* config/i386/i386.md (x86_shrd): Add athlon_decode and
[official-gcc/alias-decl.git] / gcc / tree-ssa.c
blob7915bb88b222352967426cca104f7a9be88aeb1a
1 /* Miscellaneous SSA utility functions.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "target.h"
30 #include "ggc.h"
31 #include "langhooks.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "output.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "diagnostic.h"
38 #include "bitmap.h"
39 #include "pointer-set.h"
40 #include "tree-flow.h"
41 #include "gimple.h"
42 #include "tree-inline.h"
43 #include "varray.h"
44 #include "timevar.h"
45 #include "hashtab.h"
46 #include "tree-dump.h"
47 #include "tree-pass.h"
48 #include "toplev.h"
50 /* Pointer map of variable mappings, keyed by edge. */
51 static struct pointer_map_t *edge_var_maps;
54 /* Add a mapping with PHI RESULT and PHI DEF associated with edge E. */
56 void
57 redirect_edge_var_map_add (edge e, tree result, tree def, source_location locus)
59 void **slot;
60 edge_var_map_vector old_head, head;
61 edge_var_map new_node;
63 if (edge_var_maps == NULL)
64 edge_var_maps = pointer_map_create ();
66 slot = pointer_map_insert (edge_var_maps, e);
67 old_head = head = (edge_var_map_vector) *slot;
68 if (!head)
70 head = VEC_alloc (edge_var_map, heap, 5);
71 *slot = head;
73 new_node.def = def;
74 new_node.result = result;
75 new_node.locus = locus;
77 VEC_safe_push (edge_var_map, heap, head, &new_node);
78 if (old_head != head)
80 /* The push did some reallocation. Update the pointer map. */
81 *slot = head;
86 /* Clear the var mappings in edge E. */
88 void
89 redirect_edge_var_map_clear (edge e)
91 void **slot;
92 edge_var_map_vector head;
94 if (!edge_var_maps)
95 return;
97 slot = pointer_map_contains (edge_var_maps, e);
99 if (slot)
101 head = (edge_var_map_vector) *slot;
102 VEC_free (edge_var_map, heap, head);
103 *slot = NULL;
108 /* Duplicate the redirected var mappings in OLDE in NEWE.
110 Since we can't remove a mapping, let's just duplicate it. This assumes a
111 pointer_map can have multiple edges mapping to the same var_map (many to
112 one mapping), since we don't remove the previous mappings. */
114 void
115 redirect_edge_var_map_dup (edge newe, edge olde)
117 void **new_slot, **old_slot;
118 edge_var_map_vector head;
120 if (!edge_var_maps)
121 return;
123 new_slot = pointer_map_insert (edge_var_maps, newe);
124 old_slot = pointer_map_contains (edge_var_maps, olde);
125 if (!old_slot)
126 return;
127 head = (edge_var_map_vector) *old_slot;
129 if (head)
130 *new_slot = VEC_copy (edge_var_map, heap, head);
131 else
132 *new_slot = VEC_alloc (edge_var_map, heap, 5);
136 /* Return the variable mappings for a given edge. If there is none, return
137 NULL. */
139 edge_var_map_vector
140 redirect_edge_var_map_vector (edge e)
142 void **slot;
144 /* Hey, what kind of idiot would... you'd be surprised. */
145 if (!edge_var_maps)
146 return NULL;
148 slot = pointer_map_contains (edge_var_maps, e);
149 if (!slot)
150 return NULL;
152 return (edge_var_map_vector) *slot;
155 /* Used by redirect_edge_var_map_destroy to free all memory. */
157 static bool
158 free_var_map_entry (const void *key ATTRIBUTE_UNUSED,
159 void **value,
160 void *data ATTRIBUTE_UNUSED)
162 edge_var_map_vector head = (edge_var_map_vector) *value;
163 VEC_free (edge_var_map, heap, head);
164 return true;
167 /* Clear the edge variable mappings. */
169 void
170 redirect_edge_var_map_destroy (void)
172 if (edge_var_maps)
174 pointer_map_traverse (edge_var_maps, free_var_map_entry, NULL);
175 pointer_map_destroy (edge_var_maps);
176 edge_var_maps = NULL;
181 /* Remove the corresponding arguments from the PHI nodes in E's
182 destination block and redirect it to DEST. Return redirected edge.
183 The list of removed arguments is stored in a vector accessed
184 through edge_var_maps. */
186 edge
187 ssa_redirect_edge (edge e, basic_block dest)
189 gimple_stmt_iterator gsi;
190 gimple phi;
192 redirect_edge_var_map_clear (e);
194 /* Remove the appropriate PHI arguments in E's destination block. */
195 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
197 tree def;
198 source_location locus ;
200 phi = gsi_stmt (gsi);
201 def = gimple_phi_arg_def (phi, e->dest_idx);
202 locus = gimple_phi_arg_location (phi, e->dest_idx);
204 if (def == NULL_TREE)
205 continue;
207 redirect_edge_var_map_add (e, gimple_phi_result (phi), def, locus);
210 e = redirect_edge_succ_nodup (e, dest);
212 return e;
216 /* Add PHI arguments queued in PENDING_STMT list on edge E to edge
217 E->dest. */
219 void
220 flush_pending_stmts (edge e)
222 gimple phi;
223 edge_var_map_vector v;
224 edge_var_map *vm;
225 int i;
226 gimple_stmt_iterator gsi;
228 v = redirect_edge_var_map_vector (e);
229 if (!v)
230 return;
232 for (gsi = gsi_start_phis (e->dest), i = 0;
233 !gsi_end_p (gsi) && VEC_iterate (edge_var_map, v, i, vm);
234 gsi_next (&gsi), i++)
236 tree def;
238 phi = gsi_stmt (gsi);
239 def = redirect_edge_var_map_def (vm);
240 add_phi_arg (phi, def, e, redirect_edge_var_map_location (vm));
243 redirect_edge_var_map_clear (e);
246 /* Given a tree for an expression for which we might want to emit
247 locations or values in debug information (generally a variable, but
248 we might deal with other kinds of trees in the future), return the
249 tree that should be used as the variable of a DEBUG_BIND STMT or
250 VAR_LOCATION INSN or NOTE. Return NULL if VAR is not to be tracked. */
252 tree
253 target_for_debug_bind (tree var)
255 if (!MAY_HAVE_DEBUG_STMTS)
256 return NULL_TREE;
258 if (TREE_CODE (var) != VAR_DECL
259 && TREE_CODE (var) != PARM_DECL)
260 return NULL_TREE;
262 if (DECL_HAS_VALUE_EXPR_P (var))
263 return target_for_debug_bind (DECL_VALUE_EXPR (var));
265 if (DECL_IGNORED_P (var))
266 return NULL_TREE;
268 if (!is_gimple_reg (var))
269 return NULL_TREE;
271 return var;
274 /* Called via walk_tree, look for SSA_NAMEs that have already been
275 released. */
277 static tree
278 find_released_ssa_name (tree *tp, int *walk_subtrees, void *data_)
280 struct walk_stmt_info *wi = (struct walk_stmt_info *) data_;
282 if (wi && wi->is_lhs)
283 return NULL_TREE;
285 if (TREE_CODE (*tp) == SSA_NAME)
287 if (SSA_NAME_IN_FREE_LIST (*tp))
288 return *tp;
290 *walk_subtrees = 0;
292 else if (IS_TYPE_OR_DECL_P (*tp))
293 *walk_subtrees = 0;
295 return NULL_TREE;
298 /* Insert a DEBUG BIND stmt before the DEF of VAR if VAR is referenced
299 by other DEBUG stmts, and replace uses of the DEF with the
300 newly-created debug temp. */
302 void
303 insert_debug_temp_for_var_def (gimple_stmt_iterator *gsi, tree var)
305 imm_use_iterator imm_iter;
306 use_operand_p use_p;
307 gimple stmt;
308 gimple def_stmt = NULL;
309 int usecount = 0;
310 tree value = NULL;
312 if (!MAY_HAVE_DEBUG_STMTS)
313 return;
315 /* If this name has already been registered for replacement, do nothing
316 as anything that uses this name isn't in SSA form. */
317 if (name_registered_for_update_p (var))
318 return;
320 /* Check whether there are debug stmts that reference this variable and,
321 if there are, decide whether we should use a debug temp. */
322 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
324 stmt = USE_STMT (use_p);
326 if (!gimple_debug_bind_p (stmt))
327 continue;
329 if (usecount++)
330 break;
332 if (gimple_debug_bind_get_value (stmt) != var)
334 /* Count this as an additional use, so as to make sure we
335 use a temp unless VAR's definition has a SINGLE_RHS that
336 can be shared. */
337 usecount++;
338 break;
342 if (!usecount)
343 return;
345 if (gsi)
346 def_stmt = gsi_stmt (*gsi);
347 else
348 def_stmt = SSA_NAME_DEF_STMT (var);
350 /* If we didn't get an insertion point, and the stmt has already
351 been removed, we won't be able to insert the debug bind stmt, so
352 we'll have to drop debug information. */
353 if (gimple_code (def_stmt) == GIMPLE_PHI)
355 value = degenerate_phi_result (def_stmt);
356 if (value && walk_tree (&value, find_released_ssa_name, NULL, NULL))
357 value = NULL;
359 else if (is_gimple_assign (def_stmt))
361 bool no_value = false;
363 if (!dom_info_available_p (CDI_DOMINATORS))
365 struct walk_stmt_info wi;
367 memset (&wi, 0, sizeof (wi));
369 /* When removing blocks without following reverse dominance
370 order, we may sometimes encounter SSA_NAMEs that have
371 already been released, referenced in other SSA_DEFs that
372 we're about to release. Consider:
374 <bb X>:
375 v_1 = foo;
377 <bb Y>:
378 w_2 = v_1 + bar;
379 # DEBUG w => w_2
381 If we deleted BB X first, propagating the value of w_2
382 won't do us any good. It's too late to recover their
383 original definition of v_1: when it was deleted, it was
384 only referenced in other DEFs, it couldn't possibly know
385 it should have been retained, and propagating every
386 single DEF just in case it might have to be propagated
387 into a DEBUG STMT would probably be too wasteful.
