* config/bfin/bfin.md (composev2hi): Put operands into vector
[official-gcc/alias-decl.git] / gcc / gcse.c
blobaf10db685301f107337262ec9e33856bae743748
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* TODO
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - a store to the same address as a load does not kill the load if the
28 source of the store is also the destination of the load. Handling this
29 allows more load motion, particularly out of loops.
30 - ability to realloc sbitmap vectors would allow one initial computation
31 of reg_set_in_block with only subsequent additions, rather than
32 recomputing it for each pass
36 /* References searched while implementing this.
38 Compilers Principles, Techniques and Tools
39 Aho, Sethi, Ullman
40 Addison-Wesley, 1988
42 Global Optimization by Suppression of Partial Redundancies
43 E. Morel, C. Renvoise
44 communications of the acm, Vol. 22, Num. 2, Feb. 1979
46 A Portable Machine-Independent Global Optimizer - Design and Measurements
47 Frederick Chow
48 Stanford Ph.D. thesis, Dec. 1983
50 A Fast Algorithm for Code Movement Optimization
51 D.M. Dhamdhere
52 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54 A Solution to a Problem with Morel and Renvoise's
55 Global Optimization by Suppression of Partial Redundancies
56 K-H Drechsler, M.P. Stadel
57 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59 Practical Adaptation of the Global Optimization
60 Algorithm of Morel and Renvoise
61 D.M. Dhamdhere
62 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64 Efficiently Computing Static Single Assignment Form and the Control
65 Dependence Graph
66 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
67 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
69 Lazy Code Motion
70 J. Knoop, O. Ruthing, B. Steffen
71 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
74 Time for Reducible Flow Control
75 Thomas Ball
76 ACM Letters on Programming Languages and Systems,
77 Vol. 2, Num. 1-4, Mar-Dec 1993
79 An Efficient Representation for Sparse Sets
80 Preston Briggs, Linda Torczon
81 ACM Letters on Programming Languages and Systems,
82 Vol. 2, Num. 1-4, Mar-Dec 1993
84 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
85 K-H Drechsler, M.P. Stadel
86 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88 Partial Dead Code Elimination
89 J. Knoop, O. Ruthing, B. Steffen
90 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92 Effective Partial Redundancy Elimination
93 P. Briggs, K.D. Cooper
94 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96 The Program Structure Tree: Computing Control Regions in Linear Time
97 R. Johnson, D. Pearson, K. Pingali
98 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100 Optimal Code Motion: Theory and Practice
101 J. Knoop, O. Ruthing, B. Steffen
102 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104 The power of assignment motion
105 J. Knoop, O. Ruthing, B. Steffen
106 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108 Global code motion / global value numbering
109 C. Click
110 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112 Value Driven Redundancy Elimination
113 L.T. Simpson
114 Rice University Ph.D. thesis, Apr. 1996
116 Value Numbering
117 L.T. Simpson
118 Massively Scalar Compiler Project, Rice University, Sep. 1996
120 High Performance Compilers for Parallel Computing
121 Michael Wolfe
122 Addison-Wesley, 1996
124 Advanced Compiler Design and Implementation
125 Steven Muchnick
126 Morgan Kaufmann, 1997
128 Building an Optimizing Compiler
129 Robert Morgan
130 Digital Press, 1998
132 People wishing to speed up the code here should read:
133 Elimination Algorithms for Data Flow Analysis
134 B.G. Ryder, M.C. Paull
135 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137 How to Analyze Large Programs Efficiently and Informatively
138 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
139 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141 People wishing to do something different can find various possibilities
142 in the above papers and elsewhere.
145 #include "config.h"
146 #include "system.h"
147 #include "coretypes.h"
148 #include "tm.h"
149 #include "toplev.h"
151 #include "rtl.h"
152 #include "tree.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "hard-reg-set.h"
156 #include "flags.h"
157 #include "real.h"
158 #include "insn-config.h"
159 #include "recog.h"
160 #include "basic-block.h"
161 #include "output.h"
162 #include "function.h"
163 #include "expr.h"
164 #include "except.h"
165 #include "ggc.h"
166 #include "params.h"
167 #include "cselib.h"
168 #include "intl.h"
169 #include "obstack.h"
170 #include "timevar.h"
171 #include "tree-pass.h"
172 #include "hashtab.h"
173 #include "df.h"
174 #include "dbgcnt.h"
176 /* Propagate flow information through back edges and thus enable PRE's
177 moving loop invariant calculations out of loops.
179 Originally this tended to create worse overall code, but several
180 improvements during the development of PRE seem to have made following
181 back edges generally a win.
183 Note much of the loop invariant code motion done here would normally
184 be done by loop.c, which has more heuristics for when to move invariants
185 out of loops. At some point we might need to move some of those
186 heuristics into gcse.c. */
188 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
189 are a superset of those done by GCSE.
191 We perform the following steps:
193 1) Compute basic block information.
195 2) Compute table of places where registers are set.
197 3) Perform copy/constant propagation.
199 4) Perform global cse using lazy code motion if not optimizing
200 for size, or code hoisting if we are.
202 5) Perform another pass of copy/constant propagation.
204 Two passes of copy/constant propagation are done because the first one
205 enables more GCSE and the second one helps to clean up the copies that
206 GCSE creates. This is needed more for PRE than for Classic because Classic
207 GCSE will try to use an existing register containing the common
208 subexpression rather than create a new one. This is harder to do for PRE
209 because of the code motion (which Classic GCSE doesn't do).
211 Expressions we are interested in GCSE-ing are of the form
212 (set (pseudo-reg) (expression)).
213 Function want_to_gcse_p says what these are.
215 PRE handles moving invariant expressions out of loops (by treating them as
216 partially redundant).
218 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
219 assignment) based GVN (global value numbering). L. T. Simpson's paper
220 (Rice University) on value numbering is a useful reference for this.
222 **********************
224 We used to support multiple passes but there are diminishing returns in
225 doing so. The first pass usually makes 90% of the changes that are doable.
226 A second pass can make a few more changes made possible by the first pass.
227 Experiments show any further passes don't make enough changes to justify
228 the expense.
230 A study of spec92 using an unlimited number of passes:
231 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
232 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
233 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
235 It was found doing copy propagation between each pass enables further
236 substitutions.
238 PRE is quite expensive in complicated functions because the DFA can take
239 a while to converge. Hence we only perform one pass. The parameter
240 max-gcse-passes can be modified if one wants to experiment.
242 **********************
244 The steps for PRE are:
246 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
248 2) Perform the data flow analysis for PRE.
250 3) Delete the redundant instructions
252 4) Insert the required copies [if any] that make the partially
253 redundant instructions fully redundant.
255 5) For other reaching expressions, insert an instruction to copy the value
256 to a newly created pseudo that will reach the redundant instruction.
258 The deletion is done first so that when we do insertions we
259 know which pseudo reg to use.
261 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
262 argue it is not. The number of iterations for the algorithm to converge
263 is typically 2-4 so I don't view it as that expensive (relatively speaking).
265 PRE GCSE depends heavily on the second CSE pass to clean up the copies
266 we create. To make an expression reach the place where it's redundant,
267 the result of the expression is copied to a new register, and the redundant
268 expression is deleted by replacing it with this new register. Classic GCSE
269 doesn't have this problem as much as it computes the reaching defs of
270 each register in each block and thus can try to use an existing
271 register. */
273 /* GCSE global vars. */
275 /* Note whether or not we should run jump optimization after gcse. We
276 want to do this for two cases.
278 * If we changed any jumps via cprop.
280 * If we added any labels via edge splitting. */
281 static int run_jump_opt_after_gcse;
283 /* An obstack for our working variables. */
284 static struct obstack gcse_obstack;
286 struct reg_use {rtx reg_rtx; };
288 /* Hash table of expressions. */
290 struct expr
292 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
293 rtx expr;
294 /* Index in the available expression bitmaps. */
295 int bitmap_index;
296 /* Next entry with the same hash. */
297 struct expr *next_same_hash;
298 /* List of anticipatable occurrences in basic blocks in the function.
299 An "anticipatable occurrence" is one that is the first occurrence in the
300 basic block, the operands are not modified in the basic block prior
301 to the occurrence and the output is not used between the start of
302 the block and the occurrence. */
303 struct occr *antic_occr;
304 /* List of available occurrence in basic blocks in the function.
305 An "available occurrence" is one that is the last occurrence in the
306 basic block and the operands are not modified by following statements in
307 the basic block [including this insn]. */
308 struct occr *avail_occr;
309 /* Non-null if the computation is PRE redundant.
310 The value is the newly created pseudo-reg to record a copy of the
311 expression in all the places that reach the redundant copy. */
312 rtx reaching_reg;
315 /* Occurrence of an expression.
316 There is one per basic block. If a pattern appears more than once the
317 last appearance is used [or first for anticipatable expressions]. */
319 struct occr
321 /* Next occurrence of this expression. */
322 struct occr *next;
323 /* The insn that computes the expression. */
324 rtx insn;
325 /* Nonzero if this [anticipatable] occurrence has been deleted. */
326 char deleted_p;
327 /* Nonzero if this [available] occurrence has been copied to
328 reaching_reg. */
329 /* ??? This is mutually exclusive with deleted_p, so they could share
330 the same byte. */
331 char copied_p;
334 /* Expression and copy propagation hash tables.
335 Each hash table is an array of buckets.
336 ??? It is known that if it were an array of entries, structure elements
337 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
338 not clear whether in the final analysis a sufficient amount of memory would
339 be saved as the size of the available expression bitmaps would be larger
340 [one could build a mapping table without holes afterwards though].
341 Someday I'll perform the computation and figure it out. */
343 struct hash_table
345 /* The table itself.
346 This is an array of `expr_hash_table_size' elements. */
347 struct expr **table;
349 /* Size of the hash table, in elements. */
350 unsigned int size;
352 /* Number of hash table elements. */
353 unsigned int n_elems;
355 /* Whether the table is expression of copy propagation one. */
356 int set_p;
359 /* Expression hash table. */
360 static struct hash_table expr_hash_table;
362 /* Copy propagation hash table. */
363 static struct hash_table set_hash_table;
365 /* Mapping of uids to cuids.
366 Only real insns get cuids. */
367 static int *uid_cuid;
369 /* Highest UID in UID_CUID. */
370 static int max_uid;
372 /* Get the cuid of an insn. */
373 #ifdef ENABLE_CHECKING
374 #define INSN_CUID(INSN) \
375 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
376 #else
377 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
378 #endif
380 /* Number of cuids. */
381 static int max_cuid;
383 /* Mapping of cuids to insns. */
384 static rtx *cuid_insn;
386 /* Get insn from cuid. */
387 #define CUID_INSN(CUID) (cuid_insn[CUID])
389 /* Maximum register number in function prior to doing gcse + 1.
390 Registers created during this pass have regno >= max_gcse_regno.
391 This is named with "gcse" to not collide with global of same name. */
392 static unsigned int max_gcse_regno;
394 /* Table of registers that are modified.
396 For each register, each element is a list of places where the pseudo-reg
397 is set.
399 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
400 requires knowledge of which blocks kill which regs [and thus could use
401 a bitmap instead of the lists `reg_set_table' uses].
403 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
404 num-regs) [however perhaps it may be useful to keep the data as is]. One
405 advantage of recording things this way is that `reg_set_table' is fairly
406 sparse with respect to pseudo regs but for hard regs could be fairly dense
407 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
408 up functions like compute_transp since in the case of pseudo-regs we only
409 need to iterate over the number of times a pseudo-reg is set, not over the
410 number of basic blocks [clearly there is a bit of a slow down in the cases
411 where a pseudo is set more than once in a block, however it is believed
412 that the net effect is to speed things up]. This isn't done for hard-regs
413 because recording call-clobbered hard-regs in `reg_set_table' at each
414 function call can consume a fair bit of memory, and iterating over
415 hard-regs stored this way in compute_transp will be more expensive. */
417 typedef struct reg_set
419 /* The next setting of this register. */
420 struct reg_set *next;
421 /* The index of the block where it was set. */
422 int bb_index;
423 } reg_set;
425 static reg_set **reg_set_table;
427 /* Size of `reg_set_table'.
428 The table starts out at max_gcse_regno + slop, and is enlarged as
429 necessary. */
430 static int reg_set_table_size;
432 /* Amount to grow `reg_set_table' by when it's full. */
433 #define REG_SET_TABLE_SLOP 100
435 /* This is a list of expressions which are MEMs and will be used by load
436 or store motion.
437 Load motion tracks MEMs which aren't killed by
438 anything except itself. (i.e., loads and stores to a single location).
439 We can then allow movement of these MEM refs with a little special
440 allowance. (all stores copy the same value to the reaching reg used
441 for the loads). This means all values used to store into memory must have
442 no side effects so we can re-issue the setter value.
443 Store Motion uses this structure as an expression table to track stores
444 which look interesting, and might be moveable towards the exit block. */
446 struct ls_expr
448 struct expr * expr; /* Gcse expression reference for LM. */
449 rtx pattern; /* Pattern of this mem. */
450 rtx pattern_regs; /* List of registers mentioned by the mem. */
451 rtx loads; /* INSN list of loads seen. */
452 rtx stores; /* INSN list of stores seen. */
453 struct ls_expr * next; /* Next in the list. */
454 int invalid; /* Invalid for some reason. */
455 int index; /* If it maps to a bitmap index. */
456 unsigned int hash_index; /* Index when in a hash table. */
457 rtx reaching_reg; /* Register to use when re-writing. */
460 /* Array of implicit set patterns indexed by basic block index. */
461 static rtx *implicit_sets;
463 /* Head of the list of load/store memory refs. */
464 static struct ls_expr * pre_ldst_mems = NULL;
466 /* Hashtable for the load/store memory refs. */
467 static htab_t pre_ldst_table = NULL;
469 /* Bitmap containing one bit for each register in the program.
470 Used when performing GCSE to track which registers have been set since
471 the start of the basic block. */
472 static regset reg_set_bitmap;
474 /* For each block, a bitmap of registers set in the block.
475 This is used by compute_transp.
476 It is computed during hash table computation and not by compute_sets
477 as it includes registers added since the last pass (or between cprop and
478 gcse) and it's currently not easy to realloc sbitmap vectors. */
479 static sbitmap *reg_set_in_block;
481 /* Array, indexed by basic block number for a list of insns which modify
482 memory within that block. */
483 static rtx * modify_mem_list;
484 static bitmap modify_mem_list_set;
486 /* This array parallels modify_mem_list, but is kept canonicalized. */
487 static rtx * canon_modify_mem_list;
489 /* Bitmap indexed by block numbers to record which blocks contain
490 function calls. */
491 static bitmap blocks_with_calls;
493 /* Various variables for statistics gathering. */
495 /* Memory used in a pass.
496 This isn't intended to be absolutely precise. Its intent is only
497 to keep an eye on memory usage. */
498 static int bytes_used;
500 /* GCSE substitutions made. */
501 static int gcse_subst_count;
502 /* Number of copy instructions created. */
503 static int gcse_create_count;
504 /* Number of local constants propagated. */
505 static int local_const_prop_count;
506 /* Number of local copies propagated. */
507 static int local_copy_prop_count;
508 /* Number of global constants propagated. */
509 static int global_const_prop_count;
510 /* Number of global copies propagated. */
511 static int global_copy_prop_count;
513 /* For available exprs */
514 static sbitmap *ae_kill, *ae_gen;
516 static void compute_can_copy (void);
517 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
518 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
519 static void *grealloc (void *, size_t);
520 static void *gcse_alloc (unsigned long);
521 static void alloc_gcse_mem (void);
522 static void free_gcse_mem (void);
523 static void alloc_reg_set_mem (int);
524 static void free_reg_set_mem (void);
525 static void record_one_set (int, rtx);
526 static void record_set_info (rtx, const_rtx, void *);
527 static void compute_sets (void);
528 static void hash_scan_insn (rtx, struct hash_table *, int);
529 static void hash_scan_set (rtx, rtx, struct hash_table *);
530 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
531 static void hash_scan_call (rtx, rtx, struct hash_table *);
532 static int want_to_gcse_p (rtx);
533 static bool can_assign_to_reg_p (rtx);
534 static bool gcse_constant_p (const_rtx);
535 static int oprs_unchanged_p (const_rtx, const_rtx, int);
536 static int oprs_anticipatable_p (const_rtx, const_rtx);
537 static int oprs_available_p (const_rtx, const_rtx);
538 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
539 struct hash_table *);
540 static void insert_set_in_table (rtx, rtx, struct hash_table *);
541 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
542 static unsigned int hash_set (int, int);
543 static int expr_equiv_p (const_rtx, const_rtx);
544 static void record_last_reg_set_info (rtx, int);
545 static void record_last_mem_set_info (rtx);
546 static void record_last_set_info (rtx, const_rtx, void *);
547 static void compute_hash_table (struct hash_table *);
548 static void alloc_hash_table (int, struct hash_table *, int);
549 static void free_hash_table (struct hash_table *);
550 static void compute_hash_table_work (struct hash_table *);
551 static void dump_hash_table (FILE *, const char *, struct hash_table *);
552 static struct expr *lookup_set (unsigned int, struct hash_table *);
553 static struct expr *next_set (unsigned int, struct expr *);
554 static void reset_opr_set_tables (void);
555 static int oprs_not_set_p (const_rtx, const_rtx);
556 static void mark_call (rtx);
557 static void mark_set (rtx, rtx);
558 static void mark_clobber (rtx, rtx);
559 static void mark_oprs_set (rtx);
560 static void alloc_cprop_mem (int, int);
561 static void free_cprop_mem (void);
562 static void compute_transp (const_rtx, int, sbitmap *, int);
563 static void compute_transpout (void);
564 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
565 struct hash_table *);
566 static void compute_cprop_data (void);
567 static void find_used_regs (rtx *, void *);
568 static int try_replace_reg (rtx, rtx, rtx);
569 static struct expr *find_avail_set (int, rtx);
570 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
571 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
572 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
573 static void canon_list_insert (rtx, const_rtx, void *);
574 static int cprop_insn (rtx, int);
575 static int cprop (int);
576 static void find_implicit_sets (void);
577 static int one_cprop_pass (int, bool, bool);
578 static bool constprop_register (rtx, rtx, rtx, bool);
579 static struct expr *find_bypass_set (int, int);
580 static bool reg_killed_on_edge (const_rtx, const_edge);
581 static int bypass_block (basic_block, rtx, rtx);
582 static int bypass_conditional_jumps (void);
583 static void alloc_pre_mem (int, int);
584 static void free_pre_mem (void);
585 static void compute_pre_data (void);
586 static int pre_expr_reaches_here_p (basic_block, struct expr *,
587 basic_block);
588 static void insert_insn_end_basic_block (struct expr *, basic_block, int);
589 static void pre_insert_copy_insn (struct expr *, rtx);
590 static void pre_insert_copies (void);
591 static int pre_delete (void);
592 static int pre_gcse (void);
593 static int one_pre_gcse_pass (int);
594 static void add_label_notes (rtx, rtx);
595 static void alloc_code_hoist_mem (int, int);
596 static void free_code_hoist_mem (void);
597 static void compute_code_hoist_vbeinout (void);
598 static void compute_code_hoist_data (void);
599 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
600 static void hoist_code (void);
601 static int one_code_hoisting_pass (void);
602 static rtx process_insert_insn (struct expr *);
603 static int pre_edge_insert (struct edge_list *, struct expr **);
604 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
605 basic_block, char *);
606 static struct ls_expr * ldst_entry (rtx);
607 static void free_ldst_entry (struct ls_expr *);
608 static void free_ldst_mems (void);
609 static void print_ldst_list (FILE *);
610 static struct ls_expr * find_rtx_in_ldst (rtx);
611 static int enumerate_ldsts (void);
612 static inline struct ls_expr * first_ls_expr (void);
613 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
614 static int simple_mem (const_rtx);
615 static void invalidate_any_buried_refs (rtx);
616 static void compute_ld_motion_mems (void);
617 static void trim_ld_motion_mems (void);
618 static void update_ld_motion_stores (struct expr *);
619 static void reg_set_info (rtx, const_rtx, void *);
620 static void reg_clear_last_set (rtx, const_rtx, void *);
621 static bool store_ops_ok (const_rtx, int *);
622 static rtx extract_mentioned_regs (rtx);
623 static rtx extract_mentioned_regs_helper (rtx, rtx);
624 static void find_moveable_store (rtx, int *, int *);
625 static int compute_store_table (void);
626 static bool load_kills_store (const_rtx, const_rtx, int);
627 static bool find_loads (const_rtx, const_rtx, int);
628 static bool store_killed_in_insn (const_rtx, const_rtx, const_rtx, int);
629 static bool store_killed_after (const_rtx, const_rtx, const_rtx, const_basic_block, int *, rtx *);
630 static bool store_killed_before (const_rtx, const_rtx, const_rtx, const_basic_block, int *);
631 static void build_store_vectors (void);
632 static void insert_insn_start_basic_block (rtx, basic_block);
633 static int insert_store (struct ls_expr *, edge);
634 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
635 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
636 static void delete_store (struct ls_expr *, basic_block);
637 static void free_store_memory (void);
638 static void store_motion (void);
639 static void free_insn_expr_list_list (rtx *);
640 static void clear_modify_mem_tables (void);
641 static void free_modify_mem_tables (void);
642 static rtx gcse_emit_move_after (rtx, rtx, rtx);
643 static void local_cprop_find_used_regs (rtx *, void *);
644 static bool do_local_cprop (rtx, rtx, bool, rtx*);
645 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
646 static void local_cprop_pass (bool);
647 static bool is_too_expensive (const char *);
650 /* Entry point for global common subexpression elimination.
651 F is the first instruction in the function. Return nonzero if a
652 change is mode. */
654 static int
655 gcse_main (rtx f ATTRIBUTE_UNUSED)
657 int changed, pass;
658 /* Bytes used at start of pass. */
659 int initial_bytes_used;
660 /* Maximum number of bytes used by a pass. */
661 int max_pass_bytes;
662 /* Point to release obstack data from for each pass. */
663 char *gcse_obstack_bottom;
665 /* We do not construct an accurate cfg in functions which call
666 setjmp, so just punt to be safe. */
667 if (current_function_calls_setjmp)
668 return 0;
670 /* Assume that we do not need to run jump optimizations after gcse. */
671 run_jump_opt_after_gcse = 0;
673 /* Identify the basic block information for this function, including
674 successors and predecessors. */
675 max_gcse_regno = max_reg_num ();
677 df_note_add_problem ();
678 df_analyze ();
680 if (dump_file)
681 dump_flow_info (dump_file, dump_flags);
683 /* Return if there's nothing to do, or it is too expensive. */
684 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
685 || is_too_expensive (_("GCSE disabled")))
686 return 0;
688 gcc_obstack_init (&gcse_obstack);
689 bytes_used = 0;
691 /* We need alias. */
692 init_alias_analysis ();
693 /* Record where pseudo-registers are set. This data is kept accurate
694 during each pass. ??? We could also record hard-reg information here
695 [since it's unchanging], however it is currently done during hash table
696 computation.
