* config/i386/i386.md (x86_shrd): Add athlon_decode and
[official-gcc/alias-decl.git] / gcc / recog.c
blob0dea35fb3d7eaa36967e3fae65371d394b1909bd
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "real.h"
39 #include "toplev.h"
40 #include "basic-block.h"
41 #include "output.h"
42 #include "reload.h"
43 #include "target.h"
44 #include "timevar.h"
45 #include "tree-pass.h"
46 #include "df.h"
48 #ifndef STACK_PUSH_CODE
49 #ifdef STACK_GROWS_DOWNWARD
50 #define STACK_PUSH_CODE PRE_DEC
51 #else
52 #define STACK_PUSH_CODE PRE_INC
53 #endif
54 #endif
56 #ifndef STACK_POP_CODE
57 #ifdef STACK_GROWS_DOWNWARD
58 #define STACK_POP_CODE POST_INC
59 #else
60 #define STACK_POP_CODE POST_DEC
61 #endif
62 #endif
64 #ifndef HAVE_ATTR_enabled
65 static inline bool
66 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
68 return true;
70 #endif
72 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
73 static void validate_replace_src_1 (rtx *, void *);
74 static rtx split_insn (rtx);
76 /* Nonzero means allow operands to be volatile.
77 This should be 0 if you are generating rtl, such as if you are calling
78 the functions in optabs.c and expmed.c (most of the time).
79 This should be 1 if all valid insns need to be recognized,
80 such as in reginfo.c and final.c and reload.c.
82 init_recog and init_recog_no_volatile are responsible for setting this. */
84 int volatile_ok;
86 struct recog_data recog_data;
88 /* Contains a vector of operand_alternative structures for every operand.
89 Set up by preprocess_constraints. */
90 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
92 /* On return from `constrain_operands', indicate which alternative
93 was satisfied. */
95 int which_alternative;
97 /* Nonzero after end of reload pass.
98 Set to 1 or 0 by toplev.c.
99 Controls the significance of (SUBREG (MEM)). */
101 int reload_completed;
103 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
104 int epilogue_completed;
106 /* Initialize data used by the function `recog'.
107 This must be called once in the compilation of a function
108 before any insn recognition may be done in the function. */
110 void
111 init_recog_no_volatile (void)
113 volatile_ok = 0;
116 void
117 init_recog (void)
119 volatile_ok = 1;
123 /* Check that X is an insn-body for an `asm' with operands
124 and that the operands mentioned in it are legitimate. */
127 check_asm_operands (rtx x)
129 int noperands;
130 rtx *operands;
131 const char **constraints;
132 int i;
134 /* Post-reload, be more strict with things. */
135 if (reload_completed)
137 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
138 extract_insn (make_insn_raw (x));
139 constrain_operands (1);
140 return which_alternative >= 0;
143 noperands = asm_noperands (x);
144 if (noperands < 0)
145 return 0;
146 if (noperands == 0)
147 return 1;
149 operands = XALLOCAVEC (rtx, noperands);
150 constraints = XALLOCAVEC (const char *, noperands);
152 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
154 for (i = 0; i < noperands; i++)
156 const char *c = constraints[i];
157 if (c[0] == '%')
158 c++;
159 if (! asm_operand_ok (operands[i], c, constraints))
160 return 0;
163 return 1;
166 /* Static data for the next two routines. */
168 typedef struct change_t
170 rtx object;
171 int old_code;
172 rtx *loc;
173 rtx old;
174 bool unshare;
175 } change_t;
177 static change_t *changes;
178 static int changes_allocated;
180 static int num_changes = 0;
182 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
183 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
184 the change is simply made.
186 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
187 will be called with the address and mode as parameters. If OBJECT is
188 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
189 the change in place.
191 IN_GROUP is nonzero if this is part of a group of changes that must be
192 performed as a group. In that case, the changes will be stored. The
193 function `apply_change_group' will validate and apply the changes.
195 If IN_GROUP is zero, this is a single change. Try to recognize the insn
196 or validate the memory reference with the change applied. If the result
197 is not valid for the machine, suppress the change and return zero.
198 Otherwise, perform the change and return 1. */
200 static bool
201 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
203 rtx old = *loc;
205 if (old == new_rtx || rtx_equal_p (old, new_rtx))
206 return 1;
208 gcc_assert (in_group != 0 || num_changes == 0);
210 *loc = new_rtx;
212 /* Save the information describing this change. */
213 if (num_changes >= changes_allocated)
215 if (changes_allocated == 0)
216 /* This value allows for repeated substitutions inside complex
217 indexed addresses, or changes in up to 5 insns. */
218 changes_allocated = MAX_RECOG_OPERANDS * 5;
219 else
220 changes_allocated *= 2;
222 changes = XRESIZEVEC (change_t, changes, changes_allocated);
225 changes[num_changes].object = object;
226 changes[num_changes].loc = loc;
227 changes[num_changes].old = old;
228 changes[num_changes].unshare = unshare;
230 if (object && !MEM_P (object))
232 /* Set INSN_CODE to force rerecognition of insn. Save old code in
233 case invalid. */
234 changes[num_changes].old_code = INSN_CODE (object);
235 INSN_CODE (object) = -1;
238 num_changes++;
240 /* If we are making a group of changes, return 1. Otherwise, validate the
241 change group we made. */
243 if (in_group)
244 return 1;
245 else
246 return apply_change_group ();
249 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
250 UNSHARE to false. */
252 bool
253 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
255 return validate_change_1 (object, loc, new_rtx, in_group, false);
258 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
259 UNSHARE to true. */
261 bool
262 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
264 return validate_change_1 (object, loc, new_rtx, in_group, true);
268 /* Keep X canonicalized if some changes have made it non-canonical; only
269 modifies the operands of X, not (for example) its code. Simplifications
270 are not the job of this routine.
272 Return true if anything was changed. */
273 bool
274 canonicalize_change_group (rtx insn, rtx x)
276 if (COMMUTATIVE_P (x)
277 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
279 /* Oops, the caller has made X no longer canonical.
280 Let's redo the changes in the correct order. */
281 rtx tem = XEXP (x, 0);
282 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
283 validate_change (insn, &XEXP (x, 1), tem, 1);
284 return true;
286 else
287 return false;
291 /* This subroutine of apply_change_group verifies whether the changes to INSN
292 were valid; i.e. whether INSN can still be recognized. */
295 insn_invalid_p (rtx insn)
297 rtx pat = PATTERN (insn);
298 int num_clobbers = 0;
299 /* If we are before reload and the pattern is a SET, see if we can add
300 clobbers. */
301 int icode = recog (pat, insn,
302 (GET_CODE (pat) == SET
303 && ! reload_completed && ! reload_in_progress)
304 ? &num_clobbers : 0);
305 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
308 /* If this is an asm and the operand aren't legal, then fail. Likewise if
309 this is not an asm and the insn wasn't recognized. */
310 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
311 || (!is_asm && icode < 0))
312 return 1;
314 /* If we have to add CLOBBERs, fail if we have to add ones that reference
315 hard registers since our callers can't know if they are live or not.
316 Otherwise, add them. */
317 if (num_clobbers > 0)
319 rtx newpat;
321 if (added_clobbers_hard_reg_p (icode))
322 return 1;
324 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
325 XVECEXP (newpat, 0, 0) = pat;
326 add_clobbers (newpat, icode);
327 PATTERN (insn) = pat = newpat;
330 /* After reload, verify that all constraints are satisfied. */
331 if (reload_completed)
333 extract_insn (insn);
335 if (! constrain_operands (1))
336 return 1;
339 INSN_CODE (insn) = icode;
340 return 0;
343 /* Return number of changes made and not validated yet. */
345 num_changes_pending (void)
347 return num_changes;
350 /* Tentatively apply the changes numbered NUM and up.
351 Return 1 if all changes are valid, zero otherwise. */
354 verify_changes (int num)
356 int i;
357 rtx last_validated = NULL_RTX;
359 /* The changes have been applied and all INSN_CODEs have been reset to force
360 rerecognition.
362 The changes are valid if we aren't given an object, or if we are
363 given a MEM and it still is a valid address, or if this is in insn
364 and it is recognized. In the latter case, if reload has completed,
365 we also require that the operands meet the constraints for
366 the insn. */
368 for (i = num; i < num_changes; i++)
370 rtx object = changes[i].object;
372 /* If there is no object to test or if it is the same as the one we
373 already tested, ignore it. */
374 if (object == 0 || object == last_validated)
375 continue;
377 if (MEM_P (object))
379 if (! memory_address_addr_space_p (GET_MODE (object),
380 XEXP (object, 0),
381 MEM_ADDR_SPACE (object)))
382 break;
384 else if (REG_P (changes[i].old)
385 && asm_noperands (PATTERN (object)) > 0
386 && REG_EXPR (changes[i].old) != NULL_TREE
387 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
388 && DECL_REGISTER (REG_EXPR (changes[i].old)))
390 /* Don't allow changes of hard register operands to inline
391 assemblies if they have been defined as register asm ("x"). */
392 break;
394 else if (DEBUG_INSN_P (object))
395 continue;
396 else if (insn_invalid_p (object))
398 rtx pat = PATTERN (object);
400 /* Perhaps we couldn't recognize the insn because there were
401 extra CLOBBERs at the end. If so, try to re-recognize
402 without the last CLOBBER (later iterations will cause each of
403 them to be eliminated, in turn). But don't do this if we
404 have an ASM_OPERAND. */
405 if (GET_CODE (pat) == PARALLEL
406 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
407 && asm_noperands (PATTERN (object)) < 0)
409 rtx newpat;
411 if (XVECLEN (pat, 0) == 2)
412 newpat = XVECEXP (pat, 0, 0);
413 else
415 int j;
417 newpat
418 = gen_rtx_PARALLEL (VOIDmode,
419 rtvec_alloc (XVECLEN (pat, 0) - 1));
420 for (j = 0; j < XVECLEN (newpat, 0); j++)
421 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
424 /* Add a new change to this group to replace the pattern
425 with this new pattern. Then consider this change
426 as having succeeded. The change we added will
427 cause the entire call to fail if things remain invalid.
429 Note that this can lose if a later change than the one
430 we are processing specified &XVECEXP (PATTERN (object), 0, X)
431 but this shouldn't occur. */
433 validate_change (object, &PATTERN (object), newpat, 1);
434 continue;
436 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
437 || GET_CODE (pat) == VAR_LOCATION)
438 /* If this insn is a CLOBBER or USE, it is always valid, but is
439 never recognized. */
440 continue;
441 else
442 break;
444 last_validated = object;
447 return (i == num_changes);
450 /* A group of changes has previously been issued with validate_change
451 and verified with verify_changes. Call df_insn_rescan for each of
452 the insn changed and clear num_changes. */
454 void
455 confirm_change_group (void)
457 int i;
458 rtx last_object = NULL;
460 for (i = 0; i < num_changes; i++)
462 rtx object = changes[i].object;
464 if (changes[i].unshare)
465 *changes[i].loc = copy_rtx (*changes[i].loc);
467 /* Avoid unnecessary rescanning when multiple changes to same instruction
468 are made. */
469 if (object)
471 if (object != last_object && last_object && INSN_P (last_object))
472 df_insn_rescan (last_object);
473 last_object = object;
477 if (last_object && INSN_P (last_object))
478 df_insn_rescan (last_object);
479 num_changes = 0;
482 /* Apply a group of changes previously issued with `validate_change'.