389 When dominator information is not readily available, we
390 check for and accept some loss of debug information. But
391 if it is available, there's no excuse for us to remove
392 blocks in the wrong order, so we don't even check for
393 dead SSA NAMEs. SSA verification shall catch any
394 errors. */
395 if ((!gsi && !gimple_bb (def_stmt))
396 || walk_gimple_op (def_stmt, find_released_ssa_name, &wi))
397 no_value = true;
400 if (!no_value)
401 value = gimple_assign_rhs_to_tree (def_stmt);
404 if (value)
406 /* If there's a single use of VAR, and VAR is the entire debug
407 expression (usecount would have been incremented again
408 otherwise), and the definition involves only constants and
409 SSA names, then we can propagate VALUE into this single use,
410 avoiding the temp.
412 We can also avoid using a temp if VALUE can be shared and
413 propagated into all uses, without generating expressions that
414 wouldn't be valid gimple RHSs.
416 Other cases that would require unsharing or non-gimple RHSs
417 are deferred to a debug temp, although we could avoid temps
418 at the expense of duplication of expressions. */
420 if (CONSTANT_CLASS_P (value)
421 || gimple_code (def_stmt) == GIMPLE_PHI
422 || (usecount == 1
423 && (!gimple_assign_single_p (def_stmt)
424 || is_gimple_min_invariant (value)))
425 || is_gimple_reg (value))
426 value = unshare_expr (value);
427 else
429 gimple def_temp;
430 tree vexpr = make_node (DEBUG_EXPR_DECL);
432 def_temp = gimple_build_debug_bind (vexpr,
433 unshare_expr (value),
434 def_stmt);
436 DECL_ARTIFICIAL (vexpr) = 1;
437 TREE_TYPE (vexpr) = TREE_TYPE (value);
438 if (DECL_P (value))
439 DECL_MODE (vexpr) = DECL_MODE (value);
440 else
441 DECL_MODE (vexpr) = TYPE_MODE (TREE_TYPE (value));
443 if (gsi)
444 gsi_insert_before (gsi, def_temp, GSI_SAME_STMT);
445 else
447 gimple_stmt_iterator ngsi = gsi_for_stmt (def_stmt);
448 gsi_insert_before (&ngsi, def_temp, GSI_SAME_STMT);
451 value = vexpr;
455 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, var)
457 if (!gimple_debug_bind_p (stmt))
458 continue;
460 if (value)
461 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
462 /* unshare_expr is not needed here. vexpr is either a
463 SINGLE_RHS, that can be safely shared, some other RHS
464 that was unshared when we found it had a single debug
465 use, or a DEBUG_EXPR_DECL, that can be safely
466 shared. */
467 SET_USE (use_p, value);
468 else
469 gimple_debug_bind_reset_value (stmt);
471 update_stmt (stmt);
476 /* Insert a DEBUG BIND stmt before STMT for each DEF referenced by
477 other DEBUG stmts, and replace uses of the DEF with the
478 newly-created debug temp. */
480 void
481 insert_debug_temps_for_defs (gimple_stmt_iterator *gsi)
483 gimple stmt;
484 ssa_op_iter op_iter;
485 def_operand_p def_p;
487 if (!MAY_HAVE_DEBUG_STMTS)
488 return;
490 stmt = gsi_stmt (*gsi);
492 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
494 tree var = DEF_FROM_PTR (def_p);
496 if (TREE_CODE (var) != SSA_NAME)
497 continue;
499 insert_debug_temp_for_var_def (gsi, var);
503 /* Delete SSA DEFs for SSA versions in the TOREMOVE bitmap, removing
504 dominated stmts before their dominators, so that release_ssa_defs
505 stands a chance of propagating DEFs into debug bind stmts. */
507 void
508 release_defs_bitset (bitmap toremove)
510 unsigned j;
511 bitmap_iterator bi;
513 /* Performing a topological sort is probably overkill, this will
514 most likely run in slightly superlinear time, rather than the
515 pathological quadratic worst case. */
516 while (!bitmap_empty_p (toremove))
517 EXECUTE_IF_SET_IN_BITMAP (toremove, 0, j, bi)
519 bool remove_now = true;
520 tree var = ssa_name (j);
521 gimple stmt;
522 imm_use_iterator uit;
524 FOR_EACH_IMM_USE_STMT (stmt, uit, var)
526 ssa_op_iter dit;
527 def_operand_p def_p;
529 /* We can't propagate PHI nodes into debug stmts. */
530 if (gimple_code (stmt) == GIMPLE_PHI
531 || is_gimple_debug (stmt))
532 continue;
534 /* If we find another definition to remove that uses
535 the one we're looking at, defer the removal of this
536 one, so that it can be propagated into debug stmts
537 after the other is. */
538 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, dit, SSA_OP_DEF)
540 tree odef = DEF_FROM_PTR (def_p);
542 if (bitmap_bit_p (toremove, SSA_NAME_VERSION (odef)))
544 remove_now = false;
545 break;
549 if (!remove_now)
550 BREAK_FROM_IMM_USE_STMT (uit);
553 if (remove_now)
555 gimple def = SSA_NAME_DEF_STMT (var);
556 gimple_stmt_iterator gsi = gsi_for_stmt (def);
558 if (gimple_code (def) == GIMPLE_PHI)
559 remove_phi_node (&gsi, true);
560 else
562 gsi_remove (&gsi, true);
563 release_defs (def);
566 bitmap_clear_bit (toremove, j);
571 /* Return true if SSA_NAME is malformed and mark it visited.