698 It may be tempting to compute MEM set information here too, but MEM sets
699 will be subject to code motion one day and thus we need to compute
700 information about memory sets when we build the hash tables. */
702 alloc_reg_set_mem (max_gcse_regno);
703 compute_sets ();
705 pass = 0;
706 initial_bytes_used = bytes_used;
707 max_pass_bytes = 0;
708 gcse_obstack_bottom = gcse_alloc (1);
709 changed = 1;
710 while (changed && pass < MAX_GCSE_PASSES)
712 changed = 0;
713 if (dump_file)
714 fprintf (dump_file, "GCSE pass %d\n\n", pass + 1);
716 /* Initialize bytes_used to the space for the pred/succ lists,
717 and the reg_set_table data. */
718 bytes_used = initial_bytes_used;
720 /* Each pass may create new registers, so recalculate each time. */
721 max_gcse_regno = max_reg_num ();
723 alloc_gcse_mem ();
725 /* Don't allow constant propagation to modify jumps
726 during this pass. */
727 timevar_push (TV_CPROP1);
728 changed = one_cprop_pass (pass + 1, false, false);
729 timevar_pop (TV_CPROP1);
731 if (optimize_size)
732 /* Do nothing. */ ;
733 else
735 timevar_push (TV_PRE);
736 changed |= one_pre_gcse_pass (pass + 1);
737 /* We may have just created new basic blocks. Release and
738 recompute various things which are sized on the number of
739 basic blocks. */
740 if (changed)
742 free_modify_mem_tables ();
743 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
744 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
746 free_reg_set_mem ();
747 alloc_reg_set_mem (max_reg_num ());
748 compute_sets ();
749 run_jump_opt_after_gcse = 1;
750 timevar_pop (TV_PRE);
753 if (max_pass_bytes < bytes_used)
754 max_pass_bytes = bytes_used;
756 /* Free up memory, then reallocate for code hoisting. We can
757 not re-use the existing allocated memory because the tables
758 will not have info for the insns or registers created by
759 partial redundancy elimination. */
760 free_gcse_mem ();
762 /* It does not make sense to run code hoisting unless we are optimizing
763 for code size -- it rarely makes programs faster, and can make
764 them bigger if we did partial redundancy elimination (when optimizing
765 for space, we don't run the partial redundancy algorithms). */
766 if (optimize_size)
768 timevar_push (TV_HOIST);
769 max_gcse_regno = max_reg_num ();
770 alloc_gcse_mem ();
771 changed |= one_code_hoisting_pass ();
772 free_gcse_mem ();
774 if (max_pass_bytes < bytes_used)
775 max_pass_bytes = bytes_used;
776 timevar_pop (TV_HOIST);
779 if (dump_file)
781 fprintf (dump_file, "\n");
782 fflush (dump_file);
785 obstack_free (&gcse_obstack, gcse_obstack_bottom);
786 pass++;
789 /* Do one last pass of copy propagation, including cprop into
790 conditional jumps. */
792 max_gcse_regno = max_reg_num ();
793 alloc_gcse_mem ();
794 /* This time, go ahead and allow cprop to alter jumps. */
795 timevar_push (TV_CPROP2);
796 one_cprop_pass (pass + 1, true, true);
797 timevar_pop (TV_CPROP2);
798 free_gcse_mem ();
800 if (dump_file)
802 fprintf (dump_file, "GCSE of %s: %d basic blocks, ",
803 current_function_name (), n_basic_blocks);
804 fprintf (dump_file, "%d pass%s, %d bytes\n\n",
805 pass, pass > 1 ? "es" : "", max_pass_bytes);
808 obstack_free (&gcse_obstack, NULL);
809 free_reg_set_mem ();
811 /* We are finished with alias. */
812 end_alias_analysis ();
814 if (!optimize_size && flag_gcse_sm)
816 timevar_push (TV_LSM);
817 store_motion ();
818 timevar_pop (TV_LSM);
821 /* Record where pseudo-registers are set. */
822 return run_jump_opt_after_gcse;
825 /* Misc. utilities. */
827 /* Nonzero for each mode that supports (set (reg) (reg)).
828 This is trivially true for integer and floating point values.
829 It may or may not be true for condition codes. */
830 static char can_copy[(int) NUM_MACHINE_MODES];
832 /* Compute which modes support reg/reg copy operations. */
834 static void
835 compute_can_copy (void)
837 int i;
838 #ifndef AVOID_CCMODE_COPIES
839 rtx reg, insn;
840 #endif
841 memset (can_copy, 0, NUM_MACHINE_MODES);
843 start_sequence ();
844 for (i = 0; i < NUM_MACHINE_MODES; i++)
845 if (GET_MODE_CLASS (i) == MODE_CC)
847 #ifdef AVOID_CCMODE_COPIES
848 can_copy[i] = 0;
849 #else
850 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
851 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
852 if (recog (PATTERN (insn), insn, NULL) >= 0)
853 can_copy[i] = 1;
854 #endif
856 else
857 can_copy[i] = 1;
859 end_sequence ();
862 /* Returns whether the mode supports reg/reg copy operations. */
864 bool
865 can_copy_p (enum machine_mode mode)
867 static bool can_copy_init_p = false;
869 if (! can_copy_init_p)
871 compute_can_copy ();
872 can_copy_init_p = true;
875 return can_copy[mode] != 0;
878 /* Cover function to xmalloc to record bytes allocated. */
880 static void *
881 gmalloc (size_t size)
883 bytes_used += size;
884 return xmalloc (size);
887 /* Cover function to xcalloc to record bytes allocated. */
889 static void *
890 gcalloc (size_t nelem, size_t elsize)
892 bytes_used += nelem * elsize;
893 return xcalloc (nelem, elsize);
896 /* Cover function to xrealloc.
897 We don't record the additional size since we don't know it.
898 It won't affect memory usage stats much anyway. */
900 static void *
901 grealloc (void *ptr, size_t size)
903 return xrealloc (ptr, size);
906 /* Cover function to obstack_alloc. */
908 static void *
909 gcse_alloc (unsigned long size)
911 bytes_used += size;
912 return obstack_alloc (&gcse_obstack, size);
915 /* Allocate memory for the cuid mapping array,
916 and reg/memory set tracking tables.
918 This is called at the start of each pass. */
920 static void
921 alloc_gcse_mem (void)
923 int i;
924 basic_block bb;
925 rtx insn;
927 /* Find the largest UID and create a mapping from UIDs to CUIDs.
928 CUIDs are like UIDs except they increase monotonically, have no gaps,
929 and only apply to real insns.
930 (Actually, there are gaps, for insn that are not inside a basic block.
931 but we should never see those anyway, so this is OK.) */
933 max_uid = get_max_uid ();
934 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
935 i = 0;
936 FOR_EACH_BB (bb)
937 FOR_BB_INSNS (bb, insn)
939 if (INSN_P (insn))
940 uid_cuid[INSN_UID (insn)] = i++;
941 else
942 uid_cuid[INSN_UID (insn)] = i;
945 /* Create a table mapping cuids to insns. */
947 max_cuid = i;
948 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
949 i = 0;
950 FOR_EACH_BB (bb)
951 FOR_BB_INSNS (bb, insn)
952 if (INSN_P (insn))
953 CUID_INSN (i++) = insn;
955 /* Allocate vars to track sets of regs. */
956 reg_set_bitmap = BITMAP_ALLOC (NULL);
958 /* Allocate vars to track sets of regs, memory per block. */
959 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
960 /* Allocate array to keep a list of insns which modify memory in each
961 basic block. */
962 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
963 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
964 modify_mem_list_set = BITMAP_ALLOC (NULL);
965 blocks_with_calls = BITMAP_ALLOC (NULL);
968 /* Free memory allocated by alloc_gcse_mem. */
970 static void
971 free_gcse_mem (void)
973 free (uid_cuid);
974 free (cuid_insn);
976 BITMAP_FREE (reg_set_bitmap);
978 sbitmap_vector_free (reg_set_in_block);
979 free_modify_mem_tables ();
980 BITMAP_FREE (modify_mem_list_set);
981 BITMAP_FREE (blocks_with_calls);
984 /* Compute the local properties of each recorded expression.
986 Local properties are those that are defined by the block, irrespective of
987 other blocks.
989 An expression is transparent in a block if its operands are not modified
990 in the block.
992 An expression is computed (locally available) in a block if it is computed
993 at least once and expression would contain the same value if the
994 computation was moved to the end of the block.
996 An expression is locally anticipatable in a block if it is computed at
997 least once and expression would contain the same value if the computation
998 was moved to the beginning of the block.
1000 We call this routine for cprop, pre and code hoisting. They all compute
1001 basically the same information and thus can easily share this code.
1003 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1004 properties. If NULL, then it is not necessary to compute or record that
1005 particular property.
1007 TABLE controls which hash table to look at. If it is set hash table,
1008 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1009 ABSALTERED. */
1011 static void
1012 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1013 struct hash_table *table)
1015 unsigned int i;
1017 /* Initialize any bitmaps that were passed in. */
1018 if (transp)
1020 if (table->set_p)
1021 sbitmap_vector_zero (transp, last_basic_block);
1022 else
1023 sbitmap_vector_ones (transp, last_basic_block);
1026 if (comp)
1027 sbitmap_vector_zero (comp, last_basic_block);
1028 if (antloc)
1029 sbitmap_vector_zero (antloc, last_basic_block);
1031 for (i = 0; i < table->size; i++)
1033 struct expr *expr;
1035 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1037 int indx = expr->bitmap_index;
1038 struct occr *occr;
1040 /* The expression is transparent in this block if it is not killed.
1041 We start by assuming all are transparent [none are killed], and
1042 then reset the bits for those that are. */
1043 if (transp)
1044 compute_transp (expr->expr, indx, transp, table->set_p);
1046 /* The occurrences recorded in antic_occr are exactly those that
1047 we want to set to nonzero in ANTLOC. */
1048 if (antloc)
1049 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1051 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1053 /* While we're scanning the table, this is a good place to
1054 initialize this. */
1055 occr->deleted_p = 0;
1058 /* The occurrences recorded in avail_occr are exactly those that
1059 we want to set to nonzero in COMP. */
1060 if (comp)
1061 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1063 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1065 /* While we're scanning the table, this is a good place to
1066 initialize this. */
1067 occr->copied_p = 0;
1070 /* While we're scanning the table, this is a good place to
1071 initialize this. */
1072 expr->reaching_reg = 0;
1077 /* Register set information.
1079 `reg_set_table' records where each register is set or otherwise
1080 modified. */
1082 static struct obstack reg_set_obstack;
1084 static void
1085 alloc_reg_set_mem (int n_regs)
1087 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1088 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1090 gcc_obstack_init (&reg_set_obstack);
1093 static void
1094 free_reg_set_mem (void)
1096 free (reg_set_table);
1097 obstack_free (&reg_set_obstack, NULL);
1100 /* Record REGNO in the reg_set table. */
1102 static void
1103 record_one_set (int regno, rtx insn)
1105 /* Allocate a new reg_set element and link it onto the list. */
1106 struct reg_set *new_reg_info;
1108 /* If the table isn't big enough, enlarge it. */
1109 if (regno >= reg_set_table_size)
1111 int new_size = regno + REG_SET_TABLE_SLOP;
1113 reg_set_table = grealloc (reg_set_table,
1114 new_size * sizeof (struct reg_set *));
1115 memset (reg_set_table + reg_set_table_size, 0,
1116 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1117 reg_set_table_size = new_size;
1120 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1121 bytes_used += sizeof (struct reg_set);
1122 new_reg_info->bb_index = BLOCK_NUM (insn);
1123 new_reg_info->next = reg_set_table[regno];
1124 reg_set_table[regno] = new_reg_info;
1127 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1128 an insn. The DATA is really the instruction in which the SET is
1129 occurring. */
1131 static void
1132 record_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1134 rtx record_set_insn = (rtx) data;
1136 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1137 record_one_set (REGNO (dest), record_set_insn);
1140 /* Scan the function and record each set of each pseudo-register.
1142 This is called once, at the start of the gcse pass. See the comments for
1143 `reg_set_table' for further documentation. */
1145 static void
1146 compute_sets (void)
1148 basic_block bb;
1149 rtx insn;
1151 FOR_EACH_BB (bb)
1152 FOR_BB_INSNS (bb, insn)
1153 if (INSN_P (insn))
1154 note_stores (PATTERN (insn), record_set_info, insn);
1157 /* Hash table support. */
1159 struct reg_avail_info
1161 basic_block last_bb;
1162 int first_set;
1163 int last_set;
1166 static struct reg_avail_info *reg_avail_info;
1167 static basic_block current_bb;
1170 /* See whether X, the source of a set, is something we want to consider for
1171 GCSE. */
1173 static int
1174 want_to_gcse_p (rtx x)
1176 #ifdef STACK_REGS
1177 /* On register stack architectures, don't GCSE constants from the
1178 constant pool, as the benefits are often swamped by the overhead
1179 of shuffling the register stack between basic blocks. */
1180 if (IS_STACK_MODE (GET_MODE (x)))
1181 x = avoid_constant_pool_reference (x);
1182 #endif
1184 switch (GET_CODE (x))
1186 case REG:
1187 case SUBREG:
1188 case CONST_INT:
1189 case CONST_DOUBLE:
1190 case CONST_FIXED:
1191 case CONST_VECTOR:
1192 case CALL:
1193 return 0;
1195 default:
1196 return can_assign_to_reg_p (x);
1200 /* Used internally by can_assign_to_reg_p. */
1202 static GTY(()) rtx test_insn;
1204 /* Return true if we can assign X to a pseudo register. */
1206 static bool
1207 can_assign_to_reg_p (rtx x)
1209 int num_clobbers = 0;
1210 int icode;
1212 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1213 if (general_operand (x, GET_MODE (x)))
1214 return 1;
1215 else if (GET_MODE (x) == VOIDmode)
1216 return 0;
1218 /* Otherwise, check if we can make a valid insn from it. First initialize
1219 our test insn if we haven't already. */
1220 if (test_insn == 0)
1222 test_insn
1223 = make_insn_raw (gen_rtx_SET (VOIDmode,
1224 gen_rtx_REG (word_mode,
1225 FIRST_PSEUDO_REGISTER * 2),
1226 const0_rtx));
1227 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1230 /* Now make an insn like the one we would make when GCSE'ing and see if
1231 valid. */
1232 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1233 SET_SRC (PATTERN (test_insn)) = x;
1234 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1235 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1238 /* Return nonzero if the operands of expression X are unchanged from the
1239 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1240 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1242 static int
1243 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
1245 int i, j;
1246 enum rtx_code code;
1247 const char *fmt;
1249 if (x == 0)
1250 return 1;
1252 code = GET_CODE (x);
1253 switch (code)
1255 case REG:
1257 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1259 if (info->last_bb != current_bb)
1260 return 1;
1261 if (avail_p)
1262 return info->last_set < INSN_CUID (insn);
1263 else
1264 return info->first_set >= INSN_CUID (insn);
1267 case MEM:
1268 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1269 x, avail_p))
1270 return 0;
1271 else
1272 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1274 case PRE_DEC:
1275 case PRE_INC:
1276 case POST_DEC:
1277 case POST_INC:
1278 case PRE_MODIFY:
1279 case POST_MODIFY:
1280 return 0;
1282 case PC:
1283 case CC0: /*FIXME*/
1284 case CONST:
1285 case CONST_INT:
1286 case CONST_DOUBLE:
1287 case CONST_FIXED:
1288 case CONST_VECTOR:
1289 case SYMBOL_REF:
1290 case LABEL_REF:
1291 case ADDR_VEC:
1292 case ADDR_DIFF_VEC:
1293 return 1;
1295 default:
1296 break;
1299 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1301 if (fmt[i] == 'e')
1303 /* If we are about to do the last recursive call needed at this
1304 level, change it into iteration. This function is called enough
1305 to be worth it. */
1306 if (i == 0)
1307 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1309 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1310 return 0;
1312 else if (fmt[i] == 'E')
1313 for (j = 0; j < XVECLEN (x, i); j++)
1314 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1315 return 0;
1318 return 1;
1321 /* Used for communication between mems_conflict_for_gcse_p and
1322 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1323 conflict between two memory references. */
1324 static int gcse_mems_conflict_p;
1326 /* Used for communication between mems_conflict_for_gcse_p and
1327 load_killed_in_block_p. A memory reference for a load instruction,
1328 mems_conflict_for_gcse_p will see if a memory store conflicts with
1329 this memory load. */
1330 static const_rtx gcse_mem_operand;
1332 /* DEST is the output of an instruction. If it is a memory reference, and
1333 possibly conflicts with the load found in gcse_mem_operand, then set
1334 gcse_mems_conflict_p to a nonzero value. */
1336 static void
1337 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1338 void *data ATTRIBUTE_UNUSED)
1340 while (GET_CODE (dest) == SUBREG
1341 || GET_CODE (dest) == ZERO_EXTRACT
1342 || GET_CODE (dest) == STRICT_LOW_PART)
1343 dest = XEXP (dest, 0);
1345 /* If DEST is not a MEM, then it will not conflict with the load. Note
1346 that function calls are assumed to clobber memory, but are handled
1347 elsewhere. */
1348 if (! MEM_P (dest))
1349 return;
1351 /* If we are setting a MEM in our list of specially recognized MEMs,
1352 don't mark as killed this time. */
1354 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1356 if (!find_rtx_in_ldst (dest))
1357 gcse_mems_conflict_p = 1;
1358 return;
1361 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1362 rtx_addr_varies_p))
1363 gcse_mems_conflict_p = 1;
1366 /* Return nonzero if the expression in X (a memory reference) is killed
1367 in block BB before or after the insn with the CUID in UID_LIMIT.
1368 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1369 before UID_LIMIT.
1371 To check the entire block, set UID_LIMIT to max_uid + 1 and
1372 AVAIL_P to 0. */
1374 static int
1375 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x, int avail_p)
1377 rtx list_entry = modify_mem_list[bb->index];
1379 /* If this is a readonly then we aren't going to be changing it. */
1380 if (MEM_READONLY_P (x))
1381 return 0;
1383 while (list_entry)
1385 rtx setter;
1386 /* Ignore entries in the list that do not apply. */
1387 if ((avail_p
1388 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1389 || (! avail_p
1390 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1392 list_entry = XEXP (list_entry, 1);
1393 continue;
1396 setter = XEXP (list_entry, 0);
1398 /* If SETTER is a call everything is clobbered. Note that calls
1399 to pure functions are never put on the list, so we need not
1400 worry about them. */
1401 if (CALL_P (setter))
1402 return 1;
1404 /* SETTER must be an INSN of some kind that sets memory. Call
1405 note_stores to examine each hunk of memory that is modified.
1407 The note_stores interface is pretty limited, so we have to
1408 communicate via global variables. Yuk. */
1409 gcse_mem_operand = x;
1410 gcse_mems_conflict_p = 0;
1411 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1412 if (gcse_mems_conflict_p)
1413 return 1;
1414 list_entry = XEXP (list_entry, 1);
1416 return 0;
1419 /* Return nonzero if the operands of expression X are unchanged from
1420 the start of INSN's basic block up to but not including INSN. */
1422 static int
1423 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1425 return oprs_unchanged_p (x, insn, 0);
1428 /* Return nonzero if the operands of expression X are unchanged from
1429 INSN to the end of INSN's basic block. */
1431 static int
1432 oprs_available_p (const_rtx x, const_rtx insn)
1434 return oprs_unchanged_p (x, insn, 1);
1437 /* Hash expression X.
1439 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1440 indicating if a volatile operand is found or if the expression contains
1441 something we don't want to insert in the table. HASH_TABLE_SIZE is
1442 the current size of the hash table to be probed. */
1444 static unsigned int
1445 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1446 int hash_table_size)
1448 unsigned int hash;
1450 *do_not_record_p = 0;
1452 hash = hash_rtx (x, mode, do_not_record_p,
1453 NULL, /*have_reg_qty=*/false);
1454 return hash % hash_table_size;
1457 /* Hash a set of register REGNO.
1459 Sets are hashed on the register that is set. This simplifies the PRE copy
1460 propagation code.
1462 ??? May need to make things more elaborate. Later, as necessary. */
1464 static unsigned int
1465 hash_set (int regno, int hash_table_size)
1467 unsigned int hash;
1469 hash = regno;
1470 return hash % hash_table_size;
1473 /* Return nonzero if exp1 is equivalent to exp2. */
1475 static int
1476 expr_equiv_p (const_rtx x, const_rtx y)
1478 return exp_equiv_p (x, y, 0, true);
1481 /* Insert expression X in INSN in the hash TABLE.
1482 If it is already present, record it as the last occurrence in INSN's
1483 basic block.
1485 MODE is the mode of the value X is being stored into.
1486 It is only used if X is a CONST_INT.
1488 ANTIC_P is nonzero if X is an anticipatable expression.
1489 AVAIL_P is nonzero if X is an available expression. */
1491 static void
1492 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1493 int avail_p, struct hash_table *table)
1495 int found, do_not_record_p;
1496 unsigned int hash;
1497 struct expr *cur_expr, *last_expr = NULL;
1498 struct occr *antic_occr, *avail_occr;
1500 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1502 /* Do not insert expression in table if it contains volatile operands,
1503 or if hash_expr determines the expression is something we don't want
1504 to or can't handle. */
1505 if (do_not_record_p)
1506 return;
1508 cur_expr = table->table[hash];
1509 found = 0;
1511 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1513 /* If the expression isn't found, save a pointer to the end of
1514 the list. */
1515 last_expr = cur_expr;
1516 cur_expr = cur_expr->next_same_hash;
1519 if (! found)
1521 cur_expr = gcse_alloc (sizeof (struct expr));
1522 bytes_used += sizeof (struct expr);
1523 if (table->table[hash] == NULL)
1524 /* This is the first pattern that hashed to this index. */
1525 table->table[hash] = cur_expr;
1526 else
1527 /* Add EXPR to end of this hash chain. */
1528 last_expr->next_same_hash = cur_expr;
1530 /* Set the fields of the expr element. */
1531 cur_expr->expr = x;
1532 cur_expr->bitmap_index = table->n_elems++;
1533 cur_expr->next_same_hash = NULL;
1534 cur_expr->antic_occr = NULL;
1535 cur_expr->avail_occr = NULL;
1538 /* Now record the occurrence(s). */
1539 if (antic_p)
1541 antic_occr = cur_expr->antic_occr;
1543 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1544 antic_occr = NULL;
1546 if (antic_occr)
1547 /* Found another instance of the expression in the same basic block.
1548 Prefer the currently recorded one. We want the first one in the
1549 block and the block is scanned from start to end. */
1550 ; /* nothing to do */
1551 else
1553 /* First occurrence of this expression in this basic block. */
1554 antic_occr = gcse_alloc (sizeof (struct occr));
1555 bytes_used += sizeof (struct occr);
1556 antic_occr->insn = insn;
1557 antic_occr->next = cur_expr->antic_occr;
1558 antic_occr->deleted_p = 0;
1559 cur_expr->antic_occr = antic_occr;
1563 if (avail_p)
1565 avail_occr = cur_expr->avail_occr;
1567 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1569 /* Found another instance of the expression in the same basic block.
