wdlen;
16136 wdlen = strlen (wd);
16137 wd1 = GGC_NEWVEC (char, wdlen + 2);
16138 strcpy (wd1, wd);
16139 wd1 [wdlen] = DIR_SEPARATOR;
16140 wd1 [wdlen + 1] = 0;
16141 wd = wd1;
16144 add_AT_string (die, DW_AT_comp_dir, remap_debug_filename (wd));
16147 /* Given a tree node describing an array bound (either lower or upper) output
16148 a representation for that bound. */
16150 static void
16151 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
16153 switch (TREE_CODE (bound))
16155 case ERROR_MARK:
16156 return;
16158 /* All fixed-bounds are represented by INTEGER_CST nodes. */
16159 case INTEGER_CST:
16161 unsigned int prec = simple_type_size_in_bits (TREE_TYPE (bound));
16163 /* Use the default if possible. */
16164 if (bound_attr == DW_AT_lower_bound
16165 && (((is_c_family () || is_java ()) && integer_zerop (bound))
16166 || (is_fortran () && integer_onep (bound))))
16169 /* Otherwise represent the bound as an unsigned value with the
16170 precision of its type. The precision and signedness of the
16171 type will be necessary to re-interpret it unambiguously. */
16172 else if (prec < HOST_BITS_PER_WIDE_INT)
16174 unsigned HOST_WIDE_INT mask
16175 = ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
16176 add_AT_unsigned (subrange_die, bound_attr,
16177 TREE_INT_CST_LOW (bound) & mask);
16179 else if (prec == HOST_BITS_PER_WIDE_INT
16180 || TREE_INT_CST_HIGH (bound) == 0)
16181 add_AT_unsigned (subrange_die, bound_attr,
16182 TREE_INT_CST_LOW (bound));
16183 else
16184 add_AT_double (subrange_die, bound_attr, TREE_INT_CST_HIGH (bound),
16185 TREE_INT_CST_LOW (bound));
16187 break;
16189 CASE_CONVERT:
16190 case VIEW_CONVERT_EXPR:
16191 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
16192 break;
16194 case SAVE_EXPR:
16195 break;
16197 case VAR_DECL:
16198 case PARM_DECL:
16199 case RESULT_DECL:
16201 dw_die_ref decl_die = lookup_decl_die (bound);
16202 dw_loc_list_ref loc;
16204 /* ??? Can this happen, or should the variable have been bound
16205 first? Probably it can, since I imagine that we try to create
16206 the types of parameters in the order in which they exist in
16207 the list, and won't have created a forward reference to a
16208 later parameter. */
16209 if (decl_die != NULL)
16210 add_AT_die_ref (subrange_die, bound_attr, decl_die);
16211 else
16213 loc = loc_list_from_tree (bound, 0);
16214 add_AT_location_description (subrange_die, bound_attr, loc);
16216 break;
16219 default:
16221 /* Otherwise try to create a stack operation procedure to
16222 evaluate the value of the array bound. */
16224 dw_die_ref ctx, decl_die;
16225 dw_loc_list_ref list;
16227 list = loc_list_from_tree (bound, 2);
16228 if (list == NULL)
16229 break;
16231 if (current_function_decl == 0)
16232 ctx = comp_unit_die;
16233 else
16234 ctx = lookup_decl_die (current_function_decl);
16236 decl_die = new_die (DW_TAG_variable, ctx, bound);
16237 add_AT_flag (decl_die, DW_AT_artificial, 1);
16238 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
16239 if (list->dw_loc_next)
16240 add_AT_loc_list (decl_die, DW_AT_location, list);
16241 else
16242 add_AT_loc (decl_die, DW_AT_location, list->expr);
16244 add_AT_die_ref (subrange_die, bound_attr, decl_die);
16245 break;
16250 /* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
16251 possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.
16252 Note that the block of subscript information for an array type also
16253 includes information about the element type of the given array type. */
16255 static void
16256 add_subscript_info (dw_die_ref type_die, tree type, bool collapse_p)
16258 unsigned dimension_number;
16259 tree lower, upper;
16260 dw_die_ref subrange_die;
16262 for (dimension_number = 0;
16263 TREE_CODE (type) == ARRAY_TYPE && (dimension_number == 0 || collapse_p);
16264 type = TREE_TYPE (type), dimension_number++)
16266 tree domain = TYPE_DOMAIN (type);
16268 if (TYPE_STRING_FLAG (type) && is_fortran () && dimension_number > 0)
16269 break;
16271 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
16272 and (in GNU C only) variable bounds. Handle all three forms
16273 here. */
16274 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
16275 if (domain)
16277 /* We have an array type with specified bounds. */
16278 lower = TYPE_MIN_VALUE (domain);
16279 upper = TYPE_MAX_VALUE (domain);
16281 /* Define the index type. */
16282 if (TREE_TYPE (domain))
16284 /* ??? This is probably an Ada unnamed subrange type. Ignore the
16285 TREE_TYPE field. We can't emit debug info for this
16286 because it is an unnamed integral type. */
16287 if (TREE_CODE (domain) == INTEGER_TYPE
16288 && TYPE_NAME (domain) == NULL_TREE
16289 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
16290 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
16292 else
16293 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
16294 type_die);
16297 /* ??? If upper is NULL, the array has unspecified length,
16298 but it does have a lower bound. This happens with Fortran
16299 dimension arr(N:*)
16300 Since the debugger is definitely going to need to know N
16301 to produce useful results, go ahead and output the lower
16302 bound solo, and hope the debugger can cope. */
16304 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
16305 if (upper)
16306 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
16309 /* Otherwise we have an array type with an unspecified length. The
16310 DWARF-2 spec does not say how to handle this; let's just leave out the
16311 bounds. */
16315 static void
16316 add_byte_size_attribute (dw_die_ref die, tree tree_node)
16318 unsigned size;
16320 switch (TREE_CODE (tree_node))
16322 case ERROR_MARK:
16323 size = 0;
16324 break;
16325 case ENUMERAL_TYPE:
16326 case RECORD_TYPE:
16327 case UNION_TYPE:
16328 case QUAL_UNION_TYPE:
16329 size = int_size_in_bytes (tree_node);
16330 break;
16331 case FIELD_DECL:
16332 /* For a data member of a struct or union, the DW_AT_byte_size is
16333 generally given as the number of bytes normally allocated for an
16334 object of the *declared* type of the member itself. This is true
16335 even for bit-fields. */
16336 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
16337 break;
16338 default:
16339 gcc_unreachable ();
16342 /* Note that `size' might be -1 when we get to this point. If it is, that
16343 indicates that the byte size of the entity in question is variable. We
16344 have no good way of expressing this fact in Dwarf at the present time,
16345 so just let the -1 pass on through. */
16346 add_AT_unsigned (die, DW_AT_byte_size, size);
16349 /* For a FIELD_DECL node which represents a bit-field, output an attribute
16350 which specifies the distance in bits from the highest order bit of the
16351 "containing object" for the bit-field to the highest order bit of the
16352 bit-field itself.
16354 For any given bit-field, the "containing object" is a hypothetical object
16355 (of some integral or enum type) within which the given bit-field lives. The
16356 type of this hypothetical "containing object" is always the same as the
16357 declared type of the individual bit-field itself. The determination of the
16358 exact location of the "containing object" for a bit-field is rather
16359 complicated. It's handled by the `field_byte_offset' function (above).
16361 Note that it is the size (in bytes) of the hypothetical "containing object"
16362 which will be given in the DW_AT_byte_size attribute for this bit-field.
16363 (See `byte_size_attribute' above). */
16365 static inline void
16366 add_bit_offset_attribute (dw_die_ref die, tree decl)
16368 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
16369 tree type = DECL_BIT_FIELD_TYPE (decl);
16370 HOST_WIDE_INT bitpos_int;
16371 HOST_WIDE_INT highest_order_object_bit_offset;
16372 HOST_WIDE_INT highest_order_field_bit_offset;
16373 HOST_WIDE_INT unsigned bit_offset;
16375 /* Must be a field and a bit field. */
16376 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
16378 /* We can't yet handle bit-fields whose offsets are variable, so if we
16379 encounter such things, just return without generating any attribute
16380 whatsoever. Likewise for variable or too large size. */
16381 if (! host_integerp (bit_position (decl), 0)
16382 || ! host_integerp (DECL_SIZE (decl), 1))
16383 return;
16385 bitpos_int = int_bit_position (decl);
16387 /* Note that the bit offset is always the distance (in bits) from the
16388 highest-order bit of the "containing object" to the highest-order bit of
16389 the bit-field itself. Since the "high-order end" of any object or field
16390 is different on big-endian and little-endian machines, the computation
16391 below must take account of these differences. */
16392 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
16393 highest_order_field_bit_offset = bitpos_int;
16395 if (! BYTES_BIG_ENDIAN)
16397 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
16398 highest_order_object_bit_offset += simple_type_size_in_bits (type);
16401 bit_offset
16402 = (! BYTES_BIG_ENDIAN
16403 ? highest_order_object_bit_offset - highest_order_field_bit_offset
16404 : highest_order_field_bit_offset - highest_order_object_bit_offset);
16406 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
16409 /* For a FIELD_DECL node which represents a bit field, output an attribute
16410 which specifies the length in bits of the given field. */
16412 static inline void
16413 add_bit_size_attribute (dw_die_ref die, tree decl)
16415 /* Must be a field and a bit field. */
16416 gcc_assert (TREE_CODE (decl) == FIELD_DECL
16417 && DECL_BIT_FIELD_TYPE (decl));
16419 if (host_integerp (DECL_SIZE (decl), 1))
16420 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
16423 /* If the compiled language is ANSI C, then add a 'prototyped'
16424 attribute, if arg types are given for the parameters of a function. */
16426 static inline void
16427 add_prototyped_attribute (dw_die_ref die, tree func_type)
16429 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
16430 && TYPE_ARG_TYPES (func_type) != NULL)
16431 add_AT_flag (die, DW_AT_prototyped, 1);
16434 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
16435 by looking in either the type declaration or object declaration
16436 equate table. */
16438 static inline dw_die_ref
16439 add_abstract_origin_attribute (dw_die_ref die, tree origin)
16441 dw_die_ref origin_die = NULL;
16443 if (TREE_CODE (origin) != FUNCTION_DECL)
16445 /* We may have gotten separated from the block for the inlined
16446 function, if we're in an exception handler or some such; make
16447 sure that the abstract function has been written out.
16449 Doing this for nested functions is wrong, however; functions are
16450 distinct units, and our context might not even be inline. */
16451 tree fn = origin;
16453 if (TYPE_P (fn))
16454 fn = TYPE_STUB_DECL (fn);
16456 fn = decl_function_context (fn);
16457 if (fn)
16458 dwarf2out_abstract_function (fn);
16461 if (DECL_P (origin))
16462 origin_die = lookup_decl_die (origin);
16463 else if (TYPE_P (origin))
16464 origin_die = lookup_type_die (origin);
16466 /* XXX: Functions that are never lowered don't always have correct block
16467 trees (in the case of java, they simply have no block tree, in some other
16468 languages). For these functions, there is nothing we can really do to
16469 output correct debug info for inlined functions in all cases. Rather
16470 than die, we'll just produce deficient debug info now, in that we will
16471 have variables without a proper abstract origin. In the future, when all
16472 functions are lowered, we should re-add a gcc_assert (origin_die)
16473 here. */
16475 if (origin_die)
16476 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
16477 return origin_die;
16480 /* We do not currently support the pure_virtual attribute. */
16482 static inline void
16483 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
16485 if (DECL_VINDEX (func_decl))
16487 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
16489 if (host_integerp (DECL_VINDEX (func_decl), 0))
16490 add_AT_loc (die, DW_AT_vtable_elem_location,
16491 new_loc_descr (DW_OP_constu,
16492 tree_low_cst (DECL_VINDEX (func_decl), 0),
16493 0));
16495 /* GNU extension: Record what type this method came from originally. */
16496 if (debug_info_level > DINFO_LEVEL_TERSE
16497 && DECL_CONTEXT (func_decl))
16498 add_AT_die_ref (die, DW_AT_containing_type,
16499 lookup_type_die (DECL_CONTEXT (func_decl)));
16503 /* Add source coordinate attributes for the given decl. */
16505 static void
16506 add_src_coords_attributes (dw_die_ref die, tree decl)
16508 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
16510 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
16511 add_AT_unsigned (die, DW_AT_decl_line, s.line);
16514 /* Add a DW_AT_name attribute and source coordinate attribute for the
16515 given decl, but only if it actually has a name. */
16517 static void
16518 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
16520 tree decl_name;
16522 decl_name = DECL_NAME (decl);
16523 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
16525 const char *name = dwarf2_name (decl, 0);
16526 if (name)
16527 add_name_attribute (die, name);
16528 if (! DECL_ARTIFICIAL (decl))
16529 add_src_coords_attributes (die, decl);
16531 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
16532 && TREE_PUBLIC (decl)
16533 && !DECL_ABSTRACT (decl)
16534 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
16535 && !is_fortran ())
16537 /* Defer until we have an assembler name set. */
16538 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
16540 limbo_die_node *asm_name;
16542 asm_name = GGC_CNEW (limbo_die_node);
16543 asm_name->die = die;
16544 asm_name->created_for = decl;
16545 asm_name->next = deferred_asm_name;
16546 deferred_asm_name = asm_name;
16548 else if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
16549 add_AT_string (die, DW_AT_MIPS_linkage_name,
16550 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
16554 #ifdef VMS_DEBUGGING_INFO
16555 /* Get the function's name, as described by its RTL. This may be different
16556 from the DECL_NAME name used in the source file. */
16557 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
16559 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
16560 XEXP (DECL_RTL (decl), 0));
16561 VEC_safe_push (rtx, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
16563 #endif
16566 /* Push a new declaration scope. */
16568 static void
16569 push_decl_scope (tree scope)
16571 VEC_safe_push (tree, gc, decl_scope_table, scope);
16574 /* Pop a declaration scope. */
16576 static inline void
16577 pop_decl_scope (void)
16579 VEC_pop (tree, decl_scope_table);
16582 /* Return the DIE for the scope that immediately contains this type.
16583 Non-named types get global scope. Named types nested in other
16584 types get their containing scope if it's open, or global scope
16585 otherwise. All other types (i.e. function-local named types) get
16586 the current active scope. */
16588 static dw_die_ref
16589 scope_die_for (tree t, dw_die_ref context_die)
16591 dw_die_ref scope_die = NULL;
16592 tree containing_scope;
16593 int i;
16595 /* Non-types always go in the current scope. */
16596 gcc_assert (TYPE_P (t));
16598 containing_scope = TYPE_CONTEXT (t);
16600 /* Use the containing namespace if it was passed in (for a declaration). */
16601 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
16603 if (context_die == lookup_decl_die (containing_scope))
16604 /* OK */;
16605 else
16606 containing_scope = NULL_TREE;
16609 /* Ignore function type "scopes" from the C frontend. They mean that
16610 a tagged type is local to a parmlist of a function declarator, but
16611 that isn't useful to DWARF. */
16612 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
16613 containing_scope = NULL_TREE;
16615 if (containing_scope == NULL_TREE)
16616 scope_die = comp_unit_die;
16617 else if (TYPE_P (containing_scope))
16619 /* For types, we can just look up the appropriate DIE. But
16620 first we check to see if we're in the middle of emitting it
16621 so we know where the new DIE should go. */
16622 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
16623 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
16624 break;
16626 if (i < 0)
16628 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
16629 || TREE_ASM_WRITTEN (containing_scope));
16631 /* If none of the current dies are suitable, we get file scope. */
16632 scope_die = comp_unit_die;
16634 else
16635 scope_die = lookup_type_die (containing_scope);
16637 else
16638 scope_die = context_die;
16640 return scope_die;
16643 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
16645 static inline int
16646 local_scope_p (dw_die_ref context_die)
16648 for (; context_die; context_die = context_die->die_parent)
16649 if (context_die->die_tag == DW_TAG_inlined_subroutine
16650 || context_die->die_tag == DW_TAG_subprogram)
16651 return 1;
16653 return 0;
16656 /* Returns nonzero if CONTEXT_DIE is a class. */
16658 static inline int
16659 class_scope_p (dw_die_ref context_die)
16661 return (context_die
16662 && (context_die->die_tag == DW_TAG_structure_type
16663 || context_die->die_tag == DW_TAG_class_type
16664 || context_die->die_tag == DW_TAG_interface_type
16665 || context_die->die_tag == DW_TAG_union_type));
16668 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
16669 whether or not to treat a DIE in this context as a declaration. */
16671 static inline int
16672 class_or_namespace_scope_p (dw_die_ref context_die)
16674 return (class_scope_p (context_die)
16675 || (context_die && context_die->die_tag == DW_TAG_namespace));
16678 /* Many forms of DIEs require a "type description" attribute. This
16679 routine locates the proper "type descriptor" die for the type given
16680 by 'type', and adds a DW_AT_type attribute below the given die. */
16682 static void
16683 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
16684 int decl_volatile, dw_die_ref context_die)
16686 enum tree_code code = TREE_CODE (type);
16687 dw_die_ref type_die = NULL;
16689 /* ??? If this type is an unnamed subrange type of an integral, floating-point
16690 or fixed-point type, use the inner type. This is because we have no
16691 support for unnamed types in base_type_die. This can happen if this is
16692 an Ada subrange type. Correct solution is emit a subrange type die. */
16693 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
16694 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
16695 type = TREE_TYPE (type), code = TREE_CODE (type);
16697 if (code == ERROR_MARK
16698 /* Handle a special case. For functions whose return type is void, we
16699 generate *no* type attribute. (Note that no object may have type
16700 `void', so this only applies to function return types). */
16701 || code == VOID_TYPE)
16702 return;
16704 type_die = modified_type_die (type,
16705 decl_const || TYPE_READONLY (type),
16706 decl_volatile || TYPE_VOLATILE (type),
16707 context_die);
16709 if (type_die != NULL)
16710 add_AT_die_ref (object_die, DW_AT_type, type_die);
16713 /* Given an object die, add the calling convention attribute for the
16714 function call type. */
16715 static void
16716 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
16718 enum dwarf_calling_convention value = DW_CC_normal;
16720 value = ((enum dwarf_calling_convention)
16721 targetm.dwarf_calling_convention (TREE_TYPE (decl)));
16723 /* DWARF doesn't provide a way to identify a program's source-level
16724 entry point. DW_AT_calling_convention attributes are only meant
16725 to describe functions' calling conventions. However, lacking a
16726 better way to signal the Fortran main program, we use this for the
16727 time being, following existing custom. */
16728 if (is_fortran ()
16729 && !strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "MAIN__"))
16730 value = DW_CC_program;
16732 /* Only add the attribute if the backend requests it, and
16733 is not DW_CC_normal. */
16734 if (value && (value != DW_CC_normal))
16735 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
16738 /* Given a tree pointer to a struct, class, union, or enum type node, return
16739 a pointer to the (string) tag name for the given type, or zero if the type
16740 was declared without a tag. */
16742 static const char *
16743 type_tag (const_tree type)
16745 const char *name = 0;
16747 if (TYPE_NAME (type) != 0)
16749 tree t = 0;
16751 /* Find the IDENTIFIER_NODE for the type name. */
16752 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
16753 t = TYPE_NAME (type);
16755 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
16756 a TYPE_DECL node, regardless of whether or not a `typedef' was
16757 involved. */
16758 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
16759 && ! DECL_IGNORED_P (TYPE_NAME (type)))
16761 /* We want to be extra verbose. Don't call dwarf_name if
16762 DECL_NAME isn't set. The default hook for decl_printable_name
16763 doesn't like that, and in this context it's correct to return
16764 0, instead of "<anonymous>" or the like. */
16765 if (DECL_NAME (TYPE_NAME (type)))
16766 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
16769 /* Now get the name as a string, or invent one. */
16770 if (!name && t != 0)
16771 name = IDENTIFIER_POINTER (t);
16774 return (name == 0 || *name == '\0') ? 0 : name;
16777 /* Return the type associated with a data member, make a special check
16778 for bit field types. */
16780 static inline tree
16781 member_declared_type (const_tree member)
16783 return (DECL_BIT_FIELD_TYPE (member)
16784 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
16787 /* Get the decl's label, as described by its RTL. This may be different
16788 from the DECL_NAME name used in the source file. */
16790 #if 0
16791 static const char *
16792 decl_start_label (tree decl)
16794 rtx x;
16795 const char *fnname;
16797 x = DECL_RTL (decl);
16798 gcc_assert (MEM_P (x));
16800 x = XEXP (x, 0);
16801 gcc_assert (GET_CODE (x) == SYMBOL_REF);
16803 fnname = XSTR (x, 0);
16804 return fnname;
16806 #endif
16808 /* These routines generate the internal representation of the DIE's for
16809 the compilation unit. Debugging information is collected by walking
16810 the declaration trees passed in from dwarf2out_decl(). */
16812 static void
16813 gen_array_type_die (tree type, dw_die_ref context_die)
16815 dw_die_ref scope_die = scope_die_for (type, context_die);
16816 dw_die_ref array_die;
16818 /* GNU compilers represent multidimensional array types as sequences of one
16819 dimensional array types whose element types are themselves array types.
