* configure.ac: Enable checking assembler dwarf2 support for bfin
[official-gcc/alias-decl.git] / gcc / dwarf2out.c
blobd0520b5811f2b2cca057e03f53e858d3d0149237
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 int flags;
126 if (EH_TABLES_CAN_BE_READ_ONLY)
128 int fde_encoding;
129 int per_encoding;
130 int lsda_encoding;
132 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
133 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
134 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
135 flags = (! flag_pic
136 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
137 && (fde_encoding & 0x70) != DW_EH_PE_aligned
138 && (per_encoding & 0x70) != DW_EH_PE_absptr
139 && (per_encoding & 0x70) != DW_EH_PE_aligned
140 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
141 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
142 ? 0 : SECTION_WRITE;
144 else
145 flags = SECTION_WRITE;
146 named_section_flags (EH_FRAME_SECTION_NAME, flags);
147 #endif
150 /* Version of targetm.eh_frame_section for systems using collect2. */
151 void
152 collect2_eh_frame_section (void)
154 tree label = get_file_function_name ('F');
156 data_section ();
157 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
158 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
159 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
162 /* Default version of targetm.eh_frame_section. */
163 void
164 default_eh_frame_section (void)
166 #ifdef EH_FRAME_SECTION_NAME
167 named_section_eh_frame_section ();
168 #else
169 collect2_eh_frame_section ();
170 #endif
173 DEF_VEC_P(rtx);
174 DEF_VEC_ALLOC_P(rtx,gc);
176 /* Array of RTXes referenced by the debugging information, which therefore
177 must be kept around forever. */
178 static GTY(()) VEC(rtx,gc) *used_rtx_array;
180 /* A pointer to the base of a list of incomplete types which might be
181 completed at some later time. incomplete_types_list needs to be a
182 VEC(tree,gc) because we want to tell the garbage collector about
183 it. */
184 static GTY(()) VEC(tree,gc) *incomplete_types;
186 /* A pointer to the base of a table of references to declaration
187 scopes. This table is a display which tracks the nesting
188 of declaration scopes at the current scope and containing
189 scopes. This table is used to find the proper place to
190 define type declaration DIE's. */
191 static GTY(()) VEC(tree,gc) *decl_scope_table;
193 /* How to start an assembler comment. */
194 #ifndef ASM_COMMENT_START
195 #define ASM_COMMENT_START ";#"
196 #endif
198 typedef struct dw_cfi_struct *dw_cfi_ref;
199 typedef struct dw_fde_struct *dw_fde_ref;
200 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
202 /* Call frames are described using a sequence of Call Frame
203 Information instructions. The register number, offset
204 and address fields are provided as possible operands;
205 their use is selected by the opcode field. */
207 enum dw_cfi_oprnd_type {
208 dw_cfi_oprnd_unused,
209 dw_cfi_oprnd_reg_num,
210 dw_cfi_oprnd_offset,
211 dw_cfi_oprnd_addr,
212 dw_cfi_oprnd_loc
215 typedef union dw_cfi_oprnd_struct GTY(())
217 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
218 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
219 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
220 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
222 dw_cfi_oprnd;
224 typedef struct dw_cfi_struct GTY(())
226 dw_cfi_ref dw_cfi_next;
227 enum dwarf_call_frame_info dw_cfi_opc;
228 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
229 dw_cfi_oprnd1;
230 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
231 dw_cfi_oprnd2;
233 dw_cfi_node;
235 /* This is how we define the location of the CFA. We use to handle it
236 as REG + OFFSET all the time, but now it can be more complex.
237 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
238 Instead of passing around REG and OFFSET, we pass a copy
239 of this structure. */
240 typedef struct cfa_loc GTY(())
242 HOST_WIDE_INT offset;
243 HOST_WIDE_INT base_offset;
244 unsigned int reg;
245 int indirect; /* 1 if CFA is accessed via a dereference. */
246 } dw_cfa_location;
248 /* All call frame descriptions (FDE's) in the GCC generated DWARF
249 refer to a single Common Information Entry (CIE), defined at
250 the beginning of the .debug_frame section. This use of a single
251 CIE obviates the need to keep track of multiple CIE's
252 in the DWARF generation routines below. */
254 typedef struct dw_fde_struct GTY(())
256 tree decl;
257 const char *dw_fde_begin;
258 const char *dw_fde_current_label;
259 const char *dw_fde_end;
260 const char *dw_fde_hot_section_label;
261 const char *dw_fde_hot_section_end_label;
262 const char *dw_fde_unlikely_section_label;
263 const char *dw_fde_unlikely_section_end_label;
264 bool dw_fde_switched_sections;
265 dw_cfi_ref dw_fde_cfi;
266 unsigned funcdef_number;
267 unsigned all_throwers_are_sibcalls : 1;
268 unsigned nothrow : 1;
269 unsigned uses_eh_lsda : 1;
271 dw_fde_node;
273 /* Maximum size (in bytes) of an artificially generated label. */
274 #define MAX_ARTIFICIAL_LABEL_BYTES 30
276 /* The size of addresses as they appear in the Dwarf 2 data.
277 Some architectures use word addresses to refer to code locations,
278 but Dwarf 2 info always uses byte addresses. On such machines,
279 Dwarf 2 addresses need to be larger than the architecture's
280 pointers. */
281 #ifndef DWARF2_ADDR_SIZE
282 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
283 #endif
285 /* The size in bytes of a DWARF field indicating an offset or length
286 relative to a debug info section, specified to be 4 bytes in the
287 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
288 as PTR_SIZE. */
290 #ifndef DWARF_OFFSET_SIZE
291 #define DWARF_OFFSET_SIZE 4
292 #endif
294 /* According to the (draft) DWARF 3 specification, the initial length
295 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
296 bytes are 0xffffffff, followed by the length stored in the next 8
297 bytes.
299 However, the SGI/MIPS ABI uses an initial length which is equal to
300 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
302 #ifndef DWARF_INITIAL_LENGTH_SIZE
303 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
304 #endif
306 #define DWARF_VERSION 2
308 /* Round SIZE up to the nearest BOUNDARY. */
309 #define DWARF_ROUND(SIZE,BOUNDARY) \
310 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
312 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
313 #ifndef DWARF_CIE_DATA_ALIGNMENT
314 #ifdef STACK_GROWS_DOWNWARD
315 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
316 #else
317 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
318 #endif
319 #endif
321 /* A pointer to the base of a table that contains frame description
322 information for each routine. */
323 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
325 /* Number of elements currently allocated for fde_table. */
326 static GTY(()) unsigned fde_table_allocated;
328 /* Number of elements in fde_table currently in use. */
329 static GTY(()) unsigned fde_table_in_use;
331 /* Size (in elements) of increments by which we may expand the
332 fde_table. */
333 #define FDE_TABLE_INCREMENT 256
335 /* A list of call frame insns for the CIE. */
336 static GTY(()) dw_cfi_ref cie_cfi_head;
338 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
339 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
340 attribute that accelerates the lookup of the FDE associated
341 with the subprogram. This variable holds the table index of the FDE
342 associated with the current function (body) definition. */
343 static unsigned current_funcdef_fde;
344 #endif
346 struct indirect_string_node GTY(())
348 const char *str;
349 unsigned int refcount;
350 unsigned int form;
351 char *label;
354 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
356 static GTY(()) int dw2_string_counter;
357 static GTY(()) unsigned long dwarf2out_cfi_label_num;
359 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
361 /* Forward declarations for functions defined in this file. */
363 static char *stripattributes (const char *);
364 static const char *dwarf_cfi_name (unsigned);
365 static dw_cfi_ref new_cfi (void);
366 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
367 static void add_fde_cfi (const char *, dw_cfi_ref);
368 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
369 static void lookup_cfa (dw_cfa_location *);
370 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
371 static void initial_return_save (rtx);
372 static HOST_WIDE_INT stack_adjust_offset (rtx);
373 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
374 static void output_call_frame_info (int);
375 static void dwarf2out_stack_adjust (rtx, bool);
376 static void flush_queued_reg_saves (void);
377 static bool clobbers_queued_reg_save (rtx);
378 static void dwarf2out_frame_debug_expr (rtx, const char *);
380 /* Support for complex CFA locations. */
381 static void output_cfa_loc (dw_cfi_ref);
382 static void get_cfa_from_loc_descr (dw_cfa_location *,
383 struct dw_loc_descr_struct *);
384 static struct dw_loc_descr_struct *build_cfa_loc
385 (dw_cfa_location *);
386 static void def_cfa_1 (const char *, dw_cfa_location *);
388 /* How to start an assembler comment. */
389 #ifndef ASM_COMMENT_START
390 #define ASM_COMMENT_START ";#"
391 #endif
393 /* Data and reference forms for relocatable data. */
394 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
395 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
397 #ifndef DEBUG_FRAME_SECTION
398 #define DEBUG_FRAME_SECTION ".debug_frame"
399 #endif
401 #ifndef FUNC_BEGIN_LABEL
402 #define FUNC_BEGIN_LABEL "LFB"
403 #endif
405 #ifndef FUNC_END_LABEL
406 #define FUNC_END_LABEL "LFE"
407 #endif
409 #ifndef FRAME_BEGIN_LABEL
410 #define FRAME_BEGIN_LABEL "Lframe"
411 #endif
412 #define CIE_AFTER_SIZE_LABEL "LSCIE"
413 #define CIE_END_LABEL "LECIE"
414 #define FDE_LABEL "LSFDE"
415 #define FDE_AFTER_SIZE_LABEL "LASFDE"
416 #define FDE_END_LABEL "LEFDE"
417 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
418 #define LINE_NUMBER_END_LABEL "LELT"
419 #define LN_PROLOG_AS_LABEL "LASLTP"
420 #define LN_PROLOG_END_LABEL "LELTP"
421 #define DIE_LABEL_PREFIX "DW"
423 /* The DWARF 2 CFA column which tracks the return address. Normally this
424 is the column for PC, or the first column after all of the hard
425 registers. */
426 #ifndef DWARF_FRAME_RETURN_COLUMN
427 #ifdef PC_REGNUM
428 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
429 #else
430 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
431 #endif
432 #endif
434 /* The mapping from gcc register number to DWARF 2 CFA column number. By
435 default, we just provide columns for all registers. */
436 #ifndef DWARF_FRAME_REGNUM
437 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
438 #endif
440 /* Hook used by __throw. */
443 expand_builtin_dwarf_sp_column (void)
445 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
448 /* Return a pointer to a copy of the section string name S with all
449 attributes stripped off, and an asterisk prepended (for assemble_name). */
451 static inline char *
452 stripattributes (const char *s)
454 char *stripped = xmalloc (strlen (s) + 2);
455 char *p = stripped;
457 *p++ = '*';
459 while (*s && *s != ',')
460 *p++ = *s++;
462 *p = '\0';
463 return stripped;
466 /* Generate code to initialize the register size table. */
468 void
469 expand_builtin_init_dwarf_reg_sizes (tree address)
471 int i;
472 enum machine_mode mode = TYPE_MODE (char_type_node);
473 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
474 rtx mem = gen_rtx_MEM (BLKmode, addr);
475 bool wrote_return_column = false;
477 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
480 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
481 enum machine_mode save_mode = reg_raw_mode[i];
482 HOST_WIDE_INT size;
484 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
485 save_mode = choose_hard_reg_mode (i, 1, true);
486 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
488 if (save_mode == VOIDmode)
489 continue;
490 wrote_return_column = true;
492 size = GET_MODE_SIZE (save_mode);
493 if (offset < 0)
494 continue;
496 emit_move_insn (adjust_address (mem, mode, offset),
497 gen_int_mode (size, mode));
500 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
501 gcc_assert (wrote_return_column);
502 i = DWARF_ALT_FRAME_RETURN_COLUMN;
503 wrote_return_column = false;
504 #else
505 i = DWARF_FRAME_RETURN_COLUMN;
506 #endif
508 if (! wrote_return_column)
510 enum machine_mode save_mode = Pmode;
511 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
512 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
513 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
517 /* Convert a DWARF call frame info. operation to its string name */
519 static const char *
520 dwarf_cfi_name (unsigned int cfi_opc)
522 switch (cfi_opc)
524 case DW_CFA_advance_loc:
525 return "DW_CFA_advance_loc";
526 case DW_CFA_offset:
527 return "DW_CFA_offset";
528 case DW_CFA_restore:
529 return "DW_CFA_restore";
530 case DW_CFA_nop:
531 return "DW_CFA_nop";
532 case DW_CFA_set_loc:
533 return "DW_CFA_set_loc";
534 case DW_CFA_advance_loc1:
535 return "DW_CFA_advance_loc1";
536 case DW_CFA_advance_loc2:
537 return "DW_CFA_advance_loc2";
538 case DW_CFA_advance_loc4:
539 return "DW_CFA_advance_loc4";
540 case DW_CFA_offset_extended:
541 return "DW_CFA_offset_extended";
542 case DW_CFA_restore_extended:
543 return "DW_CFA_restore_extended";
544 case DW_CFA_undefined:
545 return "DW_CFA_undefined";
546 case DW_CFA_same_value:
547 return "DW_CFA_same_value";
548 case DW_CFA_register:
549 return "DW_CFA_register";
550 case DW_CFA_remember_state:
551 return "DW_CFA_remember_state";
552 case DW_CFA_restore_state:
553 return "DW_CFA_restore_state";
554 case DW_CFA_def_cfa:
555 return "DW_CFA_def_cfa";
556 case DW_CFA_def_cfa_register:
557 return "DW_CFA_def_cfa_register";
558 case DW_CFA_def_cfa_offset:
559 return "DW_CFA_def_cfa_offset";
561 /* DWARF 3 */
562 case DW_CFA_def_cfa_expression:
563 return "DW_CFA_def_cfa_expression";
564 case DW_CFA_expression:
565 return "DW_CFA_expression";
566 case DW_CFA_offset_extended_sf:
567 return "DW_CFA_offset_extended_sf";
568 case DW_CFA_def_cfa_sf:
569 return "DW_CFA_def_cfa_sf";
570 case DW_CFA_def_cfa_offset_sf:
571 return "DW_CFA_def_cfa_offset_sf";
573 /* SGI/MIPS specific */
574 case DW_CFA_MIPS_advance_loc8:
575 return "DW_CFA_MIPS_advance_loc8";
577 /* GNU extensions */
578 case DW_CFA_GNU_window_save:
579 return "DW_CFA_GNU_window_save";
580 case DW_CFA_GNU_args_size:
581 return "DW_CFA_GNU_args_size";
582 case DW_CFA_GNU_negative_offset_extended:
583 return "DW_CFA_GNU_negative_offset_extended";
585 default:
586 return "DW_CFA_<unknown>";
590 /* Return a pointer to a newly allocated Call Frame Instruction. */
592 static inline dw_cfi_ref
593 new_cfi (void)
595 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
597 cfi->dw_cfi_next = NULL;
598 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
599 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
601 return cfi;
604 /* Add a Call Frame Instruction to list of instructions. */
606 static inline void
607 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
609 dw_cfi_ref *p;
611 /* Find the end of the chain. */
612 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
615 *p = cfi;
618 /* Generate a new label for the CFI info to refer to. */
620 char *
621 dwarf2out_cfi_label (void)
623 static char label[20];
625 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
626 ASM_OUTPUT_LABEL (asm_out_file, label);
627 return label;
630 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
631 or to the CIE if LABEL is NULL. */
633 static void
634 add_fde_cfi (const char *label, dw_cfi_ref cfi)
636 if (label)
638 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
640 if (*label == 0)
641 label = dwarf2out_cfi_label ();
643 if (fde->dw_fde_current_label == NULL
644 || strcmp (label, fde->dw_fde_current_label) != 0)
646 dw_cfi_ref xcfi;
648 fde->dw_fde_current_label = label = xstrdup (label);
650 /* Set the location counter to the new label. */
651 xcfi = new_cfi ();
652 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
653 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
654 add_cfi (&fde->dw_fde_cfi, xcfi);
657 add_cfi (&fde->dw_fde_cfi, cfi);
660 else
661 add_cfi (&cie_cfi_head, cfi);
664 /* Subroutine of lookup_cfa. */
666 static void
667 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
669 switch (cfi->dw_cfi_opc)
671 case DW_CFA_def_cfa_offset:
672 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
673 break;
674 case DW_CFA_def_cfa_register:
675 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
676 break;
677 case DW_CFA_def_cfa:
678 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
679 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
680 break;
681 case DW_CFA_def_cfa_expression:
682 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
683 break;
684 default:
685 break;
689 /* Find the previous value for the CFA. */
691 static void
692 lookup_cfa (dw_cfa_location *loc)
694 dw_cfi_ref cfi;
696 loc->reg = INVALID_REGNUM;
697 loc->offset = 0;
698 loc->indirect = 0;
699 loc->base_offset = 0;
701 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
702 lookup_cfa_1 (cfi, loc);
704 if (fde_table_in_use)
706 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
707 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
708 lookup_cfa_1 (cfi, loc);
712 /* The current rule for calculating the DWARF2 canonical frame address. */
713 static dw_cfa_location cfa;
715 /* The register used for saving registers to the stack, and its offset
716 from the CFA. */
717 static dw_cfa_location cfa_store;
719 /* The running total of the size of arguments pushed onto the stack. */
720 static HOST_WIDE_INT args_size;
722 /* The last args_size we actually output. */
723 static HOST_WIDE_INT old_args_size;
725 /* Entry point to update the canonical frame address (CFA).
726 LABEL is passed to add_fde_cfi. The value of CFA is now to be
727 calculated from REG+OFFSET. */
729 void
730 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
732 dw_cfa_location loc;
733 loc.indirect = 0;
734 loc.base_offset = 0;
735 loc.reg = reg;
736 loc.offset = offset;
737 def_cfa_1 (label, &loc);
740 /* Determine if two dw_cfa_location structures define the same data. */
742 static bool
743 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
745 return (loc1->reg == loc2->reg
746 && loc1->offset == loc2->offset
747 && loc1->indirect == loc2->indirect
748 && (loc1->indirect == 0
749 || loc1->base_offset == loc2->base_offset));
752 /* This routine does the actual work. The CFA is now calculated from
753 the dw_cfa_location structure. */
755 static void
756 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
758 dw_cfi_ref cfi;
759 dw_cfa_location old_cfa, loc;
761 cfa = *loc_p;
762 loc = *loc_p;
764 if (cfa_store.reg == loc.reg && loc.indirect == 0)
765 cfa_store.offset = loc.offset;
767 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
768 lookup_cfa (&old_cfa);
770 /* If nothing changed, no need to issue any call frame instructions. */
771 if (cfa_equal_p (&loc, &old_cfa))
772 return;
774 cfi = new_cfi ();
776 if (loc.reg == old_cfa.reg && !loc.indirect)
778 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
779 indicating the CFA register did not change but the offset
780 did. */
781 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
782 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
785 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
786 else if (loc.offset == old_cfa.offset
787 && old_cfa.reg != INVALID_REGNUM
788 && !loc.indirect)
790 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
791 indicating the CFA register has changed to <register> but the
792 offset has not changed. */
793 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
794 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
796 #endif
798 else if (loc.indirect == 0)
800 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
801 indicating the CFA register has changed to <register> with
802 the specified offset. */
803 cfi->dw_cfi_opc = DW_CFA_def_cfa;
804 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
805 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
807 else
809 /* Construct a DW_CFA_def_cfa_expression instruction to
810 calculate the CFA using a full location expression since no
811 register-offset pair is available. */
812 struct dw_loc_descr_struct *loc_list;
814 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
815 loc_list = build_cfa_loc (&loc);
816 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
819 add_fde_cfi (label, cfi);
822 /* Add the CFI for saving a register. REG is the CFA column number.
823 LABEL is passed to add_fde_cfi.
824 If SREG is -1, the register is saved at OFFSET from the CFA;
825 otherwise it is saved in SREG. */
827 static void
828 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
830 dw_cfi_ref cfi = new_cfi ();
832 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
834 if (sreg == INVALID_REGNUM)
836 if (reg & ~0x3f)
837 /* The register number won't fit in 6 bits, so we have to use
838 the long form. */
839 cfi->dw_cfi_opc = DW_CFA_offset_extended;
840 else
841 cfi->dw_cfi_opc = DW_CFA_offset;
843 #ifdef ENABLE_CHECKING
845 /* If we get an offset that is not a multiple of
846 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
847 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
848 description. */
849 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
851 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
853 #endif
854 offset /= DWARF_CIE_DATA_ALIGNMENT;
855 if (offset < 0)
856 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
858 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
860 else if (sreg == reg)
861 cfi->dw_cfi_opc = DW_CFA_same_value;
862 else
864 cfi->dw_cfi_opc = DW_CFA_register;
865 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
868 add_fde_cfi (label, cfi);
871 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
872 This CFI tells the unwinder that it needs to restore the window registers
873 from the previous frame's window save area.
875 ??? Perhaps we should note in the CIE where windows are saved (instead of
876 assuming 0(cfa)) and what registers are in the window. */
878 void
879 dwarf2out_window_save (const char *label)
881 dw_cfi_ref cfi = new_cfi ();
883 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
884 add_fde_cfi (label, cfi);
887 /* Add a CFI to update the running total of the size of arguments
888 pushed onto the stack. */
890 void
891 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
893 dw_cfi_ref cfi;
895 if (size == old_args_size)
896 return;
898 old_args_size = size;
900 cfi = new_cfi ();
901 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
902 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
903 add_fde_cfi (label, cfi);
906 /* Entry point for saving a register to the stack. REG is the GCC register
907 number. LABEL and OFFSET are passed to reg_save. */
909 void
910 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
912 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
915 /* Entry point for saving the return address in the stack.
916 LABEL and OFFSET are passed to reg_save. */
918 void
919 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
921 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
924 /* Entry point for saving the return address in a register.
925 LABEL and SREG are passed to reg_save. */
927 void
928 dwarf2out_return_reg (const char *label, unsigned int sreg)
930 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
933 /* Record the initial position of the return address. RTL is
934 INCOMING_RETURN_ADDR_RTX. */
936 static void
937 initial_return_save (rtx rtl)
939 unsigned int reg = INVALID_REGNUM;
940 HOST_WIDE_INT offset = 0;
942 switch (GET_CODE (rtl))
944 case REG:
945 /* RA is in a register. */
946 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
947 break;
949 case MEM:
950 /* RA is on the stack. */
951 rtl = XEXP (rtl, 0);
952 switch (GET_CODE (rtl))
954 case REG:
955 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
956 offset = 0;
957 break;
959 case PLUS:
960 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
961 offset = INTVAL (XEXP (rtl, 1));
962 break;
964 case MINUS:
965 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
966 offset = -INTVAL (XEXP (rtl, 1));
967 break;
969 default:
970 gcc_unreachable ();
973 break;
975 case PLUS:
976 /* The return address is at some offset from any value we can
977 actually load. For instance, on the SPARC it is in %i7+8. Just
978 ignore the offset for now; it doesn't matter for unwinding frames. */
979 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
980 initial_return_save (XEXP (rtl, 0));
981 return;
983 default:
984 gcc_unreachable ();
987 if (reg != DWARF_FRAME_RETURN_COLUMN)
988 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
991 /* Given a SET, calculate the amount of stack adjustment it
992 contains. */
994 static HOST_WIDE_INT
995 stack_adjust_offset (rtx pattern)
997 rtx src = SET_SRC (pattern);
998 rtx dest = SET_DEST (pattern);
999 HOST_WIDE_INT offset = 0;
1000 enum rtx_code code;
1002 if (dest == stack_pointer_rtx)
1004 /* (set (reg sp) (plus (reg sp) (const_int))) */
1005 code = GET_CODE (src);
1006 if (! (code == PLUS || code == MINUS)
1007 || XEXP (src, 0) != stack_pointer_rtx
1008 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1009 return 0;
1011 offset = INTVAL (XEXP (src, 1));
1012 if (code == PLUS)
1013 offset = -offset;
1015 else if (MEM_P (dest))
1017 /* (set (mem (pre_dec (reg sp))) (foo)) */
1018 src = XEXP (dest, 0);
1019 code = GET_CODE (src);
1021 switch (code)
1023 case PRE_MODIFY:
1024 case POST_MODIFY:
1025 if (XEXP (src, 0) == stack_pointer_rtx)
1027 rtx val = XEXP (XEXP (src, 1), 1);
1028 /* We handle only adjustments by constant amount. */
1029 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1030 && GET_CODE (val) == CONST_INT);
1031 offset = -INTVAL (val);
1032 break;
1034 return 0;
1036 case PRE_DEC:
1037 case POST_DEC:
1038 if (XEXP (src, 0) == stack_pointer_rtx)
1040 offset = GET_MODE_SIZE (GET_MODE (dest));
1041 break;
1043 return 0;
1045 case PRE_INC:
1046 case POST_INC:
1047 if (XEXP (src, 0) == stack_pointer_rtx)
1049 offset = -GET_MODE_SIZE (GET_MODE (dest));
1050 break;
1052 return 0;
1054 default:
1055 return 0;
1058 else
1059 return 0;
1061 return offset;
1064 /* Check INSN to see if it looks like a push or a stack adjustment, and
1065 make a note of it if it does. EH uses this information to find out how
1066 much extra space it needs to pop off the stack. */
1068 static void
1069 dwarf2out_stack_adjust (rtx insn, bool after_p)
1071 HOST_WIDE_INT offset;
1072 const char *label;
1073 int i;
1075 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1076 with this function. Proper support would require all frame-related
1077 insns to be marked, and to be able to handle saving state around
1078 epilogues textually in the middle of the function. */
1079 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1080 return;
1082 /* If only calls can throw, and we have a frame pointer,
1083 save up adjustments until we see the CALL_INSN. */
1084 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1086 if (CALL_P (insn) && !after_p)
1088 /* Extract the size of the args from the CALL rtx itself. */
1089 insn = PATTERN (insn);
1090 if (GET_CODE (insn) == PARALLEL)
1091 insn = XVECEXP (insn, 0, 0);
1092 if (GET_CODE (insn) == SET)
1093 insn = SET_SRC (insn);
1094 gcc_assert (GET_CODE (insn) == CALL);
1095 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1097 return;
1100 if (CALL_P (insn) && !after_p)
1102 if (!flag_asynchronous_unwind_tables)
1103 dwarf2out_args_size ("", args_size);
1104 return;
1106 else if (BARRIER_P (insn))
1108 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1109 the compiler will have already emitted a stack adjustment, but
1110 doesn't bother for calls to noreturn functions. */
1111 #ifdef STACK_GROWS_DOWNWARD
1112 offset = -args_size;
1113 #else
1114 offset = args_size;
1115 #endif
1117 else if (GET_CODE (PATTERN (insn)) == SET)
1118 offset = stack_adjust_offset (PATTERN (insn));
1119 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1120 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1122 /* There may be stack adjustments inside compound insns. Search
1123 for them. */
1124 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1125 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1126 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1128 else
1129 return;
1131 if (offset == 0)
1132 return;
1134 if (cfa.reg == STACK_POINTER_REGNUM)
1135 cfa.offset += offset;
1137 #ifndef STACK_GROWS_DOWNWARD
1138 offset = -offset;
1139 #endif
1141 args_size += offset;
1142 if (args_size < 0)
1143 args_size = 0;
1145 label = dwarf2out_cfi_label ();
1146 def_cfa_1 (label, &cfa);
1147 if (flag_asynchronous_unwind_tables)
1148 dwarf2out_args_size (label, args_size);
1151 #endif
1153 /* We delay emitting a register save until either (a) we reach the end
1154 of the prologue or (b) the register is clobbered. This clusters
1155 register saves so that there are fewer pc advances. */
1157 struct queued_reg_save GTY(())
1159 struct queued_reg_save *next;
1160 rtx reg;
1161 HOST_WIDE_INT cfa_offset;
1162 rtx saved_reg;
1165 static GTY(()) struct queued_reg_save *queued_reg_saves;
1167 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1168 struct reg_saved_in_data GTY(()) {
1169 rtx orig_reg;
1170 rtx saved_in_reg;
1173 /* A list of registers saved in other registers.
1174 The list intentionally has a small maximum capacity of 4; if your
1175 port needs more than that, you might consider implementing a
1176 more efficient data structure. */
1177 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1178 static GTY(()) size_t num_regs_saved_in_regs;
1180 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1181 static const char *last_reg_save_label;
1183 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1184 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1186 static void
1187 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1189 struct queued_reg_save *q;
1191 /* Duplicates waste space, but it's also necessary to remove them
1192 for correctness, since the queue gets output in reverse
1193 order. */
1194 for (q = queued_reg_saves; q != NULL; q = q->next)
1195 if (REGNO (q->reg) == REGNO (reg))
1196 break;
1198 if (q == NULL)
1200 q = ggc_alloc (sizeof (*q));
1201 q->next = queued_reg_saves;
1202 queued_reg_saves = q;
1205 q->reg = reg;
1206 q->cfa_offset = offset;
1207 q->saved_reg = sreg;
1209 last_reg_save_label = label;
1212 /* Output all the entries in QUEUED_REG_SAVES. */
1214 static void
1215 flush_queued_reg_saves (void)
1217 struct queued_reg_save *q;
1219 for (q = queued_reg_saves; q; q = q->next)
1221 size_t i;
1222 unsigned int reg, sreg;
1224 for (i = 0; i < num_regs_saved_in_regs; i++)
1225 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1226 break;
1227 if (q->saved_reg && i == num_regs_saved_in_regs)
1229 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1230 num_regs_saved_in_regs++;
1232 if (i != num_regs_saved_in_regs)
1234 regs_saved_in_regs[i].orig_reg = q->reg;
1235 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1238 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1239 if (q->saved_reg)
1240 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1241 else
1242 sreg = INVALID_REGNUM;
1243 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1246 queued_reg_saves = NULL;
1247 last_reg_save_label = NULL;
1250 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1251 location for? Or, does it clobber a register which we've previously
1252 said that some other register is saved in, and for which we now
1253 have a new location for? */
1255 static bool
1256 clobbers_queued_reg_save (rtx insn)
1258 struct queued_reg_save *q;
1260 for (q = queued_reg_saves; q; q = q->next)
1262 size_t i;
1263 if (modified_in_p (q->reg, insn))
1264 return true;
1265 for (i = 0; i < num_regs_saved_in_regs; i++)
1266 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1267 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1268 return true;
1271 return false;
1274 /* Entry point for saving the first register into the second. */
1276 void
1277 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1279 size_t i;
1280 unsigned int regno, sregno;
1282 for (i = 0; i < num_regs_saved_in_regs; i++)
1283 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1284 break;
1285 if (i == num_regs_saved_in_regs)
1287 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1288 num_regs_saved_in_regs++;
1290 regs_saved_in_regs[i].orig_reg = reg;
1291 regs_saved_in_regs[i].saved_in_reg = sreg;
1293 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1294 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1295 reg_save (label, regno, sregno, 0);
1298 /* What register, if any, is currently saved in REG? */
1300 static rtx
1301 reg_saved_in (rtx reg)
1303 unsigned int regn = REGNO (reg);
1304 size_t i;
1305 struct queued_reg_save *q;
1307 for (q = queued_reg_saves; q; q = q->next)
1308 if (q->saved_reg && regn == REGNO (q->saved_reg))
1309 return q->reg;
1311 for (i = 0; i < num_regs_saved_in_regs; i++)
1312 if (regs_saved_in_regs[i].saved_in_reg
1313 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1314 return regs_saved_in_regs[i].orig_reg;
1316 return NULL_RTX;
1320 /* A temporary register holding an integral value used in adjusting SP
1321 or setting up the store_reg. The "offset" field holds the integer
1322 value, not an offset. */
1323 static dw_cfa_location cfa_temp;
1325 /* Record call frame debugging information for an expression EXPR,
1326 which either sets SP or FP (adjusting how we calculate the frame
1327 address) or saves a register to the stack or another register.
1328 LABEL indicates the address of EXPR.
1330 This function encodes a state machine mapping rtxes to actions on
1331 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1332 users need not read the source code.
1334 The High-Level Picture
1336 Changes in the register we use to calculate the CFA: Currently we
1337 assume that if you copy the CFA register into another register, we
1338 should take the other one as the new CFA register; this seems to
1339 work pretty well. If it's wrong for some target, it's simple
1340 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1342 Changes in the register we use for saving registers to the stack:
1343 This is usually SP, but not always. Again, we deduce that if you
1344 copy SP into another register (and SP is not the CFA register),
1345 then the new register is the one we will be using for register
1346 saves. This also seems to work.
1348 Register saves: There's not much guesswork about this one; if
1349 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1350 register save, and the register used to calculate the destination
1351 had better be the one we think we're using for this purpose.
1352 It's also assumed that a copy from a call-saved register to another
1353 register is saving that register if RTX_FRAME_RELATED_P is set on
1354 that instruction. If the copy is from a call-saved register to
1355 the *same* register, that means that the register is now the same
1356 value as in the caller.
1358 Except: If the register being saved is the CFA register, and the
1359 offset is nonzero, we are saving the CFA, so we assume we have to
1360 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1361 the intent is to save the value of SP from the previous frame.
1363 In addition, if a register has previously been saved to a different
1364 register,
1366 Invariants / Summaries of Rules
1368 cfa current rule for calculating the CFA. It usually
1369 consists of a register and an offset.
1370 cfa_store register used by prologue code to save things to the stack
1371 cfa_store.offset is the offset from the value of
1372 cfa_store.reg to the actual CFA
1373 cfa_temp register holding an integral value. cfa_temp.offset
1374 stores the value, which will be used to adjust the
1375 stack pointer. cfa_temp is also used like cfa_store,
1376 to track stores to the stack via fp or a temp reg.
1378 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1379 with cfa.reg as the first operand changes the cfa.reg and its
1380 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1381 cfa_temp.offset.
1383 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1384 expression yielding a constant. This sets cfa_temp.reg
1385 and cfa_temp.offset.
1387 Rule 5: Create a new register cfa_store used to save items to the
1388 stack.
1390 Rules 10-14: Save a register to the stack. Define offset as the
1391 difference of the original location and cfa_store's
1392 location (or cfa_temp's location if cfa_temp is used).
1394 The Rules
1396 "{a,b}" indicates a choice of a xor b.
1397 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1399 Rule 1:
1400 (set <reg1> <reg2>:cfa.reg)
1401 effects: cfa.reg = <reg1>
1402 cfa.offset unchanged
1403 cfa_temp.reg = <reg1>
1404 cfa_temp.offset = cfa.offset
1406 Rule 2:
1407 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1408 {<const_int>,<reg>:cfa_temp.reg}))
1409 effects: cfa.reg = sp if fp used
1410 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1411 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1412 if cfa_store.reg==sp
1414 Rule 3:
1415 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1416 effects: cfa.reg = fp
1417 cfa_offset += +/- <const_int>
1419 Rule 4:
1420 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1421 constraints: <reg1> != fp
1422 <reg1> != sp
1423 effects: cfa.reg = <reg1>
1424 cfa_temp.reg = <reg1>
1425 cfa_temp.offset = cfa.offset
1427 Rule 5:
1428 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1429 constraints: <reg1> != fp
1430 <reg1> != sp
1431 effects: cfa_store.reg = <reg1>
1432 cfa_store.offset = cfa.offset - cfa_temp.offset
1434 Rule 6:
1435 (set <reg> <const_int>)
1436 effects: cfa_temp.reg = <reg>
1437 cfa_temp.offset = <const_int>
1439 Rule 7:
1440 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1441 effects: cfa_temp.reg = <reg1>
1442 cfa_temp.offset |= <const_int>
1444 Rule 8:
1445 (set <reg> (high <exp>))
1446 effects: none
1448 Rule 9:
1449 (set <reg> (lo_sum <exp> <const_int>))
1450 effects: cfa_temp.reg = <reg>
1451 cfa_temp.offset = <const_int>
1453 Rule 10:
1454 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1455 effects: cfa_store.offset -= <const_int>
1456 cfa.offset = cfa_store.offset if cfa.reg == sp
1457 cfa.reg = sp
1458 cfa.base_offset = -cfa_store.offset
1460 Rule 11:
1461 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1462 effects: cfa_store.offset += -/+ mode_size(mem)
1463 cfa.offset = cfa_store.offset if cfa.reg == sp
1464 cfa.reg = sp
1465 cfa.base_offset = -cfa_store.offset
1467 Rule 12:
1468 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1470 <reg2>)
1471 effects: cfa.reg = <reg1>
1472 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1474 Rule 13:
1475 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1476 effects: cfa.reg = <reg1>
1477 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1479 Rule 14:
1480 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1481 effects: cfa.reg = <reg1>
1482 cfa.base_offset = -cfa_temp.offset
1483 cfa_temp.offset -= mode_size(mem)
1485   Rule 15:
1486   (set <reg> {unspec, unspec_volatile})
1487   effects: target-dependent */
1489 static void
1490 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1492 rtx src, dest;
1493 HOST_WIDE_INT offset;
1495 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1496 the PARALLEL independently. The first element is always processed if
1497 it is a SET. This is for backward compatibility. Other elements
1498 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1499 flag is set in them. */
1500 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1502 int par_index;
1503 int limit = XVECLEN (expr, 0);
1505 for (par_index = 0; par_index < limit; par_index++)
1506 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1507 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1508 || par_index == 0))
1509 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1511 return;
1514 gcc_assert (GET_CODE (expr) == SET);
1516 src = SET_SRC (expr);
1517 dest = SET_DEST (expr);
1519 if (REG_P (src))
1521 rtx rsi = reg_saved_in (src);
1522 if (rsi)
1523 src = rsi;
1526 switch (GET_CODE (dest))
1528 case REG:
1529 switch (GET_CODE (src))
1531 /* Setting FP from SP. */
1532 case REG:
1533 if (cfa.reg == (unsigned) REGNO (src))
1535 /* Rule 1 */
1536 /* Update the CFA rule wrt SP or FP. Make sure src is
1537 relative to the current CFA register.
1539 We used to require that dest be either SP or FP, but the
1540 ARM copies SP to a temporary register, and from there to
1541 FP. So we just rely on the backends to only set
1542 RTX_FRAME_RELATED_P on appropriate insns. */
1543 cfa.reg = REGNO (dest);
1544 cfa_temp.reg = cfa.reg;
1545 cfa_temp.offset = cfa.offset;
1547 else
1549 /* Saving a register in a register. */
1550 gcc_assert (call_used_regs [REGNO (dest)]
1551 && (!fixed_regs [REGNO (dest)]
1552 /* For the SPARC and its register window. */
1553 || DWARF_FRAME_REGNUM (REGNO (src))
1554 == DWARF_FRAME_RETURN_COLUMN));
1555 queue_reg_save (label, src, dest, 0);
1557 break;
1559 case PLUS:
1560 case MINUS:
1561 case LO_SUM:
1562 if (dest == stack_pointer_rtx)
1564 /* Rule 2 */
1565 /* Adjusting SP. */
1566 switch (GET_CODE (XEXP (src, 1)))
1568 case CONST_INT:
1569 offset = INTVAL (XEXP (src, 1));
1570 break;
1571 case REG:
1572 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1573 == cfa_temp.reg);
1574 offset = cfa_temp.offset;
1575 break;
1576 default:
1577 gcc_unreachable ();
1580 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1582 /* Restoring SP from FP in the epilogue. */
1583 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1584 cfa.reg = STACK_POINTER_REGNUM;
1586 else if (GET_CODE (src) == LO_SUM)
1587 /* Assume we've set the source reg of the LO_SUM from sp. */
1589 else
1590 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1592 if (GET_CODE (src) != MINUS)
1593 offset = -offset;
1594 if (cfa.reg == STACK_POINTER_REGNUM)
1595 cfa.offset += offset;
1596 if (cfa_store.reg == STACK_POINTER_REGNUM)
1597 cfa_store.offset += offset;
1599 else if (dest == hard_frame_pointer_rtx)
1601 /* Rule 3 */
1602 /* Either setting the FP from an offset of the SP,
1603 or adjusting the FP */
1604 gcc_assert (frame_pointer_needed);
1606 gcc_assert (REG_P (XEXP (src, 0))
1607 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1608 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1609 offset = INTVAL (XEXP (src, 1));
1610 if (GET_CODE (src) != MINUS)
1611 offset = -offset;
1612 cfa.offset += offset;
1613 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1615 else
1617 gcc_assert (GET_CODE (src) != MINUS);
1619 /* Rule 4 */
1620 if (REG_P (XEXP (src, 0))
1621 && REGNO (XEXP (src, 0)) == cfa.reg
1622 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1624 /* Setting a temporary CFA register that will be copied
1625 into the FP later on. */
1626 offset = - INTVAL (XEXP (src, 1));
1627 cfa.offset += offset;
1628 cfa.reg = REGNO (dest);
1629 /* Or used to save regs to the stack. */
1630 cfa_temp.reg = cfa.reg;
1631 cfa_temp.offset = cfa.offset;
1634 /* Rule 5 */
1635 else if (REG_P (XEXP (src, 0))
1636 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1637 && XEXP (src, 1) == stack_pointer_rtx)
1639 /* Setting a scratch register that we will use instead
1640 of SP for saving registers to the stack. */
1641 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1642 cfa_store.reg = REGNO (dest);
1643 cfa_store.offset = cfa.offset - cfa_temp.offset;
1646 /* Rule 9 */
1647 else if (GET_CODE (src) == LO_SUM
1648 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1650 cfa_temp.reg = REGNO (dest);
1651 cfa_temp.offset = INTVAL (XEXP (src, 1));
1653 else
1654 gcc_unreachable ();
1656 break;
1658 /* Rule 6 */
1659 case CONST_INT:
1660 cfa_temp.reg = REGNO (dest);
1661 cfa_temp.offset = INTVAL (src);
1662 break;
1664 /* Rule 7 */
1665 case IOR:
1666 gcc_assert (REG_P (XEXP (src, 0))
1667 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1668 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1670 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1671 cfa_temp.reg = REGNO (dest);
1672 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1673 break;
1675 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1676 which will fill in all of the bits. */
1677 /* Rule 8 */
1678 case HIGH:
1679 break;
1681 /* Rule 15 */
1682 case UNSPEC:
1683 case UNSPEC_VOLATILE:
1684 gcc_assert (targetm.dwarf_handle_frame_unspec);
1685 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1686 return;
1688 default:
1689 gcc_unreachable ();
1692 def_cfa_1 (label, &cfa);
1693 break;
1695 case MEM:
1696 gcc_assert (REG_P (src));
1698 /* Saving a register to the stack. Make sure dest is relative to the
1699 CFA register. */
1700 switch (GET_CODE (XEXP (dest, 0)))
1702 /* Rule 10 */
1703 /* With a push. */
1704 case PRE_MODIFY:
1705 /* We can't handle variable size modifications. */
1706 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1707 == CONST_INT);
1708 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1710 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1711 && cfa_store.reg == STACK_POINTER_REGNUM);
1713 cfa_store.offset += offset;
1714 if (cfa.reg == STACK_POINTER_REGNUM)
1715 cfa.offset = cfa_store.offset;
1717 offset = -cfa_store.offset;
1718 break;
1720 /* Rule 11 */
1721 case PRE_INC:
1722 case PRE_DEC:
1723 offset = GET_MODE_SIZE (GET_MODE (dest));
1724 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1725 offset = -offset;
1727 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1728 && cfa_store.reg == STACK_POINTER_REGNUM);
1730 cfa_store.offset += offset;
1731 if (cfa.reg == STACK_POINTER_REGNUM)
1732 cfa.offset = cfa_store.offset;
1734 offset = -cfa_store.offset;
1735 break;
1737 /* Rule 12 */
1738 /* With an offset. */
1739 case PLUS:
1740 case MINUS:
1741 case LO_SUM:
1743 int regno;
1745 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1746 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1747 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1748 offset = -offset;
1750 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1752 if (cfa_store.reg == (unsigned) regno)
1753 offset -= cfa_store.offset;
1754 else
1756 gcc_assert (cfa_temp.reg == (unsigned) regno);
1757 offset -= cfa_temp.offset;
1760 break;
1762 /* Rule 13 */
1763 /* Without an offset. */
1764 case REG:
1766 int regno = REGNO (XEXP (dest, 0));
1768 if (cfa_store.reg == (unsigned) regno)
1769 offset = -cfa_store.offset;
1770 else
1772 gcc_assert (cfa_temp.reg == (unsigned) regno);
1773 offset = -cfa_temp.offset;
1776 break;
1778 /* Rule 14 */
1779 case POST_INC:
1780 gcc_assert (cfa_temp.reg
1781 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1782 offset = -cfa_temp.offset;
1783 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1784 break;
1786 default:
1787 gcc_unreachable ();
1790 if (REGNO (src) != STACK_POINTER_REGNUM
1791 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1792 && (unsigned) REGNO (src) == cfa.reg)
1794 /* We're storing the current CFA reg into the stack. */
1796 if (cfa.offset == 0)
1798 /* If the source register is exactly the CFA, assume
1799 we're saving SP like any other register; this happens
1800 on the ARM. */
1801 def_cfa_1 (label, &cfa);
1802 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1803 break;
1805 else
1807 /* Otherwise, we'll need to look in the stack to
1808 calculate the CFA. */
1809 rtx x = XEXP (dest, 0);
1811 if (!REG_P (x))
1812 x = XEXP (x, 0);
1813 gcc_assert (REG_P (x));
1815 cfa.reg = REGNO (x);
1816 cfa.base_offset = offset;
1817 cfa.indirect = 1;
1818 def_cfa_1 (label, &cfa);
1819 break;
1823 def_cfa_1 (label, &cfa);
1824 queue_reg_save (label, src, NULL_RTX, offset);
1825 break;
1827 default:
1828 gcc_unreachable ();
1832 /* Record call frame debugging information for INSN, which either
1833 sets SP or FP (adjusting how we calculate the frame address) or saves a
1834 register to the stack. If INSN is NULL_RTX, initialize our state.
