1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
30 #include "hard-reg-set.h"
33 #include "insn-config.h"
41 #include "tree-pass.h"
44 #include "alloc-pool.h"
47 static bool cselib_record_memory
;
48 static bool cselib_preserve_constants
;
49 static int entry_and_rtx_equal_p (const void *, const void *);
50 static hashval_t
get_value_hash (const void *);
51 static struct elt_list
*new_elt_list (struct elt_list
*, cselib_val
*);
52 static struct elt_loc_list
*new_elt_loc_list (struct elt_loc_list
*, rtx
);
53 static void unchain_one_value (cselib_val
*);
54 static void unchain_one_elt_list (struct elt_list
**);
55 static void unchain_one_elt_loc_list (struct elt_loc_list
**);
56 static int discard_useless_locs (void **, void *);
57 static int discard_useless_values (void **, void *);
58 static void remove_useless_values (void);
59 static unsigned int cselib_hash_rtx (rtx
, int);
60 static cselib_val
*new_cselib_val (unsigned int, enum machine_mode
, rtx
);
61 static void add_mem_for_addr (cselib_val
*, cselib_val
*, rtx
);
62 static cselib_val
*cselib_lookup_mem (rtx
, int);
63 static void cselib_invalidate_regno (unsigned int, enum machine_mode
);
64 static void cselib_invalidate_mem (rtx
);
65 static void cselib_record_set (rtx
, cselib_val
*, cselib_val
*);
66 static void cselib_record_sets (rtx
);
68 struct expand_value_data
71 cselib_expand_callback callback
;
76 static rtx
cselib_expand_value_rtx_1 (rtx
, struct expand_value_data
*, int);
78 /* There are three ways in which cselib can look up an rtx:
79 - for a REG, the reg_values table (which is indexed by regno) is used
80 - for a MEM, we recursively look up its address and then follow the
81 addr_list of that value
82 - for everything else, we compute a hash value and go through the hash
83 table. Since different rtx's can still have the same hash value,
84 this involves walking the table entries for a given value and comparing
85 the locations of the entries with the rtx we are looking up. */
87 /* A table that enables us to look up elts by their value. */
88 static htab_t cselib_hash_table
;
90 /* This is a global so we don't have to pass this through every function.
91 It is used in new_elt_loc_list to set SETTING_INSN. */
92 static rtx cselib_current_insn
;
94 /* The unique id that the next create value will take. */
95 static unsigned int next_uid
;
97 /* The number of registers we had when the varrays were last resized. */
98 static unsigned int cselib_nregs
;
100 /* Count values without known locations, or with only locations that
101 wouldn't have been known except for debug insns. Whenever this
102 grows too big, we remove these useless values from the table.
104 Counting values with only debug values is a bit tricky. We don't
105 want to increment n_useless_values when we create a value for a
106 debug insn, for this would get n_useless_values out of sync, but we
107 want increment it if all locs in the list that were ever referenced
108 in nondebug insns are removed from the list.
110 In the general case, once we do that, we'd have to stop accepting
111 nondebug expressions in the loc list, to avoid having two values
112 equivalent that, without debug insns, would have been made into
113 separate values. However, because debug insns never introduce
114 equivalences themselves (no assignments), the only means for
115 growing loc lists is through nondebug assignments. If the locs
116 also happen to be referenced in debug insns, it will work just fine.
118 A consequence of this is that there's at most one debug-only loc in
119 each loc list. If we keep it in the first entry, testing whether
120 we have a debug-only loc list takes O(1).
122 Furthermore, since any additional entry in a loc list containing a
123 debug loc would have to come from an assignment (nondebug) that
124 references both the initial debug loc and the newly-equivalent loc,
125 the initial debug loc would be promoted to a nondebug loc, and the
126 loc list would not contain debug locs any more.
128 So the only case we have to be careful with in order to keep
129 n_useless_values in sync between debug and nondebug compilations is
130 to avoid incrementing n_useless_values when removing the single loc
131 from a value that turns out to not appear outside debug values. We
132 increment n_useless_debug_values instead, and leave such values
133 alone until, for other reasons, we garbage-collect useless
135 static int n_useless_values
;
136 static int n_useless_debug_values
;
138 /* Count values whose locs have been taken exclusively from debug
139 insns for the entire life of the value. */
140 static int n_debug_values
;
142 /* Number of useless values before we remove them from the hash table. */
143 #define MAX_USELESS_VALUES 32
145 /* This table maps from register number to values. It does not
146 contain pointers to cselib_val structures, but rather elt_lists.
147 The purpose is to be able to refer to the same register in
148 different modes. The first element of the list defines the mode in
149 which the register was set; if the mode is unknown or the value is
150 no longer valid in that mode, ELT will be NULL for the first
152 static struct elt_list
**reg_values
;
153 static unsigned int reg_values_size
;
154 #define REG_VALUES(i) reg_values[i]
156 /* The largest number of hard regs used by any entry added to the
157 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
158 static unsigned int max_value_regs
;
160 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
161 in cselib_clear_table() for fast emptying. */
162 static unsigned int *used_regs
;
163 static unsigned int n_used_regs
;
165 /* We pass this to cselib_invalidate_mem to invalidate all of
166 memory for a non-const call instruction. */
167 static GTY(()) rtx callmem
;
169 /* Set by discard_useless_locs if it deleted the last location of any
171 static int values_became_useless
;
173 /* Used as stop element of the containing_mem list so we can check
174 presence in the list by checking the next pointer. */
175 static cselib_val dummy_val
;
177 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
178 that is constant through the whole function and should never be
180 static cselib_val
*cfa_base_preserved_val
;
182 /* Used to list all values that contain memory reference.