16820 We sometimes squish that down to a single array_type DIE with multiple
16821 subscripts in the Dwarf debugging info. The draft Dwarf specification
16822 say that we are allowed to do this kind of compression in C, because
16823 there is no difference between an array of arrays and a multidimensional
16824 array. We don't do this for Ada to remain as close as possible to the
16825 actual representation, which is especially important against the language
16826 flexibilty wrt arrays of variable size. */
16828 bool collapse_nested_arrays = !is_ada ();
16829 tree element_type;
16831 /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
16832 DW_TAG_string_type doesn't have DW_AT_type attribute). */
16833 if (TYPE_STRING_FLAG (type)
16834 && TREE_CODE (type) == ARRAY_TYPE
16835 && is_fortran ()
16836 && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (char_type_node))
16838 HOST_WIDE_INT size;
16840 array_die = new_die (DW_TAG_string_type, scope_die, type);
16841 add_name_attribute (array_die, type_tag (type));
16842 equate_type_number_to_die (type, array_die);
16843 size = int_size_in_bytes (type);
16844 if (size >= 0)
16845 add_AT_unsigned (array_die, DW_AT_byte_size, size);
16846 else if (TYPE_DOMAIN (type) != NULL_TREE
16847 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE
16848 && DECL_P (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
16850 tree szdecl = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
16851 dw_loc_list_ref loc = loc_list_from_tree (szdecl, 2);
16853 size = int_size_in_bytes (TREE_TYPE (szdecl));
16854 if (loc && size > 0)
16856 add_AT_location_description (array_die, DW_AT_string_length, loc);
16857 if (size != DWARF2_ADDR_SIZE)
16858 add_AT_unsigned (array_die, DW_AT_byte_size, size);
16861 return;
16864 /* ??? The SGI dwarf reader fails for array of array of enum types
16865 (e.g. const enum machine_mode insn_operand_mode[2][10]) unless the inner
16866 array type comes before the outer array type. We thus call gen_type_die
16867 before we new_die and must prevent nested array types collapsing for this
16868 target. */
16870 #ifdef MIPS_DEBUGGING_INFO
16871 gen_type_die (TREE_TYPE (type), context_die);
16872 collapse_nested_arrays = false;
16873 #endif
16875 array_die = new_die (DW_TAG_array_type, scope_die, type);
16876 add_name_attribute (array_die, type_tag (type));
16877 equate_type_number_to_die (type, array_die);
16879 if (TREE_CODE (type) == VECTOR_TYPE)
16881 /* The frontend feeds us a representation for the vector as a struct
16882 containing an array. Pull out the array type. */
16883 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
16884 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
16887 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
16888 if (is_fortran ()
16889 && TREE_CODE (type) == ARRAY_TYPE
16890 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE
16891 && !TYPE_STRING_FLAG (TREE_TYPE (type)))
16892 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
16894 #if 0
16895 /* We default the array ordering. SDB will probably do
16896 the right things even if DW_AT_ordering is not present. It's not even
16897 an issue until we start to get into multidimensional arrays anyway. If
16898 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
16899 then we'll have to put the DW_AT_ordering attribute back in. (But if
16900 and when we find out that we need to put these in, we will only do so
16901 for multidimensional arrays. */
16902 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
16903 #endif
16905 #ifdef MIPS_DEBUGGING_INFO
16906 /* The SGI compilers handle arrays of unknown bound by setting
16907 AT_declaration and not emitting any subrange DIEs. */
16908 if (! TYPE_DOMAIN (type))
16909 add_AT_flag (array_die, DW_AT_declaration, 1);
16910 else
16911 #endif
16912 add_subscript_info (array_die, type, collapse_nested_arrays);
16914 /* Add representation of the type of the elements of this array type and
16915 emit the corresponding DIE if we haven't done it already. */
16916 element_type = TREE_TYPE (type);
16917 if (collapse_nested_arrays)
16918 while (TREE_CODE (element_type) == ARRAY_TYPE)
16920 if (TYPE_STRING_FLAG (element_type) && is_fortran ())
16921 break;
16922 element_type = TREE_TYPE (element_type);
16925 #ifndef MIPS_DEBUGGING_INFO
16926 gen_type_die (element_type, context_die);
16927 #endif
16929 add_type_attribute (array_die, element_type, 0, 0, context_die);
16931 if (get_AT (array_die, DW_AT_name))
16932 add_pubtype (type, array_die);
16935 static dw_loc_descr_ref
16936 descr_info_loc (tree val, tree base_decl)
16938 HOST_WIDE_INT size;
16939 dw_loc_descr_ref loc, loc2;
16940 enum dwarf_location_atom op;
16942 if (val == base_decl)
16943 return new_loc_descr (DW_OP_push_object_address, 0, 0);
16945 switch (TREE_CODE (val))
16947 CASE_CONVERT:
16948 return descr_info_loc (TREE_OPERAND (val, 0), base_decl);
16949 case VAR_DECL:
16950 return loc_descriptor_from_tree (val, 0);
16951 case INTEGER_CST:
16952 if (host_integerp (val, 0))
16953 return int_loc_descriptor (tree_low_cst (val, 0));
16954 break;
16955 case INDIRECT_REF:
16956 size = int_size_in_bytes (TREE_TYPE (val));
16957 if (size < 0)
16958 break;
16959 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
16960 if (!loc)
16961 break;
16962 if (size == DWARF2_ADDR_SIZE)
16963 add_loc_descr (&loc, new_loc_descr (DW_OP_deref, 0, 0));
16964 else
16965 add_loc_descr (&loc, new_loc_descr (DW_OP_deref_size, size, 0));
16966 return loc;
16967 case POINTER_PLUS_EXPR:
16968 case PLUS_EXPR:
16969 if (host_integerp (TREE_OPERAND (val, 1), 1)
16970 && (unsigned HOST_WIDE_INT) tree_low_cst (TREE_OPERAND (val, 1), 1)
16971 < 16384)
16973 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
16974 if (!loc)
16975 break;
16976 loc_descr_plus_const (&loc, tree_low_cst (TREE_OPERAND (val, 1), 0));
16978 else
16980 op = DW_OP_plus;
16981 do_binop:
16982 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
16983 if (!loc)
16984 break;
16985 loc2 = descr_info_loc (TREE_OPERAND (val, 1), base_decl);
16986 if (!loc2)
16987 break;
16988 add_loc_descr (&loc, loc2);
16989 add_loc_descr (&loc2, new_loc_descr (op, 0, 0));
16991 return loc;
16992 case MINUS_EXPR:
16993 op = DW_OP_minus;
16994 goto do_binop;
16995 case MULT_EXPR:
16996 op = DW_OP_mul;
16997 goto do_binop;
16998 case EQ_EXPR:
16999 op = DW_OP_eq;
17000 goto do_binop;
17001 case NE_EXPR:
17002 op = DW_OP_ne;
17003 goto do_binop;
17004 default:
17005 break;
17007 return NULL;
17010 static void
17011 add_descr_info_field (dw_die_ref die, enum dwarf_attribute attr,
17012 tree val, tree base_decl)
17014 dw_loc_descr_ref loc;
17016 if (host_integerp (val, 0))
17018 add_AT_unsigned (die, attr, tree_low_cst (val, 0));
17019 return;
17022 loc = descr_info_loc (val, base_decl);
17023 if (!loc)
17024 return;
17026 add_AT_loc (die, attr, loc);
17029 /* This routine generates DIE for array with hidden descriptor, details
17030 are filled into *info by a langhook. */
17032 static void
17033 gen_descr_array_type_die (tree type, struct array_descr_info *info,
17034 dw_die_ref context_die)
17036 dw_die_ref scope_die = scope_die_for (type, context_die);
17037 dw_die_ref array_die;
17038 int dim;
17040 array_die = new_die (DW_TAG_array_type, scope_die, type);
17041 add_name_attribute (array_die, type_tag (type));
17042 equate_type_number_to_die (type, array_die);
17044 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
17045 if (is_fortran ()
17046 && info->ndimensions >= 2)
17047 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
17049 if (info->data_location)
17050 add_descr_info_field (array_die, DW_AT_data_location, info->data_location,
17051 info->base_decl);
17052 if (info->associated)
17053 add_descr_info_field (array_die, DW_AT_associated, info->associated,
17054 info->base_decl);
17055 if (info->allocated)
17056 add_descr_info_field (array_die, DW_AT_allocated, info->allocated,
17057 info->base_decl);
17059 for (dim = 0; dim < info->ndimensions; dim++)
17061 dw_die_ref subrange_die
17062 = new_die (DW_TAG_subrange_type, array_die, NULL);
17064 if (info->dimen[dim].lower_bound)
17066 /* If it is the default value, omit it. */
17067 if ((is_c_family () || is_java ())
17068 && integer_zerop (info->dimen[dim].lower_bound))
17070 else if (is_fortran ()
17071 && integer_onep (info->dimen[dim].lower_bound))
17073 else
17074 add_descr_info_field (subrange_die, DW_AT_lower_bound,
17075 info->dimen[dim].lower_bound,
17076 info->base_decl);
17078 if (info->dimen[dim].upper_bound)
17079 add_descr_info_field (subrange_die, DW_AT_upper_bound,
17080 info->dimen[dim].upper_bound,
17081 info->base_decl);
17082 if (info->dimen[dim].stride)
17083 add_descr_info_field (subrange_die, DW_AT_byte_stride,
17084 info->dimen[dim].stride,
17085 info->base_decl);
17088 gen_type_die (info->element_type, context_die);
17089 add_type_attribute (array_die, info->element_type, 0, 0, context_die);
17091 if (get_AT (array_die, DW_AT_name))
17092 add_pubtype (type, array_die);
17095 #if 0
17096 static void
17097 gen_entry_point_die (tree decl, dw_die_ref context_die)
17099 tree origin = decl_ultimate_origin (decl);
17100 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
17102 if (origin != NULL)
17103 add_abstract_origin_attribute (decl_die, origin);
17104 else
17106 add_name_and_src_coords_attributes (decl_die, decl);
17107 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
17108 0, 0, context_die);
17111 if (DECL_ABSTRACT (decl))
17112 equate_decl_number_to_die (decl, decl_die);
17113 else
17114 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
17116 #endif
17118 /* Walk through the list of incomplete types again, trying once more to
17119 emit full debugging info for them. */
17121 static void
17122 retry_incomplete_types (void)
17124 int i;
17126 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
17127 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
17130 /* Determine what tag to use for a record type. */
17132 static enum dwarf_tag
17133 record_type_tag (tree type)
17135 if (! lang_hooks.types.classify_record)
17136 return DW_TAG_structure_type;
17138 switch (lang_hooks.types.classify_record (type))
17140 case RECORD_IS_STRUCT:
17141 return DW_TAG_structure_type;
17143 case RECORD_IS_CLASS:
17144 return DW_TAG_class_type;
17146 case RECORD_IS_INTERFACE:
17147 if (dwarf_version >= 3 || !dwarf_strict)
17148 return DW_TAG_interface_type;
17149 return DW_TAG_structure_type;
17151 default:
17152 gcc_unreachable ();
17156 /* Generate a DIE to represent an enumeration type. Note that these DIEs
17157 include all of the information about the enumeration values also. Each
17158 enumerated type name/value is listed as a child of the enumerated type
17159 DIE. */
17161 static dw_die_ref
17162 gen_enumeration_type_die (tree type, dw_die_ref context_die)
17164 dw_die_ref type_die = lookup_type_die (type);
17166 if (type_die == NULL)
17168 type_die = new_die (DW_TAG_enumeration_type,
17169 scope_die_for (type, context_die), type);
17170 equate_type_number_to_die (type, type_die);
17171 add_name_attribute (type_die, type_tag (type));
17173 else if (! TYPE_SIZE (type))
17174 return type_die;
17175 else
17176 remove_AT (type_die, DW_AT_declaration);
17178 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
17179 given enum type is incomplete, do not generate the DW_AT_byte_size
17180 attribute or the DW_AT_element_list attribute. */
17181 if (TYPE_SIZE (type))
17183 tree link;
17185 TREE_ASM_WRITTEN (type) = 1;
17186 add_byte_size_attribute (type_die, type);
17187 if (TYPE_STUB_DECL (type) != NULL_TREE)
17188 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
17190 /* If the first reference to this type was as the return type of an
17191 inline function, then it may not have a parent. Fix this now. */
17192 if (type_die->die_parent == NULL)
17193 add_child_die (scope_die_for (type, context_die), type_die);
17195 for (link = TYPE_VALUES (type);
17196 link != NULL; link = TREE_CHAIN (link))
17198 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
17199 tree value = TREE_VALUE (link);
17201 add_name_attribute (enum_die,
17202 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
17204 if (TREE_CODE (value) == CONST_DECL)
17205 value = DECL_INITIAL (value);
17207 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
17208 /* DWARF2 does not provide a way of indicating whether or
17209 not enumeration constants are signed or unsigned. GDB
17210 always assumes the values are signed, so we output all
17211 values as if they were signed. That means that
17212 enumeration constants with very large unsigned values
17213 will appear to have negative values in the debugger. */
17214 add_AT_int (enum_die, DW_AT_const_value,
17215 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
17218 else
17219 add_AT_flag (type_die, DW_AT_declaration, 1);
17221 if (get_AT (type_die, DW_AT_name))
17222 add_pubtype (type, type_die);
17224 return type_die;
17227 /* Generate a DIE to represent either a real live formal parameter decl or to
17228 represent just the type of some formal parameter position in some function
17229 type.
17231 Note that this routine is a bit unusual because its argument may be a
17232 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
17233 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
17234 node. If it's the former then this function is being called to output a
17235 DIE to represent a formal parameter object (or some inlining thereof). If
17236 it's the latter, then this function is only being called to output a
17237 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
17238 argument type of some subprogram type.
17239 If EMIT_NAME_P is true, name and source coordinate attributes
17240 are emitted. */
17242 static dw_die_ref
17243 gen_formal_parameter_die (tree node, tree origin, bool emit_name_p,
17244 dw_die_ref context_die)
17246 tree node_or_origin = node ? node : origin;
17247 dw_die_ref parm_die
17248 = new_die (DW_TAG_formal_parameter, context_die, node);
17250 switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin)))
17252 case tcc_declaration:
17253 if (!origin)
17254 origin = decl_ultimate_origin (node);
17255 if (origin != NULL)
17256 add_abstract_origin_attribute (parm_die, origin);
17257 else
17259 tree type = TREE_TYPE (node);
17260 if (emit_name_p)
17261 add_name_and_src_coords_attributes (parm_die, node);
17262 if (decl_by_reference_p (node))
17263 add_type_attribute (parm_die, TREE_TYPE (type), 0, 0,
17264 context_die);
17265 else
17266 add_type_attribute (parm_die, type,
17267 TREE_READONLY (node),
17268 TREE_THIS_VOLATILE (node),
17269 context_die);
17270 if (DECL_ARTIFICIAL (node))
17271 add_AT_flag (parm_die, DW_AT_artificial, 1);
17274 if (node && node != origin)
17275 equate_decl_number_to_die (node, parm_die);
17276 if (! DECL_ABSTRACT (node_or_origin))
17277 add_location_or_const_value_attribute (parm_die, node_or_origin,
17278 DW_AT_location);
17280 break;
17282 case tcc_type:
17283 /* We were called with some kind of a ..._TYPE node. */
17284 add_type_attribute (parm_die, node_or_origin, 0, 0, context_die);
17285 break;
17287 default:
17288 gcc_unreachable ();
17291 return parm_die;
17294 /* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
17295 children DW_TAG_formal_parameter DIEs representing the arguments of the
17296 parameter pack.
17298 PARM_PACK must be a function parameter pack.
17299 PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
17300 must point to the subsequent arguments of the function PACK_ARG belongs to.
17301 SUBR_DIE is the DIE of the function PACK_ARG belongs to.
17302 If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
17303 following the last one for which a DIE was generated. */
17305 static dw_die_ref
17306 gen_formal_parameter_pack_die (tree parm_pack,
17307 tree pack_arg,
17308 dw_die_ref subr_die,
17309 tree *next_arg)
17311 tree arg;
17312 dw_die_ref parm_pack_die;
17314 gcc_assert (parm_pack
17315 && lang_hooks.function_parameter_pack_p (parm_pack)
17316 && subr_die);
17318 parm_pack_die = new_die (DW_TAG_GNU_formal_parameter_pack, subr_die, parm_pack);
17319 add_src_coords_attributes (parm_pack_die, parm_pack);
17321 for (arg = pack_arg; arg; arg = TREE_CHAIN (arg))
17323 if (! lang_hooks.decls.function_parm_expanded_from_pack_p (arg,
17324 parm_pack))
17325 break;
17326 gen_formal_parameter_die (arg, NULL,
17327 false /* Don't emit name attribute. */,
17328 parm_pack_die);
17330 if (next_arg)
17331 *next_arg = arg;
17332 return parm_pack_die;
17335 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
17336 at the end of an (ANSI prototyped) formal parameters list. */
17338 static void
17339 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
17341 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
17344 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
17345 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
17346 parameters as specified in some function type specification (except for
17347 those which appear as part of a function *definition*). */
17349 static void
17350 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
17352 tree link;
17353 tree formal_type = NULL;
17354 tree first_parm_type;
17355 tree arg;
17357 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
17359 arg = DECL_ARGUMENTS (function_or_method_type);
17360 function_or_method_type = TREE_TYPE (function_or_method_type);
17362 else
17363 arg = NULL_TREE;
17365 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
17367 /* Make our first pass over the list of formal parameter types and output a
17368 DW_TAG_formal_parameter DIE for each one. */
17369 for (link = first_parm_type; link; )
17371 dw_die_ref parm_die;
17373 formal_type = TREE_VALUE (link);
17374 if (formal_type == void_type_node)
17375 break;
17377 /* Output a (nameless) DIE to represent the formal parameter itself. */
17378 parm_die = gen_formal_parameter_die (formal_type, NULL,
17379 true /* Emit name attribute. */,
17380 context_die);
17381 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
17382 && link == first_parm_type)
17383 || (arg && DECL_ARTIFICIAL (arg)))
17384 add_AT_flag (parm_die, DW_AT_artificial, 1);
17386 link = TREE_CHAIN (link);
17387 if (arg)
17388 arg = TREE_CHAIN (arg);
17391 /* If this function type has an ellipsis, add a
17392 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
17393 if (formal_type != void_type_node)
17394 gen_unspecified_parameters_die (function_or_method_type, context_die);
17396 /* Make our second (and final) pass over the list of formal parameter types
17397 and output DIEs to represent those types (as necessary). */
17398 for (link = TYPE_ARG_TYPES (function_or_method_type);
17399 link && TREE_VALUE (link);
17400 link = TREE_CHAIN (link))
17401 gen_type_die (TREE_VALUE (link), context_die);
17404 /* We want to generate the DIE for TYPE so that we can generate the
17405 die for MEMBER, which has been defined; we will need to refer back
17406 to the member declaration nested within TYPE. If we're trying to
17407 generate minimal debug info for TYPE, processing TYPE won't do the
17408 trick; we need to attach the member declaration by hand. */
17410 static void
17411 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
17413 gen_type_die (type, context_die);
17415 /* If we're trying to avoid duplicate debug info, we may not have
17416 emitted the member decl for this function. Emit it now. */
17417 if (TYPE_STUB_DECL (type)
17418 && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
17419 && ! lookup_decl_die (member))
17421 dw_die_ref type_die;
17422 gcc_assert (!decl_ultimate_origin (member));
17424 push_decl_scope (type);
17425 type_die = lookup_type_die (type);
17426 if (TREE_CODE (member) == FUNCTION_DECL)
17427 gen_subprogram_die (member, type_die);
17428 else if (TREE_CODE (member) == FIELD_DECL)
17430 /* Ignore the nameless fields that are used to skip bits but handle
17431 C++ anonymous unions and structs. */
17432 if (DECL_NAME (member) != NULL_TREE
17433 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
17434 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
17436 gen_type_die (member_declared_type (member), type_die);
17437 gen_field_die (member, type_die);
17440 else
17441 gen_variable_die (member, NULL_TREE, type_die);
17443 pop_decl_scope ();
17447 /* Generate the DWARF2 info for the "abstract" instance of a function which we
17448 may later generate inlined and/or out-of-line instances of. */
17450 static void
17451 dwarf2out_abstract_function (tree decl)
17453 dw_die_ref old_die;
17454 tree save_fn;
17455 tree context;
17456 int was_abstract;
17457 htab_t old_decl_loc_table;
17459 /* Make sure we have the actual abstract inline, not a clone. */
17460 decl = DECL_ORIGIN (decl);
17462 old_die = lookup_decl_die (decl);
17463 if (old_die && get_AT (old_die, DW_AT_inline))
17464 /* We've already generated the abstract instance. */
17465 return;
17467 /* We can be called while recursively when seeing block defining inlined subroutine
17468 DIE. Be sure to not clobber the outer location table nor use it or we would
17469 get locations in abstract instantces. */
17470 old_decl_loc_table = decl_loc_table;
17471 decl_loc_table = NULL;
17473 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
17474 we don't get confused by DECL_ABSTRACT. */
17475 if (debug_info_level > DINFO_LEVEL_TERSE)
17477 context = decl_class_context (decl);
17478 if (context)
17479 gen_type_die_for_member
17480 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
17483 /* Pretend we've just finished compiling this function. */
17484 save_fn = current_function_decl;
17485 current_function_decl = decl;
17486 push_cfun (DECL_STRUCT_FUNCTION (decl));
17488 was_abstract = DECL_ABSTRACT (decl);
17489 set_decl_abstract_flags (decl, 1);
17490 dwarf2out_decl (decl);
17491 if (! was_abstract)
17492 set_decl_abstract_flags (decl, 0);
17494 current_function_decl = save_fn;
17495 decl_loc_table = old_decl_loc_table;
17496 pop_cfun ();
17499 /* Helper function of premark_used_types() which gets called through
17500 htab_traverse.