1836 If AFTER_P is false, we're being called before the insn is emitted,
1837 otherwise after. Call instructions get invoked twice. */
1839 void
1840 dwarf2out_frame_debug (rtx insn, bool after_p)
1842 const char *label;
1843 rtx src;
1845 if (insn == NULL_RTX)
1847 size_t i;
1849 /* Flush any queued register saves. */
1850 flush_queued_reg_saves ();
1852 /* Set up state for generating call frame debug info. */
1853 lookup_cfa (&cfa);
1854 gcc_assert (cfa.reg
1855 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1857 cfa.reg = STACK_POINTER_REGNUM;
1858 cfa_store = cfa;
1859 cfa_temp.reg = -1;
1860 cfa_temp.offset = 0;
1862 for (i = 0; i < num_regs_saved_in_regs; i++)
1864 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1865 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1867 num_regs_saved_in_regs = 0;
1868 return;
1871 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1872 flush_queued_reg_saves ();
1874 if (! RTX_FRAME_RELATED_P (insn))
1876 if (!ACCUMULATE_OUTGOING_ARGS)
1877 dwarf2out_stack_adjust (insn, after_p);
1878 return;
1881 label = dwarf2out_cfi_label ();
1882 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1883 if (src)
1884 insn = XEXP (src, 0);
1885 else
1886 insn = PATTERN (insn);
1888 dwarf2out_frame_debug_expr (insn, label);
1891 #endif
1893 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1894 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1895 (enum dwarf_call_frame_info cfi);
1897 static enum dw_cfi_oprnd_type
1898 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1900 switch (cfi)
1902 case DW_CFA_nop:
1903 case DW_CFA_GNU_window_save:
1904 return dw_cfi_oprnd_unused;
1906 case DW_CFA_set_loc:
1907 case DW_CFA_advance_loc1:
1908 case DW_CFA_advance_loc2:
1909 case DW_CFA_advance_loc4:
1910 case DW_CFA_MIPS_advance_loc8:
1911 return dw_cfi_oprnd_addr;
1913 case DW_CFA_offset:
1914 case DW_CFA_offset_extended:
1915 case DW_CFA_def_cfa:
1916 case DW_CFA_offset_extended_sf:
1917 case DW_CFA_def_cfa_sf:
1918 case DW_CFA_restore_extended:
1919 case DW_CFA_undefined:
1920 case DW_CFA_same_value:
1921 case DW_CFA_def_cfa_register:
1922 case DW_CFA_register:
1923 return dw_cfi_oprnd_reg_num;
1925 case DW_CFA_def_cfa_offset:
1926 case DW_CFA_GNU_args_size:
1927 case DW_CFA_def_cfa_offset_sf:
1928 return dw_cfi_oprnd_offset;
1930 case DW_CFA_def_cfa_expression:
1931 case DW_CFA_expression:
1932 return dw_cfi_oprnd_loc;
1934 default:
1935 gcc_unreachable ();
1939 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1940 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1941 (enum dwarf_call_frame_info cfi);
1943 static enum dw_cfi_oprnd_type
1944 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1946 switch (cfi)
1948 case DW_CFA_def_cfa:
1949 case DW_CFA_def_cfa_sf:
1950 case DW_CFA_offset:
1951 case DW_CFA_offset_extended_sf:
1952 case DW_CFA_offset_extended:
1953 return dw_cfi_oprnd_offset;
1955 case DW_CFA_register:
1956 return dw_cfi_oprnd_reg_num;
1958 default:
1959 return dw_cfi_oprnd_unused;
1963 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1965 /* Map register numbers held in the call frame info that gcc has
1966 collected using DWARF_FRAME_REGNUM to those that should be output in
1967 .debug_frame and .eh_frame. */
1968 #ifndef DWARF2_FRAME_REG_OUT
1969 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1970 #endif
1972 /* Output a Call Frame Information opcode and its operand(s). */
1974 static void
1975 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1977 unsigned long r;
1978 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1979 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1980 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1981 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1982 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1983 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1985 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1986 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1987 "DW_CFA_offset, column 0x%lx", r);
1988 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1990 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1992 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1993 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1994 "DW_CFA_restore, column 0x%lx", r);
1996 else
1998 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1999 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2001 switch (cfi->dw_cfi_opc)
2003 case DW_CFA_set_loc:
2004 if (for_eh)
2005 dw2_asm_output_encoded_addr_rtx (
2006 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2007 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2008 false, NULL);
2009 else
2010 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2011 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2012 break;
2014 case DW_CFA_advance_loc1:
2015 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2016 fde->dw_fde_current_label, NULL);
2017 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2018 break;
2020 case DW_CFA_advance_loc2:
2021 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2022 fde->dw_fde_current_label, NULL);
2023 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2024 break;
2026 case DW_CFA_advance_loc4:
2027 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2028 fde->dw_fde_current_label, NULL);
2029 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2030 break;
2032 case DW_CFA_MIPS_advance_loc8:
2033 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2034 fde->dw_fde_current_label, NULL);
2035 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2036 break;
2038 case DW_CFA_offset_extended:
2039 case DW_CFA_def_cfa:
2040 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2041 dw2_asm_output_data_uleb128 (r, NULL);
2042 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2043 break;
2045 case DW_CFA_offset_extended_sf:
2046 case DW_CFA_def_cfa_sf:
2047 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2048 dw2_asm_output_data_uleb128 (r, NULL);
2049 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2050 break;
2052 case DW_CFA_restore_extended:
2053 case DW_CFA_undefined:
2054 case DW_CFA_same_value:
2055 case DW_CFA_def_cfa_register:
2056 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2057 dw2_asm_output_data_uleb128 (r, NULL);
2058 break;
2060 case DW_CFA_register:
2061 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2062 dw2_asm_output_data_uleb128 (r, NULL);
2063 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2064 dw2_asm_output_data_uleb128 (r, NULL);
2065 break;
2067 case DW_CFA_def_cfa_offset:
2068 case DW_CFA_GNU_args_size:
2069 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2070 break;
2072 case DW_CFA_def_cfa_offset_sf:
2073 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2074 break;
2076 case DW_CFA_GNU_window_save:
2077 break;
2079 case DW_CFA_def_cfa_expression:
2080 case DW_CFA_expression:
2081 output_cfa_loc (cfi);
2082 break;
2084 case DW_CFA_GNU_negative_offset_extended:
2085 /* Obsoleted by DW_CFA_offset_extended_sf. */
2086 gcc_unreachable ();
2088 default:
2089 break;
2094 /* Output the call frame information used to record information
2095 that relates to calculating the frame pointer, and records the
2096 location of saved registers. */
2098 static void
2099 output_call_frame_info (int for_eh)
2101 unsigned int i;
2102 dw_fde_ref fde;
2103 dw_cfi_ref cfi;
2104 char l1[20], l2[20], section_start_label[20];
2105 bool any_lsda_needed = false;
2106 char augmentation[6];
2107 int augmentation_size;
2108 int fde_encoding = DW_EH_PE_absptr;
2109 int per_encoding = DW_EH_PE_absptr;
2110 int lsda_encoding = DW_EH_PE_absptr;
2111 int return_reg;
2113 /* Don't emit a CIE if there won't be any FDEs. */
2114 if (fde_table_in_use == 0)
2115 return;
2117 /* If we make FDEs linkonce, we may have to emit an empty label for
2118 an FDE that wouldn't otherwise be emitted. We want to avoid
2119 having an FDE kept around when the function it refers to is
2120 discarded. Example where this matters: a primary function
2121 template in C++ requires EH information, but an explicit
2122 specialization doesn't. */
2123 if (TARGET_USES_WEAK_UNWIND_INFO
2124 && ! flag_asynchronous_unwind_tables
2125 && for_eh)
2126 for (i = 0; i < fde_table_in_use; i++)
2127 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2128 && !fde_table[i].uses_eh_lsda
2129 && ! DECL_WEAK (fde_table[i].decl))
2130 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2131 for_eh, /* empty */ 1);
2133 /* If we don't have any functions we'll want to unwind out of, don't
2134 emit any EH unwind information. Note that if exceptions aren't
2135 enabled, we won't have collected nothrow information, and if we
2136 asked for asynchronous tables, we always want this info. */
2137 if (for_eh)
2139 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2141 for (i = 0; i < fde_table_in_use; i++)
2142 if (fde_table[i].uses_eh_lsda)
2143 any_eh_needed = any_lsda_needed = true;
2144 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2145 any_eh_needed = true;
2146 else if (! fde_table[i].nothrow
2147 && ! fde_table[i].all_throwers_are_sibcalls)
2148 any_eh_needed = true;
2150 if (! any_eh_needed)
2151 return;
2154 /* We're going to be generating comments, so turn on app. */
2155 if (flag_debug_asm)
2156 app_enable ();
2158 if (for_eh)
2159 targetm.asm_out.eh_frame_section ();
2160 else
2161 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2163 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2164 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2166 /* Output the CIE. */
2167 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2168 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2169 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2170 "Length of Common Information Entry");
2171 ASM_OUTPUT_LABEL (asm_out_file, l1);
2173 /* Now that the CIE pointer is PC-relative for EH,
2174 use 0 to identify the CIE. */
2175 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2176 (for_eh ? 0 : DW_CIE_ID),
2177 "CIE Identifier Tag");
2179 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2181 augmentation[0] = 0;
2182 augmentation_size = 0;
2183 if (for_eh)
2185 char *p;
2187 /* Augmentation:
2188 z Indicates that a uleb128 is present to size the
2189 augmentation section.
2190 L Indicates the encoding (and thus presence) of
2191 an LSDA pointer in the FDE augmentation.
2192 R Indicates a non-default pointer encoding for
2193 FDE code pointers.
2194 P Indicates the presence of an encoding + language
2195 personality routine in the CIE augmentation. */
2197 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2198 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2199 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2201 p = augmentation + 1;
2202 if (eh_personality_libfunc)
2204 *p++ = 'P';
2205 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2207 if (any_lsda_needed)
2209 *p++ = 'L';
2210 augmentation_size += 1;
2212 if (fde_encoding != DW_EH_PE_absptr)
2214 *p++ = 'R';
2215 augmentation_size += 1;
2217 if (p > augmentation + 1)
2219 augmentation[0] = 'z';
2220 *p = '\0';
2223 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2224 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2226 int offset = ( 4 /* Length */
2227 + 4 /* CIE Id */
2228 + 1 /* CIE version */
2229 + strlen (augmentation) + 1 /* Augmentation */
2230 + size_of_uleb128 (1) /* Code alignment */
2231 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2232 + 1 /* RA column */
2233 + 1 /* Augmentation size */
2234 + 1 /* Personality encoding */ );
2235 int pad = -offset & (PTR_SIZE - 1);
2237 augmentation_size += pad;
2239 /* Augmentations should be small, so there's scarce need to
2240 iterate for a solution. Die if we exceed one uleb128 byte. */
2241 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2245 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2246 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2247 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2248 "CIE Data Alignment Factor");
2250 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2251 if (DW_CIE_VERSION == 1)
2252 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2253 else
2254 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2256 if (augmentation[0])
2258 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2259 if (eh_personality_libfunc)
2261 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2262 eh_data_format_name (per_encoding));
2263 dw2_asm_output_encoded_addr_rtx (per_encoding,
2264 eh_personality_libfunc,
2265 true, NULL);
2268 if (any_lsda_needed)
2269 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2270 eh_data_format_name (lsda_encoding));
2272 if (fde_encoding != DW_EH_PE_absptr)
2273 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2274 eh_data_format_name (fde_encoding));
2277 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2278 output_cfi (cfi, NULL, for_eh);
2280 /* Pad the CIE out to an address sized boundary. */
2281 ASM_OUTPUT_ALIGN (asm_out_file,
2282 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2283 ASM_OUTPUT_LABEL (asm_out_file, l2);
2285 /* Loop through all of the FDE's. */
2286 for (i = 0; i < fde_table_in_use; i++)
2288 fde = &fde_table[i];
2290 /* Don't emit EH unwind info for leaf functions that don't need it. */
2291 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2292 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2293 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2294 && !fde->uses_eh_lsda)
2295 continue;
2297 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2298 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2299 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2300 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2301 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2302 "FDE Length");
2303 ASM_OUTPUT_LABEL (asm_out_file, l1);
2305 if (for_eh)
2306 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2307 else
2308 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2309 "FDE CIE offset");
2311 if (for_eh)
2313 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2314 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2315 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2316 sym_ref,
2317 false,
2318 "FDE initial location");
2319 if (fde->dw_fde_switched_sections)
2321 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2322 fde->dw_fde_unlikely_section_label);
2323 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2324 fde->dw_fde_hot_section_label);
2325 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2326 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2327 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2328 "FDE initial location");
2329 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2330 fde->dw_fde_hot_section_end_label,
2331 fde->dw_fde_hot_section_label,
2332 "FDE address range");
2333 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2334 "FDE initial location");
2335 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2336 fde->dw_fde_unlikely_section_end_label,
2337 fde->dw_fde_unlikely_section_label,
2338 "FDE address range");
2340 else
2341 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2342 fde->dw_fde_end, fde->dw_fde_begin,
2343 "FDE address range");
2345 else
2347 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2348 "FDE initial location");
2349 if (fde->dw_fde_switched_sections)
2351 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2352 fde->dw_fde_hot_section_label,
2353 "FDE initial location");
2354 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2355 fde->dw_fde_hot_section_end_label,
2356 fde->dw_fde_hot_section_label,
2357 "FDE address range");
2358 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2359 fde->dw_fde_unlikely_section_label,
2360 "FDE initial location");
2361 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2362 fde->dw_fde_unlikely_section_end_label,
2363 fde->dw_fde_unlikely_section_label,
2364 "FDE address range");
2366 else
2367 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2368 fde->dw_fde_end, fde->dw_fde_begin,
2369 "FDE address range");
2372 if (augmentation[0])
2374 if (any_lsda_needed)
2376 int size = size_of_encoded_value (lsda_encoding);
2378 if (lsda_encoding == DW_EH_PE_aligned)
2380 int offset = ( 4 /* Length */
2381 + 4 /* CIE offset */
2382 + 2 * size_of_encoded_value (fde_encoding)
2383 + 1 /* Augmentation size */ );
2384 int pad = -offset & (PTR_SIZE - 1);
2386 size += pad;
2387 gcc_assert (size_of_uleb128 (size) == 1);
2390 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2392 if (fde->uses_eh_lsda)
2394 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2395 fde->funcdef_number);
2396 dw2_asm_output_encoded_addr_rtx (
2397 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2398 false, "Language Specific Data Area");
2400 else
2402 if (lsda_encoding == DW_EH_PE_aligned)
2403 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2404 dw2_asm_output_data
2405 (size_of_encoded_value (lsda_encoding), 0,
2406 "Language Specific Data Area (none)");
2409 else
2410 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2413 /* Loop through the Call Frame Instructions associated with
2414 this FDE. */
2415 fde->dw_fde_current_label = fde->dw_fde_begin;
2416 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2417 output_cfi (cfi, fde, for_eh);
2419 /* Pad the FDE out to an address sized boundary. */
2420 ASM_OUTPUT_ALIGN (asm_out_file,
2421 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2422 ASM_OUTPUT_LABEL (asm_out_file, l2);
2425 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2426 dw2_asm_output_data (4, 0, "End of Table");
2427 #ifdef MIPS_DEBUGGING_INFO
2428 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2429 get a value of 0. Putting .align 0 after the label fixes it. */
2430 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2431 #endif
2433 /* Turn off app to make assembly quicker. */
2434 if (flag_debug_asm)
2435 app_disable ();
2438 /* Output a marker (i.e. a label) for the beginning of a function, before
2439 the prologue. */
2441 void
2442 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2443 const char *file ATTRIBUTE_UNUSED)
2445 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2446 char * dup_label;
2447 dw_fde_ref fde;
2449 current_function_func_begin_label = NULL;
2451 #ifdef TARGET_UNWIND_INFO
2452 /* ??? current_function_func_begin_label is also used by except.c
2453 for call-site information. We must emit this label if it might
2454 be used. */
2455 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2456 && ! dwarf2out_do_frame ())
2457 return;
2458 #else
2459 if (! dwarf2out_do_frame ())
2460 return;
2461 #endif
2463 function_section (current_function_decl);
2464 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2465 current_function_funcdef_no);
2466 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2467 current_function_funcdef_no);
2468 dup_label = xstrdup (label);
2469 current_function_func_begin_label = dup_label;
2471 #ifdef TARGET_UNWIND_INFO
2472 /* We can elide the fde allocation if we're not emitting debug info. */
2473 if (! dwarf2out_do_frame ())
2474 return;
2475 #endif
2477 /* Expand the fde table if necessary. */
2478 if (fde_table_in_use == fde_table_allocated)
2480 fde_table_allocated += FDE_TABLE_INCREMENT;
2481 fde_table = ggc_realloc (fde_table,
2482 fde_table_allocated * sizeof (dw_fde_node));
2483 memset (fde_table + fde_table_in_use, 0,
2484 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2487 /* Record the FDE associated with this function. */
2488 current_funcdef_fde = fde_table_in_use;
2490 /* Add the new FDE at the end of the fde_table. */
2491 fde = &fde_table[fde_table_in_use++];
2492 fde->decl = current_function_decl;
2493 fde->dw_fde_begin = dup_label;
2494 fde->dw_fde_current_label = NULL;
2495 fde->dw_fde_hot_section_label = NULL;
2496 fde->dw_fde_hot_section_end_label = NULL;
2497 fde->dw_fde_unlikely_section_label = NULL;
2498 fde->dw_fde_unlikely_section_end_label = NULL;
2499 fde->dw_fde_switched_sections = false;
2500 fde->dw_fde_end = NULL;
2501 fde->dw_fde_cfi = NULL;
2502 fde->funcdef_number = current_function_funcdef_no;
2503 fde->nothrow = TREE_NOTHROW (current_function_decl);
2504 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2505 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2507 args_size = old_args_size = 0;
2509 /* We only want to output line number information for the genuine dwarf2
2510 prologue case, not the eh frame case. */
2511 #ifdef DWARF2_DEBUGGING_INFO
2512 if (file)
2513 dwarf2out_source_line (line, file);
2514 #endif
2517 /* Output a marker (i.e. a label) for the absolute end of the generated code
2518 for a function definition. This gets called *after* the epilogue code has
2519 been generated. */
2521 void
2522 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2523 const char *file ATTRIBUTE_UNUSED)
2525 dw_fde_ref fde;
2526 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2528 /* Output a label to mark the endpoint of the code generated for this
2529 function. */
2530 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2531 current_function_funcdef_no);
2532 ASM_OUTPUT_LABEL (asm_out_file, label);
2533 fde = &fde_table[fde_table_in_use - 1];
2534 fde->dw_fde_end = xstrdup (label);
2537 void
2538 dwarf2out_frame_init (void)
2540 /* Allocate the initial hunk of the fde_table. */
2541 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2542 fde_table_allocated = FDE_TABLE_INCREMENT;
2543 fde_table_in_use = 0;
2545 /* Generate the CFA instructions common to all FDE's. Do it now for the
2546 sake of lookup_cfa. */
2548 #ifdef DWARF2_UNWIND_INFO
2549 /* On entry, the Canonical Frame Address is at SP. */
2550 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2551 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2552 #endif
2555 void
2556 dwarf2out_frame_finish (void)
2558 /* Output call frame information. */
2559 if (write_symbols == DWARF2_DEBUG
2560 || write_symbols == VMS_AND_DWARF2_DEBUG
2561 #ifdef DWARF2_FRAME_INFO
2562 || DWARF2_FRAME_INFO
2563 #endif
2565 output_call_frame_info (0);
2567 #ifndef TARGET_UNWIND_INFO
2568 /* Output another copy for the unwinder. */
2569 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2570 output_call_frame_info (1);
2571 #endif
2573 #endif
2575 /* And now, the subset of the debugging information support code necessary
2576 for emitting location expressions. */
2578 /* We need some way to distinguish DW_OP_addr with a direct symbol
2579 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2580 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2583 typedef struct dw_val_struct *dw_val_ref;
2584 typedef struct die_struct *dw_die_ref;
2585 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2586 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2588 /* Each DIE may have a series of attribute/value pairs. Values
2589 can take on several forms. The forms that are used in this
2590 implementation are listed below. */
2592 enum dw_val_class
2594 dw_val_class_addr,
2595 dw_val_class_offset,
2596 dw_val_class_loc,
2597 dw_val_class_loc_list,
2598 dw_val_class_range_list,
2599 dw_val_class_const,
2600 dw_val_class_unsigned_const,
2601 dw_val_class_long_long,
2602 dw_val_class_vec,
2603 dw_val_class_flag,
2604 dw_val_class_die_ref,
2605 dw_val_class_fde_ref,
2606 dw_val_class_lbl_id,
2607 dw_val_class_lbl_offset,
2608 dw_val_class_str
2611 /* Describe a double word constant value. */
2612 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2614 typedef struct dw_long_long_struct GTY(())
2616 unsigned long hi;
2617 unsigned long low;
2619 dw_long_long_const;
2621 /* Describe a floating point constant value, or a vector constant value. */
2623 typedef struct dw_vec_struct GTY(())
2625 unsigned char * GTY((length ("%h.length"))) array;
2626 unsigned length;
2627 unsigned elt_size;
2629 dw_vec_const;
2631 /* The dw_val_node describes an attribute's value, as it is
2632 represented internally. */
2634 typedef struct dw_val_struct GTY(())
2636 enum dw_val_class val_class;
2637 union dw_val_struct_union
2639 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2640 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2641 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2642 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2643 HOST_WIDE_INT GTY ((default)) val_int;
2644 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2645 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2646 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2647 struct dw_val_die_union
2649 dw_die_ref die;
2650 int external;
2651 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2652 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2653 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2654 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2655 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2657 GTY ((desc ("%1.val_class"))) v;
2659 dw_val_node;
2661 /* Locations in memory are described using a sequence of stack machine
2662 operations. */
2664 typedef struct dw_loc_descr_struct GTY(())
2666 dw_loc_descr_ref dw_loc_next;
2667 enum dwarf_location_atom dw_loc_opc;
2668 dw_val_node dw_loc_oprnd1;
2669 dw_val_node dw_loc_oprnd2;
2670 int dw_loc_addr;
2672 dw_loc_descr_node;
2674 /* Location lists are ranges + location descriptions for that range,
2675 so you can track variables that are in different places over
2676 their entire life. */
2677 typedef struct dw_loc_list_struct GTY(())
2679 dw_loc_list_ref dw_loc_next;
2680 const char *begin; /* Label for begin address of range */
2681 const char *end; /* Label for end address of range */
2682 char *ll_symbol; /* Label for beginning of location list.
2683 Only on head of list */
2684 const char *section; /* Section this loclist is relative to */
2685 dw_loc_descr_ref expr;
2686 } dw_loc_list_node;
2688 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2690 static const char *dwarf_stack_op_name (unsigned);
2691 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2692 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2693 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2694 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2695 static unsigned long size_of_locs (dw_loc_descr_ref);
2696 static void output_loc_operands (dw_loc_descr_ref);
2697 static void output_loc_sequence (dw_loc_descr_ref);
2699 /* Convert a DWARF stack opcode into its string name. */
2701 static const char *
2702 dwarf_stack_op_name (unsigned int op)
2704 switch (op)
2706 case DW_OP_addr:
2707 case INTERNAL_DW_OP_tls_addr:
2708 return "DW_OP_addr";
2709 case DW_OP_deref:
2710 return "DW_OP_deref";
2711 case DW_OP_const1u:
2712 return "DW_OP_const1u";
2713 case DW_OP_const1s:
2714 return "DW_OP_const1s";
2715 case DW_OP_const2u:
2716 return "DW_OP_const2u";
2717 case DW_OP_const2s:
2718 return "DW_OP_const2s";
2719 case DW_OP_const4u:
2720 return "DW_OP_const4u";
2721 case DW_OP_const4s:
2722 return "DW_OP_const4s";
2723 case DW_OP_const8u:
2724 return "DW_OP_const8u";
2725 case DW_OP_const8s:
2726 return "DW_OP_const8s";
2727 case DW_OP_constu:
2728 return "DW_OP_constu";
2729 case DW_OP_consts:
2730 return "DW_OP_consts";
2731 case DW_OP_dup:
2732 return "DW_OP_dup";
2733 case DW_OP_drop:
2734 return "DW_OP_drop";
2735 case DW_OP_over:
2736 return "DW_OP_over";
2737 case DW_OP_pick:
2738 return "DW_OP_pick";
2739 case DW_OP_swap:
2740 return "DW_OP_swap";
2741 case DW_OP_rot:
2742 return "DW_OP_rot";
2743 case DW_OP_xderef:
2744 return "DW_OP_xderef";
2745 case DW_OP_abs:
2746 return "DW_OP_abs";
2747 case DW_OP_and:
2748 return "DW_OP_and";
2749 case DW_OP_div:
2750 return "DW_OP_div";
2751 case DW_OP_minus:
2752 return "DW_OP_minus";
2753 case DW_OP_mod:
2754 return "DW_OP_mod";
2755 case DW_OP_mul:
2756 return "DW_OP_mul";
2757 case DW_OP_neg:
2758 return "DW_OP_neg";
2759 case DW_OP_not:
2760 return "DW_OP_not";
2761 case DW_OP_or:
2762 return "DW_OP_or";
2763 case DW_OP_plus:
2764 return "DW_OP_plus";
2765 case DW_OP_plus_uconst:
2766 return "DW_OP_plus_uconst";
2767 case DW_OP_shl:
2768 return "DW_OP_shl";
2769 case DW_OP_shr:
2770 return "DW_OP_shr";
2771 case DW_OP_shra:
2772 return "DW_OP_shra";
2773 case DW_OP_xor:
2774 return "DW_OP_xor";
2775 case DW_OP_bra:
2776 return "DW_OP_bra";
2777 case DW_OP_eq:
2778 return "DW_OP_eq";
2779 case DW_OP_ge:
2780 return "DW_OP_ge";
2781 case DW_OP_gt:
2782 return "DW_OP_gt";
2783 case DW_OP_le:
2784 return "DW_OP_le";
2785 case DW_OP_lt:
2786 return "DW_OP_lt";
2787 case DW_OP_ne:
2788 return "DW_OP_ne";
2789 case DW_OP_skip:
2790 return "DW_OP_skip";
2791 case DW_OP_lit0:
2792 return "DW_OP_lit0";
2793 case DW_OP_lit1:
2794 return "DW_OP_lit1";
2795 case DW_OP_lit2:
2796 return "DW_OP_lit2";
2797 case DW_OP_lit3:
2798 return "DW_OP_lit3";
2799 case DW_OP_lit4:
2800 return "DW_OP_lit4";
2801 case DW_OP_lit5:
2802 return "DW_OP_lit5";
2803 case DW_OP_lit6:
2804 return "DW_OP_lit6";
2805 case DW_OP_lit7:
2806 return "DW_OP_lit7";
2807 case DW_OP_lit8:
2808 return "DW_OP_lit8";
2809 case DW_OP_lit9:
2810 return "DW_OP_lit9";
2811 case DW_OP_lit10:
2812 return "DW_OP_lit10";
2813 case DW_OP_lit11:
2814 return "DW_OP_lit11";
2815 case DW_OP_lit12:
2816 return "DW_OP_lit12";
2817 case DW_OP_lit13:
2818 return "DW_OP_lit13";
2819 case DW_OP_lit14:
2820 return "DW_OP_lit14";
2821 case DW_OP_lit15:
2822 return "DW_OP_lit15";
2823 case DW_OP_lit16:
2824 return "DW_OP_lit16";
2825 case DW_OP_lit17:
2826 return "DW_OP_lit17";
2827 case DW_OP_lit18:
2828 return "DW_OP_lit18";
2829 case DW_OP_lit19:
2830 return "DW_OP_lit19";
2831 case DW_OP_lit20:
2832 return "DW_OP_lit20";
2833 case DW_OP_lit21:
2834 return "DW_OP_lit21";
2835 case DW_OP_lit22:
2836 return "DW_OP_lit22";
2837 case DW_OP_lit23:
2838 return "DW_OP_lit23";
2839 case DW_OP_lit24:
2840 return "DW_OP_lit24";
2841 case DW_OP_lit25:
2842 return "DW_OP_lit25";
2843 case DW_OP_lit26:
2844 return "DW_OP_lit26";
2845 case DW_OP_lit27:
2846 return "DW_OP_lit27";
2847 case DW_OP_lit28:
2848 return "DW_OP_lit28";
2849 case DW_OP_lit29:
2850 return "DW_OP_lit29";
2851 case DW_OP_lit30:
2852 return "DW_OP_lit30";
2853 case DW_OP_lit31:
2854 return "DW_OP_lit31";
2855 case DW_OP_reg0:
2856 return "DW_OP_reg0";
2857 case DW_OP_reg1:
2858 return "DW_OP_reg1";
2859 case DW_OP_reg2:
2860 return "DW_OP_reg2";
2861 case DW_OP_reg3:
2862 return "DW_OP_reg3";
2863 case DW_OP_reg4:
2864 return "DW_OP_reg4";
2865 case DW_OP_reg5:
2866 return "DW_OP_reg5";
2867 case DW_OP_reg6:
2868 return "DW_OP_reg6";
2869 case DW_OP_reg7:
2870 return "DW_OP_reg7";
2871 case DW_OP_reg8:
2872 return "DW_OP_reg8";
2873 case DW_OP_reg9:
2874 return "DW_OP_reg9";
2875 case DW_OP_reg10:
2876 return "DW_OP_reg10";
2877 case DW_OP_reg11:
2878 return "DW_OP_reg11";
2879 case DW_OP_reg12:
2880 return "DW_OP_reg12";
2881 case DW_OP_reg13:
2882 return "DW_OP_reg13";
2883 case DW_OP_reg14:
2884 return "DW_OP_reg14";
2885 case DW_OP_reg15:
2886 return "DW_OP_reg15";
2887 case DW_OP_reg16:
2888 return "DW_OP_reg16";
2889 case DW_OP_reg17:
2890 return "DW_OP_reg17";
2891 case DW_OP_reg18:
2892 return "DW_OP_reg18";
2893 case DW_OP_reg19:
2894 return "DW_OP_reg19";
2895 case DW_OP_reg20:
2896 return "DW_OP_reg20";
2897 case DW_OP_reg21:
2898 return "DW_OP_reg21";
2899 case DW_OP_reg22:
2900 return "DW_OP_reg22";
2901 case DW_OP_reg23:
2902 return "DW_OP_reg23";
2903 case DW_OP_reg24:
2904 return "DW_OP_reg24";
2905 case DW_OP_reg25:
2906 return "DW_OP_reg25";
2907 case DW_OP_reg26:
2908 return "DW_OP_reg26";
2909 case DW_OP_reg27:
2910 return "DW_OP_reg27";
2911 case DW_OP_reg28:
2912 return "DW_OP_reg28";
2913 case DW_OP_reg29:
2914 return "DW_OP_reg29";
2915 case DW_OP_reg30:
2916 return "DW_OP_reg30";
2917 case DW_OP_reg31:
2918 return "DW_OP_reg31";
2919 case DW_OP_breg0:
2920 return "DW_OP_breg0";
2921 case DW_OP_breg1:
2922 return "DW_OP_breg1";
2923 case DW_OP_breg2:
2924 return "DW_OP_breg2";
2925 case DW_OP_breg3:
2926 return "DW_OP_breg3";
2927 case DW_OP_breg4:
2928 return "DW_OP_breg4";
2929 case DW_OP_breg5:
2930 return "DW_OP_breg5";
2931 case DW_OP_breg6:
2932 return "DW_OP_breg6";
2933 case DW_OP_breg7:
2934 return "DW_OP_breg7";
2935 case DW_OP_breg8:
2936 return "DW_OP_breg8";
2937 case DW_OP_breg9:
2938 return "DW_OP_breg9";
2939 case DW_OP_breg10:
2940 return "DW_OP_breg10";
2941 case DW_OP_breg11:
2942 return "DW_OP_breg11";
2943 case DW_OP_breg12:
2944 return "DW_OP_breg12";
2945 case DW_OP_breg13:
2946 return "DW_OP_breg13";
2947 case DW_OP_breg14:
2948 return "DW_OP_breg14";
2949 case DW_OP_breg15:
2950 return "DW_OP_breg15";
2951 case DW_OP_breg16:
2952 return "DW_OP_breg16";
2953 case DW_OP_breg17:
2954 return "DW_OP_breg17";
2955 case DW_OP_breg18:
2956 return "DW_OP_breg18";
2957 case DW_OP_breg19:
2958 return "DW_OP_breg19";
2959 case DW_OP_breg20:
2960 return "DW_OP_breg20";
2961 case DW_OP_breg21:
2962 return "DW_OP_breg21";
2963 case DW_OP_breg22:
2964 return "DW_OP_breg22";
2965 case DW_OP_breg23:
2966 return "DW_OP_breg23";
2967 case DW_OP_breg24:
2968 return "DW_OP_breg24";
2969 case DW_OP_breg25:
2970 return "DW_OP_breg25";
2971 case DW_OP_breg26:
2972 return "DW_OP_breg26";
2973 case DW_OP_breg27:
2974 return "DW_OP_breg27";
2975 case DW_OP_breg28:
2976 return "DW_OP_breg28";
2977 case DW_OP_breg29:
2978 return "DW_OP_breg29";
2979 case DW_OP_breg30:
2980 return "DW_OP_breg30";
2981 case DW_OP_breg31:
2982 return "DW_OP_breg31";
2983 case DW_OP_regx:
2984 return "DW_OP_regx";
2985 case DW_OP_fbreg:
2986 return "DW_OP_fbreg";
2987 case DW_OP_bregx:
2988 return "DW_OP_bregx";
2989 case DW_OP_piece:
2990 return "DW_OP_piece";
2991 case DW_OP_deref_size:
2992 return "DW_OP_deref_size";
2993 case DW_OP_xderef_size:
2994 return "DW_OP_xderef_size";
2995 case DW_OP_nop:
2996 return "DW_OP_nop";
2997 case DW_OP_push_object_address:
2998 return "DW_OP_push_object_address";
2999 case DW_OP_call2:
3000 return "DW_OP_call2";
3001 case DW_OP_call4:
3002 return "DW_OP_call4";
3003 case DW_OP_call_ref:
3004 return "DW_OP_call_ref";
3005 case DW_OP_GNU_push_tls_address:
3006 return "DW_OP_GNU_push_tls_address";
3007 default:
3008 return "OP_<unknown>";
3012 /* Return a pointer to a newly allocated location description. Location
3013 descriptions are simple expression terms that can be strung
3014 together to form more complicated location (address) descriptions. */
3016 static inline dw_loc_descr_ref
3017 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3018 unsigned HOST_WIDE_INT oprnd2)
3020 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3022 descr->dw_loc_opc = op;
3023 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3024 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3025 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3026 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3028 return descr;
3031 /* Add a location description term to a location description expression. */
3033 static inline void
3034 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3036 dw_loc_descr_ref *d;
3038 /* Find the end of the chain. */
3039 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3042 *d = descr;
3045 /* Return the size of a location descriptor. */
3047 static unsigned long
3048 size_of_loc_descr (dw_loc_descr_ref loc)
3050 unsigned long size = 1;
3052 switch (loc->dw_loc_opc)
3054 case DW_OP_addr:
3055 case INTERNAL_DW_OP_tls_addr:
3056 size += DWARF2_ADDR_SIZE;
3057 break;
3058 case DW_OP_const1u:
3059 case DW_OP_const1s:
3060 size += 1;
3061 break;
3062 case DW_OP_const2u:
3063 case DW_OP_const2s:
3064 size += 2;
3065 break;
3066 case DW_OP_const4u:
3067 case DW_OP_const4s:
3068 size += 4;
3069 break;
3070 case DW_OP_const8u:
3071 case DW_OP_const8s:
3072 size += 8;
3073 break;
3074 case DW_OP_constu:
3075 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3076 break;
3077 case DW_OP_consts:
3078 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3079 break;
3080 case DW_OP_pick:
3081 size += 1;
3082 break;
3083 case DW_OP_plus_uconst:
3084 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3085 break;
3086 case DW_OP_skip:
3087 case DW_OP_bra:
3088 size += 2;
3089 break;
3090 case DW_OP_breg0:
3091 case DW_OP_breg1:
3092 case DW_OP_breg2:
3093 case DW_OP_breg3:
3094 case DW_OP_breg4:
3095 case DW_OP_breg5:
3096 case DW_OP_breg6:
3097 case DW_OP_breg7:
3098 case DW_OP_breg8:
3099 case DW_OP_breg9:
3100 case DW_OP_breg10:
3101 case DW_OP_breg11:
3102 case DW_OP_breg12:
3103 case DW_OP_breg13:
3104 case DW_OP_breg14:
3105 case DW_OP_breg15:
3106 case DW_OP_breg16:
3107 case DW_OP_breg17:
3108 case DW_OP_breg18:
3109 case DW_OP_breg19:
3110 case DW_OP_breg20:
3111 case DW_OP_breg21:
3112 case DW_OP_breg22:
3113 case DW_OP_breg23:
3114 case DW_OP_breg24:
3115 case DW_OP_breg25:
3116 case DW_OP_breg26:
3117 case DW_OP_breg27:
3118 case DW_OP_breg28:
3119 case DW_OP_breg29:
3120 case DW_OP_breg30:
3121 case DW_OP_breg31:
3122 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3123 break;
3124 case DW_OP_regx:
3125 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3126 break;
3127 case DW_OP_fbreg:
3128 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3129 break;
3130 case DW_OP_bregx:
3131 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3132 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3133 break;
3134 case DW_OP_piece:
3135 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3136 break;
3137 case DW_OP_deref_size:
3138 case DW_OP_xderef_size:
3139 size += 1;
3140 break;
3141 case DW_OP_call2:
3142 size += 2;
3143 break;
3144 case DW_OP_call4:
3145 size += 4;
3146 break;
3147 case DW_OP_call_ref:
3148 size += DWARF2_ADDR_SIZE;
3149 break;
3150 default:
3151 break;
3154 return size;
3157 /* Return the size of a series of location descriptors. */
3159 static unsigned long
3160 size_of_locs (dw_loc_descr_ref loc)
3162 unsigned long size;
3164 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3166 loc->dw_loc_addr = size;
3167 size += size_of_loc_descr (loc);
3170 return size;
3173 /* Output location description stack opcode's operands (if any). */
3175 static void
3176 output_loc_operands (dw_loc_descr_ref loc)
3178 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3179 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3181 switch (loc->dw_loc_opc)
3183 #ifdef DWARF2_DEBUGGING_INFO
3184 case DW_OP_addr:
3185 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3186 break;
3187 case DW_OP_const2u:
3188 case DW_OP_const2s:
3189 dw2_asm_output_data (2, val1->v.val_int, NULL);
3190 break;
3191 case DW_OP_const4u:
3192 case DW_OP_const4s:
3193 dw2_asm_output_data (4, val1->v.val_int, NULL);
3194 break;
3195 case DW_OP_const8u:
3196 case DW_OP_const8s:
3197 gcc_assert (HOST_BITS_PER_LONG >= 64);
3198 dw2_asm_output_data (8, val1->v.val_int, NULL);
3199 break;
3200 case DW_OP_skip:
3201 case DW_OP_bra:
3203 int offset;
3205 gcc_assert (val1->val_class == dw_val_class_loc);
3206 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3208 dw2_asm_output_data (2, offset, NULL);
3210 break;
3211 #else
3212 case DW_OP_addr:
3213 case DW_OP_const2u:
3214 case DW_OP_const2s:
3215 case DW_OP_const4u:
3216 case DW_OP_const4s:
3217 case DW_OP_const8u:
3218 case DW_OP_const8s:
3219 case DW_OP_skip:
3220 case DW_OP_bra:
3221 /* We currently don't make any attempt to make sure these are
3222 aligned properly like we do for the main unwind info, so
3223 don't support emitting things larger than a byte if we're
3224 only doing unwinding. */
3225 gcc_unreachable ();
3226 #endif
3227 case DW_OP_const1u:
3228 case DW_OP_const1s:
3229 dw2_asm_output_data (1, val1->v.val_int, NULL);
3230 break;
3231 case DW_OP_constu:
3232 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3233 break;
3234 case DW_OP_consts:
3235 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3236 break;
3237 case DW_OP_pick:
3238 dw2_asm_output_data (1, val1->v.val_int, NULL);
3239 break;
3240 case DW_OP_plus_uconst:
3241 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3242 break;
3243 case DW_OP_breg0:
3244 case DW_OP_breg1:
3245 case DW_OP_breg2:
3246 case DW_OP_breg3:
3247 case DW_OP_breg4:
3248 case DW_OP_breg5:
3249 case DW_OP_breg6:
3250 case DW_OP_breg7:
3251 case DW_OP_breg8:
3252 case DW_OP_breg9:
3253 case DW_OP_breg10:
3254 case DW_OP_breg11:
3255 case DW_OP_breg12:
3256 case DW_OP_breg13:
3257 case DW_OP_breg14:
3258 case DW_OP_breg15:
3259 case DW_OP_breg16:
3260 case DW_OP_breg17:
3261 case DW_OP_breg18:
3262 case DW_OP_breg19:
3263 case DW_OP_breg20:
3264 case DW_OP_breg21:
3265 case DW_OP_breg22:
3266 case DW_OP_breg23:
3267 case DW_OP_breg24:
3268 case DW_OP_breg25:
3269 case DW_OP_breg26:
3270 case DW_OP_breg27:
3271 case DW_OP_breg28:
3272 case DW_OP_breg29:
3273 case DW_OP_breg30:
3274 case DW_OP_breg31:
3275 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3276 break;
3277 case DW_OP_regx:
3278 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3279 break;
3280 case DW_OP_fbreg:
3281 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3282 break;
3283 case DW_OP_bregx:
3284 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3285 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3286 break;
3287 case DW_OP_piece:
3288 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3289 break;
3290 case DW_OP_deref_size:
3291 case DW_OP_xderef_size:
3292 dw2_asm_output_data (1, val1->v.val_int, NULL);
3293 break;
3295 case INTERNAL_DW_OP_tls_addr:
3296 if (targetm.asm_out.output_dwarf_dtprel)
3298 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3299 DWARF2_ADDR_SIZE,
3300 val1->v.val_addr);
3301 fputc ('\n', asm_out_file);
3303 else
3304 gcc_unreachable ();
3305 break;
3307 default:
3308 /* Other codes have no operands. */
3309 break;
3313 /* Output a sequence of location operations. */
3315 static void
3316 output_loc_sequence (dw_loc_descr_ref loc)
3318 for (; loc != NULL; loc = loc->dw_loc_next)
3320 /* Output the opcode. */
3321 dw2_asm_output_data (1, loc->dw_loc_opc,
3322 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3324 /* Output the operand(s) (if any). */
3325 output_loc_operands (loc);
3329 /* This routine will generate the correct assembly data for a location
3330 description based on a cfi entry with a complex address. */
3332 static void
3333 output_cfa_loc (dw_cfi_ref cfi)
3335 dw_loc_descr_ref loc;
3336 unsigned long size;
3338 /* Output the size of the block. */
3339 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3340 size = size_of_locs (loc);
3341 dw2_asm_output_data_uleb128 (size, NULL);
3343 /* Now output the operations themselves. */
3344 output_loc_sequence (loc);
3347 /* This function builds a dwarf location descriptor sequence from
3348 a dw_cfa_location. */
3350 static struct dw_loc_descr_struct *
3351 build_cfa_loc (dw_cfa_location *cfa)
3353 struct dw_loc_descr_struct *head, *tmp;
3355 if (cfa->indirect)
3357 if (cfa->base_offset)
3359 if (cfa->reg <= 31)
3360 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3361 else
3362 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3364 else if (cfa->reg <= 31)
3365 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3366 else
3367 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3369 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3370 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3371 add_loc_descr (&head, tmp);
3372 if (cfa->offset != 0)
3374 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3375 add_loc_descr (&head, tmp);
3378 else
3380 if (cfa->offset == 0)
3381 if (cfa->reg <= 31)
3382 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3383 else
3384 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3385 else if (cfa->reg <= 31)
3386 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->offset, 0);
3387 else
3388 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->offset);
3391 return head;
3394 /* This function fills in aa dw_cfa_location structure from a dwarf location
3395 descriptor sequence. */
3397 static void
3398 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3400 struct dw_loc_descr_struct *ptr;
3401 cfa->offset = 0;
3402 cfa->base_offset = 0;
3403 cfa->indirect = 0;
3404 cfa->reg = -1;
3406 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3408 enum dwarf_location_atom op = ptr->dw_loc_opc;
3410 switch (op)
3412 case DW_OP_reg0:
3413 case DW_OP_reg1:
3414 case DW_OP_reg2:
3415 case DW_OP_reg3:
3416 case DW_OP_reg4:
3417 case DW_OP_reg5:
3418 case DW_OP_reg6:
3419 case DW_OP_reg7:
3420 case DW_OP_reg8:
3421 case DW_OP_reg9:
3422 case DW_OP_reg10:
3423 case DW_OP_reg11:
3424 case DW_OP_reg12:
3425 case DW_OP_reg13:
3426 case DW_OP_reg14:
3427 case DW_OP_reg15:
3428 case DW_OP_reg16:
3429 case DW_OP_reg17:
3430 case DW_OP_reg18:
3431 case DW_OP_reg19:
3432 case DW_OP_reg20:
3433 case DW_OP_reg21:
3434 case DW_OP_reg22:
3435 case DW_OP_reg23:
3436 case DW_OP_reg24:
3437 case DW_OP_reg25:
3438 case DW_OP_reg26:
3439 case DW_OP_reg27:
3440 case DW_OP_reg28:
3441 case DW_OP_reg29:
3442 case DW_OP_reg30:
3443 case DW_OP_reg31:
3444 cfa->reg = op - DW_OP_reg0;
3445 break;
3446 case DW_OP_regx:
3447 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3448 break;
3449 case DW_OP_breg0:
3450 case DW_OP_breg1:
3451 case DW_OP_breg2:
3452 case DW_OP_breg3:
3453 case DW_OP_breg4:
3454 case DW_OP_breg5:
3455 case DW_OP_breg6:
3456 case DW_OP_breg7:
3457 case DW_OP_breg8:
3458 case DW_OP_breg9:
3459 case DW_OP_breg10:
3460 case DW_OP_breg11:
3461 case DW_OP_breg12:
3462 case DW_OP_breg13:
3463 case DW_OP_breg14:
3464 case DW_OP_breg15:
3465 case DW_OP_breg16:
3466 case DW_OP_breg17:
3467 case DW_OP_breg18:
3468 case DW_OP_breg19:
3469 case DW_OP_breg20:
3470 case DW_OP_breg21:
3471 case DW_OP_breg22:
3472 case DW_OP_breg23:
3473 case DW_OP_breg24:
3474 case DW_OP_breg25:
3475 case DW_OP_breg26:
3476 case DW_OP_breg27:
3477 case DW_OP_breg28:
3478 case DW_OP_breg29:
3479 case DW_OP_breg30:
3480 case DW_OP_breg31:
3481 cfa->reg = op - DW_OP_breg0;
3482 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3483 break;
3484 case DW_OP_bregx:
3485 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3486 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3487 break;
3488 case DW_OP_deref:
3489 cfa->indirect = 1;
3490 break;
3491 case DW_OP_plus_uconst:
3492 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3493 break;
3494 default:
3495 internal_error ("DW_LOC_OP %s not implemented",
3496 dwarf_stack_op_name (ptr->dw_loc_opc));
3500 #endif /* .debug_frame support */
3502 /* And now, the support for symbolic debugging information. */
3503 #ifdef DWARF2_DEBUGGING_INFO
3505 /* .debug_str support. */
3506 static int output_indirect_string (void **, void *);
3508 static void dwarf2out_init (const char *);
3509 static void dwarf2out_finish (const char *);
3510 static void dwarf2out_define (unsigned int, const char *);
3511 static void dwarf2out_undef (unsigned int, const char *);
3512 static void dwarf2out_start_source_file (unsigned, const char *);
3513 static void dwarf2out_end_source_file (unsigned);
3514 static void dwarf2out_begin_block (unsigned, unsigned);
3515 static void dwarf2out_end_block (unsigned, unsigned);
3516 static bool dwarf2out_ignore_block (tree);
3517 static void dwarf2out_global_decl (tree);
3518 static void dwarf2out_type_decl (tree, int);
3519 static void dwarf2out_imported_module_or_decl (tree, tree);
3520 static void dwarf2out_abstract_function (tree);
3521 static void dwarf2out_var_location (rtx);
3522 static void dwarf2out_begin_function (tree);
3523 static void dwarf2out_switch_text_section (void);
3525 /* The debug hooks structure. */
3527 const struct gcc_debug_hooks dwarf2_debug_hooks =
3529 dwarf2out_init,
3530 dwarf2out_finish,
3531 dwarf2out_define,
3532 dwarf2out_undef,
3533 dwarf2out_start_source_file,
3534 dwarf2out_end_source_file,
3535 dwarf2out_begin_block,
3536 dwarf2out_end_block,
3537 dwarf2out_ignore_block,
3538 dwarf2out_source_line,
3539 dwarf2out_begin_prologue,
3540 debug_nothing_int_charstar, /* end_prologue */
3541 dwarf2out_end_epilogue,
3542 dwarf2out_begin_function,
3543 debug_nothing_int, /* end_function */
3544 dwarf2out_decl, /* function_decl */
3545 dwarf2out_global_decl,
3546 dwarf2out_type_decl, /* type_decl */
3547 dwarf2out_imported_module_or_decl,
3548 debug_nothing_tree, /* deferred_inline_function */
3549 /* The DWARF 2 backend tries to reduce debugging bloat by not
3550 emitting the abstract description of inline functions until
3551 something tries to reference them. */
3552 dwarf2out_abstract_function, /* outlining_inline_function */
3553 debug_nothing_rtx, /* label */
3554 debug_nothing_int, /* handle_pch */
3555 dwarf2out_var_location,
3556 dwarf2out_switch_text_section,
3557 1 /* start_end_main_source_file */
3559 #endif
3561 /* NOTE: In the comments in this file, many references are made to
3562 "Debugging Information Entries". This term is abbreviated as `DIE'
3563 throughout the remainder of this file. */
3565 /* An internal representation of the DWARF output is built, and then
3566 walked to generate the DWARF debugging info. The walk of the internal
3567 representation is done after the entire program has been compiled.
3568 The types below are used to describe the internal representation. */
3570 /* Various DIE's use offsets relative to the beginning of the
3571 .debug_info section to refer to each other. */
3573 typedef long int dw_offset;
3575 /* Define typedefs here to avoid circular dependencies. */
3577 typedef struct dw_attr_struct *dw_attr_ref;
3578 typedef struct dw_line_info_struct *dw_line_info_ref;
3579 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3580 typedef struct pubname_struct *pubname_ref;
3581 typedef struct dw_ranges_struct *dw_ranges_ref;
3583 /* Each entry in the line_info_table maintains the file and
3584 line number associated with the label generated for that
3585 entry. The label gives the PC value associated with
3586 the line number entry. */
3588 typedef struct dw_line_info_struct GTY(())
3590 unsigned long dw_file_num;
3591 unsigned long dw_line_num;
3593 dw_line_info_entry;
3595 /* Line information for functions in separate sections; each one gets its
3596 own sequence. */
3597 typedef struct dw_separate_line_info_struct GTY(())
3599 unsigned long dw_file_num;
3600 unsigned long dw_line_num;
3601 unsigned long function;
3603 dw_separate_line_info_entry;
3605 /* Each DIE attribute has a field specifying the attribute kind,
3606 a link to the next attribute in the chain, and an attribute value.