1570 Prefer this occurrence to the currently recorded one. We want
1571 the last one in the block and the block is scanned from start
1572 to end. */
1573 avail_occr->insn = insn;
1575 else
1577 /* First occurrence of this expression in this basic block. */
1578 avail_occr = gcse_alloc (sizeof (struct occr));
1579 bytes_used += sizeof (struct occr);
1580 avail_occr->insn = insn;
1581 avail_occr->next = cur_expr->avail_occr;
1582 avail_occr->deleted_p = 0;
1583 cur_expr->avail_occr = avail_occr;
1588 /* Insert pattern X in INSN in the hash table.
1589 X is a SET of a reg to either another reg or a constant.
1590 If it is already present, record it as the last occurrence in INSN's
1591 basic block. */
1593 static void
1594 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1596 int found;
1597 unsigned int hash;
1598 struct expr *cur_expr, *last_expr = NULL;
1599 struct occr *cur_occr;
1601 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1603 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1605 cur_expr = table->table[hash];
1606 found = 0;
1608 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1610 /* If the expression isn't found, save a pointer to the end of
1611 the list. */
1612 last_expr = cur_expr;
1613 cur_expr = cur_expr->next_same_hash;
1616 if (! found)
1618 cur_expr = gcse_alloc (sizeof (struct expr));
1619 bytes_used += sizeof (struct expr);
1620 if (table->table[hash] == NULL)
1621 /* This is the first pattern that hashed to this index. */
1622 table->table[hash] = cur_expr;
1623 else
1624 /* Add EXPR to end of this hash chain. */
1625 last_expr->next_same_hash = cur_expr;
1627 /* Set the fields of the expr element.
1628 We must copy X because it can be modified when copy propagation is
1629 performed on its operands. */
1630 cur_expr->expr = copy_rtx (x);
1631 cur_expr->bitmap_index = table->n_elems++;
1632 cur_expr->next_same_hash = NULL;
1633 cur_expr->antic_occr = NULL;
1634 cur_expr->avail_occr = NULL;
1637 /* Now record the occurrence. */
1638 cur_occr = cur_expr->avail_occr;
1640 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1642 /* Found another instance of the expression in the same basic block.
1643 Prefer this occurrence to the currently recorded one. We want
1644 the last one in the block and the block is scanned from start
1645 to end. */
1646 cur_occr->insn = insn;
1648 else
1650 /* First occurrence of this expression in this basic block. */
1651 cur_occr = gcse_alloc (sizeof (struct occr));
1652 bytes_used += sizeof (struct occr);
1654 cur_occr->insn = insn;
1655 cur_occr->next = cur_expr->avail_occr;
1656 cur_occr->deleted_p = 0;
1657 cur_expr->avail_occr = cur_occr;
1661 /* Determine whether the rtx X should be treated as a constant for
1662 the purposes of GCSE's constant propagation. */
1664 static bool
1665 gcse_constant_p (const_rtx x)
1667 /* Consider a COMPARE of two integers constant. */
1668 if (GET_CODE (x) == COMPARE
1669 && GET_CODE (XEXP (x, 0)) == CONST_INT
1670 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1671 return true;
1673 /* Consider a COMPARE of the same registers is a constant
1674 if they are not floating point registers. */
1675 if (GET_CODE(x) == COMPARE
1676 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1677 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1678 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1679 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1680 return true;
1682 return CONSTANT_P (x);
1685 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1686 expression one). */
1688 static void
1689 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1691 rtx src = SET_SRC (pat);
1692 rtx dest = SET_DEST (pat);
1693 rtx note;
1695 if (GET_CODE (src) == CALL)
1696 hash_scan_call (src, insn, table);
1698 else if (REG_P (dest))
1700 unsigned int regno = REGNO (dest);
1701 rtx tmp;
1703 /* See if a REG_NOTE shows this equivalent to a simpler expression.
1704 This allows us to do a single GCSE pass and still eliminate
1705 redundant constants, addresses or other expressions that are
1706 constructed with multiple instructions. */
1707 note = find_reg_equal_equiv_note (insn);
1708 if (note != 0
1709 && (table->set_p
1710 ? gcse_constant_p (XEXP (note, 0))
1711 : want_to_gcse_p (XEXP (note, 0))))
1712 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1714 /* Only record sets of pseudo-regs in the hash table. */
1715 if (! table->set_p
1716 && regno >= FIRST_PSEUDO_REGISTER
1717 /* Don't GCSE something if we can't do a reg/reg copy. */
1718 && can_copy_p (GET_MODE (dest))
1719 /* GCSE commonly inserts instruction after the insn. We can't
1720 do that easily for EH_REGION notes so disable GCSE on these
1721 for now. */
1722 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1723 /* Is SET_SRC something we want to gcse? */
1724 && want_to_gcse_p (src)
1725 /* Don't CSE a nop. */
1726 && ! set_noop_p (pat)
1727 /* Don't GCSE if it has attached REG_EQUIV note.
1728 At this point this only function parameters should have
1729 REG_EQUIV notes and if the argument slot is used somewhere
1730 explicitly, it means address of parameter has been taken,
1731 so we should not extend the lifetime of the pseudo. */
1732 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1734 /* An expression is not anticipatable if its operands are
1735 modified before this insn or if this is not the only SET in
1736 this insn. The latter condition does not have to mean that
1737 SRC itself is not anticipatable, but we just will not be
1738 able to handle code motion of insns with multiple sets. */
1739 int antic_p = oprs_anticipatable_p (src, insn)
1740 && !multiple_sets (insn);
1741 /* An expression is not available if its operands are
1742 subsequently modified, including this insn. It's also not
1743 available if this is a branch, because we can't insert
1744 a set after the branch. */
1745 int avail_p = (oprs_available_p (src, insn)
1746 && ! JUMP_P (insn));
1748 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1751 /* Record sets for constant/copy propagation. */
1752 else if (table->set_p
1753 && regno >= FIRST_PSEUDO_REGISTER
1754 && ((REG_P (src)
1755 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1756 && can_copy_p (GET_MODE (dest))
1757 && REGNO (src) != regno)
1758 || gcse_constant_p (src))
1759 /* A copy is not available if its src or dest is subsequently
1760 modified. Here we want to search from INSN+1 on, but
1761 oprs_available_p searches from INSN on. */
1762 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1763 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1764 && oprs_available_p (pat, tmp))))
1765 insert_set_in_table (pat, insn, table);
1767 /* In case of store we want to consider the memory value as available in
1768 the REG stored in that memory. This makes it possible to remove
1769 redundant loads from due to stores to the same location. */
1770 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1772 unsigned int regno = REGNO (src);
1774 /* Do not do this for constant/copy propagation. */
1775 if (! table->set_p
1776 /* Only record sets of pseudo-regs in the hash table. */
1777 && regno >= FIRST_PSEUDO_REGISTER
1778 /* Don't GCSE something if we can't do a reg/reg copy. */
1779 && can_copy_p (GET_MODE (src))
1780 /* GCSE commonly inserts instruction after the insn. We can't
1781 do that easily for EH_REGION notes so disable GCSE on these
1782 for now. */
1783 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1784 /* Is SET_DEST something we want to gcse? */
1785 && want_to_gcse_p (dest)
1786 /* Don't CSE a nop. */
1787 && ! set_noop_p (pat)
1788 /* Don't GCSE if it has attached REG_EQUIV note.
1789 At this point this only function parameters should have
1790 REG_EQUIV notes and if the argument slot is used somewhere
1791 explicitly, it means address of parameter has been taken,
1792 so we should not extend the lifetime of the pseudo. */
1793 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1794 || ! MEM_P (XEXP (note, 0))))
1796 /* Stores are never anticipatable. */
1797 int antic_p = 0;
1798 /* An expression is not available if its operands are
1799 subsequently modified, including this insn. It's also not
1800 available if this is a branch, because we can't insert
1801 a set after the branch. */
1802 int avail_p = oprs_available_p (dest, insn)
1803 && ! JUMP_P (insn);
1805 /* Record the memory expression (DEST) in the hash table. */
1806 insert_expr_in_table (dest, GET_MODE (dest), insn,
1807 antic_p, avail_p, table);
1812 static void
1813 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1814 struct hash_table *table ATTRIBUTE_UNUSED)
1816 /* Currently nothing to do. */
1819 static void
1820 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1821 struct hash_table *table ATTRIBUTE_UNUSED)
1823 /* Currently nothing to do. */
1826 /* Process INSN and add hash table entries as appropriate.
1828 Only available expressions that set a single pseudo-reg are recorded.
1830 Single sets in a PARALLEL could be handled, but it's an extra complication
1831 that isn't dealt with right now. The trick is handling the CLOBBERs that
1832 are also in the PARALLEL. Later.
1834 If SET_P is nonzero, this is for the assignment hash table,
1835 otherwise it is for the expression hash table.
1836 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1837 not record any expressions. */
1839 static void
1840 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1842 rtx pat = PATTERN (insn);
1843 int i;
1845 if (in_libcall_block)
1846 return;
1848 /* Pick out the sets of INSN and for other forms of instructions record
1849 what's been modified. */
1851 if (GET_CODE (pat) == SET)
1852 hash_scan_set (pat, insn, table);
1853 else if (GET_CODE (pat) == PARALLEL)
1854 for (i = 0; i < XVECLEN (pat, 0); i++)
1856 rtx x = XVECEXP (pat, 0, i);
1858 if (GET_CODE (x) == SET)
1859 hash_scan_set (x, insn, table);
1860 else if (GET_CODE (x) == CLOBBER)
1861 hash_scan_clobber (x, insn, table);
1862 else if (GET_CODE (x) == CALL)
1863 hash_scan_call (x, insn, table);
1866 else if (GET_CODE (pat) == CLOBBER)
1867 hash_scan_clobber (pat, insn, table);
1868 else if (GET_CODE (pat) == CALL)
1869 hash_scan_call (pat, insn, table);
1872 static void
1873 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1875 int i;
1876 /* Flattened out table, so it's printed in proper order. */
1877 struct expr **flat_table;
1878 unsigned int *hash_val;
1879 struct expr *expr;
1881 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1882 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1884 for (i = 0; i < (int) table->size; i++)
1885 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1887 flat_table[expr->bitmap_index] = expr;
1888 hash_val[expr->bitmap_index] = i;
1891 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1892 name, table->size, table->n_elems);
1894 for (i = 0; i < (int) table->n_elems; i++)
1895 if (flat_table[i] != 0)
1897 expr = flat_table[i];
1898 fprintf (file, "Index %d (hash value %d)\n ",
1899 expr->bitmap_index, hash_val[i]);
1900 print_rtl (file, expr->expr);
1901 fprintf (file, "\n");
1904 fprintf (file, "\n");
1906 free (flat_table);
1907 free (hash_val);
1910 /* Record register first/last/block set information for REGNO in INSN.
1912 first_set records the first place in the block where the register
1913 is set and is used to compute "anticipatability".
1915 last_set records the last place in the block where the register
1916 is set and is used to compute "availability".
1918 last_bb records the block for which first_set and last_set are
1919 valid, as a quick test to invalidate them.
1921 reg_set_in_block records whether the register is set in the block
1922 and is used to compute "transparency". */
1924 static void
1925 record_last_reg_set_info (rtx insn, int regno)
1927 struct reg_avail_info *info = &reg_avail_info[regno];
1928 int cuid = INSN_CUID (insn);
1930 info->last_set = cuid;
1931 if (info->last_bb != current_bb)
1933 info->last_bb = current_bb;
1934 info->first_set = cuid;
1935 SET_BIT (reg_set_in_block[current_bb->index], regno);
1940 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1941 Note we store a pair of elements in the list, so they have to be
1942 taken off pairwise. */
1944 static void
1945 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx unused1 ATTRIBUTE_UNUSED,
1946 void * v_insn)
1948 rtx dest_addr, insn;
1949 int bb;
1951 while (GET_CODE (dest) == SUBREG
1952 || GET_CODE (dest) == ZERO_EXTRACT
1953 || GET_CODE (dest) == STRICT_LOW_PART)
1954 dest = XEXP (dest, 0);
1956 /* If DEST is not a MEM, then it will not conflict with a load. Note
1957 that function calls are assumed to clobber memory, but are handled
1958 elsewhere. */
1960 if (! MEM_P (dest))
1961 return;
1963 dest_addr = get_addr (XEXP (dest, 0));
1964 dest_addr = canon_rtx (dest_addr);
1965 insn = (rtx) v_insn;
1966 bb = BLOCK_NUM (insn);
1968 canon_modify_mem_list[bb] =
1969 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1970 canon_modify_mem_list[bb] =
1971 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1974 /* Record memory modification information for INSN. We do not actually care
1975 about the memory location(s) that are set, or even how they are set (consider
1976 a CALL_INSN). We merely need to record which insns modify memory. */
1978 static void
1979 record_last_mem_set_info (rtx insn)
1981 int bb = BLOCK_NUM (insn);
1983 /* load_killed_in_block_p will handle the case of calls clobbering
1984 everything. */
1985 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1986 bitmap_set_bit (modify_mem_list_set, bb);
1988 if (CALL_P (insn))
1990 /* Note that traversals of this loop (other than for free-ing)
1991 will break after encountering a CALL_INSN. So, there's no
1992 need to insert a pair of items, as canon_list_insert does. */
1993 canon_modify_mem_list[bb] =
1994 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1995 bitmap_set_bit (blocks_with_calls, bb);
1997 else
1998 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2001 /* Called from compute_hash_table via note_stores to handle one
2002 SET or CLOBBER in an insn. DATA is really the instruction in which
2003 the SET is taking place. */
2005 static void
2006 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
2008 rtx last_set_insn = (rtx) data;
2010 if (GET_CODE (dest) == SUBREG)
2011 dest = SUBREG_REG (dest);
2013 if (REG_P (dest))
2014 record_last_reg_set_info (last_set_insn, REGNO (dest));
2015 else if (MEM_P (dest)
2016 /* Ignore pushes, they clobber nothing. */
2017 && ! push_operand (dest, GET_MODE (dest)))
2018 record_last_mem_set_info (last_set_insn);
2021 /* Top level function to create an expression or assignment hash table.
2023 Expression entries are placed in the hash table if
2024 - they are of the form (set (pseudo-reg) src),
2025 - src is something we want to perform GCSE on,
2026 - none of the operands are subsequently modified in the block
2028 Assignment entries are placed in the hash table if
2029 - they are of the form (set (pseudo-reg) src),
2030 - src is something we want to perform const/copy propagation on,
2031 - none of the operands or target are subsequently modified in the block
2033 Currently src must be a pseudo-reg or a const_int.
2035 TABLE is the table computed. */
2037 static void
2038 compute_hash_table_work (struct hash_table *table)
2040 unsigned int i;
2042 /* While we compute the hash table we also compute a bit array of which
2043 registers are set in which blocks.
2044 ??? This isn't needed during const/copy propagation, but it's cheap to
2045 compute. Later. */
2046 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2048 /* re-Cache any INSN_LIST nodes we have allocated. */
2049 clear_modify_mem_tables ();
2050 /* Some working arrays used to track first and last set in each block. */
2051 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2053 for (i = 0; i < max_gcse_regno; ++i)
2054 reg_avail_info[i].last_bb = NULL;
2056 FOR_EACH_BB (current_bb)
2058 rtx insn;
2059 unsigned int regno;
2060 int in_libcall_block;
2062 /* First pass over the instructions records information used to
2063 determine when registers and memory are first and last set.
2064 ??? hard-reg reg_set_in_block computation
2065 could be moved to compute_sets since they currently don't change. */
2067 FOR_BB_INSNS (current_bb, insn)
2069 if (! INSN_P (insn))
2070 continue;
2072 if (CALL_P (insn))
2074 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2075 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2076 record_last_reg_set_info (insn, regno);
2078 mark_call (insn);
2081 note_stores (PATTERN (insn), record_last_set_info, insn);
2084 /* Insert implicit sets in the hash table. */
2085 if (table->set_p
2086 && implicit_sets[current_bb->index] != NULL_RTX)
2087 hash_scan_set (implicit_sets[current_bb->index],
2088 BB_HEAD (current_bb), table);
2090 /* The next pass builds the hash table. */
2091 in_libcall_block = 0;
2092 FOR_BB_INSNS (current_bb, insn)
2093 if (INSN_P (insn))
2095 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2096 in_libcall_block = 1;
2097 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2098 in_libcall_block = 0;
2099 hash_scan_insn (insn, table, in_libcall_block);
2100 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2101 in_libcall_block = 0;
2105 free (reg_avail_info);
2106 reg_avail_info = NULL;
2109 /* Allocate space for the set/expr hash TABLE.
2110 N_INSNS is the number of instructions in the function.
2111 It is used to determine the number of buckets to use.
2112 SET_P determines whether set or expression table will
2113 be created. */
2115 static void
2116 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2118 int n;
2120 table->size = n_insns / 4;
2121 if (table->size < 11)
2122 table->size = 11;
2124 /* Attempt to maintain efficient use of hash table.
2125 Making it an odd number is simplest for now.
2126 ??? Later take some measurements. */
2127 table->size |= 1;
2128 n = table->size * sizeof (struct expr *);
2129 table->table = gmalloc (n);
2130 table->set_p = set_p;
2133 /* Free things allocated by alloc_hash_table. */
2135 static void
2136 free_hash_table (struct hash_table *table)
2138 free (table->table);
2141 /* Compute the hash TABLE for doing copy/const propagation or
2142 expression hash table. */
2144 static void
2145 compute_hash_table (struct hash_table *table)
2147 /* Initialize count of number of entries in hash table. */
2148 table->n_elems = 0;
2149 memset (table->table, 0, table->size * sizeof (struct expr *));
2151 compute_hash_table_work (table);
2154 /* Expression tracking support. */
2156 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2157 table entry, or NULL if not found. */
2159 static struct expr *
2160 lookup_set (unsigned int regno, struct hash_table *table)
2162 unsigned int hash = hash_set (regno, table->size);
2163 struct expr *expr;
2165 expr = table->table[hash];
2167 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2168 expr = expr->next_same_hash;
2170 return expr;
2173 /* Return the next entry for REGNO in list EXPR. */
2175 static struct expr *
2176 next_set (unsigned int regno, struct expr *expr)
2179 expr = expr->next_same_hash;
2180 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2182 return expr;
2185 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2186 types may be mixed. */
2188 static void
2189 free_insn_expr_list_list (rtx *listp)
2191 rtx list, next;
2193 for (list = *listp; list ; list = next)
2195 next = XEXP (list, 1);
2196 if (GET_CODE (list) == EXPR_LIST)
2197 free_EXPR_LIST_node (list);
2198 else
2199 free_INSN_LIST_node (list);
2202 *listp = NULL;
2205 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2206 static void
2207 clear_modify_mem_tables (void)
2209 unsigned i;
2210 bitmap_iterator bi;
2212 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2214 free_INSN_LIST_list (modify_mem_list + i);
2215 free_insn_expr_list_list (canon_modify_mem_list + i);
2217 bitmap_clear (modify_mem_list_set);
2218 bitmap_clear (blocks_with_calls);
2221 /* Release memory used by modify_mem_list_set. */
2223 static void
2224 free_modify_mem_tables (void)
2226 clear_modify_mem_tables ();
2227 free (modify_mem_list);
2228 free (canon_modify_mem_list);
2229 modify_mem_list = 0;
2230 canon_modify_mem_list = 0;
2233 /* Reset tables used to keep track of what's still available [since the
2234 start of the block]. */
2236 static void
2237 reset_opr_set_tables (void)
2239 /* Maintain a bitmap of which regs have been set since beginning of
2240 the block. */
2241 CLEAR_REG_SET (reg_set_bitmap);
2243 /* Also keep a record of the last instruction to modify memory.
2244 For now this is very trivial, we only record whether any memory
2245 location has been modified. */
2246 clear_modify_mem_tables ();
2249 /* Return nonzero if the operands of X are not set before INSN in
2250 INSN's basic block. */
2252 static int
2253 oprs_not_set_p (const_rtx x, const_rtx insn)
2255 int i, j;
2256 enum rtx_code code;
2257 const char *fmt;
2259 if (x == 0)
2260 return 1;
2262 code = GET_CODE (x);
2263 switch (code)
2265 case PC:
2266 case CC0:
2267 case CONST:
2268 case CONST_INT:
2269 case CONST_DOUBLE:
2270 case CONST_FIXED:
2271 case CONST_VECTOR:
2272 case SYMBOL_REF:
2273 case LABEL_REF:
2274 case ADDR_VEC:
2275 case ADDR_DIFF_VEC:
2276 return 1;
2278 case MEM:
2279 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2280 INSN_CUID (insn), x, 0))
2281 return 0;
2282 else
2283 return oprs_not_set_p (XEXP (x, 0), insn);
2285 case REG:
2286 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2288 default:
2289 break;
2292 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2294 if (fmt[i] == 'e')
2296 /* If we are about to do the last recursive call
2297 needed at this level, change it into iteration.
2298 This function is called enough to be worth it. */
2299 if (i == 0)
2300 return oprs_not_set_p (XEXP (x, i), insn);
2302 if (! oprs_not_set_p (XEXP (x, i), insn))
2303 return 0;
2305 else if (fmt[i] == 'E')
2306 for (j = 0; j < XVECLEN (x, i); j++)
2307 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2308 return 0;
2311 return 1;
2314 /* Mark things set by a CALL. */
2316 static void
2317 mark_call (rtx insn)
2319 if (! CONST_OR_PURE_CALL_P (insn))
2320 record_last_mem_set_info (insn);
2323 /* Mark things set by a SET. */
2325 static void
2326 mark_set (rtx pat, rtx insn)
2328 rtx dest = SET_DEST (pat);
2330 while (GET_CODE (dest) == SUBREG
2331 || GET_CODE (dest) == ZERO_EXTRACT
2332 || GET_CODE (dest) == STRICT_LOW_PART)
2333 dest = XEXP (dest, 0);
2335 if (REG_P (dest))
2336 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2337 else if (MEM_P (dest))
2338 record_last_mem_set_info (insn);
2340 if (GET_CODE (SET_SRC (pat)) == CALL)
2341 mark_call (insn);
2344 /* Record things set by a CLOBBER. */
2346 static void
2347 mark_clobber (rtx pat, rtx insn)
2349 rtx clob = XEXP (pat, 0);
2351 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2352 clob = XEXP (clob, 0);
2354 if (REG_P (clob))
2355 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2356 else
2357 record_last_mem_set_info (insn);
2360 /* Record things set by INSN.