483 If all changes are valid, call confirm_change_group and return 1,
484 otherwise, call cancel_changes and return 0. */
487 apply_change_group (void)
489 if (verify_changes (0))
491 confirm_change_group ();
492 return 1;
494 else
496 cancel_changes (0);
497 return 0;
502 /* Return the number of changes so far in the current group. */
505 num_validated_changes (void)
507 return num_changes;
510 /* Retract the changes numbered NUM and up. */
512 void
513 cancel_changes (int num)
515 int i;
517 /* Back out all the changes. Do this in the opposite order in which
518 they were made. */
519 for (i = num_changes - 1; i >= num; i--)
521 *changes[i].loc = changes[i].old;
522 if (changes[i].object && !MEM_P (changes[i].object))
523 INSN_CODE (changes[i].object) = changes[i].old_code;
525 num_changes = num;
528 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
529 rtx. */
531 static void
532 simplify_while_replacing (rtx *loc, rtx to, rtx object,
533 enum machine_mode op0_mode)
535 rtx x = *loc;
536 enum rtx_code code = GET_CODE (x);
537 rtx new_rtx;
539 if (SWAPPABLE_OPERANDS_P (x)
540 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
542 validate_unshare_change (object, loc,
543 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
544 : swap_condition (code),
545 GET_MODE (x), XEXP (x, 1),
546 XEXP (x, 0)), 1);
547 x = *loc;
548 code = GET_CODE (x);
551 switch (code)
553 case PLUS:
554 /* If we have a PLUS whose second operand is now a CONST_INT, use
555 simplify_gen_binary to try to simplify it.
556 ??? We may want later to remove this, once simplification is
557 separated from this function. */
558 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
559 validate_change (object, loc,
560 simplify_gen_binary
561 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
562 break;
563 case MINUS:
564 if (CONST_INT_P (XEXP (x, 1))
565 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
566 validate_change (object, loc,
567 simplify_gen_binary
568 (PLUS, GET_MODE (x), XEXP (x, 0),
569 simplify_gen_unary (NEG,
570 GET_MODE (x), XEXP (x, 1),
571 GET_MODE (x))), 1);
572 break;
573 case ZERO_EXTEND:
574 case SIGN_EXTEND:
575 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
577 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
578 op0_mode);
579 /* If any of the above failed, substitute in something that
580 we know won't be recognized. */
581 if (!new_rtx)
582 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
583 validate_change (object, loc, new_rtx, 1);
585 break;
586 case SUBREG:
587 /* All subregs possible to simplify should be simplified. */
588 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
589 SUBREG_BYTE (x));
591 /* Subregs of VOIDmode operands are incorrect. */
592 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
593 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
594 if (new_rtx)
595 validate_change (object, loc, new_rtx, 1);
596 break;
597 case ZERO_EXTRACT:
598 case SIGN_EXTRACT:
599 /* If we are replacing a register with memory, try to change the memory
600 to be the mode required for memory in extract operations (this isn't
601 likely to be an insertion operation; if it was, nothing bad will
602 happen, we might just fail in some cases). */
604 if (MEM_P (XEXP (x, 0))
605 && CONST_INT_P (XEXP (x, 1))
606 && CONST_INT_P (XEXP (x, 2))
607 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
608 && !MEM_VOLATILE_P (XEXP (x, 0)))
610 enum machine_mode wanted_mode = VOIDmode;
611 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
612 int pos = INTVAL (XEXP (x, 2));
614 if (GET_CODE (x) == ZERO_EXTRACT)
616 enum machine_mode new_mode
617 = mode_for_extraction (EP_extzv, 1);
618 if (new_mode != MAX_MACHINE_MODE)
619 wanted_mode = new_mode;
621 else if (GET_CODE (x) == SIGN_EXTRACT)
623 enum machine_mode new_mode
624 = mode_for_extraction (EP_extv, 1);
625 if (new_mode != MAX_MACHINE_MODE)
626 wanted_mode = new_mode;
629 /* If we have a narrower mode, we can do something. */
630 if (wanted_mode != VOIDmode
631 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
633 int offset = pos / BITS_PER_UNIT;
634 rtx newmem;
636 /* If the bytes and bits are counted differently, we
637 must adjust the offset. */
638 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
639 offset =
640 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
641 offset);
643 pos %= GET_MODE_BITSIZE (wanted_mode);
645 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
647 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
648 validate_change (object, &XEXP (x, 0), newmem, 1);
652 break;
654 default:
655 break;
659 /* Replace every occurrence of FROM in X with TO. Mark each change with
660 validate_change passing OBJECT. */
662 static void
663 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
664 bool simplify)
666 int i, j;
667 const char *fmt;
668 rtx x = *loc;
669 enum rtx_code code;
670 enum machine_mode op0_mode = VOIDmode;
671 int prev_changes = num_changes;
673 if (!x)
674 return;
676 code = GET_CODE (x);
677 fmt = GET_RTX_FORMAT (code);
678 if (fmt[0] == 'e')
679 op0_mode = GET_MODE (XEXP (x, 0));
681 /* X matches FROM if it is the same rtx or they are both referring to the
682 same register in the same mode. Avoid calling rtx_equal_p unless the
683 operands look similar. */
685 if (x == from
686 || (REG_P (x) && REG_P (from)
687 && GET_MODE (x) == GET_MODE (from)
688 && REGNO (x) == REGNO (from))
689 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
690 && rtx_equal_p (x, from)))
692 validate_unshare_change (object, loc, to, 1);
693 return;
696 /* Call ourself recursively to perform the replacements.
697 We must not replace inside already replaced expression, otherwise we
698 get infinite recursion for replacements like (reg X)->(subreg (reg X))
699 done by regmove, so we must special case shared ASM_OPERANDS. */
701 if (GET_CODE (x) == PARALLEL)
703 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
705 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
706 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
708 /* Verify that operands are really shared. */
709 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
710 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
711 (x, 0, j))));
712 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
713 from, to, object, simplify);
715 else
716 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
717 simplify);
720 else
721 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
723 if (fmt[i] == 'e')
724 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
725 else if (fmt[i] == 'E')
726 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
727 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
728 simplify);
731 /* If we didn't substitute, there is nothing more to do. */
732 if (num_changes == prev_changes)
733 return;
735 /* Allow substituted expression to have different mode. This is used by
736 regmove to change mode of pseudo register. */
737 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
738 op0_mode = GET_MODE (XEXP (x, 0));
740 /* Do changes needed to keep rtx consistent. Don't do any other
741 simplifications, as it is not our job. */
742 if (simplify)
743 simplify_while_replacing (loc, to, object, op0_mode);
746 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
747 with TO. After all changes have been made, validate by seeing
748 if INSN is still valid. */
751 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
753 validate_replace_rtx_1 (loc, from, to, insn, true);
754 return apply_change_group ();
757 /* Try replacing every occurrence of FROM in INSN with TO. After all
758 changes have been made, validate by seeing if INSN is still valid. */
761 validate_replace_rtx (rtx from, rtx to, rtx insn)
763 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
764 return apply_change_group ();
767 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
768 is a part of INSN. After all changes have been made, validate by seeing if
769 INSN is still valid.
770 validate_replace_rtx (from, to, insn) is equivalent to
771 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
774 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
776 validate_replace_rtx_1 (where, from, to, insn, true);
777 return apply_change_group ();
780 /* Same as above, but do not simplify rtx afterwards. */
782 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
783 rtx insn)
785 validate_replace_rtx_1 (where, from, to, insn, false);
786 return apply_change_group ();
790 /* Try replacing every occurrence of FROM in INSN with TO. This also
791 will replace in REG_EQUAL and REG_EQUIV notes. */
793 void
794 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
796 rtx note;
797 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
798 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
799 if (REG_NOTE_KIND (note) == REG_EQUAL
800 || REG_NOTE_KIND (note) == REG_EQUIV)
801 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
804 /* Function called by note_uses to replace used subexpressions. */
805 struct validate_replace_src_data
807 rtx from; /* Old RTX */
808 rtx to; /* New RTX */
809 rtx insn; /* Insn in which substitution is occurring. */
812 static void
813 validate_replace_src_1 (rtx *x, void *data)
815 struct validate_replace_src_data *d
816 = (struct validate_replace_src_data *) data;
818 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
821 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
822 SET_DESTs. */
824 void
825 validate_replace_src_group (rtx from, rtx to, rtx insn)
827 struct validate_replace_src_data d;
829 d.from = from;
830 d.to = to;
831 d.insn = insn;
832 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
835 /* Try simplify INSN.
836 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
837 pattern and return true if something was simplified. */
839 bool
840 validate_simplify_insn (rtx insn)
842 int i;
843 rtx pat = NULL;
844 rtx newpat = NULL;
846 pat = PATTERN (insn);
848 if (GET_CODE (pat) == SET)
850 newpat = simplify_rtx (SET_SRC (pat));
851 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
852 validate_change (insn, &SET_SRC (pat), newpat, 1);
853 newpat = simplify_rtx (SET_DEST (pat));
854 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
855 validate_change (insn, &SET_DEST (pat), newpat, 1);
857 else if (GET_CODE (pat) == PARALLEL)
858 for (i = 0; i < XVECLEN (pat, 0); i++)
860 rtx s = XVECEXP (pat, 0, i);
862 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
864 newpat = simplify_rtx (SET_SRC (s));
865 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
866 validate_change (insn, &SET_SRC (s), newpat, 1);
867 newpat = simplify_rtx (SET_DEST (s));
868 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
869 validate_change (insn, &SET_DEST (s), newpat, 1);
872 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
875 #ifdef HAVE_cc0
876 /* Return 1 if the insn using CC0 set by INSN does not contain
877 any ordered tests applied to the condition codes.
878 EQ and NE tests do not count. */
881 next_insn_tests_no_inequality (rtx insn)
883 rtx next = next_cc0_user (insn);
885 /* If there is no next insn, we have to take the conservative choice. */
886 if (next == 0)
887 return 0;
889 return (INSN_P (next)
890 && ! inequality_comparisons_p (PATTERN (next)));
892 #endif
894 /* Return 1 if OP is a valid general operand for machine mode MODE.
895 This is either a register reference, a memory reference,
896 or a constant. In the case of a memory reference, the address
897 is checked for general validity for the target machine.
899 Register and memory references must have mode MODE in order to be valid,
900 but some constants have no machine mode and are valid for any mode.
902 If MODE is VOIDmode, OP is checked for validity for whatever mode
903 it has.
905 The main use of this function is as a predicate in match_operand
906 expressions in the machine description.
908 For an explanation of this function's behavior for registers of
909 class NO_REGS, see the comment for `register_operand'. */
912 general_operand (rtx op, enum machine_mode mode)
914 enum rtx_code code = GET_CODE (op);
916 if (mode == VOIDmode)
917 mode = GET_MODE (op);
919 /* Don't accept CONST_INT or anything similar
920 if the caller wants something floating. */
921 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
922 && GET_MODE_CLASS (mode) != MODE_INT
923 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
924 return 0;
926 if (CONST_INT_P (op)
927 && mode != VOIDmode
928 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
929 return 0;
931 if (CONSTANT_P (op))
932 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
933 || mode == VOIDmode)
934 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
935 && LEGITIMATE_CONSTANT_P (op));
937 /* Except for certain constants with VOIDmode, already checked for,
938 OP's mode must match MODE if MODE specifies a mode. */
940 if (GET_MODE (op) != mode)
941 return 0;
943 if (code == SUBREG)
945 rtx sub = SUBREG_REG (op);
947 #ifdef INSN_SCHEDULING
948 /* On machines that have insn scheduling, we want all memory
949 reference to be explicit, so outlaw paradoxical SUBREGs.
950 However, we must allow them after reload so that they can
951 get cleaned up by cleanup_subreg_operands. */
952 if (!reload_completed && MEM_P (sub)
953 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
954 return 0;
955 #endif
956 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
957 may result in incorrect reference. We should simplify all valid
958 subregs of MEM anyway. But allow this after reload because we
959 might be called from cleanup_subreg_operands.