3607 Attributes are typically linked below the DIE they modify. */
3609 typedef struct dw_attr_struct GTY(())
3611 enum dwarf_attribute dw_attr;
3612 dw_attr_ref dw_attr_next;
3613 dw_val_node dw_attr_val;
3615 dw_attr_node;
3617 /* The Debugging Information Entry (DIE) structure */
3619 typedef struct die_struct GTY(())
3621 enum dwarf_tag die_tag;
3622 char *die_symbol;
3623 dw_attr_ref die_attr;
3624 dw_die_ref die_parent;
3625 dw_die_ref die_child;
3626 dw_die_ref die_sib;
3627 dw_die_ref die_definition; /* ref from a specification to its definition */
3628 dw_offset die_offset;
3629 unsigned long die_abbrev;
3630 int die_mark;
3631 unsigned int decl_id;
3633 die_node;
3635 /* The pubname structure */
3637 typedef struct pubname_struct GTY(())
3639 dw_die_ref die;
3640 char *name;
3642 pubname_entry;
3644 struct dw_ranges_struct GTY(())
3646 int block_num;
3649 /* The limbo die list structure. */
3650 typedef struct limbo_die_struct GTY(())
3652 dw_die_ref die;
3653 tree created_for;
3654 struct limbo_die_struct *next;
3656 limbo_die_node;
3658 /* How to start an assembler comment. */
3659 #ifndef ASM_COMMENT_START
3660 #define ASM_COMMENT_START ";#"
3661 #endif
3663 /* Define a macro which returns nonzero for a TYPE_DECL which was
3664 implicitly generated for a tagged type.
3666 Note that unlike the gcc front end (which generates a NULL named
3667 TYPE_DECL node for each complete tagged type, each array type, and
3668 each function type node created) the g++ front end generates a
3669 _named_ TYPE_DECL node for each tagged type node created.
3670 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3671 generate a DW_TAG_typedef DIE for them. */
3673 #define TYPE_DECL_IS_STUB(decl) \
3674 (DECL_NAME (decl) == NULL_TREE \
3675 || (DECL_ARTIFICIAL (decl) \
3676 && is_tagged_type (TREE_TYPE (decl)) \
3677 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3678 /* This is necessary for stub decls that \
3679 appear in nested inline functions. */ \
3680 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3681 && (decl_ultimate_origin (decl) \
3682 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3684 /* Information concerning the compilation unit's programming
3685 language, and compiler version. */
3687 /* Fixed size portion of the DWARF compilation unit header. */
3688 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3689 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3691 /* Fixed size portion of public names info. */
3692 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3694 /* Fixed size portion of the address range info. */
3695 #define DWARF_ARANGES_HEADER_SIZE \
3696 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3697 DWARF2_ADDR_SIZE * 2) \
3698 - DWARF_INITIAL_LENGTH_SIZE)
3700 /* Size of padding portion in the address range info. It must be
3701 aligned to twice the pointer size. */
3702 #define DWARF_ARANGES_PAD_SIZE \
3703 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3704 DWARF2_ADDR_SIZE * 2) \
3705 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3707 /* Use assembler line directives if available. */
3708 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3709 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3710 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3711 #else
3712 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3713 #endif
3714 #endif
3716 /* Minimum line offset in a special line info. opcode.
3717 This value was chosen to give a reasonable range of values. */
3718 #define DWARF_LINE_BASE -10
3720 /* First special line opcode - leave room for the standard opcodes. */
3721 #define DWARF_LINE_OPCODE_BASE 10
3723 /* Range of line offsets in a special line info. opcode. */
3724 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3726 /* Flag that indicates the initial value of the is_stmt_start flag.
3727 In the present implementation, we do not mark any lines as
3728 the beginning of a source statement, because that information
3729 is not made available by the GCC front-end. */
3730 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3732 #ifdef DWARF2_DEBUGGING_INFO
3733 /* This location is used by calc_die_sizes() to keep track
3734 the offset of each DIE within the .debug_info section. */
3735 static unsigned long next_die_offset;
3736 #endif
3738 /* Record the root of the DIE's built for the current compilation unit. */
3739 static GTY(()) dw_die_ref comp_unit_die;
3741 /* A list of DIEs with a NULL parent waiting to be relocated. */
3742 static GTY(()) limbo_die_node *limbo_die_list;
3744 /* Filenames referenced by this compilation unit. */
3745 static GTY(()) varray_type file_table;
3746 static GTY(()) varray_type file_table_emitted;
3747 static GTY(()) size_t file_table_last_lookup_index;
3749 /* A hash table of references to DIE's that describe declarations.
3750 The key is a DECL_UID() which is a unique number identifying each decl. */
3751 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3753 /* Node of the variable location list. */
3754 struct var_loc_node GTY ((chain_next ("%h.next")))
3756 rtx GTY (()) var_loc_note;
3757 const char * GTY (()) label;
3758 const char * GTY (()) section_label;
3759 struct var_loc_node * GTY (()) next;
3762 /* Variable location list. */
3763 struct var_loc_list_def GTY (())
3765 struct var_loc_node * GTY (()) first;
3767 /* Do not mark the last element of the chained list because
3768 it is marked through the chain. */
3769 struct var_loc_node * GTY ((skip ("%h"))) last;
3771 /* DECL_UID of the variable decl. */
3772 unsigned int decl_id;
3774 typedef struct var_loc_list_def var_loc_list;
3777 /* Table of decl location linked lists. */
3778 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3780 /* A pointer to the base of a list of references to DIE's that
3781 are uniquely identified by their tag, presence/absence of
3782 children DIE's, and list of attribute/value pairs. */
3783 static GTY((length ("abbrev_die_table_allocated")))
3784 dw_die_ref *abbrev_die_table;
3786 /* Number of elements currently allocated for abbrev_die_table. */
3787 static GTY(()) unsigned abbrev_die_table_allocated;
3789 /* Number of elements in type_die_table currently in use. */
3790 static GTY(()) unsigned abbrev_die_table_in_use;
3792 /* Size (in elements) of increments by which we may expand the
3793 abbrev_die_table. */
3794 #define ABBREV_DIE_TABLE_INCREMENT 256
3796 /* A pointer to the base of a table that contains line information
3797 for each source code line in .text in the compilation unit. */
3798 static GTY((length ("line_info_table_allocated")))
3799 dw_line_info_ref line_info_table;
3801 /* Number of elements currently allocated for line_info_table. */
3802 static GTY(()) unsigned line_info_table_allocated;
3804 /* Number of elements in line_info_table currently in use. */
3805 static GTY(()) unsigned line_info_table_in_use;
3807 /* True if the compilation unit contains more than one .text section. */
3808 static GTY(()) bool have_switched_text_section = false;
3810 /* A pointer to the base of a table that contains line information
3811 for each source code line outside of .text in the compilation unit. */
3812 static GTY ((length ("separate_line_info_table_allocated")))
3813 dw_separate_line_info_ref separate_line_info_table;
3815 /* Number of elements currently allocated for separate_line_info_table. */
3816 static GTY(()) unsigned separate_line_info_table_allocated;
3818 /* Number of elements in separate_line_info_table currently in use. */
3819 static GTY(()) unsigned separate_line_info_table_in_use;
3821 /* Size (in elements) of increments by which we may expand the
3822 line_info_table. */
3823 #define LINE_INFO_TABLE_INCREMENT 1024
3825 /* A pointer to the base of a table that contains a list of publicly
3826 accessible names. */
3827 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3829 /* Number of elements currently allocated for pubname_table. */
3830 static GTY(()) unsigned pubname_table_allocated;
3832 /* Number of elements in pubname_table currently in use. */
3833 static GTY(()) unsigned pubname_table_in_use;
3835 /* Size (in elements) of increments by which we may expand the
3836 pubname_table. */
3837 #define PUBNAME_TABLE_INCREMENT 64
3839 /* Array of dies for which we should generate .debug_arange info. */
3840 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3842 /* Number of elements currently allocated for arange_table. */
3843 static GTY(()) unsigned arange_table_allocated;
3845 /* Number of elements in arange_table currently in use. */
3846 static GTY(()) unsigned arange_table_in_use;
3848 /* Size (in elements) of increments by which we may expand the
3849 arange_table. */
3850 #define ARANGE_TABLE_INCREMENT 64
3852 /* Array of dies for which we should generate .debug_ranges info. */
3853 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3855 /* Number of elements currently allocated for ranges_table. */
3856 static GTY(()) unsigned ranges_table_allocated;
3858 /* Number of elements in ranges_table currently in use. */
3859 static GTY(()) unsigned ranges_table_in_use;
3861 /* Size (in elements) of increments by which we may expand the
3862 ranges_table. */
3863 #define RANGES_TABLE_INCREMENT 64
3865 /* Whether we have location lists that need outputting */
3866 static GTY(()) unsigned have_location_lists;
3868 /* Unique label counter. */
3869 static GTY(()) unsigned int loclabel_num;
3871 #ifdef DWARF2_DEBUGGING_INFO
3872 /* Record whether the function being analyzed contains inlined functions. */
3873 static int current_function_has_inlines;
3874 #endif
3875 #if 0 && defined (MIPS_DEBUGGING_INFO)
3876 static int comp_unit_has_inlines;
3877 #endif
3879 /* Number of file tables emitted in maybe_emit_file(). */
3880 static GTY(()) int emitcount = 0;
3882 /* Number of internal labels generated by gen_internal_sym(). */
3883 static GTY(()) int label_num;
3885 #ifdef DWARF2_DEBUGGING_INFO
3887 /* Offset from the "steady-state frame pointer" to the CFA,
3888 within the current function. */
3889 static HOST_WIDE_INT frame_pointer_cfa_offset;
3891 /* Forward declarations for functions defined in this file. */
3893 static int is_pseudo_reg (rtx);
3894 static tree type_main_variant (tree);
3895 static int is_tagged_type (tree);
3896 static const char *dwarf_tag_name (unsigned);
3897 static const char *dwarf_attr_name (unsigned);
3898 static const char *dwarf_form_name (unsigned);
3899 static tree decl_ultimate_origin (tree);
3900 static tree block_ultimate_origin (tree);
3901 static tree decl_class_context (tree);
3902 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3903 static inline enum dw_val_class AT_class (dw_attr_ref);
3904 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3905 static inline unsigned AT_flag (dw_attr_ref);
3906 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3907 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3908 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3909 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3910 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3911 unsigned long);
3912 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3913 unsigned int, unsigned char *);
3914 static hashval_t debug_str_do_hash (const void *);
3915 static int debug_str_eq (const void *, const void *);
3916 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3917 static inline const char *AT_string (dw_attr_ref);
3918 static int AT_string_form (dw_attr_ref);
3919 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3920 static void add_AT_specification (dw_die_ref, dw_die_ref);
3921 static inline dw_die_ref AT_ref (dw_attr_ref);
3922 static inline int AT_ref_external (dw_attr_ref);
3923 static inline void set_AT_ref_external (dw_attr_ref, int);
3924 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3925 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3926 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3927 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3928 dw_loc_list_ref);
3929 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3930 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3931 static inline rtx AT_addr (dw_attr_ref);
3932 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3933 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3934 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3935 unsigned HOST_WIDE_INT);
3936 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3937 unsigned long);
3938 static inline const char *AT_lbl (dw_attr_ref);
3939 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3940 static const char *get_AT_low_pc (dw_die_ref);
3941 static const char *get_AT_hi_pc (dw_die_ref);
3942 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3943 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3944 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3945 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3946 static bool is_c_family (void);
3947 static bool is_cxx (void);
3948 static bool is_java (void);
3949 static bool is_fortran (void);
3950 static bool is_ada (void);
3951 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3952 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3953 static inline void free_die (dw_die_ref);
3954 static void remove_children (dw_die_ref);
3955 static void add_child_die (dw_die_ref, dw_die_ref);
3956 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3957 static dw_die_ref lookup_type_die (tree);
3958 static void equate_type_number_to_die (tree, dw_die_ref);
3959 static hashval_t decl_die_table_hash (const void *);
3960 static int decl_die_table_eq (const void *, const void *);
3961 static dw_die_ref lookup_decl_die (tree);
3962 static hashval_t decl_loc_table_hash (const void *);
3963 static int decl_loc_table_eq (const void *, const void *);
3964 static var_loc_list *lookup_decl_loc (tree);
3965 static void equate_decl_number_to_die (tree, dw_die_ref);
3966 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3967 static void print_spaces (FILE *);
3968 static void print_die (dw_die_ref, FILE *);
3969 static void print_dwarf_line_table (FILE *);
3970 static void reverse_die_lists (dw_die_ref);
3971 static void reverse_all_dies (dw_die_ref);
3972 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3973 static dw_die_ref pop_compile_unit (dw_die_ref);
3974 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3975 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3976 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3977 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3978 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3979 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3980 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3981 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3982 static void compute_section_prefix (dw_die_ref);
3983 static int is_type_die (dw_die_ref);
3984 static int is_comdat_die (dw_die_ref);
3985 static int is_symbol_die (dw_die_ref);
3986 static void assign_symbol_names (dw_die_ref);
3987 static void break_out_includes (dw_die_ref);
3988 static hashval_t htab_cu_hash (const void *);
3989 static int htab_cu_eq (const void *, const void *);
3990 static void htab_cu_del (void *);
3991 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3992 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3993 static void add_sibling_attributes (dw_die_ref);
3994 static void build_abbrev_table (dw_die_ref);
3995 static void output_location_lists (dw_die_ref);
3996 static int constant_size (long unsigned);
3997 static unsigned long size_of_die (dw_die_ref);
3998 static void calc_die_sizes (dw_die_ref);
3999 static void mark_dies (dw_die_ref);
4000 static void unmark_dies (dw_die_ref);
4001 static void unmark_all_dies (dw_die_ref);
4002 static unsigned long size_of_pubnames (void);
4003 static unsigned long size_of_aranges (void);
4004 static enum dwarf_form value_format (dw_attr_ref);
4005 static void output_value_format (dw_attr_ref);
4006 static void output_abbrev_section (void);
4007 static void output_die_symbol (dw_die_ref);
4008 static void output_die (dw_die_ref);
4009 static void output_compilation_unit_header (void);
4010 static void output_comp_unit (dw_die_ref, int);
4011 static const char *dwarf2_name (tree, int);
4012 static void add_pubname (tree, dw_die_ref);
4013 static void output_pubnames (void);
4014 static void add_arange (tree, dw_die_ref);
4015 static void output_aranges (void);
4016 static unsigned int add_ranges (tree);
4017 static void output_ranges (void);
4018 static void output_line_info (void);
4019 static void output_file_names (void);
4020 static dw_die_ref base_type_die (tree);
4021 static tree root_type (tree);
4022 static int is_base_type (tree);
4023 static bool is_subrange_type (tree);
4024 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4025 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4026 static int type_is_enum (tree);
4027 static unsigned int dbx_reg_number (rtx);
4028 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4029 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4030 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4031 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4032 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4033 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4034 static int is_based_loc (rtx);
4035 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4036 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4037 static dw_loc_descr_ref loc_descriptor (rtx);
4038 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4039 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4040 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4041 static tree field_type (tree);
4042 static unsigned int simple_type_align_in_bits (tree);
4043 static unsigned int simple_decl_align_in_bits (tree);
4044 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4045 static HOST_WIDE_INT field_byte_offset (tree);
4046 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4047 dw_loc_descr_ref);
4048 static void add_data_member_location_attribute (dw_die_ref, tree);
4049 static void add_const_value_attribute (dw_die_ref, rtx);
4050 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4051 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4052 static void insert_float (rtx, unsigned char *);
4053 static rtx rtl_for_decl_location (tree);
4054 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4055 enum dwarf_attribute);
4056 static void tree_add_const_value_attribute (dw_die_ref, tree);
4057 static void add_name_attribute (dw_die_ref, const char *);
4058 static void add_comp_dir_attribute (dw_die_ref);
4059 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4060 static void add_subscript_info (dw_die_ref, tree);
4061 static void add_byte_size_attribute (dw_die_ref, tree);
4062 static void add_bit_offset_attribute (dw_die_ref, tree);
4063 static void add_bit_size_attribute (dw_die_ref, tree);
4064 static void add_prototyped_attribute (dw_die_ref, tree);
4065 static void add_abstract_origin_attribute (dw_die_ref, tree);
4066 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4067 static void add_src_coords_attributes (dw_die_ref, tree);
4068 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4069 static void push_decl_scope (tree);
4070 static void pop_decl_scope (void);
4071 static dw_die_ref scope_die_for (tree, dw_die_ref);
4072 static inline int local_scope_p (dw_die_ref);
4073 static inline int class_or_namespace_scope_p (dw_die_ref);
4074 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4075 static void add_calling_convention_attribute (dw_die_ref, tree);
4076 static const char *type_tag (tree);
4077 static tree member_declared_type (tree);
4078 #if 0
4079 static const char *decl_start_label (tree);
4080 #endif
4081 static void gen_array_type_die (tree, dw_die_ref);
4082 #if 0
4083 static void gen_entry_point_die (tree, dw_die_ref);
4084 #endif
4085 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4086 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4087 static void gen_inlined_union_type_die (tree, dw_die_ref);
4088 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4089 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4090 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4091 static void gen_formal_types_die (tree, dw_die_ref);
4092 static void gen_subprogram_die (tree, dw_die_ref);
4093 static void gen_variable_die (tree, dw_die_ref);
4094 static void gen_label_die (tree, dw_die_ref);
4095 static void gen_lexical_block_die (tree, dw_die_ref, int);
4096 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4097 static void gen_field_die (tree, dw_die_ref);
4098 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4099 static dw_die_ref gen_compile_unit_die (const char *);
4100 static void gen_string_type_die (tree, dw_die_ref);
4101 static void gen_inheritance_die (tree, tree, dw_die_ref);
4102 static void gen_member_die (tree, dw_die_ref);
4103 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4104 static void gen_subroutine_type_die (tree, dw_die_ref);
4105 static void gen_typedef_die (tree, dw_die_ref);
4106 static void gen_type_die (tree, dw_die_ref);
4107 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4108 static void gen_block_die (tree, dw_die_ref, int);
4109 static void decls_for_scope (tree, dw_die_ref, int);
4110 static int is_redundant_typedef (tree);
4111 static void gen_namespace_die (tree);
4112 static void gen_decl_die (tree, dw_die_ref);
4113 static dw_die_ref force_decl_die (tree);
4114 static dw_die_ref force_type_die (tree);
4115 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4116 static void declare_in_namespace (tree, dw_die_ref);
4117 static unsigned lookup_filename (const char *);
4118 static void init_file_table (void);
4119 static void retry_incomplete_types (void);
4120 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4121 static void splice_child_die (dw_die_ref, dw_die_ref);
4122 static int file_info_cmp (const void *, const void *);
4123 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4124 const char *, const char *, unsigned);
4125 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4126 const char *, const char *,
4127 const char *);
4128 static void output_loc_list (dw_loc_list_ref);
4129 static char *gen_internal_sym (const char *);
4131 static void prune_unmark_dies (dw_die_ref);
4132 static void prune_unused_types_mark (dw_die_ref, int);
4133 static void prune_unused_types_walk (dw_die_ref);
4134 static void prune_unused_types_walk_attribs (dw_die_ref);
4135 static void prune_unused_types_prune (dw_die_ref);
4136 static void prune_unused_types (void);
4137 static int maybe_emit_file (int);
4139 /* Section names used to hold DWARF debugging information. */
4140 #ifndef DEBUG_INFO_SECTION
4141 #define DEBUG_INFO_SECTION ".debug_info"
4142 #endif
4143 #ifndef DEBUG_ABBREV_SECTION
4144 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4145 #endif
4146 #ifndef DEBUG_ARANGES_SECTION
4147 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4148 #endif
4149 #ifndef DEBUG_MACINFO_SECTION
4150 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4151 #endif
4152 #ifndef DEBUG_LINE_SECTION
4153 #define DEBUG_LINE_SECTION ".debug_line"
4154 #endif
4155 #ifndef DEBUG_LOC_SECTION
4156 #define DEBUG_LOC_SECTION ".debug_loc"
4157 #endif
4158 #ifndef DEBUG_PUBNAMES_SECTION
4159 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4160 #endif
4161 #ifndef DEBUG_STR_SECTION
4162 #define DEBUG_STR_SECTION ".debug_str"
4163 #endif
4164 #ifndef DEBUG_RANGES_SECTION
4165 #define DEBUG_RANGES_SECTION ".debug_ranges"
4166 #endif
4168 /* Standard ELF section names for compiled code and data. */
4169 #ifndef TEXT_SECTION_NAME
4170 #define TEXT_SECTION_NAME ".text"
4171 #endif
4173 /* Section flags for .debug_str section. */
4174 #define DEBUG_STR_SECTION_FLAGS \
4175 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4176 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4177 : SECTION_DEBUG)
4179 /* Labels we insert at beginning sections we can reference instead of
4180 the section names themselves. */
4182 #ifndef TEXT_SECTION_LABEL
4183 #define TEXT_SECTION_LABEL "Ltext"
4184 #endif
4185 #ifndef COLD_TEXT_SECTION_LABEL
4186 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4187 #endif
4188 #ifndef DEBUG_LINE_SECTION_LABEL
4189 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4190 #endif
4191 #ifndef DEBUG_INFO_SECTION_LABEL
4192 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4193 #endif
4194 #ifndef DEBUG_ABBREV_SECTION_LABEL
4195 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4196 #endif
4197 #ifndef DEBUG_LOC_SECTION_LABEL
4198 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4199 #endif
4200 #ifndef DEBUG_RANGES_SECTION_LABEL
4201 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4202 #endif
4203 #ifndef DEBUG_MACINFO_SECTION_LABEL
4204 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4205 #endif
4207 /* Definitions of defaults for formats and names of various special
4208 (artificial) labels which may be generated within this file (when the -g
4209 options is used and DWARF2_DEBUGGING_INFO is in effect.
4210 If necessary, these may be overridden from within the tm.h file, but
4211 typically, overriding these defaults is unnecessary. */
4213 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4214 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4215 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4216 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4217 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4218 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4219 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4220 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4221 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4222 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4224 #ifndef TEXT_END_LABEL
4225 #define TEXT_END_LABEL "Letext"
4226 #endif
4227 #ifndef COLD_END_LABEL
4228 #define COLD_END_LABEL "Letext_cold"
4229 #endif
4230 #ifndef BLOCK_BEGIN_LABEL
4231 #define BLOCK_BEGIN_LABEL "LBB"
4232 #endif
4233 #ifndef BLOCK_END_LABEL
4234 #define BLOCK_END_LABEL "LBE"
4235 #endif
4236 #ifndef LINE_CODE_LABEL
4237 #define LINE_CODE_LABEL "LM"
4238 #endif
4239 #ifndef SEPARATE_LINE_CODE_LABEL
4240 #define SEPARATE_LINE_CODE_LABEL "LSM"
4241 #endif
4243 /* We allow a language front-end to designate a function that is to be
4244 called to "demangle" any name before it is put into a DIE. */
4246 static const char *(*demangle_name_func) (const char *);
4248 void
4249 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4251 demangle_name_func = func;
4254 /* Test if rtl node points to a pseudo register. */
4256 static inline int
4257 is_pseudo_reg (rtx rtl)
4259 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4260 || (GET_CODE (rtl) == SUBREG
4261 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4264 /* Return a reference to a type, with its const and volatile qualifiers
4265 removed. */
4267 static inline tree
4268 type_main_variant (tree type)
4270 type = TYPE_MAIN_VARIANT (type);
4272 /* ??? There really should be only one main variant among any group of
4273 variants of a given type (and all of the MAIN_VARIANT values for all
4274 members of the group should point to that one type) but sometimes the C
4275 front-end messes this up for array types, so we work around that bug
4276 here. */
4277 if (TREE_CODE (type) == ARRAY_TYPE)
4278 while (type != TYPE_MAIN_VARIANT (type))
4279 type = TYPE_MAIN_VARIANT (type);
4281 return type;
4284 /* Return nonzero if the given type node represents a tagged type. */
4286 static inline int
4287 is_tagged_type (tree type)
4289 enum tree_code code = TREE_CODE (type);
4291 return (code == RECORD_TYPE || code == UNION_TYPE
4292 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4295 /* Convert a DIE tag into its string name. */
4297 static const char *
4298 dwarf_tag_name (unsigned int tag)
4300 switch (tag)
4302 case DW_TAG_padding:
4303 return "DW_TAG_padding";
4304 case DW_TAG_array_type:
4305 return "DW_TAG_array_type";
4306 case DW_TAG_class_type:
4307 return "DW_TAG_class_type";
4308 case DW_TAG_entry_point:
4309 return "DW_TAG_entry_point";
4310 case DW_TAG_enumeration_type:
4311 return "DW_TAG_enumeration_type";
4312 case DW_TAG_formal_parameter:
4313 return "DW_TAG_formal_parameter";
4314 case DW_TAG_imported_declaration:
4315 return "DW_TAG_imported_declaration";
4316 case DW_TAG_label:
4317 return "DW_TAG_label";
4318 case DW_TAG_lexical_block:
4319 return "DW_TAG_lexical_block";
4320 case DW_TAG_member:
4321 return "DW_TAG_member";
4322 case DW_TAG_pointer_type:
4323 return "DW_TAG_pointer_type";
4324 case DW_TAG_reference_type:
4325 return "DW_TAG_reference_type";
4326 case DW_TAG_compile_unit:
4327 return "DW_TAG_compile_unit";
4328 case DW_TAG_string_type:
4329 return "DW_TAG_string_type";
4330 case DW_TAG_structure_type:
4331 return "DW_TAG_structure_type";
4332 case DW_TAG_subroutine_type:
4333 return "DW_TAG_subroutine_type";
4334 case DW_TAG_typedef:
4335 return "DW_TAG_typedef";
4336 case DW_TAG_union_type:
4337 return "DW_TAG_union_type";
4338 case DW_TAG_unspecified_parameters:
4339 return "DW_TAG_unspecified_parameters";
4340 case DW_TAG_variant:
4341 return "DW_TAG_variant";
4342 case DW_TAG_common_block:
4343 return "DW_TAG_common_block";
4344 case DW_TAG_common_inclusion:
4345 return "DW_TAG_common_inclusion";
4346 case DW_TAG_inheritance:
4347 return "DW_TAG_inheritance";
4348 case DW_TAG_inlined_subroutine:
4349 return "DW_TAG_inlined_subroutine";
4350 case DW_TAG_module:
4351 return "DW_TAG_module";
4352 case DW_TAG_ptr_to_member_type:
4353 return "DW_TAG_ptr_to_member_type";
4354 case DW_TAG_set_type:
4355 return "DW_TAG_set_type";
4356 case DW_TAG_subrange_type:
4357 return "DW_TAG_subrange_type";
4358 case DW_TAG_with_stmt:
4359 return "DW_TAG_with_stmt";
4360 case DW_TAG_access_declaration:
4361 return "DW_TAG_access_declaration";
4362 case DW_TAG_base_type:
4363 return "DW_TAG_base_type";
4364 case DW_TAG_catch_block:
4365 return "DW_TAG_catch_block";
4366 case DW_TAG_const_type:
4367 return "DW_TAG_const_type";
4368 case DW_TAG_constant:
4369 return "DW_TAG_constant";
4370 case DW_TAG_enumerator:
4371 return "DW_TAG_enumerator";
4372 case DW_TAG_file_type:
4373 return "DW_TAG_file_type";
4374 case DW_TAG_friend:
4375 return "DW_TAG_friend";
4376 case DW_TAG_namelist:
4377 return "DW_TAG_namelist";
4378 case DW_TAG_namelist_item:
4379 return "DW_TAG_namelist_item";
4380 case DW_TAG_namespace:
4381 return "DW_TAG_namespace";
4382 case DW_TAG_packed_type:
4383 return "DW_TAG_packed_type";
4384 case DW_TAG_subprogram:
4385 return "DW_TAG_subprogram";
4386 case DW_TAG_template_type_param:
4387 return "DW_TAG_template_type_param";
4388 case DW_TAG_template_value_param:
4389 return "DW_TAG_template_value_param";
4390 case DW_TAG_thrown_type:
4391 return "DW_TAG_thrown_type";
4392 case DW_TAG_try_block:
4393 return "DW_TAG_try_block";
4394 case DW_TAG_variant_part:
4395 return "DW_TAG_variant_part";
4396 case DW_TAG_variable:
4397 return "DW_TAG_variable";
4398 case DW_TAG_volatile_type:
4399 return "DW_TAG_volatile_type";
4400 case DW_TAG_imported_module:
4401 return "DW_TAG_imported_module";
4402 case DW_TAG_MIPS_loop:
4403 return "DW_TAG_MIPS_loop";
4404 case DW_TAG_format_label:
4405 return "DW_TAG_format_label";
4406 case DW_TAG_function_template:
4407 return "DW_TAG_function_template";
4408 case DW_TAG_class_template:
4409 return "DW_TAG_class_template";
4410 case DW_TAG_GNU_BINCL:
4411 return "DW_TAG_GNU_BINCL";
4412 case DW_TAG_GNU_EINCL:
4413 return "DW_TAG_GNU_EINCL";
4414 default:
4415 return "DW_TAG_<unknown>";
4419 /* Convert a DWARF attribute code into its string name. */
4421 static const char *
4422 dwarf_attr_name (unsigned int attr)
4424 switch (attr)
4426 case DW_AT_sibling:
4427 return "DW_AT_sibling";
4428 case DW_AT_location:
4429 return "DW_AT_location";
4430 case DW_AT_name:
4431 return "DW_AT_name";
4432 case DW_AT_ordering:
4433 return "DW_AT_ordering";
4434 case DW_AT_subscr_data:
4435 return "DW_AT_subscr_data";
4436 case DW_AT_byte_size:
4437 return "DW_AT_byte_size";
4438 case DW_AT_bit_offset:
4439 return "DW_AT_bit_offset";
4440 case DW_AT_bit_size:
4441 return "DW_AT_bit_size";
4442 case DW_AT_element_list:
4443 return "DW_AT_element_list";
4444 case DW_AT_stmt_list:
4445 return "DW_AT_stmt_list";
4446 case DW_AT_low_pc:
4447 return "DW_AT_low_pc";
4448 case DW_AT_high_pc:
4449 return "DW_AT_high_pc";
4450 case DW_AT_language:
4451 return "DW_AT_language";
4452 case DW_AT_member:
4453 return "DW_AT_member";
4454 case DW_AT_discr:
4455 return "DW_AT_discr";
4456 case DW_AT_discr_value:
4457 return "DW_AT_discr_value";
4458 case DW_AT_visibility:
4459 return "DW_AT_visibility";
4460 case DW_AT_import:
4461 return "DW_AT_import";
4462 case DW_AT_string_length:
4463 return "DW_AT_string_length";
4464 case DW_AT_common_reference:
4465 return "DW_AT_common_reference";
4466 case DW_AT_comp_dir:
4467 return "DW_AT_comp_dir";
4468 case DW_AT_const_value:
4469 return "DW_AT_const_value";
4470 case DW_AT_containing_type:
4471 return "DW_AT_containing_type";
4472 case DW_AT_default_value:
4473 return "DW_AT_default_value";
4474 case DW_AT_inline:
4475 return "DW_AT_inline";
4476 case DW_AT_is_optional:
4477 return "DW_AT_is_optional";
4478 case DW_AT_lower_bound:
4479 return "DW_AT_lower_bound";
4480 case DW_AT_producer:
4481 return "DW_AT_producer";
4482 case DW_AT_prototyped:
4483 return "DW_AT_prototyped";
4484 case DW_AT_return_addr:
4485 return "DW_AT_return_addr";
4486 case DW_AT_start_scope:
4487 return "DW_AT_start_scope";
4488 case DW_AT_stride_size:
4489 return "DW_AT_stride_size";
4490 case DW_AT_upper_bound:
4491 return "DW_AT_upper_bound";
4492 case DW_AT_abstract_origin:
4493 return "DW_AT_abstract_origin";
4494 case DW_AT_accessibility:
4495 return "DW_AT_accessibility";
4496 case DW_AT_address_class:
4497 return "DW_AT_address_class";
4498 case DW_AT_artificial:
4499 return "DW_AT_artificial";
4500 case DW_AT_base_types:
4501 return "DW_AT_base_types";
4502 case DW_AT_calling_convention:
4503 return "DW_AT_calling_convention";
4504 case DW_AT_count:
4505 return "DW_AT_count";
4506 case DW_AT_data_member_location:
4507 return "DW_AT_data_member_location";
4508 case DW_AT_decl_column:
4509 return "DW_AT_decl_column";
4510 case DW_AT_decl_file:
4511 return "DW_AT_decl_file";
4512 case DW_AT_decl_line:
4513 return "DW_AT_decl_line";
4514 case DW_AT_declaration:
4515 return "DW_AT_declaration";
4516 case DW_AT_discr_list:
4517 return "DW_AT_discr_list";
4518 case DW_AT_encoding:
4519 return "DW_AT_encoding";
4520 case DW_AT_external:
4521 return "DW_AT_external";
4522 case DW_AT_frame_base:
4523 return "DW_AT_frame_base";
4524 case DW_AT_friend:
4525 return "DW_AT_friend";
4526 case DW_AT_identifier_case:
4527 return "DW_AT_identifier_case";
4528 case DW_AT_macro_info:
4529 return "DW_AT_macro_info";
4530 case DW_AT_namelist_items:
4531 return "DW_AT_namelist_items";
4532 case DW_AT_priority:
4533 return "DW_AT_priority";
4534 case DW_AT_segment:
4535 return "DW_AT_segment";
4536 case DW_AT_specification:
4537 return "DW_AT_specification";
4538 case DW_AT_static_link:
4539 return "DW_AT_static_link";
4540 case DW_AT_type:
4541 return "DW_AT_type";
4542 case DW_AT_use_location:
4543 return "DW_AT_use_location";
4544 case DW_AT_variable_parameter:
4545 return "DW_AT_variable_parameter";
4546 case DW_AT_virtuality:
4547 return "DW_AT_virtuality";
4548 case DW_AT_vtable_elem_location:
4549 return "DW_AT_vtable_elem_location";
4551 case DW_AT_allocated:
4552 return "DW_AT_allocated";
4553 case DW_AT_associated:
4554 return "DW_AT_associated";
4555 case DW_AT_data_location:
4556 return "DW_AT_data_location";
4557 case DW_AT_stride:
4558 return "DW_AT_stride";
4559 case DW_AT_entry_pc:
4560 return "DW_AT_entry_pc";
4561 case DW_AT_use_UTF8:
4562 return "DW_AT_use_UTF8";
4563 case DW_AT_extension:
4564 return "DW_AT_extension";
4565 case DW_AT_ranges:
4566 return "DW_AT_ranges";
4567 case DW_AT_trampoline:
4568 return "DW_AT_trampoline";
4569 case DW_AT_call_column:
4570 return "DW_AT_call_column";
4571 case DW_AT_call_file:
4572 return "DW_AT_call_file";
4573 case DW_AT_call_line:
4574 return "DW_AT_call_line";
4576 case DW_AT_MIPS_fde:
4577 return "DW_AT_MIPS_fde";
4578 case DW_AT_MIPS_loop_begin:
4579 return "DW_AT_MIPS_loop_begin";
4580 case DW_AT_MIPS_tail_loop_begin:
4581 return "DW_AT_MIPS_tail_loop_begin";
4582 case DW_AT_MIPS_epilog_begin:
4583 return "DW_AT_MIPS_epilog_begin";
4584 case DW_AT_MIPS_loop_unroll_factor:
4585 return "DW_AT_MIPS_loop_unroll_factor";
4586 case DW_AT_MIPS_software_pipeline_depth:
4587 return "DW_AT_MIPS_software_pipeline_depth";
4588 case DW_AT_MIPS_linkage_name:
4589 return "DW_AT_MIPS_linkage_name";
4590 case DW_AT_MIPS_stride:
4591 return "DW_AT_MIPS_stride";
4592 case DW_AT_MIPS_abstract_name:
4593 return "DW_AT_MIPS_abstract_name";
4594 case DW_AT_MIPS_clone_origin:
4595 return "DW_AT_MIPS_clone_origin";
4596 case DW_AT_MIPS_has_inlines:
4597 return "DW_AT_MIPS_has_inlines";
4599 case DW_AT_sf_names:
4600 return "DW_AT_sf_names";
4601 case DW_AT_src_info:
4602 return "DW_AT_src_info";
4603 case DW_AT_mac_info:
4604 return "DW_AT_mac_info";
4605 case DW_AT_src_coords:
4606 return "DW_AT_src_coords";
4607 case DW_AT_body_begin:
4608 return "DW_AT_body_begin";
4609 case DW_AT_body_end:
4610 return "DW_AT_body_end";
4611 case DW_AT_GNU_vector:
4612 return "DW_AT_GNU_vector";
4614 case DW_AT_VMS_rtnbeg_pd_address:
4615 return "DW_AT_VMS_rtnbeg_pd_address";
4617 default:
4618 return "DW_AT_<unknown>";
4622 /* Convert a DWARF value form code into its string name. */
4624 static const char *
4625 dwarf_form_name (unsigned int form)
4627 switch (form)
4629 case DW_FORM_addr:
4630 return "DW_FORM_addr";
4631 case DW_FORM_block2:
4632 return "DW_FORM_block2";
4633 case DW_FORM_block4:
4634 return "DW_FORM_block4";
4635 case DW_FORM_data2:
4636 return "DW_FORM_data2";
4637 case DW_FORM_data4:
4638 return "DW_FORM_data4";
4639 case DW_FORM_data8:
4640 return "DW_FORM_data8";
4641 case DW_FORM_string:
4642 return "DW_FORM_string";
4643 case DW_FORM_block:
4644 return "DW_FORM_block";
4645 case DW_FORM_block1:
4646 return "DW_FORM_block1";
4647 case DW_FORM_data1:
4648 return "DW_FORM_data1";
4649 case DW_FORM_flag:
4650 return "DW_FORM_flag";
4651 case DW_FORM_sdata:
4652 return "DW_FORM_sdata";
4653 case DW_FORM_strp:
4654 return "DW_FORM_strp";
4655 case DW_FORM_udata:
4656 return "DW_FORM_udata";
4657 case DW_FORM_ref_addr:
4658 return "DW_FORM_ref_addr";
4659 case DW_FORM_ref1:
4660 return "DW_FORM_ref1";
4661 case DW_FORM_ref2:
4662 return "DW_FORM_ref2";
4663 case DW_FORM_ref4:
4664 return "DW_FORM_ref4";
4665 case DW_FORM_ref8:
4666 return "DW_FORM_ref8";
4667 case DW_FORM_ref_udata:
4668 return "DW_FORM_ref_udata";
4669 case DW_FORM_indirect:
4670 return "DW_FORM_indirect";
4671 default:
4672 return "DW_FORM_<unknown>";
4676 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4677 instance of an inlined instance of a decl which is local to an inline
4678 function, so we have to trace all of the way back through the origin chain
4679 to find out what sort of node actually served as the original seed for the
4680 given block. */
4682 static tree
4683 decl_ultimate_origin (tree decl)
4685 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4686 return NULL_TREE;
4688 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4689 nodes in the function to point to themselves; ignore that if
4690 we're trying to output the abstract instance of this function. */
4691 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4692 return NULL_TREE;
4694 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4695 most distant ancestor, this should never happen. */
4696 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4698 return DECL_ABSTRACT_ORIGIN (decl);
4701 /* Determine the "ultimate origin" of a block. The block may be an inlined
4702 instance of an inlined instance of a block which is local to an inline
4703 function, so we have to trace all of the way back through the origin chain
4704 to find out what sort of node actually served as the original seed for the
4705 given block. */
4707 static tree
4708 block_ultimate_origin (tree block)
4710 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4712 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4713 nodes in the function to point to themselves; ignore that if
4714 we're trying to output the abstract instance of this function. */
4715 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4716 return NULL_TREE;
4718 if (immediate_origin == NULL_TREE)
4719 return NULL_TREE;
4720 else
4722 tree ret_val;
4723 tree lookahead = immediate_origin;
4727 ret_val = lookahead;
4728 lookahead = (TREE_CODE (ret_val) == BLOCK
4729 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4731 while (lookahead != NULL && lookahead != ret_val);
4733 /* The block's abstract origin chain may not be the *ultimate* origin of
4734 the block. It could lead to a DECL that has an abstract origin set.