2361 This data is used by oprs_not_set_p. */
2363 static void
2364 mark_oprs_set (rtx insn)
2366 rtx pat = PATTERN (insn);
2367 int i;
2369 if (GET_CODE (pat) == SET)
2370 mark_set (pat, insn);
2371 else if (GET_CODE (pat) == PARALLEL)
2372 for (i = 0; i < XVECLEN (pat, 0); i++)
2374 rtx x = XVECEXP (pat, 0, i);
2376 if (GET_CODE (x) == SET)
2377 mark_set (x, insn);
2378 else if (GET_CODE (x) == CLOBBER)
2379 mark_clobber (x, insn);
2380 else if (GET_CODE (x) == CALL)
2381 mark_call (insn);
2384 else if (GET_CODE (pat) == CLOBBER)
2385 mark_clobber (pat, insn);
2386 else if (GET_CODE (pat) == CALL)
2387 mark_call (insn);
2391 /* Compute copy/constant propagation working variables. */
2393 /* Local properties of assignments. */
2394 static sbitmap *cprop_pavloc;
2395 static sbitmap *cprop_absaltered;
2397 /* Global properties of assignments (computed from the local properties). */
2398 static sbitmap *cprop_avin;
2399 static sbitmap *cprop_avout;
2401 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2402 basic blocks. N_SETS is the number of sets. */
2404 static void
2405 alloc_cprop_mem (int n_blocks, int n_sets)
2407 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2408 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2410 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2411 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2414 /* Free vars used by copy/const propagation. */
2416 static void
2417 free_cprop_mem (void)
2419 sbitmap_vector_free (cprop_pavloc);
2420 sbitmap_vector_free (cprop_absaltered);
2421 sbitmap_vector_free (cprop_avin);
2422 sbitmap_vector_free (cprop_avout);
2425 /* For each block, compute whether X is transparent. X is either an
2426 expression or an assignment [though we don't care which, for this context
2427 an assignment is treated as an expression]. For each block where an
2428 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2429 bit in BMAP. */
2431 static void
2432 compute_transp (const_rtx x, int indx, sbitmap *bmap, int set_p)
2434 int i, j;
2435 basic_block bb;
2436 enum rtx_code code;
2437 reg_set *r;
2438 const char *fmt;
2440 /* repeat is used to turn tail-recursion into iteration since GCC
2441 can't do it when there's no return value. */
2442 repeat:
2444 if (x == 0)
2445 return;
2447 code = GET_CODE (x);
2448 switch (code)
2450 case REG:
2451 if (set_p)
2453 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2455 FOR_EACH_BB (bb)
2456 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2457 SET_BIT (bmap[bb->index], indx);
2459 else
2461 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2462 SET_BIT (bmap[r->bb_index], indx);
2465 else
2467 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2469 FOR_EACH_BB (bb)
2470 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2471 RESET_BIT (bmap[bb->index], indx);
2473 else
2475 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2476 RESET_BIT (bmap[r->bb_index], indx);
2480 return;
2482 case MEM:
2483 if (! MEM_READONLY_P (x))
2485 bitmap_iterator bi;
2486 unsigned bb_index;
2488 /* First handle all the blocks with calls. We don't need to
2489 do any list walking for them. */
2490 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2492 if (set_p)
2493 SET_BIT (bmap[bb_index], indx);
2494 else
2495 RESET_BIT (bmap[bb_index], indx);
2498 /* Now iterate over the blocks which have memory modifications
2499 but which do not have any calls. */
2500 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2501 blocks_with_calls,
2502 0, bb_index, bi)
2504 rtx list_entry = canon_modify_mem_list[bb_index];
2506 while (list_entry)
2508 rtx dest, dest_addr;
2510 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2511 Examine each hunk of memory that is modified. */
2513 dest = XEXP (list_entry, 0);
2514 list_entry = XEXP (list_entry, 1);
2515 dest_addr = XEXP (list_entry, 0);
2517 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2518 x, rtx_addr_varies_p))
2520 if (set_p)
2521 SET_BIT (bmap[bb_index], indx);
2522 else
2523 RESET_BIT (bmap[bb_index], indx);
2524 break;
2526 list_entry = XEXP (list_entry, 1);
2531 x = XEXP (x, 0);
2532 goto repeat;
2534 case PC:
2535 case CC0: /*FIXME*/
2536 case CONST:
2537 case CONST_INT:
2538 case CONST_DOUBLE:
2539 case CONST_FIXED:
2540 case CONST_VECTOR:
2541 case SYMBOL_REF:
2542 case LABEL_REF:
2543 case ADDR_VEC:
2544 case ADDR_DIFF_VEC:
2545 return;
2547 default:
2548 break;
2551 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2553 if (fmt[i] == 'e')
2555 /* If we are about to do the last recursive call
2556 needed at this level, change it into iteration.
2557 This function is called enough to be worth it. */
2558 if (i == 0)
2560 x = XEXP (x, i);
2561 goto repeat;
2564 compute_transp (XEXP (x, i), indx, bmap, set_p);
2566 else if (fmt[i] == 'E')
2567 for (j = 0; j < XVECLEN (x, i); j++)
2568 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2572 /* Top level routine to do the dataflow analysis needed by copy/const
2573 propagation. */
2575 static void
2576 compute_cprop_data (void)
2578 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2579 compute_available (cprop_pavloc, cprop_absaltered,
2580 cprop_avout, cprop_avin);
2583 /* Copy/constant propagation. */
2585 /* Maximum number of register uses in an insn that we handle. */
2586 #define MAX_USES 8
2588 /* Table of uses found in an insn.
2589 Allocated statically to avoid alloc/free complexity and overhead. */
2590 static struct reg_use reg_use_table[MAX_USES];
2592 /* Index into `reg_use_table' while building it. */
2593 static int reg_use_count;
2595 /* Set up a list of register numbers used in INSN. The found uses are stored
2596 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2597 and contains the number of uses in the table upon exit.
2599 ??? If a register appears multiple times we will record it multiple times.
2600 This doesn't hurt anything but it will slow things down. */
2602 static void
2603 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2605 int i, j;
2606 enum rtx_code code;
2607 const char *fmt;
2608 rtx x = *xptr;
2610 /* repeat is used to turn tail-recursion into iteration since GCC
2611 can't do it when there's no return value. */
2612 repeat:
2613 if (x == 0)
2614 return;
2616 code = GET_CODE (x);
2617 if (REG_P (x))
2619 if (reg_use_count == MAX_USES)
2620 return;
2622 reg_use_table[reg_use_count].reg_rtx = x;
2623 reg_use_count++;
2626 /* Recursively scan the operands of this expression. */
2628 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2630 if (fmt[i] == 'e')
2632 /* If we are about to do the last recursive call
2633 needed at this level, change it into iteration.
2634 This function is called enough to be worth it. */
2635 if (i == 0)
2637 x = XEXP (x, 0);
2638 goto repeat;
2641 find_used_regs (&XEXP (x, i), data);
2643 else if (fmt[i] == 'E')
2644 for (j = 0; j < XVECLEN (x, i); j++)
2645 find_used_regs (&XVECEXP (x, i, j), data);
2649 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2650 Returns nonzero is successful. */
2652 static int
2653 try_replace_reg (rtx from, rtx to, rtx insn)
2655 rtx note = find_reg_equal_equiv_note (insn);
2656 rtx src = 0;
2657 int success = 0;
2658 rtx set = single_set (insn);
2660 /* Usually we substitute easy stuff, so we won't copy everything.
2661 We however need to take care to not duplicate non-trivial CONST
2662 expressions. */
2663 to = copy_rtx (to);
2665 validate_replace_src_group (from, to, insn);
2666 if (num_changes_pending () && apply_change_group ())
2667 success = 1;
2669 /* Try to simplify SET_SRC if we have substituted a constant. */
2670 if (success && set && CONSTANT_P (to))
2672 src = simplify_rtx (SET_SRC (set));
2674 if (src)
2675 validate_change (insn, &SET_SRC (set), src, 0);
2678 /* If there is already a REG_EQUAL note, update the expression in it
2679 with our replacement. */
2680 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2681 set_unique_reg_note (insn, REG_EQUAL,
2682 simplify_replace_rtx (XEXP (note, 0), from, to));
2683 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2685 /* If above failed and this is a single set, try to simplify the source of
2686 the set given our substitution. We could perhaps try this for multiple
2687 SETs, but it probably won't buy us anything. */
2688 src = simplify_replace_rtx (SET_SRC (set), from, to);
2690 if (!rtx_equal_p (src, SET_SRC (set))
2691 && validate_change (insn, &SET_SRC (set), src, 0))
2692 success = 1;
2694 /* If we've failed to do replacement, have a single SET, don't already
2695 have a note, and have no special SET, add a REG_EQUAL note to not
2696 lose information. */
2697 if (!success && note == 0 && set != 0
2698 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2699 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2700 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2703 /* REG_EQUAL may get simplified into register.
2704 We don't allow that. Remove that note. This code ought
2705 not to happen, because previous code ought to synthesize
2706 reg-reg move, but be on the safe side. */
2707 if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2708 remove_note (insn, note);
2710 return success;
2713 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2714 NULL no such set is found. */
2716 static struct expr *
2717 find_avail_set (int regno, rtx insn)
2719 /* SET1 contains the last set found that can be returned to the caller for
2720 use in a substitution. */
2721 struct expr *set1 = 0;
2723 /* Loops are not possible here. To get a loop we would need two sets
2724 available at the start of the block containing INSN. i.e. we would
2725 need two sets like this available at the start of the block:
2727 (set (reg X) (reg Y))
2728 (set (reg Y) (reg X))
2730 This can not happen since the set of (reg Y) would have killed the
2731 set of (reg X) making it unavailable at the start of this block. */
2732 while (1)
2734 rtx src;
2735 struct expr *set = lookup_set (regno, &set_hash_table);
2737 /* Find a set that is available at the start of the block
2738 which contains INSN. */
2739 while (set)
2741 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2742 break;
2743 set = next_set (regno, set);
2746 /* If no available set was found we've reached the end of the
2747 (possibly empty) copy chain. */
2748 if (set == 0)
2749 break;
2751 gcc_assert (GET_CODE (set->expr) == SET);
2753 src = SET_SRC (set->expr);
2755 /* We know the set is available.
2756 Now check that SRC is ANTLOC (i.e. none of the source operands
2757 have changed since the start of the block).
2759 If the source operand changed, we may still use it for the next
2760 iteration of this loop, but we may not use it for substitutions. */
2762 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2763 set1 = set;
2765 /* If the source of the set is anything except a register, then
2766 we have reached the end of the copy chain. */
2767 if (! REG_P (src))
2768 break;
2770 /* Follow the copy chain, i.e. start another iteration of the loop
2771 and see if we have an available copy into SRC. */
2772 regno = REGNO (src);
2775 /* SET1 holds the last set that was available and anticipatable at
2776 INSN. */
2777 return set1;
2780 /* Subroutine of cprop_insn that tries to propagate constants into
2781 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2782 it is the instruction that immediately precedes JUMP, and must be a
2783 single SET of a register. FROM is what we will try to replace,
2784 SRC is the constant we will try to substitute for it. Returns nonzero
2785 if a change was made. */
2787 static int
2788 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2790 rtx new, set_src, note_src;
2791 rtx set = pc_set (jump);
2792 rtx note = find_reg_equal_equiv_note (jump);
2794 if (note)
2796 note_src = XEXP (note, 0);
2797 if (GET_CODE (note_src) == EXPR_LIST)
2798 note_src = NULL_RTX;
2800 else note_src = NULL_RTX;
2802 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2803 set_src = note_src ? note_src : SET_SRC (set);
2805 /* First substitute the SETCC condition into the JUMP instruction,
2806 then substitute that given values into this expanded JUMP. */
2807 if (setcc != NULL_RTX
2808 && !modified_between_p (from, setcc, jump)
2809 && !modified_between_p (src, setcc, jump))
2811 rtx setcc_src;
2812 rtx setcc_set = single_set (setcc);
2813 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2814 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2815 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2816 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2817 setcc_src);
2819 else
2820 setcc = NULL_RTX;
2822 new = simplify_replace_rtx (set_src, from, src);
2824 /* If no simplification can be made, then try the next register. */
2825 if (rtx_equal_p (new, SET_SRC (set)))
2826 return 0;
2828 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2829 if (new == pc_rtx)
2830 delete_insn (jump);
2831 else
2833 /* Ensure the value computed inside the jump insn to be equivalent
2834 to one computed by setcc. */
2835 if (setcc && modified_in_p (new, setcc))
2836 return 0;
2837 if (! validate_change (jump, &SET_SRC (set), new, 0))
2839 /* When (some) constants are not valid in a comparison, and there
2840 are two registers to be replaced by constants before the entire
2841 comparison can be folded into a constant, we need to keep
2842 intermediate information in REG_EQUAL notes. For targets with
2843 separate compare insns, such notes are added by try_replace_reg.
2844 When we have a combined compare-and-branch instruction, however,
2845 we need to attach a note to the branch itself to make this
2846 optimization work. */
2848 if (!rtx_equal_p (new, note_src))
2849 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2850 return 0;
2853 /* Remove REG_EQUAL note after simplification. */
2854 if (note_src)
2855 remove_note (jump, note);
2858 #ifdef HAVE_cc0
2859 /* Delete the cc0 setter. */
2860 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2861 delete_insn (setcc);
2862 #endif
2864 run_jump_opt_after_gcse = 1;
2866 global_const_prop_count++;
2867 if (dump_file != NULL)
2869 fprintf (dump_file,
2870 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2871 REGNO (from), INSN_UID (jump));
2872 print_rtl (dump_file, src);
2873 fprintf (dump_file, "\n");
2875 purge_dead_edges (bb);
2877 return 1;
2880 static bool
2881 constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2883 rtx sset;
2885 /* Check for reg or cc0 setting instructions followed by
2886 conditional branch instructions first. */
2887 if (alter_jumps
2888 && (sset = single_set (insn)) != NULL
2889 && NEXT_INSN (insn)
2890 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2892 rtx dest = SET_DEST (sset);
2893 if ((REG_P (dest) || CC0_P (dest))
2894 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2895 return 1;
2898 /* Handle normal insns next. */
2899 if (NONJUMP_INSN_P (insn)
2900 && try_replace_reg (from, to, insn))
2901 return 1;
2903 /* Try to propagate a CONST_INT into a conditional jump.
2904 We're pretty specific about what we will handle in this
2905 code, we can extend this as necessary over time.
2907 Right now the insn in question must look like
2908 (set (pc) (if_then_else ...)) */
2909 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2910 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2911 return 0;
2914 /* Perform constant and copy propagation on INSN.
2915 The result is nonzero if a change was made. */
2917 static int
2918 cprop_insn (rtx insn, int alter_jumps)
2920 struct reg_use *reg_used;
2921 int changed = 0;
2922 rtx note;
2924 if (!INSN_P (insn))
2925 return 0;
2927 reg_use_count = 0;
2928 note_uses (&PATTERN (insn), find_used_regs, NULL);
2930 note = find_reg_equal_equiv_note (insn);
2932 /* We may win even when propagating constants into notes. */
2933 if (note)
2934 find_used_regs (&XEXP (note, 0), NULL);
2936 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2937 reg_used++, reg_use_count--)
2939 unsigned int regno = REGNO (reg_used->reg_rtx);
2940 rtx pat, src;
2941 struct expr *set;
2943 /* Ignore registers created by GCSE.
2944 We do this because ... */
2945 if (regno >= max_gcse_regno)
2946 continue;
2948 /* If the register has already been set in this block, there's
2949 nothing we can do. */
2950 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2951 continue;
2953 /* Find an assignment that sets reg_used and is available
2954 at the start of the block. */
2955 set = find_avail_set (regno, insn);
2956 if (! set)
2957 continue;
2959 pat = set->expr;
2960 /* ??? We might be able to handle PARALLELs. Later. */
2961 gcc_assert (GET_CODE (pat) == SET);
2963 src = SET_SRC (pat);
2965 /* Constant propagation. */
2966 if (gcse_constant_p (src))
2968 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2970 changed = 1;
2971 global_const_prop_count++;
2972 if (dump_file != NULL)
2974 fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2975 fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2976 print_rtl (dump_file, src);
2977 fprintf (dump_file, "\n");
2979 if (INSN_DELETED_P (insn))
2980 return 1;
2983 else if (REG_P (src)
2984 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2985 && REGNO (src) != regno)
2987 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2989 changed = 1;
2990 global_copy_prop_count++;
2991 if (dump_file != NULL)
2993 fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2994 regno, INSN_UID (insn));
2995 fprintf (dump_file, " with reg %d\n", REGNO (src));
2998 /* The original insn setting reg_used may or may not now be
2999 deletable. We leave the deletion to flow. */
3000 /* FIXME: If it turns out that the insn isn't deletable,
3001 then we may have unnecessarily extended register lifetimes
3002 and made things worse. */
3007 return changed;
3010 /* Like find_used_regs, but avoid recording uses that appear in
3011 input-output contexts such as zero_extract or pre_dec. This
3012 restricts the cases we consider to those for which local cprop
3013 can legitimately make replacements. */
3015 static void
3016 local_cprop_find_used_regs (rtx *xptr, void *data)
3018 rtx x = *xptr;
3020 if (x == 0)
3021 return;
3023 switch (GET_CODE (x))
3025 case ZERO_EXTRACT:
3026 case SIGN_EXTRACT:
3027 case STRICT_LOW_PART:
3028 return;
3030 case PRE_DEC:
3031 case PRE_INC:
3032 case POST_DEC:
3033 case POST_INC:
3034 case PRE_MODIFY:
3035 case POST_MODIFY:
3036 /* Can only legitimately appear this early in the context of
3037 stack pushes for function arguments, but handle all of the
3038 codes nonetheless. */
3039 return;
3041 case SUBREG:
3042 /* Setting a subreg of a register larger than word_mode leaves
3043 the non-written words unchanged. */
3044 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3045 return;
3046 break;
3048 default:
3049 break;
3052 find_used_regs (xptr, data);
3055 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3056 their REG_EQUAL notes need updating. */
3058 static bool
3059 do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
3061 rtx newreg = NULL, newcnst = NULL;
3063 /* Rule out USE instructions and ASM statements as we don't want to
3064 change the hard registers mentioned. */
3065 if (REG_P (x)
3066 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3067 || (GET_CODE (PATTERN (insn)) != USE
3068 && asm_noperands (PATTERN (insn)) < 0)))
3070 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3071 struct elt_loc_list *l;
3073 if (!val)
3074 return false;
3075 for (l = val->locs; l; l = l->next)
3077 rtx this_rtx = l->loc;
3078 rtx note;
3080 /* Don't CSE non-constant values out of libcall blocks. */
3081 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3082 continue;
3084 if (gcse_constant_p (this_rtx))
3085 newcnst = this_rtx;
3086 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3087 /* Don't copy propagate if it has attached REG_EQUIV note.
3088 At this point this only function parameters should have
3089 REG_EQUIV notes and if the argument slot is used somewhere
3090 explicitly, it means address of parameter has been taken,
3091 so we should not extend the lifetime of the pseudo. */
3092 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3093 || ! MEM_P (XEXP (note, 0))))
3094 newreg = this_rtx;
3096 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3098 /* If we find a case where we can't fix the retval REG_EQUAL notes
3099 match the new register, we either have to abandon this replacement
3100 or fix delete_trivially_dead_insns to preserve the setting insn,
3101 or make it delete the REG_EQUAL note, and fix up all passes that
3102 require the REG_EQUAL note there. */
3103 bool adjusted;
3105 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3106 gcc_assert (adjusted);
3108 if (dump_file != NULL)
3110 fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3111 REGNO (x));
3112 fprintf (dump_file, "insn %d with constant ",
3113 INSN_UID (insn));
3114 print_rtl (dump_file, newcnst);
3115 fprintf (dump_file, "\n");
3117 local_const_prop_count++;
3118 return true;
3120 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3122 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3123 if (dump_file != NULL)
3125 fprintf (dump_file,
3126 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3127 REGNO (x), INSN_UID (insn));
3128 fprintf (dump_file, " with reg %d\n", REGNO (newreg));
3130 local_copy_prop_count++;
3131 return true;
3134 return false;
3137 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3138 their REG_EQUAL notes need updating to reflect that OLDREG has been
3139 replaced with NEWVAL in INSN. Return true if all substitutions could
3140 be made. */
3141 static bool
3142 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3144 rtx end;
3146 while ((end = *libcall_sp++))
3148 rtx note = find_reg_equal_equiv_note (end);
3150 if (! note)
3151 continue;
3153 if (REG_P (newval))
3155 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3159 note = find_reg_equal_equiv_note (end);
3160 if (! note)
3161 continue;
3162 if (reg_mentioned_p (newval, XEXP (note, 0)))
3163 return false;
3165 while ((end = *libcall_sp++));
3166 return true;
3169 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3170 df_notes_rescan (end);
3171 insn = end;
3173 return true;
3176 #define MAX_NESTED_LIBCALLS 9
3178 /* Do local const/copy propagation (i.e. within each basic block).
3179 If ALTER_JUMPS is true, allow propagating into jump insns, which
3180 could modify the CFG. */
3182 static void
3183 local_cprop_pass (bool alter_jumps)
3185 basic_block bb;
3186 rtx insn;
3187 struct reg_use *reg_used;
3188 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3189 bool changed = false;
3191 cselib_init (false);
3192 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3193 *libcall_sp = 0;
3194 FOR_EACH_BB (bb)
3196 FOR_BB_INSNS (bb, insn)
3198 if (INSN_P (insn))
3200 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3202 if (note)
3204 gcc_assert (libcall_sp != libcall_stack);
3205 *--libcall_sp = XEXP (note, 0);
3207 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3208 if (note)
3209 libcall_sp++;
3210 note = find_reg_equal_equiv_note (insn);
3213 reg_use_count = 0;
3214 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3215 NULL);
3216 if (note)
3217 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3219 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3220 reg_used++, reg_use_count--)
3222 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3223 libcall_sp))
3225 changed = true;
3226 break;
3229 if (INSN_DELETED_P (insn))
3230 break;
3232 while (reg_use_count);
3234 cselib_process_insn (insn);
3237 /* Forget everything at the end of a basic block. Make sure we are
3238 not inside a libcall, they should never cross basic blocks. */
3239 cselib_clear_table ();
3240 gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
3243 cselib_finish ();
3245 /* Global analysis may get into infinite loops for unreachable blocks. */
3246 if (changed && alter_jumps)
3248 delete_unreachable_blocks ();
3249 free_reg_set_mem ();
3250 alloc_reg_set_mem (max_reg_num ());
3251 compute_sets ();
3255 /* Forward propagate copies. This includes copies and constants. Return
3256 nonzero if a change was made. */
3258 static int
3259 cprop (int alter_jumps)
3261 int changed;
3262 basic_block bb;
3263 rtx insn;
3265 /* Note we start at block 1. */
3266 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3268 if (dump_file != NULL)
3269 fprintf (dump_file, "\n");
3270 return 0;
3273 changed = 0;
3274 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3276 /* Reset tables used to keep track of what's still valid [since the
3277 start of the block]. */
3278 reset_opr_set_tables ();
3280 FOR_BB_INSNS (bb, insn)
3281 if (INSN_P (insn))
3283 changed |= cprop_insn (insn, alter_jumps);
3285 /* Keep track of everything modified by this insn. */
3286 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3287 call mark_oprs_set if we turned the insn into a NOTE. */
3288 if (! NOTE_P (insn))
3289 mark_oprs_set (insn);
3293 if (dump_file != NULL)
3294 fprintf (dump_file, "\n");
3296 return changed;
3299 /* Similar to get_condition, only the resulting condition must be
3300 valid at JUMP, instead of at EARLIEST.