17502 Marks the DIE of a given type in *SLOT as perennial, so it never gets
17503 marked as unused by prune_unused_types. */
17505 static int
17506 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
17508 tree type;
17509 dw_die_ref die;
17511 type = (tree) *slot;
17512 die = lookup_type_die (type);
17513 if (die != NULL)
17514 die->die_perennial_p = 1;
17515 return 1;
17518 /* Helper function of premark_types_used_by_global_vars which gets called
17519 through htab_traverse.
17521 Marks the DIE of a given type in *SLOT as perennial, so it never gets
17522 marked as unused by prune_unused_types. The DIE of the type is marked
17523 only if the global variable using the type will actually be emitted. */
17525 static int
17526 premark_types_used_by_global_vars_helper (void **slot,
17527 void *data ATTRIBUTE_UNUSED)
17529 struct types_used_by_vars_entry *entry;
17530 dw_die_ref die;
17532 entry = (struct types_used_by_vars_entry *) *slot;
17533 gcc_assert (entry->type != NULL
17534 && entry->var_decl != NULL);
17535 die = lookup_type_die (entry->type);
17536 if (die)
17538 /* Ask cgraph if the global variable really is to be emitted.
17539 If yes, then we'll keep the DIE of ENTRY->TYPE. */
17540 struct varpool_node *node = varpool_node (entry->var_decl);
17541 if (node->needed)
17543 die->die_perennial_p = 1;
17544 /* Keep the parent DIEs as well. */
17545 while ((die = die->die_parent) && die->die_perennial_p == 0)
17546 die->die_perennial_p = 1;
17549 return 1;
17552 /* Mark all members of used_types_hash as perennial. */
17554 static void
17555 premark_used_types (void)
17557 if (cfun && cfun->used_types_hash)
17558 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
17561 /* Mark all members of types_used_by_vars_entry as perennial. */
17563 static void
17564 premark_types_used_by_global_vars (void)
17566 if (types_used_by_vars_hash)
17567 htab_traverse (types_used_by_vars_hash,
17568 premark_types_used_by_global_vars_helper, NULL);
17571 /* Generate a DIE to represent a declared function (either file-scope or
17572 block-local). */
17574 static void
17575 gen_subprogram_die (tree decl, dw_die_ref context_die)
17577 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
17578 tree origin = decl_ultimate_origin (decl);
17579 dw_die_ref subr_die;
17580 tree fn_arg_types;
17581 tree outer_scope;
17582 dw_die_ref old_die = lookup_decl_die (decl);
17583 int declaration = (current_function_decl != decl
17584 || class_or_namespace_scope_p (context_die));
17586 premark_used_types ();
17588 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
17589 started to generate the abstract instance of an inline, decided to output
17590 its containing class, and proceeded to emit the declaration of the inline
17591 from the member list for the class. If so, DECLARATION takes priority;
17592 we'll get back to the abstract instance when done with the class. */
17594 /* The class-scope declaration DIE must be the primary DIE. */
17595 if (origin && declaration && class_or_namespace_scope_p (context_die))
17597 origin = NULL;
17598 gcc_assert (!old_die);
17601 /* Now that the C++ front end lazily declares artificial member fns, we
17602 might need to retrofit the declaration into its class. */
17603 if (!declaration && !origin && !old_die
17604 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
17605 && !class_or_namespace_scope_p (context_die)
17606 && debug_info_level > DINFO_LEVEL_TERSE)
17607 old_die = force_decl_die (decl);
17609 if (origin != NULL)
17611 gcc_assert (!declaration || local_scope_p (context_die));
17613 /* Fixup die_parent for the abstract instance of a nested
17614 inline function. */
17615 if (old_die && old_die->die_parent == NULL)
17616 add_child_die (context_die, old_die);
17618 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
17619 add_abstract_origin_attribute (subr_die, origin);
17621 else if (old_die)
17623 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
17624 struct dwarf_file_data * file_index = lookup_filename (s.file);
17626 if (!get_AT_flag (old_die, DW_AT_declaration)
17627 /* We can have a normal definition following an inline one in the
17628 case of redefinition of GNU C extern inlines.
17629 It seems reasonable to use AT_specification in this case. */
17630 && !get_AT (old_die, DW_AT_inline))
17632 /* Detect and ignore this case, where we are trying to output
17633 something we have already output. */
17634 return;
17637 /* If the definition comes from the same place as the declaration,
17638 maybe use the old DIE. We always want the DIE for this function
17639 that has the *_pc attributes to be under comp_unit_die so the
17640 debugger can find it. We also need to do this for abstract
17641 instances of inlines, since the spec requires the out-of-line copy
17642 to have the same parent. For local class methods, this doesn't
17643 apply; we just use the old DIE. */
17644 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
17645 && (DECL_ARTIFICIAL (decl)
17646 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
17647 && (get_AT_unsigned (old_die, DW_AT_decl_line)
17648 == (unsigned) s.line))))
17650 subr_die = old_die;
17652 /* Clear out the declaration attribute and the formal parameters.
17653 Do not remove all children, because it is possible that this
17654 declaration die was forced using force_decl_die(). In such
17655 cases die that forced declaration die (e.g. TAG_imported_module)
17656 is one of the children that we do not want to remove. */
17657 remove_AT (subr_die, DW_AT_declaration);
17658 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
17660 else
17662 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
17663 add_AT_specification (subr_die, old_die);
17664 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
17665 add_AT_file (subr_die, DW_AT_decl_file, file_index);
17666 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
17667 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
17670 else
17672 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
17674 if (TREE_PUBLIC (decl))
17675 add_AT_flag (subr_die, DW_AT_external, 1);
17677 add_name_and_src_coords_attributes (subr_die, decl);
17678 if (debug_info_level > DINFO_LEVEL_TERSE)
17680 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
17681 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
17682 0, 0, context_die);
17685 add_pure_or_virtual_attribute (subr_die, decl);
17686 if (DECL_ARTIFICIAL (decl))
17687 add_AT_flag (subr_die, DW_AT_artificial, 1);
17689 if (TREE_PROTECTED (decl))
17690 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
17691 else if (TREE_PRIVATE (decl))
17692 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
17695 if (declaration)
17697 if (!old_die || !get_AT (old_die, DW_AT_inline))
17699 add_AT_flag (subr_die, DW_AT_declaration, 1);
17701 /* If this is an explicit function declaration then generate
17702 a DW_AT_explicit attribute. */
17703 if (lang_hooks.decls.function_decl_explicit_p (decl)
17704 && (dwarf_version >= 3 || !dwarf_strict))
17705 add_AT_flag (subr_die, DW_AT_explicit, 1);
17707 /* The first time we see a member function, it is in the context of
17708 the class to which it belongs. We make sure of this by emitting
17709 the class first. The next time is the definition, which is
17710 handled above. The two may come from the same source text.
17712 Note that force_decl_die() forces function declaration die. It is
17713 later reused to represent definition. */
17714 equate_decl_number_to_die (decl, subr_die);
17717 else if (DECL_ABSTRACT (decl))
17719 if (DECL_DECLARED_INLINE_P (decl))
17721 if (cgraph_function_possibly_inlined_p (decl))
17722 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
17723 else
17724 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
17726 else
17728 if (cgraph_function_possibly_inlined_p (decl))
17729 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
17730 else
17731 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
17734 if (DECL_DECLARED_INLINE_P (decl)
17735 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
17736 add_AT_flag (subr_die, DW_AT_artificial, 1);
17738 equate_decl_number_to_die (decl, subr_die);
17740 else if (!DECL_EXTERNAL (decl))
17742 HOST_WIDE_INT cfa_fb_offset;
17744 if (!old_die || !get_AT (old_die, DW_AT_inline))
17745 equate_decl_number_to_die (decl, subr_die);
17747 if (!flag_reorder_blocks_and_partition)
17749 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
17750 current_function_funcdef_no);
17751 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
17752 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
17753 current_function_funcdef_no);
17754 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
17756 add_pubname (decl, subr_die);
17757 add_arange (decl, subr_die);
17759 else
17760 { /* Do nothing for now; maybe need to duplicate die, one for
17761 hot section and one for cold section, then use the hot/cold
17762 section begin/end labels to generate the aranges... */
17764 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
17765 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
17766 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
17767 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
17769 add_pubname (decl, subr_die);
17770 add_arange (decl, subr_die);
17771 add_arange (decl, subr_die);
17775 #ifdef MIPS_DEBUGGING_INFO
17776 /* Add a reference to the FDE for this routine. */
17777 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
17778 #endif
17780 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
17782 /* We define the "frame base" as the function's CFA. This is more
17783 convenient for several reasons: (1) It's stable across the prologue
17784 and epilogue, which makes it better than just a frame pointer,
17785 (2) With dwarf3, there exists a one-byte encoding that allows us
17786 to reference the .debug_frame data by proxy, but failing that,
17787 (3) We can at least reuse the code inspection and interpretation
17788 code that determines the CFA position at various points in the
17789 function. */
17790 if (dwarf_version >= 3)
17792 dw_loc_descr_ref op = new_loc_descr (DW_OP_call_frame_cfa, 0, 0);
17793 add_AT_loc (subr_die, DW_AT_frame_base, op);
17795 else
17797 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
17798 if (list->dw_loc_next)
17799 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
17800 else
17801 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
17804 /* Compute a displacement from the "steady-state frame pointer" to
17805 the CFA. The former is what all stack slots and argument slots
17806 will reference in the rtl; the later is what we've told the
17807 debugger about. We'll need to adjust all frame_base references
17808 by this displacement. */
17809 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
17811 if (cfun->static_chain_decl)
17812 add_AT_location_description (subr_die, DW_AT_static_link,
17813 loc_list_from_tree (cfun->static_chain_decl, 2));
17816 /* Generate child dies for template paramaters. */
17817 if (debug_info_level > DINFO_LEVEL_TERSE)
17818 gen_generic_params_dies (decl);
17820 /* Now output descriptions of the arguments for this function. This gets
17821 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
17822 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
17823 `...' at the end of the formal parameter list. In order to find out if
17824 there was a trailing ellipsis or not, we must instead look at the type
17825 associated with the FUNCTION_DECL. This will be a node of type
17826 FUNCTION_TYPE. If the chain of type nodes hanging off of this
17827 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
17828 an ellipsis at the end. */
17830 /* In the case where we are describing a mere function declaration, all we
17831 need to do here (and all we *can* do here) is to describe the *types* of
17832 its formal parameters. */
17833 if (debug_info_level <= DINFO_LEVEL_TERSE)
17835 else if (declaration)
17836 gen_formal_types_die (decl, subr_die);
17837 else
17839 /* Generate DIEs to represent all known formal parameters. */
17840 tree parm = DECL_ARGUMENTS (decl);
17841 tree generic_decl = lang_hooks.decls.get_generic_function_decl (decl);
17842 tree generic_decl_parm = generic_decl
17843 ? DECL_ARGUMENTS (generic_decl)
17844 : NULL;
17846 /* Now we want to walk the list of parameters of the function and
17847 emit their relevant DIEs.
17849 We consider the case of DECL being an instance of a generic function
17850 as well as it being a normal function.
17852 If DECL is an instance of a generic function we walk the
17853 parameters of the generic function declaration _and_ the parameters of
17854 DECL itself. This is useful because we want to emit specific DIEs for
17855 function parameter packs and those are declared as part of the
17856 generic function declaration. In that particular case,
17857 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
17858 That DIE has children DIEs representing the set of arguments
17859 of the pack. Note that the set of pack arguments can be empty.
17860 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
17861 children DIE.
17863 Otherwise, we just consider the parameters of DECL. */
17864 while (generic_decl_parm || parm)
17866 if (generic_decl_parm
17867 && lang_hooks.function_parameter_pack_p (generic_decl_parm))
17868 gen_formal_parameter_pack_die (generic_decl_parm,
17869 parm, subr_die,
17870 &parm);
17871 else if (parm)
17873 gen_decl_die (parm, NULL, subr_die);
17874 parm = TREE_CHAIN (parm);
17877 if (generic_decl_parm)
17878 generic_decl_parm = TREE_CHAIN (generic_decl_parm);
17881 /* Decide whether we need an unspecified_parameters DIE at the end.
17882 There are 2 more cases to do this for: 1) the ansi ... declaration -
17883 this is detectable when the end of the arg list is not a
17884 void_type_node 2) an unprototyped function declaration (not a
17885 definition). This just means that we have no info about the
17886 parameters at all. */
17887 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
17888 if (fn_arg_types != NULL)
17890 /* This is the prototyped case, check for.... */
17891 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
17892 gen_unspecified_parameters_die (decl, subr_die);
17894 else if (DECL_INITIAL (decl) == NULL_TREE)
17895 gen_unspecified_parameters_die (decl, subr_die);
17898 /* Output Dwarf info for all of the stuff within the body of the function
17899 (if it has one - it may be just a declaration). */
17900 outer_scope = DECL_INITIAL (decl);
17902 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
17903 a function. This BLOCK actually represents the outermost binding contour
17904 for the function, i.e. the contour in which the function's formal
17905 parameters and labels get declared. Curiously, it appears that the front
17906 end doesn't actually put the PARM_DECL nodes for the current function onto
17907 the BLOCK_VARS list for this outer scope, but are strung off of the
17908 DECL_ARGUMENTS list for the function instead.
17910 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
17911 the LABEL_DECL nodes for the function however, and we output DWARF info
17912 for those in decls_for_scope. Just within the `outer_scope' there will be
17913 a BLOCK node representing the function's outermost pair of curly braces,
17914 and any blocks used for the base and member initializers of a C++
17915 constructor function. */
17916 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
17918 /* Emit a DW_TAG_variable DIE for a named return value. */
17919 if (DECL_NAME (DECL_RESULT (decl)))
17920 gen_decl_die (DECL_RESULT (decl), NULL, subr_die);
17922 current_function_has_inlines = 0;
17923 decls_for_scope (outer_scope, subr_die, 0);
17925 #if 0 && defined (MIPS_DEBUGGING_INFO)
17926 if (current_function_has_inlines)
17928 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
17929 if (! comp_unit_has_inlines)
17931 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
17932 comp_unit_has_inlines = 1;
17935 #endif
17937 /* Add the calling convention attribute if requested. */
17938 add_calling_convention_attribute (subr_die, decl);
17942 /* Returns a hash value for X (which really is a die_struct). */
17944 static hashval_t
17945 common_block_die_table_hash (const void *x)
17947 const_dw_die_ref d = (const_dw_die_ref) x;
17948 return (hashval_t) d->decl_id ^ htab_hash_pointer (d->die_parent);
17951 /* Return nonzero if decl_id and die_parent of die_struct X is the same
17952 as decl_id and die_parent of die_struct Y. */
17954 static int
17955 common_block_die_table_eq (const void *x, const void *y)
17957 const_dw_die_ref d = (const_dw_die_ref) x;
17958 const_dw_die_ref e = (const_dw_die_ref) y;
17959 return d->decl_id == e->decl_id && d->die_parent == e->die_parent;
17962 /* Generate a DIE to represent a declared data object.
17963 Either DECL or ORIGIN must be non-null. */
17965 static void
17966 gen_variable_die (tree decl, tree origin, dw_die_ref context_die)
17968 HOST_WIDE_INT off;
17969 tree com_decl;
17970 tree decl_or_origin = decl ? decl : origin;
17971 dw_die_ref var_die;
17972 dw_die_ref old_die = decl ? lookup_decl_die (decl) : NULL;
17973 dw_die_ref origin_die;
17974 int declaration = (DECL_EXTERNAL (decl_or_origin)
17975 || class_or_namespace_scope_p (context_die));
17977 if (!origin)
17978 origin = decl_ultimate_origin (decl);
17980 com_decl = fortran_common (decl_or_origin, &off);
17982 /* Symbol in common gets emitted as a child of the common block, in the form
17983 of a data member. */
17984 if (com_decl)
17986 dw_die_ref com_die;
17987 dw_loc_list_ref loc;
17988 die_node com_die_arg;
17990 var_die = lookup_decl_die (decl_or_origin);
17991 if (var_die)
17993 if (get_AT (var_die, DW_AT_location) == NULL)
17995 loc = loc_list_from_tree (com_decl, off ? 1 : 2);
17996 if (loc)
17998 if (off)
18000 /* Optimize the common case. */
18001 if (single_element_loc_list_p (loc)
18002 && loc->expr->dw_loc_opc == DW_OP_addr
18003 && loc->expr->dw_loc_next == NULL
18004 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr)
18005 == SYMBOL_REF)
18006 loc->expr->dw_loc_oprnd1.v.val_addr
18007 = plus_constant (loc->expr->dw_loc_oprnd1.v.val_addr, off);
18008 else
18009 loc_list_plus_const (loc, off);
18011 add_AT_location_description (var_die, DW_AT_location, loc);
18012 remove_AT (var_die, DW_AT_declaration);
18015 return;
18018 if (common_block_die_table == NULL)
18019 common_block_die_table
18020 = htab_create_ggc (10, common_block_die_table_hash,
18021 common_block_die_table_eq, NULL);
18023 com_die_arg.decl_id = DECL_UID (com_decl);
18024 com_die_arg.die_parent = context_die;
18025 com_die = (dw_die_ref) htab_find (common_block_die_table, &com_die_arg);
18026 loc = loc_list_from_tree (com_decl, 2);
18027 if (com_die == NULL)
18029 const char *cnam
18030 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl));
18031 void **slot;
18033 com_die = new_die (DW_TAG_common_block, context_die, decl);
18034 add_name_and_src_coords_attributes (com_die, com_decl);
18035 if (loc)
18037 add_AT_location_description (com_die, DW_AT_location, loc);
18038 /* Avoid sharing the same loc descriptor between
18039 DW_TAG_common_block and DW_TAG_variable. */
18040 loc = loc_list_from_tree (com_decl, 2);
18042 else if (DECL_EXTERNAL (decl))
18043 add_AT_flag (com_die, DW_AT_declaration, 1);
18044 add_pubname_string (cnam, com_die); /* ??? needed? */
18045 com_die->decl_id = DECL_UID (com_decl);
18046 slot = htab_find_slot (common_block_die_table, com_die, INSERT);
18047 *slot = (void *) com_die;
18049 else if (get_AT (com_die, DW_AT_location) == NULL && loc)
18051 add_AT_location_description (com_die, DW_AT_location, loc);
18052 loc = loc_list_from_tree (com_decl, 2);
18053 remove_AT (com_die, DW_AT_declaration);
18055 var_die = new_die (DW_TAG_variable, com_die, decl);
18056 add_name_and_src_coords_attributes (var_die, decl);
18057 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
18058 TREE_THIS_VOLATILE (decl), context_die);
18059 add_AT_flag (var_die, DW_AT_external, 1);
18060 if (loc)
18062 if (off)
18064 /* Optimize the common case. */
18065 if (single_element_loc_list_p (loc)
18066 && loc->expr->dw_loc_opc == DW_OP_addr
18067 && loc->expr->dw_loc_next == NULL
18068 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF)
18069 loc->expr->dw_loc_oprnd1.v.val_addr
18070 = plus_constant (loc->expr->dw_loc_oprnd1.v.val_addr, off);
18071 else
18072 loc_list_plus_const (loc, off);
18074 add_AT_location_description (var_die, DW_AT_location, loc);
18076 else if (DECL_EXTERNAL (decl))
18077 add_AT_flag (var_die, DW_AT_declaration, 1);
18078 equate_decl_number_to_die (decl, var_die);
18079 return;
18082 /* If the compiler emitted a definition for the DECL declaration
18083 and if we already emitted a DIE for it, don't emit a second
18084 DIE for it again. */
18085 if (old_die
18086 && declaration)
18087 return;
18089 /* For static data members, the declaration in the class is supposed
18090 to have DW_TAG_member tag; the specification should still be
18091 DW_TAG_variable referencing the DW_TAG_member DIE. */
18092 if (declaration && class_scope_p (context_die))
18093 var_die = new_die (DW_TAG_member, context_die, decl);
18094 else
18095 var_die = new_die (DW_TAG_variable, context_die, decl);
18097 origin_die = NULL;
18098 if (origin != NULL)
18099 origin_die = add_abstract_origin_attribute (var_die, origin);
18101 /* Loop unrolling can create multiple blocks that refer to the same
18102 static variable, so we must test for the DW_AT_declaration flag.