4735 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4736 will give us if it has one). Note that DECL's abstract origins are
4737 supposed to be the most distant ancestor (or so decl_ultimate_origin
4738 claims), so we don't need to loop following the DECL origins. */
4739 if (DECL_P (ret_val))
4740 return DECL_ORIGIN (ret_val);
4742 return ret_val;
4746 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4747 of a virtual function may refer to a base class, so we check the 'this'
4748 parameter. */
4750 static tree
4751 decl_class_context (tree decl)
4753 tree context = NULL_TREE;
4755 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4756 context = DECL_CONTEXT (decl);
4757 else
4758 context = TYPE_MAIN_VARIANT
4759 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4761 if (context && !TYPE_P (context))
4762 context = NULL_TREE;
4764 return context;
4767 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4768 addition order, and correct that in reverse_all_dies. */
4770 static inline void
4771 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4773 if (die != NULL && attr != NULL)
4775 attr->dw_attr_next = die->die_attr;
4776 die->die_attr = attr;
4780 static inline enum dw_val_class
4781 AT_class (dw_attr_ref a)
4783 return a->dw_attr_val.val_class;
4786 /* Add a flag value attribute to a DIE. */
4788 static inline void
4789 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4791 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4793 attr->dw_attr_next = NULL;
4794 attr->dw_attr = attr_kind;
4795 attr->dw_attr_val.val_class = dw_val_class_flag;
4796 attr->dw_attr_val.v.val_flag = flag;
4797 add_dwarf_attr (die, attr);
4800 static inline unsigned
4801 AT_flag (dw_attr_ref a)
4803 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4804 return a->dw_attr_val.v.val_flag;
4807 /* Add a signed integer attribute value to a DIE. */
4809 static inline void
4810 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4812 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4814 attr->dw_attr_next = NULL;
4815 attr->dw_attr = attr_kind;
4816 attr->dw_attr_val.val_class = dw_val_class_const;
4817 attr->dw_attr_val.v.val_int = int_val;
4818 add_dwarf_attr (die, attr);
4821 static inline HOST_WIDE_INT
4822 AT_int (dw_attr_ref a)
4824 gcc_assert (a && AT_class (a) == dw_val_class_const);
4825 return a->dw_attr_val.v.val_int;
4828 /* Add an unsigned integer attribute value to a DIE. */
4830 static inline void
4831 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4832 unsigned HOST_WIDE_INT unsigned_val)
4834 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4836 attr->dw_attr_next = NULL;
4837 attr->dw_attr = attr_kind;
4838 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4839 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4840 add_dwarf_attr (die, attr);
4843 static inline unsigned HOST_WIDE_INT
4844 AT_unsigned (dw_attr_ref a)
4846 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4847 return a->dw_attr_val.v.val_unsigned;
4850 /* Add an unsigned double integer attribute value to a DIE. */
4852 static inline void
4853 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4854 long unsigned int val_hi, long unsigned int val_low)
4856 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4858 attr->dw_attr_next = NULL;
4859 attr->dw_attr = attr_kind;
4860 attr->dw_attr_val.val_class = dw_val_class_long_long;
4861 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4862 attr->dw_attr_val.v.val_long_long.low = val_low;
4863 add_dwarf_attr (die, attr);
4866 /* Add a floating point attribute value to a DIE and return it. */
4868 static inline void
4869 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4870 unsigned int length, unsigned int elt_size, unsigned char *array)
4872 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4874 attr->dw_attr_next = NULL;
4875 attr->dw_attr = attr_kind;
4876 attr->dw_attr_val.val_class = dw_val_class_vec;
4877 attr->dw_attr_val.v.val_vec.length = length;
4878 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4879 attr->dw_attr_val.v.val_vec.array = array;
4880 add_dwarf_attr (die, attr);
4883 /* Hash and equality functions for debug_str_hash. */
4885 static hashval_t
4886 debug_str_do_hash (const void *x)
4888 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4891 static int
4892 debug_str_eq (const void *x1, const void *x2)
4894 return strcmp ((((const struct indirect_string_node *)x1)->str),
4895 (const char *)x2) == 0;
4898 /* Add a string attribute value to a DIE. */
4900 static inline void
4901 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4903 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4904 struct indirect_string_node *node;
4905 void **slot;
4907 if (! debug_str_hash)
4908 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4909 debug_str_eq, NULL);
4911 slot = htab_find_slot_with_hash (debug_str_hash, str,
4912 htab_hash_string (str), INSERT);
4913 if (*slot == NULL)
4914 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4915 node = (struct indirect_string_node *) *slot;
4916 node->str = ggc_strdup (str);
4917 node->refcount++;
4919 attr->dw_attr_next = NULL;
4920 attr->dw_attr = attr_kind;
4921 attr->dw_attr_val.val_class = dw_val_class_str;
4922 attr->dw_attr_val.v.val_str = node;
4923 add_dwarf_attr (die, attr);
4926 static inline const char *
4927 AT_string (dw_attr_ref a)
4929 gcc_assert (a && AT_class (a) == dw_val_class_str);
4930 return a->dw_attr_val.v.val_str->str;
4933 /* Find out whether a string should be output inline in DIE
4934 or out-of-line in .debug_str section. */
4936 static int
4937 AT_string_form (dw_attr_ref a)
4939 struct indirect_string_node *node;
4940 unsigned int len;
4941 char label[32];
4943 gcc_assert (a && AT_class (a) == dw_val_class_str);
4945 node = a->dw_attr_val.v.val_str;
4946 if (node->form)
4947 return node->form;
4949 len = strlen (node->str) + 1;
4951 /* If the string is shorter or equal to the size of the reference, it is
4952 always better to put it inline. */
4953 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4954 return node->form = DW_FORM_string;
4956 /* If we cannot expect the linker to merge strings in .debug_str
4957 section, only put it into .debug_str if it is worth even in this
4958 single module. */
4959 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4960 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4961 return node->form = DW_FORM_string;
4963 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4964 ++dw2_string_counter;
4965 node->label = xstrdup (label);
4967 return node->form = DW_FORM_strp;
4970 /* Add a DIE reference attribute value to a DIE. */
4972 static inline void
4973 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4975 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4977 attr->dw_attr_next = NULL;
4978 attr->dw_attr = attr_kind;
4979 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4980 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4981 attr->dw_attr_val.v.val_die_ref.external = 0;
4982 add_dwarf_attr (die, attr);
4985 /* Add an AT_specification attribute to a DIE, and also make the back
4986 pointer from the specification to the definition. */
4988 static inline void
4989 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4991 add_AT_die_ref (die, DW_AT_specification, targ_die);
4992 gcc_assert (!targ_die->die_definition);
4993 targ_die->die_definition = die;
4996 static inline dw_die_ref
4997 AT_ref (dw_attr_ref a)
4999 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5000 return a->dw_attr_val.v.val_die_ref.die;
5003 static inline int
5004 AT_ref_external (dw_attr_ref a)
5006 if (a && AT_class (a) == dw_val_class_die_ref)
5007 return a->dw_attr_val.v.val_die_ref.external;
5009 return 0;
5012 static inline void
5013 set_AT_ref_external (dw_attr_ref a, int i)
5015 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5016 a->dw_attr_val.v.val_die_ref.external = i;
5019 /* Add an FDE reference attribute value to a DIE. */
5021 static inline void
5022 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5024 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5026 attr->dw_attr_next = NULL;
5027 attr->dw_attr = attr_kind;
5028 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
5029 attr->dw_attr_val.v.val_fde_index = targ_fde;
5030 add_dwarf_attr (die, attr);
5033 /* Add a location description attribute value to a DIE. */
5035 static inline void
5036 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5038 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5040 attr->dw_attr_next = NULL;
5041 attr->dw_attr = attr_kind;
5042 attr->dw_attr_val.val_class = dw_val_class_loc;
5043 attr->dw_attr_val.v.val_loc = loc;
5044 add_dwarf_attr (die, attr);
5047 static inline dw_loc_descr_ref
5048 AT_loc (dw_attr_ref a)
5050 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5051 return a->dw_attr_val.v.val_loc;
5054 static inline void
5055 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5057 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5059 attr->dw_attr_next = NULL;
5060 attr->dw_attr = attr_kind;
5061 attr->dw_attr_val.val_class = dw_val_class_loc_list;
5062 attr->dw_attr_val.v.val_loc_list = loc_list;
5063 add_dwarf_attr (die, attr);
5064 have_location_lists = 1;
5067 static inline dw_loc_list_ref
5068 AT_loc_list (dw_attr_ref a)
5070 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5071 return a->dw_attr_val.v.val_loc_list;
5074 /* Add an address constant attribute value to a DIE. */
5076 static inline void
5077 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5079 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5081 attr->dw_attr_next = NULL;
5082 attr->dw_attr = attr_kind;
5083 attr->dw_attr_val.val_class = dw_val_class_addr;
5084 attr->dw_attr_val.v.val_addr = addr;
5085 add_dwarf_attr (die, attr);
5088 static inline rtx
5089 AT_addr (dw_attr_ref a)
5091 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5092 return a->dw_attr_val.v.val_addr;
5095 /* Add a label identifier attribute value to a DIE. */
5097 static inline void
5098 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5100 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5102 attr->dw_attr_next = NULL;
5103 attr->dw_attr = attr_kind;
5104 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5105 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5106 add_dwarf_attr (die, attr);
5109 /* Add a section offset attribute value to a DIE. */
5111 static inline void
5112 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5114 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5116 attr->dw_attr_next = NULL;
5117 attr->dw_attr = attr_kind;
5118 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5119 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5120 add_dwarf_attr (die, attr);
5123 /* Add an offset attribute value to a DIE. */
5125 static inline void
5126 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5127 unsigned HOST_WIDE_INT offset)
5129 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5131 attr->dw_attr_next = NULL;
5132 attr->dw_attr = attr_kind;
5133 attr->dw_attr_val.val_class = dw_val_class_offset;
5134 attr->dw_attr_val.v.val_offset = offset;
5135 add_dwarf_attr (die, attr);
5138 /* Add an range_list attribute value to a DIE. */
5140 static void
5141 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5142 long unsigned int offset)
5144 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5146 attr->dw_attr_next = NULL;
5147 attr->dw_attr = attr_kind;
5148 attr->dw_attr_val.val_class = dw_val_class_range_list;
5149 attr->dw_attr_val.v.val_offset = offset;
5150 add_dwarf_attr (die, attr);
5153 static inline const char *
5154 AT_lbl (dw_attr_ref a)
5156 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5157 || AT_class (a) == dw_val_class_lbl_offset));
5158 return a->dw_attr_val.v.val_lbl_id;
5161 /* Get the attribute of type attr_kind. */
5163 static dw_attr_ref
5164 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5166 dw_attr_ref a;
5167 dw_die_ref spec = NULL;
5169 if (die != NULL)
5171 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5172 if (a->dw_attr == attr_kind)
5173 return a;
5174 else if (a->dw_attr == DW_AT_specification
5175 || a->dw_attr == DW_AT_abstract_origin)
5176 spec = AT_ref (a);
5178 if (spec)
5179 return get_AT (spec, attr_kind);
5182 return NULL;
5185 /* Return the "low pc" attribute value, typically associated with a subprogram
5186 DIE. Return null if the "low pc" attribute is either not present, or if it
5187 cannot be represented as an assembler label identifier. */
5189 static inline const char *
5190 get_AT_low_pc (dw_die_ref die)
5192 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5194 return a ? AT_lbl (a) : NULL;
5197 /* Return the "high pc" attribute value, typically associated with a subprogram
5198 DIE. Return null if the "high pc" attribute is either not present, or if it
5199 cannot be represented as an assembler label identifier. */
5201 static inline const char *
5202 get_AT_hi_pc (dw_die_ref die)
5204 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5206 return a ? AT_lbl (a) : NULL;
5209 /* Return the value of the string attribute designated by ATTR_KIND, or
5210 NULL if it is not present. */
5212 static inline const char *
5213 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5215 dw_attr_ref a = get_AT (die, attr_kind);
5217 return a ? AT_string (a) : NULL;
5220 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5221 if it is not present. */
5223 static inline int
5224 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5226 dw_attr_ref a = get_AT (die, attr_kind);
5228 return a ? AT_flag (a) : 0;
5231 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5232 if it is not present. */
5234 static inline unsigned
5235 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5237 dw_attr_ref a = get_AT (die, attr_kind);
5239 return a ? AT_unsigned (a) : 0;
5242 static inline dw_die_ref
5243 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5245 dw_attr_ref a = get_AT (die, attr_kind);
5247 return a ? AT_ref (a) : NULL;
5250 /* Return TRUE if the language is C or C++. */
5252 static inline bool
5253 is_c_family (void)
5255 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5257 return (lang == DW_LANG_C || lang == DW_LANG_C89
5258 || lang == DW_LANG_C_plus_plus);
5261 /* Return TRUE if the language is C++. */
5263 static inline bool
5264 is_cxx (void)
5266 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5267 == DW_LANG_C_plus_plus);
5270 /* Return TRUE if the language is Fortran. */
5272 static inline bool
5273 is_fortran (void)
5275 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5277 return (lang == DW_LANG_Fortran77
5278 || lang == DW_LANG_Fortran90
5279 || lang == DW_LANG_Fortran95);
5282 /* Return TRUE if the language is Java. */
5284 static inline bool
5285 is_java (void)
5287 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5289 return lang == DW_LANG_Java;
5292 /* Return TRUE if the language is Ada. */
5294 static inline bool
5295 is_ada (void)
5297 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5299 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5302 /* Free up the memory used by A. */
5304 static inline void free_AT (dw_attr_ref);
5305 static inline void
5306 free_AT (dw_attr_ref a)
5308 if (AT_class (a) == dw_val_class_str)
5309 if (a->dw_attr_val.v.val_str->refcount)
5310 a->dw_attr_val.v.val_str->refcount--;
5313 /* Remove the specified attribute if present. */
5315 static void
5316 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5318 dw_attr_ref *p;
5319 dw_attr_ref removed = NULL;
5321 if (die != NULL)
5323 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5324 if ((*p)->dw_attr == attr_kind)
5326 removed = *p;
5327 *p = (*p)->dw_attr_next;
5328 break;
5331 if (removed != 0)
5332 free_AT (removed);
5336 /* Remove child die whose die_tag is specified tag. */
5338 static void
5339 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5341 dw_die_ref current, prev, next;
5342 current = die->die_child;
5343 prev = NULL;
5344 while (current != NULL)
5346 if (current->die_tag == tag)
5348 next = current->die_sib;
5349 if (prev == NULL)
5350 die->die_child = next;
5351 else
5352 prev->die_sib = next;
5353 free_die (current);
5354 current = next;
5356 else
5358 prev = current;
5359 current = current->die_sib;
5364 /* Free up the memory used by DIE. */
5366 static inline void
5367 free_die (dw_die_ref die)
5369 remove_children (die);
5372 /* Discard the children of this DIE. */
5374 static void
5375 remove_children (dw_die_ref die)
5377 dw_die_ref child_die = die->die_child;
5379 die->die_child = NULL;
5381 while (child_die != NULL)
5383 dw_die_ref tmp_die = child_die;
5384 dw_attr_ref a;
5386 child_die = child_die->die_sib;
5388 for (a = tmp_die->die_attr; a != NULL;)
5390 dw_attr_ref tmp_a = a;
5392 a = a->dw_attr_next;
5393 free_AT (tmp_a);
5396 free_die (tmp_die);
5400 /* Add a child DIE below its parent. We build the lists up in reverse
5401 addition order, and correct that in reverse_all_dies. */
5403 static inline void
5404 add_child_die (dw_die_ref die, dw_die_ref child_die)
5406 if (die != NULL && child_die != NULL)
5408 gcc_assert (die != child_die);
5410 child_die->die_parent = die;
5411 child_die->die_sib = die->die_child;
5412 die->die_child = child_die;
5416 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5417 is the specification, to the front of PARENT's list of children. */
5419 static void
5420 splice_child_die (dw_die_ref parent, dw_die_ref child)
5422 dw_die_ref *p;
5424 /* We want the declaration DIE from inside the class, not the
5425 specification DIE at toplevel. */
5426 if (child->die_parent != parent)
5428 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5430 if (tmp)
5431 child = tmp;
5434 gcc_assert (child->die_parent == parent
5435 || (child->die_parent
5436 == get_AT_ref (parent, DW_AT_specification)));
5438 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5439 if (*p == child)
5441 *p = child->die_sib;
5442 break;
5445 child->die_parent = parent;
5446 child->die_sib = parent->die_child;
5447 parent->die_child = child;
5450 /* Return a pointer to a newly created DIE node. */
5452 static inline dw_die_ref
5453 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5455 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5457 die->die_tag = tag_value;
5459 if (parent_die != NULL)
5460 add_child_die (parent_die, die);
5461 else
5463 limbo_die_node *limbo_node;
5465 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5466 limbo_node->die = die;
5467 limbo_node->created_for = t;
5468 limbo_node->next = limbo_die_list;
5469 limbo_die_list = limbo_node;
5472 return die;
5475 /* Return the DIE associated with the given type specifier. */
5477 static inline dw_die_ref
5478 lookup_type_die (tree type)
5480 return TYPE_SYMTAB_DIE (type);
5483 /* Equate a DIE to a given type specifier. */
5485 static inline void
5486 equate_type_number_to_die (tree type, dw_die_ref type_die)
5488 TYPE_SYMTAB_DIE (type) = type_die;
5491 /* Returns a hash value for X (which really is a die_struct). */
5493 static hashval_t
5494 decl_die_table_hash (const void *x)
5496 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5499 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5501 static int
5502 decl_die_table_eq (const void *x, const void *y)
5504 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5507 /* Return the DIE associated with a given declaration. */
5509 static inline dw_die_ref
5510 lookup_decl_die (tree decl)
5512 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5515 /* Returns a hash value for X (which really is a var_loc_list). */
5517 static hashval_t
5518 decl_loc_table_hash (const void *x)
5520 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5523 /* Return nonzero if decl_id of var_loc_list X is the same as
5524 UID of decl *Y. */
5526 static int
5527 decl_loc_table_eq (const void *x, const void *y)
5529 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5532 /* Return the var_loc list associated with a given declaration. */
5534 static inline var_loc_list *
5535 lookup_decl_loc (tree decl)
5537 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5540 /* Equate a DIE to a particular declaration. */
5542 static void
5543 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5545 unsigned int decl_id = DECL_UID (decl);
5546 void **slot;
5548 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5549 *slot = decl_die;
5550 decl_die->decl_id = decl_id;
5553 /* Add a variable location node to the linked list for DECL. */
5555 static void
5556 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5558 unsigned int decl_id = DECL_UID (decl);
5559 var_loc_list *temp;
5560 void **slot;
5562 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5563 if (*slot == NULL)
5565 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5566 temp->decl_id = decl_id;
5567 *slot = temp;
5569 else
5570 temp = *slot;
5572 if (temp->last)
5574 /* If the current location is the same as the end of the list,
5575 we have nothing to do. */
5576 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5577 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5579 /* Add LOC to the end of list and update LAST. */
5580 temp->last->next = loc;
5581 temp->last = loc;
5584 /* Do not add empty location to the beginning of the list. */
5585 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5587 temp->first = loc;
5588 temp->last = loc;
5592 /* Keep track of the number of spaces used to indent the
5593 output of the debugging routines that print the structure of
5594 the DIE internal representation. */
5595 static int print_indent;
5597 /* Indent the line the number of spaces given by print_indent. */
5599 static inline void
5600 print_spaces (FILE *outfile)
5602 fprintf (outfile, "%*s", print_indent, "");
5605 /* Print the information associated with a given DIE, and its children.
5606 This routine is a debugging aid only. */
5608 static void
5609 print_die (dw_die_ref die, FILE *outfile)
5611 dw_attr_ref a;
5612 dw_die_ref c;
5614 print_spaces (outfile);
5615 fprintf (outfile, "DIE %4lu: %s\n",
5616 die->die_offset, dwarf_tag_name (die->die_tag));
5617 print_spaces (outfile);
5618 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5619 fprintf (outfile, " offset: %lu\n", die->die_offset);
5621 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5623 print_spaces (outfile);
5624 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5626 switch (AT_class (a))
5628 case dw_val_class_addr:
5629 fprintf (outfile, "address");
5630 break;
5631 case dw_val_class_offset:
5632 fprintf (outfile, "offset");
5633 break;
5634 case dw_val_class_loc:
5635 fprintf (outfile, "location descriptor");
5636 break;
5637 case dw_val_class_loc_list:
5638 fprintf (outfile, "location list -> label:%s",
5639 AT_loc_list (a)->ll_symbol);
5640 break;
5641 case dw_val_class_range_list:
5642 fprintf (outfile, "range list");
5643 break;
5644 case dw_val_class_const:
5645 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5646 break;
5647 case dw_val_class_unsigned_const:
5648 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5649 break;
5650 case dw_val_class_long_long:
5651 fprintf (outfile, "constant (%lu,%lu)",
5652 a->dw_attr_val.v.val_long_long.hi,
5653 a->dw_attr_val.v.val_long_long.low);
5654 break;
5655 case dw_val_class_vec:
5656 fprintf (outfile, "floating-point or vector constant");
5657 break;
5658 case dw_val_class_flag:
5659 fprintf (outfile, "%u", AT_flag (a));
5660 break;
5661 case dw_val_class_die_ref:
5662 if (AT_ref (a) != NULL)
5664 if (AT_ref (a)->die_symbol)
5665 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5666 else
5667 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5669 else
5670 fprintf (outfile, "die -> <null>");
5671 break;
5672 case dw_val_class_lbl_id:
5673 case dw_val_class_lbl_offset:
5674 fprintf (outfile, "label: %s", AT_lbl (a));
5675 break;
5676 case dw_val_class_str:
5677 if (AT_string (a) != NULL)
5678 fprintf (outfile, "\"%s\"", AT_string (a));
5679 else
5680 fprintf (outfile, "<null>");
5681 break;
5682 default:
5683 break;
5686 fprintf (outfile, "\n");
5689 if (die->die_child != NULL)
5691 print_indent += 4;
5692 for (c = die->die_child; c != NULL; c = c->die_sib)
5693 print_die (c, outfile);
5695 print_indent -= 4;
5697 if (print_indent == 0)
5698 fprintf (outfile, "\n");
5701 /* Print the contents of the source code line number correspondence table.
5702 This routine is a debugging aid only. */
5704 static void
5705 print_dwarf_line_table (FILE *outfile)
5707 unsigned i;
5708 dw_line_info_ref line_info;
5710 fprintf (outfile, "\n\nDWARF source line information\n");
5711 for (i = 1; i < line_info_table_in_use; i++)
5713 line_info = &line_info_table[i];
5714 fprintf (outfile, "%5d: ", i);
5715 fprintf (outfile, "%-20s",
5716 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5717 fprintf (outfile, "%6ld", line_info->dw_line_num);
5718 fprintf (outfile, "\n");
5721 fprintf (outfile, "\n\n");
5724 /* Print the information collected for a given DIE. */
5726 void
5727 debug_dwarf_die (dw_die_ref die)
5729 print_die (die, stderr);
5732 /* Print all DWARF information collected for the compilation unit.
5733 This routine is a debugging aid only. */
5735 void
5736 debug_dwarf (void)
5738 print_indent = 0;
5739 print_die (comp_unit_die, stderr);
5740 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5741 print_dwarf_line_table (stderr);
5744 /* We build up the lists of children and attributes by pushing new ones
5745 onto the beginning of the list. Reverse the lists for DIE so that
5746 they are in order of addition. */
5748 static void
5749 reverse_die_lists (dw_die_ref die)
5751 dw_die_ref c, cp, cn;
5752 dw_attr_ref a, ap, an;
5754 for (a = die->die_attr, ap = 0; a; a = an)
5756 an = a->dw_attr_next;
5757 a->dw_attr_next = ap;
5758 ap = a;
5761 die->die_attr = ap;
5763 for (c = die->die_child, cp = 0; c; c = cn)
5765 cn = c->die_sib;
5766 c->die_sib = cp;
5767 cp = c;
5770 die->die_child = cp;
5773 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5774 reverse all dies in add_sibling_attributes, which runs through all the dies,
5775 it would reverse all the dies. Now, however, since we don't call
5776 reverse_die_lists in add_sibling_attributes, we need a routine to
5777 recursively reverse all the dies. This is that routine. */
5779 static void
5780 reverse_all_dies (dw_die_ref die)
5782 dw_die_ref c;
5784 reverse_die_lists (die);
5786 for (c = die->die_child; c; c = c->die_sib)
5787 reverse_all_dies (c);
5790 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5791 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5792 DIE that marks the start of the DIEs for this include file. */
5794 static dw_die_ref
5795 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5797 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5798 dw_die_ref new_unit = gen_compile_unit_die (filename);
5800 new_unit->die_sib = old_unit;
5801 return new_unit;
5804 /* Close an include-file CU and reopen the enclosing one. */
5806 static dw_die_ref
5807 pop_compile_unit (dw_die_ref old_unit)
5809 dw_die_ref new_unit = old_unit->die_sib;
5811 old_unit->die_sib = NULL;
5812 return new_unit;
5815 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5816 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5818 /* Calculate the checksum of a location expression. */
5820 static inline void
5821 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5823 CHECKSUM (loc->dw_loc_opc);
5824 CHECKSUM (loc->dw_loc_oprnd1);
5825 CHECKSUM (loc->dw_loc_oprnd2);
5828 /* Calculate the checksum of an attribute. */
5830 static void
5831 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5833 dw_loc_descr_ref loc;
5834 rtx r;
5836 CHECKSUM (at->dw_attr);
5838 /* We don't care about differences in file numbering. */
5839 if (at->dw_attr == DW_AT_decl_file
5840 /* Or that this was compiled with a different compiler snapshot; if
5841 the output is the same, that's what matters. */
5842 || at->dw_attr == DW_AT_producer)
5843 return;
5845 switch (AT_class (at))
5847 case dw_val_class_const:
5848 CHECKSUM (at->dw_attr_val.v.val_int);
5849 break;
5850 case dw_val_class_unsigned_const:
5851 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5852 break;
5853 case dw_val_class_long_long:
5854 CHECKSUM (at->dw_attr_val.v.val_long_long);
5855 break;
5856 case dw_val_class_vec:
5857 CHECKSUM (at->dw_attr_val.v.val_vec);
5858 break;
5859 case dw_val_class_flag:
5860 CHECKSUM (at->dw_attr_val.v.val_flag);
5861 break;
5862 case dw_val_class_str:
5863 CHECKSUM_STRING (AT_string (at));
5864 break;
5866 case dw_val_class_addr:
5867 r = AT_addr (at);
5868 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5869 CHECKSUM_STRING (XSTR (r, 0));
5870 break;
5872 case dw_val_class_offset:
5873 CHECKSUM (at->dw_attr_val.v.val_offset);
5874 break;
5876 case dw_val_class_loc:
5877 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5878 loc_checksum (loc, ctx);
5879 break;
5881 case dw_val_class_die_ref:
5882 die_checksum (AT_ref (at), ctx, mark);
5883 break;
5885 case dw_val_class_fde_ref:
5886 case dw_val_class_lbl_id:
5887 case dw_val_class_lbl_offset:
5888 break;
5890 default:
5891 break;
5895 /* Calculate the checksum of a DIE. */
5897 static void
5898 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5900 dw_die_ref c;
5901 dw_attr_ref a;
5903 /* To avoid infinite recursion. */
5904 if (die->die_mark)
5906 CHECKSUM (die->die_mark);
5907 return;
5909 die->die_mark = ++(*mark);
5911 CHECKSUM (die->die_tag);
5913 for (a = die->die_attr; a; a = a->dw_attr_next)
5914 attr_checksum (a, ctx, mark);
5916 for (c = die->die_child; c; c = c->die_sib)
5917 die_checksum (c, ctx, mark);
5920 #undef CHECKSUM
5921 #undef CHECKSUM_STRING
5923 /* Do the location expressions look same? */
5924 static inline int
5925 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5927 return loc1->dw_loc_opc == loc2->dw_loc_opc
5928 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5929 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5932 /* Do the values look the same? */
5933 static int
5934 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5936 dw_loc_descr_ref loc1, loc2;
5937 rtx r1, r2;
5939 if (v1->val_class != v2->val_class)
5940 return 0;
5942 switch (v1->val_class)
5944 case dw_val_class_const:
5945 return v1->v.val_int == v2->v.val_int;
5946 case dw_val_class_unsigned_const:
5947 return v1->v.val_unsigned == v2->v.val_unsigned;
5948 case dw_val_class_long_long:
5949 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5950 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5951 case dw_val_class_vec:
5952 if (v1->v.val_vec.length != v2->v.val_vec.length
5953 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5954 return 0;
5955 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5956 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5957 return 0;
5958 return 1;
5959 case dw_val_class_flag:
5960 return v1->v.val_flag == v2->v.val_flag;
5961 case dw_val_class_str:
5962 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5964 case dw_val_class_addr:
5965 r1 = v1->v.val_addr;
5966 r2 = v2->v.val_addr;
5967 if (GET_CODE (r1) != GET_CODE (r2))
5968 return 0;
5969 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5970 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5972 case dw_val_class_offset:
5973 return v1->v.val_offset == v2->v.val_offset;
5975 case dw_val_class_loc:
5976 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5977 loc1 && loc2;
5978 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5979 if (!same_loc_p (loc1, loc2, mark))
5980 return 0;
5981 return !loc1 && !loc2;
5983 case dw_val_class_die_ref:
5984 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5986 case dw_val_class_fde_ref:
5987 case dw_val_class_lbl_id:
5988 case dw_val_class_lbl_offset:
5989 return 1;
5991 default:
5992 return 1;
5996 /* Do the attributes look the same? */
5998 static int
5999 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6001 if (at1->dw_attr != at2->dw_attr)
6002 return 0;
6004 /* We don't care about differences in file numbering. */
6005 if (at1->dw_attr == DW_AT_decl_file
6006 /* Or that this was compiled with a different compiler snapshot; if
6007 the output is the same, that's what matters. */
6008 || at1->dw_attr == DW_AT_producer)
6009 return 1;
6011 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6014 /* Do the dies look the same? */
6016 static int
6017 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6019 dw_die_ref c1, c2;
6020 dw_attr_ref a1, a2;
6022 /* To avoid infinite recursion. */
6023 if (die1->die_mark)
6024 return die1->die_mark == die2->die_mark;
6025 die1->die_mark = die2->die_mark = ++(*mark);
6027 if (die1->die_tag != die2->die_tag)
6028 return 0;
6030 for (a1 = die1->die_attr, a2 = die2->die_attr;
6031 a1 && a2;
6032 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
6033 if (!same_attr_p (a1, a2, mark))
6034 return 0;
6035 if (a1 || a2)
6036 return 0;
6038 for (c1 = die1->die_child, c2 = die2->die_child;
6039 c1 && c2;
6040 c1 = c1->die_sib, c2 = c2->die_sib)
6041 if (!same_die_p (c1, c2, mark))
6042 return 0;
6043 if (c1 || c2)
6044 return 0;
6046 return 1;
6049 /* Do the dies look the same? Wrapper around same_die_p. */
6051 static int
6052 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6054 int mark = 0;
6055 int ret = same_die_p (die1, die2, &mark);
6057 unmark_all_dies (die1);
6058 unmark_all_dies (die2);
6060 return ret;
6063 /* The prefix to attach to symbols on DIEs in the current comdat debug
6064 info section. */
6065 static char *comdat_symbol_id;
6067 /* The index of the current symbol within the current comdat CU. */
6068 static unsigned int comdat_symbol_number;
6070 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6071 children, and set comdat_symbol_id accordingly. */
6073 static void
6074 compute_section_prefix (dw_die_ref unit_die)
6076 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6077 const char *base = die_name ? lbasename (die_name) : "anonymous";
6078 char *name = alloca (strlen (base) + 64);
6079 char *p;
6080 int i, mark;
6081 unsigned char checksum[16];
6082 struct md5_ctx ctx;
6084 /* Compute the checksum of the DIE, then append part of it as hex digits to
6085 the name filename of the unit. */
6087 md5_init_ctx (&ctx);
6088 mark = 0;
6089 die_checksum (unit_die, &ctx, &mark);
6090 unmark_all_dies (unit_die);
6091 md5_finish_ctx (&ctx, checksum);
6093 sprintf (name, "%s.", base);
6094 clean_symbol_name (name);
6096 p = name + strlen (name);
6097 for (i = 0; i < 4; i++)
6099 sprintf (p, "%.2x", checksum[i]);
6100 p += 2;
6103 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6104 comdat_symbol_number = 0;
6107 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6109 static int
6110 is_type_die (dw_die_ref die)
6112 switch (die->die_tag)
6114 case DW_TAG_array_type:
6115 case DW_TAG_class_type:
6116 case DW_TAG_enumeration_type:
6117 case DW_TAG_pointer_type:
6118 case DW_TAG_reference_type:
6119 case DW_TAG_string_type:
6120 case DW_TAG_structure_type:
6121 case DW_TAG_subroutine_type:
6122 case DW_TAG_union_type:
6123 case DW_TAG_ptr_to_member_type:
6124 case DW_TAG_set_type:
6125 case DW_TAG_subrange_type:
6126 case DW_TAG_base_type:
6127 case DW_TAG_const_type:
6128 case DW_TAG_file_type:
6129 case DW_TAG_packed_type:
6130 case DW_TAG_volatile_type:
6131 case DW_TAG_typedef:
6132 return 1;
6133 default:
6134 return 0;
6138 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6139 Basically, we want to choose the bits that are likely to be shared between
6140 compilations (types) and leave out the bits that are specific to individual
6141 compilations (functions). */
6143 static int
6144 is_comdat_die (dw_die_ref c)
6146 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6147 we do for stabs. The advantage is a greater likelihood of sharing between
6148 objects that don't include headers in the same order (and therefore would
6149 put the base types in a different comdat). jason 8/28/00 */
6151 if (c->die_tag == DW_TAG_base_type)
6152 return 0;
6154 if (c->die_tag == DW_TAG_pointer_type
6155 || c->die_tag == DW_TAG_reference_type
6156 || c->die_tag == DW_TAG_const_type
6157 || c->die_tag == DW_TAG_volatile_type)
6159 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6161 return t ? is_comdat_die (t) : 0;
6164 return is_type_die (c);
6167 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6168 compilation unit. */
6170 static int
6171 is_symbol_die (dw_die_ref c)
6173 return (is_type_die (c)
6174 || (get_AT (c, DW_AT_declaration)
6175 && !get_AT (c, DW_AT_specification)));
6178 static char *
6179 gen_internal_sym (const char *prefix)
6181 char buf[256];
6183 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6184 return xstrdup (buf);
6187 /* Assign symbols to all worthy DIEs under DIE. */
6189 static void
6190 assign_symbol_names (dw_die_ref die)
6192 dw_die_ref c;
6194 if (is_symbol_die (die))
6196 if (comdat_symbol_id)
6198 char *p = alloca (strlen (comdat_symbol_id) + 64);
6200 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6201 comdat_symbol_id, comdat_symbol_number++);
6202 die->die_symbol = xstrdup (p);
6204 else
6205 die->die_symbol = gen_internal_sym ("LDIE");
6208 for (c = die->die_child; c != NULL; c = c->die_sib)
6209 assign_symbol_names (c);
6212 struct cu_hash_table_entry
6214 dw_die_ref cu;
6215 unsigned min_comdat_num, max_comdat_num;
6216 struct cu_hash_table_entry *next;
6219 /* Routines to manipulate hash table of CUs. */
6220 static hashval_t
6221 htab_cu_hash (const void *of)
6223 const struct cu_hash_table_entry *entry = of;
6225 return htab_hash_string (entry->cu->die_symbol);
6228 static int
6229 htab_cu_eq (const void *of1, const void *of2)
6231 const struct cu_hash_table_entry *entry1 = of1;
6232 const struct die_struct *entry2 = of2;
6234 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6237 static void
6238 htab_cu_del (void *what)
6240 struct cu_hash_table_entry *next, *entry = what;
6242 while (entry)
6244 next = entry->next;
6245 free (entry);
6246 entry = next;
6250 /* Check whether we have already seen this CU and set up SYM_NUM
6251 accordingly. */
6252 static int
6253 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6255 struct cu_hash_table_entry dummy;
6256 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6258 dummy.max_comdat_num = 0;
6260 slot = (struct cu_hash_table_entry **)
6261 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6262 INSERT);
6263 entry = *slot;
6265 for (; entry; last = entry, entry = entry->next)
6267 if (same_die_p_wrap (cu, entry->cu))
6268 break;
6271 if (entry)
6273 *sym_num = entry->min_comdat_num;
6274 return 1;
6277 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6278 entry->cu = cu;
6279 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6280 entry->next = *slot;
6281 *slot = entry;
6283 return 0;
6286 /* Record SYM_NUM to record of CU in HTABLE. */
6287 static void
6288 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6290 struct cu_hash_table_entry **slot, *entry;
6292 slot = (struct cu_hash_table_entry **)
6293 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6294 NO_INSERT);
6295 entry = *slot;
6297 entry->max_comdat_num = sym_num;
6300 /* Traverse the DIE (which is always comp_unit_die), and set up
6301 additional compilation units for each of the include files we see
6302 bracketed by BINCL/EINCL. */
6304 static void
6305 break_out_includes (dw_die_ref die)
6307 dw_die_ref *ptr;
6308 dw_die_ref unit = NULL;
6309 limbo_die_node *node, **pnode;
6310 htab_t cu_hash_table;
6312 for (ptr = &(die->die_child); *ptr;)
6314 dw_die_ref c = *ptr;
6316 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6317 || (unit && is_comdat_die (c)))
6319 /* This DIE is for a secondary CU; remove it from the main one. */
6320 *ptr = c->die_sib;
6322 if (c->die_tag == DW_TAG_GNU_BINCL)
6324 unit = push_new_compile_unit (unit, c);
6325 free_die (c);
6327 else if (c->die_tag == DW_TAG_GNU_EINCL)
6329 unit = pop_compile_unit (unit);
6330 free_die (c);
6332 else
6333 add_child_die (unit, c);
6335 else
6337 /* Leave this DIE in the main CU. */
6338 ptr = &(c->die_sib);
6339 continue;
6343 #if 0
6344 /* We can only use this in debugging, since the frontend doesn't check
6345 to make sure that we leave every include file we enter. */
6346 gcc_assert (!unit);
6347 #endif
6349 assign_symbol_names (die);
6350 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6351 for (node = limbo_die_list, pnode = &limbo_die_list;
6352 node;
6353 node = node->next)
6355 int is_dupl;
6357 compute_section_prefix (node->die);
6358 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6359 &comdat_symbol_number);
6360 assign_symbol_names (node->die);
6361 if (is_dupl)
6362 *pnode = node->next;
6363 else
6365 pnode = &node->next;
6366 record_comdat_symbol_number (node->die, cu_hash_table,
6367 comdat_symbol_number);
6370 htab_delete (cu_hash_table);
6373 /* Traverse the DIE and add a sibling attribute if it may have the
6374 effect of speeding up access to siblings. To save some space,
6375 avoid generating sibling attributes for DIE's without children. */
6377 static void
6378 add_sibling_attributes (dw_die_ref die)
6380 dw_die_ref c;
6382 if (die->die_tag != DW_TAG_compile_unit
6383 && die->die_sib && die->die_child != NULL)
6384 /* Add the sibling link to the front of the attribute list. */
6385 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6387 for (c = die->die_child; c != NULL; c = c->die_sib)
6388 add_sibling_attributes (c);
6391 /* Output all location lists for the DIE and its children. */
6393 static void
6394 output_location_lists (dw_die_ref die)
6396 dw_die_ref c;
6397 dw_attr_ref d_attr;
6399 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6400 if (AT_class (d_attr) == dw_val_class_loc_list)
6401 output_loc_list (AT_loc_list (d_attr));
6403 for (c = die->die_child; c != NULL; c = c->die_sib)
6404 output_location_lists (c);
6408 /* The format of each DIE (and its attribute value pairs) is encoded in an
6409 abbreviation table. This routine builds the abbreviation table and assigns
6410 a unique abbreviation id for each abbreviation entry. The children of each
6411 die are visited recursively. */
6413 static void
6414 build_abbrev_table (dw_die_ref die)
6416 unsigned long abbrev_id;
6417 unsigned int n_alloc;
6418 dw_die_ref c;
6419 dw_attr_ref d_attr, a_attr;
6421 /* Scan the DIE references, and mark as external any that refer to
6422 DIEs from other CUs (i.e. those which are not marked). */
6423 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6424 if (AT_class (d_attr) == dw_val_class_die_ref
6425 && AT_ref (d_attr)->die_mark == 0)
6427 gcc_assert (AT_ref (d_attr)->die_symbol);
6429 set_AT_ref_external (d_attr, 1);
6432 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6434 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6436 if (abbrev->die_tag == die->die_tag)
6438 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6440 a_attr = abbrev->die_attr;
6441 d_attr = die->die_attr;
6443 while (a_attr != NULL && d_attr != NULL)
6445 if ((a_attr->dw_attr != d_attr->dw_attr)
6446 || (value_format (a_attr) != value_format (d_attr)))
6447 break;
6449 a_attr = a_attr->dw_attr_next;
6450 d_attr = d_attr->dw_attr_next;
6453 if (a_attr == NULL && d_attr == NULL)
6454 break;
6459 if (abbrev_id >= abbrev_die_table_in_use)
6461 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6463 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6464 abbrev_die_table = ggc_realloc (abbrev_die_table,
6465 sizeof (dw_die_ref) * n_alloc);
6467 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6468 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6469 abbrev_die_table_allocated = n_alloc;
6472 ++abbrev_die_table_in_use;
6473 abbrev_die_table[abbrev_id] = die;
6476 die->die_abbrev = abbrev_id;
6477 for (c = die->die_child; c != NULL; c = c->die_sib)
6478 build_abbrev_table (c);
6481 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6483 static int
6484 constant_size (long unsigned int value)
6486 int log;
6488 if (value == 0)
6489 log = 0;
6490 else
6491 log = floor_log2 (value);
6493 log = log / 8;
6494 log = 1 << (floor_log2 (log) + 1);
6496 return log;
6499 /* Return the size of a DIE as it is represented in the
6500 .debug_info section. */
6502 static unsigned long
6503 size_of_die (dw_die_ref die)
6505 unsigned long size = 0;
6506 dw_attr_ref a;
6508 size += size_of_uleb128 (die->die_abbrev);
6509 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6511 switch (AT_class (a))
6513 case dw_val_class_addr:
6514 size += DWARF2_ADDR_SIZE;
6515 break;
6516 case dw_val_class_offset:
6517 size += DWARF_OFFSET_SIZE;
6518 break;
6519 case dw_val_class_loc:
6521 unsigned long lsize = size_of_locs (AT_loc (a));
6523 /* Block length. */
6524 size += constant_size (lsize);
6525 size += lsize;
6527 break;
6528 case dw_val_class_loc_list:
6529 size += DWARF_OFFSET_SIZE;
6530 break;
6531 case dw_val_class_range_list:
6532 size += DWARF_OFFSET_SIZE;
6533 break;
6534 case dw_val_class_const:
6535 size += size_of_sleb128 (AT_int (a));
6536 break;
6537 case dw_val_class_unsigned_const:
6538 size += constant_size (AT_unsigned (a));
6539 break;
6540 case dw_val_class_long_long:
6541 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6542 break;
6543 case dw_val_class_vec:
6544 size += 1 + (a->dw_attr_val.v.val_vec.length
6545 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6546 break;
6547 case dw_val_class_flag:
6548 size += 1;
6549 break;
6550 case dw_val_class_die_ref:
6551 if (AT_ref_external (a))
6552 size += DWARF2_ADDR_SIZE;
6553 else
6554 size += DWARF_OFFSET_SIZE;
6555 break;
6556 case dw_val_class_fde_ref:
6557 size += DWARF_OFFSET_SIZE;
6558 break;
6559 case dw_val_class_lbl_id:
6560 size += DWARF2_ADDR_SIZE;
6561 break;
6562 case dw_val_class_lbl_offset:
6563 size += DWARF_OFFSET_SIZE;
6564 break;
6565 case dw_val_class_str:
6566 if (AT_string_form (a) == DW_FORM_strp)
6567 size += DWARF_OFFSET_SIZE;
6568 else
6569 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6570 break;
6571 default:
6572 gcc_unreachable ();
6576 return size;
6579 /* Size the debugging information associated with a given DIE. Visits the
6580 DIE's children recursively. Updates the global variable next_die_offset, on
6581 each time through. Uses the current value of next_die_offset to update the
6582 die_offset field in each DIE. */
6584 static void
6585 calc_die_sizes (dw_die_ref die)
6587 dw_die_ref c;
6589 die->die_offset = next_die_offset;
6590 next_die_offset += size_of_die (die);
6592 for (c = die->die_child; c != NULL; c = c->die_sib)
6593 calc_die_sizes (c);
6595 if (die->die_child != NULL)
6596 /* Count the null byte used to terminate sibling lists. */
6597 next_die_offset += 1;
6600 /* Set the marks for a die and its children. We do this so
6601 that we know whether or not a reference needs to use FORM_ref_addr; only
6602 DIEs in the same CU will be marked. We used to clear out the offset
6603 and use that as the flag, but ran into ordering problems. */
6605 static void
6606 mark_dies (dw_die_ref die)
6608 dw_die_ref c;
6610 gcc_assert (!die->die_mark);
6612 die->die_mark = 1;
6613 for (c = die->die_child; c; c = c->die_sib)
6614 mark_dies (c);
6617 /* Clear the marks for a die and its children. */
6619 static void
6620 unmark_dies (dw_die_ref die)
6622 dw_die_ref c;
6624 gcc_assert (die->die_mark);
6626 die->die_mark = 0;
6627 for (c = die->die_child; c; c = c->die_sib)
6628 unmark_dies (c);
6631 /* Clear the marks for a die, its children and referred dies. */
6633 static void
6634 unmark_all_dies (dw_die_ref die)
6636 dw_die_ref c;
6637 dw_attr_ref a;
6639 if (!die->die_mark)
6640 return;
6641 die->die_mark = 0;
6643 for (c = die->die_child; c; c = c->die_sib)
6644 unmark_all_dies (c);
6646 for (a = die->die_attr; a; a = a->dw_attr_next)
6647 if (AT_class (a) == dw_val_class_die_ref)
6648 unmark_all_dies (AT_ref (a));
6651 /* Return the size of the .debug_pubnames table generated for the
6652 compilation unit. */
6654 static unsigned long
6655 size_of_pubnames (void)
6657 unsigned long size;
6658 unsigned i;
6660 size = DWARF_PUBNAMES_HEADER_SIZE;
6661 for (i = 0; i < pubname_table_in_use; i++)
6663 pubname_ref p = &pubname_table[i];
6664 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6667 size += DWARF_OFFSET_SIZE;
6668 return size;
6671 /* Return the size of the information in the .debug_aranges section. */
6673 static unsigned long
6674 size_of_aranges (void)
6676 unsigned long size;
6678 size = DWARF_ARANGES_HEADER_SIZE;
6680 /* Count the address/length pair for this compilation unit. */
6681 size += 2 * DWARF2_ADDR_SIZE;
6682 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6684 /* Count the two zero words used to terminated the address range table. */
6685 size += 2 * DWARF2_ADDR_SIZE;
6686 return size;
6689 /* Select the encoding of an attribute value. */
6691 static enum dwarf_form
6692 value_format (dw_attr_ref a)
6694 switch (a->dw_attr_val.val_class)
6696 case dw_val_class_addr:
6697 return DW_FORM_addr;
6698 case dw_val_class_range_list:
6699 case dw_val_class_offset:
6700 switch (DWARF_OFFSET_SIZE)
6702 case 4:
6703 return DW_FORM_data4;
6704 case 8:
6705 return DW_FORM_data8;
6706 default:
6707 gcc_unreachable ();
6709 case dw_val_class_loc_list:
6710 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6711 .debug_loc section */
6712 return DW_FORM_data4;
6713 case dw_val_class_loc:
6714 switch (constant_size (size_of_locs (AT_loc (a))))
6716 case 1:
6717 return DW_FORM_block1;
6718 case 2:
6719 return DW_FORM_block2;
6720 default:
6721 gcc_unreachable ();
6723 case dw_val_class_const:
6724 return DW_FORM_sdata;
6725 case dw_val_class_unsigned_const:
6726 switch (constant_size (AT_unsigned (a)))
6728 case 1:
6729 return DW_FORM_data1;
6730 case 2:
6731 return DW_FORM_data2;
6732 case 4:
6733 return DW_FORM_data4;
6734 case 8:
6735 return DW_FORM_data8;
6736 default:
6737 gcc_unreachable ();
6739 case dw_val_class_long_long:
6740 return DW_FORM_block1;
6741 case dw_val_class_vec:
6742 return DW_FORM_block1;
6743 case dw_val_class_flag:
6744 return DW_FORM_flag;
6745 case dw_val_class_die_ref:
6746 if (AT_ref_external (a))
6747 return DW_FORM_ref_addr;
6748 else
6749 return DW_FORM_ref;
6750 case dw_val_class_fde_ref:
6751 return DW_FORM_data;
6752 case dw_val_class_lbl_id:
6753 return DW_FORM_addr;
6754 case dw_val_class_lbl_offset:
6755 return DW_FORM_data;
6756 case dw_val_class_str:
6757 return AT_string_form (a);
6759 default:
6760 gcc_unreachable ();
6764 /* Output the encoding of an attribute value. */
6766 static void
6767 output_value_format (dw_attr_ref a)
6769 enum dwarf_form form = value_format (a);
6771 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6774 /* Output the .debug_abbrev section which defines the DIE abbreviation
6775 table. */
6777 static void
6778 output_abbrev_section (void)
6780 unsigned long abbrev_id;
6782 dw_attr_ref a_attr;
6784 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6786 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6788 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6789 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6790 dwarf_tag_name (abbrev->die_tag));
6792 if (abbrev->die_child != NULL)
6793 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6794 else
6795 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6797 for (a_attr = abbrev->die_attr; a_attr != NULL;
6798 a_attr = a_attr->dw_attr_next)
6800 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6801 dwarf_attr_name (a_attr->dw_attr));
6802 output_value_format (a_attr);
6805 dw2_asm_output_data (1, 0, NULL);
6806 dw2_asm_output_data (1, 0, NULL);
6809 /* Terminate the table. */
6810 dw2_asm_output_data (1, 0, NULL);
6813 /* Output a symbol we can use to refer to this DIE from another CU. */
6815 static inline void
6816 output_die_symbol (dw_die_ref die)
6818 char *sym = die->die_symbol;
6820 if (sym == 0)
6821 return;
6823 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6824 /* We make these global, not weak; if the target doesn't support
6825 .linkonce, it doesn't support combining the sections, so debugging
6826 will break. */
6827 targetm.asm_out.globalize_label (asm_out_file, sym);
6829 ASM_OUTPUT_LABEL (asm_out_file, sym);
6832 /* Return a new location list, given the begin and end range, and the
6833 expression. gensym tells us whether to generate a new internal symbol for
6834 this location list node, which is done for the head of the list only. */
6836 static inline dw_loc_list_ref
6837 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6838 const char *section, unsigned int gensym)
6840 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6842 retlist->begin = begin;
6843 retlist->end = end;
6844 retlist->expr = expr;
6845 retlist->section = section;
6846 if (gensym)
6847 retlist->ll_symbol = gen_internal_sym ("LLST");
6849 return retlist;
6852 /* Add a location description expression to a location list. */
6854 static inline void
6855 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6856 const char *begin, const char *end,
6857 const char *section)
6859 dw_loc_list_ref *d;
6861 /* Find the end of the chain. */
6862 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6865 /* Add a new location list node to the list. */
6866 *d = new_loc_list (descr, begin, end, section, 0);
6869 static void
6870 dwarf2out_switch_text_section (void)
6872 dw_fde_ref fde;
6874 gcc_assert (cfun);
6876 fde = &fde_table[fde_table_in_use - 1];
6877 fde->dw_fde_switched_sections = true;
6878 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6879 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6880 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6881 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6882 have_switched_text_section = true;
6885 /* Output the location list given to us. */
6887 static void
6888 output_loc_list (dw_loc_list_ref list_head)
6890 dw_loc_list_ref curr = list_head;
6892 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6894 /* Walk the location list, and output each range + expression. */
6895 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6897 unsigned long size;
6898 if (!separate_line_info_table_in_use && !have_switched_text_section)
6900 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6901 "Location list begin address (%s)",
6902 list_head->ll_symbol);
6903 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6904 "Location list end address (%s)",
6905 list_head->ll_symbol);
6907 else
6909 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6910 "Location list begin address (%s)",
6911 list_head->ll_symbol);
6912 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6913 "Location list end address (%s)",
6914 list_head->ll_symbol);
6916 size = size_of_locs (curr->expr);
6918 /* Output the block length for this list of location operations. */
6919 gcc_assert (size <= 0xffff);
6920 dw2_asm_output_data (2, size, "%s", "Location expression size");
6922 output_loc_sequence (curr->expr);
6925 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6926 "Location list terminator begin (%s)",
6927 list_head->ll_symbol);
6928 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6929 "Location list terminator end (%s)",
6930 list_head->ll_symbol);
6933 /* Output the DIE and its attributes. Called recursively to generate
6934 the definitions of each child DIE. */
6936 static void
6937 output_die (dw_die_ref die)
6939 dw_attr_ref a;
6940 dw_die_ref c;
6941 unsigned long size;
6943 /* If someone in another CU might refer to us, set up a symbol for
6944 them to point to. */
6945 if (die->die_symbol)
6946 output_die_symbol (die);
6948 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6949 die->die_offset, dwarf_tag_name (die->die_tag));
6951 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6953 const char *name = dwarf_attr_name (a->dw_attr);
6955 switch (AT_class (a))
6957 case dw_val_class_addr:
6958 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6959 break;
6961 case dw_val_class_offset:
6962 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6963 "%s", name);
6964 break;
6966 case dw_val_class_range_list:
6968 char *p = strchr (ranges_section_label, '\0');
6970 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6971 a->dw_attr_val.v.val_offset);
6972 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6973 "%s", name);
6974 *p = '\0';
6976 break;
6978 case dw_val_class_loc:
6979 size = size_of_locs (AT_loc (a));
6981 /* Output the block length for this list of location operations. */
6982 dw2_asm_output_data (constant_size (size), size, "%s", name);
6984 output_loc_sequence (AT_loc (a));
6985 break;
6987 case dw_val_class_const:
6988 /* ??? It would be slightly more efficient to use a scheme like is
6989 used for unsigned constants below, but gdb 4.x does not sign
6990 extend. Gdb 5.x does sign extend. */
6991 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6992 break;
6994 case dw_val_class_unsigned_const:
6995 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6996 AT_unsigned (a), "%s", name);
6997 break;
6999 case dw_val_class_long_long:
7001 unsigned HOST_WIDE_INT first, second;
7003 dw2_asm_output_data (1,
7004 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7005 "%s", name);
7007 if (WORDS_BIG_ENDIAN)
7009 first = a->dw_attr_val.v.val_long_long.hi;
7010 second = a->dw_attr_val.v.val_long_long.low;
7012 else
7014 first = a->dw_attr_val.v.val_long_long.low;
7015 second = a->dw_attr_val.v.val_long_long.hi;
7018 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7019 first, "long long constant");
7020 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7021 second, NULL);
7023 break;
7025 case dw_val_class_vec:
7027 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7028 unsigned int len = a->dw_attr_val.v.val_vec.length;
7029 unsigned int i;
7030 unsigned char *p;
7032 dw2_asm_output_data (1, len * elt_size, "%s", name);
7033 if (elt_size > sizeof (HOST_WIDE_INT))
7035 elt_size /= 2;
7036 len *= 2;
7038 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7039 i < len;
7040 i++, p += elt_size)
7041 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7042 "fp or vector constant word %u", i);
7043 break;
7046 case dw_val_class_flag:
7047 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7048 break;
7050 case dw_val_class_loc_list:
7052 char *sym = AT_loc_list (a)->ll_symbol;
7054 gcc_assert (sym);
7055 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
7057 break;
7059 case dw_val_class_die_ref:
7060 if (AT_ref_external (a))
7062 char *sym = AT_ref (a)->die_symbol;
7064 gcc_assert (sym);
7065 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
7067 else
7069 gcc_assert (AT_ref (a)->die_offset);
7070 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7071 "%s", name);
7073 break;
7075 case dw_val_class_fde_ref:
7077 char l1[20];
7079 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7080 a->dw_attr_val.v.val_fde_index * 2);
7081 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7083 break;
7085 case dw_val_class_lbl_id:
7086 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7087 break;
7089 case dw_val_class_lbl_offset:
7090 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7091 break;
7093 case dw_val_class_str:
7094 if (AT_string_form (a) == DW_FORM_strp)
7095 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7096 a->dw_attr_val.v.val_str->label,
7097 "%s: \"%s\"", name, AT_string (a));
7098 else
7099 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7100 break;
7102 default:
7103 gcc_unreachable ();
7107 for (c = die->die_child; c != NULL; c = c->die_sib)
7108 output_die (c);
7110 /* Add null byte to terminate sibling list. */
7111 if (die->die_child != NULL)
7112 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7113 die->die_offset);
7116 /* Output the compilation unit that appears at the beginning of the
7117 .debug_info section, and precedes the DIE descriptions. */
7119 static void
7120 output_compilation_unit_header (void)
7122 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7123 dw2_asm_output_data (4, 0xffffffff,
7124 "Initial length escape value indicating 64-bit DWARF extension");
7125 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7126 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7127 "Length of Compilation Unit Info");
7128 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7129 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7130 "Offset Into Abbrev. Section");
7131 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7134 /* Output the compilation unit DIE and its children. */
7136 static void
7137 output_comp_unit (dw_die_ref die, int output_if_empty)
7139 const char *secname;
7140 char *oldsym, *tmp;
7142 /* Unless we are outputting main CU, we may throw away empty ones. */
7143 if (!output_if_empty && die->die_child == NULL)
7144 return;
7146 /* Even if there are no children of this DIE, we must output the information
7147 about the compilation unit. Otherwise, on an empty translation unit, we
7148 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7149 will then complain when examining the file. First mark all the DIEs in
7150 this CU so we know which get local refs. */
7151 mark_dies (die);
7153 build_abbrev_table (die);
7155 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7156 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7157 calc_die_sizes (die);
7159 oldsym = die->die_symbol;
7160 if (oldsym)
7162 tmp = alloca (strlen (oldsym) + 24);
7164 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7165 secname = tmp;
7166 die->die_symbol = NULL;
7168 else
7169 secname = (const char *) DEBUG_INFO_SECTION;
7171 /* Output debugging information. */
7172 named_section_flags (secname, SECTION_DEBUG);
7173 output_compilation_unit_header ();
7174 output_die (die);
7176 /* Leave the marks on the main CU, so we can check them in
7177 output_pubnames. */
7178 if (oldsym)
7180 unmark_dies (die);
7181 die->die_symbol = oldsym;
7185 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7186 output of lang_hooks.decl_printable_name for C++ looks like
7187 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7189 static const char *
7190 dwarf2_name (tree decl, int scope)
7192 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7195 /* Add a new entry to .debug_pubnames if appropriate. */
7197 static void
7198 add_pubname (tree decl, dw_die_ref die)
7200 pubname_ref p;
7202 if (! TREE_PUBLIC (decl))
7203 return;
7205 if (pubname_table_in_use == pubname_table_allocated)
7207 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7208 pubname_table
7209 = ggc_realloc (pubname_table,
7210 (pubname_table_allocated * sizeof (pubname_entry)));
7211 memset (pubname_table + pubname_table_in_use, 0,
7212 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7215 p = &pubname_table[pubname_table_in_use++];
7216 p->die = die;
7217 p->name = xstrdup (dwarf2_name (decl, 1));
7220 /* Output the public names table used to speed up access to externally
7221 visible names. For now, only generate entries for externally
7222 visible procedures. */
7224 static void
7225 output_pubnames (void)
7227 unsigned i;
7228 unsigned long pubnames_length = size_of_pubnames ();
7230 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7231 dw2_asm_output_data (4, 0xffffffff,
7232 "Initial length escape value indicating 64-bit DWARF extension");
7233 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7234 "Length of Public Names Info");
7235 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7236 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7237 "Offset of Compilation Unit Info");
7238 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7239 "Compilation Unit Length");
7241 for (i = 0; i < pubname_table_in_use; i++)
7243 pubname_ref pub = &pubname_table[i];
7245 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7246 gcc_assert (pub->die->die_mark);
7248 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7249 "DIE offset");
7251 dw2_asm_output_nstring (pub->name, -1, "external name");
7254 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7257 /* Add a new entry to .debug_aranges if appropriate. */
7259 static void
7260 add_arange (tree decl, dw_die_ref die)
7262 if (! DECL_SECTION_NAME (decl))
7263 return;
7265 if (arange_table_in_use == arange_table_allocated)
7267 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7268 arange_table = ggc_realloc (arange_table,
7269 (arange_table_allocated
7270 * sizeof (dw_die_ref)));
7271 memset (arange_table + arange_table_in_use, 0,
7272 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7275 arange_table[arange_table_in_use++] = die;
7278 /* Output the information that goes into the .debug_aranges table.