3302 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3303 settle for the condition variable in the jump instruction being integral.
3304 We prefer to be able to record the value of a user variable, rather than
3305 the value of a temporary used in a condition. This could be solved by
3306 recording the value of *every* register scanned by canonicalize_condition,
3307 but this would require some code reorganization. */
3310 fis_get_condition (rtx jump)
3312 return get_condition (jump, NULL, false, true);
3315 /* Check the comparison COND to see if we can safely form an implicit set from
3316 it. COND is either an EQ or NE comparison. */
3318 static bool
3319 implicit_set_cond_p (const_rtx cond)
3321 const enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3322 const_rtx cst = XEXP (cond, 1);
3324 /* We can't perform this optimization if either operand might be or might
3325 contain a signed zero. */
3326 if (HONOR_SIGNED_ZEROS (mode))
3328 /* It is sufficient to check if CST is or contains a zero. We must
3329 handle float, complex, and vector. If any subpart is a zero, then
3330 the optimization can't be performed. */
3331 /* ??? The complex and vector checks are not implemented yet. We just
3332 always return zero for them. */
3333 if (GET_CODE (cst) == CONST_DOUBLE)
3335 REAL_VALUE_TYPE d;
3336 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3337 if (REAL_VALUES_EQUAL (d, dconst0))
3338 return 0;
3340 else
3341 return 0;
3344 return gcse_constant_p (cst);
3347 /* Find the implicit sets of a function. An "implicit set" is a constraint
3348 on the value of a variable, implied by a conditional jump. For example,
3349 following "if (x == 2)", the then branch may be optimized as though the
3350 conditional performed an "explicit set", in this example, "x = 2". This
3351 function records the set patterns that are implicit at the start of each
3352 basic block. */
3354 static void
3355 find_implicit_sets (void)
3357 basic_block bb, dest;
3358 unsigned int count;
3359 rtx cond, new;
3361 count = 0;
3362 FOR_EACH_BB (bb)
3363 /* Check for more than one successor. */
3364 if (EDGE_COUNT (bb->succs) > 1)
3366 cond = fis_get_condition (BB_END (bb));
3368 if (cond
3369 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3370 && REG_P (XEXP (cond, 0))
3371 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3372 && implicit_set_cond_p (cond))
3374 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3375 : FALLTHRU_EDGE (bb)->dest;
3377 if (dest && single_pred_p (dest)
3378 && dest != EXIT_BLOCK_PTR)
3380 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3381 XEXP (cond, 1));
3382 implicit_sets[dest->index] = new;
3383 if (dump_file)
3385 fprintf(dump_file, "Implicit set of reg %d in ",
3386 REGNO (XEXP (cond, 0)));
3387 fprintf(dump_file, "basic block %d\n", dest->index);
3389 count++;
3394 if (dump_file)
3395 fprintf (dump_file, "Found %d implicit sets\n", count);
3398 /* Perform one copy/constant propagation pass.
3399 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3400 propagation into conditional jumps. If BYPASS_JUMPS is true,
3401 perform conditional jump bypassing optimizations. */
3403 static int
3404 one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3406 int changed = 0;
3408 global_const_prop_count = local_const_prop_count = 0;
3409 global_copy_prop_count = local_copy_prop_count = 0;
3411 if (cprop_jumps)
3412 local_cprop_pass (cprop_jumps);
3414 /* Determine implicit sets. */
3415 implicit_sets = XCNEWVEC (rtx, last_basic_block);
3416 find_implicit_sets ();
3418 alloc_hash_table (max_cuid, &set_hash_table, 1);
3419 compute_hash_table (&set_hash_table);
3421 /* Free implicit_sets before peak usage. */
3422 free (implicit_sets);
3423 implicit_sets = NULL;
3425 if (dump_file)
3426 dump_hash_table (dump_file, "SET", &set_hash_table);
3427 if (set_hash_table.n_elems > 0)
3429 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3430 compute_cprop_data ();
3431 changed = cprop (cprop_jumps);
3432 if (bypass_jumps)
3433 changed |= bypass_conditional_jumps ();
3434 free_cprop_mem ();
3437 free_hash_table (&set_hash_table);
3439 if (dump_file)
3441 fprintf (dump_file, "CPROP of %s, pass %d: %d bytes needed, ",
3442 current_function_name (), pass, bytes_used);
3443 fprintf (dump_file, "%d local const props, %d local copy props, ",
3444 local_const_prop_count, local_copy_prop_count);
3445 fprintf (dump_file, "%d global const props, %d global copy props\n\n",
3446 global_const_prop_count, global_copy_prop_count);
3448 /* Global analysis may get into infinite loops for unreachable blocks. */
3449 if (changed && cprop_jumps)
3450 delete_unreachable_blocks ();
3452 return changed;
3455 /* Bypass conditional jumps. */
3457 /* The value of last_basic_block at the beginning of the jump_bypass
3458 pass. The use of redirect_edge_and_branch_force may introduce new
3459 basic blocks, but the data flow analysis is only valid for basic
3460 block indices less than bypass_last_basic_block. */
3462 static int bypass_last_basic_block;
3464 /* Find a set of REGNO to a constant that is available at the end of basic
3465 block BB. Returns NULL if no such set is found. Based heavily upon
3466 find_avail_set. */
3468 static struct expr *
3469 find_bypass_set (int regno, int bb)
3471 struct expr *result = 0;
3473 for (;;)
3475 rtx src;
3476 struct expr *set = lookup_set (regno, &set_hash_table);
3478 while (set)
3480 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3481 break;
3482 set = next_set (regno, set);
3485 if (set == 0)
3486 break;
3488 gcc_assert (GET_CODE (set->expr) == SET);
3490 src = SET_SRC (set->expr);
3491 if (gcse_constant_p (src))
3492 result = set;
3494 if (! REG_P (src))
3495 break;
3497 regno = REGNO (src);
3499 return result;
3503 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3504 any of the instructions inserted on an edge. Jump bypassing places
3505 condition code setters on CFG edges using insert_insn_on_edge. This
3506 function is required to check that our data flow analysis is still
3507 valid prior to commit_edge_insertions. */
3509 static bool
3510 reg_killed_on_edge (const_rtx reg, const_edge e)
3512 rtx insn;
3514 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3515 if (INSN_P (insn) && reg_set_p (reg, insn))
3516 return true;
3518 return false;
3521 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3522 basic block BB which has more than one predecessor. If not NULL, SETCC
3523 is the first instruction of BB, which is immediately followed by JUMP_INSN
3524 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3525 Returns nonzero if a change was made.
3527 During the jump bypassing pass, we may place copies of SETCC instructions
3528 on CFG edges. The following routine must be careful to pay attention to
3529 these inserted insns when performing its transformations. */
3531 static int
3532 bypass_block (basic_block bb, rtx setcc, rtx jump)
3534 rtx insn, note;
3535 edge e, edest;
3536 int i, change;
3537 int may_be_loop_header;
3538 unsigned removed_p;
3539 edge_iterator ei;
3541 insn = (setcc != NULL) ? setcc : jump;
3543 /* Determine set of register uses in INSN. */
3544 reg_use_count = 0;
3545 note_uses (&PATTERN (insn), find_used_regs, NULL);
3546 note = find_reg_equal_equiv_note (insn);
3547 if (note)
3548 find_used_regs (&XEXP (note, 0), NULL);
3550 may_be_loop_header = false;
3551 FOR_EACH_EDGE (e, ei, bb->preds)
3552 if (e->flags & EDGE_DFS_BACK)
3554 may_be_loop_header = true;
3555 break;
3558 change = 0;
3559 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3561 removed_p = 0;
3563 if (e->flags & EDGE_COMPLEX)
3565 ei_next (&ei);
3566 continue;
3569 /* We can't redirect edges from new basic blocks. */
3570 if (e->src->index >= bypass_last_basic_block)
3572 ei_next (&ei);
3573 continue;
3576 /* The irreducible loops created by redirecting of edges entering the
3577 loop from outside would decrease effectiveness of some of the following
3578 optimizations, so prevent this. */
3579 if (may_be_loop_header
3580 && !(e->flags & EDGE_DFS_BACK))
3582 ei_next (&ei);
3583 continue;
3586 for (i = 0; i < reg_use_count; i++)
3588 struct reg_use *reg_used = &reg_use_table[i];
3589 unsigned int regno = REGNO (reg_used->reg_rtx);
3590 basic_block dest, old_dest;
3591 struct expr *set;
3592 rtx src, new;
3594 if (regno >= max_gcse_regno)
3595 continue;
3597 set = find_bypass_set (regno, e->src->index);
3599 if (! set)
3600 continue;
3602 /* Check the data flow is valid after edge insertions. */
3603 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3604 continue;
3606 src = SET_SRC (pc_set (jump));
3608 if (setcc != NULL)
3609 src = simplify_replace_rtx (src,
3610 SET_DEST (PATTERN (setcc)),
3611 SET_SRC (PATTERN (setcc)));
3613 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3614 SET_SRC (set->expr));
3616 /* Jump bypassing may have already placed instructions on
3617 edges of the CFG. We can't bypass an outgoing edge that
3618 has instructions associated with it, as these insns won't
3619 get executed if the incoming edge is redirected. */
3621 if (new == pc_rtx)
3623 edest = FALLTHRU_EDGE (bb);
3624 dest = edest->insns.r ? NULL : edest->dest;
3626 else if (GET_CODE (new) == LABEL_REF)
3628 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3629 /* Don't bypass edges containing instructions. */
3630 edest = find_edge (bb, dest);
3631 if (edest && edest->insns.r)
3632 dest = NULL;
3634 else
3635 dest = NULL;
3637 /* Avoid unification of the edge with other edges from original
3638 branch. We would end up emitting the instruction on "both"
3639 edges. */
3641 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3642 && find_edge (e->src, dest))
3643 dest = NULL;
3645 old_dest = e->dest;
3646 if (dest != NULL
3647 && dest != old_dest
3648 && dest != EXIT_BLOCK_PTR)
3650 redirect_edge_and_branch_force (e, dest);
3652 /* Copy the register setter to the redirected edge.
3653 Don't copy CC0 setters, as CC0 is dead after jump. */
3654 if (setcc)
3656 rtx pat = PATTERN (setcc);
3657 if (!CC0_P (SET_DEST (pat)))
3658 insert_insn_on_edge (copy_insn (pat), e);
3661 if (dump_file != NULL)
3663 fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
3664 "in jump_insn %d equals constant ",
3665 regno, INSN_UID (jump));
3666 print_rtl (dump_file, SET_SRC (set->expr));
3667 fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
3668 e->src->index, old_dest->index, dest->index);
3670 change = 1;
3671 removed_p = 1;
3672 break;
3675 if (!removed_p)
3676 ei_next (&ei);
3678 return change;
3681 /* Find basic blocks with more than one predecessor that only contain a
3682 single conditional jump. If the result of the comparison is known at
3683 compile-time from any incoming edge, redirect that edge to the
3684 appropriate target. Returns nonzero if a change was made.
3686 This function is now mis-named, because we also handle indirect jumps. */
3688 static int
3689 bypass_conditional_jumps (void)
3691 basic_block bb;
3692 int changed;
3693 rtx setcc;
3694 rtx insn;
3695 rtx dest;
3697 /* Note we start at block 1. */
3698 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3699 return 0;
3701 bypass_last_basic_block = last_basic_block;
3702 mark_dfs_back_edges ();
3704 changed = 0;
3705 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3706 EXIT_BLOCK_PTR, next_bb)
3708 /* Check for more than one predecessor. */
3709 if (!single_pred_p (bb))
3711 setcc = NULL_RTX;
3712 FOR_BB_INSNS (bb, insn)
3713 if (NONJUMP_INSN_P (insn))
3715 if (setcc)
3716 break;
3717 if (GET_CODE (PATTERN (insn)) != SET)
3718 break;
3720 dest = SET_DEST (PATTERN (insn));
3721 if (REG_P (dest) || CC0_P (dest))
3722 setcc = insn;
3723 else
3724 break;
3726 else if (JUMP_P (insn))
3728 if ((any_condjump_p (insn) || computed_jump_p (insn))
3729 && onlyjump_p (insn))
3730 changed |= bypass_block (bb, setcc, insn);
3731 break;
3733 else if (INSN_P (insn))
3734 break;
3738 /* If we bypassed any register setting insns, we inserted a
3739 copy on the redirected edge. These need to be committed. */
3740 if (changed)
3741 commit_edge_insertions ();
3743 return changed;
3746 /* Compute PRE+LCM working variables. */
3748 /* Local properties of expressions. */
3749 /* Nonzero for expressions that are transparent in the block. */
3750 static sbitmap *transp;
3752 /* Nonzero for expressions that are transparent at the end of the block.
3753 This is only zero for expressions killed by abnormal critical edge
3754 created by a calls. */
3755 static sbitmap *transpout;
3757 /* Nonzero for expressions that are computed (available) in the block. */
3758 static sbitmap *comp;
3760 /* Nonzero for expressions that are locally anticipatable in the block. */
3761 static sbitmap *antloc;
3763 /* Nonzero for expressions where this block is an optimal computation
3764 point. */
3765 static sbitmap *pre_optimal;
3767 /* Nonzero for expressions which are redundant in a particular block. */
3768 static sbitmap *pre_redundant;
3770 /* Nonzero for expressions which should be inserted on a specific edge. */
3771 static sbitmap *pre_insert_map;
3773 /* Nonzero for expressions which should be deleted in a specific block. */
3774 static sbitmap *pre_delete_map;
3776 /* Contains the edge_list returned by pre_edge_lcm. */
3777 static struct edge_list *edge_list;
3779 /* Redundant insns. */
3780 static sbitmap pre_redundant_insns;
3782 /* Allocate vars used for PRE analysis. */
3784 static void
3785 alloc_pre_mem (int n_blocks, int n_exprs)
3787 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3788 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3789 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3791 pre_optimal = NULL;
3792 pre_redundant = NULL;
3793 pre_insert_map = NULL;
3794 pre_delete_map = NULL;
3795 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3797 /* pre_insert and pre_delete are allocated later. */
3800 /* Free vars used for PRE analysis. */
3802 static void
3803 free_pre_mem (void)
3805 sbitmap_vector_free (transp);
3806 sbitmap_vector_free (comp);
3808 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3810 if (pre_optimal)
3811 sbitmap_vector_free (pre_optimal);
3812 if (pre_redundant)
3813 sbitmap_vector_free (pre_redundant);
3814 if (pre_insert_map)
3815 sbitmap_vector_free (pre_insert_map);
3816 if (pre_delete_map)
3817 sbitmap_vector_free (pre_delete_map);
3819 transp = comp = NULL;
3820 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3823 /* Top level routine to do the dataflow analysis needed by PRE. */
3825 static void
3826 compute_pre_data (void)
3828 sbitmap trapping_expr;
3829 basic_block bb;
3830 unsigned int ui;
3832 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3833 sbitmap_vector_zero (ae_kill, last_basic_block);
3835 /* Collect expressions which might trap. */
3836 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3837 sbitmap_zero (trapping_expr);
3838 for (ui = 0; ui < expr_hash_table.size; ui++)
3840 struct expr *e;
3841 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3842 if (may_trap_p (e->expr))
3843 SET_BIT (trapping_expr, e->bitmap_index);
3846 /* Compute ae_kill for each basic block using:
3848 ~(TRANSP | COMP)
3851 FOR_EACH_BB (bb)
3853 edge e;
3854 edge_iterator ei;
3856 /* If the current block is the destination of an abnormal edge, we
3857 kill all trapping expressions because we won't be able to properly
3858 place the instruction on the edge. So make them neither
3859 anticipatable nor transparent. This is fairly conservative. */
3860 FOR_EACH_EDGE (e, ei, bb->preds)
3861 if (e->flags & EDGE_ABNORMAL)
3863 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3864 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3865 break;
3868 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3869 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3872 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
3873 ae_kill, &pre_insert_map, &pre_delete_map);
3874 sbitmap_vector_free (antloc);
3875 antloc = NULL;
3876 sbitmap_vector_free (ae_kill);
3877 ae_kill = NULL;
3878 sbitmap_free (trapping_expr);
3881 /* PRE utilities */
3883 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3884 block BB.
3886 VISITED is a pointer to a working buffer for tracking which BB's have
3887 been visited. It is NULL for the top-level call.
3889 We treat reaching expressions that go through blocks containing the same
3890 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3891 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3892 2 as not reaching. The intent is to improve the probability of finding
3893 only one reaching expression and to reduce register lifetimes by picking
3894 the closest such expression. */
3896 static int
3897 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3899 edge pred;
3900 edge_iterator ei;
3902 FOR_EACH_EDGE (pred, ei, bb->preds)
3904 basic_block pred_bb = pred->src;
3906 if (pred->src == ENTRY_BLOCK_PTR
3907 /* Has predecessor has already been visited? */
3908 || visited[pred_bb->index])
3909 ;/* Nothing to do. */
3911 /* Does this predecessor generate this expression? */
3912 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3914 /* Is this the occurrence we're looking for?
3915 Note that there's only one generating occurrence per block
3916 so we just need to check the block number. */
3917 if (occr_bb == pred_bb)
3918 return 1;
3920 visited[pred_bb->index] = 1;
3922 /* Ignore this predecessor if it kills the expression. */
3923 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3924 visited[pred_bb->index] = 1;
3926 /* Neither gen nor kill. */
3927 else
3929 visited[pred_bb->index] = 1;
3930 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3931 return 1;
3935 /* All paths have been checked. */
3936 return 0;
3939 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3940 memory allocated for that function is returned. */
3942 static int
3943 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3945 int rval;
3946 char *visited = XCNEWVEC (char, last_basic_block);
3948 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3950 free (visited);
3951 return rval;
3955 /* Given an expr, generate RTL which we can insert at the end of a BB,
3956 or on an edge. Set the block number of any insns generated to
3957 the value of BB. */
3959 static rtx
3960 process_insert_insn (struct expr *expr)
3962 rtx reg = expr->reaching_reg;
3963 rtx exp = copy_rtx (expr->expr);
3964 rtx pat;
3966 start_sequence ();
3968 /* If the expression is something that's an operand, like a constant,
3969 just copy it to a register. */
3970 if (general_operand (exp, GET_MODE (reg)))
3971 emit_move_insn (reg, exp);
3973 /* Otherwise, make a new insn to compute this expression and make sure the
3974 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3975 expression to make sure we don't have any sharing issues. */
3976 else
3978 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3980 if (insn_invalid_p (insn))
3981 gcc_unreachable ();
3985 pat = get_insns ();
3986 end_sequence ();
3988 return pat;
3991 /* Add EXPR to the end of basic block BB.
3993 This is used by both the PRE and code hoisting.
3995 For PRE, we want to verify that the expr is either transparent
3996 or locally anticipatable in the target block. This check makes
3997 no sense for code hoisting. */
3999 static void
4000 insert_insn_end_basic_block (struct expr *expr, basic_block bb, int pre)
4002 rtx insn = BB_END (bb);
4003 rtx new_insn;
4004 rtx reg = expr->reaching_reg;
4005 int regno = REGNO (reg);
4006 rtx pat, pat_end;
4008 pat = process_insert_insn (expr);
4009 gcc_assert (pat && INSN_P (pat));
4011 pat_end = pat;
4012 while (NEXT_INSN (pat_end) != NULL_RTX)
4013 pat_end = NEXT_INSN (pat_end);
4015 /* If the last insn is a jump, insert EXPR in front [taking care to
4016 handle cc0, etc. properly]. Similarly we need to care trapping
4017 instructions in presence of non-call exceptions. */
4019 if (JUMP_P (insn)
4020 || (NONJUMP_INSN_P (insn)
4021 && (!single_succ_p (bb)
4022 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
4024 #ifdef HAVE_cc0
4025 rtx note;
4026 #endif
4027 /* It should always be the case that we can put these instructions
4028 anywhere in the basic block with performing PRE optimizations.
4029 Check this. */
4030 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4031 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4032 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4034 /* If this is a jump table, then we can't insert stuff here. Since
4035 we know the previous real insn must be the tablejump, we insert
4036 the new instruction just before the tablejump. */
4037 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4038 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4039 insn = prev_real_insn (insn);
4041 #ifdef HAVE_cc0
4042 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4043 if cc0 isn't set. */
4044 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4045 if (note)
4046 insn = XEXP (note, 0);
4047 else
4049 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4050 if (maybe_cc0_setter
4051 && INSN_P (maybe_cc0_setter)
4052 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4053 insn = maybe_cc0_setter;
4055 #endif
4056 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4057 new_insn = emit_insn_before_noloc (pat, insn, bb);
4060 /* Likewise if the last insn is a call, as will happen in the presence
4061 of exception handling. */
4062 else if (CALL_P (insn)
4063 && (!single_succ_p (bb)
4064 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4066 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4067 we search backward and place the instructions before the first
4068 parameter is loaded. Do this for everyone for consistency and a
4069 presumption that we'll get better code elsewhere as well.
4071 It should always be the case that we can put these instructions
4072 anywhere in the basic block with performing PRE optimizations.
4073 Check this. */
4075 gcc_assert (!pre
4076 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4077 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4079 /* Since different machines initialize their parameter registers
4080 in different orders, assume nothing. Collect the set of all
4081 parameter registers. */
4082 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4084 /* If we found all the parameter loads, then we want to insert
4085 before the first parameter load.
4087 If we did not find all the parameter loads, then we might have
4088 stopped on the head of the block, which could be a CODE_LABEL.