18104 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
18105 copy decls and set the DECL_ABSTRACT flag on them instead of
18106 sharing them.
18108 ??? Duplicated blocks have been rewritten to use .debug_ranges.
18110 ??? The declare_in_namespace support causes us to get two DIEs for one
18111 variable, both of which are declarations. We want to avoid considering
18112 one to be a specification, so we must test that this DIE is not a
18113 declaration. */
18114 else if (old_die && TREE_STATIC (decl) && ! declaration
18115 && get_AT_flag (old_die, DW_AT_declaration) == 1)
18117 /* This is a definition of a C++ class level static. */
18118 add_AT_specification (var_die, old_die);
18119 if (DECL_NAME (decl))
18121 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
18122 struct dwarf_file_data * file_index = lookup_filename (s.file);
18124 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
18125 add_AT_file (var_die, DW_AT_decl_file, file_index);
18127 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
18128 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
18131 else
18133 tree type = TREE_TYPE (decl);
18135 add_name_and_src_coords_attributes (var_die, decl);
18136 if (decl_by_reference_p (decl))
18137 add_type_attribute (var_die, TREE_TYPE (type), 0, 0, context_die);
18138 else
18139 add_type_attribute (var_die, type, TREE_READONLY (decl),
18140 TREE_THIS_VOLATILE (decl), context_die);
18142 if (TREE_PUBLIC (decl))
18143 add_AT_flag (var_die, DW_AT_external, 1);
18145 if (DECL_ARTIFICIAL (decl))
18146 add_AT_flag (var_die, DW_AT_artificial, 1);
18148 if (TREE_PROTECTED (decl))
18149 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
18150 else if (TREE_PRIVATE (decl))
18151 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
18154 if (declaration)
18155 add_AT_flag (var_die, DW_AT_declaration, 1);
18157 if (decl && (DECL_ABSTRACT (decl) || declaration))
18158 equate_decl_number_to_die (decl, var_die);
18160 if (! declaration
18161 && (! DECL_ABSTRACT (decl_or_origin)
18162 /* Local static vars are shared between all clones/inlines,
18163 so emit DW_AT_location on the abstract DIE if DECL_RTL is
18164 already set. */
18165 || (TREE_CODE (decl_or_origin) == VAR_DECL
18166 && TREE_STATIC (decl_or_origin)
18167 && DECL_RTL_SET_P (decl_or_origin)))
18168 /* When abstract origin already has DW_AT_location attribute, no need
18169 to add it again. */
18170 && (origin_die == NULL || get_AT (origin_die, DW_AT_location) == NULL))
18172 if (TREE_CODE (decl_or_origin) == VAR_DECL && TREE_STATIC (decl_or_origin)
18173 && !TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl_or_origin)))
18174 defer_location (decl_or_origin, var_die);
18175 else
18176 add_location_or_const_value_attribute (var_die,
18177 decl_or_origin,
18178 DW_AT_location);
18179 add_pubname (decl_or_origin, var_die);
18181 else
18182 tree_add_const_value_attribute_for_decl (var_die, decl_or_origin);
18185 /* Generate a DIE to represent a named constant. */
18187 static void
18188 gen_const_die (tree decl, dw_die_ref context_die)
18190 dw_die_ref const_die;
18191 tree type = TREE_TYPE (decl);
18193 const_die = new_die (DW_TAG_constant, context_die, decl);
18194 add_name_and_src_coords_attributes (const_die, decl);
18195 add_type_attribute (const_die, type, 1, 0, context_die);
18196 if (TREE_PUBLIC (decl))
18197 add_AT_flag (const_die, DW_AT_external, 1);
18198 if (DECL_ARTIFICIAL (decl))
18199 add_AT_flag (const_die, DW_AT_artificial, 1);
18200 tree_add_const_value_attribute_for_decl (const_die, decl);
18203 /* Generate a DIE to represent a label identifier. */
18205 static void
18206 gen_label_die (tree decl, dw_die_ref context_die)
18208 tree origin = decl_ultimate_origin (decl);
18209 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
18210 rtx insn;
18211 char label[MAX_ARTIFICIAL_LABEL_BYTES];
18213 if (origin != NULL)
18214 add_abstract_origin_attribute (lbl_die, origin);
18215 else
18216 add_name_and_src_coords_attributes (lbl_die, decl);
18218 if (DECL_ABSTRACT (decl))
18219 equate_decl_number_to_die (decl, lbl_die);
18220 else
18222 insn = DECL_RTL_IF_SET (decl);
18224 /* Deleted labels are programmer specified labels which have been
18225 eliminated because of various optimizations. We still emit them
18226 here so that it is possible to put breakpoints on them. */
18227 if (insn
18228 && (LABEL_P (insn)
18229 || ((NOTE_P (insn)
18230 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
18232 /* When optimization is enabled (via -O) some parts of the compiler
18233 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
18234 represent source-level labels which were explicitly declared by
18235 the user. This really shouldn't be happening though, so catch
18236 it if it ever does happen. */
18237 gcc_assert (!INSN_DELETED_P (insn));
18239 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
18240 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
18245 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
18246 attributes to the DIE for a block STMT, to describe where the inlined
18247 function was called from. This is similar to add_src_coords_attributes. */
18249 static inline void
18250 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
18252 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
18254 if (dwarf_version >= 3 || !dwarf_strict)
18256 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
18257 add_AT_unsigned (die, DW_AT_call_line, s.line);
18262 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
18263 Add low_pc and high_pc attributes to the DIE for a block STMT. */
18265 static inline void
18266 add_high_low_attributes (tree stmt, dw_die_ref die)
18268 char label[MAX_ARTIFICIAL_LABEL_BYTES];
18270 if (BLOCK_FRAGMENT_CHAIN (stmt)
18271 && (dwarf_version >= 3 || !dwarf_strict))
18273 tree chain;
18275 if (inlined_function_outer_scope_p (stmt))
18277 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
18278 BLOCK_NUMBER (stmt));
18279 add_AT_lbl_id (die, DW_AT_entry_pc, label);
18282 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
18284 chain = BLOCK_FRAGMENT_CHAIN (stmt);
18287 add_ranges (chain);
18288 chain = BLOCK_FRAGMENT_CHAIN (chain);
18290 while (chain);
18291 add_ranges (NULL);
18293 else
18295 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
18296 BLOCK_NUMBER (stmt));
18297 add_AT_lbl_id (die, DW_AT_low_pc, label);
18298 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
18299 BLOCK_NUMBER (stmt));
18300 add_AT_lbl_id (die, DW_AT_high_pc, label);
18304 /* Generate a DIE for a lexical block. */
18306 static void
18307 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
18309 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
18311 if (! BLOCK_ABSTRACT (stmt) && TREE_ASM_WRITTEN (stmt))
18312 add_high_low_attributes (stmt, stmt_die);
18314 decls_for_scope (stmt, stmt_die, depth);
18317 /* Generate a DIE for an inlined subprogram. */
18319 static void
18320 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
18322 tree decl;
18324 /* The instance of function that is effectively being inlined shall not
18325 be abstract. */
18326 gcc_assert (! BLOCK_ABSTRACT (stmt));
18328 decl = block_ultimate_origin (stmt);
18330 /* Emit info for the abstract instance first, if we haven't yet. We
18331 must emit this even if the block is abstract, otherwise when we
18332 emit the block below (or elsewhere), we may end up trying to emit
18333 a die whose origin die hasn't been emitted, and crashing. */
18334 dwarf2out_abstract_function (decl);
18336 if (! BLOCK_ABSTRACT (stmt))
18338 dw_die_ref subr_die
18339 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
18341 add_abstract_origin_attribute (subr_die, decl);
18342 if (TREE_ASM_WRITTEN (stmt))
18343 add_high_low_attributes (stmt, subr_die);
18344 add_call_src_coords_attributes (stmt, subr_die);
18346 decls_for_scope (stmt, subr_die, depth);
18347 current_function_has_inlines = 1;
18351 /* Generate a DIE for a field in a record, or structure. */
18353 static void
18354 gen_field_die (tree decl, dw_die_ref context_die)
18356 dw_die_ref decl_die;
18358 if (TREE_TYPE (decl) == error_mark_node)
18359 return;
18361 decl_die = new_die (DW_TAG_member, context_die, decl);
18362 add_name_and_src_coords_attributes (decl_die, decl);
18363 add_type_attribute (decl_die, member_declared_type (decl),
18364 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
18365 context_die);
18367 if (DECL_BIT_FIELD_TYPE (decl))
18369 add_byte_size_attribute (decl_die, decl);
18370 add_bit_size_attribute (decl_die, decl);
18371 add_bit_offset_attribute (decl_die, decl);
18374 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
18375 add_data_member_location_attribute (decl_die, decl);
18377 if (DECL_ARTIFICIAL (decl))
18378 add_AT_flag (decl_die, DW_AT_artificial, 1);
18380 if (TREE_PROTECTED (decl))
18381 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
18382 else if (TREE_PRIVATE (decl))
18383 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
18385 /* Equate decl number to die, so that we can look up this decl later on. */
18386 equate_decl_number_to_die (decl, decl_die);
18389 #if 0
18390 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
18391 Use modified_type_die instead.
18392 We keep this code here just in case these types of DIEs may be needed to
18393 represent certain things in other languages (e.g. Pascal) someday. */
18395 static void
18396 gen_pointer_type_die (tree type, dw_die_ref context_die)
18398 dw_die_ref ptr_die
18399 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
18401 equate_type_number_to_die (type, ptr_die);
18402 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
18403 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
18406 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
18407 Use modified_type_die instead.
18408 We keep this code here just in case these types of DIEs may be needed to
18409 represent certain things in other languages (e.g. Pascal) someday. */
18411 static void
18412 gen_reference_type_die (tree type, dw_die_ref context_die)
18414 dw_die_ref ref_die
18415 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
18417 equate_type_number_to_die (type, ref_die);
18418 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
18419 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
18421 #endif
18423 /* Generate a DIE for a pointer to a member type. */
18425 static void
18426 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
18428 dw_die_ref ptr_die
18429 = new_die (DW_TAG_ptr_to_member_type,
18430 scope_die_for (type, context_die), type);
18432 equate_type_number_to_die (type, ptr_die);
18433 add_AT_die_ref (ptr_die, DW_AT_containing_type,
18434 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
18435 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
18438 /* Generate the DIE for the compilation unit. */
18440 static dw_die_ref
18441 gen_compile_unit_die (const char *filename)
18443 dw_die_ref die;
18444 char producer[250];
18445 const char *language_string = lang_hooks.name;
18446 int language;
18448 die = new_die (DW_TAG_compile_unit, NULL, NULL);
18450 if (filename)
18452 add_name_attribute (die, filename);
18453 /* Don't add cwd for <built-in>. */
18454 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
18455 add_comp_dir_attribute (die);
18458 sprintf (producer, "%s %s", language_string, version_string);
18460 #ifdef MIPS_DEBUGGING_INFO
18461 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
18462 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
18463 not appear in the producer string, the debugger reaches the conclusion
18464 that the object file is stripped and has no debugging information.
18465 To get the MIPS/SGI debugger to believe that there is debugging
18466 information in the object file, we add a -g to the producer string. */
18467 if (debug_info_level > DINFO_LEVEL_TERSE)
18468 strcat (producer, " -g");
18469 #endif
18471 add_AT_string (die, DW_AT_producer, producer);
18473 language = DW_LANG_C89;
18474 if (strcmp (language_string, "GNU C++") == 0)
18475 language = DW_LANG_C_plus_plus;
18476 else if (strcmp (language_string, "GNU F77") == 0)
18477 language = DW_LANG_Fortran77;
18478 else if (strcmp (language_string, "GNU Pascal") == 0)
18479 language = DW_LANG_Pascal83;
18480 else if (dwarf_version >= 3 || !dwarf_strict)
18482 if (strcmp (language_string, "GNU Ada") == 0)
18483 language = DW_LANG_Ada95;
18484 else if (strcmp (language_string, "GNU Fortran") == 0)
18485 language = DW_LANG_Fortran95;
18486 else if (strcmp (language_string, "GNU Java") == 0)
18487 language = DW_LANG_Java;
18488 else if (strcmp (language_string, "GNU Objective-C") == 0)
18489 language = DW_LANG_ObjC;
18490 else if (strcmp (language_string, "GNU Objective-C++") == 0)
18491 language = DW_LANG_ObjC_plus_plus;
18494 add_AT_unsigned (die, DW_AT_language, language);
18495 return die;
18498 /* Generate the DIE for a base class. */
18500 static void
18501 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
18503 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
18505 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
18506 add_data_member_location_attribute (die, binfo);
18508 if (BINFO_VIRTUAL_P (binfo))
18509 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
18511 if (access == access_public_node)
18512 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
18513 else if (access == access_protected_node)
18514 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
18517 /* Generate a DIE for a class member. */
18519 static void
18520 gen_member_die (tree type, dw_die_ref context_die)
18522 tree member;
18523 tree binfo = TYPE_BINFO (type);
18524 dw_die_ref child;
18526 /* If this is not an incomplete type, output descriptions of each of its
18527 members. Note that as we output the DIEs necessary to represent the
18528 members of this record or union type, we will also be trying to output
18529 DIEs to represent the *types* of those members. However the `type'
18530 function (above) will specifically avoid generating type DIEs for member
18531 types *within* the list of member DIEs for this (containing) type except
18532 for those types (of members) which are explicitly marked as also being
18533 members of this (containing) type themselves. The g++ front- end can
18534 force any given type to be treated as a member of some other (containing)
18535 type by setting the TYPE_CONTEXT of the given (member) type to point to
18536 the TREE node representing the appropriate (containing) type. */
18538 /* First output info about the base classes. */
18539 if (binfo)
18541 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
18542 int i;
18543 tree base;
18545 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
18546 gen_inheritance_die (base,
18547 (accesses ? VEC_index (tree, accesses, i)
18548 : access_public_node), context_die);
18551 /* Now output info about the data members and type members. */
18552 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
18554 /* If we thought we were generating minimal debug info for TYPE
18555 and then changed our minds, some of the member declarations
18556 may have already been defined. Don't define them again, but
18557 do put them in the right order. */
18559 child = lookup_decl_die (member);
18560 if (child)
18561 splice_child_die (context_die, child);
18562 else
18563 gen_decl_die (member, NULL, context_die);
18566 /* Now output info about the function members (if any). */
18567 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
18569 /* Don't include clones in the member list. */
18570 if (DECL_ABSTRACT_ORIGIN (member))
18571 continue;
18573 child = lookup_decl_die (member);
18574 if (child)
18575 splice_child_die (context_die, child);
18576 else
18577 gen_decl_die (member, NULL, context_die);
18581 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
18582 is set, we pretend that the type was never defined, so we only get the
18583 member DIEs needed by later specification DIEs. */
18585 static void
18586 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
18587 enum debug_info_usage usage)
18589 dw_die_ref type_die = lookup_type_die (type);
18590 dw_die_ref scope_die = 0;
18591 int nested = 0;
18592 int complete = (TYPE_SIZE (type)
18593 && (! TYPE_STUB_DECL (type)
18594 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
18595 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
18596 complete = complete && should_emit_struct_debug (type, usage);
18598 if (type_die && ! complete)
18599 return;
18601 if (TYPE_CONTEXT (type) != NULL_TREE
18602 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
18603 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
18604 nested = 1;
18606 scope_die = scope_die_for (type, context_die);
18608 if (! type_die || (nested && scope_die == comp_unit_die))
18609 /* First occurrence of type or toplevel definition of nested class. */
18611 dw_die_ref old_die = type_die;
18613 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
18614 ? record_type_tag (type) : DW_TAG_union_type,
18615 scope_die, type);
18616 equate_type_number_to_die (type, type_die);
18617 if (old_die)
18618 add_AT_specification (type_die, old_die);
18619 else
18620 add_name_attribute (type_die, type_tag (type));
18622 else
18623 remove_AT (type_die, DW_AT_declaration);
18625 /* Generate child dies for template paramaters. */
18626 if (debug_info_level > DINFO_LEVEL_TERSE
18627 && COMPLETE_TYPE_P (type))
18628 gen_generic_params_dies (type);
18630 /* If this type has been completed, then give it a byte_size attribute and
18631 then give a list of members. */
18632 if (complete && !ns_decl)
18634 /* Prevent infinite recursion in cases where the type of some member of
18635 this type is expressed in terms of this type itself. */
18636 TREE_ASM_WRITTEN (type) = 1;
18637 add_byte_size_attribute (type_die, type);
18638 if (TYPE_STUB_DECL (type) != NULL_TREE)
18639 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
18641 /* If the first reference to this type was as the return type of an
18642 inline function, then it may not have a parent. Fix this now. */
18643 if (type_die->die_parent == NULL)
18644 add_child_die (scope_die, type_die);
18646 push_decl_scope (type);
18647 gen_member_die (type, type_die);
18648 pop_decl_scope ();
18650 /* GNU extension: Record what type our vtable lives in. */
18651 if (TYPE_VFIELD (type))
18653 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
18655 gen_type_die (vtype, context_die);
18656 add_AT_die_ref (type_die, DW_AT_containing_type,
18657 lookup_type_die (vtype));
18660 else
18662 add_AT_flag (type_die, DW_AT_declaration, 1);
18664 /* We don't need to do this for function-local types. */
18665 if (TYPE_STUB_DECL (type)
18666 && ! decl_function_context (TYPE_STUB_DECL (type)))
18667 VEC_safe_push (tree, gc, incomplete_types, type);
18670 if (get_AT (type_die, DW_AT_name))
18671 add_pubtype (type, type_die);
18674 /* Generate a DIE for a subroutine _type_. */
18676 static void
18677 gen_subroutine_type_die (tree type, dw_die_ref context_die)
18679 tree return_type = TREE_TYPE (type);
18680 dw_die_ref subr_die
18681 = new_die (DW_TAG_subroutine_type,
18682 scope_die_for (type, context_die), type);
18684 equate_type_number_to_die (type, subr_die);
18685 add_prototyped_attribute (subr_die, type);
18686 add_type_attribute (subr_die, return_type, 0, 0, context_die);
18687 gen_formal_types_die (type, subr_die);
18689 if (get_AT (subr_die, DW_AT_name))
18690 add_pubtype (type, subr_die);
18693 /* Generate a DIE for a type definition. */
18695 static void
18696 gen_typedef_die (tree decl, dw_die_ref context_die)
18698 dw_die_ref type_die;
18699 tree origin;
18701 if (TREE_ASM_WRITTEN (decl))
18702 return;
18704 TREE_ASM_WRITTEN (decl) = 1;
18705 type_die = new_die (DW_TAG_typedef, context_die, decl);
18706 origin = decl_ultimate_origin (decl);
18707 if (origin != NULL)
18708 add_abstract_origin_attribute (type_die, origin);
18709 else
18711 tree type;
18713 add_name_and_src_coords_attributes (type_die, decl);
18714 if (DECL_ORIGINAL_TYPE (decl))
18716 type = DECL_ORIGINAL_TYPE (decl);
18718 gcc_assert (type != TREE_TYPE (decl));
18719 equate_type_number_to_die (TREE_TYPE (decl), type_die);
18721 else
18722 type = TREE_TYPE (decl);
18724 add_type_attribute (type_die, type, TREE_READONLY (decl),
18725 TREE_THIS_VOLATILE (decl), context_die);
18728 if (DECL_ABSTRACT (decl))
18729 equate_decl_number_to_die (decl, type_die);
18731 if (get_AT (type_die, DW_AT_name))
18732 add_pubtype (decl, type_die);
18735 /* Generate a type description DIE. */
18737 static void
18738 gen_type_die_with_usage (tree type, dw_die_ref context_die,
18739 enum debug_info_usage usage)
18741 int need_pop;
18742 struct array_descr_info info;
18744 if (type == NULL_TREE || type == error_mark_node)
18745 return;
18747 /* If TYPE is a typedef type variant, let's generate debug info
18748 for the parent typedef which TYPE is a type of. */
18749 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
18750 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
18752 if (TREE_ASM_WRITTEN (type))
18753 return;
18755 /* Prevent broken recursion; we can't hand off to the same type. */
18756 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
18758 /* Use the DIE of the containing namespace as the parent DIE of
18759 the type description DIE we want to generate. */
18760 if (DECL_CONTEXT (TYPE_NAME (type))
18761 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type))) == NAMESPACE_DECL)
18762 context_die = get_context_die (DECL_CONTEXT (TYPE_NAME (type)));
18764 TREE_ASM_WRITTEN (type) = 1;
18765 gen_decl_die (TYPE_NAME (type), NULL, context_die);
18766 return;
18769 /* If this is an array type with hidden descriptor, handle it first. */
18770 if (!TREE_ASM_WRITTEN (type)
18771 && lang_hooks.types.get_array_descr_info
18772 && lang_hooks.types.get_array_descr_info (type, &info)
18773 && (dwarf_version >= 3 || !dwarf_strict))
18775 gen_descr_array_type_die (type, &info, context_die);
18776 TREE_ASM_WRITTEN (type) = 1;
18777 return;
18780 /* We are going to output a DIE to represent the unqualified version
18781 of this type (i.e. without any const or volatile qualifiers) so
18782 get the main variant (i.e. the unqualified version) of this type
18783 now. (Vectors are special because the debugging info is in the
18784 cloned type itself). */
18785 if (TREE_CODE (type) != VECTOR_TYPE)
18786 type = type_main_variant (type);
18788 if (TREE_ASM_WRITTEN (type))
18789 return;
18791 switch (TREE_CODE (type))
18793 case ERROR_MARK:
18794 break;
18796 case POINTER_TYPE:
18797 case REFERENCE_TYPE:
18798 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
18799 ensures that the gen_type_die recursion will terminate even if the
18800 type is recursive. Recursive types are possible in Ada. */
18801 /* ??? We could perhaps do this for all types before the switch
18802 statement. */
18803 TREE_ASM_WRITTEN (type) = 1;
18805 /* For these types, all that is required is that we output a DIE (or a
18806 set of DIEs) to represent the "basis" type. */
18807 gen_type_die_with_usage (TREE_TYPE (type), context_die,
18808 DINFO_USAGE_IND_USE);
18809 break;
18811 case OFFSET_TYPE:
18812 /* This code is used for C++ pointer-to-data-member types.