7279 Namely, define the beginning and ending address range of the
7280 text section generated for this compilation unit. */
7282 static void
7283 output_aranges (void)
7285 unsigned i;
7286 unsigned long aranges_length = size_of_aranges ();
7288 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7289 dw2_asm_output_data (4, 0xffffffff,
7290 "Initial length escape value indicating 64-bit DWARF extension");
7291 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7292 "Length of Address Ranges Info");
7293 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7294 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7295 "Offset of Compilation Unit Info");
7296 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7297 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7299 /* We need to align to twice the pointer size here. */
7300 if (DWARF_ARANGES_PAD_SIZE)
7302 /* Pad using a 2 byte words so that padding is correct for any
7303 pointer size. */
7304 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7305 2 * DWARF2_ADDR_SIZE);
7306 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7307 dw2_asm_output_data (2, 0, NULL);
7310 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7311 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7312 text_section_label, "Length");
7313 if (flag_reorder_blocks_and_partition)
7315 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7316 "Address");
7317 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7318 cold_text_section_label, "Length");
7321 for (i = 0; i < arange_table_in_use; i++)
7323 dw_die_ref die = arange_table[i];
7325 /* We shouldn't see aranges for DIEs outside of the main CU. */
7326 gcc_assert (die->die_mark);
7328 if (die->die_tag == DW_TAG_subprogram)
7330 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7331 "Address");
7332 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7333 get_AT_low_pc (die), "Length");
7335 else
7337 /* A static variable; extract the symbol from DW_AT_location.
7338 Note that this code isn't currently hit, as we only emit
7339 aranges for functions (jason 9/23/99). */
7340 dw_attr_ref a = get_AT (die, DW_AT_location);
7341 dw_loc_descr_ref loc;
7343 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7345 loc = AT_loc (a);
7346 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7348 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7349 loc->dw_loc_oprnd1.v.val_addr, "Address");
7350 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7351 get_AT_unsigned (die, DW_AT_byte_size),
7352 "Length");
7356 /* Output the terminator words. */
7357 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7358 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7361 /* Add a new entry to .debug_ranges. Return the offset at which it
7362 was placed. */
7364 static unsigned int
7365 add_ranges (tree block)
7367 unsigned int in_use = ranges_table_in_use;
7369 if (in_use == ranges_table_allocated)
7371 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7372 ranges_table
7373 = ggc_realloc (ranges_table, (ranges_table_allocated
7374 * sizeof (struct dw_ranges_struct)));
7375 memset (ranges_table + ranges_table_in_use, 0,
7376 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7379 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7380 ranges_table_in_use = in_use + 1;
7382 return in_use * 2 * DWARF2_ADDR_SIZE;
7385 static void
7386 output_ranges (void)
7388 unsigned i;
7389 static const char *const start_fmt = "Offset 0x%x";
7390 const char *fmt = start_fmt;
7392 for (i = 0; i < ranges_table_in_use; i++)
7394 int block_num = ranges_table[i].block_num;
7396 if (block_num)
7398 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7399 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7401 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7402 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7404 /* If all code is in the text section, then the compilation
7405 unit base address defaults to DW_AT_low_pc, which is the
7406 base of the text section. */
7407 if (!separate_line_info_table_in_use && !have_switched_text_section)
7409 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7410 text_section_label,
7411 fmt, i * 2 * DWARF2_ADDR_SIZE);
7412 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7413 text_section_label, NULL);
7416 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7417 compilation unit base address to zero, which allows us to
7418 use absolute addresses, and not worry about whether the
7419 target supports cross-section arithmetic. */
7420 else
7422 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7423 fmt, i * 2 * DWARF2_ADDR_SIZE);
7424 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7427 fmt = NULL;
7429 else
7431 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7432 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7433 fmt = start_fmt;
7438 /* Data structure containing information about input files. */
7439 struct file_info
7441 char *path; /* Complete file name. */
7442 char *fname; /* File name part. */
7443 int length; /* Length of entire string. */
7444 int file_idx; /* Index in input file table. */
7445 int dir_idx; /* Index in directory table. */
7448 /* Data structure containing information about directories with source
7449 files. */
7450 struct dir_info
7452 char *path; /* Path including directory name. */
7453 int length; /* Path length. */
7454 int prefix; /* Index of directory entry which is a prefix. */
7455 int count; /* Number of files in this directory. */
7456 int dir_idx; /* Index of directory used as base. */
7457 int used; /* Used in the end? */
7460 /* Callback function for file_info comparison. We sort by looking at
7461 the directories in the path. */
7463 static int
7464 file_info_cmp (const void *p1, const void *p2)
7466 const struct file_info *s1 = p1;
7467 const struct file_info *s2 = p2;
7468 unsigned char *cp1;
7469 unsigned char *cp2;
7471 /* Take care of file names without directories. We need to make sure that
7472 we return consistent values to qsort since some will get confused if
7473 we return the same value when identical operands are passed in opposite
7474 orders. So if neither has a directory, return 0 and otherwise return
7475 1 or -1 depending on which one has the directory. */
7476 if ((s1->path == s1->fname || s2->path == s2->fname))
7477 return (s2->path == s2->fname) - (s1->path == s1->fname);
7479 cp1 = (unsigned char *) s1->path;
7480 cp2 = (unsigned char *) s2->path;
7482 while (1)
7484 ++cp1;
7485 ++cp2;
7486 /* Reached the end of the first path? If so, handle like above. */
7487 if ((cp1 == (unsigned char *) s1->fname)
7488 || (cp2 == (unsigned char *) s2->fname))
7489 return ((cp2 == (unsigned char *) s2->fname)
7490 - (cp1 == (unsigned char *) s1->fname));
7492 /* Character of current path component the same? */
7493 else if (*cp1 != *cp2)
7494 return *cp1 - *cp2;
7498 /* Output the directory table and the file name table. We try to minimize
7499 the total amount of memory needed. A heuristic is used to avoid large
7500 slowdowns with many input files. */
7502 static void
7503 output_file_names (void)
7505 struct file_info *files;
7506 struct dir_info *dirs;
7507 int *saved;
7508 int *savehere;
7509 int *backmap;
7510 size_t ndirs;
7511 int idx_offset;
7512 size_t i;
7513 int idx;
7515 /* Handle the case where file_table is empty. */
7516 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7518 dw2_asm_output_data (1, 0, "End directory table");
7519 dw2_asm_output_data (1, 0, "End file name table");
7520 return;
7523 /* Allocate the various arrays we need. */
7524 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7525 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7527 /* Sort the file names. */
7528 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7530 char *f;
7532 /* Skip all leading "./". */
7533 f = VARRAY_CHAR_PTR (file_table, i);
7534 while (f[0] == '.' && f[1] == '/')
7535 f += 2;
7537 /* Create a new array entry. */
7538 files[i].path = f;
7539 files[i].length = strlen (f);
7540 files[i].file_idx = i;
7542 /* Search for the file name part. */
7543 f = strrchr (f, '/');
7544 files[i].fname = f == NULL ? files[i].path : f + 1;
7547 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7548 sizeof (files[0]), file_info_cmp);
7550 /* Find all the different directories used. */
7551 dirs[0].path = files[1].path;
7552 dirs[0].length = files[1].fname - files[1].path;
7553 dirs[0].prefix = -1;
7554 dirs[0].count = 1;
7555 dirs[0].dir_idx = 0;
7556 dirs[0].used = 0;
7557 files[1].dir_idx = 0;
7558 ndirs = 1;
7560 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7561 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7562 && memcmp (dirs[ndirs - 1].path, files[i].path,
7563 dirs[ndirs - 1].length) == 0)
7565 /* Same directory as last entry. */
7566 files[i].dir_idx = ndirs - 1;
7567 ++dirs[ndirs - 1].count;
7569 else
7571 size_t j;
7573 /* This is a new directory. */
7574 dirs[ndirs].path = files[i].path;
7575 dirs[ndirs].length = files[i].fname - files[i].path;
7576 dirs[ndirs].count = 1;
7577 dirs[ndirs].dir_idx = ndirs;
7578 dirs[ndirs].used = 0;
7579 files[i].dir_idx = ndirs;
7581 /* Search for a prefix. */
7582 dirs[ndirs].prefix = -1;
7583 for (j = 0; j < ndirs; j++)
7584 if (dirs[j].length < dirs[ndirs].length
7585 && dirs[j].length > 1
7586 && (dirs[ndirs].prefix == -1
7587 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7588 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7589 dirs[ndirs].prefix = j;
7591 ++ndirs;
7594 /* Now to the actual work. We have to find a subset of the directories which
7595 allow expressing the file name using references to the directory table
7596 with the least amount of characters. We do not do an exhaustive search
7597 where we would have to check out every combination of every single
7598 possible prefix. Instead we use a heuristic which provides nearly optimal
7599 results in most cases and never is much off. */
7600 saved = alloca (ndirs * sizeof (int));
7601 savehere = alloca (ndirs * sizeof (int));
7603 memset (saved, '\0', ndirs * sizeof (saved[0]));
7604 for (i = 0; i < ndirs; i++)
7606 size_t j;
7607 int total;
7609 /* We can always save some space for the current directory. But this
7610 does not mean it will be enough to justify adding the directory. */
7611 savehere[i] = dirs[i].length;
7612 total = (savehere[i] - saved[i]) * dirs[i].count;
7614 for (j = i + 1; j < ndirs; j++)
7616 savehere[j] = 0;
7617 if (saved[j] < dirs[i].length)
7619 /* Determine whether the dirs[i] path is a prefix of the
7620 dirs[j] path. */
7621 int k;
7623 k = dirs[j].prefix;
7624 while (k != -1 && k != (int) i)
7625 k = dirs[k].prefix;
7627 if (k == (int) i)
7629 /* Yes it is. We can possibly safe some memory but
7630 writing the filenames in dirs[j] relative to
7631 dirs[i]. */
7632 savehere[j] = dirs[i].length;
7633 total += (savehere[j] - saved[j]) * dirs[j].count;
7638 /* Check whether we can safe enough to justify adding the dirs[i]
7639 directory. */
7640 if (total > dirs[i].length + 1)
7642 /* It's worthwhile adding. */
7643 for (j = i; j < ndirs; j++)
7644 if (savehere[j] > 0)
7646 /* Remember how much we saved for this directory so far. */
7647 saved[j] = savehere[j];
7649 /* Remember the prefix directory. */
7650 dirs[j].dir_idx = i;
7655 /* We have to emit them in the order they appear in the file_table array
7656 since the index is used in the debug info generation. To do this
7657 efficiently we generate a back-mapping of the indices first. */
7658 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7659 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7661 backmap[files[i].file_idx] = i;
7663 /* Mark this directory as used. */
7664 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7667 /* That was it. We are ready to emit the information. First emit the
7668 directory name table. We have to make sure the first actually emitted
7669 directory name has index one; zero is reserved for the current working
7670 directory. Make sure we do not confuse these indices with the one for the
7671 constructed table (even though most of the time they are identical). */
7672 idx = 1;
7673 idx_offset = dirs[0].length > 0 ? 1 : 0;
7674 for (i = 1 - idx_offset; i < ndirs; i++)
7675 if (dirs[i].used != 0)
7677 dirs[i].used = idx++;
7678 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7679 "Directory Entry: 0x%x", dirs[i].used);
7682 dw2_asm_output_data (1, 0, "End directory table");
7684 /* Correct the index for the current working directory entry if it
7685 exists. */
7686 if (idx_offset == 0)
7687 dirs[0].used = 0;
7689 /* Now write all the file names. */
7690 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7692 int file_idx = backmap[i];
7693 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7695 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7696 "File Entry: 0x%lx", (unsigned long) i);
7698 /* Include directory index. */
7699 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7701 /* Modification time. */
7702 dw2_asm_output_data_uleb128 (0, NULL);
7704 /* File length in bytes. */
7705 dw2_asm_output_data_uleb128 (0, NULL);
7708 dw2_asm_output_data (1, 0, "End file name table");
7712 /* Output the source line number correspondence information. This
7713 information goes into the .debug_line section. */
7715 static void
7716 output_line_info (void)
7718 char l1[20], l2[20], p1[20], p2[20];
7719 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7720 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7721 unsigned opc;
7722 unsigned n_op_args;
7723 unsigned long lt_index;
7724 unsigned long current_line;
7725 long line_offset;
7726 long line_delta;
7727 unsigned long current_file;
7728 unsigned long function;
7730 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7731 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7732 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7733 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7735 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7736 dw2_asm_output_data (4, 0xffffffff,
7737 "Initial length escape value indicating 64-bit DWARF extension");
7738 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7739 "Length of Source Line Info");
7740 ASM_OUTPUT_LABEL (asm_out_file, l1);
7742 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7743 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7744 ASM_OUTPUT_LABEL (asm_out_file, p1);
7746 /* Define the architecture-dependent minimum instruction length (in
7747 bytes). In this implementation of DWARF, this field is used for
7748 information purposes only. Since GCC generates assembly language,
7749 we have no a priori knowledge of how many instruction bytes are
7750 generated for each source line, and therefore can use only the
7751 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7752 commands. Accordingly, we fix this as `1', which is "correct
7753 enough" for all architectures, and don't let the target override. */
7754 dw2_asm_output_data (1, 1,
7755 "Minimum Instruction Length");
7757 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7758 "Default is_stmt_start flag");
7759 dw2_asm_output_data (1, DWARF_LINE_BASE,
7760 "Line Base Value (Special Opcodes)");
7761 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7762 "Line Range Value (Special Opcodes)");
7763 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7764 "Special Opcode Base");
7766 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7768 switch (opc)
7770 case DW_LNS_advance_pc:
7771 case DW_LNS_advance_line:
7772 case DW_LNS_set_file:
7773 case DW_LNS_set_column:
7774 case DW_LNS_fixed_advance_pc:
7775 n_op_args = 1;
7776 break;
7777 default:
7778 n_op_args = 0;
7779 break;
7782 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7783 opc, n_op_args);
7786 /* Write out the information about the files we use. */
7787 output_file_names ();
7788 ASM_OUTPUT_LABEL (asm_out_file, p2);
7790 /* We used to set the address register to the first location in the text
7791 section here, but that didn't accomplish anything since we already
7792 have a line note for the opening brace of the first function. */
7794 /* Generate the line number to PC correspondence table, encoded as
7795 a series of state machine operations. */
7796 current_file = 1;
7797 current_line = 1;
7799 if (cfun
7800 && (last_text_section == in_unlikely_executed_text
7801 || (last_text_section == in_named
7802 && last_text_section_name == cfun->unlikely_text_section_name)))
7803 strcpy (prev_line_label, cfun->cold_section_label);
7804 else
7805 strcpy (prev_line_label, text_section_label);
7806 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7808 dw_line_info_ref line_info = &line_info_table[lt_index];
7810 #if 0
7811 /* Disable this optimization for now; GDB wants to see two line notes
7812 at the beginning of a function so it can find the end of the
7813 prologue. */
7815 /* Don't emit anything for redundant notes. Just updating the
7816 address doesn't accomplish anything, because we already assume
7817 that anything after the last address is this line. */
7818 if (line_info->dw_line_num == current_line
7819 && line_info->dw_file_num == current_file)
7820 continue;
7821 #endif
7823 /* Emit debug info for the address of the current line.
7825 Unfortunately, we have little choice here currently, and must always
7826 use the most general form. GCC does not know the address delta
7827 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7828 attributes which will give an upper bound on the address range. We
7829 could perhaps use length attributes to determine when it is safe to
7830 use DW_LNS_fixed_advance_pc. */
7832 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7833 if (0)
7835 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7836 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7837 "DW_LNS_fixed_advance_pc");
7838 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7840 else
7842 /* This can handle any delta. This takes
7843 4+DWARF2_ADDR_SIZE bytes. */
7844 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7845 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7846 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7847 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7850 strcpy (prev_line_label, line_label);
7852 /* Emit debug info for the source file of the current line, if
7853 different from the previous line. */
7854 if (line_info->dw_file_num != current_file)
7856 current_file = line_info->dw_file_num;
7857 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7858 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7859 VARRAY_CHAR_PTR (file_table,
7860 current_file));
7863 /* Emit debug info for the current line number, choosing the encoding
7864 that uses the least amount of space. */
7865 if (line_info->dw_line_num != current_line)
7867 line_offset = line_info->dw_line_num - current_line;
7868 line_delta = line_offset - DWARF_LINE_BASE;
7869 current_line = line_info->dw_line_num;
7870 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7871 /* This can handle deltas from -10 to 234, using the current
7872 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7873 takes 1 byte. */
7874 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7875 "line %lu", current_line);
7876 else
7878 /* This can handle any delta. This takes at least 4 bytes,
7879 depending on the value being encoded. */
7880 dw2_asm_output_data (1, DW_LNS_advance_line,
7881 "advance to line %lu", current_line);
7882 dw2_asm_output_data_sleb128 (line_offset, NULL);
7883 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7886 else
7887 /* We still need to start a new row, so output a copy insn. */
7888 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7891 /* Emit debug info for the address of the end of the function. */
7892 if (0)
7894 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7895 "DW_LNS_fixed_advance_pc");
7896 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7898 else
7900 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7901 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7902 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7903 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7906 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7907 dw2_asm_output_data_uleb128 (1, NULL);
7908 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7910 function = 0;
7911 current_file = 1;
7912 current_line = 1;
7913 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7915 dw_separate_line_info_ref line_info
7916 = &separate_line_info_table[lt_index];
7918 #if 0
7919 /* Don't emit anything for redundant notes. */
7920 if (line_info->dw_line_num == current_line
7921 && line_info->dw_file_num == current_file
7922 && line_info->function == function)
7923 goto cont;
7924 #endif
7926 /* Emit debug info for the address of the current line. If this is
7927 a new function, or the first line of a function, then we need
7928 to handle it differently. */
7929 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7930 lt_index);
7931 if (function != line_info->function)
7933 function = line_info->function;
7935 /* Set the address register to the first line in the function. */
7936 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7937 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7938 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7939 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7941 else
7943 /* ??? See the DW_LNS_advance_pc comment above. */
7944 if (0)
7946 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7947 "DW_LNS_fixed_advance_pc");
7948 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7950 else
7952 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7953 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7954 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7955 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7959 strcpy (prev_line_label, line_label);
7961 /* Emit debug info for the source file of the current line, if
7962 different from the previous line. */
7963 if (line_info->dw_file_num != current_file)
7965 current_file = line_info->dw_file_num;
7966 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7967 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7968 VARRAY_CHAR_PTR (file_table,
7969 current_file));
7972 /* Emit debug info for the current line number, choosing the encoding
7973 that uses the least amount of space. */
7974 if (line_info->dw_line_num != current_line)
7976 line_offset = line_info->dw_line_num - current_line;
7977 line_delta = line_offset - DWARF_LINE_BASE;
7978 current_line = line_info->dw_line_num;
7979 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7980 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7981 "line %lu", current_line);
7982 else
7984 dw2_asm_output_data (1, DW_LNS_advance_line,
7985 "advance to line %lu", current_line);
7986 dw2_asm_output_data_sleb128 (line_offset, NULL);
7987 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7990 else
7991 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7993 #if 0
7994 cont:
7995 #endif
7997 lt_index++;
7999 /* If we're done with a function, end its sequence. */
8000 if (lt_index == separate_line_info_table_in_use
8001 || separate_line_info_table[lt_index].function != function)
8003 current_file = 1;
8004 current_line = 1;
8006 /* Emit debug info for the address of the end of the function. */
8007 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8008 if (0)
8010 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8011 "DW_LNS_fixed_advance_pc");
8012 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8014 else
8016 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8017 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8018 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8019 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8022 /* Output the marker for the end of this sequence. */
8023 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8024 dw2_asm_output_data_uleb128 (1, NULL);
8025 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8029 /* Output the marker for the end of the line number info. */
8030 ASM_OUTPUT_LABEL (asm_out_file, l2);
8033 /* Given a pointer to a tree node for some base type, return a pointer to
8034 a DIE that describes the given type.
8036 This routine must only be called for GCC type nodes that correspond to
8037 Dwarf base (fundamental) types. */
8039 static dw_die_ref
8040 base_type_die (tree type)
8042 dw_die_ref base_type_result;
8043 const char *type_name;
8044 enum dwarf_type encoding;
8045 tree name = TYPE_NAME (type);
8047 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8048 return 0;
8050 if (name)
8052 if (TREE_CODE (name) == TYPE_DECL)
8053 name = DECL_NAME (name);
8055 type_name = IDENTIFIER_POINTER (name);
8057 else
8058 type_name = "__unknown__";
8060 switch (TREE_CODE (type))
8062 case INTEGER_TYPE:
8063 /* Carefully distinguish the C character types, without messing
8064 up if the language is not C. Note that we check only for the names
8065 that contain spaces; other names might occur by coincidence in other
8066 languages. */
8067 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
8068 && (TYPE_MAIN_VARIANT (type) == char_type_node
8069 || ! strcmp (type_name, "signed char")
8070 || ! strcmp (type_name, "unsigned char"))))
8072 if (TYPE_UNSIGNED (type))
8073 encoding = DW_ATE_unsigned;
8074 else
8075 encoding = DW_ATE_signed;
8076 break;
8078 /* else fall through. */
8080 case CHAR_TYPE:
8081 /* GNU Pascal/Ada CHAR type. Not used in C. */
8082 if (TYPE_UNSIGNED (type))
8083 encoding = DW_ATE_unsigned_char;
8084 else
8085 encoding = DW_ATE_signed_char;
8086 break;
8088 case REAL_TYPE:
8089 encoding = DW_ATE_float;
8090 break;
8092 /* Dwarf2 doesn't know anything about complex ints, so use
8093 a user defined type for it. */
8094 case COMPLEX_TYPE:
8095 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8096 encoding = DW_ATE_complex_float;
8097 else
8098 encoding = DW_ATE_lo_user;
8099 break;
8101 case BOOLEAN_TYPE:
8102 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8103 encoding = DW_ATE_boolean;
8104 break;
8106 default:
8107 /* No other TREE_CODEs are Dwarf fundamental types. */
8108 gcc_unreachable ();
8111 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8112 if (demangle_name_func)
8113 type_name = (*demangle_name_func) (type_name);
8115 add_AT_string (base_type_result, DW_AT_name, type_name);
8116 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8117 int_size_in_bytes (type));
8118 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8120 return base_type_result;
8123 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8124 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8125 a given type is generally the same as the given type, except that if the
8126 given type is a pointer or reference type, then the root type of the given
8127 type is the root type of the "basis" type for the pointer or reference
8128 type. (This definition of the "root" type is recursive.) Also, the root
8129 type of a `const' qualified type or a `volatile' qualified type is the
8130 root type of the given type without the qualifiers. */
8132 static tree
8133 root_type (tree type)
8135 if (TREE_CODE (type) == ERROR_MARK)
8136 return error_mark_node;
8138 switch (TREE_CODE (type))
8140 case ERROR_MARK:
8141 return error_mark_node;
8143 case POINTER_TYPE:
8144 case REFERENCE_TYPE:
8145 return type_main_variant (root_type (TREE_TYPE (type)));
8147 default:
8148 return type_main_variant (type);
8152 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8153 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8155 static inline int
8156 is_base_type (tree type)
8158 switch (TREE_CODE (type))
8160 case ERROR_MARK:
8161 case VOID_TYPE:
8162 case INTEGER_TYPE:
8163 case REAL_TYPE:
8164 case COMPLEX_TYPE:
8165 case BOOLEAN_TYPE:
8166 case CHAR_TYPE:
8167 return 1;
8169 case ARRAY_TYPE:
8170 case RECORD_TYPE:
8171 case UNION_TYPE:
8172 case QUAL_UNION_TYPE:
8173 case ENUMERAL_TYPE:
8174 case FUNCTION_TYPE:
8175 case METHOD_TYPE:
8176 case POINTER_TYPE:
8177 case REFERENCE_TYPE:
8178 case OFFSET_TYPE:
8179 case LANG_TYPE:
8180 case VECTOR_TYPE:
8181 return 0;
8183 default:
8184 gcc_unreachable ();
8187 return 0;
8190 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8191 node, return the size in bits for the type if it is a constant, or else
8192 return the alignment for the type if the type's size is not constant, or
8193 else return BITS_PER_WORD if the type actually turns out to be an
8194 ERROR_MARK node. */
8196 static inline unsigned HOST_WIDE_INT
8197 simple_type_size_in_bits (tree type)
8199 if (TREE_CODE (type) == ERROR_MARK)
8200 return BITS_PER_WORD;
8201 else if (TYPE_SIZE (type) == NULL_TREE)
8202 return 0;
8203 else if (host_integerp (TYPE_SIZE (type), 1))
8204 return tree_low_cst (TYPE_SIZE (type), 1);
8205 else
8206 return TYPE_ALIGN (type);
8209 /* Return true if the debug information for the given type should be
8210 emitted as a subrange type. */
8212 static inline bool
8213 is_subrange_type (tree type)
8215 tree subtype = TREE_TYPE (type);
8217 /* Subrange types are identified by the fact that they are integer
8218 types, and that they have a subtype which is either an integer type
8219 or an enumeral type. */
8221 if (TREE_CODE (type) != INTEGER_TYPE
8222 || subtype == NULL_TREE)
8223 return false;
8225 if (TREE_CODE (subtype) != INTEGER_TYPE
8226 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8227 return false;
8229 if (TREE_CODE (type) == TREE_CODE (subtype)
8230 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8231 && TYPE_MIN_VALUE (type) != NULL
8232 && TYPE_MIN_VALUE (subtype) != NULL
8233 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8234 && TYPE_MAX_VALUE (type) != NULL
8235 && TYPE_MAX_VALUE (subtype) != NULL
8236 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8238 /* The type and its subtype have the same representation. If in
8239 addition the two types also have the same name, then the given
8240 type is not a subrange type, but rather a plain base type. */
8241 /* FIXME: brobecker/2004-03-22:
8242 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8243 therefore be sufficient to check the TYPE_SIZE node pointers
8244 rather than checking the actual size. Unfortunately, we have
8245 found some cases, such as in the Ada "integer" type, where
8246 this is not the case. Until this problem is solved, we need to
8247 keep checking the actual size. */
8248 tree type_name = TYPE_NAME (type);
8249 tree subtype_name = TYPE_NAME (subtype);
8251 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8252 type_name = DECL_NAME (type_name);
8254 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8255 subtype_name = DECL_NAME (subtype_name);
8257 if (type_name == subtype_name)
8258 return false;
8261 return true;
8264 /* Given a pointer to a tree node for a subrange type, return a pointer
8265 to a DIE that describes the given type. */
8267 static dw_die_ref
8268 subrange_type_die (tree type, dw_die_ref context_die)
8270 dw_die_ref subtype_die;
8271 dw_die_ref subrange_die;
8272 tree name = TYPE_NAME (type);
8273 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8274 tree subtype = TREE_TYPE (type);
8276 if (context_die == NULL)
8277 context_die = comp_unit_die;
8279 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8280 subtype_die = gen_enumeration_type_die (subtype, context_die);
8281 else
8282 subtype_die = base_type_die (subtype);
8284 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8286 if (name != NULL)
8288 if (TREE_CODE (name) == TYPE_DECL)
8289 name = DECL_NAME (name);
8290 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8293 if (int_size_in_bytes (subtype) != size_in_bytes)
8295 /* The size of the subrange type and its base type do not match,
8296 so we need to generate a size attribute for the subrange type. */
8297 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8300 if (TYPE_MIN_VALUE (type) != NULL)
8301 add_bound_info (subrange_die, DW_AT_lower_bound,
8302 TYPE_MIN_VALUE (type));
8303 if (TYPE_MAX_VALUE (type) != NULL)
8304 add_bound_info (subrange_die, DW_AT_upper_bound,
8305 TYPE_MAX_VALUE (type));
8306 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8308 return subrange_die;
8311 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8312 entry that chains various modifiers in front of the given type. */
8314 static dw_die_ref
8315 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8316 dw_die_ref context_die)
8318 enum tree_code code = TREE_CODE (type);
8319 dw_die_ref mod_type_die = NULL;
8320 dw_die_ref sub_die = NULL;
8321 tree item_type = NULL;
8323 if (code != ERROR_MARK)
8325 tree qualified_type;
8327 /* See if we already have the appropriately qualified variant of
8328 this type. */
8329 qualified_type
8330 = get_qualified_type (type,
8331 ((is_const_type ? TYPE_QUAL_CONST : 0)
8332 | (is_volatile_type
8333 ? TYPE_QUAL_VOLATILE : 0)));
8335 /* If we do, then we can just use its DIE, if it exists. */
8336 if (qualified_type)
8338 mod_type_die = lookup_type_die (qualified_type);
8339 if (mod_type_die)
8340 return mod_type_die;
8343 /* Handle C typedef types. */
8344 if (qualified_type && TYPE_NAME (qualified_type)
8345 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8346 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8348 tree type_name = TYPE_NAME (qualified_type);
8349 tree dtype = TREE_TYPE (type_name);
8351 if (qualified_type == dtype)
8353 /* For a named type, use the typedef. */
8354 gen_type_die (qualified_type, context_die);
8355 mod_type_die = lookup_type_die (qualified_type);
8357 else if (is_const_type < TYPE_READONLY (dtype)
8358 || is_volatile_type < TYPE_VOLATILE (dtype))
8359 /* cv-unqualified version of named type. Just use the unnamed
8360 type to which it refers. */
8361 mod_type_die
8362 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8363 is_const_type, is_volatile_type,
8364 context_die);
8366 /* Else cv-qualified version of named type; fall through. */
8369 if (mod_type_die)
8370 /* OK. */
8372 else if (is_const_type)
8374 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8375 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8377 else if (is_volatile_type)
8379 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8380 sub_die = modified_type_die (type, 0, 0, context_die);
8382 else if (code == POINTER_TYPE)
8384 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8385 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8386 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8387 #if 0
8388 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8389 #endif
8390 item_type = TREE_TYPE (type);
8392 else if (code == REFERENCE_TYPE)
8394 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8395 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8396 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8397 #if 0
8398 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8399 #endif
8400 item_type = TREE_TYPE (type);
8402 else if (is_subrange_type (type))
8403 mod_type_die = subrange_type_die (type, context_die);
8404 else if (is_base_type (type))
8405 mod_type_die = base_type_die (type);
8406 else
8408 gen_type_die (type, context_die);
8410 /* We have to get the type_main_variant here (and pass that to the
8411 `lookup_type_die' routine) because the ..._TYPE node we have
8412 might simply be a *copy* of some original type node (where the
8413 copy was created to help us keep track of typedef names) and
8414 that copy might have a different TYPE_UID from the original
8415 ..._TYPE node. */
8416 if (TREE_CODE (type) != VECTOR_TYPE)
8417 mod_type_die = lookup_type_die (type_main_variant (type));
8418 else
8419 /* Vectors have the debugging information in the type,
8420 not the main variant. */
8421 mod_type_die = lookup_type_die (type);
8422 gcc_assert (mod_type_die);
8425 /* We want to equate the qualified type to the die below. */
8426 type = qualified_type;
8429 if (type)
8430 equate_type_number_to_die (type, mod_type_die);
8431 if (item_type)
8432 /* We must do this after the equate_type_number_to_die call, in case
8433 this is a recursive type. This ensures that the modified_type_die
8434 recursion will terminate even if the type is recursive. Recursive
8435 types are possible in Ada. */
8436 sub_die = modified_type_die (item_type,
8437 TYPE_READONLY (item_type),
8438 TYPE_VOLATILE (item_type),
8439 context_die);
8441 if (sub_die != NULL)
8442 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8444 return mod_type_die;
8447 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8448 an enumerated type. */
8450 static inline int
8451 type_is_enum (tree type)
8453 return TREE_CODE (type) == ENUMERAL_TYPE;
8456 /* Return the DBX register number described by a given RTL node. */
8458 static unsigned int
8459 dbx_reg_number (rtx rtl)
8461 unsigned regno = REGNO (rtl);
8463 /* We do not want to see registers that should have been eliminated. */
8464 gcc_assert (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
8465 || rtl != arg_pointer_rtx);
8466 gcc_assert (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM
8467 || rtl != frame_pointer_rtx);
8469 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8471 #ifdef LEAF_REG_REMAP
8472 regno = LEAF_REG_REMAP (regno);
8473 #endif
8475 return DBX_REGISTER_NUMBER (regno);
8478 /* Optionally add a DW_OP_piece term to a location description expression.
8479 DW_OP_piece is only added if the location description expression already
8480 doesn't end with DW_OP_piece. */
8482 static void
8483 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8485 dw_loc_descr_ref loc;
8487 if (*list_head != NULL)
8489 /* Find the end of the chain. */
8490 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8493 if (loc->dw_loc_opc != DW_OP_piece)
8494 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8498 /* Return a location descriptor that designates a machine register or
8499 zero if there is none. */
8501 static dw_loc_descr_ref
8502 reg_loc_descriptor (rtx rtl)
8504 rtx regs;
8506 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8507 return 0;
8509 regs = targetm.dwarf_register_span (rtl);
8511 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8512 return multiple_reg_loc_descriptor (rtl, regs);
8513 else
8514 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8517 /* Return a location descriptor that designates a machine register for
8518 a given hard register number. */
8520 static dw_loc_descr_ref
8521 one_reg_loc_descriptor (unsigned int regno)
8523 if (regno <= 31)
8524 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8525 else
8526 return new_loc_descr (DW_OP_regx, regno, 0);
8529 /* Given an RTL of a register, return a location descriptor that
8530 designates a value that spans more than one register. */
8532 static dw_loc_descr_ref
8533 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8535 int nregs, size, i;
8536 unsigned reg;
8537 dw_loc_descr_ref loc_result = NULL;
8539 reg = dbx_reg_number (rtl);
8540 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8542 /* Simple, contiguous registers. */
8543 if (regs == NULL_RTX)
8545 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8547 loc_result = NULL;
8548 while (nregs--)
8550 dw_loc_descr_ref t;
8552 t = one_reg_loc_descriptor (reg);
8553 add_loc_descr (&loc_result, t);
8554 add_loc_descr_op_piece (&loc_result, size);
8555 ++reg;
8557 return loc_result;
8560 /* Now onto stupid register sets in non contiguous locations. */
8562 gcc_assert (GET_CODE (regs) == PARALLEL);
8564 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8565 loc_result = NULL;
8567 for (i = 0; i < XVECLEN (regs, 0); ++i)
8569 dw_loc_descr_ref t;
8571 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8572 add_loc_descr (&loc_result, t);
8573 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8574 add_loc_descr_op_piece (&loc_result, size);
8576 return loc_result;
8579 /* Return a location descriptor that designates a constant. */
8581 static dw_loc_descr_ref
8582 int_loc_descriptor (HOST_WIDE_INT i)
8584 enum dwarf_location_atom op;
8586 /* Pick the smallest representation of a constant, rather than just
8587 defaulting to the LEB encoding. */
8588 if (i >= 0)
8590 if (i <= 31)
8591 op = DW_OP_lit0 + i;
8592 else if (i <= 0xff)
8593 op = DW_OP_const1u;
8594 else if (i <= 0xffff)
8595 op = DW_OP_const2u;
8596 else if (HOST_BITS_PER_WIDE_INT == 32
8597 || i <= 0xffffffff)
8598 op = DW_OP_const4u;
8599 else
8600 op = DW_OP_constu;
8602 else
8604 if (i >= -0x80)
8605 op = DW_OP_const1s;
8606 else if (i >= -0x8000)
8607 op = DW_OP_const2s;
8608 else if (HOST_BITS_PER_WIDE_INT == 32
8609 || i >= -0x80000000)
8610 op = DW_OP_const4s;
8611 else
8612 op = DW_OP_consts;
8615 return new_loc_descr (op, i, 0);
8618 /* Return an offset from an eliminable register to the post-prologue
8619 frame pointer. */
8621 static HOST_WIDE_INT
8622 eliminate_reg_to_offset (rtx reg)
8624 HOST_WIDE_INT offset = 0;
8626 reg = eliminate_regs (reg, VOIDmode, NULL_RTX);
8627 if (GET_CODE (reg) == PLUS)
8629 offset = INTVAL (XEXP (reg, 1));
8630 reg = XEXP (reg, 0);
8632 gcc_assert (reg == (frame_pointer_needed ? hard_frame_pointer_rtx
8633 : stack_pointer_rtx));
8635 return offset;
8638 /* Return a location descriptor that designates a base+offset location. */
8640 static dw_loc_descr_ref
8641 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8643 dw_loc_descr_ref loc_result;
8645 /* We only use "frame base" when we're sure we're talking about the
8646 post-prologue local stack frame. We do this by *not* running
8647 register elimination until this point, and recognizing the special
8648 argument pointer and soft frame pointer rtx's. */
8649 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8651 offset += eliminate_reg_to_offset (reg);
8652 offset += frame_pointer_cfa_offset;
8654 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8656 else
8658 unsigned int regno = dbx_reg_number (reg);
8660 if (regno <= 31)
8661 loc_result = new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8662 else
8663 loc_result = new_loc_descr (DW_OP_bregx, regno, offset);
8666 return loc_result;
8669 /* Return true if this RTL expression describes a base+offset calculation. */
8671 static inline int
8672 is_based_loc (rtx rtl)
8674 return (GET_CODE (rtl) == PLUS
8675 && ((REG_P (XEXP (rtl, 0))
8676 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8677 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8680 /* The following routine converts the RTL for a variable or parameter
8681 (resident in memory) into an equivalent Dwarf representation of a
8682 mechanism for getting the address of that same variable onto the top of a
8683 hypothetical "address evaluation" stack.
8685 When creating memory location descriptors, we are effectively transforming
8686 the RTL for a memory-resident object into its Dwarf postfix expression
8687 equivalent. This routine recursively descends an RTL tree, turning
8688 it into Dwarf postfix code as it goes.
8690 MODE is the mode of the memory reference, needed to handle some
8691 autoincrement addressing modes.
8693 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8694 location list for RTL.
8696 Return 0 if we can't represent the location. */
8698 static dw_loc_descr_ref
8699 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8701 dw_loc_descr_ref mem_loc_result = NULL;
8702 enum dwarf_location_atom op;
8704 /* Note that for a dynamically sized array, the location we will generate a
8705 description of here will be the lowest numbered location which is
8706 actually within the array. That's *not* necessarily the same as the
8707 zeroth element of the array. */
8709 rtl = targetm.delegitimize_address (rtl);
8711 switch (GET_CODE (rtl))
8713 case POST_INC:
8714 case POST_DEC:
8715 case POST_MODIFY:
8716 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8717 just fall into the SUBREG code. */
8719 /* ... fall through ... */
8721 case SUBREG:
8722 /* The case of a subreg may arise when we have a local (register)
8723 variable or a formal (register) parameter which doesn't quite fill
8724 up an entire register. For now, just assume that it is
8725 legitimate to make the Dwarf info refer to the whole register which
8726 contains the given subreg. */
8727 rtl = XEXP (rtl, 0);
8729 /* ... fall through ... */
8731 case REG:
8732 /* Whenever a register number forms a part of the description of the
8733 method for calculating the (dynamic) address of a memory resident
8734 object, DWARF rules require the register number be referred to as
8735 a "base register". This distinction is not based in any way upon
8736 what category of register the hardware believes the given register
8737 belongs to. This is strictly DWARF terminology we're dealing with
8738 here. Note that in cases where the location of a memory-resident
8739 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8740 OP_CONST (0)) the actual DWARF location descriptor that we generate
8741 may just be OP_BASEREG (basereg). This may look deceptively like
8742 the object in question was allocated to a register (rather than in
8743 memory) so DWARF consumers need to be aware of the subtle
8744 distinction between OP_REG and OP_BASEREG. */
8745 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8746 mem_loc_result = based_loc_descr (rtl, 0);
8747 break;
8749 case MEM:
8750 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8751 if (mem_loc_result != 0)
8752 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8753 break;
8755 case LO_SUM:
8756 rtl = XEXP (rtl, 1);
8758 /* ... fall through ... */
8760 case LABEL_REF:
8761 /* Some ports can transform a symbol ref into a label ref, because
8762 the symbol ref is too far away and has to be dumped into a constant
8763 pool. */
8764 case CONST:
8765 case SYMBOL_REF:
8766 /* Alternatively, the symbol in the constant pool might be referenced
8767 by a different symbol. */
8768 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8770 bool marked;
8771 rtx tmp = get_pool_constant_mark (rtl, &marked);
8773 if (GET_CODE (tmp) == SYMBOL_REF)
8775 rtl = tmp;
8776 if (CONSTANT_POOL_ADDRESS_P (tmp))
8777 get_pool_constant_mark (tmp, &marked);
8778 else
8779 marked = true;
8782 /* If all references to this pool constant were optimized away,
8783 it was not output and thus we can't represent it.
8784 FIXME: might try to use DW_OP_const_value here, though
8785 DW_OP_piece complicates it. */
8786 if (!marked)
8787 return 0;
8790 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8791 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8792 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8793 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8794 break;
8796 case PRE_MODIFY:
8797 /* Extract the PLUS expression nested inside and fall into
8798 PLUS code below. */
8799 rtl = XEXP (rtl, 1);
8800 goto plus;
8802 case PRE_INC:
8803 case PRE_DEC:
8804 /* Turn these into a PLUS expression and fall into the PLUS code
8805 below. */
8806 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8807 GEN_INT (GET_CODE (rtl) == PRE_INC
8808 ? GET_MODE_UNIT_SIZE (mode)
8809 : -GET_MODE_UNIT_SIZE (mode)));
8811 /* ... fall through ... */
8813 case PLUS:
8814 plus:
8815 if (is_based_loc (rtl))
8816 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8817 INTVAL (XEXP (rtl, 1)));
8818 else
8820 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8821 if (mem_loc_result == 0)
8822 break;
8824 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8825 && INTVAL (XEXP (rtl, 1)) >= 0)
8826 add_loc_descr (&mem_loc_result,
8827 new_loc_descr (DW_OP_plus_uconst,
8828 INTVAL (XEXP (rtl, 1)), 0));
8829 else
8831 add_loc_descr (&mem_loc_result,
8832 mem_loc_descriptor (XEXP (rtl, 1), mode));
8833 add_loc_descr (&mem_loc_result,
8834 new_loc_descr (DW_OP_plus, 0, 0));
8837 break;
8839 /* If a pseudo-reg is optimized away, it is possible for it to
8840 be replaced with a MEM containing a multiply or shift. */
8841 case MULT:
8842 op = DW_OP_mul;
8843 goto do_binop;
8845 case ASHIFT:
8846 op = DW_OP_shl;
8847 goto do_binop;
8849 case ASHIFTRT:
8850 op = DW_OP_shra;
8851 goto do_binop;
8853 case LSHIFTRT:
8854 op = DW_OP_shr;
8855 goto do_binop;
8857 do_binop:
8859 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8860 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8862 if (op0 == 0 || op1 == 0)
8863 break;
8865 mem_loc_result = op0;
8866 add_loc_descr (&mem_loc_result, op1);
8867 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8868 break;
8871 case CONST_INT:
8872 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8873 break;
8875 default:
8876 gcc_unreachable ();
8879 return mem_loc_result;
8882 /* Return a descriptor that describes the concatenation of two locations.
8883 This is typically a complex variable. */
8885 static dw_loc_descr_ref
8886 concat_loc_descriptor (rtx x0, rtx x1)
8888 dw_loc_descr_ref cc_loc_result = NULL;
8889 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8890 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8892 if (x0_ref == 0 || x1_ref == 0)
8893 return 0;
8895 cc_loc_result = x0_ref;
8896 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8898 add_loc_descr (&cc_loc_result, x1_ref);
8899 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8901 return cc_loc_result;
8904 /* Output a proper Dwarf location descriptor for a variable or parameter
8905 which is either allocated in a register or in a memory location. For a
8906 register, we just generate an OP_REG and the register number. For a
8907 memory location we provide a Dwarf postfix expression describing how to
8908 generate the (dynamic) address of the object onto the address stack.