4089 If we inserted before the CODE_LABEL, then we would be putting
4090 the insn in the wrong basic block. In that case, put the insn
4091 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4092 while (LABEL_P (insn)
4093 || NOTE_INSN_BASIC_BLOCK_P (insn))
4094 insn = NEXT_INSN (insn);
4096 new_insn = emit_insn_before_noloc (pat, insn, bb);
4098 else
4099 new_insn = emit_insn_after_noloc (pat, insn, bb);
4101 while (1)
4103 if (INSN_P (pat))
4105 add_label_notes (PATTERN (pat), new_insn);
4106 note_stores (PATTERN (pat), record_set_info, pat);
4108 if (pat == pat_end)
4109 break;
4110 pat = NEXT_INSN (pat);
4113 gcse_create_count++;
4115 if (dump_file)
4117 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
4118 bb->index, INSN_UID (new_insn));
4119 fprintf (dump_file, "copying expression %d to reg %d\n",
4120 expr->bitmap_index, regno);
4124 /* Insert partially redundant expressions on edges in the CFG to make
4125 the expressions fully redundant. */
4127 static int
4128 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4130 int e, i, j, num_edges, set_size, did_insert = 0;
4131 sbitmap *inserted;
4133 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4134 if it reaches any of the deleted expressions. */
4136 set_size = pre_insert_map[0]->size;
4137 num_edges = NUM_EDGES (edge_list);
4138 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4139 sbitmap_vector_zero (inserted, num_edges);
4141 for (e = 0; e < num_edges; e++)
4143 int indx;
4144 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4146 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4148 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4150 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4151 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4153 struct expr *expr = index_map[j];
4154 struct occr *occr;
4156 /* Now look at each deleted occurrence of this expression. */
4157 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4159 if (! occr->deleted_p)
4160 continue;
4162 /* Insert this expression on this edge if it would
4163 reach the deleted occurrence in BB. */
4164 if (!TEST_BIT (inserted[e], j))
4166 rtx insn;
4167 edge eg = INDEX_EDGE (edge_list, e);
4169 /* We can't insert anything on an abnormal and
4170 critical edge, so we insert the insn at the end of
4171 the previous block. There are several alternatives
4172 detailed in Morgans book P277 (sec 10.5) for
4173 handling this situation. This one is easiest for
4174 now. */
4176 if (eg->flags & EDGE_ABNORMAL)
4177 insert_insn_end_basic_block (index_map[j], bb, 0);
4178 else
4180 insn = process_insert_insn (index_map[j]);
4181 insert_insn_on_edge (insn, eg);
4184 if (dump_file)
4186 fprintf (dump_file, "PRE/HOIST: edge (%d,%d), ",
4187 bb->index,
4188 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4189 fprintf (dump_file, "copy expression %d\n",
4190 expr->bitmap_index);
4193 update_ld_motion_stores (expr);
4194 SET_BIT (inserted[e], j);
4195 did_insert = 1;
4196 gcse_create_count++;
4203 sbitmap_vector_free (inserted);
4204 return did_insert;
4207 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4208 Given "old_reg <- expr" (INSN), instead of adding after it
4209 reaching_reg <- old_reg
4210 it's better to do the following:
4211 reaching_reg <- expr
4212 old_reg <- reaching_reg
4213 because this way copy propagation can discover additional PRE
4214 opportunities. But if this fails, we try the old way.
4215 When "expr" is a store, i.e.
4216 given "MEM <- old_reg", instead of adding after it
4217 reaching_reg <- old_reg
4218 it's better to add it before as follows:
4219 reaching_reg <- old_reg
4220 MEM <- reaching_reg. */
4222 static void
4223 pre_insert_copy_insn (struct expr *expr, rtx insn)
4225 rtx reg = expr->reaching_reg;
4226 int regno = REGNO (reg);
4227 int indx = expr->bitmap_index;
4228 rtx pat = PATTERN (insn);
4229 rtx set, first_set, new_insn;
4230 rtx old_reg;
4231 int i;
4233 /* This block matches the logic in hash_scan_insn. */
4234 switch (GET_CODE (pat))
4236 case SET:
4237 set = pat;
4238 break;
4240 case PARALLEL:
4241 /* Search through the parallel looking for the set whose
4242 source was the expression that we're interested in. */
4243 first_set = NULL_RTX;
4244 set = NULL_RTX;
4245 for (i = 0; i < XVECLEN (pat, 0); i++)
4247 rtx x = XVECEXP (pat, 0, i);
4248 if (GET_CODE (x) == SET)
4250 /* If the source was a REG_EQUAL or REG_EQUIV note, we
4251 may not find an equivalent expression, but in this
4252 case the PARALLEL will have a single set. */
4253 if (first_set == NULL_RTX)
4254 first_set = x;
4255 if (expr_equiv_p (SET_SRC (x), expr->expr))
4257 set = x;
4258 break;
4263 gcc_assert (first_set);
4264 if (set == NULL_RTX)
4265 set = first_set;
4266 break;
4268 default:
4269 gcc_unreachable ();
4272 if (REG_P (SET_DEST (set)))
4274 old_reg = SET_DEST (set);
4275 /* Check if we can modify the set destination in the original insn. */
4276 if (validate_change (insn, &SET_DEST (set), reg, 0))
4278 new_insn = gen_move_insn (old_reg, reg);
4279 new_insn = emit_insn_after (new_insn, insn);
4281 /* Keep register set table up to date. */
4282 record_one_set (regno, insn);
4284 else
4286 new_insn = gen_move_insn (reg, old_reg);
4287 new_insn = emit_insn_after (new_insn, insn);
4289 /* Keep register set table up to date. */
4290 record_one_set (regno, new_insn);
4293 else /* This is possible only in case of a store to memory. */
4295 old_reg = SET_SRC (set);
4296 new_insn = gen_move_insn (reg, old_reg);
4298 /* Check if we can modify the set source in the original insn. */
4299 if (validate_change (insn, &SET_SRC (set), reg, 0))
4300 new_insn = emit_insn_before (new_insn, insn);
4301 else
4302 new_insn = emit_insn_after (new_insn, insn);
4304 /* Keep register set table up to date. */
4305 record_one_set (regno, new_insn);
4308 gcse_create_count++;
4310 if (dump_file)
4311 fprintf (dump_file,
4312 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4313 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4314 INSN_UID (insn), regno);
4317 /* Copy available expressions that reach the redundant expression
4318 to `reaching_reg'. */
4320 static void
4321 pre_insert_copies (void)
4323 unsigned int i, added_copy;
4324 struct expr *expr;
4325 struct occr *occr;
4326 struct occr *avail;
4328 /* For each available expression in the table, copy the result to
4329 `reaching_reg' if the expression reaches a deleted one.
4331 ??? The current algorithm is rather brute force.
4332 Need to do some profiling. */
4334 for (i = 0; i < expr_hash_table.size; i++)
4335 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4337 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4338 we don't want to insert a copy here because the expression may not
4339 really be redundant. So only insert an insn if the expression was
4340 deleted. This test also avoids further processing if the
4341 expression wasn't deleted anywhere. */
4342 if (expr->reaching_reg == NULL)
4343 continue;
4345 /* Set when we add a copy for that expression. */
4346 added_copy = 0;
4348 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4350 if (! occr->deleted_p)
4351 continue;
4353 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4355 rtx insn = avail->insn;
4357 /* No need to handle this one if handled already. */
4358 if (avail->copied_p)
4359 continue;
4361 /* Don't handle this one if it's a redundant one. */
4362 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4363 continue;
4365 /* Or if the expression doesn't reach the deleted one. */
4366 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4367 expr,
4368 BLOCK_FOR_INSN (occr->insn)))
4369 continue;
4371 added_copy = 1;
4373 /* Copy the result of avail to reaching_reg. */
4374 pre_insert_copy_insn (expr, insn);
4375 avail->copied_p = 1;
4379 if (added_copy)
4380 update_ld_motion_stores (expr);
4384 /* Emit move from SRC to DEST noting the equivalence with expression computed
4385 in INSN. */
4386 static rtx
4387 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4389 rtx new;
4390 rtx set = single_set (insn), set2;
4391 rtx note;
4392 rtx eqv;
4394 /* This should never fail since we're creating a reg->reg copy
4395 we've verified to be valid. */
4397 new = emit_insn_after (gen_move_insn (dest, src), insn);
4399 /* Note the equivalence for local CSE pass. */
4400 set2 = single_set (new);
4401 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4402 return new;
4403 if ((note = find_reg_equal_equiv_note (insn)))
4404 eqv = XEXP (note, 0);
4405 else
4406 eqv = SET_SRC (set);
4408 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4410 return new;
4413 /* Delete redundant computations.
4414 Deletion is done by changing the insn to copy the `reaching_reg' of
4415 the expression into the result of the SET. It is left to later passes
4416 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4418 Returns nonzero if a change is made. */
4420 static int
4421 pre_delete (void)
4423 unsigned int i;
4424 int changed;
4425 struct expr *expr;
4426 struct occr *occr;
4428 changed = 0;
4429 for (i = 0; i < expr_hash_table.size; i++)
4430 for (expr = expr_hash_table.table[i];
4431 expr != NULL;
4432 expr = expr->next_same_hash)
4434 int indx = expr->bitmap_index;
4436 /* We only need to search antic_occr since we require
4437 ANTLOC != 0. */
4439 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4441 rtx insn = occr->insn;
4442 rtx set;
4443 basic_block bb = BLOCK_FOR_INSN (insn);
4445 /* We only delete insns that have a single_set. */
4446 if (TEST_BIT (pre_delete_map[bb->index], indx)
4447 && (set = single_set (insn)) != 0
4448 && dbg_cnt (pre_insn))
4450 /* Create a pseudo-reg to store the result of reaching
4451 expressions into. Get the mode for the new pseudo from
4452 the mode of the original destination pseudo. */
4453 if (expr->reaching_reg == NULL)
4454 expr->reaching_reg
4455 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4457 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4458 delete_insn (insn);
4459 occr->deleted_p = 1;
4460 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4461 changed = 1;
4462 gcse_subst_count++;
4464 if (dump_file)
4466 fprintf (dump_file,
4467 "PRE: redundant insn %d (expression %d) in ",
4468 INSN_UID (insn), indx);
4469 fprintf (dump_file, "bb %d, reaching reg is %d\n",
4470 bb->index, REGNO (expr->reaching_reg));
4476 return changed;
4479 /* Perform GCSE optimizations using PRE.
4480 This is called by one_pre_gcse_pass after all the dataflow analysis
4481 has been done.
4483 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4484 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4485 Compiler Design and Implementation.
4487 ??? A new pseudo reg is created to hold the reaching expression. The nice
4488 thing about the classical approach is that it would try to use an existing
4489 reg. If the register can't be adequately optimized [i.e. we introduce
4490 reload problems], one could add a pass here to propagate the new register
4491 through the block.
4493 ??? We don't handle single sets in PARALLELs because we're [currently] not
4494 able to copy the rest of the parallel when we insert copies to create full
4495 redundancies from partial redundancies. However, there's no reason why we
4496 can't handle PARALLELs in the cases where there are no partial
4497 redundancies. */
4499 static int
4500 pre_gcse (void)
4502 unsigned int i;
4503 int did_insert, changed;
4504 struct expr **index_map;
4505 struct expr *expr;
4507 /* Compute a mapping from expression number (`bitmap_index') to
4508 hash table entry. */
4510 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4511 for (i = 0; i < expr_hash_table.size; i++)
4512 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4513 index_map[expr->bitmap_index] = expr;
4515 /* Reset bitmap used to track which insns are redundant. */
4516 pre_redundant_insns = sbitmap_alloc (max_cuid);
4517 sbitmap_zero (pre_redundant_insns);
4519 /* Delete the redundant insns first so that
4520 - we know what register to use for the new insns and for the other
4521 ones with reaching expressions
4522 - we know which insns are redundant when we go to create copies */
4524 changed = pre_delete ();
4525 did_insert = pre_edge_insert (edge_list, index_map);
4527 /* In other places with reaching expressions, copy the expression to the
4528 specially allocated pseudo-reg that reaches the redundant expr. */
4529 pre_insert_copies ();
4530 if (did_insert)
4532 commit_edge_insertions ();
4533 changed = 1;
4536 free (index_map);
4537 sbitmap_free (pre_redundant_insns);
4538 return changed;
4541 /* Top level routine to perform one PRE GCSE pass.
4543 Return nonzero if a change was made. */
4545 static int
4546 one_pre_gcse_pass (int pass)
4548 int changed = 0;
4550 gcse_subst_count = 0;
4551 gcse_create_count = 0;
4553 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4554 add_noreturn_fake_exit_edges ();
4555 if (flag_gcse_lm)
4556 compute_ld_motion_mems ();
4558 compute_hash_table (&expr_hash_table);
4559 trim_ld_motion_mems ();
4560 if (dump_file)
4561 dump_hash_table (dump_file, "Expression", &expr_hash_table);
4563 if (expr_hash_table.n_elems > 0)
4565 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4566 compute_pre_data ();
4567 changed |= pre_gcse ();
4568 free_edge_list (edge_list);
4569 free_pre_mem ();
4572 free_ldst_mems ();
4573 remove_fake_exit_edges ();
4574 free_hash_table (&expr_hash_table);
4576 if (dump_file)
4578 fprintf (dump_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4579 current_function_name (), pass, bytes_used);
4580 fprintf (dump_file, "%d substs, %d insns created\n",
4581 gcse_subst_count, gcse_create_count);
4584 return changed;
4587 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4588 If notes are added to an insn which references a CODE_LABEL, the
4589 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4590 because the following loop optimization pass requires them. */
4592 /* ??? If there was a jump optimization pass after gcse and before loop,
4593 then we would not need to do this here, because jump would add the
4594 necessary REG_LABEL notes. */
4596 static void
4597 add_label_notes (rtx x, rtx insn)
4599 enum rtx_code code = GET_CODE (x);
4600 int i, j;
4601 const char *fmt;
4603 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4605 /* This code used to ignore labels that referred to dispatch tables to
4606 avoid flow generating (slightly) worse code.
4608 We no longer ignore such label references (see LABEL_REF handling in
4609 mark_jump_label for additional information). */
4611 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4612 REG_NOTES (insn));
4613 if (LABEL_P (XEXP (x, 0)))
4614 LABEL_NUSES (XEXP (x, 0))++;
4615 return;
4618 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4620 if (fmt[i] == 'e')
4621 add_label_notes (XEXP (x, i), insn);
4622 else if (fmt[i] == 'E')
4623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4624 add_label_notes (XVECEXP (x, i, j), insn);
4628 /* Compute transparent outgoing information for each block.
4630 An expression is transparent to an edge unless it is killed by
4631 the edge itself. This can only happen with abnormal control flow,
4632 when the edge is traversed through a call. This happens with
4633 non-local labels and exceptions.
4635 This would not be necessary if we split the edge. While this is
4636 normally impossible for abnormal critical edges, with some effort
4637 it should be possible with exception handling, since we still have
4638 control over which handler should be invoked. But due to increased
4639 EH table sizes, this may not be worthwhile. */
4641 static void
4642 compute_transpout (void)
4644 basic_block bb;
4645 unsigned int i;
4646 struct expr *expr;
4648 sbitmap_vector_ones (transpout, last_basic_block);
4650 FOR_EACH_BB (bb)
4652 /* Note that flow inserted a nop a the end of basic blocks that
4653 end in call instructions for reasons other than abnormal
4654 control flow. */
4655 if (! CALL_P (BB_END (bb)))
4656 continue;
4658 for (i = 0; i < expr_hash_table.size; i++)
4659 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4660 if (MEM_P (expr->expr))
4662 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4663 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4664 continue;
4666 /* ??? Optimally, we would use interprocedural alias
4667 analysis to determine if this mem is actually killed
4668 by this call. */
4669 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4674 /* Code Hoisting variables and subroutines. */
4676 /* Very busy expressions. */
4677 static sbitmap *hoist_vbein;
4678 static sbitmap *hoist_vbeout;
4680 /* Hoistable expressions. */
4681 static sbitmap *hoist_exprs;
4683 /* ??? We could compute post dominators and run this algorithm in
4684 reverse to perform tail merging, doing so would probably be
4685 more effective than the tail merging code in jump.c.
4687 It's unclear if tail merging could be run in parallel with
4688 code hoisting. It would be nice. */
4690 /* Allocate vars used for code hoisting analysis. */
4692 static void
4693 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4695 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4696 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4697 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4699 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4700 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4701 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4702 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4705 /* Free vars used for code hoisting analysis. */
4707 static void
4708 free_code_hoist_mem (void)
4710 sbitmap_vector_free (antloc);
4711 sbitmap_vector_free (transp);
4712 sbitmap_vector_free (comp);
4714 sbitmap_vector_free (hoist_vbein);
4715 sbitmap_vector_free (hoist_vbeout);
4716 sbitmap_vector_free (hoist_exprs);
4717 sbitmap_vector_free (transpout);
4719 free_dominance_info (CDI_DOMINATORS);
4722 /* Compute the very busy expressions at entry/exit from each block.
4724 An expression is very busy if all paths from a given point
4725 compute the expression. */
4727 static void
4728 compute_code_hoist_vbeinout (void)
4730 int changed, passes;
4731 basic_block bb;
4733 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4734 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4736 passes = 0;
4737 changed = 1;
4739 while (changed)
4741 changed = 0;
4743 /* We scan the blocks in the reverse order to speed up
4744 the convergence. */
4745 FOR_EACH_BB_REVERSE (bb)
4747 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4748 hoist_vbeout[bb->index], transp[bb->index]);
4749 if (bb->next_bb != EXIT_BLOCK_PTR)
4750 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4753 passes++;
4756 if (dump_file)
4757 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
4760 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4762 static void
4763 compute_code_hoist_data (void)
4765 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4766 compute_transpout ();
4767 compute_code_hoist_vbeinout ();
4768 calculate_dominance_info (CDI_DOMINATORS);
4769 if (dump_file)
4770 fprintf (dump_file, "\n");
4773 /* Determine if the expression identified by EXPR_INDEX would
4774 reach BB unimpared if it was placed at the end of EXPR_BB.
4776 It's unclear exactly what Muchnick meant by "unimpared". It seems
4777 to me that the expression must either be computed or transparent in
4778 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4779 would allow the expression to be hoisted out of loops, even if
4780 the expression wasn't a loop invariant.
4782 Contrast this to reachability for PRE where an expression is
4783 considered reachable if *any* path reaches instead of *all*
4784 paths. */
4786 static int
4787 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4789 edge pred;
4790 edge_iterator ei;
4791 int visited_allocated_locally = 0;
4794 if (visited == NULL)
4796 visited_allocated_locally = 1;
4797 visited = XCNEWVEC (char, last_basic_block);
4800 FOR_EACH_EDGE (pred, ei, bb->preds)
4802 basic_block pred_bb = pred->src;
4804 if (pred->src == ENTRY_BLOCK_PTR)
4805 break;
4806 else if (pred_bb == expr_bb)
4807 continue;
4808 else if (visited[pred_bb->index])
4809 continue;
4811 /* Does this predecessor generate this expression? */
4812 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4813 break;
4814 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4815 break;
4817 /* Not killed. */
4818 else
4820 visited[pred_bb->index] = 1;
4821 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4822 pred_bb, visited))
4823 break;
4826 if (visited_allocated_locally)
4827 free (visited);
4829 return (pred == NULL);
4832 /* Actually perform code hoisting. */
4834 static void
4835 hoist_code (void)
4837 basic_block bb, dominated;
4838 VEC (basic_block, heap) *domby;
4839 unsigned int i,j;
4840 struct expr **index_map;
4841 struct expr *expr;
4843 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4845 /* Compute a mapping from expression number (`bitmap_index') to
4846 hash table entry. */
4848 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4849 for (i = 0; i < expr_hash_table.size; i++)
4850 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4851 index_map[expr->bitmap_index] = expr;
4853 /* Walk over each basic block looking for potentially hoistable
4854 expressions, nothing gets hoisted from the entry block. */
4855 FOR_EACH_BB (bb)
4857 int found = 0;
4858 int insn_inserted_p;
4860 domby = get_dominated_by (CDI_DOMINATORS, bb);
4861 /* Examine each expression that is very busy at the exit of this
4862 block. These are the potentially hoistable expressions. */
4863 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4865 int hoistable = 0;
4867 if (TEST_BIT (hoist_vbeout[bb->index], i)
4868 && TEST_BIT (transpout[bb->index], i))
4870 /* We've found a potentially hoistable expression, now
4871 we look at every block BB dominates to see if it
4872 computes the expression. */
4873 for (j = 0; VEC_iterate (basic_block, domby, j, dominated); j++)
4875 /* Ignore self dominance. */
4876 if (bb == dominated)
4877 continue;
4878 /* We've found a dominated block, now see if it computes
4879 the busy expression and whether or not moving that
4880 expression to the "beginning" of that block is safe. */
4881 if (!TEST_BIT (antloc[dominated->index], i))
4882 continue;
4884 /* Note if the expression would reach the dominated block
4885 unimpared if it was placed at the end of BB.
4887 Keep track of how many times this expression is hoistable
4888 from a dominated block into BB. */
4889 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4890 hoistable++;
4893 /* If we found more than one hoistable occurrence of this
4894 expression, then note it in the bitmap of expressions to
4895 hoist. It makes no sense to hoist things which are computed
4896 in only one BB, and doing so tends to pessimize register
4897 allocation. One could increase this value to try harder
4898 to avoid any possible code expansion due to register
4899 allocation issues; however experiments have shown that
4900 the vast majority of hoistable expressions are only movable
4901 from two successors, so raising this threshold is likely
4902 to nullify any benefit we get from code hoisting. */
4903 if (hoistable > 1)
4905 SET_BIT (hoist_exprs[bb->index], i);
4906 found = 1;
4910 /* If we found nothing to hoist, then quit now. */
4911 if (! found)
4913 VEC_free (basic_block, heap, domby);
4914 continue;
4917 /* Loop over all the hoistable expressions. */
4918 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4920 /* We want to insert the expression into BB only once, so
4921 note when we've inserted it. */
4922 insn_inserted_p = 0;
4924 /* These tests should be the same as the tests above. */
4925 if (TEST_BIT (hoist_exprs[bb->index], i))
4927 /* We've found a potentially hoistable expression, now
4928 we look at every block BB dominates to see if it
4929 computes the expression. */
4930 for (j = 0; VEC_iterate (basic_block, domby, j, dominated); j++)
4932 /* Ignore self dominance. */
4933 if (bb == dominated)
4934 continue;
4936 /* We've found a dominated block, now see if it computes
4937 the busy expression and whether or not moving that
4938 expression to the "beginning" of that block is safe. */
4939 if (!TEST_BIT (antloc[dominated->index], i))
4940 continue;
4942 /* The expression is computed in the dominated block and
4943 it would be safe to compute it at the start of the
4944 dominated block. Now we have to determine if the
4945 expression would reach the dominated block if it was
4946 placed at the end of BB. */
4947 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4949 struct expr *expr = index_map[i];
4950 struct occr *occr = expr->antic_occr;
4951 rtx insn;
4952 rtx set;
4954 /* Find the right occurrence of this expression. */
4955 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4956 occr = occr->next;
4958 gcc_assert (occr);
4959 insn = occr->insn;
4960 set = single_set (insn);
4961 gcc_assert (set);
4963 /* Create a pseudo-reg to store the result of reaching
4964 expressions into. Get the mode for the new pseudo
4965 from the mode of the original destination pseudo. */
4966 if (expr->reaching_reg == NULL)
4967 expr->reaching_reg
4968 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4970 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4971 delete_insn (insn);
4972 occr->deleted_p = 1;
4973 if (!insn_inserted_p)
4975 insert_insn_end_basic_block (index_map[i], bb, 0);
4976 insn_inserted_p = 1;
4982 VEC_free (basic_block, heap, domby);
4985 free (index_map);
4988 /* Top level routine to perform one code hoisting (aka unification) pass
4990 Return nonzero if a change was made. */
4992 static int
4993 one_code_hoisting_pass (void)
4995 int changed = 0;
4997 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4998 compute_hash_table (&expr_hash_table);
4999 if (dump_file)
5000 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
5002 if (expr_hash_table.n_elems > 0)
5004 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
5005 compute_code_hoist_data ();
5006 hoist_code ();
5007 free_code_hoist_mem ();
5010 free_hash_table (&expr_hash_table);
5012 return changed;
5015 /* Here we provide the things required to do store motion towards
5016 the exit. In order for this to be effective, gcse also needed to
5017 be taught how to move a load when it is kill only by a store to itself.