18813 Output a description of the relevant class type. */
18814 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
18815 DINFO_USAGE_IND_USE);
18817 /* Output a description of the type of the object pointed to. */
18818 gen_type_die_with_usage (TREE_TYPE (type), context_die,
18819 DINFO_USAGE_IND_USE);
18821 /* Now output a DIE to represent this pointer-to-data-member type
18822 itself. */
18823 gen_ptr_to_mbr_type_die (type, context_die);
18824 break;
18826 case FUNCTION_TYPE:
18827 /* Force out return type (in case it wasn't forced out already). */
18828 gen_type_die_with_usage (TREE_TYPE (type), context_die,
18829 DINFO_USAGE_DIR_USE);
18830 gen_subroutine_type_die (type, context_die);
18831 break;
18833 case METHOD_TYPE:
18834 /* Force out return type (in case it wasn't forced out already). */
18835 gen_type_die_with_usage (TREE_TYPE (type), context_die,
18836 DINFO_USAGE_DIR_USE);
18837 gen_subroutine_type_die (type, context_die);
18838 break;
18840 case ARRAY_TYPE:
18841 gen_array_type_die (type, context_die);
18842 break;
18844 case VECTOR_TYPE:
18845 gen_array_type_die (type, context_die);
18846 break;
18848 case ENUMERAL_TYPE:
18849 case RECORD_TYPE:
18850 case UNION_TYPE:
18851 case QUAL_UNION_TYPE:
18852 /* If this is a nested type whose containing class hasn't been written
18853 out yet, writing it out will cover this one, too. This does not apply
18854 to instantiations of member class templates; they need to be added to
18855 the containing class as they are generated. FIXME: This hurts the
18856 idea of combining type decls from multiple TUs, since we can't predict
18857 what set of template instantiations we'll get. */
18858 if (TYPE_CONTEXT (type)
18859 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
18860 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
18862 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
18864 if (TREE_ASM_WRITTEN (type))
18865 return;
18867 /* If that failed, attach ourselves to the stub. */
18868 push_decl_scope (TYPE_CONTEXT (type));
18869 context_die = lookup_type_die (TYPE_CONTEXT (type));
18870 need_pop = 1;
18872 else if (TYPE_CONTEXT (type) != NULL_TREE
18873 && (TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL))
18875 /* If this type is local to a function that hasn't been written
18876 out yet, use a NULL context for now; it will be fixed up in
18877 decls_for_scope. */
18878 context_die = lookup_decl_die (TYPE_CONTEXT (type));
18879 need_pop = 0;
18881 else
18883 context_die = declare_in_namespace (type, context_die);
18884 need_pop = 0;
18887 if (TREE_CODE (type) == ENUMERAL_TYPE)
18889 /* This might have been written out by the call to
18890 declare_in_namespace. */
18891 if (!TREE_ASM_WRITTEN (type))
18892 gen_enumeration_type_die (type, context_die);
18894 else
18895 gen_struct_or_union_type_die (type, context_die, usage);
18897 if (need_pop)
18898 pop_decl_scope ();
18900 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
18901 it up if it is ever completed. gen_*_type_die will set it for us
18902 when appropriate. */
18903 return;
18905 case VOID_TYPE:
18906 case INTEGER_TYPE:
18907 case REAL_TYPE:
18908 case FIXED_POINT_TYPE:
18909 case COMPLEX_TYPE:
18910 case BOOLEAN_TYPE:
18911 /* No DIEs needed for fundamental types. */
18912 break;
18914 case LANG_TYPE:
18915 /* No Dwarf representation currently defined. */
18916 break;
18918 default:
18919 gcc_unreachable ();
18922 TREE_ASM_WRITTEN (type) = 1;
18925 static void
18926 gen_type_die (tree type, dw_die_ref context_die)
18928 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
18931 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
18932 things which are local to the given block. */
18934 static void
18935 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
18937 int must_output_die = 0;
18938 bool inlined_func;
18940 /* Ignore blocks that are NULL. */
18941 if (stmt == NULL_TREE)
18942 return;
18944 inlined_func = inlined_function_outer_scope_p (stmt);
18946 /* If the block is one fragment of a non-contiguous block, do not
18947 process the variables, since they will have been done by the
18948 origin block. Do process subblocks. */
18949 if (BLOCK_FRAGMENT_ORIGIN (stmt))
18951 tree sub;
18953 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
18954 gen_block_die (sub, context_die, depth + 1);
18956 return;
18959 /* Determine if we need to output any Dwarf DIEs at all to represent this
18960 block. */
18961 if (inlined_func)
18962 /* The outer scopes for inlinings *must* always be represented. We
18963 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
18964 must_output_die = 1;
18965 else
18967 /* Determine if this block directly contains any "significant"
18968 local declarations which we will need to output DIEs for. */
18969 if (debug_info_level > DINFO_LEVEL_TERSE)
18970 /* We are not in terse mode so *any* local declaration counts
18971 as being a "significant" one. */
18972 must_output_die = ((BLOCK_VARS (stmt) != NULL
18973 || BLOCK_NUM_NONLOCALIZED_VARS (stmt))
18974 && (TREE_USED (stmt)
18975 || TREE_ASM_WRITTEN (stmt)
18976 || BLOCK_ABSTRACT (stmt)));
18977 else if ((TREE_USED (stmt)
18978 || TREE_ASM_WRITTEN (stmt)
18979 || BLOCK_ABSTRACT (stmt))
18980 && !dwarf2out_ignore_block (stmt))
18981 must_output_die = 1;
18984 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
18985 DIE for any block which contains no significant local declarations at
18986 all. Rather, in such cases we just call `decls_for_scope' so that any
18987 needed Dwarf info for any sub-blocks will get properly generated. Note
18988 that in terse mode, our definition of what constitutes a "significant"
18989 local declaration gets restricted to include only inlined function
18990 instances and local (nested) function definitions. */
18991 if (must_output_die)
18993 if (inlined_func)
18995 /* If STMT block is abstract, that means we have been called
18996 indirectly from dwarf2out_abstract_function.
18997 That function rightfully marks the descendent blocks (of
18998 the abstract function it is dealing with) as being abstract,
18999 precisely to prevent us from emitting any
19000 DW_TAG_inlined_subroutine DIE as a descendent
19001 of an abstract function instance. So in that case, we should
19002 not call gen_inlined_subroutine_die.
19004 Later though, when cgraph asks dwarf2out to emit info
19005 for the concrete instance of the function decl into which
19006 the concrete instance of STMT got inlined, the later will lead
19007 to the generation of a DW_TAG_inlined_subroutine DIE. */
19008 if (! BLOCK_ABSTRACT (stmt))
19009 gen_inlined_subroutine_die (stmt, context_die, depth);
19011 else
19012 gen_lexical_block_die (stmt, context_die, depth);
19014 else
19015 decls_for_scope (stmt, context_die, depth);
19018 /* Process variable DECL (or variable with origin ORIGIN) within
19019 block STMT and add it to CONTEXT_DIE. */
19020 static void
19021 process_scope_var (tree stmt, tree decl, tree origin, dw_die_ref context_die)
19023 dw_die_ref die;
19024 tree decl_or_origin = decl ? decl : origin;
19025 tree ultimate_origin = origin ? decl_ultimate_origin (origin) : NULL;
19027 if (ultimate_origin)
19028 origin = ultimate_origin;
19030 if (TREE_CODE (decl_or_origin) == FUNCTION_DECL)
19031 die = lookup_decl_die (decl_or_origin);
19032 else if (TREE_CODE (decl_or_origin) == TYPE_DECL
19033 && TYPE_DECL_IS_STUB (decl_or_origin))
19034 die = lookup_type_die (TREE_TYPE (decl_or_origin));
19035 else
19036 die = NULL;
19038 if (die != NULL && die->die_parent == NULL)
19039 add_child_die (context_die, die);
19040 else if (TREE_CODE (decl_or_origin) == IMPORTED_DECL)
19041 dwarf2out_imported_module_or_decl_1 (decl_or_origin, DECL_NAME (decl_or_origin),
19042 stmt, context_die);
19043 else
19044 gen_decl_die (decl, origin, context_die);
19047 /* Generate all of the decls declared within a given scope and (recursively)
19048 all of its sub-blocks. */
19050 static void
19051 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
19053 tree decl;
19054 unsigned int i;
19055 tree subblocks;
19057 /* Ignore NULL blocks. */
19058 if (stmt == NULL_TREE)
19059 return;
19061 /* Output the DIEs to represent all of the data objects and typedefs
19062 declared directly within this block but not within any nested
19063 sub-blocks. Also, nested function and tag DIEs have been
19064 generated with a parent of NULL; fix that up now. */
19065 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
19066 process_scope_var (stmt, decl, NULL_TREE, context_die);
19067 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
19068 process_scope_var (stmt, NULL, BLOCK_NONLOCALIZED_VAR (stmt, i),
19069 context_die);
19071 /* If we're at -g1, we're not interested in subblocks. */
19072 if (debug_info_level <= DINFO_LEVEL_TERSE)
19073 return;
19075 /* Output the DIEs to represent all sub-blocks (and the items declared
19076 therein) of this block. */
19077 for (subblocks = BLOCK_SUBBLOCKS (stmt);
19078 subblocks != NULL;
19079 subblocks = BLOCK_CHAIN (subblocks))
19080 gen_block_die (subblocks, context_die, depth + 1);
19083 /* Is this a typedef we can avoid emitting? */
19085 static inline int
19086 is_redundant_typedef (const_tree decl)
19088 if (TYPE_DECL_IS_STUB (decl))
19089 return 1;
19091 if (DECL_ARTIFICIAL (decl)
19092 && DECL_CONTEXT (decl)
19093 && is_tagged_type (DECL_CONTEXT (decl))
19094 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
19095 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
19096 /* Also ignore the artificial member typedef for the class name. */
19097 return 1;
19099 return 0;
19102 /* Returns the DIE for a context. */
19104 static inline dw_die_ref
19105 get_context_die (tree context)
19107 if (context)
19109 /* Find die that represents this context. */
19110 if (TYPE_P (context))
19111 return force_type_die (TYPE_MAIN_VARIANT (context));
19112 else
19113 return force_decl_die (context);
19115 return comp_unit_die;
19118 /* Returns the DIE for decl. A DIE will always be returned. */
19120 static dw_die_ref
19121 force_decl_die (tree decl)
19123 dw_die_ref decl_die;
19124 unsigned saved_external_flag;
19125 tree save_fn = NULL_TREE;
19126 decl_die = lookup_decl_die (decl);
19127 if (!decl_die)
19129 dw_die_ref context_die = get_context_die (DECL_CONTEXT (decl));
19131 decl_die = lookup_decl_die (decl);
19132 if (decl_die)
19133 return decl_die;
19135 switch (TREE_CODE (decl))
19137 case FUNCTION_DECL:
19138 /* Clear current_function_decl, so that gen_subprogram_die thinks
19139 that this is a declaration. At this point, we just want to force
19140 declaration die. */
19141 save_fn = current_function_decl;
19142 current_function_decl = NULL_TREE;
19143 gen_subprogram_die (decl, context_die);
19144 current_function_decl = save_fn;
19145 break;
19147 case VAR_DECL:
19148 /* Set external flag to force declaration die. Restore it after
19149 gen_decl_die() call. */
19150 saved_external_flag = DECL_EXTERNAL (decl);
19151 DECL_EXTERNAL (decl) = 1;
19152 gen_decl_die (decl, NULL, context_die);
19153 DECL_EXTERNAL (decl) = saved_external_flag;
19154 break;
19156 case NAMESPACE_DECL:
19157 if (dwarf_version >= 3 || !dwarf_strict)
19158 dwarf2out_decl (decl);
19159 else
19160 /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace. */
19161 decl_die = comp_unit_die;
19162 break;
19164 default:
19165 gcc_unreachable ();
19168 /* We should be able to find the DIE now. */
19169 if (!decl_die)
19170 decl_die = lookup_decl_die (decl);
19171 gcc_assert (decl_die);
19174 return decl_die;
19177 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
19178 always returned. */
19180 static dw_die_ref
19181 force_type_die (tree type)
19183 dw_die_ref type_die;
19185 type_die = lookup_type_die (type);
19186 if (!type_die)
19188 dw_die_ref context_die = get_context_die (TYPE_CONTEXT (type));
19190 type_die = modified_type_die (type, TYPE_READONLY (type),
19191 TYPE_VOLATILE (type), context_die);
19192 gcc_assert (type_die);
19194 return type_die;
19197 /* Force out any required namespaces to be able to output DECL,
19198 and return the new context_die for it, if it's changed. */
19200 static dw_die_ref
19201 setup_namespace_context (tree thing, dw_die_ref context_die)
19203 tree context = (DECL_P (thing)
19204 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
19205 if (context && TREE_CODE (context) == NAMESPACE_DECL)
19206 /* Force out the namespace. */
19207 context_die = force_decl_die (context);
19209 return context_die;
19212 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
19213 type) within its namespace, if appropriate.
19215 For compatibility with older debuggers, namespace DIEs only contain
19216 declarations; all definitions are emitted at CU scope. */
19218 static dw_die_ref
19219 declare_in_namespace (tree thing, dw_die_ref context_die)
19221 dw_die_ref ns_context;
19223 if (debug_info_level <= DINFO_LEVEL_TERSE)
19224 return context_die;
19226 /* If this decl is from an inlined function, then don't try to emit it in its
19227 namespace, as we will get confused. It would have already been emitted
19228 when the abstract instance of the inline function was emitted anyways. */
19229 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
19230 return context_die;
19232 ns_context = setup_namespace_context (thing, context_die);
19234 if (ns_context != context_die)
19236 if (is_fortran ())
19237 return ns_context;
19238 if (DECL_P (thing))
19239 gen_decl_die (thing, NULL, ns_context);
19240 else
19241 gen_type_die (thing, ns_context);
19243 return context_die;
19246 /* Generate a DIE for a namespace or namespace alias. */
19248 static void
19249 gen_namespace_die (tree decl, dw_die_ref context_die)
19251 dw_die_ref namespace_die;
19253 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
19254 they are an alias of. */
19255 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
19257 /* Output a real namespace or module. */
19258 context_die = setup_namespace_context (decl, comp_unit_die);
19259 namespace_die = new_die (is_fortran ()
19260 ? DW_TAG_module : DW_TAG_namespace,
19261 context_die, decl);
19262 /* For Fortran modules defined in different CU don't add src coords. */
19263 if (namespace_die->die_tag == DW_TAG_module && DECL_EXTERNAL (decl))
19265 const char *name = dwarf2_name (decl, 0);
19266 if (name)
19267 add_name_attribute (namespace_die, name);
19269 else
19270 add_name_and_src_coords_attributes (namespace_die, decl);
19271 if (DECL_EXTERNAL (decl))
19272 add_AT_flag (namespace_die, DW_AT_declaration, 1);
19273 equate_decl_number_to_die (decl, namespace_die);
19275 else
19277 /* Output a namespace alias. */
19279 /* Force out the namespace we are an alias of, if necessary. */
19280 dw_die_ref origin_die
19281 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
19283 if (DECL_CONTEXT (decl) == NULL_TREE
19284 || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
19285 context_die = setup_namespace_context (decl, comp_unit_die);
19286 /* Now create the namespace alias DIE. */
19287 namespace_die = new_die (DW_TAG_imported_declaration, context_die, decl);
19288 add_name_and_src_coords_attributes (namespace_die, decl);
19289 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
19290 equate_decl_number_to_die (decl, namespace_die);
19294 /* Generate Dwarf debug information for a decl described by DECL. */
19296 static void
19297 gen_decl_die (tree decl, tree origin, dw_die_ref context_die)
19299 tree decl_or_origin = decl ? decl : origin;
19300 tree class_origin = NULL;
19302 if (DECL_P (decl_or_origin) && DECL_IGNORED_P (decl_or_origin))
19303 return;
19305 switch (TREE_CODE (decl_or_origin))
19307 case ERROR_MARK:
19308 break;
19310 case CONST_DECL:
19311 if (!is_fortran ())
19313 /* The individual enumerators of an enum type get output when we output
19314 the Dwarf representation of the relevant enum type itself. */
19315 break;
19318 /* Emit its type. */
19319 gen_type_die (TREE_TYPE (decl), context_die);
19321 /* And its containing namespace. */
19322 context_die = declare_in_namespace (decl, context_die);
19324 gen_const_die (decl, context_die);
19325 break;
19327 case FUNCTION_DECL:
19328 /* Don't output any DIEs to represent mere function declarations,
19329 unless they are class members or explicit block externs. */
19330 if (DECL_INITIAL (decl_or_origin) == NULL_TREE
19331 && DECL_CONTEXT (decl_or_origin) == NULL_TREE
19332 && (current_function_decl == NULL_TREE
19333 || DECL_ARTIFICIAL (decl_or_origin)))
19334 break;
19336 #if 0
19337 /* FIXME */
19338 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
19339 on local redeclarations of global functions. That seems broken. */
19340 if (current_function_decl != decl)
19341 /* This is only a declaration. */;
19342 #endif
19344 /* If we're emitting a clone, emit info for the abstract instance. */
19345 if (origin || DECL_ORIGIN (decl) != decl)
19346 dwarf2out_abstract_function (origin ? origin : DECL_ABSTRACT_ORIGIN (decl));
19348 /* If we're emitting an out-of-line copy of an inline function,
19349 emit info for the abstract instance and set up to refer to it. */
19350 else if (cgraph_function_possibly_inlined_p (decl)
19351 && ! DECL_ABSTRACT (decl)
19352 && ! class_or_namespace_scope_p (context_die)
19353 /* dwarf2out_abstract_function won't emit a die if this is just
19354 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
19355 that case, because that works only if we have a die. */
19356 && DECL_INITIAL (decl) != NULL_TREE)
19358 dwarf2out_abstract_function (decl);
19359 set_decl_origin_self (decl);
19362 /* Otherwise we're emitting the primary DIE for this decl. */
19363 else if (debug_info_level > DINFO_LEVEL_TERSE)
19365 /* Before we describe the FUNCTION_DECL itself, make sure that we
19366 have described its return type. */
19367 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
19369 /* And its virtual context. */
19370 if (DECL_VINDEX (decl) != NULL_TREE)
19371 gen_type_die (DECL_CONTEXT (decl), context_die);
19373 /* And its containing type. */
19374 if (!origin)
19375 origin = decl_class_context (decl);
19376 if (origin != NULL_TREE)
19377 gen_type_die_for_member (origin, decl, context_die);
19379 /* And its containing namespace. */
19380 context_die = declare_in_namespace (decl, context_die);
19383 /* Now output a DIE to represent the function itself. */
19384 if (decl)
19385 gen_subprogram_die (decl, context_die);
19386 break;
19388 case TYPE_DECL:
19389 /* If we are in terse mode, don't generate any DIEs to represent any
19390 actual typedefs. */
19391 if (debug_info_level <= DINFO_LEVEL_TERSE)
19392 break;
19394 /* In the special case of a TYPE_DECL node representing the declaration
19395 of some type tag, if the given TYPE_DECL is marked as having been
19396 instantiated from some other (original) TYPE_DECL node (e.g. one which
19397 was generated within the original definition of an inline function) we
19398 used to generate a special (abbreviated) DW_TAG_structure_type,
19399 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. But nothing
19400 should be actually referencing those DIEs, as variable DIEs with that
19401 type would be emitted already in the abstract origin, so it was always
19402 removed during unused type prunning. Don't add anything in this
19403 case. */
19404 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
19405 break;
19407 if (is_redundant_typedef (decl))
19408 gen_type_die (TREE_TYPE (decl), context_die);
19409 else
19410 /* Output a DIE to represent the typedef itself. */
19411 gen_typedef_die (decl, context_die);
19412 break;
19414 case LABEL_DECL:
19415 if (debug_info_level >= DINFO_LEVEL_NORMAL)
19416 gen_label_die (decl, context_die);
19417 break;
19419 case VAR_DECL:
19420 case RESULT_DECL:
19421 /* If we are in terse mode, don't generate any DIEs to represent any
19422 variable declarations or definitions. */
19423 if (debug_info_level <= DINFO_LEVEL_TERSE)
19424 break;
19426 /* Output any DIEs that are needed to specify the type of this data
19427 object. */
19428 if (decl_by_reference_p (decl_or_origin))
19429 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
19430 else
19431 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
19433 /* And its containing type. */
19434 class_origin = decl_class_context (decl_or_origin);
19435 if (class_origin != NULL_TREE)
19436 gen_type_die_for_member (class_origin, decl_or_origin, context_die);
19438 /* And its containing namespace. */
19439 context_die = declare_in_namespace (decl_or_origin, context_die);
19441 /* Now output the DIE to represent the data object itself. This gets
19442 complicated because of the possibility that the VAR_DECL really
19443 represents an inlined instance of a formal parameter for an inline
19444 function. */
19445 if (!origin)
19446 origin = decl_ultimate_origin (decl);
19447 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
19448 gen_formal_parameter_die (decl, origin,
19449 true /* Emit name attribute. */,
19450 context_die);
19451 else
19452 gen_variable_die (decl, origin, context_die);
19453 break;
19455 case FIELD_DECL:
19456 /* Ignore the nameless fields that are used to skip bits but handle C++
19457 anonymous unions and structs. */
19458 if (DECL_NAME (decl) != NULL_TREE
19459 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
19460 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
19462 gen_type_die (member_declared_type (decl), context_die);
19463 gen_field_die (decl, context_die);
19465 break;
19467 case PARM_DECL:
19468 if (DECL_BY_REFERENCE (decl_or_origin))
19469 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
19470 else
19471 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
19472 gen_formal_parameter_die (decl, origin,
19473 true /* Emit name attribute. */,
19474 context_die);
19475 break;
19477 case NAMESPACE_DECL:
19478 case IMPORTED_DECL:
19479 if (dwarf_version >= 3 || !dwarf_strict)
19480 gen_namespace_die (decl, context_die);
19481 break;
19483 default:
19484 /* Probably some frontend-internal decl. Assume we don't care. */
19485 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
19486 break;
19490 /* Output debug information for global decl DECL. Called from toplev.c after
19491 compilation proper has finished. */
19493 static void
19494 dwarf2out_global_decl (tree decl)
19496 /* Output DWARF2 information for file-scope tentative data object
19497 declarations, file-scope (extern) function declarations (which
19498 had no corresponding body) and file-scope tagged type declarations
19499 and definitions which have not yet been forced out. */
19500 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
19501 dwarf2out_decl (decl);
19504 /* Output debug information for type decl DECL. Called from toplev.c
19505 and from language front ends (to record built-in types). */
19506 static void
19507 dwarf2out_type_decl (tree decl, int local)
19509 if (!local)
19510 dwarf2out_decl (decl);
19513 /* Output debug information for imported module or decl DECL.