961 ??? This is a kludge. */
962 if (!reload_completed && SUBREG_BYTE (op) != 0
963 && MEM_P (sub))
964 return 0;
966 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
967 create such rtl, and we must reject it. */
968 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
969 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
970 return 0;
972 op = sub;
973 code = GET_CODE (op);
976 if (code == REG)
977 /* A register whose class is NO_REGS is not a general operand. */
978 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
979 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
981 if (code == MEM)
983 rtx y = XEXP (op, 0);
985 if (! volatile_ok && MEM_VOLATILE_P (op))
986 return 0;
988 /* Use the mem's mode, since it will be reloaded thus. */
989 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
990 return 1;
993 return 0;
996 /* Return 1 if OP is a valid memory address for a memory reference
997 of mode MODE.
999 The main use of this function is as a predicate in match_operand
1000 expressions in the machine description. */
1003 address_operand (rtx op, enum machine_mode mode)
1005 return memory_address_p (mode, op);
1008 /* Return 1 if OP is a register reference of mode MODE.
1009 If MODE is VOIDmode, accept a register in any mode.
1011 The main use of this function is as a predicate in match_operand
1012 expressions in the machine description.
1014 As a special exception, registers whose class is NO_REGS are
1015 not accepted by `register_operand'. The reason for this change
1016 is to allow the representation of special architecture artifacts
1017 (such as a condition code register) without extending the rtl
1018 definitions. Since registers of class NO_REGS cannot be used
1019 as registers in any case where register classes are examined,
1020 it is most consistent to keep this function from accepting them. */
1023 register_operand (rtx op, enum machine_mode mode)
1025 if (GET_MODE (op) != mode && mode != VOIDmode)
1026 return 0;
1028 if (GET_CODE (op) == SUBREG)
1030 rtx sub = SUBREG_REG (op);
1032 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1033 because it is guaranteed to be reloaded into one.
1034 Just make sure the MEM is valid in itself.
1035 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1036 but currently it does result from (SUBREG (REG)...) where the
1037 reg went on the stack.) */
1038 if (! reload_completed && MEM_P (sub))
1039 return general_operand (op, mode);
1041 #ifdef CANNOT_CHANGE_MODE_CLASS
1042 if (REG_P (sub)
1043 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1044 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1045 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1046 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1047 return 0;
1048 #endif
1050 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1051 create such rtl, and we must reject it. */
1052 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1053 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1054 return 0;
1056 op = sub;
1059 /* We don't consider registers whose class is NO_REGS
1060 to be a register operand. */
1061 return (REG_P (op)
1062 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1063 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1066 /* Return 1 for a register in Pmode; ignore the tested mode. */
1069 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1071 return register_operand (op, Pmode);
1074 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1075 or a hard register. */
1078 scratch_operand (rtx op, enum machine_mode mode)
1080 if (GET_MODE (op) != mode && mode != VOIDmode)
1081 return 0;
1083 return (GET_CODE (op) == SCRATCH
1084 || (REG_P (op)
1085 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1088 /* Return 1 if OP is a valid immediate operand for mode MODE.
1090 The main use of this function is as a predicate in match_operand
1091 expressions in the machine description. */
1094 immediate_operand (rtx op, enum machine_mode mode)
1096 /* Don't accept CONST_INT or anything similar
1097 if the caller wants something floating. */
1098 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1099 && GET_MODE_CLASS (mode) != MODE_INT
1100 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1101 return 0;
1103 if (CONST_INT_P (op)
1104 && mode != VOIDmode
1105 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1106 return 0;
1108 return (CONSTANT_P (op)
1109 && (GET_MODE (op) == mode || mode == VOIDmode
1110 || GET_MODE (op) == VOIDmode)
1111 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1112 && LEGITIMATE_CONSTANT_P (op));
1115 /* Returns 1 if OP is an operand that is a CONST_INT. */
1118 const_int_operand (rtx op, enum machine_mode mode)
1120 if (!CONST_INT_P (op))
1121 return 0;
1123 if (mode != VOIDmode
1124 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1125 return 0;
1127 return 1;
1130 /* Returns 1 if OP is an operand that is a constant integer or constant
1131 floating-point number. */
1134 const_double_operand (rtx op, enum machine_mode mode)
1136 /* Don't accept CONST_INT or anything similar
1137 if the caller wants something floating. */
1138 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1139 && GET_MODE_CLASS (mode) != MODE_INT
1140 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1141 return 0;
1143 return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1144 && (mode == VOIDmode || GET_MODE (op) == mode
1145 || GET_MODE (op) == VOIDmode));
1148 /* Return 1 if OP is a general operand that is not an immediate operand. */
1151 nonimmediate_operand (rtx op, enum machine_mode mode)
1153 return (general_operand (op, mode) && ! CONSTANT_P (op));
1156 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1159 nonmemory_operand (rtx op, enum machine_mode mode)
1161 if (CONSTANT_P (op))
1163 /* Don't accept CONST_INT or anything similar
1164 if the caller wants something floating. */
1165 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1166 && GET_MODE_CLASS (mode) != MODE_INT
1167 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1168 return 0;
1170 if (CONST_INT_P (op)
1171 && mode != VOIDmode
1172 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1173 return 0;
1175 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1176 || mode == VOIDmode)
1177 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1178 && LEGITIMATE_CONSTANT_P (op));
1181 if (GET_MODE (op) != mode && mode != VOIDmode)
1182 return 0;
1184 if (GET_CODE (op) == SUBREG)
1186 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1187 because it is guaranteed to be reloaded into one.
1188 Just make sure the MEM is valid in itself.
1189 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1190 but currently it does result from (SUBREG (REG)...) where the
1191 reg went on the stack.) */
1192 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1193 return general_operand (op, mode);
1194 op = SUBREG_REG (op);
1197 /* We don't consider registers whose class is NO_REGS
1198 to be a register operand. */
1199 return (REG_P (op)
1200 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1201 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1204 /* Return 1 if OP is a valid operand that stands for pushing a
1205 value of mode MODE onto the stack.
1207 The main use of this function is as a predicate in match_operand
1208 expressions in the machine description. */
1211 push_operand (rtx op, enum machine_mode mode)
1213 unsigned int rounded_size = GET_MODE_SIZE (mode);
1215 #ifdef PUSH_ROUNDING
1216 rounded_size = PUSH_ROUNDING (rounded_size);
1217 #endif
1219 if (!MEM_P (op))
1220 return 0;
1222 if (mode != VOIDmode && GET_MODE (op) != mode)
1223 return 0;
1225 op = XEXP (op, 0);
1227 if (rounded_size == GET_MODE_SIZE (mode))
1229 if (GET_CODE (op) != STACK_PUSH_CODE)
1230 return 0;
1232 else
1234 if (GET_CODE (op) != PRE_MODIFY
1235 || GET_CODE (XEXP (op, 1)) != PLUS
1236 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1237 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1238 #ifdef STACK_GROWS_DOWNWARD
1239 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1240 #else
1241 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1242 #endif
1244 return 0;
1247 return XEXP (op, 0) == stack_pointer_rtx;
1250 /* Return 1 if OP is a valid operand that stands for popping a
1251 value of mode MODE off the stack.
1253 The main use of this function is as a predicate in match_operand
1254 expressions in the machine description. */
1257 pop_operand (rtx op, enum machine_mode mode)
1259 if (!MEM_P (op))
1260 return 0;
1262 if (mode != VOIDmode && GET_MODE (op) != mode)
1263 return 0;
1265 op = XEXP (op, 0);
1267 if (GET_CODE (op) != STACK_POP_CODE)
1268 return 0;
1270 return XEXP (op, 0) == stack_pointer_rtx;
1273 /* Return 1 if ADDR is a valid memory address
1274 for mode MODE in address space AS. */
1277 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1278 rtx addr, addr_space_t as)
1280 #ifdef GO_IF_LEGITIMATE_ADDRESS
1281 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1282 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1283 return 0;
1285 win:
1286 return 1;
1287 #else
1288 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1289 #endif
1292 /* Return 1 if OP is a valid memory reference with mode MODE,
1293 including a valid address.
1295 The main use of this function is as a predicate in match_operand
1296 expressions in the machine description. */
1299 memory_operand (rtx op, enum machine_mode mode)
1301 rtx inner;
1303 if (! reload_completed)
1304 /* Note that no SUBREG is a memory operand before end of reload pass,
1305 because (SUBREG (MEM...)) forces reloading into a register. */
1306 return MEM_P (op) && general_operand (op, mode);
1308 if (mode != VOIDmode && GET_MODE (op) != mode)
1309 return 0;
1311 inner = op;
1312 if (GET_CODE (inner) == SUBREG)
1313 inner = SUBREG_REG (inner);
1315 return (MEM_P (inner) && general_operand (op, mode));
1318 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1319 that is, a memory reference whose address is a general_operand. */
1322 indirect_operand (rtx op, enum machine_mode mode)
1324 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1325 if (! reload_completed
1326 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1328 int offset = SUBREG_BYTE (op);
1329 rtx inner = SUBREG_REG (op);
1331 if (mode != VOIDmode && GET_MODE (op) != mode)
1332 return 0;
1334 /* The only way that we can have a general_operand as the resulting
1335 address is if OFFSET is zero and the address already is an operand
1336 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1337 operand. */
1339 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1340 || (GET_CODE (XEXP (inner, 0)) == PLUS
1341 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1342 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1343 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1346 return (MEM_P (op)
1347 && memory_operand (op, mode)
1348 && general_operand (XEXP (op, 0), Pmode));
1351 /* Return 1 if this is an ordered comparison operator (not including
1352 ORDERED and UNORDERED). */
1355 ordered_comparison_operator (rtx op, enum machine_mode mode)
1357 if (mode != VOIDmode && GET_MODE (op) != mode)
1358 return false;
1359 switch (GET_CODE (op))
1361 case EQ:
1362 case NE:
1363 case LT:
1364 case LTU:
1365 case LE:
1366 case LEU:
1367 case GT:
1368 case GTU:
1369 case GE:
1370 case GEU:
1371 return true;
1372 default:
1373 return false;
1377 /* Return 1 if this is a comparison operator. This allows the use of
1378 MATCH_OPERATOR to recognize all the branch insns. */
1381 comparison_operator (rtx op, enum machine_mode mode)
1383 return ((mode == VOIDmode || GET_MODE (op) == mode)
1384 && COMPARISON_P (op));
1387 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1390 extract_asm_operands (rtx body)
1392 rtx tmp;
1393 switch (GET_CODE (body))
1395 case ASM_OPERANDS:
1396 return body;
1398 case SET:
1399 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1400 tmp = SET_SRC (body);
1401 if (GET_CODE (tmp) == ASM_OPERANDS)
1402 return tmp;
1403 break;
1405 case PARALLEL:
1406 tmp = XVECEXP (body, 0, 0);
1407 if (GET_CODE (tmp) == ASM_OPERANDS)
1408 return tmp;
1409 if (GET_CODE (tmp) == SET)
1411 tmp = SET_SRC (tmp);
1412 if (GET_CODE (tmp) == ASM_OPERANDS)
1413 return tmp;
1415 break;
1417 default:
1418 break;
1420 return NULL;
1423 /* If BODY is an insn body that uses ASM_OPERANDS,
1424 return the number of operands (both input and output) in the insn.