5019 int i;
5020 float a[10];
5022 void foo(float scale)
5024 for (i=0; i<10; i++)
5025 a[i] *= scale;
5028 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5029 the load out since its live around the loop, and stored at the bottom
5030 of the loop.
5032 The 'Load Motion' referred to and implemented in this file is
5033 an enhancement to gcse which when using edge based lcm, recognizes
5034 this situation and allows gcse to move the load out of the loop.
5036 Once gcse has hoisted the load, store motion can then push this
5037 load towards the exit, and we end up with no loads or stores of 'i'
5038 in the loop. */
5040 static hashval_t
5041 pre_ldst_expr_hash (const void *p)
5043 int do_not_record_p = 0;
5044 const struct ls_expr *x = p;
5045 return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
5048 static int
5049 pre_ldst_expr_eq (const void *p1, const void *p2)
5051 const struct ls_expr *ptr1 = p1, *ptr2 = p2;
5052 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
5055 /* This will search the ldst list for a matching expression. If it
5056 doesn't find one, we create one and initialize it. */
5058 static struct ls_expr *
5059 ldst_entry (rtx x)
5061 int do_not_record_p = 0;
5062 struct ls_expr * ptr;
5063 unsigned int hash;
5064 void **slot;
5065 struct ls_expr e;
5067 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5068 NULL, /*have_reg_qty=*/false);
5070 e.pattern = x;
5071 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
5072 if (*slot)
5073 return (struct ls_expr *)*slot;
5075 ptr = XNEW (struct ls_expr);
5077 ptr->next = pre_ldst_mems;
5078 ptr->expr = NULL;
5079 ptr->pattern = x;
5080 ptr->pattern_regs = NULL_RTX;
5081 ptr->loads = NULL_RTX;
5082 ptr->stores = NULL_RTX;
5083 ptr->reaching_reg = NULL_RTX;
5084 ptr->invalid = 0;
5085 ptr->index = 0;
5086 ptr->hash_index = hash;
5087 pre_ldst_mems = ptr;
5088 *slot = ptr;
5090 return ptr;
5093 /* Free up an individual ldst entry. */
5095 static void
5096 free_ldst_entry (struct ls_expr * ptr)
5098 free_INSN_LIST_list (& ptr->loads);
5099 free_INSN_LIST_list (& ptr->stores);
5101 free (ptr);
5104 /* Free up all memory associated with the ldst list. */
5106 static void
5107 free_ldst_mems (void)
5109 if (pre_ldst_table)
5110 htab_delete (pre_ldst_table);
5111 pre_ldst_table = NULL;
5113 while (pre_ldst_mems)
5115 struct ls_expr * tmp = pre_ldst_mems;
5117 pre_ldst_mems = pre_ldst_mems->next;
5119 free_ldst_entry (tmp);
5122 pre_ldst_mems = NULL;
5125 /* Dump debugging info about the ldst list. */
5127 static void
5128 print_ldst_list (FILE * file)
5130 struct ls_expr * ptr;
5132 fprintf (file, "LDST list: \n");
5134 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5136 fprintf (file, " Pattern (%3d): ", ptr->index);
5138 print_rtl (file, ptr->pattern);
5140 fprintf (file, "\n Loads : ");
5142 if (ptr->loads)
5143 print_rtl (file, ptr->loads);
5144 else
5145 fprintf (file, "(nil)");
5147 fprintf (file, "\n Stores : ");
5149 if (ptr->stores)
5150 print_rtl (file, ptr->stores);
5151 else
5152 fprintf (file, "(nil)");
5154 fprintf (file, "\n\n");
5157 fprintf (file, "\n");
5160 /* Returns 1 if X is in the list of ldst only expressions. */
5162 static struct ls_expr *
5163 find_rtx_in_ldst (rtx x)
5165 struct ls_expr e;
5166 void **slot;
5167 if (!pre_ldst_table)
5168 return NULL;
5169 e.pattern = x;
5170 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
5171 if (!slot || ((struct ls_expr *)*slot)->invalid)
5172 return NULL;
5173 return *slot;
5176 /* Assign each element of the list of mems a monotonically increasing value. */
5178 static int
5179 enumerate_ldsts (void)
5181 struct ls_expr * ptr;
5182 int n = 0;
5184 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5185 ptr->index = n++;
5187 return n;
5190 /* Return first item in the list. */
5192 static inline struct ls_expr *
5193 first_ls_expr (void)
5195 return pre_ldst_mems;
5198 /* Return the next item in the list after the specified one. */
5200 static inline struct ls_expr *
5201 next_ls_expr (struct ls_expr * ptr)
5203 return ptr->next;
5206 /* Load Motion for loads which only kill themselves. */
5208 /* Return true if x is a simple MEM operation, with no registers or
5209 side effects. These are the types of loads we consider for the
5210 ld_motion list, otherwise we let the usual aliasing take care of it. */
5212 static int
5213 simple_mem (const_rtx x)
5215 if (! MEM_P (x))
5216 return 0;
5218 if (MEM_VOLATILE_P (x))
5219 return 0;
5221 if (GET_MODE (x) == BLKmode)
5222 return 0;
5224 /* If we are handling exceptions, we must be careful with memory references
5225 that may trap. If we are not, the behavior is undefined, so we may just
5226 continue. */
5227 if (flag_non_call_exceptions && may_trap_p (x))
5228 return 0;
5230 if (side_effects_p (x))
5231 return 0;
5233 /* Do not consider function arguments passed on stack. */
5234 if (reg_mentioned_p (stack_pointer_rtx, x))
5235 return 0;
5237 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5238 return 0;
5240 return 1;
5243 /* Make sure there isn't a buried reference in this pattern anywhere.
5244 If there is, invalidate the entry for it since we're not capable
5245 of fixing it up just yet.. We have to be sure we know about ALL
5246 loads since the aliasing code will allow all entries in the
5247 ld_motion list to not-alias itself. If we miss a load, we will get
5248 the wrong value since gcse might common it and we won't know to
5249 fix it up. */
5251 static void
5252 invalidate_any_buried_refs (rtx x)
5254 const char * fmt;
5255 int i, j;
5256 struct ls_expr * ptr;
5258 /* Invalidate it in the list. */
5259 if (MEM_P (x) && simple_mem (x))
5261 ptr = ldst_entry (x);
5262 ptr->invalid = 1;
5265 /* Recursively process the insn. */
5266 fmt = GET_RTX_FORMAT (GET_CODE (x));
5268 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5270 if (fmt[i] == 'e')
5271 invalidate_any_buried_refs (XEXP (x, i));
5272 else if (fmt[i] == 'E')
5273 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5274 invalidate_any_buried_refs (XVECEXP (x, i, j));
5278 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5279 being defined as MEM loads and stores to symbols, with no side effects
5280 and no registers in the expression. For a MEM destination, we also
5281 check that the insn is still valid if we replace the destination with a
5282 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5283 which don't match this criteria, they are invalidated and trimmed out
5284 later. */
5286 static void
5287 compute_ld_motion_mems (void)
5289 struct ls_expr * ptr;
5290 basic_block bb;
5291 rtx insn;
5293 pre_ldst_mems = NULL;
5294 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5295 pre_ldst_expr_eq, NULL);
5297 FOR_EACH_BB (bb)
5299 FOR_BB_INSNS (bb, insn)
5301 if (INSN_P (insn))
5303 if (GET_CODE (PATTERN (insn)) == SET)
5305 rtx src = SET_SRC (PATTERN (insn));
5306 rtx dest = SET_DEST (PATTERN (insn));
5308 /* Check for a simple LOAD... */
5309 if (MEM_P (src) && simple_mem (src))
5311 ptr = ldst_entry (src);
5312 if (REG_P (dest))
5313 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5314 else
5315 ptr->invalid = 1;
5317 else
5319 /* Make sure there isn't a buried load somewhere. */
5320 invalidate_any_buried_refs (src);
5323 /* Check for stores. Don't worry about aliased ones, they
5324 will block any movement we might do later. We only care
5325 about this exact pattern since those are the only
5326 circumstance that we will ignore the aliasing info. */
5327 if (MEM_P (dest) && simple_mem (dest))
5329 ptr = ldst_entry (dest);
5331 if (! MEM_P (src)
5332 && GET_CODE (src) != ASM_OPERANDS
5333 /* Check for REG manually since want_to_gcse_p
5334 returns 0 for all REGs. */
5335 && can_assign_to_reg_p (src))
5336 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5337 else
5338 ptr->invalid = 1;
5341 else
5342 invalidate_any_buried_refs (PATTERN (insn));
5348 /* Remove any references that have been either invalidated or are not in the
5349 expression list for pre gcse. */
5351 static void
5352 trim_ld_motion_mems (void)
5354 struct ls_expr * * last = & pre_ldst_mems;
5355 struct ls_expr * ptr = pre_ldst_mems;
5357 while (ptr != NULL)
5359 struct expr * expr;
5361 /* Delete if entry has been made invalid. */
5362 if (! ptr->invalid)
5364 /* Delete if we cannot find this mem in the expression list. */
5365 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5367 for (expr = expr_hash_table.table[hash];
5368 expr != NULL;
5369 expr = expr->next_same_hash)
5370 if (expr_equiv_p (expr->expr, ptr->pattern))
5371 break;
5373 else
5374 expr = (struct expr *) 0;
5376 if (expr)
5378 /* Set the expression field if we are keeping it. */
5379 ptr->expr = expr;
5380 last = & ptr->next;
5381 ptr = ptr->next;
5383 else
5385 *last = ptr->next;
5386 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5387 free_ldst_entry (ptr);
5388 ptr = * last;
5392 /* Show the world what we've found. */
5393 if (dump_file && pre_ldst_mems != NULL)
5394 print_ldst_list (dump_file);
5397 /* This routine will take an expression which we are replacing with
5398 a reaching register, and update any stores that are needed if
5399 that expression is in the ld_motion list. Stores are updated by
5400 copying their SRC to the reaching register, and then storing
5401 the reaching register into the store location. These keeps the
5402 correct value in the reaching register for the loads. */
5404 static void
5405 update_ld_motion_stores (struct expr * expr)
5407 struct ls_expr * mem_ptr;
5409 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5411 /* We can try to find just the REACHED stores, but is shouldn't
5412 matter to set the reaching reg everywhere... some might be
5413 dead and should be eliminated later. */
5415 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5416 where reg is the reaching reg used in the load. We checked in
5417 compute_ld_motion_mems that we can replace (set mem expr) with
5418 (set reg expr) in that insn. */
5419 rtx list = mem_ptr->stores;
5421 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5423 rtx insn = XEXP (list, 0);
5424 rtx pat = PATTERN (insn);
5425 rtx src = SET_SRC (pat);
5426 rtx reg = expr->reaching_reg;
5427 rtx copy, new;
5429 /* If we've already copied it, continue. */
5430 if (expr->reaching_reg == src)
5431 continue;
5433 if (dump_file)
5435 fprintf (dump_file, "PRE: store updated with reaching reg ");
5436 print_rtl (dump_file, expr->reaching_reg);
5437 fprintf (dump_file, ":\n ");
5438 print_inline_rtx (dump_file, insn, 8);
5439 fprintf (dump_file, "\n");
5442 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5443 new = emit_insn_before (copy, insn);
5444 record_one_set (REGNO (reg), new);
5445 SET_SRC (pat) = reg;
5446 df_insn_rescan (insn);
5448 /* un-recognize this pattern since it's probably different now. */
5449 INSN_CODE (insn) = -1;
5450 gcse_create_count++;
5455 /* Store motion code. */
5457 #define ANTIC_STORE_LIST(x) ((x)->loads)
5458 #define AVAIL_STORE_LIST(x) ((x)->stores)
5459 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5461 /* This is used to communicate the target bitvector we want to use in the
5462 reg_set_info routine when called via the note_stores mechanism. */
5463 static int * regvec;
5465 /* And current insn, for the same routine. */
5466 static rtx compute_store_table_current_insn;
5468 /* Used in computing the reverse edge graph bit vectors. */
5469 static sbitmap * st_antloc;
5471 /* Global holding the number of store expressions we are dealing with. */
5472 static int num_stores;
5474 /* Checks to set if we need to mark a register set. Called from
5475 note_stores. */
5477 static void
5478 reg_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
5479 void *data)
5481 sbitmap bb_reg = data;
5483 if (GET_CODE (dest) == SUBREG)
5484 dest = SUBREG_REG (dest);
5486 if (REG_P (dest))
5488 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5489 if (bb_reg)
5490 SET_BIT (bb_reg, REGNO (dest));
5494 /* Clear any mark that says that this insn sets dest. Called from
5495 note_stores. */
5497 static void
5498 reg_clear_last_set (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
5499 void *data)
5501 int *dead_vec = data;
5503 if (GET_CODE (dest) == SUBREG)
5504 dest = SUBREG_REG (dest);
5506 if (REG_P (dest) &&
5507 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5508 dead_vec[REGNO (dest)] = 0;
5511 /* Return zero if some of the registers in list X are killed
5512 due to set of registers in bitmap REGS_SET. */
5514 static bool
5515 store_ops_ok (const_rtx x, int *regs_set)
5517 const_rtx reg;
5519 for (; x; x = XEXP (x, 1))
5521 reg = XEXP (x, 0);
5522 if (regs_set[REGNO(reg)])
5523 return false;
5526 return true;
5529 /* Returns a list of registers mentioned in X. */
5530 static rtx
5531 extract_mentioned_regs (rtx x)
5533 return extract_mentioned_regs_helper (x, NULL_RTX);
5536 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5537 registers. */
5538 static rtx
5539 extract_mentioned_regs_helper (rtx x, rtx accum)
5541 int i;
5542 enum rtx_code code;
5543 const char * fmt;
5545 /* Repeat is used to turn tail-recursion into iteration. */
5546 repeat:
5548 if (x == 0)
5549 return accum;
5551 code = GET_CODE (x);
5552 switch (code)
5554 case REG:
5555 return alloc_EXPR_LIST (0, x, accum);
5557 case MEM:
5558 x = XEXP (x, 0);
5559 goto repeat;
5561 case PRE_DEC:
5562 case PRE_INC:
5563 case PRE_MODIFY:
5564 case POST_DEC:
5565 case POST_INC:
5566 case POST_MODIFY:
5567 /* We do not run this function with arguments having side effects. */
5568 gcc_unreachable ();
5570 case PC:
5571 case CC0: /*FIXME*/
5572 case CONST:
5573 case CONST_INT:
5574 case CONST_DOUBLE:
5575 case CONST_FIXED:
5576 case CONST_VECTOR:
5577 case SYMBOL_REF:
5578 case LABEL_REF:
5579 case ADDR_VEC:
5580 case ADDR_DIFF_VEC:
5581 return accum;
5583 default:
5584 break;
5587 i = GET_RTX_LENGTH (code) - 1;
5588 fmt = GET_RTX_FORMAT (code);
5590 for (; i >= 0; i--)
5592 if (fmt[i] == 'e')
5594 rtx tem = XEXP (x, i);
5596 /* If we are about to do the last recursive call
5597 needed at this level, change it into iteration. */
5598 if (i == 0)
5600 x = tem;
5601 goto repeat;
5604 accum = extract_mentioned_regs_helper (tem, accum);
5606 else if (fmt[i] == 'E')
5608 int j;
5610 for (j = 0; j < XVECLEN (x, i); j++)
5611 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5615 return accum;
5618 /* Determine whether INSN is MEM store pattern that we will consider moving.
5619 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5620 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5621 including) the insn in this basic block. We must be passing through BB from
5622 head to end, as we are using this fact to speed things up.
5624 The results are stored this way:
5626 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5627 -- if the processed expression is not anticipatable, NULL_RTX is added
5628 there instead, so that we can use it as indicator that no further
5629 expression of this type may be anticipatable
5630 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5631 consequently, all of them but this head are dead and may be deleted.
5632 -- if the expression is not available, the insn due to that it fails to be
5633 available is stored in reaching_reg.
5635 The things are complicated a bit by fact that there already may be stores
5636 to the same MEM from other blocks; also caller must take care of the
5637 necessary cleanup of the temporary markers after end of the basic block.
5640 static void
5641 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5643 struct ls_expr * ptr;
5644 rtx dest, set, tmp;
5645 int check_anticipatable, check_available;
5646 basic_block bb = BLOCK_FOR_INSN (insn);
5648 set = single_set (insn);
5649 if (!set)
5650 return;
5652 dest = SET_DEST (set);
5654 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5655 || GET_MODE (dest) == BLKmode)
5656 return;
5658 if (side_effects_p (dest))
5659 return;
5661 /* If we are handling exceptions, we must be careful with memory references
5662 that may trap. If we are not, the behavior is undefined, so we may just
5663 continue. */
5664 if (flag_non_call_exceptions && may_trap_p (dest))
5665 return;
5667 /* Even if the destination cannot trap, the source may. In this case we'd
5668 need to handle updating the REG_EH_REGION note. */
5669 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5670 return;
5672 /* Make sure that the SET_SRC of this store insns can be assigned to
5673 a register, or we will fail later on in replace_store_insn, which
5674 assumes that we can do this. But sometimes the target machine has
5675 oddities like MEM read-modify-write instruction. See for example
5676 PR24257. */
5677 if (!can_assign_to_reg_p (SET_SRC (set)))
5678 return;
5680 ptr = ldst_entry (dest);
5681 if (!ptr->pattern_regs)
5682 ptr->pattern_regs = extract_mentioned_regs (dest);
5684 /* Do not check for anticipatability if we either found one anticipatable
5685 store already, or tested for one and found out that it was killed. */
5686 check_anticipatable = 0;
5687 if (!ANTIC_STORE_LIST (ptr))
5688 check_anticipatable = 1;
5689 else
5691 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5692 if (tmp != NULL_RTX
5693 && BLOCK_FOR_INSN (tmp) != bb)
5694 check_anticipatable = 1;
5696 if (check_anticipatable)
5698 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5699 tmp = NULL_RTX;
5700 else
5701 tmp = insn;
5702 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5703 ANTIC_STORE_LIST (ptr));
5706 /* It is not necessary to check whether store is available if we did
5707 it successfully before; if we failed before, do not bother to check
5708 until we reach the insn that caused us to fail. */
5709 check_available = 0;
5710 if (!AVAIL_STORE_LIST (ptr))
5711 check_available = 1;
5712 else
5714 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5715 if (BLOCK_FOR_INSN (tmp) != bb)
5716 check_available = 1;
5718 if (check_available)
5720 /* Check that we have already reached the insn at that the check
5721 failed last time. */
5722 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5724 for (tmp = BB_END (bb);
5725 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5726 tmp = PREV_INSN (tmp))
5727 continue;
5728 if (tmp == insn)
5729 check_available = 0;
5731 else
5732 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5733 bb, regs_set_after,
5734 &LAST_AVAIL_CHECK_FAILURE (ptr));
5736 if (!check_available)
5737 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5740 /* Find available and anticipatable stores. */
5742 static int
5743 compute_store_table (void)
5745 int ret;
5746 basic_block bb;
5747 unsigned regno;
5748 rtx insn, pat, tmp;
5749 int *last_set_in, *already_set;
5750 struct ls_expr * ptr, **prev_next_ptr_ptr;
5752 max_gcse_regno = max_reg_num ();
5754 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5755 max_gcse_regno);
5756 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5757 pre_ldst_mems = 0;
5758 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5759 pre_ldst_expr_eq, NULL);
5760 last_set_in = XCNEWVEC (int, max_gcse_regno);
5761 already_set = XNEWVEC (int, max_gcse_regno);
5763 /* Find all the stores we care about. */
5764 FOR_EACH_BB (bb)
5766 /* First compute the registers set in this block. */
5767 regvec = last_set_in;
5769 FOR_BB_INSNS (bb, insn)
5771 if (! INSN_P (insn))
5772 continue;
5774 if (CALL_P (insn))
5776 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5777 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5779 last_set_in[regno] = INSN_UID (insn);
5780 SET_BIT (reg_set_in_block[bb->index], regno);
5784 pat = PATTERN (insn);
5785 compute_store_table_current_insn = insn;
5786 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5789 /* Now find the stores. */
5790 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5791 regvec = already_set;
5792 FOR_BB_INSNS (bb, insn)
5794 if (! INSN_P (insn))
5795 continue;
5797 if (CALL_P (insn))
5799 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5800 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5801 already_set[regno] = 1;
5804 pat = PATTERN (insn);
5805 note_stores (pat, reg_set_info, NULL);
5807 /* Now that we've marked regs, look for stores. */
5808 find_moveable_store (insn, already_set, last_set_in);
5810 /* Unmark regs that are no longer set. */
5811 compute_store_table_current_insn = insn;
5812 note_stores (pat, reg_clear_last_set, last_set_in);
5813 if (CALL_P (insn))
5815 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5816 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5817 && last_set_in[regno] == INSN_UID (insn))
5818 last_set_in[regno] = 0;
5822 #ifdef ENABLE_CHECKING
5823 /* last_set_in should now be all-zero. */
5824 for (regno = 0; regno < max_gcse_regno; regno++)
5825 gcc_assert (!last_set_in[regno]);
5826 #endif
5828 /* Clear temporary marks. */
5829 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5831 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5832 if (ANTIC_STORE_LIST (ptr)
5833 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5834 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5838 /* Remove the stores that are not available anywhere, as there will
5839 be no opportunity to optimize them. */
5840 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5841 ptr != NULL;
5842 ptr = *prev_next_ptr_ptr)
5844 if (!AVAIL_STORE_LIST (ptr))
5846 *prev_next_ptr_ptr = ptr->next;
5847 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5848 free_ldst_entry (ptr);
5850 else
5851 prev_next_ptr_ptr = &ptr->next;
5854 ret = enumerate_ldsts ();
5856 if (dump_file)
5858 fprintf (dump_file, "ST_avail and ST_antic (shown under loads..)\n");
5859 print_ldst_list (dump_file);
5862 free (last_set_in);
5863 free (already_set);
5864 return ret;
5867 /* Check to see if the load X is aliased with STORE_PATTERN.