19514 NAME is non-NULL name in the lexical block if the decl has been renamed.
19515 LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
19516 that DECL belongs to.
19517 LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK. */
19518 static void
19519 dwarf2out_imported_module_or_decl_1 (tree decl,
19520 tree name,
19521 tree lexical_block,
19522 dw_die_ref lexical_block_die)
19524 expanded_location xloc;
19525 dw_die_ref imported_die = NULL;
19526 dw_die_ref at_import_die;
19528 if (TREE_CODE (decl) == IMPORTED_DECL)
19530 xloc = expand_location (DECL_SOURCE_LOCATION (decl));
19531 decl = IMPORTED_DECL_ASSOCIATED_DECL (decl);
19532 gcc_assert (decl);
19534 else
19535 xloc = expand_location (input_location);
19537 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
19539 if (is_base_type (TREE_TYPE (decl)))
19540 at_import_die = base_type_die (TREE_TYPE (decl));
19541 else
19542 at_import_die = force_type_die (TREE_TYPE (decl));
19543 /* For namespace N { typedef void T; } using N::T; base_type_die
19544 returns NULL, but DW_TAG_imported_declaration requires
19545 the DW_AT_import tag. Force creation of DW_TAG_typedef. */
19546 if (!at_import_die)
19548 gcc_assert (TREE_CODE (decl) == TYPE_DECL);
19549 gen_typedef_die (decl, get_context_die (DECL_CONTEXT (decl)));
19550 at_import_die = lookup_type_die (TREE_TYPE (decl));
19551 gcc_assert (at_import_die);
19554 else
19556 at_import_die = lookup_decl_die (decl);
19557 if (!at_import_die)
19559 /* If we're trying to avoid duplicate debug info, we may not have
19560 emitted the member decl for this field. Emit it now. */
19561 if (TREE_CODE (decl) == FIELD_DECL)
19563 tree type = DECL_CONTEXT (decl);
19565 if (TYPE_CONTEXT (type)
19566 && TYPE_P (TYPE_CONTEXT (type))
19567 && !should_emit_struct_debug (TYPE_CONTEXT (type),
19568 DINFO_USAGE_DIR_USE))
19569 return;
19570 gen_type_die_for_member (type, decl,
19571 get_context_die (TYPE_CONTEXT (type)));
19573 at_import_die = force_decl_die (decl);
19577 if (TREE_CODE (decl) == NAMESPACE_DECL)
19579 if (dwarf_version >= 3 || !dwarf_strict)
19580 imported_die = new_die (DW_TAG_imported_module,
19581 lexical_block_die,
19582 lexical_block);
19583 else
19584 return;
19586 else
19587 imported_die = new_die (DW_TAG_imported_declaration,
19588 lexical_block_die,
19589 lexical_block);
19591 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
19592 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
19593 if (name)
19594 add_AT_string (imported_die, DW_AT_name,
19595 IDENTIFIER_POINTER (name));
19596 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
19599 /* Output debug information for imported module or decl DECL.
19600 NAME is non-NULL name in context if the decl has been renamed.
19601 CHILD is true if decl is one of the renamed decls as part of
19602 importing whole module. */
19604 static void
19605 dwarf2out_imported_module_or_decl (tree decl, tree name, tree context,
19606 bool child)
19608 /* dw_die_ref at_import_die; */
19609 dw_die_ref scope_die;
19611 if (debug_info_level <= DINFO_LEVEL_TERSE)
19612 return;
19614 gcc_assert (decl);
19616 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
19617 We need decl DIE for reference and scope die. First, get DIE for the decl
19618 itself. */
19620 /* Get the scope die for decl context. Use comp_unit_die for global module
19621 or decl. If die is not found for non globals, force new die. */
19622 if (context
19623 && TYPE_P (context)
19624 && !should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
19625 return;
19627 if (!(dwarf_version >= 3 || !dwarf_strict))
19628 return;
19630 scope_die = get_context_die (context);
19632 if (child)
19634 gcc_assert (scope_die->die_child);
19635 gcc_assert (scope_die->die_child->die_tag == DW_TAG_imported_module);
19636 gcc_assert (TREE_CODE (decl) != NAMESPACE_DECL);
19637 scope_die = scope_die->die_child;
19640 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
19641 dwarf2out_imported_module_or_decl_1 (decl, name, context, scope_die);
19645 /* Write the debugging output for DECL. */
19647 void
19648 dwarf2out_decl (tree decl)
19650 dw_die_ref context_die = comp_unit_die;
19652 switch (TREE_CODE (decl))
19654 case ERROR_MARK:
19655 return;
19657 case FUNCTION_DECL:
19658 /* What we would really like to do here is to filter out all mere
19659 file-scope declarations of file-scope functions which are never
19660 referenced later within this translation unit (and keep all of ones
19661 that *are* referenced later on) but we aren't clairvoyant, so we have
19662 no idea which functions will be referenced in the future (i.e. later
19663 on within the current translation unit). So here we just ignore all
19664 file-scope function declarations which are not also definitions. If
19665 and when the debugger needs to know something about these functions,
19666 it will have to hunt around and find the DWARF information associated
19667 with the definition of the function.
19669 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
19670 nodes represent definitions and which ones represent mere
19671 declarations. We have to check DECL_INITIAL instead. That's because
19672 the C front-end supports some weird semantics for "extern inline"
19673 function definitions. These can get inlined within the current
19674 translation unit (and thus, we need to generate Dwarf info for their
19675 abstract instances so that the Dwarf info for the concrete inlined
19676 instances can have something to refer to) but the compiler never
19677 generates any out-of-lines instances of such things (despite the fact
19678 that they *are* definitions).
19680 The important point is that the C front-end marks these "extern
19681 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
19682 them anyway. Note that the C++ front-end also plays some similar games
19683 for inline function definitions appearing within include files which
19684 also contain `#pragma interface' pragmas. */
19685 if (DECL_INITIAL (decl) == NULL_TREE)
19686 return;
19688 /* If we're a nested function, initially use a parent of NULL; if we're
19689 a plain function, this will be fixed up in decls_for_scope. If
19690 we're a method, it will be ignored, since we already have a DIE. */
19691 if (decl_function_context (decl)
19692 /* But if we're in terse mode, we don't care about scope. */
19693 && debug_info_level > DINFO_LEVEL_TERSE)
19694 context_die = NULL;
19695 break;
19697 case VAR_DECL:
19698 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
19699 declaration and if the declaration was never even referenced from
19700 within this entire compilation unit. We suppress these DIEs in
19701 order to save space in the .debug section (by eliminating entries
19702 which are probably useless). Note that we must not suppress
19703 block-local extern declarations (whether used or not) because that
19704 would screw-up the debugger's name lookup mechanism and cause it to
19705 miss things which really ought to be in scope at a given point. */
19706 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
19707 return;
19709 /* For local statics lookup proper context die. */
19710 if (TREE_STATIC (decl) && decl_function_context (decl))
19711 context_die = lookup_decl_die (DECL_CONTEXT (decl));
19713 /* If we are in terse mode, don't generate any DIEs to represent any
19714 variable declarations or definitions. */
19715 if (debug_info_level <= DINFO_LEVEL_TERSE)
19716 return;
19717 break;
19719 case CONST_DECL:
19720 if (debug_info_level <= DINFO_LEVEL_TERSE)
19721 return;
19722 if (!is_fortran ())
19723 return;
19724 if (TREE_STATIC (decl) && decl_function_context (decl))
19725 context_die = lookup_decl_die (DECL_CONTEXT (decl));
19726 break;
19728 case NAMESPACE_DECL:
19729 case IMPORTED_DECL:
19730 if (debug_info_level <= DINFO_LEVEL_TERSE)
19731 return;
19732 if (lookup_decl_die (decl) != NULL)
19733 return;
19734 break;
19736 case TYPE_DECL:
19737 /* Don't emit stubs for types unless they are needed by other DIEs. */
19738 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
19739 return;
19741 /* Don't bother trying to generate any DIEs to represent any of the
19742 normal built-in types for the language we are compiling. */
19743 if (DECL_IS_BUILTIN (decl))
19745 /* OK, we need to generate one for `bool' so GDB knows what type
19746 comparisons have. */
19747 if (is_cxx ()
19748 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
19749 && ! DECL_IGNORED_P (decl))
19750 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
19752 return;
19755 /* If we are in terse mode, don't generate any DIEs for types. */
19756 if (debug_info_level <= DINFO_LEVEL_TERSE)
19757 return;
19759 /* If we're a function-scope tag, initially use a parent of NULL;
19760 this will be fixed up in decls_for_scope. */
19761 if (decl_function_context (decl))
19762 context_die = NULL;
19764 break;
19766 default:
19767 return;
19770 gen_decl_die (decl, NULL, context_die);
19773 /* Output a marker (i.e. a label) for the beginning of the generated code for
19774 a lexical block. */
19776 static void
19777 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
19778 unsigned int blocknum)
19780 switch_to_section (current_function_section ());
19781 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
19784 /* Output a marker (i.e. a label) for the end of the generated code for a
19785 lexical block. */
19787 static void
19788 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
19790 switch_to_section (current_function_section ());
19791 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
19794 /* Returns nonzero if it is appropriate not to emit any debugging
19795 information for BLOCK, because it doesn't contain any instructions.
19797 Don't allow this for blocks with nested functions or local classes
19798 as we would end up with orphans, and in the presence of scheduling
19799 we may end up calling them anyway. */
19801 static bool
19802 dwarf2out_ignore_block (const_tree block)
19804 tree decl;
19805 unsigned int i;
19807 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
19808 if (TREE_CODE (decl) == FUNCTION_DECL
19809 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
19810 return 0;
19811 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (block); i++)
19813 decl = BLOCK_NONLOCALIZED_VAR (block, i);
19814 if (TREE_CODE (decl) == FUNCTION_DECL
19815 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
19816 return 0;
19819 return 1;
19822 /* Hash table routines for file_hash. */
19824 static int
19825 file_table_eq (const void *p1_p, const void *p2_p)
19827 const struct dwarf_file_data *const p1 =
19828 (const struct dwarf_file_data *) p1_p;
19829 const char *const p2 = (const char *) p2_p;
19830 return strcmp (p1->filename, p2) == 0;
19833 static hashval_t
19834 file_table_hash (const void *p_p)
19836 const struct dwarf_file_data *const p = (const struct dwarf_file_data *) p_p;
19837 return htab_hash_string (p->filename);
19840 /* Lookup FILE_NAME (in the list of filenames that we know about here in
19841 dwarf2out.c) and return its "index". The index of each (known) filename is
19842 just a unique number which is associated with only that one filename. We
19843 need such numbers for the sake of generating labels (in the .debug_sfnames
19844 section) and references to those files numbers (in the .debug_srcinfo
19845 and.debug_macinfo sections). If the filename given as an argument is not
19846 found in our current list, add it to the list and assign it the next
19847 available unique index number. In order to speed up searches, we remember
19848 the index of the filename was looked up last. This handles the majority of
19849 all searches. */
19851 static struct dwarf_file_data *
19852 lookup_filename (const char *file_name)
19854 void ** slot;
19855 struct dwarf_file_data * created;
19857 /* Check to see if the file name that was searched on the previous
19858 call matches this file name. If so, return the index. */
19859 if (file_table_last_lookup
19860 && (file_name == file_table_last_lookup->filename
19861 || strcmp (file_table_last_lookup->filename, file_name) == 0))
19862 return file_table_last_lookup;
19864 /* Didn't match the previous lookup, search the table. */
19865 slot = htab_find_slot_with_hash (file_table, file_name,
19866 htab_hash_string (file_name), INSERT);
19867 if (*slot)
19868 return (struct dwarf_file_data *) *slot;
19870 created = GGC_NEW (struct dwarf_file_data);
19871 created->filename = file_name;
19872 created->emitted_number = 0;
19873 *slot = created;
19874 return created;
19877 /* If the assembler will construct the file table, then translate the compiler
19878 internal file table number into the assembler file table number, and emit
19879 a .file directive if we haven't already emitted one yet. The file table
19880 numbers are different because we prune debug info for unused variables and
19881 types, which may include filenames. */
19883 static int
19884 maybe_emit_file (struct dwarf_file_data * fd)
19886 if (! fd->emitted_number)
19888 if (last_emitted_file)
19889 fd->emitted_number = last_emitted_file->emitted_number + 1;
19890 else
19891 fd->emitted_number = 1;
19892 last_emitted_file = fd;
19894 if (DWARF2_ASM_LINE_DEBUG_INFO)
19896 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
19897 output_quoted_string (asm_out_file,
19898 remap_debug_filename (fd->filename));
19899 fputc ('\n', asm_out_file);
19903 return fd->emitted_number;
19906 /* Schedule generation of a DW_AT_const_value attribute to DIE.
19907 That generation should happen after function debug info has been
19908 generated. The value of the attribute is the constant value of ARG. */
19910 static void
19911 append_entry_to_tmpl_value_parm_die_table (dw_die_ref die, tree arg)
19913 die_arg_entry entry;
19915 if (!die || !arg)
19916 return;
19918 if (!tmpl_value_parm_die_table)
19919 tmpl_value_parm_die_table
19920 = VEC_alloc (die_arg_entry, gc, 32);
19922 entry.die = die;
19923 entry.arg = arg;
19924 VEC_safe_push (die_arg_entry, gc,
19925 tmpl_value_parm_die_table,
19926 &entry);
19929 /* Add a DW_AT_const_value attribute to DIEs that were scheduled
19930 by append_entry_to_tmpl_value_parm_die_table. This function must
19931 be called after function DIEs have been generated. */
19933 static void
19934 gen_remaining_tmpl_value_param_die_attribute (void)
19936 if (tmpl_value_parm_die_table)
19938 unsigned i;
19939 die_arg_entry *e;
19941 for (i = 0;
19942 VEC_iterate (die_arg_entry, tmpl_value_parm_die_table, i, e);
19943 i++)
19944 tree_add_const_value_attribute (e->die, e->arg);
19949 /* Replace DW_AT_name for the decl with name. */
19951 static void
19952 dwarf2out_set_name (tree decl, tree name)
19954 dw_die_ref die;
19955 dw_attr_ref attr;
19956 const char *dname;
19958 die = TYPE_SYMTAB_DIE (decl);
19959 if (!die)
19960 return;
19962 dname = dwarf2_name (name, 0);
19963 if (!dname)
19964 return;
19966 attr = get_AT (die, DW_AT_name);
19967 if (attr)
19969 struct indirect_string_node *node;
19971 node = find_AT_string (dname);
19972 /* replace the string. */
19973 attr->dw_attr_val.v.val_str = node;
19976 else
19977 add_name_attribute (die, dname);
19980 /* Called by the final INSN scan whenever we see a direct function call.
19981 Make an entry into the direct call table, recording the point of call
19982 and a reference to the target function's debug entry. */
19984 static void
19985 dwarf2out_direct_call (tree targ)
19987 dcall_entry e;
19988 tree origin = decl_ultimate_origin (targ);
19990 /* If this is a clone, use the abstract origin as the target. */
19991 if (origin)
19992 targ = origin;
19994 e.poc_label_num = poc_label_num++;
19995 e.poc_decl = current_function_decl;
19996 e.targ_die = force_decl_die (targ);
19997 VEC_safe_push (dcall_entry, gc, dcall_table, &e);
19999 /* Drop a label at the return point to mark the point of call. */
20000 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LPOC", e.poc_label_num);
20003 /* Returns a hash value for X (which really is a struct vcall_insn). */
20005 static hashval_t
20006 vcall_insn_table_hash (const void *x)
20008 return (hashval_t) ((const struct vcall_insn *) x)->insn_uid;
20011 /* Return nonzero if insn_uid of struct vcall_insn *X is the same as
20012 insnd_uid of *Y. */
20014 static int
20015 vcall_insn_table_eq (const void *x, const void *y)
20017 return (((const struct vcall_insn *) x)->insn_uid
20018 == ((const struct vcall_insn *) y)->insn_uid);
20021 /* Associate VTABLE_SLOT with INSN_UID in the VCALL_INSN_TABLE. */
20023 static void
20024 store_vcall_insn (unsigned int vtable_slot, int insn_uid)
20026 struct vcall_insn *item = GGC_NEW (struct vcall_insn);
20027 struct vcall_insn **slot;
20029 gcc_assert (item);
20030 item->insn_uid = insn_uid;
20031 item->vtable_slot = vtable_slot;
20032 slot = (struct vcall_insn **)
20033 htab_find_slot_with_hash (vcall_insn_table, &item,
20034 (hashval_t) insn_uid, INSERT);
20035 *slot = item;
20038 /* Return the VTABLE_SLOT associated with INSN_UID. */
20040 static unsigned int
20041 lookup_vcall_insn (unsigned int insn_uid)
20043 struct vcall_insn item;
20044 struct vcall_insn *p;
20046 item.insn_uid = insn_uid;
20047 item.vtable_slot = 0;
20048 p = (struct vcall_insn *) htab_find_with_hash (vcall_insn_table,
20049 (void *) &item,
20050 (hashval_t) insn_uid);
20051 if (p == NULL)
20052 return (unsigned int) -1;
20053 return p->vtable_slot;
20057 /* Called when lowering indirect calls to RTL. We make a note of INSN_UID
20058 and the OBJ_TYPE_REF_TOKEN from ADDR. For C++ virtual calls, the token
20059 is the vtable slot index that we will need to put in the virtual call
20060 table later. */
20062 static void
20063 dwarf2out_virtual_call_token (tree addr, int insn_uid)
20065 if (is_cxx() && TREE_CODE (addr) == OBJ_TYPE_REF)
20067 tree token = OBJ_TYPE_REF_TOKEN (addr);
20068 if (TREE_CODE (token) == INTEGER_CST)
20069 store_vcall_insn (TREE_INT_CST_LOW (token), insn_uid);
20073 /* Called when scheduling RTL, when a CALL_INSN is split. Copies the
20074 OBJ_TYPE_REF_TOKEN previously associated with OLD_INSN and associates it
20075 with NEW_INSN. */
20077 static void
20078 dwarf2out_copy_call_info (rtx old_insn, rtx new_insn)
20080 unsigned int vtable_slot = lookup_vcall_insn (INSN_UID (old_insn));
20082 if (vtable_slot != (unsigned int) -1)
20083 store_vcall_insn (vtable_slot, INSN_UID (new_insn));
20086 /* Called by the final INSN scan whenever we see a virtual function call.