8910 If we don't know how to describe it, return 0. */
8912 static dw_loc_descr_ref
8913 loc_descriptor (rtx rtl)
8915 dw_loc_descr_ref loc_result = NULL;
8917 switch (GET_CODE (rtl))
8919 case SUBREG:
8920 /* The case of a subreg may arise when we have a local (register)
8921 variable or a formal (register) parameter which doesn't quite fill
8922 up an entire register. For now, just assume that it is
8923 legitimate to make the Dwarf info refer to the whole register which
8924 contains the given subreg. */
8925 rtl = SUBREG_REG (rtl);
8927 /* ... fall through ... */
8929 case REG:
8930 loc_result = reg_loc_descriptor (rtl);
8931 break;
8933 case MEM:
8934 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8935 break;
8937 case CONCAT:
8938 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8939 break;
8941 case VAR_LOCATION:
8942 /* Single part. */
8943 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8945 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
8946 break;
8949 rtl = XEXP (rtl, 1);
8950 /* FALLTHRU */
8952 case PARALLEL:
8954 rtvec par_elems = XVEC (rtl, 0);
8955 int num_elem = GET_NUM_ELEM (par_elems);
8956 enum machine_mode mode;
8957 int i;
8959 /* Create the first one, so we have something to add to. */
8960 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
8961 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8962 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8963 for (i = 1; i < num_elem; i++)
8965 dw_loc_descr_ref temp;
8967 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
8968 add_loc_descr (&loc_result, temp);
8969 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8970 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8973 break;
8975 default:
8976 gcc_unreachable ();
8979 return loc_result;
8982 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8983 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8984 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8985 top-level invocation, and we require the address of LOC; is 0 if we require
8986 the value of LOC. */
8988 static dw_loc_descr_ref
8989 loc_descriptor_from_tree_1 (tree loc, int want_address)
8991 dw_loc_descr_ref ret, ret1;
8992 int have_address = 0;
8993 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8994 enum dwarf_location_atom op;
8996 /* ??? Most of the time we do not take proper care for sign/zero
8997 extending the values properly. Hopefully this won't be a real
8998 problem... */
9000 switch (TREE_CODE (loc))
9002 case ERROR_MARK:
9003 return 0;
9005 case PLACEHOLDER_EXPR:
9006 /* This case involves extracting fields from an object to determine the
9007 position of other fields. We don't try to encode this here. The
9008 only user of this is Ada, which encodes the needed information using
9009 the names of types. */
9010 return 0;
9012 case CALL_EXPR:
9013 return 0;
9015 case PREINCREMENT_EXPR:
9016 case PREDECREMENT_EXPR:
9017 case POSTINCREMENT_EXPR:
9018 case POSTDECREMENT_EXPR:
9019 /* There are no opcodes for these operations. */
9020 return 0;
9022 case ADDR_EXPR:
9023 /* If we already want an address, there's nothing we can do. */
9024 if (want_address)
9025 return 0;
9027 /* Otherwise, process the argument and look for the address. */
9028 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9030 case VAR_DECL:
9031 if (DECL_THREAD_LOCAL_P (loc))
9033 rtx rtl;
9035 /* If this is not defined, we have no way to emit the data. */
9036 if (!targetm.asm_out.output_dwarf_dtprel)
9037 return 0;
9039 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9040 look up addresses of objects in the current module. */
9041 if (DECL_EXTERNAL (loc))
9042 return 0;
9044 rtl = rtl_for_decl_location (loc);
9045 if (rtl == NULL_RTX)
9046 return 0;
9048 if (!MEM_P (rtl))
9049 return 0;
9050 rtl = XEXP (rtl, 0);
9051 if (! CONSTANT_P (rtl))
9052 return 0;
9054 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9055 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9056 ret->dw_loc_oprnd1.v.val_addr = rtl;
9058 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9059 add_loc_descr (&ret, ret1);
9061 have_address = 1;
9062 break;
9064 /* FALLTHRU */
9066 case PARM_DECL:
9067 if (DECL_HAS_VALUE_EXPR_P (loc))
9068 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9069 want_address);
9070 /* FALLTHRU */
9072 case RESULT_DECL:
9074 rtx rtl = rtl_for_decl_location (loc);
9076 if (rtl == NULL_RTX)
9077 return 0;
9078 else if (GET_CODE (rtl) == CONST_INT)
9080 HOST_WIDE_INT val = INTVAL (rtl);
9081 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9082 val &= GET_MODE_MASK (DECL_MODE (loc));
9083 ret = int_loc_descriptor (val);
9085 else if (GET_CODE (rtl) == CONST_STRING)
9086 return 0;
9087 else if (CONSTANT_P (rtl))
9089 ret = new_loc_descr (DW_OP_addr, 0, 0);
9090 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9091 ret->dw_loc_oprnd1.v.val_addr = rtl;
9093 else
9095 enum machine_mode mode;
9097 /* Certain constructs can only be represented at top-level. */
9098 if (want_address == 2)
9099 return loc_descriptor (rtl);
9101 mode = GET_MODE (rtl);
9102 if (MEM_P (rtl))
9104 rtl = XEXP (rtl, 0);
9105 have_address = 1;
9107 ret = mem_loc_descriptor (rtl, mode);
9110 break;
9112 case INDIRECT_REF:
9113 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9114 have_address = 1;
9115 break;
9117 case COMPOUND_EXPR:
9118 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9120 case NOP_EXPR:
9121 case CONVERT_EXPR:
9122 case NON_LVALUE_EXPR:
9123 case VIEW_CONVERT_EXPR:
9124 case SAVE_EXPR:
9125 case MODIFY_EXPR:
9126 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9128 case COMPONENT_REF:
9129 case BIT_FIELD_REF:
9130 case ARRAY_REF:
9131 case ARRAY_RANGE_REF:
9133 tree obj, offset;
9134 HOST_WIDE_INT bitsize, bitpos, bytepos;
9135 enum machine_mode mode;
9136 int volatilep;
9138 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9139 &unsignedp, &volatilep, false);
9141 if (obj == loc)
9142 return 0;
9144 ret = loc_descriptor_from_tree_1 (obj, 1);
9145 if (ret == 0
9146 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9147 return 0;
9149 if (offset != NULL_TREE)
9151 /* Variable offset. */
9152 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9153 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9156 bytepos = bitpos / BITS_PER_UNIT;
9157 if (bytepos > 0)
9158 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9159 else if (bytepos < 0)
9161 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9162 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9165 have_address = 1;
9166 break;
9169 case INTEGER_CST:
9170 if (host_integerp (loc, 0))
9171 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9172 else
9173 return 0;
9174 break;
9176 case CONSTRUCTOR:
9178 /* Get an RTL for this, if something has been emitted. */
9179 rtx rtl = lookup_constant_def (loc);
9180 enum machine_mode mode;
9182 if (!rtl || !MEM_P (rtl))
9183 return 0;
9184 mode = GET_MODE (rtl);
9185 rtl = XEXP (rtl, 0);
9186 ret = mem_loc_descriptor (rtl, mode);
9187 have_address = 1;
9188 break;
9191 case TRUTH_AND_EXPR:
9192 case TRUTH_ANDIF_EXPR:
9193 case BIT_AND_EXPR:
9194 op = DW_OP_and;
9195 goto do_binop;
9197 case TRUTH_XOR_EXPR:
9198 case BIT_XOR_EXPR:
9199 op = DW_OP_xor;
9200 goto do_binop;
9202 case TRUTH_OR_EXPR:
9203 case TRUTH_ORIF_EXPR:
9204 case BIT_IOR_EXPR:
9205 op = DW_OP_or;
9206 goto do_binop;
9208 case FLOOR_DIV_EXPR:
9209 case CEIL_DIV_EXPR:
9210 case ROUND_DIV_EXPR:
9211 case TRUNC_DIV_EXPR:
9212 op = DW_OP_div;
9213 goto do_binop;
9215 case MINUS_EXPR:
9216 op = DW_OP_minus;
9217 goto do_binop;
9219 case FLOOR_MOD_EXPR:
9220 case CEIL_MOD_EXPR:
9221 case ROUND_MOD_EXPR:
9222 case TRUNC_MOD_EXPR:
9223 op = DW_OP_mod;
9224 goto do_binop;
9226 case MULT_EXPR:
9227 op = DW_OP_mul;
9228 goto do_binop;
9230 case LSHIFT_EXPR:
9231 op = DW_OP_shl;
9232 goto do_binop;
9234 case RSHIFT_EXPR:
9235 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9236 goto do_binop;
9238 case PLUS_EXPR:
9239 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9240 && host_integerp (TREE_OPERAND (loc, 1), 0))
9242 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9243 if (ret == 0)
9244 return 0;
9246 add_loc_descr (&ret,
9247 new_loc_descr (DW_OP_plus_uconst,
9248 tree_low_cst (TREE_OPERAND (loc, 1),
9250 0));
9251 break;
9254 op = DW_OP_plus;
9255 goto do_binop;
9257 case LE_EXPR:
9258 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9259 return 0;
9261 op = DW_OP_le;
9262 goto do_binop;
9264 case GE_EXPR:
9265 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9266 return 0;
9268 op = DW_OP_ge;
9269 goto do_binop;
9271 case LT_EXPR:
9272 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9273 return 0;
9275 op = DW_OP_lt;
9276 goto do_binop;
9278 case GT_EXPR:
9279 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9280 return 0;
9282 op = DW_OP_gt;
9283 goto do_binop;
9285 case EQ_EXPR:
9286 op = DW_OP_eq;
9287 goto do_binop;
9289 case NE_EXPR:
9290 op = DW_OP_ne;
9291 goto do_binop;
9293 do_binop:
9294 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9295 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9296 if (ret == 0 || ret1 == 0)
9297 return 0;
9299 add_loc_descr (&ret, ret1);
9300 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9301 break;
9303 case TRUTH_NOT_EXPR:
9304 case BIT_NOT_EXPR:
9305 op = DW_OP_not;
9306 goto do_unop;
9308 case ABS_EXPR:
9309 op = DW_OP_abs;
9310 goto do_unop;
9312 case NEGATE_EXPR:
9313 op = DW_OP_neg;
9314 goto do_unop;
9316 do_unop:
9317 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9318 if (ret == 0)
9319 return 0;
9321 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9322 break;
9324 case MIN_EXPR:
9325 case MAX_EXPR:
9327 const enum tree_code code =
9328 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9330 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9331 build2 (code, integer_type_node,
9332 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9333 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9336 /* ... fall through ... */
9338 case COND_EXPR:
9340 dw_loc_descr_ref lhs
9341 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9342 dw_loc_descr_ref rhs
9343 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9344 dw_loc_descr_ref bra_node, jump_node, tmp;
9346 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9347 if (ret == 0 || lhs == 0 || rhs == 0)
9348 return 0;
9350 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9351 add_loc_descr (&ret, bra_node);
9353 add_loc_descr (&ret, rhs);
9354 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9355 add_loc_descr (&ret, jump_node);
9357 add_loc_descr (&ret, lhs);
9358 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9359 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9361 /* ??? Need a node to point the skip at. Use a nop. */
9362 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9363 add_loc_descr (&ret, tmp);
9364 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9365 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9367 break;
9369 case FIX_TRUNC_EXPR:
9370 case FIX_CEIL_EXPR:
9371 case FIX_FLOOR_EXPR:
9372 case FIX_ROUND_EXPR:
9373 return 0;
9375 default:
9376 /* Leave front-end specific codes as simply unknown. This comes
9377 up, for instance, with the C STMT_EXPR. */
9378 if ((unsigned int) TREE_CODE (loc)
9379 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9380 return 0;
9382 #ifdef ENABLE_CHECKING
9383 /* Otherwise this is a generic code; we should just lists all of
9384 these explicitly. We forgot one. */
9385 gcc_unreachable ();
9386 #else
9387 /* In a release build, we want to degrade gracefully: better to
9388 generate incomplete debugging information than to crash. */
9389 return NULL;
9390 #endif
9393 /* Show if we can't fill the request for an address. */
9394 if (want_address && !have_address)
9395 return 0;
9397 /* If we've got an address and don't want one, dereference. */
9398 if (!want_address && have_address)
9400 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9402 if (size > DWARF2_ADDR_SIZE || size == -1)
9403 return 0;
9404 else if (size == DWARF2_ADDR_SIZE)
9405 op = DW_OP_deref;
9406 else
9407 op = DW_OP_deref_size;
9409 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9412 return ret;
9415 static inline dw_loc_descr_ref
9416 loc_descriptor_from_tree (tree loc)
9418 return loc_descriptor_from_tree_1 (loc, 2);
9421 /* Given a value, round it up to the lowest multiple of `boundary'
9422 which is not less than the value itself. */
9424 static inline HOST_WIDE_INT
9425 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9427 return (((value + boundary - 1) / boundary) * boundary);
9430 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9431 pointer to the declared type for the relevant field variable, or return
9432 `integer_type_node' if the given node turns out to be an
9433 ERROR_MARK node. */
9435 static inline tree
9436 field_type (tree decl)
9438 tree type;
9440 if (TREE_CODE (decl) == ERROR_MARK)
9441 return integer_type_node;
9443 type = DECL_BIT_FIELD_TYPE (decl);
9444 if (type == NULL_TREE)
9445 type = TREE_TYPE (decl);
9447 return type;
9450 /* Given a pointer to a tree node, return the alignment in bits for
9451 it, or else return BITS_PER_WORD if the node actually turns out to
9452 be an ERROR_MARK node. */
9454 static inline unsigned
9455 simple_type_align_in_bits (tree type)
9457 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9460 static inline unsigned
9461 simple_decl_align_in_bits (tree decl)
9463 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9466 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9467 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9468 or return 0 if we are unable to determine what that offset is, either
9469 because the argument turns out to be a pointer to an ERROR_MARK node, or
9470 because the offset is actually variable. (We can't handle the latter case
9471 just yet). */
9473 static HOST_WIDE_INT
9474 field_byte_offset (tree decl)
9476 unsigned int type_align_in_bits;
9477 unsigned int decl_align_in_bits;
9478 unsigned HOST_WIDE_INT type_size_in_bits;
9479 HOST_WIDE_INT object_offset_in_bits;
9480 tree type;
9481 tree field_size_tree;
9482 HOST_WIDE_INT bitpos_int;
9483 HOST_WIDE_INT deepest_bitpos;
9484 unsigned HOST_WIDE_INT field_size_in_bits;
9486 if (TREE_CODE (decl) == ERROR_MARK)
9487 return 0;
9489 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9491 type = field_type (decl);
9492 field_size_tree = DECL_SIZE (decl);
9494 /* The size could be unspecified if there was an error, or for
9495 a flexible array member. */
9496 if (! field_size_tree)
9497 field_size_tree = bitsize_zero_node;
9499 /* We cannot yet cope with fields whose positions are variable, so
9500 for now, when we see such things, we simply return 0. Someday, we may
9501 be able to handle such cases, but it will be damn difficult. */
9502 if (! host_integerp (bit_position (decl), 0))
9503 return 0;
9505 bitpos_int = int_bit_position (decl);
9507 /* If we don't know the size of the field, pretend it's a full word. */
9508 if (host_integerp (field_size_tree, 1))
9509 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9510 else
9511 field_size_in_bits = BITS_PER_WORD;
9513 type_size_in_bits = simple_type_size_in_bits (type);
9514 type_align_in_bits = simple_type_align_in_bits (type);
9515 decl_align_in_bits = simple_decl_align_in_bits (decl);
9517 /* The GCC front-end doesn't make any attempt to keep track of the starting
9518 bit offset (relative to the start of the containing structure type) of the
9519 hypothetical "containing object" for a bit-field. Thus, when computing
9520 the byte offset value for the start of the "containing object" of a
9521 bit-field, we must deduce this information on our own. This can be rather
9522 tricky to do in some cases. For example, handling the following structure
9523 type definition when compiling for an i386/i486 target (which only aligns
9524 long long's to 32-bit boundaries) can be very tricky:
9526 struct S { int field1; long long field2:31; };
9528 Fortunately, there is a simple rule-of-thumb which can be used in such
9529 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9530 structure shown above. It decides to do this based upon one simple rule
9531 for bit-field allocation. GCC allocates each "containing object" for each
9532 bit-field at the first (i.e. lowest addressed) legitimate alignment
9533 boundary (based upon the required minimum alignment for the declared type
9534 of the field) which it can possibly use, subject to the condition that
9535 there is still enough available space remaining in the containing object
9536 (when allocated at the selected point) to fully accommodate all of the
9537 bits of the bit-field itself.
9539 This simple rule makes it obvious why GCC allocates 8 bytes for each
9540 object of the structure type shown above. When looking for a place to
9541 allocate the "containing object" for `field2', the compiler simply tries
9542 to allocate a 64-bit "containing object" at each successive 32-bit
9543 boundary (starting at zero) until it finds a place to allocate that 64-
9544 bit field such that at least 31 contiguous (and previously unallocated)
9545 bits remain within that selected 64 bit field. (As it turns out, for the
9546 example above, the compiler finds it is OK to allocate the "containing
9547 object" 64-bit field at bit-offset zero within the structure type.)
9549 Here we attempt to work backwards from the limited set of facts we're
9550 given, and we try to deduce from those facts, where GCC must have believed
9551 that the containing object started (within the structure type). The value
9552 we deduce is then used (by the callers of this routine) to generate
9553 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9554 and, in the case of DW_AT_location, regular fields as well). */
9556 /* Figure out the bit-distance from the start of the structure to the
9557 "deepest" bit of the bit-field. */
9558 deepest_bitpos = bitpos_int + field_size_in_bits;
9560 /* This is the tricky part. Use some fancy footwork to deduce where the
9561 lowest addressed bit of the containing object must be. */
9562 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9564 /* Round up to type_align by default. This works best for bitfields. */
9565 object_offset_in_bits += type_align_in_bits - 1;
9566 object_offset_in_bits /= type_align_in_bits;
9567 object_offset_in_bits *= type_align_in_bits;
9569 if (object_offset_in_bits > bitpos_int)
9571 /* Sigh, the decl must be packed. */
9572 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9574 /* Round up to decl_align instead. */
9575 object_offset_in_bits += decl_align_in_bits - 1;
9576 object_offset_in_bits /= decl_align_in_bits;
9577 object_offset_in_bits *= decl_align_in_bits;
9580 return object_offset_in_bits / BITS_PER_UNIT;
9583 /* The following routines define various Dwarf attributes and any data
9584 associated with them. */
9586 /* Add a location description attribute value to a DIE.
9588 This emits location attributes suitable for whole variables and
9589 whole parameters. Note that the location attributes for struct fields are
9590 generated by the routine `data_member_location_attribute' below. */
9592 static inline void
9593 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9594 dw_loc_descr_ref descr)
9596 if (descr != 0)
9597 add_AT_loc (die, attr_kind, descr);
9600 /* Attach the specialized form of location attribute used for data members of
9601 struct and union types. In the special case of a FIELD_DECL node which
9602 represents a bit-field, the "offset" part of this special location
9603 descriptor must indicate the distance in bytes from the lowest-addressed
9604 byte of the containing struct or union type to the lowest-addressed byte of
9605 the "containing object" for the bit-field. (See the `field_byte_offset'
9606 function above).
9608 For any given bit-field, the "containing object" is a hypothetical object
9609 (of some integral or enum type) within which the given bit-field lives. The
9610 type of this hypothetical "containing object" is always the same as the
9611 declared type of the individual bit-field itself (for GCC anyway... the
9612 DWARF spec doesn't actually mandate this). Note that it is the size (in
9613 bytes) of the hypothetical "containing object" which will be given in the
9614 DW_AT_byte_size attribute for this bit-field. (See the
9615 `byte_size_attribute' function below.) It is also used when calculating the
9616 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9617 function below.) */
9619 static void
9620 add_data_member_location_attribute (dw_die_ref die, tree decl)
9622 HOST_WIDE_INT offset;
9623 dw_loc_descr_ref loc_descr = 0;
9625 if (TREE_CODE (decl) == TREE_BINFO)
9627 /* We're working on the TAG_inheritance for a base class. */
9628 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9630 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9631 aren't at a fixed offset from all (sub)objects of the same
9632 type. We need to extract the appropriate offset from our
9633 vtable. The following dwarf expression means
9635 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9637 This is specific to the V3 ABI, of course. */
9639 dw_loc_descr_ref tmp;
9641 /* Make a copy of the object address. */
9642 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9643 add_loc_descr (&loc_descr, tmp);
9645 /* Extract the vtable address. */
9646 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9647 add_loc_descr (&loc_descr, tmp);
9649 /* Calculate the address of the offset. */
9650 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9651 gcc_assert (offset < 0);
9653 tmp = int_loc_descriptor (-offset);
9654 add_loc_descr (&loc_descr, tmp);
9655 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9656 add_loc_descr (&loc_descr, tmp);
9658 /* Extract the offset. */
9659 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9660 add_loc_descr (&loc_descr, tmp);
9662 /* Add it to the object address. */
9663 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9664 add_loc_descr (&loc_descr, tmp);
9666 else
9667 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9669 else
9670 offset = field_byte_offset (decl);
9672 if (! loc_descr)
9674 enum dwarf_location_atom op;
9676 /* The DWARF2 standard says that we should assume that the structure
9677 address is already on the stack, so we can specify a structure field
9678 address by using DW_OP_plus_uconst. */
9680 #ifdef MIPS_DEBUGGING_INFO
9681 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9682 operator correctly. It works only if we leave the offset on the
9683 stack. */
9684 op = DW_OP_constu;
9685 #else
9686 op = DW_OP_plus_uconst;
9687 #endif
9689 loc_descr = new_loc_descr (op, offset, 0);
9692 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9695 /* Writes integer values to dw_vec_const array. */
9697 static void
9698 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9700 while (size != 0)
9702 *dest++ = val & 0xff;
9703 val >>= 8;
9704 --size;
9708 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9710 static HOST_WIDE_INT
9711 extract_int (const unsigned char *src, unsigned int size)
9713 HOST_WIDE_INT val = 0;
9715 src += size;
9716 while (size != 0)
9718 val <<= 8;
9719 val |= *--src & 0xff;
9720 --size;
9722 return val;
9725 /* Writes floating point values to dw_vec_const array. */
9727 static void
9728 insert_float (rtx rtl, unsigned char *array)
9730 REAL_VALUE_TYPE rv;
9731 long val[4];
9732 int i;
9734 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9735 real_to_target (val, &rv, GET_MODE (rtl));
9737 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9738 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9740 insert_int (val[i], 4, array);
9741 array += 4;
9745 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9746 does not have a "location" either in memory or in a register. These
9747 things can arise in GNU C when a constant is passed as an actual parameter
9748 to an inlined function. They can also arise in C++ where declared
9749 constants do not necessarily get memory "homes". */
9751 static void
9752 add_const_value_attribute (dw_die_ref die, rtx rtl)
9754 switch (GET_CODE (rtl))
9756 case CONST_INT:
9758 HOST_WIDE_INT val = INTVAL (rtl);
9760 if (val < 0)
9761 add_AT_int (die, DW_AT_const_value, val);
9762 else
9763 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9765 break;
9767 case CONST_DOUBLE:
9768 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9769 floating-point constant. A CONST_DOUBLE is used whenever the
9770 constant requires more than one word in order to be adequately
9771 represented. We output CONST_DOUBLEs as blocks. */
9773 enum machine_mode mode = GET_MODE (rtl);
9775 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9777 unsigned int length = GET_MODE_SIZE (mode);
9778 unsigned char *array = ggc_alloc (length);
9780 insert_float (rtl, array);
9781 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9783 else
9785 /* ??? We really should be using HOST_WIDE_INT throughout. */
9786 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9788 add_AT_long_long (die, DW_AT_const_value,
9789 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9792 break;
9794 case CONST_VECTOR:
9796 enum machine_mode mode = GET_MODE (rtl);
9797 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9798 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9799 unsigned char *array = ggc_alloc (length * elt_size);
9800 unsigned int i;
9801 unsigned char *p;
9803 switch (GET_MODE_CLASS (mode))
9805 case MODE_VECTOR_INT:
9806 for (i = 0, p = array; i < length; i++, p += elt_size)
9808 rtx elt = CONST_VECTOR_ELT (rtl, i);
9809 HOST_WIDE_INT lo, hi;
9811 switch (GET_CODE (elt))
9813 case CONST_INT:
9814 lo = INTVAL (elt);
9815 hi = -(lo < 0);
9816 break;
9818 case CONST_DOUBLE:
9819 lo = CONST_DOUBLE_LOW (elt);
9820 hi = CONST_DOUBLE_HIGH (elt);
9821 break;
9823 default:
9824 gcc_unreachable ();
9827 if (elt_size <= sizeof (HOST_WIDE_INT))
9828 insert_int (lo, elt_size, p);
9829 else
9831 unsigned char *p0 = p;
9832 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9834 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9835 if (WORDS_BIG_ENDIAN)
9837 p0 = p1;
9838 p1 = p;
9840 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9841 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9844 break;
9846 case MODE_VECTOR_FLOAT:
9847 for (i = 0, p = array; i < length; i++, p += elt_size)
9849 rtx elt = CONST_VECTOR_ELT (rtl, i);
9850 insert_float (elt, p);
9852 break;
9854 default:
9855 gcc_unreachable ();
9858 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9860 break;
9862 case CONST_STRING:
9863 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9864 break;
9866 case SYMBOL_REF:
9867 case LABEL_REF:
9868 case CONST:
9869 add_AT_addr (die, DW_AT_const_value, rtl);
9870 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9871 break;
9873 case PLUS:
9874 /* In cases where an inlined instance of an inline function is passed
9875 the address of an `auto' variable (which is local to the caller) we
9876 can get a situation where the DECL_RTL of the artificial local
9877 variable (for the inlining) which acts as a stand-in for the
9878 corresponding formal parameter (of the inline function) will look
9879 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9880 exactly a compile-time constant expression, but it isn't the address
9881 of the (artificial) local variable either. Rather, it represents the
9882 *value* which the artificial local variable always has during its
9883 lifetime. We currently have no way to represent such quasi-constant
9884 values in Dwarf, so for now we just punt and generate nothing. */
9885 break;
9887 default:
9888 /* No other kinds of rtx should be possible here. */
9889 gcc_unreachable ();
9894 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9895 for use in a later add_const_value_attribute call. */
9897 static rtx
9898 rtl_for_decl_init (tree init, tree type)
9900 rtx rtl = NULL_RTX;
9902 /* If a variable is initialized with a string constant without embedded
9903 zeros, build CONST_STRING. */
9904 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9906 tree enttype = TREE_TYPE (type);
9907 tree domain = TYPE_DOMAIN (type);
9908 enum machine_mode mode = TYPE_MODE (enttype);
9910 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9911 && domain
9912 && integer_zerop (TYPE_MIN_VALUE (domain))
9913 && compare_tree_int (TYPE_MAX_VALUE (domain),
9914 TREE_STRING_LENGTH (init) - 1) == 0
9915 && ((size_t) TREE_STRING_LENGTH (init)
9916 == strlen (TREE_STRING_POINTER (init)) + 1))
9917 rtl = gen_rtx_CONST_STRING (VOIDmode,
9918 ggc_strdup (TREE_STRING_POINTER (init)));
9920 /* If the initializer is something that we know will expand into an
9921 immediate RTL constant, expand it now. Expanding anything else
9922 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9923 /* Aggregate, vector, and complex types may contain constructors that may
9924 result in code being generated when expand_expr is called, so we can't
9925 handle them here. Integer and float are useful and safe types to handle
9926 here. */
9927 else if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
9928 && initializer_constant_valid_p (init, type) == null_pointer_node)
9930 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9932 /* If expand_expr returns a MEM, it wasn't immediate. */
9933 gcc_assert (!rtl || !MEM_P (rtl));
9936 return rtl;
9939 /* Generate RTL for the variable DECL to represent its location. */
9941 static rtx
9942 rtl_for_decl_location (tree decl)
9944 rtx rtl;
9946 /* Here we have to decide where we are going to say the parameter "lives"
9947 (as far as the debugger is concerned). We only have a couple of
9948 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9950 DECL_RTL normally indicates where the parameter lives during most of the
9951 activation of the function. If optimization is enabled however, this
9952 could be either NULL or else a pseudo-reg. Both of those cases indicate
9953 that the parameter doesn't really live anywhere (as far as the code
9954 generation parts of GCC are concerned) during most of the function's
9955 activation. That will happen (for example) if the parameter is never
9956 referenced within the function.
9958 We could just generate a location descriptor here for all non-NULL
9959 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9960 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9961 where DECL_RTL is NULL or is a pseudo-reg.
9963 Note however that we can only get away with using DECL_INCOMING_RTL as
9964 a backup substitute for DECL_RTL in certain limited cases. In cases
9965 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9966 we can be sure that the parameter was passed using the same type as it is
9967 declared to have within the function, and that its DECL_INCOMING_RTL
9968 points us to a place where a value of that type is passed.
9970 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9971 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9972 because in these cases DECL_INCOMING_RTL points us to a value of some
9973 type which is *different* from the type of the parameter itself. Thus,
9974 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9975 such cases, the debugger would end up (for example) trying to fetch a
9976 `float' from a place which actually contains the first part of a
9977 `double'. That would lead to really incorrect and confusing
9978 output at debug-time.
9980 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9981 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9982 are a couple of exceptions however. On little-endian machines we can
9983 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9984 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9985 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9986 when (on a little-endian machine) a non-prototyped function has a
9987 parameter declared to be of type `short' or `char'. In such cases,
9988 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9989 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9990 passed `int' value. If the debugger then uses that address to fetch
9991 a `short' or a `char' (on a little-endian machine) the result will be
9992 the correct data, so we allow for such exceptional cases below.
9994 Note that our goal here is to describe the place where the given formal
9995 parameter lives during most of the function's activation (i.e. between the
9996 end of the prologue and the start of the epilogue). We'll do that as best
9997 as we can. Note however that if the given formal parameter is modified
9998 sometime during the execution of the function, then a stack backtrace (at
9999 debug-time) will show the function as having been called with the *new*
10000 value rather than the value which was originally passed in. This happens
10001 rarely enough that it is not a major problem, but it *is* a problem, and
10002 I'd like to fix it.
10004 A future version of dwarf2out.c may generate two additional attributes for
10005 any given DW_TAG_formal_parameter DIE which will describe the "passed
10006 type" and the "passed location" for the given formal parameter in addition
10007 to the attributes we now generate to indicate the "declared type" and the
10008 "active location" for each parameter. This additional set of attributes
10009 could be used by debuggers for stack backtraces. Separately, note that
10010 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10011 This happens (for example) for inlined-instances of inline function formal
10012 parameters which are never referenced. This really shouldn't be
10013 happening. All PARM_DECL nodes should get valid non-NULL
10014 DECL_INCOMING_RTL values. FIXME. */
10016 /* Use DECL_RTL as the "location" unless we find something better. */
10017 rtl = DECL_RTL_IF_SET (decl);
10019 /* When generating abstract instances, ignore everything except
10020 constants, symbols living in memory, and symbols living in
10021 fixed registers. */
10022 if (! reload_completed)
10024 if (rtl
10025 && (CONSTANT_P (rtl)
10026 || (MEM_P (rtl)
10027 && CONSTANT_P (XEXP (rtl, 0)))
10028 || (REG_P (rtl)
10029 && TREE_CODE (decl) == VAR_DECL
10030 && TREE_STATIC (decl))))
10032 rtl = targetm.delegitimize_address (rtl);
10033 return rtl;
10035 rtl = NULL_RTX;
10037 else if (TREE_CODE (decl) == PARM_DECL)
10039 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10041 tree declared_type = TREE_TYPE (decl);
10042 tree passed_type = DECL_ARG_TYPE (decl);
10043 enum machine_mode dmode = TYPE_MODE (declared_type);
10044 enum machine_mode pmode = TYPE_MODE (passed_type);
10046 /* This decl represents a formal parameter which was optimized out.
10047 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10048 all cases where (rtl == NULL_RTX) just below. */
10049 if (dmode == pmode)
10050 rtl = DECL_INCOMING_RTL (decl);
10051 else if (SCALAR_INT_MODE_P (dmode)
10052 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10053 && DECL_INCOMING_RTL (decl))
10055 rtx inc = DECL_INCOMING_RTL (decl);
10056 if (REG_P (inc))
10057 rtl = inc;
10058 else if (MEM_P (inc))
10060 if (BYTES_BIG_ENDIAN)
10061 rtl = adjust_address_nv (inc, dmode,
10062 GET_MODE_SIZE (pmode)
10063 - GET_MODE_SIZE (dmode));
10064 else
10065 rtl = inc;
10070 /* If the parm was passed in registers, but lives on the stack, then
10071 make a big endian correction if the mode of the type of the
10072 parameter is not the same as the mode of the rtl. */
10073 /* ??? This is the same series of checks that are made in dbxout.c before
10074 we reach the big endian correction code there. It isn't clear if all
10075 of these checks are necessary here, but keeping them all is the safe
10076 thing to do. */
10077 else if (MEM_P (rtl)
10078 && XEXP (rtl, 0) != const0_rtx
10079 && ! CONSTANT_P (XEXP (rtl, 0))
10080 /* Not passed in memory. */
10081 && !MEM_P (DECL_INCOMING_RTL (decl))
10082 /* Not passed by invisible reference. */
10083 && (!REG_P (XEXP (rtl, 0))
10084 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10085 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10086 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10087 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10088 #endif
10090 /* Big endian correction check. */
10091 && BYTES_BIG_ENDIAN
10092 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10093 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10094 < UNITS_PER_WORD))
10096 int offset = (UNITS_PER_WORD
10097 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10099 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10100 plus_constant (XEXP (rtl, 0), offset));
10103 else if (TREE_CODE (decl) == VAR_DECL
10104 && rtl
10105 && MEM_P (rtl)
10106 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10107 && BYTES_BIG_ENDIAN)
10109 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10110 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10112 /* If a variable is declared "register" yet is smaller than
10113 a register, then if we store the variable to memory, it
10114 looks like we're storing a register-sized value, when in
10115 fact we are not. We need to adjust the offset of the
10116 storage location to reflect the actual value's bytes,
10117 else gdb will not be able to display it. */
10118 if (rsize > dsize)
10119 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10120 plus_constant (XEXP (rtl, 0), rsize-dsize));
10123 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10124 and will have been substituted directly into all expressions that use it.
10125 C does not have such a concept, but C++ and other languages do. */
10126 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10127 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10129 if (rtl)
10130 rtl = targetm.delegitimize_address (rtl);
10132 /* If we don't look past the constant pool, we risk emitting a
10133 reference to a constant pool entry that isn't referenced from
10134 code, and thus is not emitted. */
10135 if (rtl)
10136 rtl = avoid_constant_pool_reference (rtl);
10138 return rtl;
10141 /* We need to figure out what section we should use as the base for the
10142 address ranges where a given location is valid.
10143 1. If this particular DECL has a section associated with it, use that.
10144 2. If this function has a section associated with it, use that.
10145 3. Otherwise, use the text section.
10146 XXX: If you split a variable across multiple sections, we won't notice. */
10148 static const char *
10149 secname_for_decl (tree decl)
10151 const char *secname;
10153 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10155 tree sectree = DECL_SECTION_NAME (decl);
10156 secname = TREE_STRING_POINTER (sectree);
10158 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10160 tree sectree = DECL_SECTION_NAME (current_function_decl);
10161 secname = TREE_STRING_POINTER (sectree);
10163 else if (cfun
10164 && (last_text_section == in_unlikely_executed_text
10165 || (last_text_section == in_named
10166 && last_text_section_name
10167 == cfun->unlikely_text_section_name)))
10168 secname = cfun->cold_section_label;
10169 else
10170 secname = text_section_label;
10172 return secname;
10175 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10176 data attribute for a variable or a parameter. We generate the
10177 DW_AT_const_value attribute only in those cases where the given variable
10178 or parameter does not have a true "location" either in memory or in a
10179 register. This can happen (for example) when a constant is passed as an
10180 actual argument in a call to an inline function. (It's possible that
10181 these things can crop up in other ways also.) Note that one type of
10182 constant value which can be passed into an inlined function is a constant
10183 pointer. This can happen for example if an actual argument in an inlined
10184 function call evaluates to a compile-time constant address. */
10186 static void
10187 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10188 enum dwarf_attribute attr)
10190 rtx rtl;
10191 dw_loc_descr_ref descr;
10192 var_loc_list *loc_list;
10193 struct var_loc_node *node;
10194 if (TREE_CODE (decl) == ERROR_MARK)
10195 return;
10197 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10198 || TREE_CODE (decl) == RESULT_DECL);
10200 /* See if we possibly have multiple locations for this variable. */
10201 loc_list = lookup_decl_loc (decl);
10203 /* If it truly has multiple locations, the first and last node will
10204 differ. */
10205 if (loc_list && loc_list->first != loc_list->last)
10207 const char *endname, *secname;
10208 dw_loc_list_ref list;
10209 rtx varloc;
10211 /* Now that we know what section we are using for a base,
10212 actually construct the list of locations.
10213 The first location information is what is passed to the
10214 function that creates the location list, and the remaining
10215 locations just get added on to that list.
10216 Note that we only know the start address for a location
10217 (IE location changes), so to build the range, we use
10218 the range [current location start, next location start].
10219 This means we have to special case the last node, and generate
10220 a range of [last location start, end of function label]. */
10222 node = loc_list->first;
10223 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10224 secname = secname_for_decl (decl);
10226 list = new_loc_list (loc_descriptor (varloc),
10227 node->label, node->next->label, secname, 1);
10228 node = node->next;
10230 for (; node->next; node = node->next)
10231 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10233 /* The variable has a location between NODE->LABEL and
10234 NODE->NEXT->LABEL. */
10235 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10236 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10237 node->label, node->next->label, secname);
10240 /* If the variable has a location at the last label
10241 it keeps its location until the end of function. */
10242 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10244 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10246 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10247 if (!current_function_decl)
10248 endname = text_end_label;
10249 else
10251 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10252 current_function_funcdef_no);
10253 endname = ggc_strdup (label_id);
10255 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10256 node->label, endname, secname);
10259 /* Finally, add the location list to the DIE, and we are done. */
10260 add_AT_loc_list (die, attr, list);
10261 return;
10264 /* Try to get some constant RTL for this decl, and use that as the value of
10265 the location. */
10267 rtl = rtl_for_decl_location (decl);
10268 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10270 add_const_value_attribute (die, rtl);
10271 return;
10274 /* If we have tried to generate the location otherwise, and it
10275 didn't work out (we wouldn't be here if we did), and we have a one entry
10276 location list, try generating a location from that. */
10277 if (loc_list && loc_list->first)
10279 node = loc_list->first;
10280 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10281 if (descr)
10283 add_AT_location_description (die, attr, descr);
10284 return;
10288 /* We couldn't get any rtl, so try directly generating the location
10289 description from the tree. */
10290 descr = loc_descriptor_from_tree (decl);
10291 if (descr)
10293 add_AT_location_description (die, attr, descr);
10294 return;
10298 /* If we don't have a copy of this variable in memory for some reason (such
10299 as a C++ member constant that doesn't have an out-of-line definition),
10300 we should tell the debugger about the constant value. */
10302 static void
10303 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10305 tree init = DECL_INITIAL (decl);
10306 tree type = TREE_TYPE (decl);
10307 rtx rtl;
10309 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10310 /* OK */;
10311 else
10312 return;
10314 rtl = rtl_for_decl_init (init, type);
10315 if (rtl)
10316 add_const_value_attribute (var_die, rtl);
10319 #ifdef DWARF2_UNWIND_INFO
10320 /* Convert the CFI instructions for the current function into a location
10321 list. This is used for DW_AT_frame_base when we targeting a dwarf2
10322 consumer that does not support the dwarf3 DW_OP_call_frame_cfa. */
10324 static dw_loc_list_ref
10325 convert_cfa_to_loc_list (void)
10327 dw_fde_ref fde;
10328 dw_loc_list_ref list, *list_tail;
10329 dw_cfi_ref cfi;
10330 dw_cfa_location last_cfa, next_cfa;
10331 const char *start_label, *last_label, *section;
10333 fde = &fde_table[fde_table_in_use - 1];
10335 section = secname_for_decl (current_function_decl);
10336 list_tail = &list;
10337 list = NULL;
10339 next_cfa.reg = INVALID_REGNUM;
10340 next_cfa.offset = 0;
10341 next_cfa.indirect = 0;
10342 next_cfa.base_offset = 0;
10344 start_label = fde->dw_fde_begin;
10346 /* ??? Bald assumption that the CIE opcode list does not contain
10347 advance opcodes. */
10348 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10349 lookup_cfa_1 (cfi, &next_cfa);
10351 last_cfa = next_cfa;
10352 last_label = start_label;
10354 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10355 switch (cfi->dw_cfi_opc)
10357 case DW_CFA_advance_loc1:
10358 case DW_CFA_advance_loc2:
10359 case DW_CFA_advance_loc4:
10360 if (!cfa_equal_p (&last_cfa, &next_cfa))
10362 *list_tail = new_loc_list (build_cfa_loc (&last_cfa), start_label,
10363 last_label, section, list == NULL);
10365 list_tail = &(*list_tail)->dw_loc_next;
10366 last_cfa = next_cfa;
10367 start_label = last_label;
10369 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10370 break;
10372 case DW_CFA_advance_loc:
10373 /* The encoding is complex enough that we should never emit this. */
10374 case DW_CFA_remember_state:
10375 case DW_CFA_restore_state:
10376 /* We don't handle these two in this function. It would be possible
10377 if it were to be required. */
10378 gcc_unreachable ();
10380 default:
10381 lookup_cfa_1 (cfi, &next_cfa);
10382 break;
10385 if (!cfa_equal_p (&last_cfa, &next_cfa))
10387 *list_tail = new_loc_list (build_cfa_loc (&last_cfa), start_label,
10388 last_label, section, list == NULL);
10389 list_tail = &(*list_tail)->dw_loc_next;
10390 start_label = last_label;
10392 *list_tail = new_loc_list (build_cfa_loc (&next_cfa), start_label,
10393 fde->dw_fde_end, section, list == NULL);
10395 return list;
10398 /* Compute a displacement from the "steady-state frame pointer" to
10399 the CFA, and store it in frame_pointer_cfa_offset. */
10401 static void
10402 compute_frame_pointer_to_cfa_displacement (void)
10404 HOST_WIDE_INT offset;
10406 offset = eliminate_reg_to_offset (arg_pointer_rtx);
10407 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10409 frame_pointer_cfa_offset = -offset;
10411 #endif
10413 /* Generate a DW_AT_name attribute given some string value to be included as
10414 the value of the attribute. */
10416 static void
10417 add_name_attribute (dw_die_ref die, const char *name_string)
10419 if (name_string != NULL && *name_string != 0)
10421 if (demangle_name_func)
10422 name_string = (*demangle_name_func) (name_string);
10424 add_AT_string (die, DW_AT_name, name_string);
10428 /* Generate a DW_AT_comp_dir attribute for DIE. */
10430 static void
10431 add_comp_dir_attribute (dw_die_ref die)
10433 const char *wd = get_src_pwd ();
10434 if (wd != NULL)
10435 add_AT_string (die, DW_AT_comp_dir, wd);
10438 /* Given a tree node describing an array bound (either lower or upper) output
10439 a representation for that bound. */
10441 static void
10442 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10444 switch (TREE_CODE (bound))
10446 case ERROR_MARK:
10447 return;
10449 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10450 case INTEGER_CST:
10451 if (! host_integerp (bound, 0)
10452 || (bound_attr == DW_AT_lower_bound
10453 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10454 || (is_fortran () && integer_onep (bound)))))
10455 /* Use the default. */
10457 else
10458 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10459 break;
10461 case CONVERT_EXPR:
10462 case NOP_EXPR:
10463 case NON_LVALUE_EXPR:
10464 case VIEW_CONVERT_EXPR:
10465 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10466 break;
10468 case SAVE_EXPR:
10469 break;
10471 case VAR_DECL:
10472 case PARM_DECL:
10473 case RESULT_DECL:
10475 dw_die_ref decl_die = lookup_decl_die (bound);
10477 /* ??? Can this happen, or should the variable have been bound
10478 first? Probably it can, since I imagine that we try to create
10479 the types of parameters in the order in which they exist in
10480 the list, and won't have created a forward reference to a
10481 later parameter. */
10482 if (decl_die != NULL)
10483 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10484 break;
10487 default:
10489 /* Otherwise try to create a stack operation procedure to
10490 evaluate the value of the array bound. */
10492 dw_die_ref ctx, decl_die;
10493 dw_loc_descr_ref loc;
10495 loc = loc_descriptor_from_tree (bound);
10496 if (loc == NULL)
10497 break;
10499 if (current_function_decl == 0)
10500 ctx = comp_unit_die;
10501 else
10502 ctx = lookup_decl_die (current_function_decl);
10504 decl_die = new_die (DW_TAG_variable, ctx, bound);
10505 add_AT_flag (decl_die, DW_AT_artificial, 1);
10506 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10507 add_AT_loc (decl_die, DW_AT_location, loc);
10509 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10510 break;
10515 /* Note that the block of subscript information for an array type also
10516 includes information about the element type of type given array type. */
10518 static void
10519 add_subscript_info (dw_die_ref type_die, tree type)
10521 #ifndef MIPS_DEBUGGING_INFO
10522 unsigned dimension_number;
10523 #endif
10524 tree lower, upper;
10525 dw_die_ref subrange_die;
10527 /* The GNU compilers represent multidimensional array types as sequences of
10528 one dimensional array types whose element types are themselves array
10529 types. Here we squish that down, so that each multidimensional array
10530 type gets only one array_type DIE in the Dwarf debugging info. The draft
10531 Dwarf specification say that we are allowed to do this kind of
10532 compression in C (because there is no difference between an array or
10533 arrays and a multidimensional array in C) but for other source languages
10534 (e.g. Ada) we probably shouldn't do this. */
10536 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10537 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10538 We work around this by disabling this feature. See also
10539 gen_array_type_die. */
10540 #ifndef MIPS_DEBUGGING_INFO
10541 for (dimension_number = 0;
10542 TREE_CODE (type) == ARRAY_TYPE;
10543 type = TREE_TYPE (type), dimension_number++)
10544 #endif
10546 tree domain = TYPE_DOMAIN (type);
10548 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10549 and (in GNU C only) variable bounds. Handle all three forms
10550 here. */
10551 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10552 if (domain)
10554 /* We have an array type with specified bounds. */
10555 lower = TYPE_MIN_VALUE (domain);
10556 upper = TYPE_MAX_VALUE (domain);
10558 /* Define the index type. */
10559 if (TREE_TYPE (domain))
10561 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10562 TREE_TYPE field. We can't emit debug info for this
10563 because it is an unnamed integral type. */
10564 if (TREE_CODE (domain) == INTEGER_TYPE
10565 && TYPE_NAME (domain) == NULL_TREE
10566 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10567 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10569 else
10570 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10571 type_die);
10574 /* ??? If upper is NULL, the array has unspecified length,
10575 but it does have a lower bound. This happens with Fortran
10576 dimension arr(N:*)
10577 Since the debugger is definitely going to need to know N
10578 to produce useful results, go ahead and output the lower
10579 bound solo, and hope the debugger can cope. */
10581 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10582 if (upper)
10583 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10586 /* Otherwise we have an array type with an unspecified length. The
10587 DWARF-2 spec does not say how to handle this; let's just leave out the
10588 bounds. */
10592 static void
10593 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10595 unsigned size;
10597 switch (TREE_CODE (tree_node))
10599 case ERROR_MARK:
10600 size = 0;
10601 break;
10602 case ENUMERAL_TYPE:
10603 case RECORD_TYPE:
10604 case UNION_TYPE:
10605 case QUAL_UNION_TYPE:
10606 size = int_size_in_bytes (tree_node);
10607 break;
10608 case FIELD_DECL:
10609 /* For a data member of a struct or union, the DW_AT_byte_size is
10610 generally given as the number of bytes normally allocated for an
10611 object of the *declared* type of the member itself. This is true
10612 even for bit-fields. */
10613 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10614 break;
10615 default:
10616 gcc_unreachable ();
10619 /* Note that `size' might be -1 when we get to this point. If it is, that
10620 indicates that the byte size of the entity in question is variable. We
10621 have no good way of expressing this fact in Dwarf at the present time,
10622 so just let the -1 pass on through. */
10623 add_AT_unsigned (die, DW_AT_byte_size, size);
10626 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10627 which specifies the distance in bits from the highest order bit of the
10628 "containing object" for the bit-field to the highest order bit of the
10629 bit-field itself.
10631 For any given bit-field, the "containing object" is a hypothetical object
10632 (of some integral or enum type) within which the given bit-field lives. The
10633 type of this hypothetical "containing object" is always the same as the
10634 declared type of the individual bit-field itself. The determination of the
10635 exact location of the "containing object" for a bit-field is rather
10636 complicated. It's handled by the `field_byte_offset' function (above).
10638 Note that it is the size (in bytes) of the hypothetical "containing object"
10639 which will be given in the DW_AT_byte_size attribute for this bit-field.
10640 (See `byte_size_attribute' above). */
10642 static inline void
10643 add_bit_offset_attribute (dw_die_ref die, tree decl)
10645 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10646 tree type = DECL_BIT_FIELD_TYPE (decl);
10647 HOST_WIDE_INT bitpos_int;
10648 HOST_WIDE_INT highest_order_object_bit_offset;
10649 HOST_WIDE_INT highest_order_field_bit_offset;
10650 HOST_WIDE_INT unsigned bit_offset;
10652 /* Must be a field and a bit field. */
10653 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10655 /* We can't yet handle bit-fields whose offsets are variable, so if we
10656 encounter such things, just return without generating any attribute
10657 whatsoever. Likewise for variable or too large size. */
10658 if (! host_integerp (bit_position (decl), 0)
10659 || ! host_integerp (DECL_SIZE (decl), 1))
10660 return;
10662 bitpos_int = int_bit_position (decl);
10664 /* Note that the bit offset is always the distance (in bits) from the
10665 highest-order bit of the "containing object" to the highest-order bit of
10666 the bit-field itself. Since the "high-order end" of any object or field
10667 is different on big-endian and little-endian machines, the computation
10668 below must take account of these differences. */
10669 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10670 highest_order_field_bit_offset = bitpos_int;
10672 if (! BYTES_BIG_ENDIAN)
10674 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10675 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10678 bit_offset
10679 = (! BYTES_BIG_ENDIAN
10680 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10681 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10683 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10686 /* For a FIELD_DECL node which represents a bit field, output an attribute
10687 which specifies the length in bits of the given field. */
10689 static inline void
10690 add_bit_size_attribute (dw_die_ref die, tree decl)
10692 /* Must be a field and a bit field. */
10693 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10694 && DECL_BIT_FIELD_TYPE (decl));
10696 if (host_integerp (DECL_SIZE (decl), 1))
10697 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10700 /* If the compiled language is ANSI C, then add a 'prototyped'
10701 attribute, if arg types are given for the parameters of a function. */
10703 static inline void
10704 add_prototyped_attribute (dw_die_ref die, tree func_type)
10706 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10707 && TYPE_ARG_TYPES (func_type) != NULL)
10708 add_AT_flag (die, DW_AT_prototyped, 1);
10711 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10712 by looking in either the type declaration or object declaration
10713 equate table. */
10715 static inline void
10716 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10718 dw_die_ref origin_die = NULL;
10720 if (TREE_CODE (origin) != FUNCTION_DECL)
10722 /* We may have gotten separated from the block for the inlined
10723 function, if we're in an exception handler or some such; make
10724 sure that the abstract function has been written out.