1425 Otherwise return -1. */
1428 asm_noperands (const_rtx body)
1430 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1431 int n_sets = 0;
1433 if (asm_op == NULL)
1434 return -1;
1436 if (GET_CODE (body) == SET)
1437 n_sets = 1;
1438 else if (GET_CODE (body) == PARALLEL)
1440 int i;
1441 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1443 /* Multiple output operands, or 1 output plus some clobbers:
1444 body is
1445 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1446 /* Count backwards through CLOBBERs to determine number of SETs. */
1447 for (i = XVECLEN (body, 0); i > 0; i--)
1449 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1450 break;
1451 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1452 return -1;
1455 /* N_SETS is now number of output operands. */
1456 n_sets = i;
1458 /* Verify that all the SETs we have
1459 came from a single original asm_operands insn
1460 (so that invalid combinations are blocked). */
1461 for (i = 0; i < n_sets; i++)
1463 rtx elt = XVECEXP (body, 0, i);
1464 if (GET_CODE (elt) != SET)
1465 return -1;
1466 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1467 return -1;
1468 /* If these ASM_OPERANDS rtx's came from different original insns
1469 then they aren't allowed together. */
1470 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1471 != ASM_OPERANDS_INPUT_VEC (asm_op))
1472 return -1;
1475 else
1477 /* 0 outputs, but some clobbers:
1478 body is [(asm_operands ...) (clobber (reg ...))...]. */
1479 /* Make sure all the other parallel things really are clobbers. */
1480 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1481 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1482 return -1;
1486 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1487 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1490 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1491 copy its operands (both input and output) into the vector OPERANDS,
1492 the locations of the operands within the insn into the vector OPERAND_LOCS,
1493 and the constraints for the operands into CONSTRAINTS.
1494 Write the modes of the operands into MODES.
1495 Return the assembler-template.
1497 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1498 we don't store that info. */
1500 const char *
1501 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1502 const char **constraints, enum machine_mode *modes,
1503 location_t *loc)
1505 int nbase = 0, n, i;
1506 rtx asmop;
1508 switch (GET_CODE (body))
1510 case ASM_OPERANDS:
1511 /* Zero output asm: BODY is (asm_operands ...). */
1512 asmop = body;
1513 break;
1515 case SET:
1516 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1517 asmop = SET_SRC (body);
1519 /* The output is in the SET.
1520 Its constraint is in the ASM_OPERANDS itself. */
1521 if (operands)
1522 operands[0] = SET_DEST (body);
1523 if (operand_locs)
1524 operand_locs[0] = &SET_DEST (body);
1525 if (constraints)
1526 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1527 if (modes)
1528 modes[0] = GET_MODE (SET_DEST (body));
1529 nbase = 1;
1530 break;
1532 case PARALLEL:
1534 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1536 asmop = XVECEXP (body, 0, 0);
1537 if (GET_CODE (asmop) == SET)
1539 asmop = SET_SRC (asmop);
1541 /* At least one output, plus some CLOBBERs. The outputs are in
1542 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1543 for (i = 0; i < nparallel; i++)
1545 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1546 break; /* Past last SET */
1547 if (operands)
1548 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1549 if (operand_locs)
1550 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1551 if (constraints)
1552 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1553 if (modes)
1554 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1556 nbase = i;
1558 break;
1561 default:
1562 gcc_unreachable ();
1565 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1566 for (i = 0; i < n; i++)
1568 if (operand_locs)
1569 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1570 if (operands)
1571 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1572 if (constraints)
1573 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1574 if (modes)
1575 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1577 nbase += n;
1579 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1580 for (i = 0; i < n; i++)
1582 if (operand_locs)
1583 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1584 if (operands)
1585 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1586 if (constraints)
1587 constraints[nbase + i] = "";
1588 if (modes)
1589 modes[nbase + i] = Pmode;
1592 if (loc)
1593 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1595 return ASM_OPERANDS_TEMPLATE (asmop);
1598 /* Check if an asm_operand matches its constraints.
1599 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1602 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1604 int result = 0;
1606 /* Use constrain_operands after reload. */
1607 gcc_assert (!reload_completed);
1609 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1610 many alternatives as required to match the other operands. */
1611 if (*constraint == '\0')
1612 return 1;
1614 while (*constraint)
1616 char c = *constraint;
1617 int len;
1618 switch (c)
1620 case ',':
1621 constraint++;
1622 continue;
1623 case '=':
1624 case '+':
1625 case '*':
1626 case '%':
1627 case '!':
1628 case '#':
1629 case '&':
1630 case '?':
1631 break;
1633 case '0': case '1': case '2': case '3': case '4':
1634 case '5': case '6': case '7': case '8': case '9':
1635 /* If caller provided constraints pointer, look up
1636 the maching constraint. Otherwise, our caller should have
1637 given us the proper matching constraint, but we can't
1638 actually fail the check if they didn't. Indicate that
1639 results are inconclusive. */
1640 if (constraints)
1642 char *end;
1643 unsigned long match;
1645 match = strtoul (constraint, &end, 10);
1646 if (!result)
1647 result = asm_operand_ok (op, constraints[match], NULL);
1648 constraint = (const char *) end;
1650 else
1653 constraint++;
1654 while (ISDIGIT (*constraint));
1655 if (! result)
1656 result = -1;
1658 continue;
1660 case 'p':
1661 if (address_operand (op, VOIDmode))
1662 result = 1;
1663 break;
1665 case TARGET_MEM_CONSTRAINT:
1666 case 'V': /* non-offsettable */
1667 if (memory_operand (op, VOIDmode))
1668 result = 1;
1669 break;
1671 case 'o': /* offsettable */
1672 if (offsettable_nonstrict_memref_p (op))
1673 result = 1;
1674 break;
1676 case '<':
1677 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1678 excepting those that expand_call created. Further, on some
1679 machines which do not have generalized auto inc/dec, an inc/dec
1680 is not a memory_operand.
1682 Match any memory and hope things are resolved after reload. */
1684 if (MEM_P (op)
1685 && (1
1686 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1687 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1688 result = 1;
1689 break;
1691 case '>':
1692 if (MEM_P (op)
1693 && (1
1694 || GET_CODE (XEXP (op, 0)) == PRE_INC
1695 || GET_CODE (XEXP (op, 0)) == POST_INC))
1696 result = 1;
1697 break;
1699 case 'E':
1700 case 'F':
1701 if (GET_CODE (op) == CONST_DOUBLE
1702 || (GET_CODE (op) == CONST_VECTOR
1703 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1704 result = 1;
1705 break;
1707 case 'G':
1708 if (GET_CODE (op) == CONST_DOUBLE
1709 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1710 result = 1;
1711 break;
1712 case 'H':
1713 if (GET_CODE (op) == CONST_DOUBLE
1714 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1715 result = 1;
1716 break;
1718 case 's':
1719 if (CONST_INT_P (op)
1720 || (GET_CODE (op) == CONST_DOUBLE
1721 && GET_MODE (op) == VOIDmode))
1722 break;
1723 /* Fall through. */
1725 case 'i':
1726 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1727 result = 1;
1728 break;
1730 case 'n':
1731 if (CONST_INT_P (op)
1732 || (GET_CODE (op) == CONST_DOUBLE
1733 && GET_MODE (op) == VOIDmode))
1734 result = 1;
1735 break;
1737 case 'I':
1738 if (CONST_INT_P (op)
1739 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1740 result = 1;
1741 break;
1742 case 'J':
1743 if (CONST_INT_P (op)
1744 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1745 result = 1;
1746 break;
1747 case 'K':
1748 if (CONST_INT_P (op)
1749 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1750 result = 1;
1751 break;
1752 case 'L':
1753 if (CONST_INT_P (op)
1754 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1755 result = 1;
1756 break;
1757 case 'M':
1758 if (CONST_INT_P (op)
1759 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1760 result = 1;
1761 break;
1762 case 'N':
1763 if (CONST_INT_P (op)
1764 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1765 result = 1;
1766 break;
1767 case 'O':
1768 if (CONST_INT_P (op)
1769 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1770 result = 1;
1771 break;
1772 case 'P':
1773 if (CONST_INT_P (op)
1774 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1775 result = 1;
1776 break;
1778 case 'X':
1779 result = 1;
1780 break;
1782 case 'g':
1783 if (general_operand (op, VOIDmode))
1784 result = 1;
1785 break;
1787 default:
1788 /* For all other letters, we first check for a register class,
1789 otherwise it is an EXTRA_CONSTRAINT. */
1790 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1792 case 'r':
1793 if (GET_MODE (op) == BLKmode)
1794 break;
1795 if (register_operand (op, VOIDmode))
1796 result = 1;
1798 #ifdef EXTRA_CONSTRAINT_STR
1799 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1800 /* Every memory operand can be reloaded to fit. */
1801 result = result || memory_operand (op, VOIDmode);
1802 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1803 /* Every address operand can be reloaded to fit. */
1804 result = result || address_operand (op, VOIDmode);
1805 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1806 result = 1;
1807 #endif
1808 break;
1810 len = CONSTRAINT_LEN (c, constraint);
1812 constraint++;
1813 while (--len && *constraint);
1814 if (len)
1815 return 0;
1818 return result;
1821 /* Given an rtx *P, if it is a sum containing an integer constant term,
1822 return the location (type rtx *) of the pointer to that constant term.
1823 Otherwise, return a null pointer. */
1825 rtx *
1826 find_constant_term_loc (rtx *p)
1828 rtx *tem;
1829 enum rtx_code code = GET_CODE (*p);
1831 /* If *P IS such a constant term, P is its location. */
1833 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1834 || code == CONST)
1835 return p;
1837 /* Otherwise, if not a sum, it has no constant term. */
1839 if (GET_CODE (*p) != PLUS)
1840 return 0;
1842 /* If one of the summands is constant, return its location. */
1844 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1845 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1846 return p;
1848 /* Otherwise, check each summand for containing a constant term. */
1850 if (XEXP (*p, 0) != 0)
1852 tem = find_constant_term_loc (&XEXP (*p, 0));
1853 if (tem != 0)
1854 return tem;
1857 if (XEXP (*p, 1) != 0)
1859 tem = find_constant_term_loc (&XEXP (*p, 1));
1860 if (tem != 0)
1861 return tem;
1864 return 0;
1867 /* Return 1 if OP is a memory reference
1868 whose address contains no side effects
1869 and remains valid after the addition
1870 of a positive integer less than the
1871 size of the object being referenced.
1873 We assume that the original address is valid and do not check it.
1875 This uses strict_memory_address_p as a subroutine, so
1876 don't use it before reload. */
1879 offsettable_memref_p (rtx op)
1881 return ((MEM_P (op))
1882 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1883 MEM_ADDR_SPACE (op)));
1886 /* Similar, but don't require a strictly valid mem ref:
1887 consider pseudo-regs valid as index or base regs. */
1890 offsettable_nonstrict_memref_p (rtx op)
1892 return ((MEM_P (op))
1893 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1894 MEM_ADDR_SPACE (op)));
1897 /* Return 1 if Y is a memory address which contains no side effects
1898 and would remain valid for address space AS after the addition of
1899 a positive integer less than the size of that mode.
1901 We assume that the original address is valid and do not check it.
1902 We do check that it is valid for narrower modes.
1904 If STRICTP is nonzero, we require a strictly valid address,
1905 for the sake of use in reload.c. */
1908 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1909 addr_space_t as)
1911 enum rtx_code ycode = GET_CODE (y);
1912 rtx z;
1913 rtx y1 = y;
1914 rtx *y2;
1915 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1916 (strictp ? strict_memory_address_addr_space_p
1917 : memory_address_addr_space_p);
1918 unsigned int mode_sz = GET_MODE_SIZE (mode);
1920 if (CONSTANT_ADDRESS_P (y))
1921 return 1;
1923 /* Adjusting an offsettable address involves changing to a narrower mode.
1924 Make sure that's OK. */
1926 if (mode_dependent_address_p (y))
1927 return 0;
1929 /* ??? How much offset does an offsettable BLKmode reference need?