20087 Make an entry into the virtual call table, recording the point of call
20088 and the slot index of the vtable entry used to call the virtual member
20089 function. The slot index was associated with the INSN_UID during the
20090 lowering to RTL. */
20092 static void
20093 dwarf2out_virtual_call (int insn_uid)
20095 unsigned int vtable_slot = lookup_vcall_insn (insn_uid);
20096 vcall_entry e;
20098 if (vtable_slot == (unsigned int) -1)
20099 return;
20101 e.poc_label_num = poc_label_num++;
20102 e.vtable_slot = vtable_slot;
20103 VEC_safe_push (vcall_entry, gc, vcall_table, &e);
20105 /* Drop a label at the return point to mark the point of call. */
20106 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LPOC", e.poc_label_num);
20109 /* Called by the final INSN scan whenever we see a var location. We
20110 use it to drop labels in the right places, and throw the location in
20111 our lookup table. */
20113 static void
20114 dwarf2out_var_location (rtx loc_note)
20116 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES + 2];
20117 struct var_loc_node *newloc;
20118 rtx next_real;
20119 static const char *last_label;
20120 static const char *last_postcall_label;
20121 static bool last_in_cold_section_p;
20122 tree decl;
20124 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
20125 return;
20127 next_real = next_real_insn (loc_note);
20128 /* If there are no instructions which would be affected by this note,
20129 don't do anything. */
20130 if (next_real == NULL_RTX)
20131 return;
20133 newloc = GGC_CNEW (struct var_loc_node);
20134 /* If there were no real insns between note we processed last time
20135 and this note, use the label we emitted last time. */
20136 if (last_var_location_insn == NULL_RTX
20137 || last_var_location_insn != next_real
20138 || last_in_cold_section_p != in_cold_section_p)
20140 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
20141 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
20142 loclabel_num++;
20143 last_label = ggc_strdup (loclabel);
20144 last_postcall_label = NULL;
20146 newloc->var_loc_note = loc_note;
20147 newloc->next = NULL;
20149 if (!NOTE_DURING_CALL_P (loc_note))
20150 newloc->label = last_label;
20151 else
20153 if (!last_postcall_label)
20155 sprintf (loclabel, "%s-1", last_label);
20156 last_postcall_label = ggc_strdup (loclabel);
20158 newloc->label = last_postcall_label;
20161 if (cfun && in_cold_section_p)
20162 newloc->section_label = crtl->subsections.cold_section_label;
20163 else
20164 newloc->section_label = text_section_label;
20166 last_var_location_insn = next_real;
20167 last_in_cold_section_p = in_cold_section_p;
20168 decl = NOTE_VAR_LOCATION_DECL (loc_note);
20169 add_var_loc_to_decl (decl, newloc);
20172 /* We need to reset the locations at the beginning of each
20173 function. We can't do this in the end_function hook, because the
20174 declarations that use the locations won't have been output when
20175 that hook is called. Also compute have_multiple_function_sections here. */
20177 static void
20178 dwarf2out_begin_function (tree fun)
20180 htab_empty (decl_loc_table);
20182 if (function_section (fun) != text_section)
20183 have_multiple_function_sections = true;
20185 dwarf2out_note_section_used ();
20188 /* Output a label to mark the beginning of a source code line entry
20189 and record information relating to this source line, in
20190 'line_info_table' for later output of the .debug_line section. */
20192 static void
20193 dwarf2out_source_line (unsigned int line, const char *filename,
20194 int discriminator, bool is_stmt)
20196 static bool last_is_stmt = true;
20198 if (debug_info_level >= DINFO_LEVEL_NORMAL
20199 && line != 0)
20201 int file_num = maybe_emit_file (lookup_filename (filename));
20203 switch_to_section (current_function_section ());
20205 /* If requested, emit something human-readable. */
20206 if (flag_debug_asm)
20207 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
20208 filename, line);
20210 if (DWARF2_ASM_LINE_DEBUG_INFO)
20212 /* Emit the .loc directive understood by GNU as. */
20213 fprintf (asm_out_file, "\t.loc %d %d 0", file_num, line);
20214 if (is_stmt != last_is_stmt)
20216 fprintf (asm_out_file, " is_stmt %d", is_stmt ? 1 : 0);
20217 last_is_stmt = is_stmt;
20219 if (SUPPORTS_DISCRIMINATOR && discriminator != 0)
20220 fprintf (asm_out_file, " discriminator %d", discriminator);
20221 fputc ('\n', asm_out_file);
20223 /* Indicate that line number info exists. */
20224 line_info_table_in_use++;
20226 else if (function_section (current_function_decl) != text_section)
20228 dw_separate_line_info_ref line_info;
20229 targetm.asm_out.internal_label (asm_out_file,
20230 SEPARATE_LINE_CODE_LABEL,
20231 separate_line_info_table_in_use);
20233 /* Expand the line info table if necessary. */
20234 if (separate_line_info_table_in_use
20235 == separate_line_info_table_allocated)
20237 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
20238 separate_line_info_table
20239 = GGC_RESIZEVEC (dw_separate_line_info_entry,
20240 separate_line_info_table,
20241 separate_line_info_table_allocated);
20242 memset (separate_line_info_table
20243 + separate_line_info_table_in_use,
20245 (LINE_INFO_TABLE_INCREMENT
20246 * sizeof (dw_separate_line_info_entry)));
20249 /* Add the new entry at the end of the line_info_table. */
20250 line_info
20251 = &separate_line_info_table[separate_line_info_table_in_use++];
20252 line_info->dw_file_num = file_num;
20253 line_info->dw_line_num = line;
20254 line_info->function = current_function_funcdef_no;
20256 else
20258 dw_line_info_ref line_info;
20260 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
20261 line_info_table_in_use);
20263 /* Expand the line info table if necessary. */
20264 if (line_info_table_in_use == line_info_table_allocated)
20266 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
20267 line_info_table
20268 = GGC_RESIZEVEC (dw_line_info_entry, line_info_table,
20269 line_info_table_allocated);
20270 memset (line_info_table + line_info_table_in_use, 0,
20271 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
20274 /* Add the new entry at the end of the line_info_table. */
20275 line_info = &line_info_table[line_info_table_in_use++];
20276 line_info->dw_file_num = file_num;
20277 line_info->dw_line_num = line;
20282 /* Record the beginning of a new source file. */
20284 static void
20285 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
20287 if (flag_eliminate_dwarf2_dups && dwarf_version < 4)
20289 /* Record the beginning of the file for break_out_includes. */
20290 dw_die_ref bincl_die;
20292 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
20293 add_AT_string (bincl_die, DW_AT_name, remap_debug_filename (filename));
20296 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
20298 int file_num = maybe_emit_file (lookup_filename (filename));
20300 switch_to_section (debug_macinfo_section);
20301 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
20302 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
20303 lineno);
20305 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
20309 /* Record the end of a source file. */
20311 static void
20312 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
20314 if (flag_eliminate_dwarf2_dups && dwarf_version < 4)
20315 /* Record the end of the file for break_out_includes. */
20316 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
20318 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
20320 switch_to_section (debug_macinfo_section);
20321 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
20325 /* Called from debug_define in toplev.c. The `buffer' parameter contains
20326 the tail part of the directive line, i.e. the part which is past the
20327 initial whitespace, #, whitespace, directive-name, whitespace part. */
20329 static void
20330 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
20331 const char *buffer ATTRIBUTE_UNUSED)
20333 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
20335 switch_to_section (debug_macinfo_section);
20336 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
20337 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
20338 dw2_asm_output_nstring (buffer, -1, "The macro");
20342 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
20343 the tail part of the directive line, i.e. the part which is past the
20344 initial whitespace, #, whitespace, directive-name, whitespace part. */
20346 static void
20347 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
20348 const char *buffer ATTRIBUTE_UNUSED)
20350 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
20352 switch_to_section (debug_macinfo_section);
20353 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
20354 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
20355 dw2_asm_output_nstring (buffer, -1, "The macro");
20359 /* Set up for Dwarf output at the start of compilation. */
20361 static void
20362 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
20364 /* Allocate the file_table. */
20365 file_table = htab_create_ggc (50, file_table_hash,
20366 file_table_eq, NULL);
20368 /* Allocate the decl_die_table. */
20369 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
20370 decl_die_table_eq, NULL);
20372 /* Allocate the decl_loc_table. */
20373 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
20374 decl_loc_table_eq, NULL);
20376 /* Allocate the initial hunk of the decl_scope_table. */
20377 decl_scope_table = VEC_alloc (tree, gc, 256);
20379 /* Allocate the initial hunk of the abbrev_die_table. */
20380 abbrev_die_table = GGC_CNEWVEC (dw_die_ref, ABBREV_DIE_TABLE_INCREMENT);
20381 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
20382 /* Zero-th entry is allocated, but unused. */
20383 abbrev_die_table_in_use = 1;
20385 /* Allocate the initial hunk of the line_info_table. */
20386 line_info_table = GGC_CNEWVEC (dw_line_info_entry, LINE_INFO_TABLE_INCREMENT);
20387 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
20389 /* Zero-th entry is allocated, but unused. */
20390 line_info_table_in_use = 1;
20392 /* Allocate the pubtypes and pubnames vectors. */
20393 pubname_table = VEC_alloc (pubname_entry, gc, 32);
20394 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
20396 /* Allocate the table that maps insn UIDs to vtable slot indexes. */
20397 vcall_insn_table = htab_create_ggc (10, vcall_insn_table_hash,
20398 vcall_insn_table_eq, NULL);
20400 /* Generate the initial DIE for the .debug section. Note that the (string)
20401 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
20402 will (typically) be a relative pathname and that this pathname should be
20403 taken as being relative to the directory from which the compiler was
20404 invoked when the given (base) source file was compiled. We will fill
20405 in this value in dwarf2out_finish. */
20406 comp_unit_die = gen_compile_unit_die (NULL);
20408 incomplete_types = VEC_alloc (tree, gc, 64);
20410 used_rtx_array = VEC_alloc (rtx, gc, 32);
20412 debug_info_section = get_section (DEBUG_INFO_SECTION,
20413 SECTION_DEBUG, NULL);
20414 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
20415 SECTION_DEBUG, NULL);
20416 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
20417 SECTION_DEBUG, NULL);
20418 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
20419 SECTION_DEBUG, NULL);
20420 debug_line_section = get_section (DEBUG_LINE_SECTION,
20421 SECTION_DEBUG, NULL);
20422 debug_loc_section = get_section (DEBUG_LOC_SECTION,
20423 SECTION_DEBUG, NULL);
20424 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
20425 SECTION_DEBUG, NULL);
20426 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
20427 SECTION_DEBUG, NULL);
20428 debug_dcall_section = get_section (DEBUG_DCALL_SECTION,
20429 SECTION_DEBUG, NULL);
20430 debug_vcall_section = get_section (DEBUG_VCALL_SECTION,
20431 SECTION_DEBUG, NULL);
20432 debug_str_section = get_section (DEBUG_STR_SECTION,
20433 DEBUG_STR_SECTION_FLAGS, NULL);
20434 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
20435 SECTION_DEBUG, NULL);
20436 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
20437 SECTION_DEBUG, NULL);
20439 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
20440 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
20441 DEBUG_ABBREV_SECTION_LABEL, 0);
20442 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
20443 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
20444 COLD_TEXT_SECTION_LABEL, 0);
20445 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
20447 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
20448 DEBUG_INFO_SECTION_LABEL, 0);
20449 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
20450 DEBUG_LINE_SECTION_LABEL, 0);
20451 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
20452 DEBUG_RANGES_SECTION_LABEL, 0);
20453 switch_to_section (debug_abbrev_section);
20454 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
20455 switch_to_section (debug_info_section);
20456 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
20457 switch_to_section (debug_line_section);
20458 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
20460 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
20462 switch_to_section (debug_macinfo_section);
20463 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
20464 DEBUG_MACINFO_SECTION_LABEL, 0);
20465 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
20468 switch_to_section (text_section);
20469 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
20470 if (flag_reorder_blocks_and_partition)
20472 cold_text_section = unlikely_text_section ();
20473 switch_to_section (cold_text_section);
20474 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
20479 /* Called before cgraph_optimize starts outputtting functions, variables
20480 and toplevel asms into assembly. */
20482 static void
20483 dwarf2out_assembly_start (void)
20485 if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE && dwarf2out_do_cfi_asm ())
20487 #ifndef TARGET_UNWIND_INFO
20488 if (USING_SJLJ_EXCEPTIONS || (!flag_unwind_tables && !flag_exceptions))
20489 #endif
20490 fprintf (asm_out_file, "\t.cfi_sections\t.debug_frame\n");
20494 /* A helper function for dwarf2out_finish called through
20495 htab_traverse. Emit one queued .debug_str string. */
20497 static int
20498 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
20500 struct indirect_string_node *node = (struct indirect_string_node *) *h;
20502 if (node->label && node->refcount)
20504 switch_to_section (debug_str_section);
20505 ASM_OUTPUT_LABEL (asm_out_file, node->label);
20506 assemble_string (node->str, strlen (node->str) + 1);
20509 return 1;
20512 #if ENABLE_ASSERT_CHECKING
20513 /* Verify that all marks are clear. */
20515 static void
20516 verify_marks_clear (dw_die_ref die)
20518 dw_die_ref c;
20520 gcc_assert (! die->die_mark);
20521 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
20523 #endif /* ENABLE_ASSERT_CHECKING */
20525 /* Clear the marks for a die and its children.
20526 Be cool if the mark isn't set. */
20528 static void
20529 prune_unmark_dies (dw_die_ref die)
20531 dw_die_ref c;
20533 if (die->die_mark)
20534 die->die_mark = 0;
20535 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
20538 /* Given DIE that we're marking as used, find any other dies
20539 it references as attributes and mark them as used. */
20541 static void
20542 prune_unused_types_walk_attribs (dw_die_ref die)
20544 dw_attr_ref a;
20545 unsigned ix;
20547 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
20549 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
20551 /* A reference to another DIE.
20552 Make sure that it will get emitted.
20553 If it was broken out into a comdat group, don't follow it. */
20554 if (dwarf_version < 4
20555 || a->dw_attr == DW_AT_specification
20556 || a->dw_attr_val.v.val_die_ref.die->die_id.die_type_node == NULL)
20557 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
20559 /* Set the string's refcount to 0 so that prune_unused_types_mark
20560 accounts properly for it. */
20561 if (AT_class (a) == dw_val_class_str)
20562 a->dw_attr_val.v.val_str->refcount = 0;
20567 /* Mark DIE as being used. If DOKIDS is true, then walk down
20568 to DIE's children. */
20570 static void
20571 prune_unused_types_mark (dw_die_ref die, int dokids)
20573 dw_die_ref c;
20575 if (die->die_mark == 0)
20577 /* We haven't done this node yet. Mark it as used. */
20578 die->die_mark = 1;
20580 /* We also have to mark its parents as used.
20581 (But we don't want to mark our parents' kids due to this.) */
20582 if (die->die_parent)
20583 prune_unused_types_mark (die->die_parent, 0);
20585 /* Mark any referenced nodes. */
20586 prune_unused_types_walk_attribs (die);
20588 /* If this node is a specification,
20589 also mark the definition, if it exists. */
20590 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
20591 prune_unused_types_mark (die->die_definition, 1);
20594 if (dokids && die->die_mark != 2)
20596 /* We need to walk the children, but haven't done so yet.