573 IS_VIRTUAL is true if this SSA_NAME was found inside a virtual
574 operand. */
576 static bool
577 verify_ssa_name (tree ssa_name, bool is_virtual)
579 if (TREE_CODE (ssa_name) != SSA_NAME)
581 error ("expected an SSA_NAME object");
582 return true;
585 if (TREE_TYPE (ssa_name) != TREE_TYPE (SSA_NAME_VAR (ssa_name)))
587 error ("type mismatch between an SSA_NAME and its symbol");
588 return true;
591 if (SSA_NAME_IN_FREE_LIST (ssa_name))
593 error ("found an SSA_NAME that had been released into the free pool");
594 return true;
597 if (is_virtual && is_gimple_reg (ssa_name))
599 error ("found a virtual definition for a GIMPLE register");
600 return true;
603 if (is_virtual && SSA_NAME_VAR (ssa_name) != gimple_vop (cfun))
605 error ("virtual SSA name for non-VOP decl");
606 return true;
609 if (!is_virtual && !is_gimple_reg (ssa_name))
611 error ("found a real definition for a non-register");
612 return true;
615 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
616 && !gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
618 error ("found a default name with a non-empty defining statement");
619 return true;
622 return false;
626 /* Return true if the definition of SSA_NAME at block BB is malformed.
628 STMT is the statement where SSA_NAME is created.
630 DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
631 version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
632 it means that the block in that array slot contains the
633 definition of SSA_NAME.
635 IS_VIRTUAL is true if SSA_NAME is created by a VDEF. */
637 static bool
638 verify_def (basic_block bb, basic_block *definition_block, tree ssa_name,
639 gimple stmt, bool is_virtual)
641 if (verify_ssa_name (ssa_name, is_virtual))
642 goto err;
644 if (definition_block[SSA_NAME_VERSION (ssa_name)])
646 error ("SSA_NAME created in two different blocks %i and %i",
647 definition_block[SSA_NAME_VERSION (ssa_name)]->index, bb->index);
648 goto err;
651 definition_block[SSA_NAME_VERSION (ssa_name)] = bb;
653 if (SSA_NAME_DEF_STMT (ssa_name) != stmt)
655 error ("SSA_NAME_DEF_STMT is wrong");
656 fprintf (stderr, "Expected definition statement:\n");
657 print_gimple_stmt (stderr, SSA_NAME_DEF_STMT (ssa_name), 4, TDF_VOPS);
658 fprintf (stderr, "\nActual definition statement:\n");
659 print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
660 goto err;
663 return false;
665 err:
666 fprintf (stderr, "while verifying SSA_NAME ");
667 print_generic_expr (stderr, ssa_name, 0);
668 fprintf (stderr, " in statement\n");
669 print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
671 return true;
675 /* Return true if the use of SSA_NAME at statement STMT in block BB is
676 malformed.
678 DEF_BB is the block where SSA_NAME was found to be created.
680 IDOM contains immediate dominator information for the flowgraph.
682 CHECK_ABNORMAL is true if the caller wants to check whether this use
683 is flowing through an abnormal edge (only used when checking PHI
684 arguments).
686 If NAMES_DEFINED_IN_BB is not NULL, it contains a bitmap of ssa names
687 that are defined before STMT in basic block BB. */
689 static bool
690 verify_use (basic_block bb, basic_block def_bb, use_operand_p use_p,
691 gimple stmt, bool check_abnormal, bitmap names_defined_in_bb)
693 bool err = false;
694 tree ssa_name = USE_FROM_PTR (use_p);
696 if (!TREE_VISITED (ssa_name))
697 if (verify_imm_links (stderr, ssa_name))
698 err = true;
700 TREE_VISITED (ssa_name) = 1;
702 if (gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name))
703 && SSA_NAME_IS_DEFAULT_DEF (ssa_name))
704 ; /* Default definitions have empty statements. Nothing to do. */
705 else if (!def_bb)
707 error ("missing definition");
708 err = true;
710 else if (bb != def_bb
711 && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
713 error ("definition in block %i does not dominate use in block %i",
714 def_bb->index, bb->index);
715 err = true;
717 else if (bb == def_bb
718 && names_defined_in_bb != NULL
719 && !bitmap_bit_p (names_defined_in_bb, SSA_NAME_VERSION (ssa_name)))
721 error ("definition in block %i follows the use", def_bb->index);
722 err = true;
725 if (check_abnormal
726 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
728 error ("SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set");
729 err = true;
732 /* Make sure the use is in an appropriate list by checking the previous
733 element to make sure it's the same. */
734 if (use_p->prev == NULL)
736 error ("no immediate_use list");
737 err = true;
739 else
741 tree listvar;
742 if (use_p->prev->use == NULL)
743 listvar = use_p->prev->loc.ssa_name;
744 else
745 listvar = USE_FROM_PTR (use_p->prev);
746 if (listvar != ssa_name)
748 error ("wrong immediate use list");
749 err = true;
753 if (err)
755 fprintf (stderr, "for SSA_NAME: ");
756 print_generic_expr (stderr, ssa_name, TDF_VOPS);
757 fprintf (stderr, " in statement:\n");
758 print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
761 return err;
765 /* Return true if any of the arguments for PHI node PHI at block BB is
766 malformed.
768 DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
769 version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
770 it means that the block in that array slot contains the
771 definition of SSA_NAME. */
773 static bool
774 verify_phi_args (gimple phi, basic_block bb, basic_block *definition_block)
776 edge e;
777 bool err = false;
778 size_t i, phi_num_args = gimple_phi_num_args (phi);
780 if (EDGE_COUNT (bb->preds) != phi_num_args)
782 error ("incoming edge count does not match number of PHI arguments");
783 err = true;
784 goto error;
787 for (i = 0; i < phi_num_args; i++)
789 use_operand_p op_p = gimple_phi_arg_imm_use_ptr (phi, i);
790 tree op = USE_FROM_PTR (op_p);
792 e = EDGE_PRED (bb, i);
794 if (op == NULL_TREE)
796 error ("PHI argument is missing for edge %d->%d",
797 e->src->index,
798 e->dest->index);
799 err = true;
800 goto error;
803 if (TREE_CODE (op) != SSA_NAME && !is_gimple_min_invariant (op))
805 error ("PHI argument is not SSA_NAME, or invariant");
806 err = true;
809 if (TREE_CODE (op) == SSA_NAME)
811 err = verify_ssa_name (op, !is_gimple_reg (gimple_phi_result (phi)));
812 err |= verify_use (e->src, definition_block[SSA_NAME_VERSION (op)],
813 op_p, phi, e->flags & EDGE_ABNORMAL, NULL);
816 if (TREE_CODE (op) == ADDR_EXPR)
818 tree base = TREE_OPERAND (op, 0);
819 while (handled_component_p (base))
820 base = TREE_OPERAND (base, 0);
821 if ((TREE_CODE (base) == VAR_DECL
822 || TREE_CODE (base) == PARM_DECL
823 || TREE_CODE (base) == RESULT_DECL)
824 && !TREE_ADDRESSABLE (base))
826 error ("address taken, but ADDRESSABLE bit not set");
827 err = true;
831 if (e->dest != bb)
833 error ("wrong edge %d->%d for PHI argument",
834 e->src->index, e->dest->index);
835 err = true;
838 if (err)
840 fprintf (stderr, "PHI argument\n");
841 print_generic_stmt (stderr, op, TDF_VOPS);
842 goto error;
846 error:
847 if (err)
849 fprintf (stderr, "for PHI node\n");
850 print_gimple_stmt (stderr, phi, 0, TDF_VOPS|TDF_MEMSYMS);
854 return err;
858 /* Verify common invariants in the SSA web.