183 May or may not contain the useless values - the list is compacted
184 each time memory is invalidated. */
185 static cselib_val
*first_containing_mem
= &dummy_val
;
186 static alloc_pool elt_loc_list_pool
, elt_list_pool
, cselib_val_pool
, value_pool
;
188 /* If nonnull, cselib will call this function before freeing useless
189 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
190 void (*cselib_discard_hook
) (cselib_val
*);
192 /* If nonnull, cselib will call this function before recording sets or
193 even clobbering outputs of INSN. All the recorded sets will be
194 represented in the array sets[n_sets]. new_val_min can be used to
195 tell whether values present in sets are introduced by this
197 void (*cselib_record_sets_hook
) (rtx insn
, struct cselib_set
*sets
,
200 #define PRESERVED_VALUE_P(RTX) \
201 (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
205 /* Allocate a struct elt_list and fill in its two elements with the
208 static inline struct elt_list
*
209 new_elt_list (struct elt_list
*next
, cselib_val
*elt
)
212 el
= (struct elt_list
*) pool_alloc (elt_list_pool
);
218 /* Allocate a struct elt_loc_list and fill in its two elements with the
221 static inline struct elt_loc_list
*
222 new_elt_loc_list (struct elt_loc_list
*next
, rtx loc
)
224 struct elt_loc_list
*el
;
225 el
= (struct elt_loc_list
*) pool_alloc (elt_loc_list_pool
);
228 el
->setting_insn
= cselib_current_insn
;
229 gcc_assert (!next
|| !next
->setting_insn
230 || !DEBUG_INSN_P (next
->setting_insn
));
232 /* If we're creating the first loc in a debug insn context, we've
233 just created a debug value. Count it. */
234 if (!next
&& cselib_current_insn
&& DEBUG_INSN_P (cselib_current_insn
))
240 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
241 originating from a debug insn, maintaining the debug values
245 promote_debug_loc (struct elt_loc_list
*l
)
247 if (l
->setting_insn
&& DEBUG_INSN_P (l
->setting_insn
)
248 && (!cselib_current_insn
|| !DEBUG_INSN_P (cselib_current_insn
)))
251 l
->setting_insn
= cselib_current_insn
;
252 gcc_assert (!l
->next
);
256 /* The elt_list at *PL is no longer needed. Unchain it and free its
260 unchain_one_elt_list (struct elt_list
**pl
)
262 struct elt_list
*l
= *pl
;
265 pool_free (elt_list_pool
, l
);
268 /* Likewise for elt_loc_lists. */
271 unchain_one_elt_loc_list (struct elt_loc_list
**pl
)
273 struct elt_loc_list
*l
= *pl
;
276 pool_free (elt_loc_list_pool
, l
);
279 /* Likewise for cselib_vals. This also frees the addr_list associated with
283 unchain_one_value (cselib_val
*v
)
286 unchain_one_elt_list (&v
->addr_list
);
288 pool_free (cselib_val_pool
, v
);
291 /* Remove all entries from the hash table. Also used during
295 cselib_clear_table (void)
297 cselib_reset_table (1);
300 /* Remove from hash table all VALUEs except constants. */
303 preserve_only_constants (void **x
, void *info ATTRIBUTE_UNUSED
)
305 cselib_val
*v
= (cselib_val
*)*x
;
308 && v
->locs
->next
== NULL
)
310 if (CONSTANT_P (v
->locs
->loc
)
311 && (GET_CODE (v
->locs
->loc
) != CONST
312 || !references_value_p (v
->locs
->loc
, 0)))
314 if (cfa_base_preserved_val
)
316 if (v
== cfa_base_preserved_val
)
318 if (GET_CODE (v
->locs
->loc
) == PLUS
319 && CONST_INT_P (XEXP (v
->locs
->loc
, 1))
320 && XEXP (v
->locs
->loc
, 0) == cfa_base_preserved_val
->val_rtx
)
325 htab_clear_slot (cselib_hash_table
, x
);
329 /* Remove all entries from the hash table, arranging for the next
330 value to be numbered NUM. */
333 cselib_reset_table (unsigned int num
)
339 if (cfa_base_preserved_val
)
341 unsigned int regno
= REGNO (cfa_base_preserved_val
->locs
->loc
);
342 unsigned int new_used_regs
= 0;
343 for (i
= 0; i
< n_used_regs
; i
++)
344 if (used_regs
[i
] == regno
)
350 REG_VALUES (used_regs
[i
]) = 0;
351 gcc_assert (new_used_regs
== 1);
352 n_used_regs
= new_used_regs
;
353 used_regs
[0] = regno
;
355 = hard_regno_nregs
[regno
][GET_MODE (cfa_base_preserved_val
->locs
->loc
)];
359 for (i
= 0; i
< n_used_regs
; i
++)
360 REG_VALUES (used_regs
[i
]) = 0;
364 if (cselib_preserve_constants
)
365 htab_traverse (cselib_hash_table
, preserve_only_constants
, NULL
);
367 htab_empty (cselib_hash_table
);
369 n_useless_values
= 0;
370 n_useless_debug_values
= 0;
375 first_containing_mem
= &dummy_val
;
378 /* Return the number of the next value that will be generated. */
381 cselib_get_next_uid (void)
386 /* The equality test for our hash table. The first argument ENTRY is a table
387 element (i.e. a cselib_val), while the second arg X is an rtx. We know
388 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
389 CONST of an appropriate mode. */
392 entry_and_rtx_equal_p (const void *entry
, const void *x_arg
)
394 struct elt_loc_list
*l
;
395 const cselib_val
*const v
= (const cselib_val
*) entry
;
396 rtx x
= CONST_CAST_RTX ((const_rtx
)x_arg
);
397 enum machine_mode mode
= GET_MODE (x
);
399 gcc_assert (!CONST_INT_P (x
) && GET_CODE (x
) != CONST_FIXED
400 && (mode
!= VOIDmode
|| GET_CODE (x
) != CONST_DOUBLE
));
402 if (mode
!= GET_MODE (v
->val_rtx
))
405 /* Unwrap X if necessary. */
406 if (GET_CODE (x
) == CONST
407 && (CONST_INT_P (XEXP (x
, 0))
408 || GET_CODE (XEXP (x
, 0)) == CONST_FIXED
409 || GET_CODE (XEXP (x
, 0)) == CONST_DOUBLE
))
412 /* We don't guarantee that distinct rtx's have different hash values,
413 so we need to do a comparison. */
414 for (l
= v
->locs
; l
; l
= l
->next
)
415 if (rtx_equal_for_cselib_p (l
->loc
, x
))
417 promote_debug_loc (l
);
424 /* The hash function for our hash table. The value is always computed with
425 cselib_hash_rtx when adding an element; this function just extracts the
426 hash value from a cselib_val structure. */
429 get_value_hash (const void *entry
)
431 const cselib_val
*const v
= (const cselib_val
*) entry
;
435 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
436 only return true for values which point to a cselib_val whose value
437 element has been set to zero, which implies the cselib_val will be
441 references_value_p (const_rtx x
, int only_useless
)
443 const enum rtx_code code
= GET_CODE (x
);
444 const char *fmt
= GET_RTX_FORMAT (code
);
447 if (GET_CODE (x
) == VALUE
448 && (! only_useless
|| CSELIB_VAL_PTR (x
)->locs
== 0))
451 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
453 if (fmt
[i
] == 'e' && references_value_p (XEXP (x
, i
), only_useless
))
455 else if (fmt
[i
] == 'E')
456 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
457 if (references_value_p (XVECEXP (x
, i
, j
), only_useless
))
464 /* For all locations found in X, delete locations that reference useless
465 values (i.e. values without any location). Called through
469 discard_useless_locs (void **x
, void *info ATTRIBUTE_UNUSED
)
471 cselib_val
*v
= (cselib_val
*)*x
;
472 struct elt_loc_list
**p
= &v
->locs
;
473 bool had_locs
= v
->locs
!= NULL
;
474 rtx setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
478 if (references_value_p ((*p
)->loc
, 1))
479 unchain_one_elt_loc_list (p
);
484 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
486 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
487 n_useless_debug_values
++;
490 values_became_useless
= 1;
495 /* If X is a value with no locations, remove it from the hashtable. */
498 discard_useless_values (void **x
, void *info ATTRIBUTE_UNUSED
)
500 cselib_val
*v
= (cselib_val
*)*x
;
502 if (v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
504 if (cselib_discard_hook
)
505 cselib_discard_hook (v
);
507 CSELIB_VAL_PTR (v