20597 Remember that we've walked the kids. */
20598 die->die_mark = 2;
20600 /* If this is an array type, we need to make sure our
20601 kids get marked, even if they're types. If we're
20602 breaking out types into comdat sections, do this
20603 for all type definitions. */
20604 if (die->die_tag == DW_TAG_array_type
20605 || (dwarf_version >= 4
20606 && is_type_die (die) && ! is_declaration_die (die)))
20607 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
20608 else
20609 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
20613 /* For local classes, look if any static member functions were emitted
20614 and if so, mark them. */
20616 static void
20617 prune_unused_types_walk_local_classes (dw_die_ref die)
20619 dw_die_ref c;
20621 if (die->die_mark == 2)
20622 return;
20624 switch (die->die_tag)
20626 case DW_TAG_structure_type:
20627 case DW_TAG_union_type:
20628 case DW_TAG_class_type:
20629 break;
20631 case DW_TAG_subprogram:
20632 if (!get_AT_flag (die, DW_AT_declaration)
20633 || die->die_definition != NULL)
20634 prune_unused_types_mark (die, 1);
20635 return;
20637 default:
20638 return;
20641 /* Mark children. */
20642 FOR_EACH_CHILD (die, c, prune_unused_types_walk_local_classes (c));
20645 /* Walk the tree DIE and mark types that we actually use. */
20647 static void
20648 prune_unused_types_walk (dw_die_ref die)
20650 dw_die_ref c;
20652 /* Don't do anything if this node is already marked and
20653 children have been marked as well. */
20654 if (die->die_mark == 2)
20655 return;
20657 switch (die->die_tag)
20659 case DW_TAG_structure_type:
20660 case DW_TAG_union_type:
20661 case DW_TAG_class_type:
20662 if (die->die_perennial_p)
20663 break;
20665 for (c = die->die_parent; c; c = c->die_parent)
20666 if (c->die_tag == DW_TAG_subprogram)
20667 break;
20669 /* Finding used static member functions inside of classes
20670 is needed just for local classes, because for other classes
20671 static member function DIEs with DW_AT_specification
20672 are emitted outside of the DW_TAG_*_type. If we ever change
20673 it, we'd need to call this even for non-local classes. */
20674 if (c)
20675 prune_unused_types_walk_local_classes (die);
20677 /* It's a type node --- don't mark it. */
20678 return;
20680 case DW_TAG_const_type:
20681 case DW_TAG_packed_type:
20682 case DW_TAG_pointer_type:
20683 case DW_TAG_reference_type:
20684 case DW_TAG_volatile_type:
20685 case DW_TAG_typedef:
20686 case DW_TAG_array_type:
20687 case DW_TAG_interface_type:
20688 case DW_TAG_friend:
20689 case DW_TAG_variant_part:
20690 case DW_TAG_enumeration_type:
20691 case DW_TAG_subroutine_type:
20692 case DW_TAG_string_type:
20693 case DW_TAG_set_type:
20694 case DW_TAG_subrange_type:
20695 case DW_TAG_ptr_to_member_type:
20696 case DW_TAG_file_type:
20697 if (die->die_perennial_p)
20698 break;
20700 /* It's a type node --- don't mark it. */
20701 return;
20703 default:
20704 /* Mark everything else. */
20705 break;
20708 if (die->die_mark == 0)
20710 die->die_mark = 1;
20712 /* Now, mark any dies referenced from here. */
20713 prune_unused_types_walk_attribs (die);
20716 die->die_mark = 2;
20718 /* Mark children. */
20719 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
20722 /* Increment the string counts on strings referred to from DIE's
20723 attributes. */
20725 static void
20726 prune_unused_types_update_strings (dw_die_ref die)
20728 dw_attr_ref a;
20729 unsigned ix;
20731 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
20732 if (AT_class (a) == dw_val_class_str)
20734 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
20735 s->refcount++;
20736 /* Avoid unnecessarily putting strings that are used less than
20737 twice in the hash table. */
20738 if (s->refcount
20739 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
20741 void ** slot;
20742 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
20743 htab_hash_string (s->str),
20744 INSERT);
20745 gcc_assert (*slot == NULL);
20746 *slot = s;
20751 /* Remove from the tree DIE any dies that aren't marked. */
20753 static void
20754 prune_unused_types_prune (dw_die_ref die)
20756 dw_die_ref c;
20758 gcc_assert (die->die_mark);
20759 prune_unused_types_update_strings (die);
20761 if (! die->die_child)
20762 return;
20764 c = die->die_child;
20765 do {
20766 dw_die_ref prev = c;
20767 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
20768 if (c == die->die_child)
20770 /* No marked children between 'prev' and the end of the list. */
20771 if (prev == c)
20772 /* No marked children at all. */
20773 die->die_child = NULL;
20774 else
20776 prev->die_sib = c->die_sib;
20777 die->die_child = prev;
20779 return;
20782 if (c != prev->die_sib)
20783 prev->die_sib = c;
20784 prune_unused_types_prune (c);
20785 } while (c != die->die_child);
20788 /* A helper function for dwarf2out_finish called through
20789 htab_traverse. Clear .debug_str strings that we haven't already
20790 decided to emit. */
20792 static int
20793 prune_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
20795 struct indirect_string_node *node = (struct indirect_string_node *) *h;
20797 if (!node->label || !node->refcount)
20798 htab_clear_slot (debug_str_hash, h);
20800 return 1;
20803 /* Remove dies representing declarations that we never use. */
20805 static void
20806 prune_unused_types (void)
20808 unsigned int i;
20809 limbo_die_node *node;
20810 comdat_type_node *ctnode;
20811 pubname_ref pub;
20812 dcall_entry *dcall;
20814 #if ENABLE_ASSERT_CHECKING
20815 /* All the marks should already be clear. */
20816 verify_marks_clear (comp_unit_die);
20817 for (node = limbo_die_list; node; node = node->next)
20818 verify_marks_clear (node->die);
20819 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
20820 verify_marks_clear (ctnode->root_die);
20821 #endif /* ENABLE_ASSERT_CHECKING */
20823 /* Mark types that are used in global variables. */
20824 premark_types_used_by_global_vars ();
20826 /* Set the mark on nodes that are actually used. */
20827 prune_unused_types_walk (comp_unit_die);
20828 for (node = limbo_die_list; node; node = node->next)
20829 prune_unused_types_walk (node->die);
20830 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
20832 prune_unused_types_walk (ctnode->root_die);
20833 prune_unused_types_mark (ctnode->type_die, 1);
20836 /* Also set the mark on nodes referenced from the
20837 pubname_table or arange_table. */
20838 for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
20839 prune_unused_types_mark (pub->die, 1);
20840 for (i = 0; i < arange_table_in_use; i++)
20841 prune_unused_types_mark (arange_table[i], 1);
20843 /* Mark nodes referenced from the direct call table. */
20844 for (i = 0; VEC_iterate (dcall_entry, dcall_table, i, dcall); i++)
20845 prune_unused_types_mark (dcall->targ_die, 1);
20847 /* Get rid of nodes that aren't marked; and update the string counts. */
20848 if (debug_str_hash && debug_str_hash_forced)
20849 htab_traverse (debug_str_hash, prune_indirect_string, NULL);
20850 else if (debug_str_hash)
20851 htab_empty (debug_str_hash);
20852 prune_unused_types_prune (comp_unit_die);
20853 for (node = limbo_die_list; node; node = node->next)
20854 prune_unused_types_prune (node->die);
20855 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
20856 prune_unused_types_prune (ctnode->root_die);
20858 /* Leave the marks clear. */
20859 prune_unmark_dies (comp_unit_die);
20860 for (node = limbo_die_list; node; node = node->next)
20861 prune_unmark_dies (node->die);
20862 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
20863 prune_unmark_dies (ctnode->root_die);
20866 /* Set the parameter to true if there are any relative pathnames in
20867 the file table. */
20868 static int
20869 file_table_relative_p (void ** slot, void *param)
20871 bool *p = (bool *) param;
20872 struct dwarf_file_data *d = (struct dwarf_file_data *) *slot;
20873 if (!IS_ABSOLUTE_PATH (d->filename))
20875 *p = true;
20876 return 0;
20878 return 1;
20881 /* Routines to manipulate hash table of comdat type units. */
20883 static hashval_t
20884 htab_ct_hash (const void *of)
20886 hashval_t h;
20887 const comdat_type_node *const type_node = (const comdat_type_node *) of;
20889 memcpy (&h, type_node->signature, sizeof (h));
20890 return h;
20893 static int
20894 htab_ct_eq (const void *of1, const void *of2)
20896 const comdat_type_node *const type_node_1 = (const comdat_type_node *) of1;
20897 const comdat_type_node *const type_node_2 = (const comdat_type_node *) of2;
20899 return (! memcmp (type_node_1->signature, type_node_2->signature,
20900 DWARF_TYPE_SIGNATURE_SIZE));
20903 /* Move a DW_AT_MIPS_linkage_name attribute just added to dw_die_ref
20904 to the location it would have been added, should we know its
20905 DECL_ASSEMBLER_NAME when we added other attributes. This will
20906 probably improve compactness of debug info, removing equivalent
20907 abbrevs, and hide any differences caused by deferring the
20908 computation of the assembler name, triggered by e.g. PCH. */
20910 static inline void
20911 move_linkage_attr (dw_die_ref die)
20913 unsigned ix = VEC_length (dw_attr_node, die->die_attr);
20914 dw_attr_node linkage = *VEC_index (dw_attr_node, die->die_attr, ix - 1);
20916 gcc_assert (linkage.dw_attr == DW_AT_MIPS_linkage_name);
20918 while (--ix > 0)
20920 dw_attr_node *prev = VEC_index (dw_attr_node, die->die_attr, ix - 1);
20922 if (prev->dw_attr == DW_AT_decl_line || prev->dw_attr == DW_AT_name)
20923 break;
20926 if (ix != VEC_length (dw_attr_node, die->die_attr) - 1)
20928 VEC_pop (dw_attr_node, die->die_attr);
20929 VEC_quick_insert (dw_attr_node, die->die_attr, ix, &linkage);
20933 /* Helper function for resolve_addr, attempt to resolve
20934 one CONST_STRING, return non-zero if not successful. Similarly verify that
20935 SYMBOL_REFs refer to variables emitted in the current CU. */
20937 static int
20938 resolve_one_addr (rtx *addr, void *data ATTRIBUTE_UNUSED)
20940 rtx rtl = *addr;
20942 if (GET_CODE (rtl) == CONST_STRING)
20944 size_t len = strlen (XSTR (rtl, 0)) + 1;
20945 tree t = build_string (len, XSTR (rtl, 0));
20946 tree tlen = build_int_cst (NULL_TREE, len - 1);
20947 TREE_TYPE (t)
20948 = build_array_type (char_type_node, build_index_type (tlen));
20949 rtl = lookup_constant_def (t);
20950 if (!rtl || !MEM_P (rtl))
20951 return 1;
20952 rtl = XEXP (rtl, 0);
20953 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
20954 *addr = rtl;
20955 return 0;
20958 if (GET_CODE (rtl) == SYMBOL_REF
20959 && SYMBOL_REF_DECL (rtl)
20960 && TREE_CODE (SYMBOL_REF_DECL (rtl)) == VAR_DECL
20961 && !TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
20962 return 1;
20964 if (GET_CODE (rtl) == CONST
20965 && for_each_rtx (&XEXP (rtl, 0), resolve_one_addr, NULL))
20966 return 1;
20968 return 0;
20971 /* Helper function for resolve_addr, handle one location
20972 expression, return false if at least one CONST_STRING or SYMBOL_REF in
20973 the location list couldn't be resolved. */
20975 static bool
20976 resolve_addr_in_expr (dw_loc_descr_ref loc)
20978 for (; loc; loc = loc->dw_loc_next)
20979 if ((loc->dw_loc_opc == DW_OP_addr
20980 && resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr, NULL))
20981 || (loc->dw_loc_opc == DW_OP_implicit_value
20982 && loc->dw_loc_oprnd2.val_class == dw_val_class_addr
20983 && resolve_one_addr (&loc->dw_loc_oprnd2.v.val_addr, NULL)))
20984 return false;
20985 return true;
20988 /* Resolve DW_OP_addr and DW_AT_const_value CONST_STRING arguments to
20989 an address in .rodata section if the string literal is emitted there,
20990 or remove the containing location list or replace DW_AT_const_value
20991 with DW_AT_location and empty location expression, if it isn't found
20992 in .rodata. Similarly for SYMBOL_REFs, keep only those that refer
20993 to something that has been emitted in the current CU. */
20995 static void
20996 resolve_addr (dw_die_ref die)
20998 dw_die_ref c;
20999 dw_attr_ref a;
21000 dw_loc_list_ref *curr;
21001 unsigned ix;
21003 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
21004 switch (AT_class (a))
21006 case dw_val_class_loc_list:
21007 curr = AT_loc_list_ptr (a);
21008 while (*curr)
21010 if (!resolve_addr_in_expr ((*curr)->expr))
21012 dw_loc_list_ref next = (*curr)->dw_loc_next;
21013 if (next && (*curr)->ll_symbol)
21015 gcc_assert (!next->ll_symbol);
21016 next->ll_symbol = (*curr)->ll_symbol;
21018 *curr = next;
21020 else
21021 curr = &(*curr)->dw_loc_next;
21023 if (!AT_loc_list (a))
21025 remove_AT (die, a->dw_attr);
21026 ix--;
21028 break;
21029 case dw_val_class_loc:
21030 if (!resolve_addr_in_expr (AT_loc (a)))
21032 remove_AT (die, a->dw_attr);
21033 ix--;
21035 break;
21036 case dw_val_class_addr:
21037 if (a->dw_attr == DW_AT_const_value
21038 && resolve_one_addr (&a->dw_attr_val.v.val_addr, NULL))
21040 remove_AT (die, a->dw_attr);
21041 ix--;
21043 break;
21044 default:
21045 break;
21048 FOR_EACH_CHILD (die, c, resolve_addr (c));
21051 /* Output stuff that dwarf requires at the end of every file,
21052 and generate the DWARF-2 debugging info. */
21054 static void
21055 dwarf2out_finish (const char *filename)
21057 limbo_die_node *node, *next_node;
21058 comdat_type_node *ctnode;
21059 htab_t comdat_type_table;
21060 dw_die_ref die = 0;
21061 unsigned int i;
21063 gen_remaining_tmpl_value_param_die_attribute ();
21065 /* Add the name for the main input file now. We delayed this from
21066 dwarf2out_init to avoid complications with PCH. */
21067 add_name_attribute (comp_unit_die, remap_debug_filename (filename));
21068 if (!IS_ABSOLUTE_PATH (filename))
21069 add_comp_dir_attribute (comp_unit_die);
21070 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
21072 bool p = false;
21073 htab_traverse (file_table, file_table_relative_p, &p);
21074 if (p)
21075 add_comp_dir_attribute (comp_unit_die);
21078 for (i = 0; i < VEC_length (deferred_locations, deferred_locations_list); i++)
21080 add_location_or_const_value_attribute (
21081 VEC_index (deferred_locations, deferred_locations_list, i)->die,
21082 VEC_index (deferred_locations, deferred_locations_list, i)->variable,
21083 DW_AT_location);
21086 /* Traverse the limbo die list, and add parent/child links. The only
21087 dies without parents that should be here are concrete instances of
21088 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
21089 For concrete instances, we can get the parent die from the abstract
21090 instance. */
21091 for (node = limbo_die_list; node; node = next_node)
21093 next_node = node->next;
21094 die = node->die;
21096 if (die->die_parent == NULL)
21098 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
21100 if (origin)
21101 add_child_die (origin->die_parent, die);
21102 else if (die == comp_unit_die)
21104 else if (errorcount > 0 || sorrycount > 0)
21105 /* It's OK to be confused by errors in the input. */
21106 add_child_die (comp_unit_die, die);
21107 else
21109 /* In certain situations, the lexical block containing a
21110 nested function can be optimized away, which results
21111 in the nested function die being orphaned. Likewise
21112 with the return type of that nested function. Force
21113 this to be a child of the containing function.
21115 It may happen that even the containing function got fully
21116 inlined and optimized out. In that case we are lost and
21117 assign the empty child. This should not be big issue as
21118 the function is likely unreachable too. */
21119 tree context = NULL_TREE;
21121 gcc_assert (node->created_for);
21123 if (DECL_P (node->created_for))
21124 context = DECL_CONTEXT (node->created_for);
21125 else if (TYPE_P (node->created_for))
21126 context = TYPE_CONTEXT (node->created_for);
21128 gcc_assert (context
21129 && (TREE_CODE (context) == FUNCTION_DECL
21130 || TREE_CODE (context) == NAMESPACE_DECL));
21132 origin = lookup_decl_die (context);
21133 if (origin)
21134 add_child_die (origin, die);
21135 else
21136 add_child_die (comp_unit_die, die);
21141 limbo_die_list = NULL;
21143 resolve_addr (comp_unit_die);
21145 for (node = deferred_asm_name; node; node = node->next)
21147 tree decl = node->created_for;
21148 if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
21150 add_AT_string (node->die, DW_AT_MIPS_linkage_name,
21151 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
21152 move_linkage_attr (node->die);
21156 deferred_asm_name = NULL;
21158 /* Walk through the list of incomplete types again, trying once more to
21159 emit full debugging info for them. */
21160 retry_incomplete_types ();
21162 if (flag_eliminate_unused_debug_types)
21163 prune_unused_types ();
21165 /* Generate separate CUs for each of the include files we've seen.
21166 They will go into limbo_die_list. */
21167 if (flag_eliminate_dwarf2_dups && dwarf_version < 4)
21168 break_out_includes (comp_unit_die);
21170 /* Generate separate COMDAT sections for type DIEs. */
21171 if (dwarf_version >= 4)
21173 break_out_comdat_types (comp_unit_die);
21175 /* Each new type_unit DIE was added to the limbo die list when created.
21176 Since these have all been added to comdat_type_list, clear the
21177 limbo die list. */
21178 limbo_die_list = NULL;
21180 /* For each new comdat type unit, copy declarations for incomplete
21181 types to make the new unit self-contained (i.e., no direct
21182 references to the main compile unit). */
21183 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
21184 copy_decls_for_unworthy_types (ctnode->root_die);
21185 copy_decls_for_unworthy_types (comp_unit_die);
21187 /* In the process of copying declarations from one unit to another,
21188 we may have left some declarations behind that are no longer
21189 referenced. Prune them. */
21190 prune_unused_types ();
21193 /* Traverse the DIE's and add add sibling attributes to those DIE's
21194 that have children. */
21195 add_sibling_attributes (comp_unit_die);
21196 for (node = limbo_die_list; node; node = node->next)
21197 add_sibling_attributes (node->die);
21198 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
21199 add_sibling_attributes (ctnode->root_die);
21201 /* Output a terminator label for the .text section. */
21202 switch_to_section (text_section);
21203 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
21204 if (flag_reorder_blocks_and_partition)
21206 switch_to_section (unlikely_text_section ());
21207 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
21210 /* We can only use the low/high_pc attributes if all of the code was
21211 in .text. */
21212 if (!have_multiple_function_sections
21213 || !(dwarf_version >= 3 || !dwarf_strict))
21215 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
21216 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
21219 else
21221 unsigned fde_idx = 0;
21222 bool range_list_added = false;
21224 /* We need to give .debug_loc and .debug_ranges an appropriate
21225 "base address". Use zero so that these addresses become
21226 absolute. Historically, we've emitted the unexpected
21227 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
21228 Emit both to give time for other tools to adapt. */
21229 add_AT_addr (comp_unit_die, DW_AT_low_pc, const0_rtx);
21230 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
21232 if (text_section_used)
21233 add_ranges_by_labels (comp_unit_die, text_section_label,
21234 text_end_label, &range_list_added);
21235 if (flag_reorder_blocks_and_partition && cold_text_section_used)
21236 add_ranges_by_labels (comp_unit_die, cold_text_section_label,
21237 cold_end_label, &range_list_added);
21239 for (fde_idx = 0; fde_idx < fde_table_in_use; fde_idx++)
21241 dw_fde_ref fde = &fde_table[fde_idx];
21243 if (fde->dw_fde_switched_sections)
21245 if (!fde->in_std_section)
21246 add_ranges_by_labels (comp_unit_die,
21247 fde->dw_fde_hot_section_label,
21248 fde->dw_fde_hot_section_end_label,
21249 &range_list_added);
21250 if (!fde->cold_in_std_section)
21251 add_ranges_by_labels (comp_unit_die,
21252 fde->dw_fde_unlikely_section_label,
21253 fde->dw_fde_unlikely_section_end_label,
21254 &range_list_added);
21256 else if (!fde->in_std_section)
21257 add_ranges_by_labels (comp_unit_die, fde->dw_fde_begin,
21258 fde->dw_fde_end, &range_list_added);
21261 if (range_list_added)
21262 add_ranges (NULL);
21265 /* Output location list section if necessary. */
21266 if (have_location_lists)
21268 /* Output the location lists info. */
21269 switch_to_section (debug_loc_section);
21270 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
21271 DEBUG_LOC_SECTION_LABEL, 0);
21272 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
21273 output_location_lists (die);
21276 if (debug_info_level >= DINFO_LEVEL_NORMAL)
21277 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
21278 debug_line_section_label);
21280 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
21281 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
21283 /* Output all of the compilation units. We put the main one last so that
21284 the offsets are available to output_pubnames. */
21285 for (node = limbo_die_list; node; node = node->next)
21286 output_comp_unit (node->die, 0);
21288 comdat_type_table = htab_create (100, htab_ct_hash, htab_ct_eq, NULL);
21289 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
21291 void **slot = htab_find_slot (comdat_type_table, ctnode, INSERT);
21293 /* Don't output duplicate types. */
21294 if (*slot != HTAB_EMPTY_ENTRY)
21295 continue;
21297 /* Add a pointer to the line table for the main compilation unit
21298 so that the debugger can make sense of DW_AT_decl_file
21299 attributes. */
21300 if (debug_info_level >= DINFO_LEVEL_NORMAL)
21301 add_AT_lineptr (ctnode->root_die, DW_AT_stmt_list,
21302 debug_line_section_label);
21304 output_comdat_type_unit (ctnode);
21305 *slot = ctnode;
21307 htab_delete (comdat_type_table);
21309 /* Output the main compilation unit if non-empty or if .debug_macinfo
21310 has been emitted. */
21311 output_comp_unit (comp_unit_die, debug_info_level >= DINFO_LEVEL_VERBOSE);
21313 /* Output the abbreviation table. */
21314 switch_to_section (debug_abbrev_section);
21315 output_abbrev_section ();
21317 /* Output public names table if necessary. */
21318 if (!VEC_empty (pubname_entry, pubname_table))
21320 switch_to_section (debug_pubnames_section);
21321 output_pubnames (pubname_table);
21324 /* Output public types table if necessary. */
21325 /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
21326 It shouldn't hurt to emit it always, since pure DWARF2 consumers
21327 simply won't look for the section. */
21328 if (!VEC_empty (pubname_entry, pubtype_table))
21330 switch_to_section (debug_pubtypes_section);
21331 output_pubnames (pubtype_table);
21334 /* Output direct and virtual call tables if necessary. */
21335 if (!VEC_empty (dcall_entry, dcall_table))
21337 switch_to_section (debug_dcall_section);
21338 output_dcall_table ();
21340 if (!VEC_empty (vcall_entry, vcall_table))
21342 switch_to_section (debug_vcall_section);
21343 output_vcall_table ();
21346 /* Output the address range information. We only put functions in the arange
21347 table, so don't write it out if we don't have any. */
21348 if (fde_table_in_use)
21350 switch_to_section (debug_aranges_section);
21351 output_aranges ();
21354 /* Output ranges section if necessary. */
21355 if (ranges_table_in_use)
21357 switch_to_section (debug_ranges_section);
21358 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
21359 output_ranges ();
21362 /* Output the source line correspondence table. We must do this
21363 even if there is no line information. Otherwise, on an empty
21364 translation unit, we will generate a present, but empty,
21365 .debug_info section. IRIX 6.5 `nm' will then complain when
21366 examining the file. This is done late so that any filenames
21367 used by the debug_info section are marked as 'used'. */
21368 if (! DWARF2_ASM_LINE_DEBUG_INFO)
21370 switch_to_section (debug_line_section);
21371 output_line_info ();
21374 /* Have to end the macro section. */
21375 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
21377 switch_to_section (debug_macinfo_section);
21378 dw2_asm_output_data (1, 0, "End compilation unit");
21381 /* If we emitted any DW_FORM_strp form attribute, output the string
21382 table too. */
21383 if (debug_str_hash)
21384 htab_traverse (debug_str_hash, output_indirect_string, NULL);
21386 #else
21388 /* This should never be used, but its address is needed for comparisons. */
21389 const struct gcc_debug_hooks dwarf2_debug_hooks =
21391 0, /* init */
21392 0, /* finish */
21393 0, /* assembly_start */
21394 0, /* define */
21395 0, /* undef */
21396 0, /* start_source_file */
21397 0, /* end_source_file */
21398 0, /* begin_block */
21399 0, /* end_block */
21400 0, /* ignore_block */
21401 0, /* source_line */
21402 0, /* begin_prologue */
21403 0, /* end_prologue */
21404 0, /* end_epilogue */
21405 0, /* begin_function */
21406 0, /* end_function */
21407 0, /* function_decl */
21408 0, /* global_decl */
21409 0, /* type_decl */
21410 0, /* imported_module_or_decl */
21411 0, /* deferred_inline_function */
21412 0, /* outlining_inline_function */
21413 0, /* label */
21414 0, /* handle_pch */
21415 0, /* var_location */
21416 0, /* switch_text_section */
21417 0, /* direct_call */
21418 0, /* virtual_call_token */
21419 0, /* copy_call_info */
21420 0, /* virtual_call */
21421 0, /* set_name */
21422 0 /* start_end_main_source_file */
21425 #endif /* DWARF2_DEBUGGING_INFO */
21427 #include "gt-dwarf2out.h"