1930 Clearly that depends on the situation in which it's being used.
1931 However, the current situation in which we test 0xffffffff is
1932 less than ideal. Caveat user. */
1933 if (mode_sz == 0)
1934 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1936 /* If the expression contains a constant term,
1937 see if it remains valid when max possible offset is added. */
1939 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1941 int good;
1943 y1 = *y2;
1944 *y2 = plus_constant (*y2, mode_sz - 1);
1945 /* Use QImode because an odd displacement may be automatically invalid
1946 for any wider mode. But it should be valid for a single byte. */
1947 good = (*addressp) (QImode, y, as);
1949 /* In any case, restore old contents of memory. */
1950 *y2 = y1;
1951 return good;
1954 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1955 return 0;
1957 /* The offset added here is chosen as the maximum offset that
1958 any instruction could need to add when operating on something
1959 of the specified mode. We assume that if Y and Y+c are
1960 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1961 go inside a LO_SUM here, so we do so as well. */
1962 if (GET_CODE (y) == LO_SUM
1963 && mode != BLKmode
1964 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1965 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1966 plus_constant (XEXP (y, 1), mode_sz - 1));
1967 else
1968 z = plus_constant (y, mode_sz - 1);
1970 /* Use QImode because an odd displacement may be automatically invalid
1971 for any wider mode. But it should be valid for a single byte. */
1972 return (*addressp) (QImode, z, as);
1975 /* Return 1 if ADDR is an address-expression whose effect depends
1976 on the mode of the memory reference it is used in.
1978 Autoincrement addressing is a typical example of mode-dependence
1979 because the amount of the increment depends on the mode. */
1982 mode_dependent_address_p (rtx addr)
1984 /* Auto-increment addressing with anything other than post_modify
1985 or pre_modify always introduces a mode dependency. Catch such
1986 cases now instead of deferring to the target. */
1987 if (GET_CODE (addr) == PRE_INC
1988 || GET_CODE (addr) == POST_INC
1989 || GET_CODE (addr) == PRE_DEC
1990 || GET_CODE (addr) == POST_DEC)
1991 return 1;
1993 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
1994 return 0;
1995 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1996 win: ATTRIBUTE_UNUSED_LABEL
1997 return 1;
2000 /* Like extract_insn, but save insn extracted and don't extract again, when
2001 called again for the same insn expecting that recog_data still contain the
2002 valid information. This is used primary by gen_attr infrastructure that
2003 often does extract insn again and again. */
2004 void
2005 extract_insn_cached (rtx insn)
2007 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2008 return;
2009 extract_insn (insn);
2010 recog_data.insn = insn;
2013 /* Do cached extract_insn, constrain_operands and complain about failures.
2014 Used by insn_attrtab. */
2015 void
2016 extract_constrain_insn_cached (rtx insn)
2018 extract_insn_cached (insn);
2019 if (which_alternative == -1
2020 && !constrain_operands (reload_completed))
2021 fatal_insn_not_found (insn);
2024 /* Do cached constrain_operands and complain about failures. */
2026 constrain_operands_cached (int strict)
2028 if (which_alternative == -1)
2029 return constrain_operands (strict);
2030 else
2031 return 1;
2034 /* Analyze INSN and fill in recog_data. */
2036 void
2037 extract_insn (rtx insn)
2039 int i;
2040 int icode;
2041 int noperands;
2042 rtx body = PATTERN (insn);
2044 recog_data.n_operands = 0;
2045 recog_data.n_alternatives = 0;
2046 recog_data.n_dups = 0;
2048 switch (GET_CODE (body))
2050 case USE:
2051 case CLOBBER:
2052 case ASM_INPUT:
2053 case ADDR_VEC:
2054 case ADDR_DIFF_VEC:
2055 case VAR_LOCATION:
2056 return;
2058 case SET:
2059 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2060 goto asm_insn;
2061 else
2062 goto normal_insn;
2063 case PARALLEL:
2064 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2065 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2066 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2067 goto asm_insn;
2068 else
2069 goto normal_insn;
2070 case ASM_OPERANDS:
2071 asm_insn:
2072 recog_data.n_operands = noperands = asm_noperands (body);
2073 if (noperands >= 0)
2075 /* This insn is an `asm' with operands. */
2077 /* expand_asm_operands makes sure there aren't too many operands. */
2078 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2080 /* Now get the operand values and constraints out of the insn. */
2081 decode_asm_operands (body, recog_data.operand,
2082 recog_data.operand_loc,
2083 recog_data.constraints,
2084 recog_data.operand_mode, NULL);
2085 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2086 if (noperands > 0)
2088 const char *p = recog_data.constraints[0];
2089 recog_data.n_alternatives = 1;
2090 while (*p)
2091 recog_data.n_alternatives += (*p++ == ',');
2093 break;
2095 fatal_insn_not_found (insn);
2097 default:
2098 normal_insn:
2099 /* Ordinary insn: recognize it, get the operands via insn_extract
2100 and get the constraints. */
2102 icode = recog_memoized (insn);
2103 if (icode < 0)
2104 fatal_insn_not_found (insn);
2106 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2107 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2108 recog_data.n_dups = insn_data[icode].n_dups;
2110 insn_extract (insn);
2112 for (i = 0; i < noperands; i++)
2114 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2115 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2116 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2117 /* VOIDmode match_operands gets mode from their real operand. */
2118 if (recog_data.operand_mode[i] == VOIDmode)
2119 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2122 for (i = 0; i < noperands; i++)
2123 recog_data.operand_type[i]
2124 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2125 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2126 : OP_IN);
2128 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2130 if (INSN_CODE (insn) < 0)
2131 for (i = 0; i < recog_data.n_alternatives; i++)
2132 recog_data.alternative_enabled_p[i] = true;
2133 else
2135 recog_data.insn = insn;
2136 for (i = 0; i < recog_data.n_alternatives; i++)
2138 which_alternative = i;
2139 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2143 recog_data.insn = NULL;
2144 which_alternative = -1;
2147 /* After calling extract_insn, you can use this function to extract some
2148 information from the constraint strings into a more usable form.
2149 The collected data is stored in recog_op_alt. */
2150 void
2151 preprocess_constraints (void)
2153 int i;
2155 for (i = 0; i < recog_data.n_operands; i++)
2156 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2157 * sizeof (struct operand_alternative)));
2159 for (i = 0; i < recog_data.n_operands; i++)
2161 int j;
2162 struct operand_alternative *op_alt;
2163 const char *p = recog_data.constraints[i];
2165 op_alt = recog_op_alt[i];
2167 for (j = 0; j < recog_data.n_alternatives; j++)
2169 op_alt[j].cl = NO_REGS;
2170 op_alt[j].constraint = p;
2171 op_alt[j].matches = -1;
2172 op_alt[j].matched = -1;
2174 if (!recog_data.alternative_enabled_p[j])
2176 p = skip_alternative (p);
2177 continue;
2180 if (*p == '\0' || *p == ',')
2182 op_alt[j].anything_ok = 1;
2183 continue;
2186 for (;;)
2188 char c = *p;
2189 if (c == '#')
2191 c = *++p;
2192 while (c != ',' && c != '\0');
2193 if (c == ',' || c == '\0')
2195 p++;
2196 break;
2199 switch (c)
2201 case '=': case '+': case '*': case '%':
2202 case 'E': case 'F': case 'G': case 'H':
2203 case 's': case 'i': case 'n':
2204 case 'I': case 'J': case 'K': case 'L':
2205 case 'M': case 'N': case 'O': case 'P':
2206 /* These don't say anything we care about. */
2207 break;
2209 case '?':
2210 op_alt[j].reject += 6;
2211 break;
2212 case '!':
2213 op_alt[j].reject += 600;
2214 break;
2215 case '&':
2216 op_alt[j].earlyclobber = 1;
2217 break;
2219 case '0': case '1': case '2': case '3': case '4':
2220 case '5': case '6': case '7': case '8': case '9':
2222 char *end;
2223 op_alt[j].matches = strtoul (p, &end, 10);
2224 recog_op_alt[op_alt[j].matches][j].matched = i;
2225 p = end;
2227 continue;
2229 case TARGET_MEM_CONSTRAINT:
2230 op_alt[j].memory_ok = 1;
2231 break;
2232 case '<':
2233 op_alt[j].decmem_ok = 1;
2234 break;
2235 case '>':
2236 op_alt[j].incmem_ok = 1;
2237 break;
2238 case 'V':
2239 op_alt[j].nonoffmem_ok = 1;
2240 break;
2241 case 'o':
2242 op_alt[j].offmem_ok = 1;
2243 break;
2244 case 'X':
2245 op_alt[j].anything_ok = 1;
2246 break;
2248 case 'p':
2249 op_alt[j].is_address = 1;
2250 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2251 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
2252 break;
2254 case 'g':
2255 case 'r':
2256 op_alt[j].cl =
2257 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2258 break;
2260 default:
2261 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2263 op_alt[j].memory_ok = 1;
2264 break;
2266 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2268 op_alt[j].is_address = 1;
2269 op_alt[j].cl
2270 = (reg_class_subunion
2271 [(int) op_alt[j].cl]
2272 [(int) base_reg_class (VOIDmode, ADDRESS,
2273 SCRATCH)]);
2274 break;
2277 op_alt[j].cl
2278 = (reg_class_subunion
2279 [(int) op_alt[j].cl]
2280 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2281 break;
2283 p += CONSTRAINT_LEN (c, p);
2289 /* Check the operands of an insn against the insn's operand constraints
2290 and return 1 if they are valid.
2291 The information about the insn's operands, constraints, operand modes
2292 etc. is obtained from the global variables set up by extract_insn.
2294 WHICH_ALTERNATIVE is set to a number which indicates which
2295 alternative of constraints was matched: 0 for the first alternative,
2296 1 for the next, etc.
2298 In addition, when two operands are required to match
2299 and it happens that the output operand is (reg) while the
2300 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2301 make the output operand look like the input.
2302 This is because the output operand is the one the template will print.
2304 This is used in final, just before printing the assembler code and by
2305 the routines that determine an insn's attribute.