->val_rtx
) = NULL
;
508 htab_clear_slot (cselib_hash_table
, x
);
509 unchain_one_value (v
);
516 /* Clean out useless values (i.e. those which no longer have locations
517 associated with them) from the hash table. */
520 remove_useless_values (void)
524 /* First pass: eliminate locations that reference the value. That in
525 turn can make more values useless. */
528 values_became_useless
= 0;
529 htab_traverse (cselib_hash_table
, discard_useless_locs
, 0);
531 while (values_became_useless
);
533 /* Second pass: actually remove the values. */
535 p
= &first_containing_mem
;
536 for (v
= *p
; v
!= &dummy_val
; v
= v
->next_containing_mem
)
540 p
= &(*p
)->next_containing_mem
;
544 n_useless_values
+= n_useless_debug_values
;
545 n_debug_values
-= n_useless_debug_values
;
546 n_useless_debug_values
= 0;
548 htab_traverse (cselib_hash_table
, discard_useless_values
, 0);
550 gcc_assert (!n_useless_values
);
553 /* Arrange for a value to not be removed from the hash table even if
554 it becomes useless. */
557 cselib_preserve_value (cselib_val
*v
)
559 PRESERVED_VALUE_P (v
->val_rtx
) = 1;
562 /* Test whether a value is preserved. */
565 cselib_preserved_value_p (cselib_val
*v
)
567 return PRESERVED_VALUE_P (v
->val_rtx
);
570 /* Arrange for a REG value to be assumed constant through the whole function,
571 never invalidated and preserved across cselib_reset_table calls. */
574 cselib_preserve_cfa_base_value (cselib_val
*v
)
576 if (cselib_preserve_constants
578 && REG_P (v
->locs
->loc
))
579 cfa_base_preserved_val
= v
;
582 /* Clean all non-constant expressions in the hash table, but retain
586 cselib_preserve_only_values (void)
590 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
591 cselib_invalidate_regno (i
, reg_raw_mode
[i
]);
593 cselib_invalidate_mem (callmem
);
595 remove_useless_values ();
597 gcc_assert (first_containing_mem
== &dummy_val
);
600 /* Return the mode in which a register was last set. If X is not a
601 register, return its mode. If the mode in which the register was
602 set is not known, or the value was already clobbered, return
606 cselib_reg_set_mode (const_rtx x
)
611 if (REG_VALUES (REGNO (x
)) == NULL
612 || REG_VALUES (REGNO (x
))->elt
== NULL
)
615 return GET_MODE (REG_VALUES (REGNO (x
))->elt
->val_rtx
);
618 /* Return nonzero if we can prove that X and Y contain the same value, taking
619 our gathered information into account. */
622 rtx_equal_for_cselib_p (rtx x
, rtx y
)
628 if (REG_P (x
) || MEM_P (x
))
630 cselib_val
*e
= cselib_lookup (x
, GET_MODE (x
), 0);
636 if (REG_P (y
) || MEM_P (y
))
638 cselib_val
*e
= cselib_lookup (y
, GET_MODE (y
), 0);
647 if (GET_CODE (x
) == VALUE
&& GET_CODE (y
) == VALUE
)
648 return CSELIB_VAL_PTR (x
) == CSELIB_VAL_PTR (y
);
650 if (GET_CODE (x
) == VALUE
)
652 cselib_val
*e
= CSELIB_VAL_PTR (x
);
653 struct elt_loc_list
*l
;
655 for (l
= e
->locs
; l
; l
= l
->next
)
659 /* Avoid infinite recursion. */
660 if (REG_P (t
) || MEM_P (t
))
662 else if (rtx_equal_for_cselib_p (t
, y
))
669 if (GET_CODE (y
) == VALUE
)
671 cselib_val
*e
= CSELIB_VAL_PTR (y
);
672 struct elt_loc_list
*l
;
674 for (l
= e
->locs
; l
; l
= l
->next
)
678 if (REG_P (t
) || MEM_P (t
))
680 else if (rtx_equal_for_cselib_p (x
, t
))
687 if (GET_CODE (x
) != GET_CODE (y
) || GET_MODE (x
) != GET_MODE (y
))
690 /* These won't be handled correctly by the code below. */
691 switch (GET_CODE (x
))
699 return XEXP (x
, 0) == XEXP (y
, 0);
706 fmt
= GET_RTX_FORMAT (code
);
708 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
715 if (XWINT (x
, i
) != XWINT (y
, i
))
721 if (XINT (x
, i
) != XINT (y
, i
))
727 /* Two vectors must have the same length. */
728 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
731 /* And the corresponding elements must match. */
732 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
733 if (! rtx_equal_for_cselib_p (XVECEXP (x
, i
, j
),
740 && targetm
.commutative_p (x
, UNKNOWN
)
741 && rtx_equal_for_cselib_p (XEXP (x
, 1), XEXP (y
, 0))
742 && rtx_equal_for_cselib_p (XEXP (x
, 0), XEXP (y
, 1)))
744 if (! rtx_equal_for_cselib_p (XEXP (x
, i
), XEXP (y
, i
)))
750 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
755 /* These are just backpointers, so they don't matter. */
762 /* It is believed that rtx's at this level will never
763 contain anything but integers and other rtx's,
764 except for within LABEL_REFs and SYMBOL_REFs. */
772 /* We need to pass down the mode of constants through the hash table
773 functions. For that purpose, wrap them in a CONST of the appropriate
776 wrap_constant (enum machine_mode mode
, rtx x
)
778 if (!CONST_INT_P (x
) && GET_CODE (x
) != CONST_FIXED
779 && (GET_CODE (x
) != CONST_DOUBLE
|| GET_MODE (x
) != VOIDmode
))
781 gcc_assert (mode
!= VOIDmode
);
782 return gen_rtx_CONST (mode
, x
);
785 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
786 For registers and memory locations, we look up their cselib_val structure
787 and return its VALUE element.
788 Possible reasons for return 0 are: the object is volatile, or we couldn't
789 find a register or memory location in the table and CREATE is zero. If
790 CREATE is nonzero, table elts are created for regs and mem.
791 N.B. this hash function returns the same hash value for RTXes that
792 differ only in the order of operands, thus it is suitable for comparisons
793 that take commutativity into account.
794 If we wanted to also support associative rules, we'd have to use a different
795 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
796 We used to have a MODE argument for hashing for CONST_INTs, but that
797 didn't make sense, since it caused spurious hash differences between
798 (set (reg:SI 1) (const_int))
799 (plus:SI (reg:SI 2) (reg:SI 1))
801 (plus:SI (reg:SI 2) (const_int))
802 If the mode is important in any context, it must be checked specifically
803 in a comparison anyway, since relying on hash differences is unsafe. */
806 cselib_hash_rtx (rtx x
, int create
)
812 unsigned int hash
= 0;
815 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
821 e
= cselib_lookup (x
, GET_MODE (x
), create
);
828 hash
+= ((unsigned) DEBUG_EXPR
<< 7)
829 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
));
830 return hash
? hash
: (unsigned int) DEBUG_EXPR
;
833 hash
+= ((unsigned) CONST_INT
<< 7) + INTVAL (x
);
834 return hash
? hash
: (unsigned int) CONST_INT
;
837 /* This is like the general case, except that it only counts
838 the integers representing the constant. */
839 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
840 if (GET_MODE (x
) != VOIDmode
)
841 hash
+= real_hash (CONST_DOUBLE_REAL_VALUE (x
));
843 hash
+= ((unsigned) CONST_DOUBLE_LOW (x
)
844 + (unsigned) CONST_DOUBLE_HIGH (x
));
845 return hash
? hash
: (unsigned int) CONST_DOUBLE
;
848 hash
+= (unsigned int) code
+ (unsigned int) GET_MODE (x
);
849 hash
+= fixed_hash (CONST_FIXED_VALUE (x
));
850 return hash
? hash
: (unsigned int) CONST_FIXED
;
857 units
= CONST_VECTOR_NUNITS (x
);
859 for (i
= 0; i
< units
; ++i
)
861 elt
= CONST_VECTOR_ELT (x
, i
);
862 hash
+= cselib_hash_rtx (elt
, 0);
868 /* Assume there is only one rtx object for any given label. */
870 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
871 differences and differences between each stage's debugging dumps. */
872 hash
+= (((unsigned int) LABEL_REF
<< 7)
873 + CODE_LABEL_NUMBER (XEXP (x
, 0)));
874 return hash
? hash
: (unsigned int) LABEL_REF
;
878 /* Don't hash on the symbol's address to avoid bootstrap differences.