5868 AFTER is true if we are checking the case when STORE_PATTERN occurs
5869 after the X. */
5871 static bool
5872 load_kills_store (const_rtx x, const_rtx store_pattern, int after)
5874 if (after)
5875 return anti_dependence (x, store_pattern);
5876 else
5877 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5878 rtx_addr_varies_p);
5881 /* Go through the entire insn X, looking for any loads which might alias
5882 STORE_PATTERN. Return true if found.
5883 AFTER is true if we are checking the case when STORE_PATTERN occurs
5884 after the insn X. */
5886 static bool
5887 find_loads (const_rtx x, const_rtx store_pattern, int after)
5889 const char * fmt;
5890 int i, j;
5891 int ret = false;
5893 if (!x)
5894 return false;
5896 if (GET_CODE (x) == SET)
5897 x = SET_SRC (x);
5899 if (MEM_P (x))
5901 if (load_kills_store (x, store_pattern, after))
5902 return true;
5905 /* Recursively process the insn. */
5906 fmt = GET_RTX_FORMAT (GET_CODE (x));
5908 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5910 if (fmt[i] == 'e')
5911 ret |= find_loads (XEXP (x, i), store_pattern, after);
5912 else if (fmt[i] == 'E')
5913 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5914 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5916 return ret;
5919 static inline bool
5920 store_killed_in_pat (const_rtx x, const_rtx pat, int after)
5922 if (GET_CODE (pat) == SET)
5924 rtx dest = SET_DEST (pat);
5926 if (GET_CODE (dest) == ZERO_EXTRACT)
5927 dest = XEXP (dest, 0);
5929 /* Check for memory stores to aliased objects. */
5930 if (MEM_P (dest)
5931 && !expr_equiv_p (dest, x))
5933 if (after)
5935 if (output_dependence (dest, x))
5936 return true;
5938 else
5940 if (output_dependence (x, dest))
5941 return true;
5946 if (find_loads (pat, x, after))
5947 return true;
5949 return false;
5952 /* Check if INSN kills the store pattern X (is aliased with it).
5953 AFTER is true if we are checking the case when store X occurs
5954 after the insn. Return true if it does. */
5956 static bool
5957 store_killed_in_insn (const_rtx x, const_rtx x_regs, const_rtx insn, int after)
5959 const_rtx reg, base, note, pat;
5961 if (!INSN_P (insn))
5962 return false;
5964 if (CALL_P (insn))
5966 /* A normal or pure call might read from pattern,
5967 but a const call will not. */
5968 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5969 return true;
5971 /* But even a const call reads its parameters. Check whether the
5972 base of some of registers used in mem is stack pointer. */
5973 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5975 base = find_base_term (XEXP (reg, 0));
5976 if (!base
5977 || (GET_CODE (base) == ADDRESS
5978 && GET_MODE (base) == Pmode
5979 && XEXP (base, 0) == stack_pointer_rtx))
5980 return true;
5983 return false;
5986 pat = PATTERN (insn);
5987 if (GET_CODE (pat) == SET)
5989 if (store_killed_in_pat (x, pat, after))
5990 return true;
5992 else if (GET_CODE (pat) == PARALLEL)
5994 int i;
5996 for (i = 0; i < XVECLEN (pat, 0); i++)
5997 if (store_killed_in_pat (x, XVECEXP (pat, 0, i), after))
5998 return true;
6000 else if (find_loads (PATTERN (insn), x, after))
6001 return true;
6003 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
6004 location aliased with X, then this insn kills X. */
6005 note = find_reg_equal_equiv_note (insn);
6006 if (! note)
6007 return false;
6008 note = XEXP (note, 0);
6010 /* However, if the note represents a must alias rather than a may
6011 alias relationship, then it does not kill X. */
6012 if (expr_equiv_p (note, x))
6013 return false;
6015 /* See if there are any aliased loads in the note. */
6016 return find_loads (note, x, after);
6019 /* Returns true if the expression X is loaded or clobbered on or after INSN
6020 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
6021 or after the insn. X_REGS is list of registers mentioned in X. If the store
6022 is killed, return the last insn in that it occurs in FAIL_INSN. */
6024 static bool
6025 store_killed_after (const_rtx x, const_rtx x_regs, const_rtx insn, const_basic_block bb,
6026 int *regs_set_after, rtx *fail_insn)
6028 rtx last = BB_END (bb), act;
6030 if (!store_ops_ok (x_regs, regs_set_after))
6032 /* We do not know where it will happen. */
6033 if (fail_insn)
6034 *fail_insn = NULL_RTX;
6035 return true;
6038 /* Scan from the end, so that fail_insn is determined correctly. */
6039 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6040 if (store_killed_in_insn (x, x_regs, act, false))
6042 if (fail_insn)
6043 *fail_insn = act;
6044 return true;
6047 return false;
6050 /* Returns true if the expression X is loaded or clobbered on or before INSN
6051 within basic block BB. X_REGS is list of registers mentioned in X.
6052 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6053 static bool
6054 store_killed_before (const_rtx x, const_rtx x_regs, const_rtx insn, const_basic_block bb,
6055 int *regs_set_before)
6057 rtx first = BB_HEAD (bb);
6059 if (!store_ops_ok (x_regs, regs_set_before))
6060 return true;
6062 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6063 if (store_killed_in_insn (x, x_regs, insn, true))
6064 return true;
6066 return false;
6069 /* Fill in available, anticipatable, transparent and kill vectors in
6070 STORE_DATA, based on lists of available and anticipatable stores. */
6071 static void
6072 build_store_vectors (void)
6074 basic_block bb;
6075 int *regs_set_in_block;
6076 rtx insn, st;
6077 struct ls_expr * ptr;
6078 unsigned regno;
6080 /* Build the gen_vector. This is any store in the table which is not killed
6081 by aliasing later in its block. */
6082 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6083 sbitmap_vector_zero (ae_gen, last_basic_block);
6085 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6086 sbitmap_vector_zero (st_antloc, last_basic_block);
6088 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6090 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6092 insn = XEXP (st, 0);
6093 bb = BLOCK_FOR_INSN (insn);
6095 /* If we've already seen an available expression in this block,
6096 we can delete this one (It occurs earlier in the block). We'll
6097 copy the SRC expression to an unused register in case there
6098 are any side effects. */
6099 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6101 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6102 if (dump_file)
6103 fprintf (dump_file, "Removing redundant store:\n");
6104 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6105 continue;
6107 SET_BIT (ae_gen[bb->index], ptr->index);
6110 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6112 insn = XEXP (st, 0);
6113 bb = BLOCK_FOR_INSN (insn);
6114 SET_BIT (st_antloc[bb->index], ptr->index);
6118 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6119 sbitmap_vector_zero (ae_kill, last_basic_block);
6121 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6122 sbitmap_vector_zero (transp, last_basic_block);
6123 regs_set_in_block = XNEWVEC (int, max_gcse_regno);
6125 FOR_EACH_BB (bb)
6127 for (regno = 0; regno < max_gcse_regno; regno++)
6128 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6130 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6132 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6133 bb, regs_set_in_block, NULL))
6135 /* It should not be necessary to consider the expression
6136 killed if it is both anticipatable and available. */
6137 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6138 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6139 SET_BIT (ae_kill[bb->index], ptr->index);
6141 else
6142 SET_BIT (transp[bb->index], ptr->index);
6146 free (regs_set_in_block);
6148 if (dump_file)
6150 dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
6151 dump_sbitmap_vector (dump_file, "st_kill", "", ae_kill, last_basic_block);
6152 dump_sbitmap_vector (dump_file, "Transpt", "", transp, last_basic_block);
6153 dump_sbitmap_vector (dump_file, "st_avloc", "", ae_gen, last_basic_block);
6157 /* Insert an instruction at the beginning of a basic block, and update
6158 the BB_HEAD if needed. */
6160 static void
6161 insert_insn_start_basic_block (rtx insn, basic_block bb)
6163 /* Insert at start of successor block. */
6164 rtx prev = PREV_INSN (BB_HEAD (bb));
6165 rtx before = BB_HEAD (bb);
6166 while (before != 0)
6168 if (! LABEL_P (before)
6169 && !NOTE_INSN_BASIC_BLOCK_P (before))
6170 break;
6171 prev = before;
6172 if (prev == BB_END (bb))
6173 break;
6174 before = NEXT_INSN (before);
6177 insn = emit_insn_after_noloc (insn, prev, bb);
6179 if (dump_file)
6181 fprintf (dump_file, "STORE_MOTION insert store at start of BB %d:\n",
6182 bb->index);
6183 print_inline_rtx (dump_file, insn, 6);
6184 fprintf (dump_file, "\n");
6188 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6189 the memory reference, and E is the edge to insert it on. Returns nonzero
6190 if an edge insertion was performed. */
6192 static int
6193 insert_store (struct ls_expr * expr, edge e)
6195 rtx reg, insn;
6196 basic_block bb;
6197 edge tmp;
6198 edge_iterator ei;
6200 /* We did all the deleted before this insert, so if we didn't delete a
6201 store, then we haven't set the reaching reg yet either. */
6202 if (expr->reaching_reg == NULL_RTX)
6203 return 0;
6205 if (e->flags & EDGE_FAKE)
6206 return 0;
6208 reg = expr->reaching_reg;
6209 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6211 /* If we are inserting this expression on ALL predecessor edges of a BB,
6212 insert it at the start of the BB, and reset the insert bits on the other
6213 edges so we don't try to insert it on the other edges. */
6214 bb = e->dest;
6215 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6216 if (!(tmp->flags & EDGE_FAKE))
6218 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6220 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6221 if (! TEST_BIT (pre_insert_map[index], expr->index))
6222 break;
6225 /* If tmp is NULL, we found an insertion on every edge, blank the
6226 insertion vector for these edges, and insert at the start of the BB. */
6227 if (!tmp && bb != EXIT_BLOCK_PTR)
6229 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6231 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6232 RESET_BIT (pre_insert_map[index], expr->index);
6234 insert_insn_start_basic_block (insn, bb);
6235 return 0;
6238 /* We can't put stores in the front of blocks pointed to by abnormal
6239 edges since that may put a store where one didn't used to be. */
6240 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6242 insert_insn_on_edge (insn, e);
6244 if (dump_file)
6246 fprintf (dump_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6247 e->src->index, e->dest->index);
6248 print_inline_rtx (dump_file, insn, 6);
6249 fprintf (dump_file, "\n");
6252 return 1;
6255 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6256 memory location in SMEXPR set in basic block BB.
6258 This could be rather expensive. */
6260 static void
6261 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6263 edge_iterator *stack, ei;
6264 int sp;
6265 edge act;
6266 sbitmap visited = sbitmap_alloc (last_basic_block);
6267 rtx last, insn, note;
6268 rtx mem = smexpr->pattern;
6270 stack = XNEWVEC (edge_iterator, n_basic_blocks);
6271 sp = 0;
6272 ei = ei_start (bb->succs);
6274 sbitmap_zero (visited);
6276 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6277 while (1)
6279 if (!act)
6281 if (!sp)
6283 free (stack);
6284 sbitmap_free (visited);
6285 return;
6287 act = ei_edge (stack[--sp]);
6289 bb = act->dest;
6291 if (bb == EXIT_BLOCK_PTR
6292 || TEST_BIT (visited, bb->index))
6294 if (!ei_end_p (ei))
6295 ei_next (&ei);
6296 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6297 continue;
6299 SET_BIT (visited, bb->index);
6301 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6303 for (last = ANTIC_STORE_LIST (smexpr);
6304 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6305 last = XEXP (last, 1))
6306 continue;
6307 last = XEXP (last, 0);
6309 else
6310 last = NEXT_INSN (BB_END (bb));
6312 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6313 if (INSN_P (insn))
6315 note = find_reg_equal_equiv_note (insn);
6316 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6317 continue;
6319 if (dump_file)
6320 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6321 INSN_UID (insn));
6322 remove_note (insn, note);
6325 if (!ei_end_p (ei))
6326 ei_next (&ei);
6327 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6329 if (EDGE_COUNT (bb->succs) > 0)
6331 if (act)
6332 stack[sp++] = ei;
6333 ei = ei_start (bb->succs);
6334 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6339 /* This routine will replace a store with a SET to a specified register. */
6341 static void
6342 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6344 rtx insn, mem, note, set, ptr, pair;
6346 mem = smexpr->pattern;
6347 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6349 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6350 if (XEXP (ptr, 0) == del)
6352 XEXP (ptr, 0) = insn;
6353 break;
6356 /* Move the notes from the deleted insn to its replacement, and patch
6357 up the LIBCALL notes. */
6358 REG_NOTES (insn) = REG_NOTES (del);
6360 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6361 if (note)
6363 pair = XEXP (note, 0);
6364 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6365 XEXP (note, 0) = insn;
6367 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6368 if (note)
6370 pair = XEXP (note, 0);
6371 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6372 XEXP (note, 0) = insn;
6375 /* Emit the insn AFTER all the notes are transferred.
6376 This is cheaper since we avoid df rescanning for the note change. */
6377 insn = emit_insn_after (insn, del);
6379 if (dump_file)
6381 fprintf (dump_file,
6382 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6383 print_inline_rtx (dump_file, del, 6);
6384 fprintf (dump_file, "\nSTORE MOTION replaced with insn:\n ");
6385 print_inline_rtx (dump_file, insn, 6);
6386 fprintf (dump_file, "\n");
6389 delete_insn (del);
6391 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6392 they are no longer accurate provided that they are reached by this
6393 definition, so drop them. */
6394 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6395 if (INSN_P (insn))
6397 set = single_set (insn);
6398 if (!set)
6399 continue;
6400 if (expr_equiv_p (SET_DEST (set), mem))
6401 return;
6402 note = find_reg_equal_equiv_note (insn);
6403 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6404 continue;
6406 if (dump_file)
6407 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6408 INSN_UID (insn));
6409 remove_note (insn, note);
6411 remove_reachable_equiv_notes (bb, smexpr);
6415 /* Delete a store, but copy the value that would have been stored into
6416 the reaching_reg for later storing. */
6418 static void
6419 delete_store (struct ls_expr * expr, basic_block bb)
6421 rtx reg, i, del;
6423 if (expr->reaching_reg == NULL_RTX)
6424 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6426 reg = expr->reaching_reg;
6428 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6430 del = XEXP (i, 0);
6431 if (BLOCK_FOR_INSN (del) == bb)
6433 /* We know there is only one since we deleted redundant
6434 ones during the available computation. */
6435 replace_store_insn (reg, del, bb, expr);
6436 break;
6441 /* Free memory used by store motion. */
6443 static void
6444 free_store_memory (void)
6446 free_ldst_mems ();
6448 if (ae_gen)
6449 sbitmap_vector_free (ae_gen);
6450 if (ae_kill)
6451 sbitmap_vector_free (ae_kill);
6452 if (transp)
6453 sbitmap_vector_free (transp);
6454 if (st_antloc)
6455 sbitmap_vector_free (st_antloc);
6456 if (pre_insert_map)
6457 sbitmap_vector_free (pre_insert_map);
6458 if (pre_delete_map)
6459 sbitmap_vector_free (pre_delete_map);
6460 if (reg_set_in_block)
6461 sbitmap_vector_free (reg_set_in_block);
6463 ae_gen = ae_kill = transp = st_antloc = NULL;
6464 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6467 /* Perform store motion. Much like gcse, except we move expressions the
6468 other way by looking at the flowgraph in reverse. */
6470 static void
6471 store_motion (void)
6473 basic_block bb;
6474 int x;
6475 struct ls_expr * ptr;
6476 int update_flow = 0;
6478 if (dump_file)
6480 fprintf (dump_file, "before store motion\n");
6481 print_rtl (dump_file, get_insns ());
6484 init_alias_analysis ();
6486 /* Find all the available and anticipatable stores. */
6487 num_stores = compute_store_table ();
6488 if (num_stores == 0)
6490 htab_delete (pre_ldst_table);
6491 pre_ldst_table = NULL;
6492 sbitmap_vector_free (reg_set_in_block);
6493 end_alias_analysis ();
6494 return;
6497 /* Now compute kill & transp vectors. */
6498 build_store_vectors ();
6499 add_noreturn_fake_exit_edges ();
6500 connect_infinite_loops_to_exit ();
6502 edge_list = pre_edge_rev_lcm (num_stores, transp, ae_gen,
6503 st_antloc, ae_kill, &pre_insert_map,
6504 &pre_delete_map);
6506 /* Now we want to insert the new stores which are going to be needed. */
6507 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6509 /* If any of the edges we have above are abnormal, we can't move this
6510 store. */
6511 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6512 if (TEST_BIT (pre_insert_map[x], ptr->index)
6513 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6514 break;
6516 if (x >= 0)
6518 if (dump_file != NULL)
6519 fprintf (dump_file,
6520 "Can't replace store %d: abnormal edge from %d to %d\n",
6521 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6522 INDEX_EDGE (edge_list, x)->dest->index);
6523 continue;
6526 /* Now we want to insert the new stores which are going to be needed. */
6528 FOR_EACH_BB (bb)
6529 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6530 delete_store (ptr, bb);
6532 for (x = 0; x < NUM_EDGES (edge_list); x++)
6533 if (TEST_BIT (pre_insert_map[x], ptr->index))
6534 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6537 if (update_flow)
6538 commit_edge_insertions ();
6540 free_store_memory ();
6541 free_edge_list (edge_list);
6542 remove_fake_exit_edges ();
6543 end_alias_analysis ();
6547 /* Entry point for jump bypassing optimization pass. */
6549 static int
6550 bypass_jumps (void)
6552 int changed;
6554 /* We do not construct an accurate cfg in functions which call
6555 setjmp, so just punt to be safe. */
6556 if (current_function_calls_setjmp)
6557 return 0;
6559 /* Identify the basic block information for this function, including
6560 successors and predecessors. */
6561 max_gcse_regno = max_reg_num ();
6563 if (dump_file)
6564 dump_flow_info (dump_file, dump_flags);
6566 /* Return if there's nothing to do, or it is too expensive. */
6567 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
6568 || is_too_expensive (_ ("jump bypassing disabled")))
6569 return 0;
6571 gcc_obstack_init (&gcse_obstack);
6572 bytes_used = 0;
6574 /* We need alias. */
6575 init_alias_analysis ();
6577 /* Record where pseudo-registers are set. This data is kept accurate
6578 during each pass. ??? We could also record hard-reg information here
6579 [since it's unchanging], however it is currently done during hash table
6580 computation.
6582 It may be tempting to compute MEM set information here too, but MEM sets
6583 will be subject to code motion one day and thus we need to compute
6584 information about memory sets when we build the hash tables. */
6586 alloc_reg_set_mem (max_gcse_regno);
6587 compute_sets ();
6589 max_gcse_regno = max_reg_num ();
6590 alloc_gcse_mem ();
6591 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
6592 free_gcse_mem ();
6594 if (dump_file)
6596 fprintf (dump_file, "BYPASS of %s: %d basic blocks, ",
6597 current_function_name (), n_basic_blocks);
6598 fprintf (dump_file, "%d bytes\n\n", bytes_used);
6601 obstack_free (&gcse_obstack, NULL);
6602 free_reg_set_mem ();
6604 /* We are finished with alias. */
6605 end_alias_analysis ();
6607 return changed;
6610 /* Return true if the graph is too expensive to optimize. PASS is the
6611 optimization about to be performed. */
6613 static bool
6614 is_too_expensive (const char *pass)
6616 /* Trying to perform global optimizations on flow graphs which have
6617 a high connectivity will take a long time and is unlikely to be
6618 particularly useful.
6620 In normal circumstances a cfg should have about twice as many
6621 edges as blocks. But we do not want to punish small functions
6622 which have a couple switch statements. Rather than simply
6623 threshold the number of blocks, uses something with a more
6624 graceful degradation. */
6625 if (n_edges > 20000 + n_basic_blocks * 4)
6627 warning (OPT_Wdisabled_optimization,
6628 "%s: %d basic blocks and %d edges/basic block",
6629 pass, n_basic_blocks, n_edges / n_basic_blocks);
6631 return true;
6634 /* If allocating memory for the cprop bitmap would take up too much
6635 storage it's better just to disable the optimization. */
6636 if ((n_basic_blocks
6637 * SBITMAP_SET_SIZE (max_reg_num ())
6638 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6640 warning (OPT_Wdisabled_optimization,
6641 "%s: %d basic blocks and %d registers",
6642 pass, n_basic_blocks, max_reg_num ());
6644 return true;
6647 return false;
6650 static bool
6651 gate_handle_jump_bypass (void)
6653 return optimize > 0 && flag_gcse;
6656 /* Perform jump bypassing and control flow optimizations. */
6657 static unsigned int
6658 rest_of_handle_jump_bypass (void)
6660 delete_unreachable_blocks ();
6661 if (bypass_jumps ())
6663 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6664 rebuild_jump_labels (get_insns ());
6665 cleanup_cfg (0);
6667 return 0;
6670 struct tree_opt_pass pass_jump_bypass =
6672 "bypass", /* name */
6673 gate_handle_jump_bypass, /* gate */
6674 rest_of_handle_jump_bypass, /* execute */
6675 NULL, /* sub */
6676 NULL, /* next */
6677 0, /* static_pass_number */
6678 TV_BYPASS, /* tv_id */
6679 0, /* properties_required */
6680 0, /* properties_provided */
6681 0, /* properties_destroyed */
6682 0, /* todo_flags_start */
6683 TODO_dump_func |
6684 TODO_ggc_collect | TODO_verify_flow, /* todo_flags_finish */
6685 'G' /* letter */
6689 static bool
6690 gate_handle_gcse (void)
6692 return optimize > 0 && flag_gcse;
6696 static unsigned int
6697 rest_of_handle_gcse (void)
6699 int save_csb, save_cfj;
6700 int tem2 = 0, tem;
6701 tem = gcse_main (get_insns ());
6702 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6703 rebuild_jump_labels (get_insns ());
6704 save_csb = flag_cse_skip_blocks;
6705 save_cfj = flag_cse_follow_jumps;
6706 flag_cse_skip_blocks = flag_cse_follow_jumps = 0;
6708 /* If -fexpensive-optimizations, re-run CSE to clean up things done
6709 by gcse. */
6710 if (flag_expensive_optimizations)
6712 timevar_push (TV_CSE);
6713 tem2 = cse_main (get_insns (), max_reg_num ());
6714 df_finish_pass (false);
6715 purge_all_dead_edges ();
6716 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6717 timevar_pop (TV_CSE);
6718 cse_not_expected = !flag_rerun_cse_after_loop;
6721 /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6722 things up. */
6723 if (tem || tem2)
6725 timevar_push (TV_JUMP);
6726 rebuild_jump_labels (get_insns ());
6727 cleanup_cfg (0);
6728 timevar_pop (TV_JUMP);
6731 flag_cse_skip_blocks = save_csb;
6732 flag_cse_follow_jumps = save_cfj;
6733 return 0;
6736 struct tree_opt_pass pass_gcse =
6738 "gcse1", /* name */
6739 gate_handle_gcse, /* gate */
6740 rest_of_handle_gcse, /* execute */
6741 NULL, /* sub */
6742 NULL, /* next */
6743 0, /* static_pass_number */
6744 TV_GCSE, /* tv_id */
6745 0, /* properties_required */
6746 0, /* properties_provided */
6747 0, /* properties_destroyed */
6748 0, /* todo_flags_start */
6749 TODO_df_finish |
6750 TODO_dump_func |
6751 TODO_verify_flow | TODO_ggc_collect, /* todo_flags_finish */
6752 'G' /* letter */
6756 #include "gt-gcse.h"