2307 If STRICT is a positive nonzero value, it means that we have been
2308 called after reload has been completed. In that case, we must
2309 do all checks strictly. If it is zero, it means that we have been called
2310 before reload has completed. In that case, we first try to see if we can
2311 find an alternative that matches strictly. If not, we try again, this
2312 time assuming that reload will fix up the insn. This provides a "best
2313 guess" for the alternative and is used to compute attributes of insns prior
2314 to reload. A negative value of STRICT is used for this internal call. */
2316 struct funny_match
2318 int this_op, other;
2322 constrain_operands (int strict)
2324 const char *constraints[MAX_RECOG_OPERANDS];
2325 int matching_operands[MAX_RECOG_OPERANDS];
2326 int earlyclobber[MAX_RECOG_OPERANDS];
2327 int c;
2329 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2330 int funny_match_index;
2332 which_alternative = 0;
2333 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2334 return 1;
2336 for (c = 0; c < recog_data.n_operands; c++)
2338 constraints[c] = recog_data.constraints[c];
2339 matching_operands[c] = -1;
2344 int seen_earlyclobber_at = -1;
2345 int opno;
2346 int lose = 0;
2347 funny_match_index = 0;
2349 if (!recog_data.alternative_enabled_p[which_alternative])
2351 int i;
2353 for (i = 0; i < recog_data.n_operands; i++)
2354 constraints[i] = skip_alternative (constraints[i]);
2356 which_alternative++;
2357 continue;
2360 for (opno = 0; opno < recog_data.n_operands; opno++)
2362 rtx op = recog_data.operand[opno];
2363 enum machine_mode mode = GET_MODE (op);
2364 const char *p = constraints[opno];
2365 int offset = 0;
2366 int win = 0;
2367 int val;
2368 int len;
2370 earlyclobber[opno] = 0;
2372 /* A unary operator may be accepted by the predicate, but it
2373 is irrelevant for matching constraints. */
2374 if (UNARY_P (op))
2375 op = XEXP (op, 0);
2377 if (GET_CODE (op) == SUBREG)
2379 if (REG_P (SUBREG_REG (op))
2380 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2381 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2382 GET_MODE (SUBREG_REG (op)),
2383 SUBREG_BYTE (op),
2384 GET_MODE (op));
2385 op = SUBREG_REG (op);
2388 /* An empty constraint or empty alternative
2389 allows anything which matched the pattern. */
2390 if (*p == 0 || *p == ',')
2391 win = 1;
2394 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2396 case '\0':
2397 len = 0;
2398 break;
2399 case ',':
2400 c = '\0';
2401 break;
2403 case '?': case '!': case '*': case '%':
2404 case '=': case '+':
2405 break;
2407 case '#':
2408 /* Ignore rest of this alternative as far as
2409 constraint checking is concerned. */
2411 p++;
2412 while (*p && *p != ',');
2413 len = 0;
2414 break;
2416 case '&':
2417 earlyclobber[opno] = 1;
2418 if (seen_earlyclobber_at < 0)
2419 seen_earlyclobber_at = opno;
2420 break;
2422 case '0': case '1': case '2': case '3': case '4':
2423 case '5': case '6': case '7': case '8': case '9':
2425 /* This operand must be the same as a previous one.
2426 This kind of constraint is used for instructions such
2427 as add when they take only two operands.
2429 Note that the lower-numbered operand is passed first.
2431 If we are not testing strictly, assume that this
2432 constraint will be satisfied. */
2434 char *end;
2435 int match;
2437 match = strtoul (p, &end, 10);
2438 p = end;
2440 if (strict < 0)
2441 val = 1;
2442 else
2444 rtx op1 = recog_data.operand[match];
2445 rtx op2 = recog_data.operand[opno];
2447 /* A unary operator may be accepted by the predicate,
2448 but it is irrelevant for matching constraints. */
2449 if (UNARY_P (op1))
2450 op1 = XEXP (op1, 0);
2451 if (UNARY_P (op2))
2452 op2 = XEXP (op2, 0);
2454 val = operands_match_p (op1, op2);
2457 matching_operands[opno] = match;
2458 matching_operands[match] = opno;
2460 if (val != 0)
2461 win = 1;
2463 /* If output is *x and input is *--x, arrange later
2464 to change the output to *--x as well, since the
2465 output op is the one that will be printed. */
2466 if (val == 2 && strict > 0)
2468 funny_match[funny_match_index].this_op = opno;
2469 funny_match[funny_match_index++].other = match;
2472 len = 0;
2473 break;
2475 case 'p':
2476 /* p is used for address_operands. When we are called by
2477 gen_reload, no one will have checked that the address is
2478 strictly valid, i.e., that all pseudos requiring hard regs
2479 have gotten them. */
2480 if (strict <= 0
2481 || (strict_memory_address_p (recog_data.operand_mode[opno],
2482 op)))
2483 win = 1;
2484 break;
2486 /* No need to check general_operand again;
2487 it was done in insn-recog.c. Well, except that reload
2488 doesn't check the validity of its replacements, but
2489 that should only matter when there's a bug. */
2490 case 'g':
2491 /* Anything goes unless it is a REG and really has a hard reg
2492 but the hard reg is not in the class GENERAL_REGS. */
2493 if (REG_P (op))
2495 if (strict < 0
2496 || GENERAL_REGS == ALL_REGS
2497 || (reload_in_progress
2498 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2499 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2500 win = 1;
2502 else if (strict < 0 || general_operand (op, mode))
2503 win = 1;
2504 break;
2506 case 'X':
2507 /* This is used for a MATCH_SCRATCH in the cases when
2508 we don't actually need anything. So anything goes
2509 any time. */
2510 win = 1;
2511 break;
2513 case TARGET_MEM_CONSTRAINT:
2514 /* Memory operands must be valid, to the extent
2515 required by STRICT. */
2516 if (MEM_P (op))
2518 if (strict > 0
2519 && !strict_memory_address_addr_space_p
2520 (GET_MODE (op), XEXP (op, 0),
2521 MEM_ADDR_SPACE (op)))
2522 break;
2523 if (strict == 0
2524 && !memory_address_addr_space_p
2525 (GET_MODE (op), XEXP (op, 0),
2526 MEM_ADDR_SPACE (op)))
2527 break;
2528 win = 1;
2530 /* Before reload, accept what reload can turn into mem. */
2531 else if (strict < 0 && CONSTANT_P (op))
2532 win = 1;
2533 /* During reload, accept a pseudo */
2534 else if (reload_in_progress && REG_P (op)
2535 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2536 win = 1;
2537 break;
2539 case '<':
2540 if (MEM_P (op)
2541 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2542 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2543 win = 1;
2544 break;
2546 case '>':
2547 if (MEM_P (op)
2548 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2549 || GET_CODE (XEXP (op, 0)) == POST_INC))
2550 win = 1;
2551 break;
2553 case 'E':
2554 case 'F':
2555 if (GET_CODE (op) == CONST_DOUBLE
2556 || (GET_CODE (op) == CONST_VECTOR
2557 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2558 win = 1;
2559 break;
2561 case 'G':
2562 case 'H':
2563 if (GET_CODE (op) == CONST_DOUBLE
2564 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2565 win = 1;
2566 break;
2568 case 's':
2569 if (CONST_INT_P (op)
2570 || (GET_CODE (op) == CONST_DOUBLE
2571 && GET_MODE (op) == VOIDmode))
2572 break;
2573 case 'i':
2574 if (CONSTANT_P (op))
2575 win = 1;
2576 break;
2578 case 'n':
2579 if (CONST_INT_P (op)
2580 || (GET_CODE (op) == CONST_DOUBLE
2581 && GET_MODE (op) == VOIDmode))
2582 win = 1;
2583 break;
2585 case 'I':
2586 case 'J':
2587 case 'K':
2588 case 'L':
2589 case 'M':
2590 case 'N':
2591 case 'O':
2592 case 'P':
2593 if (CONST_INT_P (op)
2594 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2595 win = 1;
2596 break;
2598 case 'V':
2599 if (MEM_P (op)
2600 && ((strict > 0 && ! offsettable_memref_p (op))
2601 || (strict < 0
2602 && !(CONSTANT_P (op) || MEM_P (op)))
2603 || (reload_in_progress
2604 && !(REG_P (op)
2605 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2606 win = 1;
2607 break;
2609 case 'o':
2610 if ((strict > 0 && offsettable_memref_p (op))
2611 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2612 /* Before reload, accept what reload can handle. */
2613 || (strict < 0
2614 && (CONSTANT_P (op) || MEM_P (op)))
2615 /* During reload, accept a pseudo */
2616 || (reload_in_progress && REG_P (op)
2617 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2618 win = 1;
2619 break;
2621 default:
2623 enum reg_class cl;
2625 cl = (c == 'r'
2626 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2627 if (cl != NO_REGS)
2629 if (strict < 0
2630 || (strict == 0
2631 && REG_P (op)
2632 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2633 || (strict == 0 && GET_CODE (op) == SCRATCH)
2634 || (REG_P (op)
2635 && reg_fits_class_p (op, cl, offset, mode)))
2636 win = 1;
2638 #ifdef EXTRA_CONSTRAINT_STR
2639 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2640 win = 1;
2642 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2643 /* Every memory operand can be reloaded to fit. */
2644 && ((strict < 0 && MEM_P (op))
2645 /* Before reload, accept what reload can turn
2646 into mem. */
2647 || (strict < 0 && CONSTANT_P (op))
2648 /* During reload, accept a pseudo */
2649 || (reload_in_progress && REG_P (op)
2650 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2651 win = 1;
2652 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2653 /* Every address operand can be reloaded to fit. */
2654 && strict < 0)
2655 win = 1;
2656 #endif
2657 break;
2660 while (p += len, c);
2662 constraints[opno] = p;
2663 /* If this operand did not win somehow,
2664 this alternative loses. */
2665 if (! win)
2666 lose = 1;
2668 /* This alternative won; the operands are ok.
2669 Change whichever operands this alternative says to change. */
2670 if (! lose)
2672 int opno, eopno;
2674 /* See if any earlyclobber operand conflicts with some other
2675 operand. */
2677 if (strict > 0 && seen_earlyclobber_at >= 0)
2678 for (eopno = seen_earlyclobber_at;
2679 eopno < recog_data.n_operands;
2680 eopno++)
2681 /* Ignore earlyclobber operands now in memory,
2682 because we would often report failure when we have
2683 two memory operands, one of which was formerly a REG. */
2684 if (earlyclobber[eopno]
2685 && REG_P (recog_data.operand[eopno]))
2686 for (opno = 0; opno < recog_data.n_operands; opno++)
2687 if ((MEM_P (recog_data.operand[opno])
2688 || recog_data.operand_type[opno] != OP_OUT)
2689 && opno != eopno
2690 /* Ignore things like match_operator operands. */
2691 && *recog_data.constraints[opno] != 0
2692 && ! (matching_operands[opno] == eopno
2693 && operands_match_p (recog_data.operand[opno],
2694 recog_data.operand[eopno]))
2695 && ! safe_from_earlyclobber (recog_data.operand[opno],
2696 recog_data.operand[eopno]))
2697 lose = 1;
2699 if (! lose)
2701 while (--funny_match_index >= 0)
2703 recog_data.operand[funny_match[funny_match_index].other]
2704 = recog_data.operand[funny_match[funny_match_index].this_op];
2707 return 1;
2711 which_alternative++;
2713 while (which_alternative < recog_data.n_alternatives);
2715 which_alternative = -1;
2716 /* If we are about to reject this, but we are not to test strictly,
2717 try a very loose test. Only return failure if it fails also. */
2718 if (strict == 0)
2719 return constrain_operands (-1);
2720 else
2721 return 0;
2724 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2725 is a hard reg in class CLASS when its regno is offset by OFFSET
2726 and changed to mode MODE.