879 Different hash values may cause expressions to be recorded in
880 different orders and thus different registers to be used in the
881 final assembler. This also avoids differences in the dump files
882 between various stages. */
884 const unsigned char *p
= (const unsigned char *) XSTR (x
, 0);
887 h
+= (h
<< 7) + *p
++; /* ??? revisit */
889 hash
+= ((unsigned int) SYMBOL_REF
<< 7) + h
;
890 return hash
? hash
: (unsigned int) SYMBOL_REF
;
902 case UNSPEC_VOLATILE
:
906 if (MEM_VOLATILE_P (x
))
915 i
= GET_RTX_LENGTH (code
) - 1;
916 fmt
= GET_RTX_FORMAT (code
);
923 rtx tem
= XEXP (x
, i
);
924 unsigned int tem_hash
= cselib_hash_rtx (tem
, create
);
933 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
935 unsigned int tem_hash
936 = cselib_hash_rtx (XVECEXP (x
, i
, j
), create
);
947 const unsigned char *p
= (const unsigned char *) XSTR (x
, i
);
969 return hash
? hash
: 1 + (unsigned int) GET_CODE (x
);
972 /* Create a new value structure for VALUE and initialize it. The mode of the
975 static inline cselib_val
*
976 new_cselib_val (unsigned int hash
, enum machine_mode mode
, rtx x
)
978 cselib_val
*e
= (cselib_val
*) pool_alloc (cselib_val_pool
);
981 gcc_assert (next_uid
);
985 /* We use an alloc pool to allocate this RTL construct because it
986 accounts for about 8% of the overall memory usage. We know
987 precisely when we can have VALUE RTXen (when cselib is active)
988 so we don't need to put them in garbage collected memory.
989 ??? Why should a VALUE be an RTX in the first place? */
990 e
->val_rtx
= (rtx
) pool_alloc (value_pool
);
991 memset (e
->val_rtx
, 0, RTX_HDR_SIZE
);
992 PUT_CODE (e
->val_rtx
, VALUE
);
993 PUT_MODE (e
->val_rtx
, mode
);
994 CSELIB_VAL_PTR (e
->val_rtx
) = e
;
997 e
->next_containing_mem
= 0;
999 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1001 fprintf (dump_file
, "cselib value %u:%u ", e
->uid
, hash
);
1002 if (flag_dump_noaddr
|| flag_dump_unnumbered
)
1003 fputs ("# ", dump_file
);
1005 fprintf (dump_file
, "%p ", (void*)e
);
1006 print_rtl_single (dump_file
, x
);
1007 fputc ('\n', dump_file
);
1013 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1014 contains the data at this address. X is a MEM that represents the
1015 value. Update the two value structures to represent this situation. */
1018 add_mem_for_addr (cselib_val
*addr_elt
, cselib_val
*mem_elt
, rtx x
)
1020 struct elt_loc_list
*l
;
1022 /* Avoid duplicates. */
1023 for (l
= mem_elt
->locs
; l
; l
= l
->next
)
1025 && CSELIB_VAL_PTR (XEXP (l
->loc
, 0)) == addr_elt
)
1027 promote_debug_loc (l
);
1031 addr_elt
->addr_list
= new_elt_list (addr_elt
->addr_list
, mem_elt
);
1033 = new_elt_loc_list (mem_elt
->locs
,
1034 replace_equiv_address_nv (x
, addr_elt
->val_rtx
));
1035 if (mem_elt
->next_containing_mem
== NULL
)
1037 mem_elt
->next_containing_mem
= first_containing_mem
;
1038 first_containing_mem
= mem_elt
;
1042 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1043 If CREATE, make a new one if we haven't seen it before. */
1046 cselib_lookup_mem (rtx x
, int create
)
1048 enum machine_mode mode
= GET_MODE (x
);
1051 cselib_val
*mem_elt
;
1054 if (MEM_VOLATILE_P (x
) || mode
== BLKmode
1055 || !cselib_record_memory
1056 || (FLOAT_MODE_P (mode
) && flag_float_store
))
1059 /* Look up the value for the address. */
1060 addr
= cselib_lookup (XEXP (x
, 0), mode
, create
);
1064 /* Find a value that describes a value of our mode at that address. */
1065 for (l
= addr
->addr_list
; l
; l
= l
->next
)
1066 if (GET_MODE (l
->elt
->val_rtx
) == mode
)
1068 promote_debug_loc (l
->elt
->locs
);
1075 mem_elt
= new_cselib_val (next_uid
, mode
, x
);
1076 add_mem_for_addr (addr
, mem_elt
, x
);
1077 slot
= htab_find_slot_with_hash (cselib_hash_table
, wrap_constant (mode
, x
),
1078 mem_elt
->hash
, INSERT
);
1083 /* Search thru the possible substitutions in P. We prefer a non reg
1084 substitution because this allows us to expand the tree further. If
1085 we find, just a reg, take the lowest regno. There may be several
1086 non-reg results, we just take the first one because they will all
1087 expand to the same place. */
1090 expand_loc (struct elt_loc_list
*p
, struct expand_value_data
*evd
,
1093 rtx reg_result
= NULL
;
1094 unsigned int regno
= UINT_MAX
;
1095 struct elt_loc_list
*p_in
= p
;
1097 for (; p
; p
= p
-> next
)
1099 /* Avoid infinite recursion trying to expand a reg into a
1101 if ((REG_P (p
->loc
))
1102 && (REGNO (p
->loc
) < regno
)
1103 && !bitmap_bit_p (evd
->regs_active
, REGNO (p
->loc
)))
1105 reg_result
= p
->loc
;
1106 regno
= REGNO (p
->loc
);
1108 /* Avoid infinite recursion and do not try to expand the
1110 else if (GET_CODE (p
->loc
) == VALUE
1111 && CSELIB_VAL_PTR (p
->loc
)->locs
== p_in
)
1113 else if (!REG_P (p
->loc
))
1116 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1118 print_inline_rtx (dump_file
, p
->loc
, 0);
1119 fprintf (dump_file
, "\n");
1121 if (GET_CODE (p
->loc
) == LO_SUM
1122 && GET_CODE (XEXP (p
->loc
, 1)) == SYMBOL_REF
1124 && (note
= find_reg_note (p
->setting_insn
, REG_EQUAL
, NULL_RTX
))
1125 && XEXP (note
, 0) == XEXP (p
->loc
, 1))
1126 return XEXP (p
->loc
, 1);
1127 result
= cselib_expand_value_rtx_1 (p
->loc
, evd
, max_depth
- 1);
1134 if (regno
!= UINT_MAX
)
1137 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1138 fprintf (dump_file
, "r%d\n", regno
);
1140 result
= cselib_expand_value_rtx_1 (reg_result
, evd
, max_depth
- 1);
1145 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1149 print_inline_rtx (dump_file
, reg_result
, 0);
1150 fprintf (dump_file
, "\n");
1153 fprintf (dump_file
, "NULL\n");
1159 /* Forward substitute and expand an expression out to its roots.
1160 This is the opposite of common subexpression. Because local value
1161 numbering is such a weak optimization, the expanded expression is
1162 pretty much unique (not from a pointer equals point of view but
1163 from a tree shape point of view.