10726 Doing this for nested functions is wrong, however; functions are
10727 distinct units, and our context might not even be inline. */
10728 tree fn = origin;
10730 if (TYPE_P (fn))
10731 fn = TYPE_STUB_DECL (fn);
10733 fn = decl_function_context (fn);
10734 if (fn)
10735 dwarf2out_abstract_function (fn);
10738 if (DECL_P (origin))
10739 origin_die = lookup_decl_die (origin);
10740 else if (TYPE_P (origin))
10741 origin_die = lookup_type_die (origin);
10743 /* XXX: Functions that are never lowered don't always have correct block
10744 trees (in the case of java, they simply have no block tree, in some other
10745 languages). For these functions, there is nothing we can really do to
10746 output correct debug info for inlined functions in all cases. Rather
10747 than die, we'll just produce deficient debug info now, in that we will
10748 have variables without a proper abstract origin. In the future, when all
10749 functions are lowered, we should re-add a gcc_assert (origin_die)
10750 here. */
10752 if (origin_die)
10753 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10756 /* We do not currently support the pure_virtual attribute. */
10758 static inline void
10759 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10761 if (DECL_VINDEX (func_decl))
10763 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10765 if (host_integerp (DECL_VINDEX (func_decl), 0))
10766 add_AT_loc (die, DW_AT_vtable_elem_location,
10767 new_loc_descr (DW_OP_constu,
10768 tree_low_cst (DECL_VINDEX (func_decl), 0),
10769 0));
10771 /* GNU extension: Record what type this method came from originally. */
10772 if (debug_info_level > DINFO_LEVEL_TERSE)
10773 add_AT_die_ref (die, DW_AT_containing_type,
10774 lookup_type_die (DECL_CONTEXT (func_decl)));
10778 /* Add source coordinate attributes for the given decl. */
10780 static void
10781 add_src_coords_attributes (dw_die_ref die, tree decl)
10783 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10784 unsigned file_index = lookup_filename (s.file);
10786 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10787 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10790 /* Add a DW_AT_name attribute and source coordinate attribute for the
10791 given decl, but only if it actually has a name. */
10793 static void
10794 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10796 tree decl_name;
10798 decl_name = DECL_NAME (decl);
10799 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10801 add_name_attribute (die, dwarf2_name (decl, 0));
10802 if (! DECL_ARTIFICIAL (decl))
10803 add_src_coords_attributes (die, decl);
10805 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10806 && TREE_PUBLIC (decl)
10807 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10808 && !DECL_ABSTRACT (decl))
10809 add_AT_string (die, DW_AT_MIPS_linkage_name,
10810 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10813 #ifdef VMS_DEBUGGING_INFO
10814 /* Get the function's name, as described by its RTL. This may be different
10815 from the DECL_NAME name used in the source file. */
10816 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10818 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10819 XEXP (DECL_RTL (decl), 0));
10820 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10822 #endif
10825 /* Push a new declaration scope. */
10827 static void
10828 push_decl_scope (tree scope)
10830 VEC_safe_push (tree, gc, decl_scope_table, scope);
10833 /* Pop a declaration scope. */
10835 static inline void
10836 pop_decl_scope (void)
10838 VEC_pop (tree, decl_scope_table);
10841 /* Return the DIE for the scope that immediately contains this type.
10842 Non-named types get global scope. Named types nested in other
10843 types get their containing scope if it's open, or global scope
10844 otherwise. All other types (i.e. function-local named types) get
10845 the current active scope. */
10847 static dw_die_ref
10848 scope_die_for (tree t, dw_die_ref context_die)
10850 dw_die_ref scope_die = NULL;
10851 tree containing_scope;
10852 int i;
10854 /* Non-types always go in the current scope. */
10855 gcc_assert (TYPE_P (t));
10857 containing_scope = TYPE_CONTEXT (t);
10859 /* Use the containing namespace if it was passed in (for a declaration). */
10860 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10862 if (context_die == lookup_decl_die (containing_scope))
10863 /* OK */;
10864 else
10865 containing_scope = NULL_TREE;
10868 /* Ignore function type "scopes" from the C frontend. They mean that
10869 a tagged type is local to a parmlist of a function declarator, but
10870 that isn't useful to DWARF. */
10871 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10872 containing_scope = NULL_TREE;
10874 if (containing_scope == NULL_TREE)
10875 scope_die = comp_unit_die;
10876 else if (TYPE_P (containing_scope))
10878 /* For types, we can just look up the appropriate DIE. But
10879 first we check to see if we're in the middle of emitting it
10880 so we know where the new DIE should go. */
10881 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
10882 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
10883 break;
10885 if (i < 0)
10887 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10888 || TREE_ASM_WRITTEN (containing_scope));
10890 /* If none of the current dies are suitable, we get file scope. */
10891 scope_die = comp_unit_die;
10893 else
10894 scope_die = lookup_type_die (containing_scope);
10896 else
10897 scope_die = context_die;
10899 return scope_die;
10902 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10904 static inline int
10905 local_scope_p (dw_die_ref context_die)
10907 for (; context_die; context_die = context_die->die_parent)
10908 if (context_die->die_tag == DW_TAG_inlined_subroutine
10909 || context_die->die_tag == DW_TAG_subprogram)
10910 return 1;
10912 return 0;
10915 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10916 whether or not to treat a DIE in this context as a declaration. */
10918 static inline int
10919 class_or_namespace_scope_p (dw_die_ref context_die)
10921 return (context_die
10922 && (context_die->die_tag == DW_TAG_structure_type
10923 || context_die->die_tag == DW_TAG_union_type
10924 || context_die->die_tag == DW_TAG_namespace));
10927 /* Many forms of DIEs require a "type description" attribute. This
10928 routine locates the proper "type descriptor" die for the type given
10929 by 'type', and adds a DW_AT_type attribute below the given die. */
10931 static void
10932 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10933 int decl_volatile, dw_die_ref context_die)
10935 enum tree_code code = TREE_CODE (type);
10936 dw_die_ref type_die = NULL;
10938 /* ??? If this type is an unnamed subrange type of an integral or
10939 floating-point type, use the inner type. This is because we have no
10940 support for unnamed types in base_type_die. This can happen if this is
10941 an Ada subrange type. Correct solution is emit a subrange type die. */
10942 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10943 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10944 type = TREE_TYPE (type), code = TREE_CODE (type);
10946 if (code == ERROR_MARK
10947 /* Handle a special case. For functions whose return type is void, we
10948 generate *no* type attribute. (Note that no object may have type
10949 `void', so this only applies to function return types). */
10950 || code == VOID_TYPE)
10951 return;
10953 type_die = modified_type_die (type,
10954 decl_const || TYPE_READONLY (type),
10955 decl_volatile || TYPE_VOLATILE (type),
10956 context_die);
10958 if (type_die != NULL)
10959 add_AT_die_ref (object_die, DW_AT_type, type_die);
10962 /* Given an object die, add the calling convention attribute for the
10963 function call type. */
10964 static void
10965 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10967 enum dwarf_calling_convention value = DW_CC_normal;
10969 value = targetm.dwarf_calling_convention (type);
10971 /* Only add the attribute if the backend requests it, and
10972 is not DW_CC_normal. */
10973 if (value && (value != DW_CC_normal))
10974 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10977 /* Given a tree pointer to a struct, class, union, or enum type node, return
10978 a pointer to the (string) tag name for the given type, or zero if the type
10979 was declared without a tag. */
10981 static const char *
10982 type_tag (tree type)
10984 const char *name = 0;
10986 if (TYPE_NAME (type) != 0)
10988 tree t = 0;
10990 /* Find the IDENTIFIER_NODE for the type name. */
10991 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10992 t = TYPE_NAME (type);
10994 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10995 a TYPE_DECL node, regardless of whether or not a `typedef' was
10996 involved. */
10997 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10998 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10999 t = DECL_NAME (TYPE_NAME (type));
11001 /* Now get the name as a string, or invent one. */
11002 if (t != 0)
11003 name = IDENTIFIER_POINTER (t);
11006 return (name == 0 || *name == '\0') ? 0 : name;
11009 /* Return the type associated with a data member, make a special check
11010 for bit field types. */
11012 static inline tree
11013 member_declared_type (tree member)
11015 return (DECL_BIT_FIELD_TYPE (member)
11016 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11019 /* Get the decl's label, as described by its RTL. This may be different
11020 from the DECL_NAME name used in the source file. */
11022 #if 0
11023 static const char *
11024 decl_start_label (tree decl)
11026 rtx x;
11027 const char *fnname;
11029 x = DECL_RTL (decl);
11030 gcc_assert (MEM_P (x));
11032 x = XEXP (x, 0);
11033 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11035 fnname = XSTR (x, 0);
11036 return fnname;
11038 #endif
11040 /* These routines generate the internal representation of the DIE's for
11041 the compilation unit. Debugging information is collected by walking
11042 the declaration trees passed in from dwarf2out_decl(). */
11044 static void
11045 gen_array_type_die (tree type, dw_die_ref context_die)
11047 dw_die_ref scope_die = scope_die_for (type, context_die);
11048 dw_die_ref array_die;
11049 tree element_type;
11051 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11052 the inner array type comes before the outer array type. Thus we must
11053 call gen_type_die before we call new_die. See below also. */
11054 #ifdef MIPS_DEBUGGING_INFO
11055 gen_type_die (TREE_TYPE (type), context_die);
11056 #endif
11058 array_die = new_die (DW_TAG_array_type, scope_die, type);
11059 add_name_attribute (array_die, type_tag (type));
11060 equate_type_number_to_die (type, array_die);
11062 if (TREE_CODE (type) == VECTOR_TYPE)
11064 /* The frontend feeds us a representation for the vector as a struct
11065 containing an array. Pull out the array type. */
11066 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11067 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11070 #if 0
11071 /* We default the array ordering. SDB will probably do
11072 the right things even if DW_AT_ordering is not present. It's not even
11073 an issue until we start to get into multidimensional arrays anyway. If
11074 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11075 then we'll have to put the DW_AT_ordering attribute back in. (But if
11076 and when we find out that we need to put these in, we will only do so
11077 for multidimensional arrays. */
11078 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11079 #endif
11081 #ifdef MIPS_DEBUGGING_INFO
11082 /* The SGI compilers handle arrays of unknown bound by setting
11083 AT_declaration and not emitting any subrange DIEs. */
11084 if (! TYPE_DOMAIN (type))
11085 add_AT_flag (array_die, DW_AT_declaration, 1);
11086 else
11087 #endif
11088 add_subscript_info (array_die, type);
11090 /* Add representation of the type of the elements of this array type. */
11091 element_type = TREE_TYPE (type);
11093 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11094 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11095 We work around this by disabling this feature. See also
11096 add_subscript_info. */
11097 #ifndef MIPS_DEBUGGING_INFO
11098 while (TREE_CODE (element_type) == ARRAY_TYPE)
11099 element_type = TREE_TYPE (element_type);
11101 gen_type_die (element_type, context_die);
11102 #endif
11104 add_type_attribute (array_die, element_type, 0, 0, context_die);
11107 #if 0
11108 static void
11109 gen_entry_point_die (tree decl, dw_die_ref context_die)
11111 tree origin = decl_ultimate_origin (decl);
11112 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11114 if (origin != NULL)
11115 add_abstract_origin_attribute (decl_die, origin);
11116 else
11118 add_name_and_src_coords_attributes (decl_die, decl);
11119 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11120 0, 0, context_die);
11123 if (DECL_ABSTRACT (decl))
11124 equate_decl_number_to_die (decl, decl_die);
11125 else
11126 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11128 #endif
11130 /* Walk through the list of incomplete types again, trying once more to
11131 emit full debugging info for them. */
11133 static void
11134 retry_incomplete_types (void)
11136 int i;
11138 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11139 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11142 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11144 static void
11145 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11147 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11149 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11150 be incomplete and such types are not marked. */
11151 add_abstract_origin_attribute (type_die, type);
11154 /* Generate a DIE to represent an inlined instance of a structure type. */
11156 static void
11157 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11159 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11161 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11162 be incomplete and such types are not marked. */
11163 add_abstract_origin_attribute (type_die, type);
11166 /* Generate a DIE to represent an inlined instance of a union type. */
11168 static void
11169 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11171 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11173 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11174 be incomplete and such types are not marked. */
11175 add_abstract_origin_attribute (type_die, type);
11178 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11179 include all of the information about the enumeration values also. Each
11180 enumerated type name/value is listed as a child of the enumerated type
11181 DIE. */
11183 static dw_die_ref
11184 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11186 dw_die_ref type_die = lookup_type_die (type);
11188 if (type_die == NULL)
11190 type_die = new_die (DW_TAG_enumeration_type,
11191 scope_die_for (type, context_die), type);
11192 equate_type_number_to_die (type, type_die);
11193 add_name_attribute (type_die, type_tag (type));
11195 else if (! TYPE_SIZE (type))
11196 return type_die;
11197 else
11198 remove_AT (type_die, DW_AT_declaration);
11200 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11201 given enum type is incomplete, do not generate the DW_AT_byte_size
11202 attribute or the DW_AT_element_list attribute. */
11203 if (TYPE_SIZE (type))
11205 tree link;
11207 TREE_ASM_WRITTEN (type) = 1;
11208 add_byte_size_attribute (type_die, type);
11209 if (TYPE_STUB_DECL (type) != NULL_TREE)
11210 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11212 /* If the first reference to this type was as the return type of an
11213 inline function, then it may not have a parent. Fix this now. */
11214 if (type_die->die_parent == NULL)
11215 add_child_die (scope_die_for (type, context_die), type_die);
11217 for (link = TYPE_VALUES (type);
11218 link != NULL; link = TREE_CHAIN (link))
11220 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11221 tree value = TREE_VALUE (link);
11223 add_name_attribute (enum_die,
11224 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11226 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11227 /* DWARF2 does not provide a way of indicating whether or
11228 not enumeration constants are signed or unsigned. GDB
11229 always assumes the values are signed, so we output all
11230 values as if they were signed. That means that
11231 enumeration constants with very large unsigned values
11232 will appear to have negative values in the debugger. */
11233 add_AT_int (enum_die, DW_AT_const_value,
11234 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11237 else
11238 add_AT_flag (type_die, DW_AT_declaration, 1);
11240 return type_die;
11243 /* Generate a DIE to represent either a real live formal parameter decl or to
11244 represent just the type of some formal parameter position in some function
11245 type.
11247 Note that this routine is a bit unusual because its argument may be a
11248 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11249 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11250 node. If it's the former then this function is being called to output a
11251 DIE to represent a formal parameter object (or some inlining thereof). If
11252 it's the latter, then this function is only being called to output a
11253 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11254 argument type of some subprogram type. */
11256 static dw_die_ref
11257 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11259 dw_die_ref parm_die
11260 = new_die (DW_TAG_formal_parameter, context_die, node);
11261 tree origin;
11263 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11265 case tcc_declaration:
11266 origin = decl_ultimate_origin (node);
11267 if (origin != NULL)
11268 add_abstract_origin_attribute (parm_die, origin);
11269 else
11271 add_name_and_src_coords_attributes (parm_die, node);
11272 add_type_attribute (parm_die, TREE_TYPE (node),
11273 TREE_READONLY (node),
11274 TREE_THIS_VOLATILE (node),
11275 context_die);
11276 if (DECL_ARTIFICIAL (node))
11277 add_AT_flag (parm_die, DW_AT_artificial, 1);
11280 equate_decl_number_to_die (node, parm_die);
11281 if (! DECL_ABSTRACT (node))
11282 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11284 break;
11286 case tcc_type:
11287 /* We were called with some kind of a ..._TYPE node. */
11288 add_type_attribute (parm_die, node, 0, 0, context_die);
11289 break;
11291 default:
11292 gcc_unreachable ();
11295 return parm_die;
11298 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11299 at the end of an (ANSI prototyped) formal parameters list. */
11301 static void
11302 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11304 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11307 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11308 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11309 parameters as specified in some function type specification (except for
11310 those which appear as part of a function *definition*). */
11312 static void
11313 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11315 tree link;
11316 tree formal_type = NULL;
11317 tree first_parm_type;
11318 tree arg;
11320 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11322 arg = DECL_ARGUMENTS (function_or_method_type);
11323 function_or_method_type = TREE_TYPE (function_or_method_type);
11325 else
11326 arg = NULL_TREE;
11328 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11330 /* Make our first pass over the list of formal parameter types and output a
11331 DW_TAG_formal_parameter DIE for each one. */
11332 for (link = first_parm_type; link; )
11334 dw_die_ref parm_die;
11336 formal_type = TREE_VALUE (link);
11337 if (formal_type == void_type_node)
11338 break;
11340 /* Output a (nameless) DIE to represent the formal parameter itself. */
11341 parm_die = gen_formal_parameter_die (formal_type, context_die);
11342 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11343 && link == first_parm_type)
11344 || (arg && DECL_ARTIFICIAL (arg)))
11345 add_AT_flag (parm_die, DW_AT_artificial, 1);
11347 link = TREE_CHAIN (link);
11348 if (arg)
11349 arg = TREE_CHAIN (arg);
11352 /* If this function type has an ellipsis, add a
11353 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11354 if (formal_type != void_type_node)
11355 gen_unspecified_parameters_die (function_or_method_type, context_die);
11357 /* Make our second (and final) pass over the list of formal parameter types
11358 and output DIEs to represent those types (as necessary). */
11359 for (link = TYPE_ARG_TYPES (function_or_method_type);
11360 link && TREE_VALUE (link);
11361 link = TREE_CHAIN (link))
11362 gen_type_die (TREE_VALUE (link), context_die);
11365 /* We want to generate the DIE for TYPE so that we can generate the
11366 die for MEMBER, which has been defined; we will need to refer back
11367 to the member declaration nested within TYPE. If we're trying to
11368 generate minimal debug info for TYPE, processing TYPE won't do the
11369 trick; we need to attach the member declaration by hand. */
11371 static void
11372 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11374 gen_type_die (type, context_die);
11376 /* If we're trying to avoid duplicate debug info, we may not have
11377 emitted the member decl for this function. Emit it now. */
11378 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11379 && ! lookup_decl_die (member))
11381 dw_die_ref type_die;
11382 gcc_assert (!decl_ultimate_origin (member));
11384 push_decl_scope (type);
11385 type_die = lookup_type_die (type);
11386 if (TREE_CODE (member) == FUNCTION_DECL)
11387 gen_subprogram_die (member, type_die);
11388 else if (TREE_CODE (member) == FIELD_DECL)
11390 /* Ignore the nameless fields that are used to skip bits but handle
11391 C++ anonymous unions and structs. */
11392 if (DECL_NAME (member) != NULL_TREE
11393 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11394 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11396 gen_type_die (member_declared_type (member), type_die);
11397 gen_field_die (member, type_die);
11400 else
11401 gen_variable_die (member, type_die);
11403 pop_decl_scope ();
11407 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11408 may later generate inlined and/or out-of-line instances of. */
11410 static void
11411 dwarf2out_abstract_function (tree decl)
11413 dw_die_ref old_die;
11414 tree save_fn;
11415 tree context;
11416 int was_abstract = DECL_ABSTRACT (decl);
11418 /* Make sure we have the actual abstract inline, not a clone. */
11419 decl = DECL_ORIGIN (decl);
11421 old_die = lookup_decl_die (decl);
11422 if (old_die && get_AT (old_die, DW_AT_inline))
11423 /* We've already generated the abstract instance. */
11424 return;
11426 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11427 we don't get confused by DECL_ABSTRACT. */
11428 if (debug_info_level > DINFO_LEVEL_TERSE)
11430 context = decl_class_context (decl);
11431 if (context)
11432 gen_type_die_for_member
11433 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11436 /* Pretend we've just finished compiling this function. */
11437 save_fn = current_function_decl;
11438 current_function_decl = decl;
11440 set_decl_abstract_flags (decl, 1);
11441 dwarf2out_decl (decl);
11442 if (! was_abstract)
11443 set_decl_abstract_flags (decl, 0);
11445 current_function_decl = save_fn;
11448 /* Generate a DIE to represent a declared function (either file-scope or
11449 block-local). */
11451 static void
11452 gen_subprogram_die (tree decl, dw_die_ref context_die)
11454 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11455 tree origin = decl_ultimate_origin (decl);
11456 dw_die_ref subr_die;
11457 tree fn_arg_types;
11458 tree outer_scope;
11459 dw_die_ref old_die = lookup_decl_die (decl);
11460 int declaration = (current_function_decl != decl
11461 || class_or_namespace_scope_p (context_die));
11463 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11464 started to generate the abstract instance of an inline, decided to output
11465 its containing class, and proceeded to emit the declaration of the inline
11466 from the member list for the class. If so, DECLARATION takes priority;
11467 we'll get back to the abstract instance when done with the class. */
11469 /* The class-scope declaration DIE must be the primary DIE. */
11470 if (origin && declaration && class_or_namespace_scope_p (context_die))
11472 origin = NULL;
11473 gcc_assert (!old_die);
11476 if (origin != NULL)
11478 gcc_assert (!declaration || local_scope_p (context_die));
11480 /* Fixup die_parent for the abstract instance of a nested
11481 inline function. */
11482 if (old_die && old_die->die_parent == NULL)
11483 add_child_die (context_die, old_die);
11485 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11486 add_abstract_origin_attribute (subr_die, origin);
11488 else if (old_die)
11490 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11491 unsigned file_index = lookup_filename (s.file);
11493 if (!get_AT_flag (old_die, DW_AT_declaration)
11494 /* We can have a normal definition following an inline one in the
11495 case of redefinition of GNU C extern inlines.
11496 It seems reasonable to use AT_specification in this case. */
11497 && !get_AT (old_die, DW_AT_inline))
11499 /* Detect and ignore this case, where we are trying to output
11500 something we have already output. */
11501 return;
11504 /* If the definition comes from the same place as the declaration,
11505 maybe use the old DIE. We always want the DIE for this function
11506 that has the *_pc attributes to be under comp_unit_die so the
11507 debugger can find it. We also need to do this for abstract
11508 instances of inlines, since the spec requires the out-of-line copy
11509 to have the same parent. For local class methods, this doesn't
11510 apply; we just use the old DIE. */
11511 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11512 && (DECL_ARTIFICIAL (decl)
11513 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11514 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11515 == (unsigned) s.line))))
11517 subr_die = old_die;
11519 /* Clear out the declaration attribute and the formal parameters.
11520 Do not remove all children, because it is possible that this
11521 declaration die was forced using force_decl_die(). In such
11522 cases die that forced declaration die (e.g. TAG_imported_module)
11523 is one of the children that we do not want to remove. */
11524 remove_AT (subr_die, DW_AT_declaration);
11525 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11527 else
11529 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11530 add_AT_specification (subr_die, old_die);
11531 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11532 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11533 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11534 != (unsigned) s.line)
11535 add_AT_unsigned
11536 (subr_die, DW_AT_decl_line, s.line);
11539 else
11541 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11543 if (TREE_PUBLIC (decl))
11544 add_AT_flag (subr_die, DW_AT_external, 1);
11546 add_name_and_src_coords_attributes (subr_die, decl);
11547 if (debug_info_level > DINFO_LEVEL_TERSE)
11549 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11550 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11551 0, 0, context_die);
11554 add_pure_or_virtual_attribute (subr_die, decl);
11555 if (DECL_ARTIFICIAL (decl))
11556 add_AT_flag (subr_die, DW_AT_artificial, 1);
11558 if (TREE_PROTECTED (decl))
11559 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11560 else if (TREE_PRIVATE (decl))
11561 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11564 if (declaration)
11566 if (!old_die || !get_AT (old_die, DW_AT_inline))
11568 add_AT_flag (subr_die, DW_AT_declaration, 1);
11570 /* The first time we see a member function, it is in the context of
11571 the class to which it belongs. We make sure of this by emitting
11572 the class first. The next time is the definition, which is
11573 handled above. The two may come from the same source text.
11575 Note that force_decl_die() forces function declaration die. It is
11576 later reused to represent definition. */
11577 equate_decl_number_to_die (decl, subr_die);
11580 else if (DECL_ABSTRACT (decl))
11582 if (DECL_DECLARED_INLINE_P (decl))
11584 if (cgraph_function_possibly_inlined_p (decl))
11585 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11586 else
11587 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11589 else
11591 if (cgraph_function_possibly_inlined_p (decl))
11592 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11593 else
11594 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11597 equate_decl_number_to_die (decl, subr_die);
11599 else if (!DECL_EXTERNAL (decl))
11601 if (!old_die || !get_AT (old_die, DW_AT_inline))
11602 equate_decl_number_to_die (decl, subr_die);
11604 if (!flag_reorder_blocks_and_partition)
11606 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11607 current_function_funcdef_no);
11608 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11609 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11610 current_function_funcdef_no);
11611 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11613 add_pubname (decl, subr_die);
11614 add_arange (decl, subr_die);
11616 else
11617 { /* Do nothing for now; maybe need to duplicate die, one for
11618 hot section and ond for cold section, then use the hot/cold
11619 section begin/end labels to generate the aranges... */
11621 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11622 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11623 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11624 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11626 add_pubname (decl, subr_die);
11627 add_arange (decl, subr_die);
11628 add_arange (decl, subr_die);
11632 #ifdef MIPS_DEBUGGING_INFO
11633 /* Add a reference to the FDE for this routine. */
11634 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11635 #endif
11637 #ifdef DWARF2_UNWIND_INFO
11638 /* We define the "frame base" as the function's CFA. This is more
11639 convenient for several reasons: (1) It's stable across the prologue
11640 and epilogue, which makes it better than just a frame pointer,
11641 (2) With dwarf3, there exists a one-byte encoding that allows us
11642 to reference the .debug_frame data by proxy, but failing that,
11643 (3) We can at least reuse the code inspection and interpretation
11644 code that determines the CFA position at various points in the
11645 function. */
11646 /* ??? Use some command-line or configury switch to enable the use
11647 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11648 consumers that understand it; fall back to "pure" dwarf2 and
11649 convert the CFA data into a location list. */
11651 dw_loc_list_ref list = convert_cfa_to_loc_list ();
11652 if (list->dw_loc_next)
11653 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11654 else
11655 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11658 /* Compute a displacement from the "steady-state frame pointer" to
11659 the CFA. The former is what all stack slots and argument slots
11660 will reference in the rtl; the later is what we've told the
11661 debugger about. We'll need to adjust all frame_base references
11662 by this displacement. */
11663 compute_frame_pointer_to_cfa_displacement ();
11664 #else
11665 /* For targets which support DWARF2, but not DWARF2 call-frame info,
11666 we just use the stack pointer or frame pointer. */
11667 /* ??? Should investigate getting better info via callbacks, or else
11668 by interpreting the IA-64 unwind info. */
11670 rtx fp_reg
11671 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11672 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11674 #endif
11676 if (cfun->static_chain_decl)
11677 add_AT_location_description (subr_die, DW_AT_static_link,
11678 loc_descriptor_from_tree (cfun->static_chain_decl));
11681 /* Now output descriptions of the arguments for this function. This gets
11682 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11683 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11684 `...' at the end of the formal parameter list. In order to find out if
11685 there was a trailing ellipsis or not, we must instead look at the type
11686 associated with the FUNCTION_DECL. This will be a node of type
11687 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11688 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11689 an ellipsis at the end. */
11691 /* In the case where we are describing a mere function declaration, all we
11692 need to do here (and all we *can* do here) is to describe the *types* of
11693 its formal parameters. */
11694 if (debug_info_level <= DINFO_LEVEL_TERSE)
11696 else if (declaration)
11697 gen_formal_types_die (decl, subr_die);
11698 else
11700 /* Generate DIEs to represent all known formal parameters. */
11701 tree arg_decls = DECL_ARGUMENTS (decl);
11702 tree parm;
11704 /* When generating DIEs, generate the unspecified_parameters DIE
11705 instead if we come across the arg "__builtin_va_alist" */
11706 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11707 if (TREE_CODE (parm) == PARM_DECL)
11709 if (DECL_NAME (parm)
11710 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11711 "__builtin_va_alist"))
11712 gen_unspecified_parameters_die (parm, subr_die);
11713 else
11714 gen_decl_die (parm, subr_die);
11717 /* Decide whether we need an unspecified_parameters DIE at the end.
11718 There are 2 more cases to do this for: 1) the ansi ... declaration -
11719 this is detectable when the end of the arg list is not a
11720 void_type_node 2) an unprototyped function declaration (not a
11721 definition). This just means that we have no info about the
11722 parameters at all. */
11723 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11724 if (fn_arg_types != NULL)
11726 /* This is the prototyped case, check for.... */
11727 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11728 gen_unspecified_parameters_die (decl, subr_die);
11730 else if (DECL_INITIAL (decl) == NULL_TREE)
11731 gen_unspecified_parameters_die (decl, subr_die);
11734 /* Output Dwarf info for all of the stuff within the body of the function
11735 (if it has one - it may be just a declaration). */
11736 outer_scope = DECL_INITIAL (decl);
11738 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11739 a function. This BLOCK actually represents the outermost binding contour
11740 for the function, i.e. the contour in which the function's formal
11741 parameters and labels get declared. Curiously, it appears that the front
11742 end doesn't actually put the PARM_DECL nodes for the current function onto
11743 the BLOCK_VARS list for this outer scope, but are strung off of the
11744 DECL_ARGUMENTS list for the function instead.
11746 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11747 the LABEL_DECL nodes for the function however, and we output DWARF info
11748 for those in decls_for_scope. Just within the `outer_scope' there will be
11749 a BLOCK node representing the function's outermost pair of curly braces,
11750 and any blocks used for the base and member initializers of a C++
11751 constructor function. */
11752 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11754 /* Emit a DW_TAG_variable DIE for a named return value. */
11755 if (DECL_NAME (DECL_RESULT (decl)))
11756 gen_decl_die (DECL_RESULT (decl), subr_die);
11758 current_function_has_inlines = 0;
11759 decls_for_scope (outer_scope, subr_die, 0);
11761 #if 0 && defined (MIPS_DEBUGGING_INFO)
11762 if (current_function_has_inlines)
11764 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11765 if (! comp_unit_has_inlines)
11767 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11768 comp_unit_has_inlines = 1;
11771 #endif
11773 /* Add the calling convention attribute if requested. */
11774 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11778 /* Generate a DIE to represent a declared data object. */
11780 static void
11781 gen_variable_die (tree decl, dw_die_ref context_die)
11783 tree origin = decl_ultimate_origin (decl);
11784 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11786 dw_die_ref old_die = lookup_decl_die (decl);
11787 int declaration = (DECL_EXTERNAL (decl)
11788 /* If DECL is COMDAT and has not actually been
11789 emitted, we cannot take its address; there
11790 might end up being no definition anywhere in
11791 the program. For example, consider the C++
11792 test case:
11794 template <class T>
11795 struct S { static const int i = 7; };
11797 template <class T>
11798 const int S<T>::i;
11800 int f() { return S<int>::i; }
11802 Here, S<int>::i is not DECL_EXTERNAL, but no
11803 definition is required, so the compiler will
11804 not emit a definition. */
11805 || (TREE_CODE (decl) == VAR_DECL
11806 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11807 || class_or_namespace_scope_p (context_die));
11809 if (origin != NULL)
11810 add_abstract_origin_attribute (var_die, origin);
11812 /* Loop unrolling can create multiple blocks that refer to the same
11813 static variable, so we must test for the DW_AT_declaration flag.
11815 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11816 copy decls and set the DECL_ABSTRACT flag on them instead of
11817 sharing them.
11819 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11821 ??? The declare_in_namespace support causes us to get two DIEs for one
11822 variable, both of which are declarations. We want to avoid considering
11823 one to be a specification, so we must test that this DIE is not a
11824 declaration. */
11825 else if (old_die && TREE_STATIC (decl) && ! declaration
11826 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11828 /* This is a definition of a C++ class level static. */
11829 add_AT_specification (var_die, old_die);
11830 if (DECL_NAME (decl))
11832 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11833 unsigned file_index = lookup_filename (s.file);
11835 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11836 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11838 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11839 != (unsigned) s.line)
11841 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11844 else
11846 add_name_and_src_coords_attributes (var_die, decl);
11847 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11848 TREE_THIS_VOLATILE (decl), context_die);
11850 if (TREE_PUBLIC (decl))
11851 add_AT_flag (var_die, DW_AT_external, 1);
11853 if (DECL_ARTIFICIAL (decl))
11854 add_AT_flag (var_die, DW_AT_artificial, 1);
11856 if (TREE_PROTECTED (decl))
11857 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11858 else if (TREE_PRIVATE (decl))
11859 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11862 if (declaration)
11863 add_AT_flag (var_die, DW_AT_declaration, 1);
11865 if (DECL_ABSTRACT (decl) || declaration)
11866 equate_decl_number_to_die (decl, var_die);
11868 if (! declaration && ! DECL_ABSTRACT (decl))
11870 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11871 add_pubname (decl, var_die);
11873 else
11874 tree_add_const_value_attribute (var_die, decl);
11877 /* Generate a DIE to represent a label identifier. */
11879 static void
11880 gen_label_die (tree decl, dw_die_ref context_die)
11882 tree origin = decl_ultimate_origin (decl);
11883 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11884 rtx insn;
11885 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11887 if (origin != NULL)
11888 add_abstract_origin_attribute (lbl_die, origin);
11889 else
11890 add_name_and_src_coords_attributes (lbl_die, decl);
11892 if (DECL_ABSTRACT (decl))
11893 equate_decl_number_to_die (decl, lbl_die);
11894 else
11896 insn = DECL_RTL_IF_SET (decl);
11898 /* Deleted labels are programmer specified labels which have been
11899 eliminated because of various optimizations. We still emit them
11900 here so that it is possible to put breakpoints on them. */
11901 if (insn
11902 && (LABEL_P (insn)
11903 || ((NOTE_P (insn)
11904 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11906 /* When optimization is enabled (via -O) some parts of the compiler
11907 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11908 represent source-level labels which were explicitly declared by
11909 the user. This really shouldn't be happening though, so catch
11910 it if it ever does happen. */
11911 gcc_assert (!INSN_DELETED_P (insn));
11913 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11914 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11919 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
11920 attributes to the DIE for a block STMT, to describe where the inlined
11921 function was called from. This is similar to add_src_coords_attributes. */
11923 static inline void
11924 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
11926 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
11927 unsigned file_index = lookup_filename (s.file);
11929 add_AT_unsigned (die, DW_AT_call_file, file_index);
11930 add_AT_unsigned (die, DW_AT_call_line, s.line);
11933 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
11934 Add low_pc and high_pc attributes to the DIE for a block STMT. */
11936 static inline void
11937 add_high_low_attributes (tree stmt, dw_die_ref die)
11939 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11941 if (BLOCK_FRAGMENT_CHAIN (stmt))
11943 tree chain;
11945 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
11947 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11950 add_ranges (chain);
11951 chain = BLOCK_FRAGMENT_CHAIN (chain);
11953 while (chain);
11954 add_ranges (NULL);
11956 else
11958 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11959 BLOCK_NUMBER (stmt));
11960 add_AT_lbl_id (die, DW_AT_low_pc, label);
11961 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11962 BLOCK_NUMBER (stmt));
11963 add_AT_lbl_id (die, DW_AT_high_pc, label);
11967 /* Generate a DIE for a lexical block. */
11969 static void
11970 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11972 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11974 if (! BLOCK_ABSTRACT (stmt))
11975 add_high_low_attributes (stmt, stmt_die);
11977 decls_for_scope (stmt, stmt_die, depth);
11980 /* Generate a DIE for an inlined subprogram. */
11982 static void
11983 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11985 tree decl = block_ultimate_origin (stmt);
11987 /* Emit info for the abstract instance first, if we haven't yet. We
11988 must emit this even if the block is abstract, otherwise when we
11989 emit the block below (or elsewhere), we may end up trying to emit
11990 a die whose origin die hasn't been emitted, and crashing. */
11991 dwarf2out_abstract_function (decl);
11993 if (! BLOCK_ABSTRACT (stmt))
11995 dw_die_ref subr_die
11996 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11998 add_abstract_origin_attribute (subr_die, decl);
11999 add_high_low_attributes (stmt, subr_die);
12000 add_call_src_coords_attributes (stmt, subr_die);
12002 decls_for_scope (stmt, subr_die, depth);
12003 current_function_has_inlines = 1;
12005 else
12006 /* We may get here if we're the outer block of function A that was
12007 inlined into function B that was inlined into function C. When
12008 generating debugging info for C, dwarf2out_abstract_function(B)
12009 would mark all inlined blocks as abstract, including this one.
12010 So, we wouldn't (and shouldn't) expect labels to be generated
12011 for this one. Instead, just emit debugging info for
12012 declarations within the block. This is particularly important
12013 in the case of initializers of arguments passed from B to us:
12014 if they're statement expressions containing declarations, we
12015 wouldn't generate dies for their abstract variables, and then,
12016 when generating dies for the real variables, we'd die (pun
12017 intended :-) */
12018 gen_lexical_block_die (stmt, context_die, depth);
12021 /* Generate a DIE for a field in a record, or structure. */
12023 static void
12024 gen_field_die (tree decl, dw_die_ref context_die)
12026 dw_die_ref decl_die;
12028 if (TREE_TYPE (decl) == error_mark_node)
12029 return;
12031 decl_die = new_die (DW_TAG_member, context_die, decl);
12032 add_name_and_src_coords_attributes (decl_die, decl);
12033 add_type_attribute (decl_die, member_declared_type (decl),
12034 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12035 context_die);
12037 if (DECL_BIT_FIELD_TYPE (decl))
12039 add_byte_size_attribute (decl_die, decl);
12040 add_bit_size_attribute (decl_die, decl);
12041 add_bit_offset_attribute (decl_die, decl);
12044 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12045 add_data_member_location_attribute (decl_die, decl);
12047 if (DECL_ARTIFICIAL (decl))
12048 add_AT_flag (decl_die, DW_AT_artificial, 1);
12050 if (TREE_PROTECTED (decl))
12051 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12052 else if (TREE_PRIVATE (decl))
12053 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12055 /* Equate decl number to die, so that we can look up this decl later on. */
12056 equate_decl_number_to_die (decl, decl_die);
12059 #if 0
12060 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12061 Use modified_type_die instead.
12062 We keep this code here just in case these types of DIEs may be needed to
12063 represent certain things in other languages (e.g. Pascal) someday. */
12065 static void
12066 gen_pointer_type_die (tree type, dw_die_ref context_die)
12068 dw_die_ref ptr_die
12069 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12071 equate_type_number_to_die (type, ptr_die);
12072 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12073 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12076 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12077 Use modified_type_die instead.
12078 We keep this code here just in case these types of DIEs may be needed to
12079 represent certain things in other languages (e.g. Pascal) someday. */
12081 static void
12082 gen_reference_type_die (tree type, dw_die_ref context_die)
12084 dw_die_ref ref_die
12085 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12087 equate_type_number_to_die (type, ref_die);
12088 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12089 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12091 #endif
12093 /* Generate a DIE for a pointer to a member type. */
12095 static void
12096 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12098 dw_die_ref ptr_die
12099 = new_die (DW_TAG_ptr_to_member_type,
12100 scope_die_for (type, context_die), type);
12102 equate_type_number_to_die (type, ptr_die);
12103 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12104 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12105 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12108 /* Generate the DIE for the compilation unit. */
12110 static dw_die_ref
12111 gen_compile_unit_die (const char *filename)
12113 dw_die_ref die;
12114 char producer[250];
12115 const char *language_string = lang_hooks.name;
12116 int language;
12118 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12120 if (filename)
12122 add_name_attribute (die, filename);
12123 /* Don't add cwd for <built-in>. */
12124 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
12125 add_comp_dir_attribute (die);
12128 sprintf (producer, "%s %s", language_string, version_string);
12130 #ifdef MIPS_DEBUGGING_INFO
12131 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12132 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12133 not appear in the producer string, the debugger reaches the conclusion
12134 that the object file is stripped and has no debugging information.
12135 To get the MIPS/SGI debugger to believe that there is debugging
12136 information in the object file, we add a -g to the producer string. */
12137 if (debug_info_level > DINFO_LEVEL_TERSE)
12138 strcat (producer, " -g");
12139 #endif
12141 add_AT_string (die, DW_AT_producer, producer);
12143 if (strcmp (language_string, "GNU C++") == 0)
12144 language = DW_LANG_C_plus_plus;
12145 else if (strcmp (language_string, "GNU Ada") == 0)
12146 language = DW_LANG_Ada95;
12147 else if (strcmp (language_string, "GNU F77") == 0)
12148 language = DW_LANG_Fortran77;
12149 else if (strcmp (language_string, "GNU F95") == 0)
12150 language = DW_LANG_Fortran95;
12151 else if (strcmp (language_string, "GNU Pascal") == 0)
12152 language = DW_LANG_Pascal83;
12153 else if (strcmp (language_string, "GNU Java") == 0)
12154 language = DW_LANG_Java;
12155 else
12156 language = DW_LANG_C89;
12158 add_AT_unsigned (die, DW_AT_language, language);
12159 return die;
12162 /* Generate a DIE for a string type. */
12164 static void
12165 gen_string_type_die (tree type, dw_die_ref context_die)
12167 dw_die_ref type_die
12168 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
12170 equate_type_number_to_die (type, type_die);
12172 /* ??? Fudge the string length attribute for now.
12173 TODO: add string length info. */
12174 #if 0
12175 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
12176 bound_representation (upper_bound, 0, 'u');
12177 #endif
12180 /* Generate the DIE for a base class. */
12182 static void
12183 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12185 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12187 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12188 add_data_member_location_attribute (die, binfo);
12190 if (BINFO_VIRTUAL_P (binfo))
12191 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12193 if (access == access_public_node)
12194 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12195 else if (access == access_protected_node)
12196 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12199 /* Generate a DIE for a class member. */
12201 static void
12202 gen_member_die (tree type, dw_die_ref context_die)
12204 tree member;
12205 tree binfo = TYPE_BINFO (type);
12206 dw_die_ref child;
12208 /* If this is not an incomplete type, output descriptions of each of its
12209 members. Note that as we output the DIEs necessary to represent the
12210 members of this record or union type, we will also be trying to output
12211 DIEs to represent the *types* of those members. However the `type'
12212 function (above) will specifically avoid generating type DIEs for member
12213 types *within* the list of member DIEs for this (containing) type except
12214 for those types (of members) which are explicitly marked as also being
12215 members of this (containing) type themselves. The g++ front- end can
12216 force any given type to be treated as a member of some other (containing)
12217 type by setting the TYPE_CONTEXT of the given (member) type to point to
12218 the TREE node representing the appropriate (containing) type. */
12220 /* First output info about the base classes. */
12221 if (binfo)
12223 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12224 int i;
12225 tree base;
12227 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12228 gen_inheritance_die (base,
12229 (accesses ? VEC_index (tree, accesses, i)
12230 : access_public_node), context_die);
12233 /* Now output info about the data members and type members. */
12234 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12236 /* If we thought we were generating minimal debug info for TYPE
12237 and then changed our minds, some of the member declarations
12238 may have already been defined. Don't define them again, but
12239 do put them in the right order. */
12241 child = lookup_decl_die (member);
12242 if (child)
12243 splice_child_die (context_die, child);
12244 else
12245 gen_decl_die (member, context_die);
12248 /* Now output info about the function members (if any). */
12249 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12251 /* Don't include clones in the member list. */
12252 if (DECL_ABSTRACT_ORIGIN (member))
12253 continue;
12255 child = lookup_decl_die (member);
12256 if (child)
12257 splice_child_die (context_die, child);
12258 else
12259 gen_decl_die (member, context_die);
12263 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12264 is set, we pretend that the type was never defined, so we only get the
12265 member DIEs needed by later specification DIEs. */
12267 static void
12268 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12270 dw_die_ref type_die = lookup_type_die (type);
12271 dw_die_ref scope_die = 0;
12272 int nested = 0;
12273 int complete = (TYPE_SIZE (type)
12274 && (! TYPE_STUB_DECL (type)
12275 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12276 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12278 if (type_die && ! complete)
12279 return;
12281 if (TYPE_CONTEXT (type) != NULL_TREE
12282 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12283 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12284 nested = 1;
12286 scope_die = scope_die_for (type, context_die);
12288 if (! type_die || (nested && scope_die == comp_unit_die))
12289 /* First occurrence of type or toplevel definition of nested class. */
12291 dw_die_ref old_die = type_die;
12293 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12294 ? DW_TAG_structure_type : DW_TAG_union_type,
12295 scope_die, type);
12296 equate_type_number_to_die (type, type_die);
12297 if (old_die)
12298 add_AT_specification (type_die, old_die);
12299 else
12300 add_name_attribute (type_die, type_tag (type));
12302 else
12303 remove_AT (type_die, DW_AT_declaration);
12305 /* If this type has been completed, then give it a byte_size attribute and
12306 then give a list of members. */
12307 if (complete && !ns_decl)
12309 /* Prevent infinite recursion in cases where the type of some member of
12310 this type is expressed in terms of this type itself. */
12311 TREE_ASM_WRITTEN (type) = 1;
12312 add_byte_size_attribute (type_die, type);
12313 if (TYPE_STUB_DECL (type) != NULL_TREE)
12314 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12316 /* If the first reference to this type was as the return type of an
12317 inline function, then it may not have a parent. Fix this now. */
12318 if (type_die->die_parent == NULL)
12319 add_child_die (scope_die, type_die);
12321 push_decl_scope (type);
12322 gen_member_die (type, type_die);
12323 pop_decl_scope ();
12325 /* GNU extension: Record what type our vtable lives in. */
12326 if (TYPE_VFIELD (type))
12328 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12330 gen_type_die (vtype, context_die);
12331 add_AT_die_ref (type_die, DW_AT_containing_type,
12332 lookup_type_die (vtype));
12335 else
12337 add_AT_flag (type_die, DW_AT_declaration, 1);
12339 /* We don't need to do this for function-local types. */
12340 if (TYPE_STUB_DECL (type)
12341 && ! decl_function_context (TYPE_STUB_DECL (type)))
12342 VEC_safe_push (tree, gc, incomplete_types, type);
12346 /* Generate a DIE for a subroutine _type_. */
12348 static void
12349 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12351 tree return_type = TREE_TYPE (type);
12352 dw_die_ref subr_die
12353 = new_die (DW_TAG_subroutine_type,
12354 scope_die_for (type, context_die), type);
12356 equate_type_number_to_die (type, subr_die);
12357 add_prototyped_attribute (subr_die, type);
12358 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12359 gen_formal_types_die (type, subr_die);
12362 /* Generate a DIE for a type definition. */
12364 static void
12365 gen_typedef_die (tree decl, dw_die_ref context_die)
12367 dw_die_ref type_die;
12368 tree origin;
12370 if (TREE_ASM_WRITTEN (decl))
12371 return;
12373 TREE_ASM_WRITTEN (decl) = 1;
12374 type_die = new_die (DW_TAG_typedef, context_die, decl);
12375 origin = decl_ultimate_origin (decl);
12376 if (origin != NULL)
12377 add_abstract_origin_attribute (type_die, origin);
12378 else
12380 tree type;
12382 add_name_and_src_coords_attributes (type_die, decl);
12383 if (DECL_ORIGINAL_TYPE (decl))
12385 type = DECL_ORIGINAL_TYPE (decl);
12387 gcc_assert (type != TREE_TYPE (decl));
12388 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12390 else
12391 type = TREE_TYPE (decl);
12393 add_type_attribute (type_die, type, TREE_READONLY (decl),
12394 TREE_THIS_VOLATILE (decl), context_die);
12397 if (DECL_ABSTRACT (decl))
12398 equate_decl_number_to_die (decl, type_die);
12401 /* Generate a type description DIE. */
12403 static void
12404 gen_type_die (tree type, dw_die_ref context_die)
12406 int need_pop;
12408 if (type == NULL_TREE || type == error_mark_node)
12409 return;
12411 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12412 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12414 if (TREE_ASM_WRITTEN (type))
12415 return;
12417 /* Prevent broken recursion; we can't hand off to the same type. */
12418 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12420 TREE_ASM_WRITTEN (type) = 1;
12421 gen_decl_die (TYPE_NAME (type), context_die);
12422 return;
12425 /* We are going to output a DIE to represent the unqualified version
12426 of this type (i.e. without any const or volatile qualifiers) so
12427 get the main variant (i.e. the unqualified version) of this type
12428 now. (Vectors are special because the debugging info is in the
12429 cloned type itself). */
12430 if (TREE_CODE (type) != VECTOR_TYPE)
12431 type = type_main_variant (type);
12433 if (TREE_ASM_WRITTEN (type))
12434 return;
12436 switch (TREE_CODE (type))
12438 case ERROR_MARK:
12439 break;
12441 case POINTER_TYPE:
12442 case REFERENCE_TYPE:
12443 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12444 ensures that the gen_type_die recursion will terminate even if the
12445 type is recursive. Recursive types are possible in Ada. */
12446 /* ??? We could perhaps do this for all types before the switch
12447 statement. */
12448 TREE_ASM_WRITTEN (type) = 1;
12450 /* For these types, all that is required is that we output a DIE (or a
12451 set of DIEs) to represent the "basis" type. */
12452 gen_type_die (TREE_TYPE (type), context_die);
12453 break;
12455 case OFFSET_TYPE:
12456 /* This code is used for C++ pointer-to-data-member types.