859 TODO: verify the variable annotations. */
861 void
862 verify_ssa (bool check_modified_stmt)
864 size_t i;
865 basic_block bb;
866 basic_block *definition_block = XCNEWVEC (basic_block, num_ssa_names);
867 ssa_op_iter iter;
868 tree op;
869 enum dom_state orig_dom_state = dom_info_state (CDI_DOMINATORS);
870 bitmap names_defined_in_bb = BITMAP_ALLOC (NULL);
872 gcc_assert (!need_ssa_update_p (cfun));
874 verify_stmts ();
876 timevar_push (TV_TREE_SSA_VERIFY);
878 /* Keep track of SSA names present in the IL. */
879 for (i = 1; i < num_ssa_names; i++)
881 tree name = ssa_name (i);
882 if (name)
884 gimple stmt;
885 TREE_VISITED (name) = 0;
887 stmt = SSA_NAME_DEF_STMT (name);
888 if (!gimple_nop_p (stmt))
890 basic_block bb = gimple_bb (stmt);
891 verify_def (bb, definition_block,
892 name, stmt, !is_gimple_reg (name));
898 calculate_dominance_info (CDI_DOMINATORS);
900 /* Now verify all the uses and make sure they agree with the definitions
901 found in the previous pass. */
902 FOR_EACH_BB (bb)
904 edge e;
905 gimple phi;
906 edge_iterator ei;
907 gimple_stmt_iterator gsi;
909 /* Make sure that all edges have a clear 'aux' field. */
910 FOR_EACH_EDGE (e, ei, bb->preds)
912 if (e->aux)
914 error ("AUX pointer initialized for edge %d->%d", e->src->index,
915 e->dest->index);
916 goto err;
920 /* Verify the arguments for every PHI node in the block. */
921 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
923 phi = gsi_stmt (gsi);
924 if (verify_phi_args (phi, bb, definition_block))
925 goto err;
927 bitmap_set_bit (names_defined_in_bb,
928 SSA_NAME_VERSION (gimple_phi_result (phi)));
931 /* Now verify all the uses and vuses in every statement of the block. */
932 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
934 gimple stmt = gsi_stmt (gsi);
935 use_operand_p use_p;
936 bool has_err;
938 if (check_modified_stmt && gimple_modified_p (stmt))
940 error ("stmt (%p) marked modified after optimization pass: ",
941 (void *)stmt);
942 print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
943 goto err;
946 if (is_gimple_assign (stmt)
947 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
949 tree lhs, base_address;
951 lhs = gimple_assign_lhs (stmt);
952 base_address = get_base_address (lhs);
954 if (base_address
955 && SSA_VAR_P (base_address)
956 && !gimple_vdef (stmt)
957 && optimize > 0)
959 error ("statement makes a memory store, but has no VDEFS");
960 print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
961 goto err;
964 else if (gimple_debug_bind_p (stmt)
965 && !gimple_debug_bind_has_value_p (stmt))
966 continue;
968 /* Verify the single virtual operand and its constraints. */
969 has_err = false;
970 if (gimple_vdef (stmt))
972 if (gimple_vdef_op (stmt) == NULL_DEF_OPERAND_P)
974 error ("statement has VDEF operand not in defs list");
975 has_err = true;
977 if (!gimple_vuse (stmt))
979 error ("statement has VDEF but no VUSE operand");
980 has_err = true;
982 else if (SSA_NAME_VAR (gimple_vdef (stmt))
983 != SSA_NAME_VAR (gimple_vuse (stmt)))
985 error ("VDEF and VUSE do not use the same symbol");
986 has_err = true;
988 has_err |= verify_ssa_name (gimple_vdef (stmt), true);
990 if (gimple_vuse (stmt))
992 if (gimple_vuse_op (stmt) == NULL_USE_OPERAND_P)
994 error ("statement has VUSE operand not in uses list");
995 has_err = true;
997 has_err |= verify_ssa_name (gimple_vuse (stmt), true);
999 if (has_err)
1001 error ("in statement");
1002 print_gimple_stmt (stderr, stmt, 0, TDF_VOPS|TDF_MEMSYMS);
1003 goto err;
1006 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE|SSA_OP_DEF)
1008 if (verify_ssa_name (op, false))
1010 error ("in statement");
1011 print_gimple_stmt (stderr, stmt, 0, TDF_VOPS|TDF_MEMSYMS);
1012 goto err;
1016 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE|SSA_OP_VUSE)
1018 op = USE_FROM_PTR (use_p);
1019 if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
1020 use_p, stmt, false, names_defined_in_bb))
1021 goto err;
1024 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_DEFS)
1026 if (SSA_NAME_DEF_STMT (op) != stmt)
1028 error ("SSA_NAME_DEF_STMT is wrong");
1029 fprintf (stderr, "Expected definition statement:\n");
1030 print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
1031 fprintf (stderr, "\nActual definition statement:\n");
1032 print_gimple_stmt (stderr, SSA_NAME_DEF_STMT (op),
1033 4, TDF_VOPS);
1034 goto err;
1036 bitmap_set_bit (names_defined_in_bb, SSA_NAME_VERSION (op));
1040 bitmap_clear (names_defined_in_bb);
1043 free (definition_block);
1045 /* Restore the dominance information to its prior known state, so
1046 that we do not perturb the compiler's subsequent behavior. */
1047 if (orig_dom_state == DOM_NONE)
1048 free_dominance_info (CDI_DOMINATORS);
1049 else
1050 set_dom_info_availability (CDI_DOMINATORS, orig_dom_state);
1052 BITMAP_FREE (names_defined_in_bb);
1053 timevar_pop (TV_TREE_SSA_VERIFY);
1054 return;
1056 err:
1057 internal_error ("verify_ssa failed");
1060 /* Return true if the uid in both int tree maps are equal. */
1063 int_tree_map_eq (const void *va, const void *vb)
1065 const struct int_tree_map *a = (const struct int_tree_map *) va;
1066 const struct int_tree_map *b = (const struct int_tree_map *) vb;
1067 return (a->uid == b->uid);
1070 /* Hash a UID in a int_tree_map. */
1072 unsigned int
1073 int_tree_map_hash (const void *item)
1075 return ((const struct int_tree_map *)item)->uid;
1078 /* Return true if the DECL_UID in both trees are equal. */
1081 uid_decl_map_eq (const void *va, const void *vb)
1083 const_tree a = (const_tree) va;
1084 const_tree b = (const_tree) vb;
1085 return (a->decl_minimal.uid == b->decl_minimal.uid);
1088 /* Hash a tree in a uid_decl_map. */
1090 unsigned int
1091 uid_decl_map_hash (const void *item)
1093 return ((const_tree)item)->decl_minimal.uid;
1096 /* Return true if the DECL_UID in both trees are equal. */
1098 static int
1099 uid_ssaname_map_eq (const void *va, const void *vb)
1101 const_tree a = (const_tree) va;
1102 const_tree b = (const_tree) vb;
1103 return (a->ssa_name.var->decl_minimal.uid == b->ssa_name.var->decl_minimal.uid);
1106 /* Hash a tree in a uid_decl_map. */
1108 static unsigned int
1109 uid_ssaname_map_hash (const void *item)
1111 return ((const_tree)item)->ssa_name.var->decl_minimal.uid;
1115 /* Initialize global DFA and SSA structures. */
1117 void
1118 init_tree_ssa (struct function *fn)
1120 fn->gimple_df = GGC_CNEW (struct gimple_df);
1121 fn->gimple_df->referenced_vars = htab_create_ggc (20, uid_decl_map_hash,
1122 uid_decl_map_eq, NULL);
1123 fn->gimple_df->default_defs = htab_create_ggc (20, uid_ssaname_map_hash,
1124 uid_ssaname_map_eq, NULL);
1125 pt_solution_reset (&fn->gimple_df->escaped);
1126 init_ssanames (fn, 0);
1127 init_phinodes ();
1131 /* Deallocate memory associated with SSA data structures for FNDECL. */
1133 void
1134 delete_tree_ssa (void)
1136 referenced_var_iterator rvi;
1137 tree var;
1139 /* Remove annotations from every referenced local variable. */
1140 FOR_EACH_REFERENCED_VAR (var, rvi)
1142 if (is_global_var (var))
1143 continue;
1144 if (var_ann (var))
1146 ggc_free (var_ann (var));
1147 *DECL_VAR_ANN_PTR (var) = NULL;
1150 htab_delete (gimple_referenced_vars (cfun));
1151 cfun->gimple_df->referenced_vars = NULL;
1153 fini_ssanames ();
1154 fini_phinodes ();
1156 /* We no longer maintain the SSA operand cache at this point. */
1157 if (ssa_operands_active ())
1158 fini_ssa_operands ();
1160 delete_alias_heapvars ();
1162 htab_delete (cfun->gimple_df->default_defs);
1163 cfun->gimple_df->default_defs = NULL;
1164 pt_solution_reset (&cfun->gimple_df->escaped);
1165 if (cfun->gimple_df->decls_to_pointers != NULL)
1166 pointer_map_destroy (cfun->gimple_df->decls_to_pointers);
1167 cfun->gimple_df->decls_to_pointers = NULL;
1168 cfun->gimple_df->modified_noreturn_calls = NULL;
1169 cfun->gimple_df = NULL;
1171 /* We no longer need the edge variable maps. */
1172 redirect_edge_var_map_destroy ();
1175 /* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
1176 useless type conversion, otherwise return false.
1178 This function implicitly defines the middle-end type system. With
1179 the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
1180 holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
1181 the following invariants shall be fulfilled:
1183 1) useless_type_conversion_p is transitive.
1184 If a < b and b < c then a < c.
1186 2) useless_type_conversion_p is not symmetric.
1187 From a < b does not follow a > b.
1189 3) Types define the available set of operations applicable to values.
1190 A type conversion is useless if the operations for the target type
1191 is a subset of the operations for the source type. For example
1192 casts to void* are useless, casts from void* are not (void* can't
1193 be dereferenced or offsetted, but copied, hence its set of operations
1194 is a strict subset of that of all other data pointer types). Casts
1195 to const T* are useless (can't be written to), casts from const T*
1196 to T* are not. */
1198 bool
1199 useless_type_conversion_p (tree outer_type, tree inner_type)
1201 /* Do the following before stripping toplevel qualifiers. */
1202 if (POINTER_TYPE_P (inner_type)
1203 && POINTER_TYPE_P (outer_type))
1205 /* Do not lose casts between pointers to different address spaces. */
1206 if (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
1207 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))
1208 return false;
1210 /* If the outer type is (void *) or a pointer to an incomplete
1211 record type or a pointer to an unprototyped function,
1212 then the conversion is not necessary. */
1213 if (VOID_TYPE_P (TREE_TYPE (outer_type))
1214 || ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
1215 || TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
1216 && (TREE_CODE (TREE_TYPE (outer_type))
1217 == TREE_CODE (TREE_TYPE (inner_type)))
1218 && !TYPE_ARG_TYPES (TREE_TYPE (outer_type))
1219 && useless_type_conversion_p (TREE_TYPE (TREE_TYPE (outer_type)),
1220 TREE_TYPE (TREE_TYPE (inner_type)))))
1221 return true;
1223 /* Do not lose casts to restrict qualified pointers. */
1224 if ((TYPE_RESTRICT (outer_type)
1225 != TYPE_RESTRICT (inner_type))
1226 && TYPE_RESTRICT (outer_type))
1227 return false;
1230 /* From now on qualifiers on value types do not matter. */
1231 inner_type = TYPE_MAIN_VARIANT (inner_type);
1232 outer_type = TYPE_MAIN_VARIANT (outer_type);
1234 if (inner_type == outer_type)
1235 return true;
1237 /* If we know the canonical types, compare them. */
1238 if (TYPE_CANONICAL (inner_type)
1239 && TYPE_CANONICAL (inner_type) == TYPE_CANONICAL (outer_type))
1240 return true;
1242 /* Changes in machine mode are never useless conversions unless we
1243 deal with aggregate types in which case we defer to later checks. */
1244 if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type)
1245 && !AGGREGATE_TYPE_P (inner_type))
1246 return false;
1248 /* If both the inner and outer types are integral types, then the
1249 conversion is not necessary if they have the same mode and
1250 signedness and precision, and both or neither are boolean. */
1251 if (INTEGRAL_TYPE_P (inner_type)
1252 && INTEGRAL_TYPE_P (outer_type))
1254 /* Preserve changes in signedness or precision. */
1255 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
1256 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1257 return false;
1259 /* We don't need to preserve changes in the types minimum or
1260 maximum value in general as these do not generate code
1261 unless the types precisions are different. */
1262 return true;
1265 /* Scalar floating point types with the same mode are compatible. */
1266 else if (SCALAR_FLOAT_TYPE_P (inner_type)
1267 && SCALAR_FLOAT_TYPE_P (outer_type))
1268 return true;
1270 /* Fixed point types with the same mode are compatible. */
1271 else if (FIXED_POINT_TYPE_P (inner_type)
1272 && FIXED_POINT_TYPE_P (outer_type))
1273 return true;
1275 /* We need to take special care recursing to pointed-to types. */
1276 else if (POINTER_TYPE_P (inner_type)
1277 && POINTER_TYPE_P (outer_type))
1279 /* Don't lose casts between pointers to volatile and non-volatile
1280 qualified types. Doing so would result in changing the semantics
1281 of later accesses. For function types the volatile qualifier
1282 is used to indicate noreturn functions. */
1283 if (TREE_CODE (TREE_TYPE (outer_type)) != FUNCTION_TYPE
1284 && TREE_CODE (TREE_TYPE (outer_type)) != METHOD_TYPE
1285 && TREE_CODE (TREE_TYPE (inner_type)) != FUNCTION_TYPE
1286 && TREE_CODE (TREE_TYPE (inner_type)) != METHOD_TYPE
1287 && (TYPE_VOLATILE (TREE_TYPE (outer_type))
1288 != TYPE_VOLATILE (TREE_TYPE (inner_type)))
1289 && TYPE_VOLATILE (TREE_TYPE (outer_type)))
1290 return false;
1292 /* We require explicit conversions from incomplete target types. */
1293 if (!COMPLETE_TYPE_P (TREE_TYPE (inner_type))
1294 && COMPLETE_TYPE_P (TREE_TYPE (outer_type)))
1295 return false;
1297 /* Do not lose casts between pointers that when dereferenced access
1298 memory with different alias sets. */
1299 if (get_deref_alias_set (inner_type) != get_deref_alias_set (outer_type))
1300 return false;
1302 /* We do not care for const qualification of the pointed-to types
1303 as const qualification has no semantic value to the middle-end. */
1305 /* Otherwise pointers/references are equivalent if their pointed
1306 to types are effectively the same. We can strip qualifiers
1307 on pointed-to types for further comparison, which is done in
1308 the callee. Note we have to use true compatibility here
1309 because addresses are subject to propagation into dereferences
1310 and thus might get the original type exposed which is equivalent
1311 to a reverse conversion. */
1312 return types_compatible_p (TREE_TYPE (outer_type),
1313 TREE_TYPE (inner_type));
1316 /* Recurse for complex types. */
1317 else if (TREE_CODE (inner_type) == COMPLEX_TYPE
1318 && TREE_CODE (outer_type) == COMPLEX_TYPE)
1319 return useless_type_conversion_p (TREE_TYPE (outer_type),
1320 TREE_TYPE (inner_type));
1322 /* Recurse for vector types with the same number of subparts. */
1323 else if (TREE_CODE (inner_type) == VECTOR_TYPE
1324 && TREE_CODE (outer_type) == VECTOR_TYPE
1325 && TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
1326 return useless_type_conversion_p (TREE_TYPE (outer_type),
1327 TREE_TYPE (inner_type));
1329 else if (TREE_CODE (inner_type) == ARRAY_TYPE
1330 && TREE_CODE (outer_type) == ARRAY_TYPE)
1332 /* Preserve string attributes. */
1333 if (TYPE_STRING_FLAG (inner_type) != TYPE_STRING_FLAG (outer_type))
1334 return false;
1336 /* Conversions from array types with unknown extent to
1337 array types with known extent are not useless. */
1338 if (!TYPE_DOMAIN (inner_type)
1339 && TYPE_DOMAIN (outer_type))
1340 return false;
1342 /* Nor are conversions from array types with non-constant size to
1343 array types with constant size or to different size. */
1344 if (TYPE_SIZE (outer_type)
1345 && TREE_CODE (TYPE_SIZE (outer_type)) == INTEGER_CST
1346 && (!TYPE_SIZE (inner_type)
1347 || TREE_CODE (TYPE_SIZE (inner_type)) != INTEGER_CST
1348 || !tree_int_cst_equal (TYPE_SIZE (outer_type),
1349 TYPE_SIZE (inner_type))))
1350 return false;
1352 /* Check conversions between arrays with partially known extents.
1353 If the array min/max values are constant they have to match.
1354 Otherwise allow conversions to unknown and variable extents.
1355 In particular this declares conversions that may change the
1356 mode to BLKmode as useless. */
1357 if (TYPE_DOMAIN (inner_type)
1358 && TYPE_DOMAIN (outer_type)
1359 && TYPE_DOMAIN (inner_type) != TYPE_DOMAIN (outer_type))
1361 tree inner_min = TYPE_MIN_VALUE (TYPE_DOMAIN (inner_type));
1362 tree outer_min = TYPE_MIN_VALUE (TYPE_DOMAIN (outer_type));
1363 tree inner_max = TYPE_MAX_VALUE (TYPE_DOMAIN (inner_type));
1364 tree outer_max = TYPE_MAX_VALUE (TYPE_DOMAIN (outer_type));
1366 /* After gimplification a variable min/max value carries no
1367 additional information compared to a NULL value. All that
1368 matters has been lowered to be part of the IL. */
1369 if (inner_min && TREE_CODE (inner_min) != INTEGER_CST)
1370 inner_min = NULL_TREE;
1371 if (outer_min && TREE_CODE (outer_min) != INTEGER_CST)
1372 outer_min = NULL_TREE;
1373 if (inner_max && TREE_CODE (inner_max) != INTEGER_CST)
1374 inner_max = NULL_TREE;
1375 if (outer_max && TREE_CODE (outer_max) != INTEGER_CST)
1376 outer_max = NULL_TREE;
1378 /* Conversions NULL / variable <- cst are useless, but not
1379 the other way around. */
1380 if (outer_min
1381 && (!inner_min
1382 || !tree_int_cst_equal (inner_min, outer_min)))
1383 return false;
1384 if (outer_max
1385 && (!inner_max
1386 || !tree_int_cst_equal (inner_max, outer_max)))
1387 return false;
1390 /* Recurse on the element check. */
1391 return useless_type_conversion_p (TREE_TYPE (outer_type),
1392 TREE_TYPE (inner_type));
1395 else if ((TREE_CODE (inner_type) == FUNCTION_TYPE
1396 || TREE_CODE (inner_type) == METHOD_TYPE)
1397 && TREE_CODE (inner_type) == TREE_CODE (outer_type))
1399 tree outer_parm, inner_parm;
1401 /* If the return types are not compatible bail out. */
1402 if (!useless_type_conversion_p (TREE_TYPE (outer_type),
1403 TREE_TYPE (inner_type)))
1404 return false;
1406 /* Method types should belong to a compatible base class. */
1407 if (TREE_CODE (inner_type) == METHOD_TYPE
1408 && !useless_type_conversion_p (TYPE_METHOD_BASETYPE (outer_type),
1409 TYPE_METHOD_BASETYPE (inner_type)))
1410 return false;
1412 /* A conversion to an unprototyped argument list is ok. */
1413 if (!TYPE_ARG_TYPES (outer_type))
1414 return true;
1416 /* If the unqualified argument types are compatible the conversion
1417 is useless. */
1418 if (TYPE_ARG_TYPES (outer_type) == TYPE_ARG_TYPES (inner_type))
1419 return true;
1421 for (outer_parm = TYPE_ARG_TYPES (outer_type),
1422 inner_parm = TYPE_ARG_TYPES (inner_type);
1423 outer_parm && inner_parm;
1424 outer_parm = TREE_CHAIN (outer_parm),
1425 inner_parm = TREE_CHAIN (inner_parm))
1426 if (!useless_type_conversion_p
1427 (TYPE_MAIN_VARIANT (TREE_VALUE (outer_parm)),
1428 TYPE_MAIN_VARIANT (TREE_VALUE (inner_parm))))
1429 return false;
1431 /* If there is a mismatch in the number of arguments the functions
1432 are not compatible. */
1433 if (outer_parm || inner_parm)
1434 return false;
1436 /* Defer to the target if necessary. */
1437 if (TYPE_ATTRIBUTES (inner_type) || TYPE_ATTRIBUTES (outer_type))
1438 return targetm.comp_type_attributes (outer_type, inner_type) != 0;
1440 return true;
1443 /* For aggregates we rely on TYPE_CANONICAL exclusively and require
1444 explicit conversions for types involving to be structurally
1445 compared types. */
1446 else if (AGGREGATE_TYPE_P (inner_type)
1447 && TREE_CODE (inner_type) == TREE_CODE (outer_type))
1448 return false;
1450 return false;
1453 /* Return true if a conversion from either type of TYPE1 and TYPE2
1454 to the other is not required. Otherwise return false. */
1456 bool
1457 types_compatible_p (tree type1, tree type2)
1459 return (type1 == type2
1460 || (useless_type_conversion_p (type1, type2)
1461 && useless_type_conversion_p (type2, type1)));
1464 /* Return true if EXPR is a useless type conversion, otherwise return
1465 false. */
1467 bool
1468 tree_ssa_useless_type_conversion (tree expr)
1470 /* If we have an assignment that merely uses a NOP_EXPR to change
1471 the top of the RHS to the type of the LHS and the type conversion
1472 is "safe", then strip away the type conversion so that we can
1473 enter LHS = RHS into the const_and_copies table. */
1474 if (CONVERT_EXPR_P (expr)
1475 || TREE_CODE (expr) == VIEW_CONVERT_EXPR
1476 || TREE_CODE (expr) == NON_LVALUE_EXPR)
1477 return useless_type_conversion_p
1478 (TREE_TYPE (expr),
1479 TREE_TYPE (TREE_OPERAND (expr, 0)));
1481 return false;
1484 /* Strip conversions from EXP according to
1485 tree_ssa_useless_type_conversion and return the resulting
1486 expression. */
1488 tree
1489 tree_ssa_strip_useless_type_conversions (tree exp)
1491 while (tree_ssa_useless_type_conversion (exp))
1492 exp = TREE_OPERAND (exp, 0);
1493 return exp;
1497 /* Internal helper for walk_use_def_chains. VAR, FN and DATA are as
1498 described in walk_use_def_chains.
1500 VISITED is a pointer set used to mark visited SSA_NAMEs to avoid
1501 infinite loops. We used to have a bitmap for this to just mark
1502 SSA versions we had visited. But non-sparse bitmaps are way too
1503 expensive, while sparse bitmaps may cause quadratic behavior.
1505 IS_DFS is true if the caller wants to perform a depth-first search
1506 when visiting PHI nodes. A DFS will visit each PHI argument and
1507 call FN after each one. Otherwise, all the arguments are
1508 visited first and then FN is called with each of the visited
1509 arguments in a separate pass. */
1511 static bool
1512 walk_use_def_chains_1 (tree var, walk_use_def_chains_fn fn, void *data,
1513 struct pointer_set_t *visited, bool is_dfs)
1515 gimple def_stmt;
1517 if (pointer_set_insert (visited, var))
1518 return false;
1520 def_stmt = SSA_NAME_DEF_STMT (var);
1522 if (gimple_code (def_stmt) != GIMPLE_PHI)
1524 /* If we reached the end of the use-def chain, call FN. */
1525 return fn (var, def_stmt, data);
1527 else
1529 size_t i;
1531 /* When doing a breadth-first search, call FN before following the
1532 use-def links for each argument. */
1533 if (!is_dfs)
1534 for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
1535 if (fn (gimple_phi_arg_def (def_stmt, i), def_stmt, data))
1536 return true;
1538 /* Follow use-def links out of each PHI argument. */
1539 for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
1541 tree arg = gimple_phi_arg_def (def_stmt, i);
1543 /* ARG may be NULL for newly introduced PHI nodes. */
1544 if (arg
1545 && TREE_CODE (arg) == SSA_NAME
1546 && walk_use_def_chains_1 (arg, fn, data, visited, is_dfs))
1547 return true;
1550 /* When doing a depth-first search, call FN after following the
1551 use-def links for each argument. */
1552 if (is_dfs)
1553 for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
1554 if (fn (gimple_phi_arg_def (def_stmt, i), def_stmt, data))
1555 return true;
1558 return false;
1563 /* Walk use-def chains starting at the SSA variable VAR. Call
1564 function FN at each reaching definition found. FN takes three
1565 arguments: VAR, its defining statement (DEF_STMT) and a generic
1566 pointer to whatever state information that FN may want to maintain
1567 (DATA). FN is able to stop the walk by returning true, otherwise
1568 in order to continue the walk, FN should return false.
1570 Note, that if DEF_STMT is a PHI node, the semantics are slightly
1571 different. The first argument to FN is no longer the original
1572 variable VAR, but the PHI argument currently being examined. If FN
1573 wants to get at VAR, it should call PHI_RESULT (PHI).
1575 If IS_DFS is true, this function will:
1577 1- walk the use-def chains for all the PHI arguments, and,
1578 2- call (*FN) (ARG, PHI, DATA) on all the PHI arguments.
1580 If IS_DFS is false, the two steps above are done in reverse order
1581 (i.e., a breadth-first search). */
1583 void
1584 walk_use_def_chains (tree var, walk_use_def_chains_fn fn, void *data,
1585 bool is_dfs)
1587 gimple def_stmt;
1589 gcc_assert (TREE_CODE (var) == SSA_NAME);
1591 def_stmt = SSA_NAME_DEF_STMT (var);
1593 /* We only need to recurse if the reaching definition comes from a PHI
1594 node. */
1595 if (gimple_code (def_stmt) != GIMPLE_PHI)
1596 (*fn) (var, def_stmt, data);
1597 else
1599 struct pointer_set_t *visited = pointer_set_create ();
1600 walk_use_def_chains_1 (var, fn, data, visited, is_dfs);
1601 pointer_set_destroy (visited);
1606 /* Return true if T, an SSA_NAME, has an undefined value. */
1608 bool
1609 ssa_undefined_value_p (tree t)
1611 tree var = SSA_NAME_VAR (t);
1613 /* Parameters get their initial value from the function entry. */
1614 if (TREE_CODE (var) == PARM_DECL)
1615 return false;
1617 /* Hard register variables get their initial value from the ether. */
1618 if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
1619 return false;
1621 /* The value is undefined iff its definition statement is empty. */
1622 return gimple_nop_p (SSA_NAME_DEF_STMT (t));
1625 /* Emit warnings for uninitialized variables. This is done in two passes.
1627 The first pass notices real uses of SSA names with undefined values.
1628 Such uses are unconditionally uninitialized, and we can be certain that
1629 such a use is a mistake. This pass is run before most optimizations,
1630 so that we catch as many as we can.
1632 The second pass follows PHI nodes to find uses that are potentially
1633 uninitialized. In this case we can't necessarily prove that the use
1634 is really uninitialized. This pass is run after most optimizations,
1635 so that we thread as many jumps and possible, and delete as much dead
1636 code as possible, in order to reduce false positives. We also look
1637 again for plain uninitialized variables, since optimization may have
1638 changed conditionally uninitialized to unconditionally uninitialized. */
1640 /* Emit a warning for T, an SSA_NAME, being uninitialized. The exact
1641 warning text is in MSGID and LOCUS may contain a location or be null. */
1643 static void
1644 warn_uninit (tree t, const char *gmsgid, void *data)
1646 tree var = SSA_NAME_VAR (t);
1647 gimple context = (gimple) data;
1648 location_t location;
1649 expanded_location xloc, floc;
1651 if (!ssa_undefined_value_p (t))
1652 return;
1654 /* TREE_NO_WARNING either means we already warned, or the front end
1655 wishes to suppress the warning. */
1656 if (TREE_NO_WARNING (var))
1657 return;
1659 /* Do not warn if it can be initialized outside this module. */
1660 if (is_global_var (var))
1661 return;
1663 location = (context != NULL && gimple_has_location (context))
1664 ? gimple_location (context)
1665 : DECL_SOURCE_LOCATION (var);
1666 xloc = expand_location (location);
1667 floc = expand_location (DECL_SOURCE_LOCATION (cfun->decl));
1668 if (warning_at (location, OPT_Wuninitialized, gmsgid, var))
1670 TREE_NO_WARNING (var) = 1;
1672 if (xloc.file != floc.file
1673 || xloc.line < floc.line
1674 || xloc.line > LOCATION_LINE (cfun->function_end_locus))
1675 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
1679 struct walk_data {
1680 gimple stmt;
1681 bool always_executed;
1682 bool warn_possibly_uninitialized;
1685 /* Called via walk_tree, look for SSA_NAMEs that have empty definitions
1686 and warn about them. */
1688 static tree
1689 warn_uninitialized_var (tree *tp, int *walk_subtrees, void *data_)
1691 struct walk_stmt_info *wi = (struct walk_stmt_info *) data_;
1692 struct walk_data *data = (struct walk_data *) wi->info;
1693 tree t = *tp;
1695 /* We do not care about LHS. */
1696 if (wi->is_lhs)
1698 /* Except for operands of INDIRECT_REF. */
1699 if (!INDIRECT_REF_P (t))
1700 return NULL_TREE;
1701 t = TREE_OPERAND (t, 0);
1704 switch (TREE_CODE (t))
1706 case ADDR_EXPR:
1707 /* Taking the address of an uninitialized variable does not
1708 count as using it. */
1709 *walk_subtrees = 0;
1710 break;
1712 case VAR_DECL:
1714 /* A VAR_DECL in the RHS of a gimple statement may mean that
1715 this variable is loaded from memory. */
1716 use_operand_p vuse;
1717 tree op;
1719 /* If there is not gimple stmt,
1720 or alias information has not been computed,
1721 then we cannot check VUSE ops. */
1722 if (data->stmt == NULL)
1723 return NULL_TREE;
1725 /* If the load happens as part of a call do not warn about it. */
1726 if (is_gimple_call (data->stmt))
1727 return NULL_TREE;
1729 vuse = gimple_vuse_op (data->stmt);
1730 if (vuse == NULL_USE_OPERAND_P)
1731 return NULL_TREE;
1733 op = USE_FROM_PTR (vuse);
1734 if (t != SSA_NAME_VAR (op)
1735 || !SSA_NAME_IS_DEFAULT_DEF (op))
1736 return NULL_TREE;
1737 /* If this is a VUSE of t and it is the default definition,
1738 then warn about op. */
1739 t = op;
1740 /* Fall through into SSA_NAME. */
1743 case SSA_NAME:
1744 /* We only do data flow with SSA_NAMEs, so that's all we
1745 can warn about. */
1746 if (data->always_executed)
1747 warn_uninit (t, "%qD is used uninitialized in this function",
1748 data->stmt);
1749 else if (data->warn_possibly_uninitialized)
1750 warn_uninit (t, "%qD may be used uninitialized in this function",
1751 data->stmt);
1752 *walk_subtrees = 0;
1753 break;
1755 case REALPART_EXPR:
1756 case IMAGPART_EXPR:
1757 /* The total store transformation performed during gimplification
1758 creates uninitialized variable uses. If all is well, these will
1759 be optimized away, so don't warn now. */
1760 if (TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
1761 *walk_subtrees = 0;
1762 break;
1764 default:
1765 if (IS_TYPE_OR_DECL_P (t))
1766 *walk_subtrees = 0;
1767 break;
1770 return NULL_TREE;
1773 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
1774 and warn about them. */
1776 static void
1777 warn_uninitialized_phi (gimple phi)
1779 size_t i, n = gimple_phi_num_args (phi);
1781 /* Don't look at memory tags. */
1782 if (!is_gimple_reg (gimple_phi_result (phi)))
1783 return;
1785 for (i = 0; i < n; ++i)
1787 tree op = gimple_phi_arg_def (phi, i);
1788 if (TREE_CODE (op) == SSA_NAME)
1789 warn_uninit (op, "%qD may be used uninitialized in this function",
1790 NULL);
1794 static unsigned int
1795 warn_uninitialized_vars (bool warn_possibly_uninitialized)
1797 gimple_stmt_iterator gsi;
1798 basic_block bb;
1799 struct walk_data data;
1801 data.warn_possibly_uninitialized = warn_possibly_uninitialized;
1803 calculate_dominance_info (CDI_POST_DOMINATORS);
1805 FOR_EACH_BB (bb)
1807 data.always_executed = dominated_by_p (CDI_POST_DOMINATORS,
1808 single_succ (ENTRY_BLOCK_PTR), bb);
1809 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1811 struct walk_stmt_info wi;
1812 data.stmt = gsi_stmt (gsi);
1813 if (is_gimple_debug (data.stmt))
1814 continue;
1815 memset (&wi, 0, sizeof (wi));
1816 wi.info = &data;
1817 walk_gimple_op (gsi_stmt (gsi), warn_uninitialized_var, &wi);
1821 /* Post-dominator information can not be reliably updated. Free it
1822 after the use. */
1824 free_dominance_info (CDI_POST_DOMINATORS);
1825 return 0;
1828 static unsigned int
1829 execute_early_warn_uninitialized (void)
1831 /* Currently, this pass runs always but
1832 execute_late_warn_uninitialized only runs with optimization. With
1833 optimization we want to warn about possible uninitialized as late
1834 as possible, thus don't do it here. However, without
1835 optimization we need to warn here about "may be uninitialized".
1837 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
1838 return 0;
1841 static unsigned int
1842 execute_late_warn_uninitialized (void)
1844 basic_block bb;
1845 gimple_stmt_iterator gsi;
1847 /* Re-do the plain uninitialized variable check, as optimization may have
1848 straightened control flow. Do this first so that we don't accidentally
1849 get a "may be" warning when we'd have seen an "is" warning later. */
1850 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
1852 FOR_EACH_BB (bb)
1853 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1854 warn_uninitialized_phi (gsi_stmt (gsi));
1856 return 0;
1859 static bool
1860 gate_warn_uninitialized (void)
1862 return warn_uninitialized != 0;
1865 struct gimple_opt_pass pass_early_warn_uninitialized =
1868 GIMPLE_PASS,
1869 "*early_warn_uninitialized", /* name */
1870 gate_warn_uninitialized, /* gate */
1871 execute_early_warn_uninitialized, /* execute */
1872 NULL, /* sub */
1873 NULL, /* next */
1874 0, /* static_pass_number */
1875 TV_NONE, /* tv_id */
1876 PROP_ssa, /* properties_required */
1877 0, /* properties_provided */
1878 0, /* properties_destroyed */
1879 0, /* todo_flags_start */
1880 0 /* todo_flags_finish */
1884 struct gimple_opt_pass pass_late_warn_uninitialized =
1887 GIMPLE_PASS,
1888 "*late_warn_uninitialized", /* name */
1889 gate_warn_uninitialized, /* gate */
1890 execute_late_warn_uninitialized, /* execute */
1891 NULL, /* sub */
1892 NULL, /* next */
1893 0, /* static_pass_number */
1894 TV_NONE, /* tv_id */
1895 PROP_ssa, /* properties_required */
1896 0, /* properties_provided */
1897 0, /* properties_destroyed */
1898 0, /* todo_flags_start */
1899 0 /* todo_flags_finish */
1903 /* Compute TREE_ADDRESSABLE and DECL_GIMPLE_REG_P for local variables. */
1905 void
1906 execute_update_addresses_taken (bool do_optimize)
1908 tree var;
1909 referenced_var_iterator rvi;
1910 gimple_stmt_iterator gsi;
1911 basic_block bb;
1912 bitmap addresses_taken = BITMAP_ALLOC (NULL);
1913 bitmap not_reg_needs = BITMAP_ALLOC (NULL);
1914 bool update_vops = false;
1916 /* Collect into ADDRESSES_TAKEN all variables whose address is taken within
1917 the function body. */
1918 FOR_EACH_BB (bb)
1920 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1922 gimple stmt = gsi_stmt (gsi);
1923 enum gimple_code code = gimple_code (stmt);
1925 /* Note all addresses taken by the stmt. */
1926 gimple_ior_addresses_taken (addresses_taken, stmt);
1928 /* If we have a call or an assignment, see if the lhs contains
1929 a local decl that requires not to be a gimple register. */
1930 if (code == GIMPLE_ASSIGN || code == GIMPLE_CALL)
1932 tree lhs = gimple_get_lhs (stmt);
1934 /* We may not rewrite TMR_SYMBOL to SSA. */
1935 if (lhs && TREE_CODE (lhs) == TARGET_MEM_REF
1936 && TMR_SYMBOL (lhs))
1937 bitmap_set_bit (not_reg_needs, DECL_UID (TMR_SYMBOL (lhs)));
1939 /* A plain decl does not need it set. */
1940 else if (lhs && handled_component_p (lhs))
1942 var = get_base_address (lhs);
1943 if (DECL_P (var))
1944 bitmap_set_bit (not_reg_needs, DECL_UID (var));
1949 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1951 size_t i;
1952 gimple phi = gsi_stmt (gsi);
1954 for (i = 0; i < gimple_phi_num_args (phi); i++)
1956 tree op = PHI_ARG_DEF (phi, i), var;
1957 if (TREE_CODE (op) == ADDR_EXPR
1958 && (var = get_base_address (TREE_OPERAND (op, 0))) != NULL
1959 && DECL_P (var))
1960 bitmap_set_bit (addresses_taken, DECL_UID (var));
1965 /* When possible, clear ADDRESSABLE bit or set the REGISTER bit
1966 and mark variable for conversion into SSA. */
1967 if (optimize && do_optimize)
1968 FOR_EACH_REFERENCED_VAR (var, rvi)
1970 /* Global Variables, result decls cannot be changed. */
1971 if (is_global_var (var)
1972 || TREE_CODE (var) == RESULT_DECL
1973 || bitmap_bit_p (addresses_taken, DECL_UID (var)))
1974 continue;
1976 if (TREE_ADDRESSABLE (var)
1977 /* Do not change TREE_ADDRESSABLE if we need to preserve var as
1978 a non-register. Otherwise we are confused and forget to
1979 add virtual operands for it. */
1980 && (!is_gimple_reg_type (TREE_TYPE (var))
1981 || !bitmap_bit_p (not_reg_needs, DECL_UID (var))))
1983 TREE_ADDRESSABLE (var) = 0;
1984 if (is_gimple_reg (var))
1985 mark_sym_for_renaming (var);
1986 update_vops = true;
1987 if (dump_file)
1989 fprintf (dump_file, "No longer having address taken ");
1990 print_generic_expr (dump_file, var, 0);
1991 fprintf (dump_file, "\n");
1994 if (!DECL_GIMPLE_REG_P (var)
1995 && !bitmap_bit_p (not_reg_needs, DECL_UID (var))
1996 && (TREE_CODE (TREE_TYPE (var)) == COMPLEX_TYPE
1997 || TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE)
1998 && !TREE_THIS_VOLATILE (var)
1999 && (TREE_CODE (var) != VAR_DECL || !DECL_HARD_REGISTER (var)))
2001 DECL_GIMPLE_REG_P (var) = 1;
2002 mark_sym_for_renaming (var);
2003 update_vops = true;
2004 if (dump_file)
2006 fprintf (dump_file, "Decl is now a gimple register ");
2007 print_generic_expr (dump_file, var, 0);
2008 fprintf (dump_file, "\n");
2013 /* Operand caches needs to be recomputed for operands referencing the updated
2014 variables. */
2015 if (update_vops)
2017 FOR_EACH_BB (bb)
2018 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2020 gimple stmt = gsi_stmt (gsi);
2022 if (gimple_references_memory_p (stmt)
2023 || is_gimple_debug (stmt))
2024 update_stmt (stmt);
2027 /* Update SSA form here, we are called as non-pass as well. */
2028 update_ssa (TODO_update_ssa);
2031 BITMAP_FREE (not_reg_needs);
2032 BITMAP_FREE (addresses_taken);
2035 struct gimple_opt_pass pass_update_address_taken =
2038 GIMPLE_PASS,
2039 "addressables", /* name */
2040 NULL, /* gate */
2041 NULL, /* execute */
2042 NULL, /* sub */
2043 NULL, /* next */
2044 0, /* static_pass_number */
2045 TV_NONE, /* tv_id */
2046 PROP_ssa, /* properties_required */
2047 0, /* properties_provided */
2048 0, /* properties_destroyed */
2049 0, /* todo_flags_start */
2050 TODO_update_address_taken
2051 | TODO_dump_func /* todo_flags_finish */