1165 This function returns NULL if the expansion fails. The expansion
1166 will fail if there is no value number for one of the operands or if
1167 one of the operands has been overwritten between the current insn
1168 and the beginning of the basic block. For instance x has no
1174 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1175 It is clear on return. */
1178 cselib_expand_value_rtx (rtx orig
, bitmap regs_active
, int max_depth
)
1180 struct expand_value_data evd
;
1182 evd
.regs_active
= regs_active
;
1183 evd
.callback
= NULL
;
1184 evd
.callback_arg
= NULL
;
1187 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
);
1190 /* Same as cselib_expand_value_rtx, but using a callback to try to
1191 resolve some expressions. The CB function should return ORIG if it
1192 can't or does not want to deal with a certain RTX. Any other
1193 return value, including NULL, will be used as the expansion for
1194 VALUE, without any further changes. */
1197 cselib_expand_value_rtx_cb (rtx orig
, bitmap regs_active
, int max_depth
,
1198 cselib_expand_callback cb
, void *data
)
1200 struct expand_value_data evd
;
1202 evd
.regs_active
= regs_active
;
1204 evd
.callback_arg
= data
;
1207 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
);
1210 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1211 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1212 would return NULL or non-NULL, without allocating new rtx. */
1215 cselib_dummy_expand_value_rtx_cb (rtx orig
, bitmap regs_active
, int max_depth
,
1216 cselib_expand_callback cb
, void *data
)
1218 struct expand_value_data evd
;
1220 evd
.regs_active
= regs_active
;
1222 evd
.callback_arg
= data
;
1225 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
) != NULL
;
1228 /* Internal implementation of cselib_expand_value_rtx and
1229 cselib_expand_value_rtx_cb. */
1232 cselib_expand_value_rtx_1 (rtx orig
, struct expand_value_data
*evd
,
1238 const char *format_ptr
;
1239 enum machine_mode mode
;
1241 code
= GET_CODE (orig
);
1243 /* For the context of dse, if we end up expand into a huge tree, we
1244 will not have a useful address, so we might as well just give up
1253 struct elt_list
*l
= REG_VALUES (REGNO (orig
));
1255 if (l
&& l
->elt
== NULL
)
1257 for (; l
; l
= l
->next
)
1258 if (GET_MODE (l
->elt
->val_rtx
) == GET_MODE (orig
))
1261 int regno
= REGNO (orig
);
1263 /* The only thing that we are not willing to do (this
1264 is requirement of dse and if others potential uses
1265 need this function we should add a parm to control
1266 it) is that we will not substitute the
1267 STACK_POINTER_REGNUM, FRAME_POINTER or the
1270 These expansions confuses the code that notices that
1271 stores into the frame go dead at the end of the
1272 function and that the frame is not effected by calls
1273 to subroutines. If you allow the
1274 STACK_POINTER_REGNUM substitution, then dse will
1275 think that parameter pushing also goes dead which is
1276 wrong. If you allow the FRAME_POINTER or the
1277 HARD_FRAME_POINTER then you lose the opportunity to
1278 make the frame assumptions. */
1279 if (regno
== STACK_POINTER_REGNUM
1280 || regno
== FRAME_POINTER_REGNUM
1281 || regno
== HARD_FRAME_POINTER_REGNUM
)
1284 bitmap_set_bit (evd
->regs_active
, regno
);
1286 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1287 fprintf (dump_file
, "expanding: r%d into: ", regno
);
1289 result
= expand_loc (l
->elt
->locs
, evd
, max_depth
);
1290 bitmap_clear_bit (evd
->regs_active
, regno
);
1307 /* SCRATCH must be shared because they represent distinct values. */
1310 if (REG_P (XEXP (orig
, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig
, 0))))
1315 if (shared_const_p (orig
))
1325 subreg
= evd
->callback (orig
, evd
->regs_active
, max_depth
,
1331 subreg
= cselib_expand_value_rtx_1 (SUBREG_REG (orig
), evd
,
1335 scopy
= simplify_gen_subreg (GET_MODE (orig
), subreg
,
1336 GET_MODE (SUBREG_REG (orig
)),
1337 SUBREG_BYTE (orig
));
1339 || (GET_CODE (scopy
) == SUBREG
1340 && !REG_P (SUBREG_REG (scopy
))
1341 && !MEM_P (SUBREG_REG (scopy
))))
1351 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1353 fputs ("\nexpanding ", dump_file
);
1354 print_rtl_single (dump_file
, orig
);
1355 fputs (" into...", dump_file
);
1360 result
= evd
->callback (orig
, evd
->regs_active
, max_depth
,
1367 result
= expand_loc (CSELIB_VAL_PTR (orig
)->locs
, evd
, max_depth
);
1373 return evd
->callback (orig
, evd
->regs_active
, max_depth
,
1381 /* Copy the various flags, fields, and other information. We assume
1382 that all fields need copying, and then clear the fields that should
1383 not be copied. That is the sensible default behavior, and forces
1384 us to explicitly document why we are *not* copying a flag. */
1388 copy
= shallow_copy_rtx (orig
);
1390 format_ptr
= GET_RTX_FORMAT (code
);
1392 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
1393 switch (*format_ptr
++)
1396 if (XEXP (orig
, i
) != NULL
)
1398 rtx result
= cselib_expand_value_rtx_1 (XEXP (orig
, i
), evd
,
1403 XEXP (copy
, i
) = result
;
1409 if (XVEC (orig
, i
) != NULL
)
1412 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
1413 for (j
= 0; j
< XVECLEN (orig
, i
); j
++)
1415 rtx result
= cselib_expand_value_rtx_1 (XVECEXP (orig
, i
, j
),
1416 evd
, max_depth
- 1);
1420 XVECEXP (copy
, i
, j
) = result
;
1434 /* These are left unchanged. */
1444 mode
= GET_MODE (copy
);
1445 /* If an operand has been simplified into CONST_INT, which doesn't
1446 have a mode and the mode isn't derivable from whole rtx's mode,
1447 try simplify_*_operation first with mode from original's operand
1448 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1450 switch (GET_RTX_CLASS (code
))
1453 if (CONST_INT_P (XEXP (copy
, 0))
1454 && GET_MODE (XEXP (orig
, 0)) != VOIDmode
)
1456 scopy
= simplify_unary_operation (code
, mode
, XEXP (copy
, 0),
1457 GET_MODE (XEXP (orig
, 0)));
1462 case RTX_COMM_ARITH
:
1464 /* These expressions can derive operand modes from the whole rtx's mode. */
1467 case RTX_BITFIELD_OPS
:
1468 if (CONST_INT_P (XEXP (copy
, 0))
1469 && GET_MODE (XEXP (orig
, 0)) != VOIDmode
)
1471 scopy
= simplify_ternary_operation (code
, mode
,
1472 GET_MODE (XEXP (orig
, 0)),
1473 XEXP (copy
, 0), XEXP (copy
, 1),
1480 case RTX_COMM_COMPARE
:
1481 if (CONST_INT_P (XEXP (copy
, 0))
1482 && GET_MODE (XEXP (copy
, 1)) == VOIDmode
1483 && (GET_MODE (XEXP (orig
, 0)) != VOIDmode
1484 || GET_MODE (XEXP (orig
, 1)) != VOIDmode
))
1486 scopy
= simplify_relational_operation (code
, mode
,
1487 (GET_MODE (XEXP (orig
, 0))
1489 ? GET_MODE (XEXP (orig
, 0))
1490 : GET_MODE (XEXP (orig
, 1)),
1500 scopy
= simplify_rtx (copy
);
1506 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1507 with VALUE expressions. This way, it becomes independent of changes
1508 to registers and memory.