2727 If REG occupies multiple hard regs, all of them must be in CLASS. */
2730 reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
2731 enum machine_mode mode)
2733 int regno = REGNO (operand);
2735 if (cl == NO_REGS)
2736 return 0;
2738 return (regno < FIRST_PSEUDO_REGISTER
2739 && in_hard_reg_set_p (reg_class_contents[(int) cl],
2740 mode, regno + offset));
2743 /* Split single instruction. Helper function for split_all_insns and
2744 split_all_insns_noflow. Return last insn in the sequence if successful,
2745 or NULL if unsuccessful. */
2747 static rtx
2748 split_insn (rtx insn)
2750 /* Split insns here to get max fine-grain parallelism. */
2751 rtx first = PREV_INSN (insn);
2752 rtx last = try_split (PATTERN (insn), insn, 1);
2753 rtx insn_set, last_set, note;
2755 if (last == insn)
2756 return NULL_RTX;
2758 /* If the original instruction was a single set that was known to be
2759 equivalent to a constant, see if we can say the same about the last
2760 instruction in the split sequence. The two instructions must set
2761 the same destination. */
2762 insn_set = single_set (insn);
2763 if (insn_set)
2765 last_set = single_set (last);
2766 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2768 note = find_reg_equal_equiv_note (insn);
2769 if (note && CONSTANT_P (XEXP (note, 0)))
2770 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2771 else if (CONSTANT_P (SET_SRC (insn_set)))
2772 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2776 /* try_split returns the NOTE that INSN became. */
2777 SET_INSN_DELETED (insn);
2779 /* ??? Coddle to md files that generate subregs in post-reload
2780 splitters instead of computing the proper hard register. */
2781 if (reload_completed && first != last)
2783 first = NEXT_INSN (first);
2784 for (;;)
2786 if (INSN_P (first))
2787 cleanup_subreg_operands (first);
2788 if (first == last)
2789 break;
2790 first = NEXT_INSN (first);
2794 return last;
2797 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2799 void
2800 split_all_insns (void)
2802 sbitmap blocks;
2803 bool changed;
2804 basic_block bb;
2806 blocks = sbitmap_alloc (last_basic_block);
2807 sbitmap_zero (blocks);
2808 changed = false;
2810 FOR_EACH_BB_REVERSE (bb)
2812 rtx insn, next;
2813 bool finish = false;
2815 rtl_profile_for_bb (bb);
2816 for (insn = BB_HEAD (bb); !finish ; insn = next)
2818 /* Can't use `next_real_insn' because that might go across
2819 CODE_LABELS and short-out basic blocks. */
2820 next = NEXT_INSN (insn);
2821 finish = (insn == BB_END (bb));
2822 if (INSN_P (insn))
2824 rtx set = single_set (insn);
2826 /* Don't split no-op move insns. These should silently
2827 disappear later in final. Splitting such insns would
2828 break the code that handles LIBCALL blocks. */
2829 if (set && set_noop_p (set))
2831 /* Nops get in the way while scheduling, so delete them
2832 now if register allocation has already been done. It
2833 is too risky to try to do this before register
2834 allocation, and there are unlikely to be very many
2835 nops then anyways. */
2836 if (reload_completed)
2837 delete_insn_and_edges (insn);
2839 else
2841 rtx last = split_insn (insn);
2842 if (last)
2844 /* The split sequence may include barrier, but the
2845 BB boundary we are interested in will be set to
2846 previous one. */
2848 while (BARRIER_P (last))
2849 last = PREV_INSN (last);
2850 SET_BIT (blocks, bb->index);
2851 changed = true;
2858 default_rtl_profile ();
2859 if (changed)
2860 find_many_sub_basic_blocks (blocks);
2862 #ifdef ENABLE_CHECKING
2863 verify_flow_info ();
2864 #endif
2866 sbitmap_free (blocks);
2869 /* Same as split_all_insns, but do not expect CFG to be available.
2870 Used by machine dependent reorg passes. */
2872 unsigned int
2873 split_all_insns_noflow (void)
2875 rtx next, insn;
2877 for (insn = get_insns (); insn; insn = next)
2879 next = NEXT_INSN (insn);
2880 if (INSN_P (insn))
2882 /* Don't split no-op move insns. These should silently
2883 disappear later in final. Splitting such insns would
2884 break the code that handles LIBCALL blocks. */
2885 rtx set = single_set (insn);
2886 if (set && set_noop_p (set))
2888 /* Nops get in the way while scheduling, so delete them
2889 now if register allocation has already been done. It
2890 is too risky to try to do this before register
2891 allocation, and there are unlikely to be very many
2892 nops then anyways.
2894 ??? Should we use delete_insn when the CFG isn't valid? */
2895 if (reload_completed)
2896 delete_insn_and_edges (insn);
2898 else
2899 split_insn (insn);
2902 return 0;
2905 #ifdef HAVE_peephole2
2906 struct peep2_insn_data
2908 rtx insn;
2909 regset live_before;
2912 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2913 static int peep2_current;
2914 /* The number of instructions available to match a peep2. */
2915 int peep2_current_count;
2917 /* A non-insn marker indicating the last insn of the block.
2918 The live_before regset for this element is correct, indicating
2919 DF_LIVE_OUT for the block. */
2920 #define PEEP2_EOB pc_rtx
2922 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2923 does not exist. Used by the recognizer to find the next insn to match
2924 in a multi-insn pattern. */
2927 peep2_next_insn (int n)
2929 gcc_assert (n <= peep2_current_count);
2931 n += peep2_current;
2932 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2933 n -= MAX_INSNS_PER_PEEP2 + 1;
2935 return peep2_insn_data[n].insn;
2938 /* Return true if REGNO is dead before the Nth non-note insn
2939 after `current'. */
2942 peep2_regno_dead_p (int ofs, int regno)
2944 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2946 ofs += peep2_current;
2947 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2948 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2950 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2952 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2955 /* Similarly for a REG. */
2958 peep2_reg_dead_p (int ofs, rtx reg)
2960 int regno, n;
2962 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2964 ofs += peep2_current;
2965 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2966 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2968 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2970 regno = REGNO (reg);
2971 n = hard_regno_nregs[regno][GET_MODE (reg)];
2972 while (--n >= 0)
2973 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2974 return 0;
2975 return 1;
2978 /* Try to find a hard register of mode MODE, matching the register class in
2979 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2980 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2981 in which case the only condition is that the register must be available
2982 before CURRENT_INSN.
2983 Registers that already have bits set in REG_SET will not be considered.
2985 If an appropriate register is available, it will be returned and the
2986 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2987 returned. */
2990 peep2_find_free_register (int from, int to, const char *class_str,
2991 enum machine_mode mode, HARD_REG_SET *reg_set)
2993 static int search_ofs;
2994 enum reg_class cl;
2995 HARD_REG_SET live;
2996 int i;
2998 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
2999 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3001 from += peep2_current;
3002 if (from >= MAX_INSNS_PER_PEEP2 + 1)
3003 from -= MAX_INSNS_PER_PEEP2 + 1;
3004 to += peep2_current;
3005 if (to >= MAX_INSNS_PER_PEEP2 + 1)
3006 to -= MAX_INSNS_PER_PEEP2 + 1;
3008 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3009 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3011 while (from != to)
3013 HARD_REG_SET this_live;
3015 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
3016 from = 0;
3017 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3018 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
3019 IOR_HARD_REG_SET (live, this_live);
3022 cl = (class_str[0] == 'r' ? GENERAL_REGS
3023 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3025 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3027 int raw_regno, regno, success, j;
3029 /* Distribute the free registers as much as possible. */
3030 raw_regno = search_ofs + i;
3031 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3032 raw_regno -= FIRST_PSEUDO_REGISTER;
3033 #ifdef REG_ALLOC_ORDER
3034 regno = reg_alloc_order[raw_regno];
3035 #else
3036 regno = raw_regno;
3037 #endif
3039 /* Don't allocate fixed registers. */
3040 if (fixed_regs[regno])
3041 continue;
3042 /* Don't allocate global registers. */
3043 if (global_regs[regno])
3044 continue;
3045 /* Make sure the register is of the right class. */
3046 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3047 continue;
3048 /* And can support the mode we need. */
3049 if (! HARD_REGNO_MODE_OK (regno, mode))
3050 continue;
3051 /* And that we don't create an extra save/restore. */
3052 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3053 continue;
3054 if (! targetm.hard_regno_scratch_ok (regno))
3055 continue;
3057 /* And we don't clobber traceback for noreturn functions. */
3058 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3059 && (! reload_completed || frame_pointer_needed))
3060 continue;
3062 success = 1;
3063 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3065 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3066 || TEST_HARD_REG_BIT (live, regno + j))
3068 success = 0;
3069 break;
3072 if (success)
3074 add_to_hard_reg_set (reg_set, mode, regno);
3076 /* Start the next search with the next register. */
3077 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3078 raw_regno = 0;
3079 search_ofs = raw_regno;
3081 return gen_rtx_REG (mode, regno);
3085 search_ofs = 0;
3086 return NULL_RTX;
3089 /* Forget all currently tracked instructions, only remember current
3090 LIVE regset. */
3092 static void
3093 peep2_reinit_state (regset live)
3095 int i;
3097 /* Indicate that all slots except the last holds invalid data. */
3098 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3099 peep2_insn_data[i].insn = NULL_RTX;
3100 peep2_current_count = 0;
3102 /* Indicate that the last slot contains live_after data. */
3103 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3104 peep2_current = MAX_INSNS_PER_PEEP2;
3106 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3109 /* Perform the peephole2 optimization pass. */
3111 static void
3112 peephole2_optimize (void)
3114 rtx insn, prev;
3115 bitmap live;
3116 int i;
3117 basic_block bb;
3118 bool do_cleanup_cfg = false;
3119 bool do_rebuild_jump_labels = false;
3121 df_set_flags (DF_LR_RUN_DCE);
3122 df_analyze ();
3124 /* Initialize the regsets we're going to use. */
3125 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3126 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3127 live = BITMAP_ALLOC (&reg_obstack);
3129 FOR_EACH_BB_REVERSE (bb)
3131 rtl_profile_for_bb (bb);
3133 /* Start up propagation. */
3134 bitmap_copy (live, DF_LR_OUT (bb));
3135 df_simulate_initialize_backwards (bb, live);
3136 peep2_reinit_state (live);
3138 for (insn = BB_END (bb); ; insn = prev)
3140 prev = PREV_INSN (insn);
3141 if (NONDEBUG_INSN_P (insn))
3143 rtx attempt, before_try, x;
3144 int match_len;
3145 rtx note;
3146 bool was_call = false;
3148 /* Record this insn. */
3149 if (--peep2_current < 0)
3150 peep2_current = MAX_INSNS_PER_PEEP2;
3151 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3152 && peep2_insn_data[peep2_current].insn == NULL_RTX)
3153 peep2_current_count++;
3154 peep2_insn_data[peep2_current].insn = insn;
3155 df_simulate_one_insn_backwards (bb, insn, live);
3156 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3158 if (RTX_FRAME_RELATED_P (insn))
3160 /* If an insn has RTX_FRAME_RELATED_P set, peephole
3161 substitution would lose the
3162 REG_FRAME_RELATED_EXPR that is attached. */
3163 peep2_reinit_state (live);
3164 attempt = NULL;
3166 else
3167 /* Match the peephole. */
3168 attempt = peephole2_insns (PATTERN (insn), insn, &match_len);
3170 if (attempt != NULL)
3172 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3173 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3174 cfg-related call notes. */