12457 Output a description of the relevant class type. */
12458 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12460 /* Output a description of the type of the object pointed to. */
12461 gen_type_die (TREE_TYPE (type), context_die);
12463 /* Now output a DIE to represent this pointer-to-data-member type
12464 itself. */
12465 gen_ptr_to_mbr_type_die (type, context_die);
12466 break;
12468 case FUNCTION_TYPE:
12469 /* Force out return type (in case it wasn't forced out already). */
12470 gen_type_die (TREE_TYPE (type), context_die);
12471 gen_subroutine_type_die (type, context_die);
12472 break;
12474 case METHOD_TYPE:
12475 /* Force out return type (in case it wasn't forced out already). */
12476 gen_type_die (TREE_TYPE (type), context_die);
12477 gen_subroutine_type_die (type, context_die);
12478 break;
12480 case ARRAY_TYPE:
12481 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12483 gen_type_die (TREE_TYPE (type), context_die);
12484 gen_string_type_die (type, context_die);
12486 else
12487 gen_array_type_die (type, context_die);
12488 break;
12490 case VECTOR_TYPE:
12491 gen_array_type_die (type, context_die);
12492 break;
12494 case ENUMERAL_TYPE:
12495 case RECORD_TYPE:
12496 case UNION_TYPE:
12497 case QUAL_UNION_TYPE:
12498 /* If this is a nested type whose containing class hasn't been written
12499 out yet, writing it out will cover this one, too. This does not apply
12500 to instantiations of member class templates; they need to be added to
12501 the containing class as they are generated. FIXME: This hurts the
12502 idea of combining type decls from multiple TUs, since we can't predict
12503 what set of template instantiations we'll get. */
12504 if (TYPE_CONTEXT (type)
12505 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12506 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12508 gen_type_die (TYPE_CONTEXT (type), context_die);
12510 if (TREE_ASM_WRITTEN (type))
12511 return;
12513 /* If that failed, attach ourselves to the stub. */
12514 push_decl_scope (TYPE_CONTEXT (type));
12515 context_die = lookup_type_die (TYPE_CONTEXT (type));
12516 need_pop = 1;
12518 else
12520 declare_in_namespace (type, context_die);
12521 need_pop = 0;
12524 if (TREE_CODE (type) == ENUMERAL_TYPE)
12525 gen_enumeration_type_die (type, context_die);
12526 else
12527 gen_struct_or_union_type_die (type, context_die);
12529 if (need_pop)
12530 pop_decl_scope ();
12532 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12533 it up if it is ever completed. gen_*_type_die will set it for us
12534 when appropriate. */
12535 return;
12537 case VOID_TYPE:
12538 case INTEGER_TYPE:
12539 case REAL_TYPE:
12540 case COMPLEX_TYPE:
12541 case BOOLEAN_TYPE:
12542 case CHAR_TYPE:
12543 /* No DIEs needed for fundamental types. */
12544 break;
12546 case LANG_TYPE:
12547 /* No Dwarf representation currently defined. */
12548 break;
12550 default:
12551 gcc_unreachable ();
12554 TREE_ASM_WRITTEN (type) = 1;
12557 /* Generate a DIE for a tagged type instantiation. */
12559 static void
12560 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12562 if (type == NULL_TREE || type == error_mark_node)
12563 return;
12565 /* We are going to output a DIE to represent the unqualified version of
12566 this type (i.e. without any const or volatile qualifiers) so make sure
12567 that we have the main variant (i.e. the unqualified version) of this
12568 type now. */
12569 gcc_assert (type == type_main_variant (type));
12571 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12572 an instance of an unresolved type. */
12574 switch (TREE_CODE (type))
12576 case ERROR_MARK:
12577 break;
12579 case ENUMERAL_TYPE:
12580 gen_inlined_enumeration_type_die (type, context_die);
12581 break;
12583 case RECORD_TYPE:
12584 gen_inlined_structure_type_die (type, context_die);
12585 break;
12587 case UNION_TYPE:
12588 case QUAL_UNION_TYPE:
12589 gen_inlined_union_type_die (type, context_die);
12590 break;
12592 default:
12593 gcc_unreachable ();
12597 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12598 things which are local to the given block. */
12600 static void
12601 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12603 int must_output_die = 0;
12604 tree origin;
12605 tree decl;
12606 enum tree_code origin_code;
12608 /* Ignore blocks that are NULL. */
12609 if (stmt == NULL_TREE)
12610 return;
12612 /* If the block is one fragment of a non-contiguous block, do not
12613 process the variables, since they will have been done by the
12614 origin block. Do process subblocks. */
12615 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12617 tree sub;
12619 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12620 gen_block_die (sub, context_die, depth + 1);
12622 return;
12625 /* Determine the "ultimate origin" of this block. This block may be an
12626 inlined instance of an inlined instance of inline function, so we have
12627 to trace all of the way back through the origin chain to find out what
12628 sort of node actually served as the original seed for the creation of
12629 the current block. */
12630 origin = block_ultimate_origin (stmt);
12631 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12633 /* Determine if we need to output any Dwarf DIEs at all to represent this
12634 block. */
12635 if (origin_code == FUNCTION_DECL)
12636 /* The outer scopes for inlinings *must* always be represented. We
12637 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12638 must_output_die = 1;
12639 else
12641 /* In the case where the current block represents an inlining of the
12642 "body block" of an inline function, we must *NOT* output any DIE for
12643 this block because we have already output a DIE to represent the whole
12644 inlined function scope and the "body block" of any function doesn't
12645 really represent a different scope according to ANSI C rules. So we
12646 check here to make sure that this block does not represent a "body
12647 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12648 if (! is_body_block (origin ? origin : stmt))
12650 /* Determine if this block directly contains any "significant"
12651 local declarations which we will need to output DIEs for. */
12652 if (debug_info_level > DINFO_LEVEL_TERSE)
12653 /* We are not in terse mode so *any* local declaration counts
12654 as being a "significant" one. */
12655 must_output_die = (BLOCK_VARS (stmt) != NULL
12656 && (TREE_USED (stmt)
12657 || TREE_ASM_WRITTEN (stmt)
12658 || BLOCK_ABSTRACT (stmt)));
12659 else
12660 /* We are in terse mode, so only local (nested) function
12661 definitions count as "significant" local declarations. */
12662 for (decl = BLOCK_VARS (stmt);
12663 decl != NULL; decl = TREE_CHAIN (decl))
12664 if (TREE_CODE (decl) == FUNCTION_DECL
12665 && DECL_INITIAL (decl))
12667 must_output_die = 1;
12668 break;
12673 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12674 DIE for any block which contains no significant local declarations at
12675 all. Rather, in such cases we just call `decls_for_scope' so that any
12676 needed Dwarf info for any sub-blocks will get properly generated. Note
12677 that in terse mode, our definition of what constitutes a "significant"
12678 local declaration gets restricted to include only inlined function
12679 instances and local (nested) function definitions. */
12680 if (must_output_die)
12682 if (origin_code == FUNCTION_DECL)
12683 gen_inlined_subroutine_die (stmt, context_die, depth);
12684 else
12685 gen_lexical_block_die (stmt, context_die, depth);
12687 else
12688 decls_for_scope (stmt, context_die, depth);
12691 /* Generate all of the decls declared within a given scope and (recursively)
12692 all of its sub-blocks. */
12694 static void
12695 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12697 tree decl;
12698 tree subblocks;
12700 /* Ignore NULL blocks. */
12701 if (stmt == NULL_TREE)
12702 return;
12704 if (TREE_USED (stmt))
12706 /* Output the DIEs to represent all of the data objects and typedefs
12707 declared directly within this block but not within any nested
12708 sub-blocks. Also, nested function and tag DIEs have been
12709 generated with a parent of NULL; fix that up now. */
12710 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12712 dw_die_ref die;
12714 if (TREE_CODE (decl) == FUNCTION_DECL)
12715 die = lookup_decl_die (decl);
12716 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12717 die = lookup_type_die (TREE_TYPE (decl));
12718 else
12719 die = NULL;
12721 if (die != NULL && die->die_parent == NULL)
12722 add_child_die (context_die, die);
12723 /* Do not produce debug information for static variables since
12724 these might be optimized out. We are called for these later
12725 in cgraph_varpool_analyze_pending_decls. */
12726 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12728 else
12729 gen_decl_die (decl, context_die);
12733 /* If we're at -g1, we're not interested in subblocks. */
12734 if (debug_info_level <= DINFO_LEVEL_TERSE)
12735 return;
12737 /* Output the DIEs to represent all sub-blocks (and the items declared
12738 therein) of this block. */
12739 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12740 subblocks != NULL;
12741 subblocks = BLOCK_CHAIN (subblocks))
12742 gen_block_die (subblocks, context_die, depth + 1);
12745 /* Is this a typedef we can avoid emitting? */
12747 static inline int
12748 is_redundant_typedef (tree decl)
12750 if (TYPE_DECL_IS_STUB (decl))
12751 return 1;
12753 if (DECL_ARTIFICIAL (decl)
12754 && DECL_CONTEXT (decl)
12755 && is_tagged_type (DECL_CONTEXT (decl))
12756 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12757 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12758 /* Also ignore the artificial member typedef for the class name. */
12759 return 1;
12761 return 0;
12764 /* Returns the DIE for decl. A DIE will always be returned. */
12766 static dw_die_ref
12767 force_decl_die (tree decl)
12769 dw_die_ref decl_die;
12770 unsigned saved_external_flag;
12771 tree save_fn = NULL_TREE;
12772 decl_die = lookup_decl_die (decl);
12773 if (!decl_die)
12775 dw_die_ref context_die;
12776 tree decl_context = DECL_CONTEXT (decl);
12777 if (decl_context)
12779 /* Find die that represents this context. */
12780 if (TYPE_P (decl_context))
12781 context_die = force_type_die (decl_context);
12782 else
12783 context_die = force_decl_die (decl_context);
12785 else
12786 context_die = comp_unit_die;
12788 switch (TREE_CODE (decl))
12790 case FUNCTION_DECL:
12791 /* Clear current_function_decl, so that gen_subprogram_die thinks
12792 that this is a declaration. At this point, we just want to force
12793 declaration die. */
12794 save_fn = current_function_decl;
12795 current_function_decl = NULL_TREE;
12796 gen_subprogram_die (decl, context_die);
12797 current_function_decl = save_fn;
12798 break;
12800 case VAR_DECL:
12801 /* Set external flag to force declaration die. Restore it after
12802 gen_decl_die() call. */
12803 saved_external_flag = DECL_EXTERNAL (decl);
12804 DECL_EXTERNAL (decl) = 1;
12805 gen_decl_die (decl, context_die);
12806 DECL_EXTERNAL (decl) = saved_external_flag;
12807 break;
12809 case NAMESPACE_DECL:
12810 dwarf2out_decl (decl);
12811 break;
12813 default:
12814 gcc_unreachable ();
12817 /* We should be able to find the DIE now. */
12818 if (!decl_die)
12819 decl_die = lookup_decl_die (decl);
12820 gcc_assert (decl_die);
12823 return decl_die;
12826 /* Returns the DIE for TYPE. A DIE is always returned. */
12828 static dw_die_ref
12829 force_type_die (tree type)
12831 dw_die_ref type_die;
12833 type_die = lookup_type_die (type);
12834 if (!type_die)
12836 dw_die_ref context_die;
12837 if (TYPE_CONTEXT (type))
12838 if (TYPE_P (TYPE_CONTEXT (type)))
12839 context_die = force_type_die (TYPE_CONTEXT (type));
12840 else
12841 context_die = force_decl_die (TYPE_CONTEXT (type));
12842 else
12843 context_die = comp_unit_die;
12845 gen_type_die (type, context_die);
12846 type_die = lookup_type_die (type);
12847 gcc_assert (type_die);
12849 return type_die;
12852 /* Force out any required namespaces to be able to output DECL,
12853 and return the new context_die for it, if it's changed. */
12855 static dw_die_ref
12856 setup_namespace_context (tree thing, dw_die_ref context_die)
12858 tree context = (DECL_P (thing)
12859 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12860 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12861 /* Force out the namespace. */
12862 context_die = force_decl_die (context);
12864 return context_die;
12867 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12868 type) within its namespace, if appropriate.
12870 For compatibility with older debuggers, namespace DIEs only contain
12871 declarations; all definitions are emitted at CU scope. */
12873 static void
12874 declare_in_namespace (tree thing, dw_die_ref context_die)
12876 dw_die_ref ns_context;
12878 if (debug_info_level <= DINFO_LEVEL_TERSE)
12879 return;
12881 /* If this decl is from an inlined function, then don't try to emit it in its
12882 namespace, as we will get confused. It would have already been emitted
12883 when the abstract instance of the inline function was emitted anyways. */
12884 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12885 return;
12887 ns_context = setup_namespace_context (thing, context_die);
12889 if (ns_context != context_die)
12891 if (DECL_P (thing))
12892 gen_decl_die (thing, ns_context);
12893 else
12894 gen_type_die (thing, ns_context);
12898 /* Generate a DIE for a namespace or namespace alias. */
12900 static void
12901 gen_namespace_die (tree decl)
12903 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12905 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12906 they are an alias of. */
12907 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12909 /* Output a real namespace. */
12910 dw_die_ref namespace_die
12911 = new_die (DW_TAG_namespace, context_die, decl);
12912 add_name_and_src_coords_attributes (namespace_die, decl);
12913 equate_decl_number_to_die (decl, namespace_die);
12915 else
12917 /* Output a namespace alias. */
12919 /* Force out the namespace we are an alias of, if necessary. */
12920 dw_die_ref origin_die
12921 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12923 /* Now create the namespace alias DIE. */
12924 dw_die_ref namespace_die
12925 = new_die (DW_TAG_imported_declaration, context_die, decl);
12926 add_name_and_src_coords_attributes (namespace_die, decl);
12927 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12928 equate_decl_number_to_die (decl, namespace_die);
12932 /* Generate Dwarf debug information for a decl described by DECL. */
12934 static void
12935 gen_decl_die (tree decl, dw_die_ref context_die)
12937 tree origin;
12939 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12940 return;
12942 switch (TREE_CODE (decl))
12944 case ERROR_MARK:
12945 break;
12947 case CONST_DECL:
12948 /* The individual enumerators of an enum type get output when we output
12949 the Dwarf representation of the relevant enum type itself. */
12950 break;
12952 case FUNCTION_DECL:
12953 /* Don't output any DIEs to represent mere function declarations,
12954 unless they are class members or explicit block externs. */
12955 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12956 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12957 break;
12959 #if 0
12960 /* FIXME */
12961 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12962 on local redeclarations of global functions. That seems broken. */
12963 if (current_function_decl != decl)
12964 /* This is only a declaration. */;
12965 #endif
12967 /* If we're emitting a clone, emit info for the abstract instance. */
12968 if (DECL_ORIGIN (decl) != decl)
12969 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12971 /* If we're emitting an out-of-line copy of an inline function,
12972 emit info for the abstract instance and set up to refer to it. */
12973 else if (cgraph_function_possibly_inlined_p (decl)
12974 && ! DECL_ABSTRACT (decl)
12975 && ! class_or_namespace_scope_p (context_die)
12976 /* dwarf2out_abstract_function won't emit a die if this is just
12977 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12978 that case, because that works only if we have a die. */
12979 && DECL_INITIAL (decl) != NULL_TREE)
12981 dwarf2out_abstract_function (decl);
12982 set_decl_origin_self (decl);
12985 /* Otherwise we're emitting the primary DIE for this decl. */
12986 else if (debug_info_level > DINFO_LEVEL_TERSE)
12988 /* Before we describe the FUNCTION_DECL itself, make sure that we
12989 have described its return type. */
12990 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12992 /* And its virtual context. */
12993 if (DECL_VINDEX (decl) != NULL_TREE)
12994 gen_type_die (DECL_CONTEXT (decl), context_die);
12996 /* And its containing type. */
12997 origin = decl_class_context (decl);
12998 if (origin != NULL_TREE)
12999 gen_type_die_for_member (origin, decl, context_die);
13001 /* And its containing namespace. */
13002 declare_in_namespace (decl, context_die);
13005 /* Now output a DIE to represent the function itself. */
13006 gen_subprogram_die (decl, context_die);
13007 break;
13009 case TYPE_DECL:
13010 /* If we are in terse mode, don't generate any DIEs to represent any
13011 actual typedefs. */
13012 if (debug_info_level <= DINFO_LEVEL_TERSE)
13013 break;
13015 /* In the special case of a TYPE_DECL node representing the declaration
13016 of some type tag, if the given TYPE_DECL is marked as having been
13017 instantiated from some other (original) TYPE_DECL node (e.g. one which
13018 was generated within the original definition of an inline function) we
13019 have to generate a special (abbreviated) DW_TAG_structure_type,
13020 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13021 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13023 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13024 break;
13027 if (is_redundant_typedef (decl))
13028 gen_type_die (TREE_TYPE (decl), context_die);
13029 else
13030 /* Output a DIE to represent the typedef itself. */
13031 gen_typedef_die (decl, context_die);
13032 break;
13034 case LABEL_DECL:
13035 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13036 gen_label_die (decl, context_die);
13037 break;
13039 case VAR_DECL:
13040 case RESULT_DECL:
13041 /* If we are in terse mode, don't generate any DIEs to represent any
13042 variable declarations or definitions. */
13043 if (debug_info_level <= DINFO_LEVEL_TERSE)
13044 break;
13046 /* Output any DIEs that are needed to specify the type of this data
13047 object. */
13048 gen_type_die (TREE_TYPE (decl), context_die);
13050 /* And its containing type. */
13051 origin = decl_class_context (decl);
13052 if (origin != NULL_TREE)
13053 gen_type_die_for_member (origin, decl, context_die);
13055 /* And its containing namespace. */
13056 declare_in_namespace (decl, context_die);
13058 /* Now output the DIE to represent the data object itself. This gets
13059 complicated because of the possibility that the VAR_DECL really
13060 represents an inlined instance of a formal parameter for an inline
13061 function. */
13062 origin = decl_ultimate_origin (decl);
13063 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13064 gen_formal_parameter_die (decl, context_die);
13065 else
13066 gen_variable_die (decl, context_die);
13067 break;
13069 case FIELD_DECL:
13070 /* Ignore the nameless fields that are used to skip bits but handle C++
13071 anonymous unions and structs. */
13072 if (DECL_NAME (decl) != NULL_TREE
13073 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13074 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13076 gen_type_die (member_declared_type (decl), context_die);
13077 gen_field_die (decl, context_die);
13079 break;
13081 case PARM_DECL:
13082 gen_type_die (TREE_TYPE (decl), context_die);
13083 gen_formal_parameter_die (decl, context_die);
13084 break;
13086 case NAMESPACE_DECL:
13087 gen_namespace_die (decl);
13088 break;
13090 default:
13091 /* Probably some frontend-internal decl. Assume we don't care. */
13092 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13093 break;
13097 /* Add Ada "use" clause information for SGI Workshop debugger. */
13099 void
13100 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
13102 unsigned int file_index;
13104 if (filename != NULL)
13106 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
13107 tree context_list_decl
13108 = build_decl (LABEL_DECL, get_identifier (context_list),
13109 void_type_node);
13111 TREE_PUBLIC (context_list_decl) = TRUE;
13112 add_name_attribute (unit_die, context_list);
13113 file_index = lookup_filename (filename);
13114 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
13115 add_pubname (context_list_decl, unit_die);
13119 /* Output debug information for global decl DECL. Called from toplev.c after
13120 compilation proper has finished. */
13122 static void
13123 dwarf2out_global_decl (tree decl)
13125 /* Output DWARF2 information for file-scope tentative data object
13126 declarations, file-scope (extern) function declarations (which had no
13127 corresponding body) and file-scope tagged type declarations and
13128 definitions which have not yet been forced out. */
13129 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13130 dwarf2out_decl (decl);
13133 /* Output debug information for type decl DECL. Called from toplev.c
13134 and from language front ends (to record built-in types). */
13135 static void
13136 dwarf2out_type_decl (tree decl, int local)
13138 if (!local)
13139 dwarf2out_decl (decl);
13142 /* Output debug information for imported module or decl. */
13144 static void
13145 dwarf2out_imported_module_or_decl (tree decl, tree context)
13147 dw_die_ref imported_die, at_import_die;
13148 dw_die_ref scope_die;
13149 unsigned file_index;
13150 expanded_location xloc;
13152 if (debug_info_level <= DINFO_LEVEL_TERSE)
13153 return;
13155 gcc_assert (decl);
13157 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13158 We need decl DIE for reference and scope die. First, get DIE for the decl
13159 itself. */
13161 /* Get the scope die for decl context. Use comp_unit_die for global module
13162 or decl. If die is not found for non globals, force new die. */
13163 if (!context)
13164 scope_die = comp_unit_die;
13165 else if (TYPE_P (context))
13166 scope_die = force_type_die (context);
13167 else
13168 scope_die = force_decl_die (context);
13170 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13171 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13172 at_import_die = force_type_die (TREE_TYPE (decl));
13173 else
13175 at_import_die = lookup_decl_die (decl);
13176 if (!at_import_die)
13178 /* If we're trying to avoid duplicate debug info, we may not have
13179 emitted the member decl for this field. Emit it now. */
13180 if (TREE_CODE (decl) == FIELD_DECL)
13182 tree type = DECL_CONTEXT (decl);
13183 dw_die_ref type_context_die;
13185 if (TYPE_CONTEXT (type))
13186 if (TYPE_P (TYPE_CONTEXT (type)))
13187 type_context_die = force_type_die (TYPE_CONTEXT (type));
13188 else
13189 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13190 else
13191 type_context_die = comp_unit_die;
13192 gen_type_die_for_member (type, decl, type_context_die);
13194 at_import_die = force_decl_die (decl);
13198 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13199 if (TREE_CODE (decl) == NAMESPACE_DECL)
13200 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13201 else
13202 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13204 xloc = expand_location (input_location);
13205 file_index = lookup_filename (xloc.file);
13206 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
13207 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13208 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13211 /* Write the debugging output for DECL. */
13213 void
13214 dwarf2out_decl (tree decl)
13216 dw_die_ref context_die = comp_unit_die;
13218 switch (TREE_CODE (decl))
13220 case ERROR_MARK:
13221 return;
13223 case FUNCTION_DECL:
13224 /* What we would really like to do here is to filter out all mere
13225 file-scope declarations of file-scope functions which are never
13226 referenced later within this translation unit (and keep all of ones
13227 that *are* referenced later on) but we aren't clairvoyant, so we have
13228 no idea which functions will be referenced in the future (i.e. later
13229 on within the current translation unit). So here we just ignore all
13230 file-scope function declarations which are not also definitions. If
13231 and when the debugger needs to know something about these functions,
13232 it will have to hunt around and find the DWARF information associated
13233 with the definition of the function.
13235 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13236 nodes represent definitions and which ones represent mere
13237 declarations. We have to check DECL_INITIAL instead. That's because
13238 the C front-end supports some weird semantics for "extern inline"
13239 function definitions. These can get inlined within the current
13240 translation unit (and thus, we need to generate Dwarf info for their
13241 abstract instances so that the Dwarf info for the concrete inlined
13242 instances can have something to refer to) but the compiler never
13243 generates any out-of-lines instances of such things (despite the fact
13244 that they *are* definitions).
13246 The important point is that the C front-end marks these "extern
13247 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13248 them anyway. Note that the C++ front-end also plays some similar games
13249 for inline function definitions appearing within include files which
13250 also contain `#pragma interface' pragmas. */
13251 if (DECL_INITIAL (decl) == NULL_TREE)
13252 return;
13254 /* If we're a nested function, initially use a parent of NULL; if we're
13255 a plain function, this will be fixed up in decls_for_scope. If
13256 we're a method, it will be ignored, since we already have a DIE. */
13257 if (decl_function_context (decl)
13258 /* But if we're in terse mode, we don't care about scope. */
13259 && debug_info_level > DINFO_LEVEL_TERSE)
13260 context_die = NULL;
13261 break;
13263 case VAR_DECL:
13264 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13265 declaration and if the declaration was never even referenced from
13266 within this entire compilation unit. We suppress these DIEs in
13267 order to save space in the .debug section (by eliminating entries
13268 which are probably useless). Note that we must not suppress
13269 block-local extern declarations (whether used or not) because that
13270 would screw-up the debugger's name lookup mechanism and cause it to
13271 miss things which really ought to be in scope at a given point. */
13272 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13273 return;
13275 /* For local statics lookup proper context die. */
13276 if (TREE_STATIC (decl) && decl_function_context (decl))
13277 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13279 /* If we are in terse mode, don't generate any DIEs to represent any
13280 variable declarations or definitions. */
13281 if (debug_info_level <= DINFO_LEVEL_TERSE)
13282 return;
13283 break;
13285 case NAMESPACE_DECL:
13286 if (debug_info_level <= DINFO_LEVEL_TERSE)
13287 return;
13288 if (lookup_decl_die (decl) != NULL)
13289 return;
13290 break;
13292 case TYPE_DECL:
13293 /* Don't emit stubs for types unless they are needed by other DIEs. */
13294 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13295 return;
13297 /* Don't bother trying to generate any DIEs to represent any of the
13298 normal built-in types for the language we are compiling. */
13299 if (DECL_IS_BUILTIN (decl))
13301 /* OK, we need to generate one for `bool' so GDB knows what type
13302 comparisons have. */
13303 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
13304 == DW_LANG_C_plus_plus)
13305 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13306 && ! DECL_IGNORED_P (decl))
13307 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13309 return;
13312 /* If we are in terse mode, don't generate any DIEs for types. */
13313 if (debug_info_level <= DINFO_LEVEL_TERSE)
13314 return;
13316 /* If we're a function-scope tag, initially use a parent of NULL;
13317 this will be fixed up in decls_for_scope. */
13318 if (decl_function_context (decl))
13319 context_die = NULL;
13321 break;
13323 default:
13324 return;
13327 gen_decl_die (decl, context_die);
13330 /* Output a marker (i.e. a label) for the beginning of the generated code for
13331 a lexical block. */
13333 static void
13334 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13335 unsigned int blocknum)
13337 current_function_section (current_function_decl);
13338 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13341 /* Output a marker (i.e. a label) for the end of the generated code for a
13342 lexical block. */
13344 static void
13345 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13347 current_function_section (current_function_decl);
13348 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13351 /* Returns nonzero if it is appropriate not to emit any debugging
13352 information for BLOCK, because it doesn't contain any instructions.
13354 Don't allow this for blocks with nested functions or local classes
13355 as we would end up with orphans, and in the presence of scheduling
13356 we may end up calling them anyway. */
13358 static bool
13359 dwarf2out_ignore_block (tree block)
13361 tree decl;
13363 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13364 if (TREE_CODE (decl) == FUNCTION_DECL
13365 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13366 return 0;
13368 return 1;
13371 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13372 dwarf2out.c) and return its "index". The index of each (known) filename is
13373 just a unique number which is associated with only that one filename. We
13374 need such numbers for the sake of generating labels (in the .debug_sfnames
13375 section) and references to those files numbers (in the .debug_srcinfo
13376 and.debug_macinfo sections). If the filename given as an argument is not
13377 found in our current list, add it to the list and assign it the next
13378 available unique index number. In order to speed up searches, we remember
13379 the index of the filename was looked up last. This handles the majority of
13380 all searches. */
13382 static unsigned
13383 lookup_filename (const char *file_name)
13385 size_t i, n;
13386 char *save_file_name;
13388 /* Check to see if the file name that was searched on the previous
13389 call matches this file name. If so, return the index. */
13390 if (file_table_last_lookup_index != 0)
13392 const char *last
13393 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13394 if (strcmp (file_name, last) == 0)
13395 return file_table_last_lookup_index;
13398 /* Didn't match the previous lookup, search the table. */
13399 n = VARRAY_ACTIVE_SIZE (file_table);
13400 for (i = 1; i < n; i++)
13401 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13403 file_table_last_lookup_index = i;
13404 return i;
13407 /* Add the new entry to the end of the filename table. */
13408 file_table_last_lookup_index = n;
13409 save_file_name = (char *) ggc_strdup (file_name);
13410 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13411 VARRAY_PUSH_UINT (file_table_emitted, 0);
13413 /* If the assembler is emitting the file table, and we aren't eliminating
13414 unused debug types, then we must emit .file here. If we are eliminating
13415 unused debug types, then this will be done by the maybe_emit_file call in
13416 prune_unused_types_walk_attribs. */
13418 if (DWARF2_ASM_LINE_DEBUG_INFO && ! flag_eliminate_unused_debug_types)
13419 return maybe_emit_file (i);
13421 return i;
13424 /* If the assembler will construct the file table, then translate the compiler
13425 internal file table number into the assembler file table number, and emit
13426 a .file directive if we haven't already emitted one yet. The file table
13427 numbers are different because we prune debug info for unused variables and
13428 types, which may include filenames. */
13430 static int
13431 maybe_emit_file (int fileno)
13433 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13435 if (!VARRAY_UINT (file_table_emitted, fileno))
13437 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13438 fprintf (asm_out_file, "\t.file %u ",
13439 VARRAY_UINT (file_table_emitted, fileno));
13440 output_quoted_string (asm_out_file,
13441 VARRAY_CHAR_PTR (file_table, fileno));
13442 fputc ('\n', asm_out_file);
13444 return VARRAY_UINT (file_table_emitted, fileno);
13446 else
13447 return fileno;
13450 /* Initialize the compiler internal file table. */
13452 static void
13453 init_file_table (void)
13455 /* Allocate the initial hunk of the file_table. */
13456 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13457 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13459 /* Skip the first entry - file numbers begin at 1. */
13460 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13461 VARRAY_PUSH_UINT (file_table_emitted, 0);
13462 file_table_last_lookup_index = 0;
13465 /* Called by the final INSN scan whenever we see a var location. We
13466 use it to drop labels in the right places, and throw the location in
13467 our lookup table. */
13469 static void
13470 dwarf2out_var_location (rtx loc_note)
13472 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13473 struct var_loc_node *newloc;
13474 rtx prev_insn;
13475 static rtx last_insn;
13476 static const char *last_label;
13477 tree decl;
13479 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13480 return;
13481 prev_insn = PREV_INSN (loc_note);
13483 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13484 /* If the insn we processed last time is the previous insn
13485 and it is also a var location note, use the label we emitted
13486 last time. */
13487 if (last_insn != NULL_RTX
13488 && last_insn == prev_insn
13489 && NOTE_P (prev_insn)
13490 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13492 newloc->label = last_label;
13494 else
13496 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13497 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13498 loclabel_num++;
13499 newloc->label = ggc_strdup (loclabel);
13501 newloc->var_loc_note = loc_note;
13502 newloc->next = NULL;
13504 if (cfun
13505 && (last_text_section == in_unlikely_executed_text
13506 || (last_text_section == in_named
13507 && last_text_section_name == cfun->unlikely_text_section_name)))
13508 newloc->section_label = cfun->cold_section_label;
13509 else
13510 newloc->section_label = text_section_label;
13512 last_insn = loc_note;
13513 last_label = newloc->label;
13514 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13515 if (DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
13516 && DECL_P (DECL_DEBUG_EXPR (decl)))
13517 decl = DECL_DEBUG_EXPR (decl);
13518 add_var_loc_to_decl (decl, newloc);
13521 /* We need to reset the locations at the beginning of each
13522 function. We can't do this in the end_function hook, because the
13523 declarations that use the locations won't have been outputted when
13524 that hook is called. */
13526 static void
13527 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13529 htab_empty (decl_loc_table);
13532 /* Output a label to mark the beginning of a source code line entry
13533 and record information relating to this source line, in
13534 'line_info_table' for later output of the .debug_line section. */
13536 static void
13537 dwarf2out_source_line (unsigned int line, const char *filename)
13539 if (debug_info_level >= DINFO_LEVEL_NORMAL
13540 && line != 0)
13542 current_function_section (current_function_decl);
13544 /* If requested, emit something human-readable. */
13545 if (flag_debug_asm)
13546 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13547 filename, line);
13549 if (DWARF2_ASM_LINE_DEBUG_INFO)
13551 unsigned file_num = lookup_filename (filename);
13553 file_num = maybe_emit_file (file_num);
13555 /* Emit the .loc directive understood by GNU as. */
13556 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13558 /* Indicate that line number info exists. */
13559 line_info_table_in_use++;
13561 /* Indicate that multiple line number tables exist. */
13562 if (DECL_SECTION_NAME (current_function_decl))
13563 separate_line_info_table_in_use++;
13565 else if (DECL_SECTION_NAME (current_function_decl))
13567 dw_separate_line_info_ref line_info;
13568 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13569 separate_line_info_table_in_use);
13571 /* Expand the line info table if necessary. */
13572 if (separate_line_info_table_in_use
13573 == separate_line_info_table_allocated)
13575 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13576 separate_line_info_table
13577 = ggc_realloc (separate_line_info_table,
13578 separate_line_info_table_allocated
13579 * sizeof (dw_separate_line_info_entry));
13580 memset (separate_line_info_table
13581 + separate_line_info_table_in_use,
13583 (LINE_INFO_TABLE_INCREMENT
13584 * sizeof (dw_separate_line_info_entry)));
13587 /* Add the new entry at the end of the line_info_table. */
13588 line_info
13589 = &separate_line_info_table[separate_line_info_table_in_use++];
13590 line_info->dw_file_num = lookup_filename (filename);
13591 line_info->dw_line_num = line;
13592 line_info->function = current_function_funcdef_no;
13594 else
13596 dw_line_info_ref line_info;
13598 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13599 line_info_table_in_use);
13601 /* Expand the line info table if necessary. */
13602 if (line_info_table_in_use == line_info_table_allocated)
13604 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13605 line_info_table
13606 = ggc_realloc (line_info_table,
13607 (line_info_table_allocated
13608 * sizeof (dw_line_info_entry)));
13609 memset (line_info_table + line_info_table_in_use, 0,
13610 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13613 /* Add the new entry at the end of the line_info_table. */
13614 line_info = &line_info_table[line_info_table_in_use++];
13615 line_info->dw_file_num = lookup_filename (filename);
13616 line_info->dw_line_num = line;
13621 /* Record the beginning of a new source file. */
13623 static void
13624 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13626 if (flag_eliminate_dwarf2_dups)
13628 /* Record the beginning of the file for break_out_includes. */
13629 dw_die_ref bincl_die;
13631 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13632 add_AT_string (bincl_die, DW_AT_name, filename);
13635 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13637 int fileno;
13639 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13640 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13641 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13642 lineno);
13644 fileno = maybe_emit_file (lookup_filename (filename));
13645 dw2_asm_output_data_uleb128 (fileno, "Filename we just started");
13649 /* Record the end of a source file. */
13651 static void
13652 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13654 if (flag_eliminate_dwarf2_dups)
13655 /* Record the end of the file for break_out_includes. */
13656 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13658 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13660 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13661 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13665 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13666 the tail part of the directive line, i.e. the part which is past the
13667 initial whitespace, #, whitespace, directive-name, whitespace part. */
13669 static void
13670 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13671 const char *buffer ATTRIBUTE_UNUSED)
13673 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13675 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13676 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13677 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13678 dw2_asm_output_nstring (buffer, -1, "The macro");
13682 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13683 the tail part of the directive line, i.e. the part which is past the
13684 initial whitespace, #, whitespace, directive-name, whitespace part. */
13686 static void
13687 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13688 const char *buffer ATTRIBUTE_UNUSED)
13690 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13692 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13693 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13694 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13695 dw2_asm_output_nstring (buffer, -1, "The macro");
13699 /* Set up for Dwarf output at the start of compilation. */
13701 static void
13702 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13704 init_file_table ();
13706 /* Allocate the decl_die_table. */
13707 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13708 decl_die_table_eq, NULL);
13710 /* Allocate the decl_loc_table. */
13711 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13712 decl_loc_table_eq, NULL);
13714 /* Allocate the initial hunk of the decl_scope_table. */
13715 decl_scope_table = VEC_alloc (tree, gc, 256);
13717 /* Allocate the initial hunk of the abbrev_die_table. */
13718 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13719 * sizeof (dw_die_ref));
13720 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13721 /* Zero-th entry is allocated, but unused. */
13722 abbrev_die_table_in_use = 1;
13724 /* Allocate the initial hunk of the line_info_table. */
13725 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13726 * sizeof (dw_line_info_entry));
13727 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13729 /* Zero-th entry is allocated, but unused. */
13730 line_info_table_in_use = 1;
13732 /* Generate the initial DIE for the .debug section. Note that the (string)
13733 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13734 will (typically) be a relative pathname and that this pathname should be
13735 taken as being relative to the directory from which the compiler was
13736 invoked when the given (base) source file was compiled. We will fill
13737 in this value in dwarf2out_finish. */
13738 comp_unit_die = gen_compile_unit_die (NULL);
13740 incomplete_types = VEC_alloc (tree, gc, 64);
13742 used_rtx_array = VEC_alloc (rtx, gc, 32);
13744 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13745 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13746 DEBUG_ABBREV_SECTION_LABEL, 0);
13747 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13748 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13749 COLD_TEXT_SECTION_LABEL, 0);
13750 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13752 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13753 DEBUG_INFO_SECTION_LABEL, 0);
13754 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13755 DEBUG_LINE_SECTION_LABEL, 0);
13756 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13757 DEBUG_RANGES_SECTION_LABEL, 0);
13758 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13759 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13760 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13761 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13762 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13763 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13765 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13767 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13768 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13769 DEBUG_MACINFO_SECTION_LABEL, 0);
13770 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13773 text_section ();
13774 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13775 if (flag_reorder_blocks_and_partition)
13777 unlikely_text_section ();
13778 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13782 /* A helper function for dwarf2out_finish called through
13783 ht_forall. Emit one queued .debug_str string. */
13785 static int
13786 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13788 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13790 if (node->form == DW_FORM_strp)
13792 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13793 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13794 assemble_string (node->str, strlen (node->str) + 1);
13797 return 1;
13802 /* Clear the marks for a die and its children.
13803 Be cool if the mark isn't set. */
13805 static void
13806 prune_unmark_dies (dw_die_ref die)
13808 dw_die_ref c;
13809 die->die_mark = 0;
13810 for (c = die->die_child; c; c = c->die_sib)
13811 prune_unmark_dies (c);
13815 /* Given DIE that we're marking as used, find any other dies
13816 it references as attributes and mark them as used. */
13818 static void
13819 prune_unused_types_walk_attribs (dw_die_ref die)
13821 dw_attr_ref a;
13823 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13825 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13827 /* A reference to another DIE.
13828 Make sure that it will get emitted. */
13829 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13831 else if (a->dw_attr == DW_AT_decl_file || a->dw_attr == DW_AT_call_file)
13833 /* A reference to a file. Make sure the file name is emitted. */
13834 a->dw_attr_val.v.val_unsigned =
13835 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13841 /* Mark DIE as being used. If DOKIDS is true, then walk down
13842 to DIE's children. */
13844 static void
13845 prune_unused_types_mark (dw_die_ref die, int dokids)
13847 dw_die_ref c;
13849 if (die->die_mark == 0)
13851 /* We haven't done this node yet. Mark it as used. */
13852 die->die_mark = 1;
13854 /* We also have to mark its parents as used.
13855 (But we don't want to mark our parents' kids due to this.) */
13856 if (die->die_parent)
13857 prune_unused_types_mark (die->die_parent, 0);
13859 /* Mark any referenced nodes. */
13860 prune_unused_types_walk_attribs (die);
13862 /* If this node is a specification,
13863 also mark the definition, if it exists. */
13864 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13865 prune_unused_types_mark (die->die_definition, 1);
13868 if (dokids && die->die_mark != 2)
13870 /* We need to walk the children, but haven't done so yet.
13871 Remember that we've walked the kids. */
13872 die->die_mark = 2;
13874 /* Walk them. */
13875 for (c = die->die_child; c; c = c->die_sib)
13877 /* If this is an array type, we need to make sure our
13878 kids get marked, even if they're types. */
13879 if (die->die_tag == DW_TAG_array_type)
13880 prune_unused_types_mark (c, 1);
13881 else
13882 prune_unused_types_walk (c);
13888 /* Walk the tree DIE and mark types that we actually use. */
13890 static void
13891 prune_unused_types_walk (dw_die_ref die)
13893 dw_die_ref c;
13895 /* Don't do anything if this node is already marked. */
13896 if (die->die_mark)
13897 return;
13899 switch (die->die_tag) {
13900 case DW_TAG_const_type:
13901 case DW_TAG_packed_type:
13902 case DW_TAG_pointer_type:
13903 case DW_TAG_reference_type:
13904 case DW_TAG_volatile_type:
13905 case DW_TAG_typedef:
13906 case DW_TAG_array_type:
13907 case DW_TAG_structure_type:
13908 case DW_TAG_union_type:
13909 case DW_TAG_class_type:
13910 case DW_TAG_friend:
13911 case DW_TAG_variant_part:
13912 case DW_TAG_enumeration_type:
13913 case DW_TAG_subroutine_type:
13914 case DW_TAG_string_type:
13915 case DW_TAG_set_type:
13916 case DW_TAG_subrange_type:
13917 case DW_TAG_ptr_to_member_type:
13918 case DW_TAG_file_type:
13919 /* It's a type node --- don't mark it. */
13920 return;
13922 default:
13923 /* Mark everything else. */
13924 break;
13927 die->die_mark = 1;
13929 /* Now, mark any dies referenced from here. */
13930 prune_unused_types_walk_attribs (die);
13932 /* Mark children. */
13933 for (c = die->die_child; c; c = c->die_sib)
13934 prune_unused_types_walk (c);
13938 /* Remove from the tree DIE any dies that aren't marked. */
13940 static void
13941 prune_unused_types_prune (dw_die_ref die)
13943 dw_die_ref c, p, n;
13945 gcc_assert (die->die_mark);
13947 p = NULL;
13948 for (c = die->die_child; c; c = n)
13950 n = c->die_sib;
13951 if (c->die_mark)
13953 prune_unused_types_prune (c);
13954 p = c;
13956 else
13958 if (p)
13959 p->die_sib = n;
13960 else
13961 die->die_child = n;
13962 free_die (c);
13968 /* Remove dies representing declarations that we never use. */
13970 static void
13971 prune_unused_types (void)
13973 unsigned int i;
13974 limbo_die_node *node;
13976 /* Clear all the marks. */
13977 prune_unmark_dies (comp_unit_die);
13978 for (node = limbo_die_list; node; node = node->next)
13979 prune_unmark_dies (node->die);
13981 /* Set the mark on nodes that are actually used. */
13982 prune_unused_types_walk (comp_unit_die);
13983 for (node = limbo_die_list; node; node = node->next)
13984 prune_unused_types_walk (node->die);
13986 /* Also set the mark on nodes referenced from the
13987 pubname_table or arange_table. */
13988 for (i = 0; i < pubname_table_in_use; i++)
13989 prune_unused_types_mark (pubname_table[i].die, 1);
13990 for (i = 0; i < arange_table_in_use; i++)
13991 prune_unused_types_mark (arange_table[i], 1);
13993 /* Get rid of nodes that aren't marked. */
13994 prune_unused_types_prune (comp_unit_die);
13995 for (node = limbo_die_list; node; node = node->next)
13996 prune_unused_types_prune (node->die);
13998 /* Leave the marks clear. */
13999 prune_unmark_dies (comp_unit_die);
14000 for (node = limbo_die_list; node; node = node->next)
14001 prune_unmark_dies (node->die);
14004 /* Output stuff that dwarf requires at the end of every file,
14005 and generate the DWARF-2 debugging info. */
14007 static void
14008 dwarf2out_finish (const char *filename)
14010 limbo_die_node *node, *next_node;
14011 dw_die_ref die = 0;
14013 /* Add the name for the main input file now. We delayed this from
14014 dwarf2out_init to avoid complications with PCH. */
14015 add_name_attribute (comp_unit_die, filename);
14016 if (filename[0] != DIR_SEPARATOR)
14017 add_comp_dir_attribute (comp_unit_die);
14018 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14020 size_t i;
14021 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
14022 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
14023 /* Don't add cwd for <built-in>. */
14024 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
14026 add_comp_dir_attribute (comp_unit_die);
14027 break;
14031 /* Traverse the limbo die list, and add parent/child links. The only
14032 dies without parents that should be here are concrete instances of
14033 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14034 For concrete instances, we can get the parent die from the abstract
14035 instance. */
14036 for (node = limbo_die_list; node; node = next_node)
14038 next_node = node->next;
14039 die = node->die;
14041 if (die->die_parent == NULL)
14043 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14045 if (origin)
14046 add_child_die (origin->die_parent, die);
14047 else if (die == comp_unit_die)
14049 else if (errorcount > 0 || sorrycount > 0)
14050 /* It's OK to be confused by errors in the input. */
14051 add_child_die (comp_unit_die, die);
14052 else
14054 /* In certain situations, the lexical block containing a
14055 nested function can be optimized away, which results
14056 in the nested function die being orphaned. Likewise
14057 with the return type of that nested function. Force
14058 this to be a child of the containing function.
14060 It may happen that even the containing function got fully
14061 inlined and optimized out. In that case we are lost and
14062 assign the empty child. This should not be big issue as
14063 the function is likely unreachable too. */
14064 tree context = NULL_TREE;
14066 gcc_assert (node->created_for);
14068 if (DECL_P (node->created_for))
14069 context = DECL_CONTEXT (node->created_for);
14070 else if (TYPE_P (node->created_for))
14071 context = TYPE_CONTEXT (node->created_for);
14073 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14075 origin = lookup_decl_die (context);
14076 if (origin)
14077 add_child_die (origin, die);
14078 else
14079 add_child_die (comp_unit_die, die);
14084 limbo_die_list = NULL;
14086 /* Walk through the list of incomplete types again, trying once more to
14087 emit full debugging info for them. */
14088 retry_incomplete_types ();
14090 /* We need to reverse all the dies before break_out_includes, or
14091 we'll see the end of an include file before the beginning. */
14092 reverse_all_dies (comp_unit_die);
14094 if (flag_eliminate_unused_debug_types)
14095 prune_unused_types ();
14097 /* Generate separate CUs for each of the include files we've seen.
14098 They will go into limbo_die_list. */
14099 if (flag_eliminate_dwarf2_dups)
14100 break_out_includes (comp_unit_die);
14102 /* Traverse the DIE's and add add sibling attributes to those DIE's
14103 that have children. */
14104 add_sibling_attributes (comp_unit_die);
14105 for (node = limbo_die_list; node; node = node->next)
14106 add_sibling_attributes (node->die);
14108 /* Output a terminator label for the .text section. */
14109 text_section ();
14110 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14111 if (flag_reorder_blocks_and_partition)
14113 unlikely_text_section ();
14114 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14117 /* Output the source line correspondence table. We must do this
14118 even if there is no line information. Otherwise, on an empty
14119 translation unit, we will generate a present, but empty,
14120 .debug_info section. IRIX 6.5 `nm' will then complain when
14121 examining the file. */
14122 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14124 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
14125 output_line_info ();
14128 /* Output location list section if necessary. */
14129 if (have_location_lists)
14131 /* Output the location lists info. */
14132 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
14133 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14134 DEBUG_LOC_SECTION_LABEL, 0);
14135 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14136 output_location_lists (die);
14137 have_location_lists = 0;
14140 /* We can only use the low/high_pc attributes if all of the code was
14141 in .text. */
14142 if (!separate_line_info_table_in_use && !have_switched_text_section)
14144 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14145 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14148 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14149 "base address". Use zero so that these addresses become absolute. */
14150 else if (have_location_lists || ranges_table_in_use)
14151 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14153 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14154 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
14155 debug_line_section_label);
14157 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14158 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14160 /* Output all of the compilation units. We put the main one last so that
14161 the offsets are available to output_pubnames. */
14162 for (node = limbo_die_list; node; node = node->next)
14163 output_comp_unit (node->die, 0);
14165 output_comp_unit (comp_unit_die, 0);
14167 /* Output the abbreviation table. */
14168 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
14169 output_abbrev_section ();
14171 /* Output public names table if necessary. */
14172 if (pubname_table_in_use)
14174 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
14175 output_pubnames ();
14178 /* Output the address range information. We only put functions in the arange
14179 table, so don't write it out if we don't have any. */
14180 if (fde_table_in_use)
14182 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
14183 output_aranges ();
14186 /* Output ranges section if necessary. */
14187 if (ranges_table_in_use)
14189 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
14190 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14191 output_ranges ();
14194 /* Have to end the macro section. */
14195 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14197 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
14198 dw2_asm_output_data (1, 0, "End compilation unit");
14201 /* If we emitted any DW_FORM_strp form attribute, output the string
14202 table too. */
14203 if (debug_str_hash)
14204 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14206 #else
14208 /* This should never be used, but its address is needed for comparisons. */
14209 const struct gcc_debug_hooks dwarf2_debug_hooks;
14211 #endif /* DWARF2_DEBUGGING_INFO */
14213 #include "gt-dwarf2out.h"