1509 X isn't actually modified; if modifications are needed, new rtl is
1510 allocated. However, the return value can share rtl with X. */
1513 cselib_subst_to_values (rtx x
)
1515 enum rtx_code code
= GET_CODE (x
);
1516 const char *fmt
= GET_RTX_FORMAT (code
);
1525 l
= REG_VALUES (REGNO (x
));
1526 if (l
&& l
->elt
== NULL
)
1528 for (; l
; l
= l
->next
)
1529 if (GET_MODE (l
->elt
->val_rtx
) == GET_MODE (x
))
1530 return l
->elt
->val_rtx
;
1535 e
= cselib_lookup_mem (x
, 0);
1538 /* This happens for autoincrements. Assign a value that doesn't
1540 e
= new_cselib_val (next_uid
, GET_MODE (x
), x
);
1556 e
= new_cselib_val (next_uid
, GET_MODE (x
), x
);
1563 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1567 rtx t
= cselib_subst_to_values (XEXP (x
, i
));
1569 if (t
!= XEXP (x
, i
))
1572 copy
= shallow_copy_rtx (x
);
1576 else if (fmt
[i
] == 'E')
1580 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1582 rtx t
= cselib_subst_to_values (XVECEXP (x
, i
, j
));
1584 if (t
!= XVECEXP (x
, i
, j
))
1586 if (XVEC (x
, i
) == XVEC (copy
, i
))
1589 copy
= shallow_copy_rtx (x
);
1590 XVEC (copy
, i
) = shallow_copy_rtvec (XVEC (x
, i
));
1592 XVECEXP (copy
, i
, j
) = t
;
1601 /* Look up the rtl expression X in our tables and return the value it has.
1602 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
1603 we create a new one if possible, using mode MODE if X doesn't have a mode
1604 (i.e. because it's a constant). */
1607 cselib_lookup_1 (rtx x
, enum machine_mode mode
, int create
)
1611 unsigned int hashval
;
1613 if (GET_MODE (x
) != VOIDmode
)
1614 mode
= GET_MODE (x
);
1616 if (GET_CODE (x
) == VALUE
)
1617 return CSELIB_VAL_PTR (x
);
1622 unsigned int i
= REGNO (x
);
1625 if (l
&& l
->elt
== NULL
)
1627 for (; l
; l
= l
->next
)
1628 if (mode
== GET_MODE (l
->elt
->val_rtx
))
1630 promote_debug_loc (l
->elt
->locs
);
1637 if (i
< FIRST_PSEUDO_REGISTER
)
1639 unsigned int n
= hard_regno_nregs
[i
][mode
];
1641 if (n
> max_value_regs
)
1645 e
= new_cselib_val (next_uid
, GET_MODE (x
), x
);
1646 e
->locs
= new_elt_loc_list (e
->locs
, x
);
1647 if (REG_VALUES (i
) == 0)
1649 /* Maintain the invariant that the first entry of
1650 REG_VALUES, if present, must be the value used to set the
1651 register, or NULL. */
1652 used_regs
[n_used_regs
++] = i
;
1653 REG_VALUES (i
) = new_elt_list (REG_VALUES (i
), NULL
);
1655 REG_VALUES (i
)->next
= new_elt_list (REG_VALUES (i
)->next
, e
);
1656 slot
= htab_find_slot_with_hash (cselib_hash_table
, x
, e
->hash
, INSERT
);
1662 return cselib_lookup_mem (x
, create
);
1664 hashval
= cselib_hash_rtx (x
, create
);
1665 /* Can't even create if hashing is not possible. */
1669 slot
= htab_find_slot_with_hash (cselib_hash_table
, wrap_constant (mode
, x
),
1670 hashval
, create
? INSERT
: NO_INSERT
);
1674 e
= (cselib_val
*) *slot
;
1678 e
= new_cselib_val (hashval
, mode
, x
);
1680 /* We have to fill the slot before calling cselib_subst_to_values:
1681 the hash table is inconsistent until we do so, and
1682 cselib_subst_to_values will need to do lookups. */
1684 e
->locs
= new_elt_loc_list (e
->locs
, cselib_subst_to_values (x
));
1688 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
1691 cselib_lookup_from_insn (rtx x
, enum machine_mode mode
,
1692 int create
, rtx insn
)
1696 gcc_assert (!cselib_current_insn
);
1697 cselib_current_insn
= insn
;
1699 ret
= cselib_lookup (x
, mode
, create
);
1701 cselib_current_insn
= NULL
;
1706 /* Wrapper for cselib_lookup_1, that logs the lookup result and
1707 maintains invariants related with debug insns. */
1710 cselib_lookup (rtx x
, enum machine_mode mode
, int create
)
1712 cselib_val
*ret
= cselib_lookup_1 (x
, mode
, create
);
1714 /* ??? Should we return NULL if we're not to create an entry, the
1715 found loc is a debug loc and cselib_current_insn is not DEBUG?
1716 If so, we should also avoid converting val to non-DEBUG; probably
1717 easiest setting cselib_current_insn to NULL before the call
1720 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1722 fputs ("cselib lookup ", dump_file
);
1723 print_inline_rtx (dump_file
, x
, 2);
1724 fprintf (dump_file
, " => %u:%u\n",
1726 ret
? ret
->hash
: 0);
1732 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1733 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1734 is used to determine how many hard registers are being changed. If MODE
1735 is VOIDmode, then only REGNO is being changed; this is used when
1736 invalidating call clobbered registers across a call. */
1739 cselib_invalidate_regno (unsigned int regno
, enum machine_mode mode
)
1741 unsigned int endregno
;
1744 /* If we see pseudos after reload, something is _wrong_. */
1745 gcc_assert (!reload_completed
|| regno
< FIRST_PSEUDO_REGISTER
1746 || reg_renumber
[regno
] < 0);
1748 /* Determine the range of registers that must be invalidated. For
1749 pseudos, only REGNO is affected. For hard regs, we must take MODE
1750 into account, and we must also invalidate lower register numbers
1751 if they contain values that overlap REGNO. */
1752 if (regno
< FIRST_PSEUDO_REGISTER
)
1754 gcc_assert (mode
!= VOIDmode
);
1756 if (regno
< max_value_regs
)
1759 i
= regno
- max_value_regs
;
1761 endregno
= end_hard_regno (mode
, regno
);
1766 endregno
= regno
+ 1;
1769 for (; i
< endregno
; i
++)
1771 struct elt_list
**l
= ®_VALUES (i
);
1773 /* Go through all known values for this reg; if it overlaps the range
1774 we're invalidating, remove the value. */
1777 cselib_val
*v
= (*l
)->elt
;
1780 struct elt_loc_list
**p
;
1781 unsigned int this_last
= i
;
1783 if (i
< FIRST_PSEUDO_REGISTER
&& v
!= NULL
)
1784 this_last
= end_hard_regno (GET_MODE (v
->val_rtx
), i
) - 1;
1786 if (this_last
< regno
|| v
== NULL
|| v
== cfa_base_preserved_val
)
1792 /* We have an overlap. */
1793 if (*l
== REG_VALUES (i
))
1795 /* Maintain the invariant that the first entry of
1796 REG_VALUES, if present, must be the value used to set
1797 the register, or NULL. This is also nice because
1798 then we won't push the same regno onto user_regs
1804 unchain_one_elt_list (l
);
1806 had_locs
= v
->locs
!= NULL
;
1807 setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
1809 /* Now, we clear the mapping from value to reg. It must exist, so
1810 this code will crash intentionally if it doesn't. */
1811 for (p
= &v
->locs
; ; p
= &(*p
)->next
)
1815 if (REG_P (x
) && REGNO (x
) == i
)
1817 unchain_one_elt_loc_list (p
);
1822 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
1824 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
1825 n_useless_debug_values
++;
1833 /* Return 1 if X has a value that can vary even between two
1834 executions of the program. 0 means X can be compared reliably
1835 against certain constants or near-constants. */
1838 cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED
, bool from_alias ATTRIBUTE_UNUSED
)
1840 /* We actually don't need to verify very hard. This is because
1841 if X has actually changed, we invalidate the memory anyway,
1842 so assume that all common memory addresses are
1847 /* Invalidate any locations in the table which are changed because of a
1848 store to MEM_RTX. If this is called because of a non-const call
1849 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1852 cselib_invalidate_mem (rtx mem_rtx
)
1854 cselib_val
**vp
, *v
, *next
;
1858 mem_addr
= canon_rtx (get_addr (XEXP (mem_rtx
, 0)));
1859 mem_rtx
= canon_rtx (mem_rtx
);
1861 vp
= &first_containing_mem
;
1862 for (v
= *vp
; v
!= &dummy_val
; v
= next
)
1864 bool has_mem
= false;
1865 struct elt_loc_list
**p
= &v
->locs
;
1866 bool had_locs
= v
->locs
!= NULL
;
1867 rtx setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
1873 struct elt_list
**mem_chain
;
1875 /* MEMs may occur in locations only at the top level; below
1876 that every MEM or REG is substituted by its VALUE. */
1882 if (num_mems
< PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS
)
1883 && ! canon_true_dependence (mem_rtx
, GET_MODE (mem_rtx
), mem_addr
,
1884 x
, NULL_RTX
, cselib_rtx_varies_p
))
1892 /* This one overlaps. */
1893 /* We must have a mapping from this MEM's address to the
1894 value (E). Remove that, too. */
1895 addr
= cselib_lookup (XEXP (x
, 0), VOIDmode
, 0);
1896 mem_chain
= &addr
->addr_list
;
1899 if ((*mem_chain
)->elt
== v
)
1901 unchain_one_elt_list (mem_chain
);
1905 mem_chain
= &(*mem_chain
)->next
;
1908 unchain_one_elt_loc_list (p
);
1911 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
1913 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
1914 n_useless_debug_values
++;
1919 next
= v
->next_containing_mem
;
1923 vp
= &(*vp
)->next_containing_mem
;
1926 v
->next_containing_mem
= NULL
;
1931 /* Invalidate DEST, which is being assigned to or clobbered. */
1934 cselib_invalidate_rtx (rtx dest
)
1936 while (GET_CODE (dest
) == SUBREG
1937 || GET_CODE (dest
) == ZERO_EXTRACT
1938 || GET_CODE (dest
) == STRICT_LOW_PART
)
1939 dest
= XEXP (dest
, 0);
1942 cselib_invalidate_regno (REGNO (dest
), GET_MODE (dest
));
1943 else if (MEM_P (dest
))
1944 cselib_invalidate_mem (dest
);
1946 /* Some machines don't define AUTO_INC_DEC, but they still use push
1947 instructions. We need to catch that case here in order to
1948 invalidate the stack pointer correctly. Note that invalidating
1949 the stack pointer is different from invalidating DEST. */
1950 if (push_operand (dest
, GET_MODE (dest
)))
1951 cselib_invalidate_rtx (stack_pointer_rtx
);
1954 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1957 cselib_invalidate_rtx_note_stores (rtx dest
, const_rtx ignore ATTRIBUTE_UNUSED
,
1958 void *data ATTRIBUTE_UNUSED
)
1960 cselib_invalidate_rtx (dest
);
1963 /* Record the result of a SET instruction. DEST is being set; the source
1964 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1965 describes its address. */
1968 cselib_record_set (rtx dest
, cselib_val
*src_elt
, cselib_val
*dest_addr_elt
)
1970 int dreg
= REG_P (dest
) ? (int) REGNO (dest
) : -1;
1972 if (src_elt
== 0 || side_effects_p (dest
))
1977 if (dreg
< FIRST_PSEUDO_REGISTER
)
1979 unsigned int n
= hard_regno_nregs
[dreg
][GET_MODE (dest
)];
1981 if (n
> max_value_regs
)
1985 if (REG_VALUES (dreg
) == 0)
1987 used_regs
[n_used_regs
++] = dreg
;
1988 REG_VALUES (dreg
) = new_elt_list (REG_VALUES (dreg
), src_elt
);
1992 /* The register should have been invalidated. */
1993 gcc_assert (REG_VALUES (dreg
)->elt
== 0);
1994 REG_VALUES (dreg
)->elt
= src_elt
;
1997 if (src_elt
->locs
== 0 && !PRESERVED_VALUE_P (src_elt
->val_rtx
))
1999 src_elt
->locs
= new_elt_loc_list (src_elt
->locs
, dest
);
2001 else if (MEM_P (dest
) && dest_addr_elt
!= 0
2002 && cselib_record_memory
)
2004 if (src_elt
->locs
== 0 && !PRESERVED_VALUE_P (src_elt
->val_rtx
))
2006 add_mem_for_addr (dest_addr_elt
, src_elt
, dest
);
2010 /* There is no good way to determine how many elements there can be
2011 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2012 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2014 /* Record the effects of any sets in INSN. */
2016 cselib_record_sets (rtx insn
)
2020 struct cselib_set sets
[MAX_SETS
];
2021 rtx body
= PATTERN (insn
);
2024 body
= PATTERN (insn
);
2025 if (GET_CODE (body
) == COND_EXEC
)
2027 cond
= COND_EXEC_TEST (body
);
2028 body
= COND_EXEC_CODE (body
);
2031 /* Find all sets. */
2032 if (GET_CODE (body
) == SET
)
2034 sets
[0].src
= SET_SRC (body
);
2035 sets
[0].dest
= SET_DEST (body
);
2038 else if (GET_CODE (body
) == PARALLEL
)
2040 /* Look through the PARALLEL and record the values being
2041 set, if possible. Also handle any CLOBBERs. */
2042 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
2044 rtx x
= XVECEXP (body
, 0, i
);
2046 if (GET_CODE (x
) == SET
)
2048 sets
[n_sets
].src
= SET_SRC (x
);
2049 sets
[n_sets
].dest
= SET_DEST (x
);
2056 && MEM_P (sets
[0].src
)
2057 && !cselib_record_memory
2058 && MEM_READONLY_P (sets
[0].src
))
2060 rtx note
= find_reg_equal_equiv_note (insn
);
2062 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2063 sets
[0].src
= XEXP (note
, 0);
2066 /* Look up the values that are read. Do this before invalidating the
2067 locations that are written. */
2068 for (i
= 0; i
< n_sets
; i
++)
2070 rtx dest
= sets
[i
].dest
;
2072 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2073 the low part after invalidating any knowledge about larger modes. */
2074 if (GET_CODE (sets
[i
].dest
) == STRICT_LOW_PART
)
2075 sets
[i
].dest
= dest
= XEXP (dest
, 0);
2077 /* We don't know how to record anything but REG or MEM. */
2079 || (MEM_P (dest
) && cselib_record_memory
))
2081 rtx src
= sets
[i
].src
;
2083 src
= gen_rtx_IF_THEN_ELSE (GET_MODE (dest
), cond
, src
, dest
);
2084 sets
[i
].src_elt
= cselib_lookup (src
, GET_MODE (dest
), 1);
2087 enum machine_mode address_mode
2088 = targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (dest
));
2090 sets
[i
].dest_addr_elt
= cselib_lookup (XEXP (dest
, 0),
2094 sets
[i
].dest_addr_elt
= 0;
2098 if (cselib_record_sets_hook
)
2099 cselib_record_sets_hook (insn
, sets
, n_sets
);
2101 /* Invalidate all locations written by this insn. Note that the elts we
2102 looked up in the previous loop aren't affected, just some of their
2103 locations may go away. */
2104 note_stores (body
, cselib_invalidate_rtx_note_stores
, NULL
);
2106 /* If this is an asm, look for duplicate sets. This can happen when the
2107 user uses the same value as an output multiple times. This is valid
2108 if the outputs are not actually used thereafter. Treat this case as
2109 if the value isn't actually set. We do this by smashing the destination
2110 to pc_rtx, so that we won't record the value later. */
2111 if (n_sets
>= 2 && asm_noperands (body
) >= 0)
2113 for (i
= 0; i
< n_sets
; i
++)
2115 rtx dest
= sets
[i
].dest
;
2116 if (REG_P (dest
) || MEM_P (dest
))
2119 for (j
= i
+ 1; j
< n_sets
; j
++)
2120 if (rtx_equal_p (dest
, sets
[j
].dest
))
2122 sets
[i
].dest
= pc_rtx
;
2123 sets
[j
].dest
= pc_rtx
;
2129 /* Now enter the equivalences in our tables. */
2130 for (i
= 0; i
< n_sets
; i
++)
2132 rtx dest
= sets
[i
].dest
;
2134 || (MEM_P (dest
) && cselib_record_memory
))
2135 cselib_record_set (dest
, sets
[i
].src_elt
, sets
[i
].dest_addr_elt
);
2139 /* Record the effects of INSN. */
2142 cselib_process_insn (rtx insn
)
2147 cselib_current_insn
= insn
;
2149 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
2152 && find_reg_note (insn
, REG_SETJMP
, NULL
))
2153 || (NONJUMP_INSN_P (insn
)
2154 && GET_CODE (PATTERN (insn
)) == ASM_OPERANDS
2155 && MEM_VOLATILE_P (PATTERN (insn
))))
2157 cselib_reset_table (next_uid
);
2158 cselib_current_insn
= NULL_RTX
;
2162 if (! INSN_P (insn
))
2164 cselib_current_insn
= NULL_RTX
;
2168 /* If this is a call instruction, forget anything stored in a
2169 call clobbered register, or, if this is not a const call, in
2173 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2174 if (call_used_regs
[i
]
2175 || (REG_VALUES (i
) && REG_VALUES (i
)->elt
2176 && HARD_REGNO_CALL_PART_CLOBBERED (i
,
2177 GET_MODE (REG_VALUES (i
)->elt
->val_rtx
))))
2178 cselib_invalidate_regno (i
, reg_raw_mode
[i
]);
2180 /* Since it is not clear how cselib is going to be used, be
2181 conservative here and treat looping pure or const functions
2182 as if they were regular functions. */
2183 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
)
2184 || !(RTL_CONST_OR_PURE_CALL_P (insn
)))
2185 cselib_invalidate_mem (callmem
);
2188 cselib_record_sets (insn
);
2191 /* Clobber any registers which appear in REG_INC notes. We
2192 could keep track of the changes to their values, but it is
2193 unlikely to help. */
2194 for (x
= REG_NOTES (insn
); x
; x
= XEXP (x
, 1))
2195 if (REG_NOTE_KIND (x
) == REG_INC
)
2196 cselib_invalidate_rtx (XEXP (x
, 0));
2199 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2200 after we have processed the insn. */
2202 for (x
= CALL_INSN_FUNCTION_USAGE (insn
); x
; x
= XEXP (x
, 1))
2203 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
2204 cselib_invalidate_rtx (XEXP (XEXP (x
, 0), 0));
2206 cselib_current_insn
= NULL_RTX
;
2208 if (n_useless_values
> MAX_USELESS_VALUES
2209 /* remove_useless_values is linear in the hash table size. Avoid
2210 quadratic behavior for very large hashtables with very few
2211 useless elements. */
2212 && ((unsigned int)n_useless_values
2213 > (cselib_hash_table
->n_elements
2214 - cselib_hash_table
->n_deleted
2215 - n_debug_values
) / 4))
2216 remove_useless_values ();
2219 /* Initialize cselib for one pass. The caller must also call
2220 init_alias_analysis. */
2223 cselib_init (int record_what
)
2225 elt_list_pool
= create_alloc_pool ("elt_list",
2226 sizeof (struct elt_list
), 10);
2227 elt_loc_list_pool
= create_alloc_pool ("elt_loc_list",
2228 sizeof (struct elt_loc_list
), 10);
2229 cselib_val_pool
= create_alloc_pool ("cselib_val_list",
2230 sizeof (cselib_val
), 10);
2231 value_pool
= create_alloc_pool ("value", RTX_CODE_SIZE (VALUE
), 100);
2232 cselib_record_memory
= record_what
& CSELIB_RECORD_MEMORY
;
2233 cselib_preserve_constants
= record_what
& CSELIB_PRESERVE_CONSTANTS
;
2235 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2236 see canon_true_dependence. This is only created once. */
2238 callmem
= gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
));
2240 cselib_nregs
= max_reg_num ();
2242 /* We preserve reg_values to allow expensive clearing of the whole thing.
2243 Reallocate it however if it happens to be too large. */
2244 if (!reg_values
|| reg_values_size
< cselib_nregs
2245 || (reg_values_size
> 10 && reg_values_size
> cselib_nregs
* 4))
2249 /* Some space for newly emit instructions so we don't end up
2250 reallocating in between passes. */
2251 reg_values_size
= cselib_nregs
+ (63 + cselib_nregs
) / 16;
2252 reg_values
= XCNEWVEC (struct elt_list
*, reg_values_size
);
2254 used_regs
= XNEWVEC (unsigned int, cselib_nregs
);
2256 cselib_hash_table
= htab_create (31, get_value_hash
,
2257 entry_and_rtx_equal_p
, NULL
);
2261 /* Called when the current user is done with cselib. */
2264 cselib_finish (void)
2266 cselib_discard_hook
= NULL
;
2267 cselib_preserve_constants
= false;
2268 cfa_base_preserved_val
= NULL
;
2269 free_alloc_pool (elt_list_pool
);
2270 free_alloc_pool (elt_loc_list_pool
);
2271 free_alloc_pool (cselib_val_pool
);
2272 free_alloc_pool (value_pool
);
2273 cselib_clear_table ();
2274 htab_delete (cselib_hash_table
);
2277 cselib_hash_table
= 0;
2278 n_useless_values
= 0;
2279 n_useless_debug_values
= 0;
2284 /* Dump the cselib_val *X to FILE *info. */
2287 dump_cselib_val (void **x
, void *info
)
2289 cselib_val
*v
= (cselib_val
*)*x
;
2290 FILE *out
= (FILE *)info
;
2291 bool need_lf
= true;
2293 print_inline_rtx (out
, v
->val_rtx
, 0);
2297 struct elt_loc_list
*l
= v
->locs
;
2303 fputs (" locs:", out
);
2306 fprintf (out
, "\n from insn %i ",
2307 INSN_UID (l
->setting_insn
));
2308 print_inline_rtx (out
, l
->loc
, 4);
2310 while ((l
= l
->next
));
2315 fputs (" no locs", out
);
2321 struct elt_list
*e
= v
->addr_list
;
2327 fputs (" addr list:", out
);
2331 print_inline_rtx (out
, e
->elt
->val_rtx
, 2);
2333 while ((e
= e
->next
));
2338 fputs (" no addrs", out
);
2342 if (v
->next_containing_mem
== &dummy_val
)
2343 fputs (" last mem\n", out
);
2344 else if (v
->next_containing_mem
)
2346 fputs (" next mem ", out
);
2347 print_inline_rtx (out
, v
->next_containing_mem
->val_rtx
, 2);
2356 /* Dump to OUT everything in the CSELIB table. */
2359 dump_cselib_table (FILE *out
)
2361 fprintf (out
, "cselib hash table:\n");
2362 htab_traverse (cselib_hash_table
, dump_cselib_val
, out
);
2363 if (first_containing_mem
!= &dummy_val
)
2365 fputs ("first mem ", out
);
2366 print_inline_rtx (out
, first_containing_mem
->val_rtx
, 2);
2369 fprintf (out
, "next uid %i\n", next_uid
);
2372 #include "gt-cselib.h"