3175 for (i = 0; i <= match_len; ++i)
3177 int j;
3178 rtx old_insn, new_insn, note;
3180 j = i + peep2_current;
3181 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3182 j -= MAX_INSNS_PER_PEEP2 + 1;
3183 old_insn = peep2_insn_data[j].insn;
3184 if (!CALL_P (old_insn))
3185 continue;
3186 was_call = true;
3188 new_insn = attempt;
3189 while (new_insn != NULL_RTX)
3191 if (CALL_P (new_insn))
3192 break;
3193 new_insn = NEXT_INSN (new_insn);
3196 gcc_assert (new_insn != NULL_RTX);
3198 CALL_INSN_FUNCTION_USAGE (new_insn)
3199 = CALL_INSN_FUNCTION_USAGE (old_insn);
3201 for (note = REG_NOTES (old_insn);
3202 note;
3203 note = XEXP (note, 1))
3204 switch (REG_NOTE_KIND (note))
3206 case REG_NORETURN:
3207 case REG_SETJMP:
3208 add_reg_note (new_insn, REG_NOTE_KIND (note),
3209 XEXP (note, 0));
3210 break;
3211 default:
3212 /* Discard all other reg notes. */
3213 break;
3216 /* Croak if there is another call in the sequence. */
3217 while (++i <= match_len)
3219 j = i + peep2_current;
3220 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3221 j -= MAX_INSNS_PER_PEEP2 + 1;
3222 old_insn = peep2_insn_data[j].insn;
3223 gcc_assert (!CALL_P (old_insn));
3225 break;
3228 i = match_len + peep2_current;
3229 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3230 i -= MAX_INSNS_PER_PEEP2 + 1;
3232 note = find_reg_note (peep2_insn_data[i].insn,
3233 REG_EH_REGION, NULL_RTX);
3235 /* Replace the old sequence with the new. */
3236 attempt = emit_insn_after_setloc (attempt,
3237 peep2_insn_data[i].insn,
3238 INSN_LOCATOR (peep2_insn_data[i].insn));
3239 before_try = PREV_INSN (insn);
3240 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3242 /* Re-insert the EH_REGION notes. */
3243 if (note || (was_call && nonlocal_goto_handler_labels))
3245 edge eh_edge;
3246 edge_iterator ei;
3248 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3249 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3250 break;
3252 if (note)
3253 copy_reg_eh_region_note_backward (note, attempt,
3254 before_try);
3256 if (eh_edge)
3257 for (x = attempt ; x != before_try ; x = PREV_INSN (x))
3258 if (x != BB_END (bb)
3259 && (can_throw_internal (x)
3260 || can_nonlocal_goto (x)))
3262 edge nfte, nehe;
3263 int flags;
3265 nfte = split_block (bb, x);
3266 flags = (eh_edge->flags
3267 & (EDGE_EH | EDGE_ABNORMAL));
3268 if (CALL_P (x))
3269 flags |= EDGE_ABNORMAL_CALL;
3270 nehe = make_edge (nfte->src, eh_edge->dest,
3271 flags);
3273 nehe->probability = eh_edge->probability;
3274 nfte->probability
3275 = REG_BR_PROB_BASE - nehe->probability;
3277 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3278 bb = nfte->src;
3279 eh_edge = nehe;
3282 /* Converting possibly trapping insn to non-trapping is
3283 possible. Zap dummy outgoing edges. */
3284 do_cleanup_cfg |= purge_dead_edges (bb);
3287 if (targetm.have_conditional_execution ())
3289 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3290 peep2_insn_data[i].insn = NULL_RTX;
3291 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3292 peep2_current_count = 0;
3294 else
3296 /* Back up lifetime information past the end of the
3297 newly created sequence. */
3298 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3299 i = 0;
3300 bitmap_copy (live, peep2_insn_data[i].live_before);
3302 /* Update life information for the new sequence. */
3303 x = attempt;
3306 if (INSN_P (x))
3308 if (--i < 0)
3309 i = MAX_INSNS_PER_PEEP2;
3310 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3311 && peep2_insn_data[i].insn == NULL_RTX)
3312 peep2_current_count++;
3313 peep2_insn_data[i].insn = x;
3314 df_insn_rescan (x);
3315 df_simulate_one_insn_backwards (bb, x, live);
3316 bitmap_copy (peep2_insn_data[i].live_before,
3317 live);
3319 x = PREV_INSN (x);
3321 while (x != prev);
3323 peep2_current = i;
3326 /* If we generated a jump instruction, it won't have
3327 JUMP_LABEL set. Recompute after we're done. */
3328 for (x = attempt; x != before_try; x = PREV_INSN (x))
3329 if (JUMP_P (x))
3331 do_rebuild_jump_labels = true;
3332 break;
3337 if (insn == BB_HEAD (bb))
3338 break;
3342 default_rtl_profile ();
3343 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3344 BITMAP_FREE (peep2_insn_data[i].live_before);
3345 BITMAP_FREE (live);
3346 if (do_rebuild_jump_labels)
3347 rebuild_jump_labels (get_insns ());
3349 #endif /* HAVE_peephole2 */
3351 /* Common predicates for use with define_bypass. */
3353 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3354 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3355 must be either a single_set or a PARALLEL with SETs inside. */
3358 store_data_bypass_p (rtx out_insn, rtx in_insn)
3360 rtx out_set, in_set;
3361 rtx out_pat, in_pat;
3362 rtx out_exp, in_exp;
3363 int i, j;
3365 in_set = single_set (in_insn);
3366 if (in_set)
3368 if (!MEM_P (SET_DEST (in_set)))
3369 return false;
3371 out_set = single_set (out_insn);
3372 if (out_set)
3374 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3375 return false;
3377 else
3379 out_pat = PATTERN (out_insn);
3381 if (GET_CODE (out_pat) != PARALLEL)
3382 return false;
3384 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3386 out_exp = XVECEXP (out_pat, 0, i);
3388 if (GET_CODE (out_exp) == CLOBBER)
3389 continue;
3391 gcc_assert (GET_CODE (out_exp) == SET);
3393 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3394 return false;
3398 else
3400 in_pat = PATTERN (in_insn);
3401 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3403 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3405 in_exp = XVECEXP (in_pat, 0, i);
3407 if (GET_CODE (in_exp) == CLOBBER)
3408 continue;
3410 gcc_assert (GET_CODE (in_exp) == SET);
3412 if (!MEM_P (SET_DEST (in_exp)))
3413 return false;
3415 out_set = single_set (out_insn);
3416 if (out_set)
3418 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3419 return false;
3421 else
3423 out_pat = PATTERN (out_insn);
3424 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3426 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3428 out_exp = XVECEXP (out_pat, 0, j);
3430 if (GET_CODE (out_exp) == CLOBBER)
3431 continue;
3433 gcc_assert (GET_CODE (out_exp) == SET);
3435 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3436 return false;
3442 return true;
3445 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3446 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3447 or multiple set; IN_INSN should be single_set for truth, but for convenience
3448 of insn categorization may be any JUMP or CALL insn. */
3451 if_test_bypass_p (rtx out_insn, rtx in_insn)
3453 rtx out_set, in_set;
3455 in_set = single_set (in_insn);
3456 if (! in_set)
3458 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3459 return false;
3462 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3463 return false;
3464 in_set = SET_SRC (in_set);
3466 out_set = single_set (out_insn);
3467 if (out_set)
3469 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3470 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3471 return false;
3473 else
3475 rtx out_pat;
3476 int i;
3478 out_pat = PATTERN (out_insn);
3479 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3481 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3483 rtx exp = XVECEXP (out_pat, 0, i);
3485 if (GET_CODE (exp) == CLOBBER)
3486 continue;
3488 gcc_assert (GET_CODE (exp) == SET);
3490 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3491 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3492 return false;
3496 return true;
3499 static bool
3500 gate_handle_peephole2 (void)
3502 return (optimize > 0 && flag_peephole2);
3505 static unsigned int
3506 rest_of_handle_peephole2 (void)
3508 #ifdef HAVE_peephole2
3509 peephole2_optimize ();
3510 #endif
3511 return 0;
3514 struct rtl_opt_pass pass_peephole2 =
3517 RTL_PASS,
3518 "peephole2", /* name */
3519 gate_handle_peephole2, /* gate */
3520 rest_of_handle_peephole2, /* execute */
3521 NULL, /* sub */
3522 NULL, /* next */
3523 0, /* static_pass_number */
3524 TV_PEEPHOLE2, /* tv_id */
3525 0, /* properties_required */
3526 0, /* properties_provided */
3527 0, /* properties_destroyed */
3528 0, /* todo_flags_start */
3529 TODO_df_finish | TODO_verify_rtl_sharing |
3530 TODO_dump_func /* todo_flags_finish */
3534 static unsigned int
3535 rest_of_handle_split_all_insns (void)
3537 split_all_insns ();
3538 return 0;
3541 struct rtl_opt_pass pass_split_all_insns =
3544 RTL_PASS,
3545 "split1", /* name */
3546 NULL, /* gate */
3547 rest_of_handle_split_all_insns, /* execute */
3548 NULL, /* sub */
3549 NULL, /* next */
3550 0, /* static_pass_number */
3551 TV_NONE, /* tv_id */
3552 0, /* properties_required */
3553 0, /* properties_provided */
3554 0, /* properties_destroyed */
3555 0, /* todo_flags_start */
3556 TODO_dump_func /* todo_flags_finish */
3560 static unsigned int
3561 rest_of_handle_split_after_reload (void)
3563 /* If optimizing, then go ahead and split insns now. */
3564 #ifndef STACK_REGS
3565 if (optimize > 0)
3566 #endif
3567 split_all_insns ();
3568 return 0;
3571 struct rtl_opt_pass pass_split_after_reload =
3574 RTL_PASS,
3575 "split2", /* name */
3576 NULL, /* gate */
3577 rest_of_handle_split_after_reload, /* execute */
3578 NULL, /* sub */
3579 NULL, /* next */
3580 0, /* static_pass_number */
3581 TV_NONE, /* tv_id */
3582 0, /* properties_required */
3583 0, /* properties_provided */
3584 0, /* properties_destroyed */
3585 0, /* todo_flags_start */
3586 TODO_dump_func /* todo_flags_finish */
3590 static bool
3591 gate_handle_split_before_regstack (void)
3593 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3594 /* If flow2 creates new instructions which need splitting
3595 and scheduling after reload is not done, they might not be
3596 split until final which doesn't allow splitting
3597 if HAVE_ATTR_length. */
3598 # ifdef INSN_SCHEDULING
3599 return (optimize && !flag_schedule_insns_after_reload);
3600 # else
3601 return (optimize);
3602 # endif
3603 #else
3604 return 0;
3605 #endif
3608 static unsigned int
3609 rest_of_handle_split_before_regstack (void)
3611 split_all_insns ();
3612 return 0;
3615 struct rtl_opt_pass pass_split_before_regstack =
3618 RTL_PASS,
3619 "split3", /* name */
3620 gate_handle_split_before_regstack, /* gate */
3621 rest_of_handle_split_before_regstack, /* execute */
3622 NULL, /* sub */
3623 NULL, /* next */
3624 0, /* static_pass_number */
3625 TV_NONE, /* tv_id */
3626 0, /* properties_required */
3627 0, /* properties_provided */
3628 0, /* properties_destroyed */
3629 0, /* todo_flags_start */
3630 TODO_dump_func /* todo_flags_finish */
3634 static bool
3635 gate_handle_split_before_sched2 (void)
3637 #ifdef INSN_SCHEDULING
3638 return optimize > 0 && flag_schedule_insns_after_reload;
3639 #else
3640 return 0;
3641 #endif
3644 static unsigned int
3645 rest_of_handle_split_before_sched2 (void)
3647 #ifdef INSN_SCHEDULING
3648 split_all_insns ();
3649 #endif
3650 return 0;
3653 struct rtl_opt_pass pass_split_before_sched2 =
3656 RTL_PASS,
3657 "split4", /* name */
3658 gate_handle_split_before_sched2, /* gate */
3659 rest_of_handle_split_before_sched2, /* execute */
3660 NULL, /* sub */
3661 NULL, /* next */
3662 0, /* static_pass_number */
3663 TV_NONE, /* tv_id */
3664 0, /* properties_required */
3665 0, /* properties_provided */
3666 0, /* properties_destroyed */
3667 0, /* todo_flags_start */
3668 TODO_verify_flow |
3669 TODO_dump_func /* todo_flags_finish */
3673 /* The placement of the splitting that we do for shorten_branches
3674 depends on whether regstack is used by the target or not. */
3675 static bool
3676 gate_do_final_split (void)
3678 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3679 return 1;
3680 #else
3681 return 0;
3682 #endif
3685 struct rtl_opt_pass pass_split_for_shorten_branches =
3688 RTL_PASS,
3689 "split5", /* name */
3690 gate_do_final_split, /* gate */
3691 split_all_insns_noflow, /* execute */
3692 NULL, /* sub */
3693 NULL, /* next */
3694 0, /* static_pass_number */
3695 TV_NONE, /* tv_id */
3696 0, /* properties_required */
3697 0, /* properties_provided */
3698 0, /* properties_destroyed */
3699 0, /* todo_flags_start */
3700 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */