* gcc.pot: Regenerate.
[official-gcc/alias-decl.git] / gcc / real.c
blob7aceb3df0388a866c1c7063560f7c328337fa3b9
1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "toplev.h"
30 #include "real.h"
31 #include "tm_p.h"
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
37 Specifically
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
41 where
42 s = sign (+- 1)
43 b = base or radix, here always 2
44 e = exponent
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
50 range [0.5, 1.0).
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
56 in a normalized form.
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 27.
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits.
69 Target floating point models that use base 16 instead of base 2
70 (i.e. IBM 370), are handled during round_for_format, in which we
71 canonicalize the exponent to be a multiple of 4 (log2(16)), and
72 adjust the significand to match. */
75 /* Used to classify two numbers simultaneously. */
76 #define CLASS2(A, B) ((A) << 2 | (B))
78 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
79 #error "Some constant folding done by hand to avoid shift count warnings"
80 #endif
82 static void get_zero (REAL_VALUE_TYPE *, int);
83 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
84 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
85 static void get_inf (REAL_VALUE_TYPE *, int);
86 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
87 const REAL_VALUE_TYPE *, unsigned int);
88 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
89 unsigned int);
90 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91 unsigned int);
92 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
93 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
94 const REAL_VALUE_TYPE *);
95 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
96 const REAL_VALUE_TYPE *, int);
97 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
98 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
99 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
100 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
101 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
102 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
103 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
104 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
105 const REAL_VALUE_TYPE *);
106 static void normalize (REAL_VALUE_TYPE *);
108 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
109 const REAL_VALUE_TYPE *, int);
110 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
111 const REAL_VALUE_TYPE *);
112 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
113 const REAL_VALUE_TYPE *);
114 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
115 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
117 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
119 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
120 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
121 static const REAL_VALUE_TYPE * real_digit (int);
122 static void times_pten (REAL_VALUE_TYPE *, int);
124 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
126 /* Initialize R with a positive zero. */
128 static inline void
129 get_zero (REAL_VALUE_TYPE *r, int sign)
131 memset (r, 0, sizeof (*r));
132 r->sign = sign;
135 /* Initialize R with the canonical quiet NaN. */
137 static inline void
138 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
140 memset (r, 0, sizeof (*r));
141 r->cl = rvc_nan;
142 r->sign = sign;
143 r->canonical = 1;
146 static inline void
147 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
149 memset (r, 0, sizeof (*r));
150 r->cl = rvc_nan;
151 r->sign = sign;
152 r->signalling = 1;
153 r->canonical = 1;
156 static inline void
157 get_inf (REAL_VALUE_TYPE *r, int sign)
159 memset (r, 0, sizeof (*r));
160 r->cl = rvc_inf;
161 r->sign = sign;
165 /* Right-shift the significand of A by N bits; put the result in the
166 significand of R. If any one bits are shifted out, return true. */
168 static bool
169 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
170 unsigned int n)
172 unsigned long sticky = 0;
173 unsigned int i, ofs = 0;
175 if (n >= HOST_BITS_PER_LONG)
177 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
178 sticky |= a->sig[i];
179 n &= HOST_BITS_PER_LONG - 1;
182 if (n != 0)
184 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
185 for (i = 0; i < SIGSZ; ++i)
187 r->sig[i]
188 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
189 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
190 << (HOST_BITS_PER_LONG - n)));
193 else
195 for (i = 0; ofs + i < SIGSZ; ++i)
196 r->sig[i] = a->sig[ofs + i];
197 for (; i < SIGSZ; ++i)
198 r->sig[i] = 0;
201 return sticky != 0;
204 /* Right-shift the significand of A by N bits; put the result in the
205 significand of R. */
207 static void
208 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
209 unsigned int n)
211 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
213 n &= HOST_BITS_PER_LONG - 1;
214 if (n != 0)
216 for (i = 0; i < SIGSZ; ++i)
218 r->sig[i]
219 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
220 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
221 << (HOST_BITS_PER_LONG - n)));
224 else
226 for (i = 0; ofs + i < SIGSZ; ++i)
227 r->sig[i] = a->sig[ofs + i];
228 for (; i < SIGSZ; ++i)
229 r->sig[i] = 0;
233 /* Left-shift the significand of A by N bits; put the result in the
234 significand of R. */
236 static void
237 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
238 unsigned int n)
240 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
242 n &= HOST_BITS_PER_LONG - 1;
243 if (n == 0)
245 for (i = 0; ofs + i < SIGSZ; ++i)
246 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
247 for (; i < SIGSZ; ++i)
248 r->sig[SIGSZ-1-i] = 0;
250 else
251 for (i = 0; i < SIGSZ; ++i)
253 r->sig[SIGSZ-1-i]
254 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
255 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
256 >> (HOST_BITS_PER_LONG - n)));
260 /* Likewise, but N is specialized to 1. */
262 static inline void
263 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
265 unsigned int i;
267 for (i = SIGSZ - 1; i > 0; --i)
268 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
269 r->sig[0] = a->sig[0] << 1;
272 /* Add the significands of A and B, placing the result in R. Return
273 true if there was carry out of the most significant word. */
275 static inline bool
276 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
277 const REAL_VALUE_TYPE *b)
279 bool carry = false;
280 int i;
282 for (i = 0; i < SIGSZ; ++i)
284 unsigned long ai = a->sig[i];
285 unsigned long ri = ai + b->sig[i];
287 if (carry)
289 carry = ri < ai;
290 carry |= ++ri == 0;
292 else
293 carry = ri < ai;
295 r->sig[i] = ri;
298 return carry;
301 /* Subtract the significands of A and B, placing the result in R. CARRY is
302 true if there's a borrow incoming to the least significant word.
303 Return true if there was borrow out of the most significant word. */
305 static inline bool
306 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
307 const REAL_VALUE_TYPE *b, int carry)
309 int i;
311 for (i = 0; i < SIGSZ; ++i)
313 unsigned long ai = a->sig[i];
314 unsigned long ri = ai - b->sig[i];
316 if (carry)
318 carry = ri > ai;
319 carry |= ~--ri == 0;
321 else
322 carry = ri > ai;
324 r->sig[i] = ri;
327 return carry;
330 /* Negate the significand A, placing the result in R. */
332 static inline void
333 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
335 bool carry = true;
336 int i;
338 for (i = 0; i < SIGSZ; ++i)
340 unsigned long ri, ai = a->sig[i];
342 if (carry)
344 if (ai)
346 ri = -ai;
347 carry = false;
349 else
350 ri = ai;
352 else
353 ri = ~ai;
355 r->sig[i] = ri;
359 /* Compare significands. Return tri-state vs zero. */
361 static inline int
362 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
364 int i;
366 for (i = SIGSZ - 1; i >= 0; --i)
368 unsigned long ai = a->sig[i];
369 unsigned long bi = b->sig[i];
371 if (ai > bi)
372 return 1;
373 if (ai < bi)
374 return -1;
377 return 0;
380 /* Return true if A is nonzero. */
382 static inline int
383 cmp_significand_0 (const REAL_VALUE_TYPE *a)
385 int i;
387 for (i = SIGSZ - 1; i >= 0; --i)
388 if (a->sig[i])
389 return 1;
391 return 0;
394 /* Set bit N of the significand of R. */
396 static inline void
397 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
399 r->sig[n / HOST_BITS_PER_LONG]
400 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
403 /* Clear bit N of the significand of R. */
405 static inline void
406 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
408 r->sig[n / HOST_BITS_PER_LONG]
409 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
412 /* Test bit N of the significand of R. */
414 static inline bool
415 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
417 /* ??? Compiler bug here if we return this expression directly.
418 The conversion to bool strips the "&1" and we wind up testing
419 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
420 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
421 return t;
424 /* Clear bits 0..N-1 of the significand of R. */
426 static void
427 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
429 int i, w = n / HOST_BITS_PER_LONG;
431 for (i = 0; i < w; ++i)
432 r->sig[i] = 0;
434 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
437 /* Divide the significands of A and B, placing the result in R. Return
438 true if the division was inexact. */
440 static inline bool
441 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
442 const REAL_VALUE_TYPE *b)
444 REAL_VALUE_TYPE u;
445 int i, bit = SIGNIFICAND_BITS - 1;
446 unsigned long msb, inexact;
448 u = *a;
449 memset (r->sig, 0, sizeof (r->sig));
451 msb = 0;
452 goto start;
455 msb = u.sig[SIGSZ-1] & SIG_MSB;
456 lshift_significand_1 (&u, &u);
457 start:
458 if (msb || cmp_significands (&u, b) >= 0)
460 sub_significands (&u, &u, b, 0);
461 set_significand_bit (r, bit);
464 while (--bit >= 0);
466 for (i = 0, inexact = 0; i < SIGSZ; i++)
467 inexact |= u.sig[i];
469 return inexact != 0;
472 /* Adjust the exponent and significand of R such that the most
473 significant bit is set. We underflow to zero and overflow to
474 infinity here, without denormals. (The intermediate representation
475 exponent is large enough to handle target denormals normalized.) */
477 static void
478 normalize (REAL_VALUE_TYPE *r)
480 int shift = 0, exp;
481 int i, j;
483 /* Find the first word that is nonzero. */
484 for (i = SIGSZ - 1; i >= 0; i--)
485 if (r->sig[i] == 0)
486 shift += HOST_BITS_PER_LONG;
487 else
488 break;
490 /* Zero significand flushes to zero. */
491 if (i < 0)
493 r->cl = rvc_zero;
494 SET_REAL_EXP (r, 0);
495 return;
498 /* Find the first bit that is nonzero. */
499 for (j = 0; ; j++)
500 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
501 break;
502 shift += j;
504 if (shift > 0)
506 exp = REAL_EXP (r) - shift;
507 if (exp > MAX_EXP)
508 get_inf (r, r->sign);
509 else if (exp < -MAX_EXP)
510 get_zero (r, r->sign);
511 else
513 SET_REAL_EXP (r, exp);
514 lshift_significand (r, r, shift);
519 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
520 result may be inexact due to a loss of precision. */
522 static bool
523 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
524 const REAL_VALUE_TYPE *b, int subtract_p)
526 int dexp, sign, exp;
527 REAL_VALUE_TYPE t;
528 bool inexact = false;
530 /* Determine if we need to add or subtract. */
531 sign = a->sign;
532 subtract_p = (sign ^ b->sign) ^ subtract_p;
534 switch (CLASS2 (a->cl, b->cl))
536 case CLASS2 (rvc_zero, rvc_zero):
537 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
538 get_zero (r, sign & !subtract_p);
539 return false;
541 case CLASS2 (rvc_zero, rvc_normal):
542 case CLASS2 (rvc_zero, rvc_inf):
543 case CLASS2 (rvc_zero, rvc_nan):
544 /* 0 + ANY = ANY. */
545 case CLASS2 (rvc_normal, rvc_nan):
546 case CLASS2 (rvc_inf, rvc_nan):
547 case CLASS2 (rvc_nan, rvc_nan):
548 /* ANY + NaN = NaN. */
549 case CLASS2 (rvc_normal, rvc_inf):
550 /* R + Inf = Inf. */
551 *r = *b;
552 r->sign = sign ^ subtract_p;
553 return false;
555 case CLASS2 (rvc_normal, rvc_zero):
556 case CLASS2 (rvc_inf, rvc_zero):
557 case CLASS2 (rvc_nan, rvc_zero):
558 /* ANY + 0 = ANY. */
559 case CLASS2 (rvc_nan, rvc_normal):
560 case CLASS2 (rvc_nan, rvc_inf):
561 /* NaN + ANY = NaN. */
562 case CLASS2 (rvc_inf, rvc_normal):
563 /* Inf + R = Inf. */
564 *r = *a;
565 return false;
567 case CLASS2 (rvc_inf, rvc_inf):
568 if (subtract_p)
569 /* Inf - Inf = NaN. */
570 get_canonical_qnan (r, 0);
571 else
572 /* Inf + Inf = Inf. */
573 *r = *a;
574 return false;
576 case CLASS2 (rvc_normal, rvc_normal):
577 break;
579 default:
580 gcc_unreachable ();
583 /* Swap the arguments such that A has the larger exponent. */
584 dexp = REAL_EXP (a) - REAL_EXP (b);
585 if (dexp < 0)
587 const REAL_VALUE_TYPE *t;
588 t = a, a = b, b = t;
589 dexp = -dexp;
590 sign ^= subtract_p;
592 exp = REAL_EXP (a);
594 /* If the exponents are not identical, we need to shift the
595 significand of B down. */
596 if (dexp > 0)
598 /* If the exponents are too far apart, the significands
599 do not overlap, which makes the subtraction a noop. */
600 if (dexp >= SIGNIFICAND_BITS)
602 *r = *a;
603 r->sign = sign;
604 return true;
607 inexact |= sticky_rshift_significand (&t, b, dexp);
608 b = &t;
611 if (subtract_p)
613 if (sub_significands (r, a, b, inexact))
615 /* We got a borrow out of the subtraction. That means that
616 A and B had the same exponent, and B had the larger
617 significand. We need to swap the sign and negate the
618 significand. */
619 sign ^= 1;
620 neg_significand (r, r);
623 else
625 if (add_significands (r, a, b))
627 /* We got carry out of the addition. This means we need to
628 shift the significand back down one bit and increase the
629 exponent. */
630 inexact |= sticky_rshift_significand (r, r, 1);
631 r->sig[SIGSZ-1] |= SIG_MSB;
632 if (++exp > MAX_EXP)
634 get_inf (r, sign);
635 return true;
640 r->cl = rvc_normal;
641 r->sign = sign;
642 SET_REAL_EXP (r, exp);
643 /* Zero out the remaining fields. */
644 r->signalling = 0;
645 r->canonical = 0;
647 /* Re-normalize the result. */
648 normalize (r);
650 /* Special case: if the subtraction results in zero, the result
651 is positive. */
652 if (r->cl == rvc_zero)
653 r->sign = 0;
654 else
655 r->sig[0] |= inexact;
657 return inexact;
660 /* Calculate R = A * B. Return true if the result may be inexact. */
662 static bool
663 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
664 const REAL_VALUE_TYPE *b)
666 REAL_VALUE_TYPE u, t, *rr;
667 unsigned int i, j, k;
668 int sign = a->sign ^ b->sign;
669 bool inexact = false;
671 switch (CLASS2 (a->cl, b->cl))
673 case CLASS2 (rvc_zero, rvc_zero):
674 case CLASS2 (rvc_zero, rvc_normal):
675 case CLASS2 (rvc_normal, rvc_zero):
676 /* +-0 * ANY = 0 with appropriate sign. */
677 get_zero (r, sign);
678 return false;
680 case CLASS2 (rvc_zero, rvc_nan):
681 case CLASS2 (rvc_normal, rvc_nan):
682 case CLASS2 (rvc_inf, rvc_nan):
683 case CLASS2 (rvc_nan, rvc_nan):
684 /* ANY * NaN = NaN. */
685 *r = *b;
686 r->sign = sign;
687 return false;
689 case CLASS2 (rvc_nan, rvc_zero):
690 case CLASS2 (rvc_nan, rvc_normal):
691 case CLASS2 (rvc_nan, rvc_inf):
692 /* NaN * ANY = NaN. */
693 *r = *a;
694 r->sign = sign;
695 return false;
697 case CLASS2 (rvc_zero, rvc_inf):
698 case CLASS2 (rvc_inf, rvc_zero):
699 /* 0 * Inf = NaN */
700 get_canonical_qnan (r, sign);
701 return false;
703 case CLASS2 (rvc_inf, rvc_inf):
704 case CLASS2 (rvc_normal, rvc_inf):
705 case CLASS2 (rvc_inf, rvc_normal):
706 /* Inf * Inf = Inf, R * Inf = Inf */
707 get_inf (r, sign);
708 return false;
710 case CLASS2 (rvc_normal, rvc_normal):
711 break;
713 default:
714 gcc_unreachable ();
717 if (r == a || r == b)
718 rr = &t;
719 else
720 rr = r;
721 get_zero (rr, 0);
723 /* Collect all the partial products. Since we don't have sure access
724 to a widening multiply, we split each long into two half-words.
726 Consider the long-hand form of a four half-word multiplication:
728 A B C D
729 * E F G H
730 --------------
731 DE DF DG DH
732 CE CF CG CH
733 BE BF BG BH
734 AE AF AG AH
736 We construct partial products of the widened half-word products
737 that are known to not overlap, e.g. DF+DH. Each such partial
738 product is given its proper exponent, which allows us to sum them
739 and obtain the finished product. */
741 for (i = 0; i < SIGSZ * 2; ++i)
743 unsigned long ai = a->sig[i / 2];
744 if (i & 1)
745 ai >>= HOST_BITS_PER_LONG / 2;
746 else
747 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
749 if (ai == 0)
750 continue;
752 for (j = 0; j < 2; ++j)
754 int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
755 + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
757 if (exp > MAX_EXP)
759 get_inf (r, sign);
760 return true;
762 if (exp < -MAX_EXP)
764 /* Would underflow to zero, which we shouldn't bother adding. */
765 inexact = true;
766 continue;
769 memset (&u, 0, sizeof (u));
770 u.cl = rvc_normal;
771 SET_REAL_EXP (&u, exp);
773 for (k = j; k < SIGSZ * 2; k += 2)
775 unsigned long bi = b->sig[k / 2];
776 if (k & 1)
777 bi >>= HOST_BITS_PER_LONG / 2;
778 else
779 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
781 u.sig[k / 2] = ai * bi;
784 normalize (&u);
785 inexact |= do_add (rr, rr, &u, 0);
789 rr->sign = sign;
790 if (rr != r)
791 *r = t;
793 return inexact;
796 /* Calculate R = A / B. Return true if the result may be inexact. */
798 static bool
799 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
800 const REAL_VALUE_TYPE *b)
802 int exp, sign = a->sign ^ b->sign;
803 REAL_VALUE_TYPE t, *rr;
804 bool inexact;
806 switch (CLASS2 (a->cl, b->cl))
808 case CLASS2 (rvc_zero, rvc_zero):
809 /* 0 / 0 = NaN. */
810 case CLASS2 (rvc_inf, rvc_inf):
811 /* Inf / Inf = NaN. */
812 get_canonical_qnan (r, sign);
813 return false;
815 case CLASS2 (rvc_zero, rvc_normal):
816 case CLASS2 (rvc_zero, rvc_inf):
817 /* 0 / ANY = 0. */
818 case CLASS2 (rvc_normal, rvc_inf):
819 /* R / Inf = 0. */
820 get_zero (r, sign);
821 return false;
823 case CLASS2 (rvc_normal, rvc_zero):
824 /* R / 0 = Inf. */
825 case CLASS2 (rvc_inf, rvc_zero):
826 /* Inf / 0 = Inf. */
827 get_inf (r, sign);
828 return false;
830 case CLASS2 (rvc_zero, rvc_nan):
831 case CLASS2 (rvc_normal, rvc_nan):
832 case CLASS2 (rvc_inf, rvc_nan):
833 case CLASS2 (rvc_nan, rvc_nan):
834 /* ANY / NaN = NaN. */
835 *r = *b;
836 r->sign = sign;
837 return false;
839 case CLASS2 (rvc_nan, rvc_zero):
840 case CLASS2 (rvc_nan, rvc_normal):
841 case CLASS2 (rvc_nan, rvc_inf):
842 /* NaN / ANY = NaN. */
843 *r = *a;
844 r->sign = sign;
845 return false;
847 case CLASS2 (rvc_inf, rvc_normal):
848 /* Inf / R = Inf. */
849 get_inf (r, sign);
850 return false;
852 case CLASS2 (rvc_normal, rvc_normal):
853 break;
855 default:
856 gcc_unreachable ();
859 if (r == a || r == b)
860 rr = &t;
861 else
862 rr = r;
864 /* Make sure all fields in the result are initialized. */
865 get_zero (rr, 0);
866 rr->cl = rvc_normal;
867 rr->sign = sign;
869 exp = REAL_EXP (a) - REAL_EXP (b) + 1;
870 if (exp > MAX_EXP)
872 get_inf (r, sign);
873 return true;
875 if (exp < -MAX_EXP)
877 get_zero (r, sign);
878 return true;
880 SET_REAL_EXP (rr, exp);
882 inexact = div_significands (rr, a, b);
884 /* Re-normalize the result. */
885 normalize (rr);
886 rr->sig[0] |= inexact;
888 if (rr != r)
889 *r = t;
891 return inexact;
894 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
895 one of the two operands is a NaN. */
897 static int
898 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
899 int nan_result)
901 int ret;
903 switch (CLASS2 (a->cl, b->cl))
905 case CLASS2 (rvc_zero, rvc_zero):
906 /* Sign of zero doesn't matter for compares. */
907 return 0;
909 case CLASS2 (rvc_inf, rvc_zero):
910 case CLASS2 (rvc_inf, rvc_normal):
911 case CLASS2 (rvc_normal, rvc_zero):
912 return (a->sign ? -1 : 1);
914 case CLASS2 (rvc_inf, rvc_inf):
915 return -a->sign - -b->sign;
917 case CLASS2 (rvc_zero, rvc_normal):
918 case CLASS2 (rvc_zero, rvc_inf):
919 case CLASS2 (rvc_normal, rvc_inf):
920 return (b->sign ? 1 : -1);
922 case CLASS2 (rvc_zero, rvc_nan):
923 case CLASS2 (rvc_normal, rvc_nan):
924 case CLASS2 (rvc_inf, rvc_nan):
925 case CLASS2 (rvc_nan, rvc_nan):
926 case CLASS2 (rvc_nan, rvc_zero):
927 case CLASS2 (rvc_nan, rvc_normal):
928 case CLASS2 (rvc_nan, rvc_inf):
929 return nan_result;
931 case CLASS2 (rvc_normal, rvc_normal):
932 break;
934 default:
935 gcc_unreachable ();
938 if (a->sign != b->sign)
939 return -a->sign - -b->sign;
941 if (REAL_EXP (a) > REAL_EXP (b))
942 ret = 1;
943 else if (REAL_EXP (a) < REAL_EXP (b))
944 ret = -1;
945 else
946 ret = cmp_significands (a, b);
948 return (a->sign ? -ret : ret);
951 /* Return A truncated to an integral value toward zero. */
953 static void
954 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
956 *r = *a;
958 switch (r->cl)
960 case rvc_zero:
961 case rvc_inf:
962 case rvc_nan:
963 break;
965 case rvc_normal:
966 if (REAL_EXP (r) <= 0)
967 get_zero (r, r->sign);
968 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
969 clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
970 break;
972 default:
973 gcc_unreachable ();
977 /* Perform the binary or unary operation described by CODE.
978 For a unary operation, leave OP1 NULL. This function returns
979 true if the result may be inexact due to loss of precision. */
981 bool
982 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
983 const REAL_VALUE_TYPE *op1)
985 enum tree_code code = icode;
987 switch (code)
989 case PLUS_EXPR:
990 return do_add (r, op0, op1, 0);
992 case MINUS_EXPR:
993 return do_add (r, op0, op1, 1);
995 case MULT_EXPR:
996 return do_multiply (r, op0, op1);
998 case RDIV_EXPR:
999 return do_divide (r, op0, op1);
1001 case MIN_EXPR:
1002 if (op1->cl == rvc_nan)
1003 *r = *op1;
1004 else if (do_compare (op0, op1, -1) < 0)
1005 *r = *op0;
1006 else
1007 *r = *op1;
1008 break;
1010 case MAX_EXPR:
1011 if (op1->cl == rvc_nan)
1012 *r = *op1;
1013 else if (do_compare (op0, op1, 1) < 0)
1014 *r = *op1;
1015 else
1016 *r = *op0;
1017 break;
1019 case NEGATE_EXPR:
1020 *r = *op0;
1021 r->sign ^= 1;
1022 break;
1024 case ABS_EXPR:
1025 *r = *op0;
1026 r->sign = 0;
1027 break;
1029 case FIX_TRUNC_EXPR:
1030 do_fix_trunc (r, op0);
1031 break;
1033 default:
1034 gcc_unreachable ();
1036 return false;
1039 /* Legacy. Similar, but return the result directly. */
1041 REAL_VALUE_TYPE
1042 real_arithmetic2 (int icode, const REAL_VALUE_TYPE *op0,
1043 const REAL_VALUE_TYPE *op1)
1045 REAL_VALUE_TYPE r;
1046 real_arithmetic (&r, icode, op0, op1);
1047 return r;
1050 bool
1051 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1052 const REAL_VALUE_TYPE *op1)
1054 enum tree_code code = icode;
1056 switch (code)
1058 case LT_EXPR:
1059 return do_compare (op0, op1, 1) < 0;
1060 case LE_EXPR:
1061 return do_compare (op0, op1, 1) <= 0;
1062 case GT_EXPR:
1063 return do_compare (op0, op1, -1) > 0;
1064 case GE_EXPR:
1065 return do_compare (op0, op1, -1) >= 0;
1066 case EQ_EXPR:
1067 return do_compare (op0, op1, -1) == 0;
1068 case NE_EXPR:
1069 return do_compare (op0, op1, -1) != 0;
1070 case UNORDERED_EXPR:
1071 return op0->cl == rvc_nan || op1->cl == rvc_nan;
1072 case ORDERED_EXPR:
1073 return op0->cl != rvc_nan && op1->cl != rvc_nan;
1074 case UNLT_EXPR:
1075 return do_compare (op0, op1, -1) < 0;
1076 case UNLE_EXPR:
1077 return do_compare (op0, op1, -1) <= 0;
1078 case UNGT_EXPR:
1079 return do_compare (op0, op1, 1) > 0;
1080 case UNGE_EXPR:
1081 return do_compare (op0, op1, 1) >= 0;
1082 case UNEQ_EXPR:
1083 return do_compare (op0, op1, 0) == 0;
1084 case LTGT_EXPR:
1085 return do_compare (op0, op1, 0) != 0;
1087 default:
1088 gcc_unreachable ();
1092 /* Return floor log2(R). */
1095 real_exponent (const REAL_VALUE_TYPE *r)
1097 switch (r->cl)
1099 case rvc_zero:
1100 return 0;
1101 case rvc_inf:
1102 case rvc_nan:
1103 return (unsigned int)-1 >> 1;
1104 case rvc_normal:
1105 return REAL_EXP (r);
1106 default:
1107 gcc_unreachable ();
1111 /* R = OP0 * 2**EXP. */
1113 void
1114 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1116 *r = *op0;
1117 switch (r->cl)
1119 case rvc_zero:
1120 case rvc_inf:
1121 case rvc_nan:
1122 break;
1124 case rvc_normal:
1125 exp += REAL_EXP (op0);
1126 if (exp > MAX_EXP)
1127 get_inf (r, r->sign);
1128 else if (exp < -MAX_EXP)
1129 get_zero (r, r->sign);
1130 else
1131 SET_REAL_EXP (r, exp);
1132 break;
1134 default:
1135 gcc_unreachable ();
1139 /* Determine whether a floating-point value X is infinite. */
1141 bool
1142 real_isinf (const REAL_VALUE_TYPE *r)
1144 return (r->cl == rvc_inf);
1147 /* Determine whether a floating-point value X is a NaN. */
1149 bool
1150 real_isnan (const REAL_VALUE_TYPE *r)
1152 return (r->cl == rvc_nan);
1155 /* Determine whether a floating-point value X is negative. */
1157 bool
1158 real_isneg (const REAL_VALUE_TYPE *r)
1160 return r->sign;
1163 /* Determine whether a floating-point value X is minus zero. */
1165 bool
1166 real_isnegzero (const REAL_VALUE_TYPE *r)
1168 return r->sign && r->cl == rvc_zero;
1171 /* Compare two floating-point objects for bitwise identity. */
1173 bool
1174 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1176 int i;
1178 if (a->cl != b->cl)
1179 return false;
1180 if (a->sign != b->sign)
1181 return false;
1183 switch (a->cl)
1185 case rvc_zero:
1186 case rvc_inf:
1187 return true;
1189 case rvc_normal:
1190 if (REAL_EXP (a) != REAL_EXP (b))
1191 return false;
1192 break;
1194 case rvc_nan:
1195 if (a->signalling != b->signalling)
1196 return false;
1197 /* The significand is ignored for canonical NaNs. */
1198 if (a->canonical || b->canonical)
1199 return a->canonical == b->canonical;
1200 break;
1202 default:
1203 gcc_unreachable ();
1206 for (i = 0; i < SIGSZ; ++i)
1207 if (a->sig[i] != b->sig[i])
1208 return false;
1210 return true;
1213 /* Try to change R into its exact multiplicative inverse in machine
1214 mode MODE. Return true if successful. */
1216 bool
1217 exact_real_inverse (enum machine_mode mode, REAL_VALUE_TYPE *r)
1219 const REAL_VALUE_TYPE *one = real_digit (1);
1220 REAL_VALUE_TYPE u;
1221 int i;
1223 if (r->cl != rvc_normal)
1224 return false;
1226 /* Check for a power of two: all significand bits zero except the MSB. */
1227 for (i = 0; i < SIGSZ-1; ++i)
1228 if (r->sig[i] != 0)
1229 return false;
1230 if (r->sig[SIGSZ-1] != SIG_MSB)
1231 return false;
1233 /* Find the inverse and truncate to the required mode. */
1234 do_divide (&u, one, r);
1235 real_convert (&u, mode, &u);
1237 /* The rounding may have overflowed. */
1238 if (u.cl != rvc_normal)
1239 return false;
1240 for (i = 0; i < SIGSZ-1; ++i)
1241 if (u.sig[i] != 0)
1242 return false;
1243 if (u.sig[SIGSZ-1] != SIG_MSB)
1244 return false;
1246 *r = u;
1247 return true;
1250 /* Render R as an integer. */
1252 HOST_WIDE_INT
1253 real_to_integer (const REAL_VALUE_TYPE *r)
1255 unsigned HOST_WIDE_INT i;
1257 switch (r->cl)
1259 case rvc_zero:
1260 underflow:
1261 return 0;
1263 case rvc_inf:
1264 case rvc_nan:
1265 overflow:
1266 i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1267 if (!r->sign)
1268 i--;
1269 return i;
1271 case rvc_normal:
1272 if (REAL_EXP (r) <= 0)
1273 goto underflow;
1274 /* Only force overflow for unsigned overflow. Signed overflow is
1275 undefined, so it doesn't matter what we return, and some callers
1276 expect to be able to use this routine for both signed and
1277 unsigned conversions. */
1278 if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
1279 goto overflow;
1281 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1282 i = r->sig[SIGSZ-1];
1283 else
1285 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1286 i = r->sig[SIGSZ-1];
1287 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1288 i |= r->sig[SIGSZ-2];
1291 i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
1293 if (r->sign)
1294 i = -i;
1295 return i;
1297 default:
1298 gcc_unreachable ();
1302 /* Likewise, but to an integer pair, HI+LOW. */
1304 void
1305 real_to_integer2 (HOST_WIDE_INT *plow, HOST_WIDE_INT *phigh,
1306 const REAL_VALUE_TYPE *r)
1308 REAL_VALUE_TYPE t;
1309 HOST_WIDE_INT low, high;
1310 int exp;
1312 switch (r->cl)
1314 case rvc_zero:
1315 underflow:
1316 low = high = 0;
1317 break;
1319 case rvc_inf:
1320 case rvc_nan:
1321 overflow:
1322 high = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1323 if (r->sign)
1324 low = 0;
1325 else
1327 high--;
1328 low = -1;
1330 break;
1332 case rvc_normal:
1333 exp = REAL_EXP (r);
1334 if (exp <= 0)
1335 goto underflow;
1336 /* Only force overflow for unsigned overflow. Signed overflow is
1337 undefined, so it doesn't matter what we return, and some callers
1338 expect to be able to use this routine for both signed and
1339 unsigned conversions. */
1340 if (exp > 2*HOST_BITS_PER_WIDE_INT)
1341 goto overflow;
1343 rshift_significand (&t, r, 2*HOST_BITS_PER_WIDE_INT - exp);
1344 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1346 high = t.sig[SIGSZ-1];
1347 low = t.sig[SIGSZ-2];
1349 else
1351 gcc_assert (HOST_BITS_PER_WIDE_INT == 2*HOST_BITS_PER_LONG);
1352 high = t.sig[SIGSZ-1];
1353 high = high << (HOST_BITS_PER_LONG - 1) << 1;
1354 high |= t.sig[SIGSZ-2];
1356 low = t.sig[SIGSZ-3];
1357 low = low << (HOST_BITS_PER_LONG - 1) << 1;
1358 low |= t.sig[SIGSZ-4];
1361 if (r->sign)
1363 if (low == 0)
1364 high = -high;
1365 else
1366 low = -low, high = ~high;
1368 break;
1370 default:
1371 gcc_unreachable ();
1374 *plow = low;
1375 *phigh = high;
1378 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1379 of NUM / DEN. Return the quotient and place the remainder in NUM.
1380 It is expected that NUM / DEN are close enough that the quotient is
1381 small. */
1383 static unsigned long
1384 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1386 unsigned long q, msb;
1387 int expn = REAL_EXP (num), expd = REAL_EXP (den);
1389 if (expn < expd)
1390 return 0;
1392 q = msb = 0;
1393 goto start;
1396 msb = num->sig[SIGSZ-1] & SIG_MSB;
1397 q <<= 1;
1398 lshift_significand_1 (num, num);
1399 start:
1400 if (msb || cmp_significands (num, den) >= 0)
1402 sub_significands (num, num, den, 0);
1403 q |= 1;
1406 while (--expn >= expd);
1408 SET_REAL_EXP (num, expd);
1409 normalize (num);
1411 return q;
1414 /* Render R as a decimal floating point constant. Emit DIGITS significant
1415 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1416 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1417 zeros. */
1419 #define M_LOG10_2 0.30102999566398119521
1421 void
1422 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1423 size_t digits, int crop_trailing_zeros)
1425 const REAL_VALUE_TYPE *one, *ten;
1426 REAL_VALUE_TYPE r, pten, u, v;
1427 int dec_exp, cmp_one, digit;
1428 size_t max_digits;
1429 char *p, *first, *last;
1430 bool sign;
1432 r = *r_orig;
1433 switch (r.cl)
1435 case rvc_zero:
1436 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1437 return;
1438 case rvc_normal:
1439 break;
1440 case rvc_inf:
1441 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1442 return;
1443 case rvc_nan:
1444 /* ??? Print the significand as well, if not canonical? */
1445 strcpy (str, (r.sign ? "-NaN" : "+NaN"));
1446 return;
1447 default:
1448 gcc_unreachable ();
1451 /* Bound the number of digits printed by the size of the representation. */
1452 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1453 if (digits == 0 || digits > max_digits)
1454 digits = max_digits;
1456 /* Estimate the decimal exponent, and compute the length of the string it
1457 will print as. Be conservative and add one to account for possible
1458 overflow or rounding error. */
1459 dec_exp = REAL_EXP (&r) * M_LOG10_2;
1460 for (max_digits = 1; dec_exp ; max_digits++)
1461 dec_exp /= 10;
1463 /* Bound the number of digits printed by the size of the output buffer. */
1464 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1465 gcc_assert (max_digits <= buf_size);
1466 if (digits > max_digits)
1467 digits = max_digits;
1469 one = real_digit (1);
1470 ten = ten_to_ptwo (0);
1472 sign = r.sign;
1473 r.sign = 0;
1475 dec_exp = 0;
1476 pten = *one;
1478 cmp_one = do_compare (&r, one, 0);
1479 if (cmp_one > 0)
1481 int m;
1483 /* Number is greater than one. Convert significand to an integer
1484 and strip trailing decimal zeros. */
1486 u = r;
1487 SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
1489 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1490 m = floor_log2 (max_digits);
1492 /* Iterate over the bits of the possible powers of 10 that might
1493 be present in U and eliminate them. That is, if we find that
1494 10**2**M divides U evenly, keep the division and increase
1495 DEC_EXP by 2**M. */
1498 REAL_VALUE_TYPE t;
1500 do_divide (&t, &u, ten_to_ptwo (m));
1501 do_fix_trunc (&v, &t);
1502 if (cmp_significands (&v, &t) == 0)
1504 u = t;
1505 dec_exp += 1 << m;
1508 while (--m >= 0);
1510 /* Revert the scaling to integer that we performed earlier. */
1511 SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
1512 - (SIGNIFICAND_BITS - 1));
1513 r = u;
1515 /* Find power of 10. Do this by dividing out 10**2**M when
1516 this is larger than the current remainder. Fill PTEN with
1517 the power of 10 that we compute. */
1518 if (REAL_EXP (&r) > 0)
1520 m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
1523 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1524 if (do_compare (&u, ptentwo, 0) >= 0)
1526 do_divide (&u, &u, ptentwo);
1527 do_multiply (&pten, &pten, ptentwo);
1528 dec_exp += 1 << m;
1531 while (--m >= 0);
1533 else
1534 /* We managed to divide off enough tens in the above reduction
1535 loop that we've now got a negative exponent. Fall into the
1536 less-than-one code to compute the proper value for PTEN. */
1537 cmp_one = -1;
1539 if (cmp_one < 0)
1541 int m;
1543 /* Number is less than one. Pad significand with leading
1544 decimal zeros. */
1546 v = r;
1547 while (1)
1549 /* Stop if we'd shift bits off the bottom. */
1550 if (v.sig[0] & 7)
1551 break;
1553 do_multiply (&u, &v, ten);
1555 /* Stop if we're now >= 1. */
1556 if (REAL_EXP (&u) > 0)
1557 break;
1559 v = u;
1560 dec_exp -= 1;
1562 r = v;
1564 /* Find power of 10. Do this by multiplying in P=10**2**M when
1565 the current remainder is smaller than 1/P. Fill PTEN with the
1566 power of 10 that we compute. */
1567 m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
1570 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1571 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1573 if (do_compare (&v, ptenmtwo, 0) <= 0)
1575 do_multiply (&v, &v, ptentwo);
1576 do_multiply (&pten, &pten, ptentwo);
1577 dec_exp -= 1 << m;
1580 while (--m >= 0);
1582 /* Invert the positive power of 10 that we've collected so far. */
1583 do_divide (&pten, one, &pten);
1586 p = str;
1587 if (sign)
1588 *p++ = '-';
1589 first = p++;
1591 /* At this point, PTEN should contain the nearest power of 10 smaller
1592 than R, such that this division produces the first digit.
1594 Using a divide-step primitive that returns the complete integral
1595 remainder avoids the rounding error that would be produced if
1596 we were to use do_divide here and then simply multiply by 10 for
1597 each subsequent digit. */
1599 digit = rtd_divmod (&r, &pten);
1601 /* Be prepared for error in that division via underflow ... */
1602 if (digit == 0 && cmp_significand_0 (&r))
1604 /* Multiply by 10 and try again. */
1605 do_multiply (&r, &r, ten);
1606 digit = rtd_divmod (&r, &pten);
1607 dec_exp -= 1;
1608 gcc_assert (digit != 0);
1611 /* ... or overflow. */
1612 if (digit == 10)
1614 *p++ = '1';
1615 if (--digits > 0)
1616 *p++ = '0';
1617 dec_exp += 1;
1619 else
1621 gcc_assert (digit <= 10);
1622 *p++ = digit + '0';
1625 /* Generate subsequent digits. */
1626 while (--digits > 0)
1628 do_multiply (&r, &r, ten);
1629 digit = rtd_divmod (&r, &pten);
1630 *p++ = digit + '0';
1632 last = p;
1634 /* Generate one more digit with which to do rounding. */
1635 do_multiply (&r, &r, ten);
1636 digit = rtd_divmod (&r, &pten);
1638 /* Round the result. */
1639 if (digit == 5)
1641 /* Round to nearest. If R is nonzero there are additional
1642 nonzero digits to be extracted. */
1643 if (cmp_significand_0 (&r))
1644 digit++;
1645 /* Round to even. */
1646 else if ((p[-1] - '0') & 1)
1647 digit++;
1649 if (digit > 5)
1651 while (p > first)
1653 digit = *--p;
1654 if (digit == '9')
1655 *p = '0';
1656 else
1658 *p = digit + 1;
1659 break;
1663 /* Carry out of the first digit. This means we had all 9's and
1664 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1665 if (p == first)
1667 first[1] = '1';
1668 dec_exp++;
1672 /* Insert the decimal point. */
1673 first[0] = first[1];
1674 first[1] = '.';
1676 /* If requested, drop trailing zeros. Never crop past "1.0". */
1677 if (crop_trailing_zeros)
1678 while (last > first + 3 && last[-1] == '0')
1679 last--;
1681 /* Append the exponent. */
1682 sprintf (last, "e%+d", dec_exp);
1685 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1686 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1687 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1688 strip trailing zeros. */
1690 void
1691 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1692 size_t digits, int crop_trailing_zeros)
1694 int i, j, exp = REAL_EXP (r);
1695 char *p, *first;
1696 char exp_buf[16];
1697 size_t max_digits;
1699 switch (r->cl)
1701 case rvc_zero:
1702 exp = 0;
1703 break;
1704 case rvc_normal:
1705 break;
1706 case rvc_inf:
1707 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1708 return;
1709 case rvc_nan:
1710 /* ??? Print the significand as well, if not canonical? */
1711 strcpy (str, (r->sign ? "-NaN" : "+NaN"));
1712 return;
1713 default:
1714 gcc_unreachable ();
1717 if (digits == 0)
1718 digits = SIGNIFICAND_BITS / 4;
1720 /* Bound the number of digits printed by the size of the output buffer. */
1722 sprintf (exp_buf, "p%+d", exp);
1723 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1724 gcc_assert (max_digits <= buf_size);
1725 if (digits > max_digits)
1726 digits = max_digits;
1728 p = str;
1729 if (r->sign)
1730 *p++ = '-';
1731 *p++ = '0';
1732 *p++ = 'x';
1733 *p++ = '0';
1734 *p++ = '.';
1735 first = p;
1737 for (i = SIGSZ - 1; i >= 0; --i)
1738 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1740 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1741 if (--digits == 0)
1742 goto out;
1745 out:
1746 if (crop_trailing_zeros)
1747 while (p > first + 1 && p[-1] == '0')
1748 p--;
1750 sprintf (p, "p%+d", exp);
1753 /* Initialize R from a decimal or hexadecimal string. The string is
1754 assumed to have been syntax checked already. */
1756 void
1757 real_from_string (REAL_VALUE_TYPE *r, const char *str)
1759 int exp = 0;
1760 bool sign = false;
1762 get_zero (r, 0);
1764 if (*str == '-')
1766 sign = true;
1767 str++;
1769 else if (*str == '+')
1770 str++;
1772 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
1774 /* Hexadecimal floating point. */
1775 int pos = SIGNIFICAND_BITS - 4, d;
1777 str += 2;
1779 while (*str == '0')
1780 str++;
1781 while (1)
1783 d = hex_value (*str);
1784 if (d == _hex_bad)
1785 break;
1786 if (pos >= 0)
1788 r->sig[pos / HOST_BITS_PER_LONG]
1789 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1790 pos -= 4;
1792 exp += 4;
1793 str++;
1795 if (*str == '.')
1797 str++;
1798 if (pos == SIGNIFICAND_BITS - 4)
1800 while (*str == '0')
1801 str++, exp -= 4;
1803 while (1)
1805 d = hex_value (*str);
1806 if (d == _hex_bad)
1807 break;
1808 if (pos >= 0)
1810 r->sig[pos / HOST_BITS_PER_LONG]
1811 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1812 pos -= 4;
1814 str++;
1817 if (*str == 'p' || *str == 'P')
1819 bool exp_neg = false;
1821 str++;
1822 if (*str == '-')
1824 exp_neg = true;
1825 str++;
1827 else if (*str == '+')
1828 str++;
1830 d = 0;
1831 while (ISDIGIT (*str))
1833 d *= 10;
1834 d += *str - '0';
1835 if (d > MAX_EXP)
1837 /* Overflowed the exponent. */
1838 if (exp_neg)
1839 goto underflow;
1840 else
1841 goto overflow;
1843 str++;
1845 if (exp_neg)
1846 d = -d;
1848 exp += d;
1851 r->cl = rvc_normal;
1852 SET_REAL_EXP (r, exp);
1854 normalize (r);
1856 else
1858 /* Decimal floating point. */
1859 const REAL_VALUE_TYPE *ten = ten_to_ptwo (0);
1860 int d;
1862 while (*str == '0')
1863 str++;
1864 while (ISDIGIT (*str))
1866 d = *str++ - '0';
1867 do_multiply (r, r, ten);
1868 if (d)
1869 do_add (r, r, real_digit (d), 0);
1871 if (*str == '.')
1873 str++;
1874 if (r->cl == rvc_zero)
1876 while (*str == '0')
1877 str++, exp--;
1879 while (ISDIGIT (*str))
1881 d = *str++ - '0';
1882 do_multiply (r, r, ten);
1883 if (d)
1884 do_add (r, r, real_digit (d), 0);
1885 exp--;
1889 if (*str == 'e' || *str == 'E')
1891 bool exp_neg = false;
1893 str++;
1894 if (*str == '-')
1896 exp_neg = true;
1897 str++;
1899 else if (*str == '+')
1900 str++;
1902 d = 0;
1903 while (ISDIGIT (*str))
1905 d *= 10;
1906 d += *str - '0';
1907 if (d > MAX_EXP)
1909 /* Overflowed the exponent. */
1910 if (exp_neg)
1911 goto underflow;
1912 else
1913 goto overflow;
1915 str++;
1917 if (exp_neg)
1918 d = -d;
1919 exp += d;
1922 if (exp)
1923 times_pten (r, exp);
1926 r->sign = sign;
1927 return;
1929 underflow:
1930 get_zero (r, sign);
1931 return;
1933 overflow:
1934 get_inf (r, sign);
1935 return;
1938 /* Legacy. Similar, but return the result directly. */
1940 REAL_VALUE_TYPE
1941 real_from_string2 (const char *s, enum machine_mode mode)
1943 REAL_VALUE_TYPE r;
1945 real_from_string (&r, s);
1946 if (mode != VOIDmode)
1947 real_convert (&r, mode, &r);
1949 return r;
1952 /* Initialize R from the integer pair HIGH+LOW. */
1954 void
1955 real_from_integer (REAL_VALUE_TYPE *r, enum machine_mode mode,
1956 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high,
1957 int unsigned_p)
1959 if (low == 0 && high == 0)
1960 get_zero (r, 0);
1961 else
1963 memset (r, 0, sizeof (*r));
1964 r->cl = rvc_normal;
1965 r->sign = high < 0 && !unsigned_p;
1966 SET_REAL_EXP (r, 2 * HOST_BITS_PER_WIDE_INT);
1968 if (r->sign)
1970 high = ~high;
1971 if (low == 0)
1972 high += 1;
1973 else
1974 low = -low;
1977 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
1979 r->sig[SIGSZ-1] = high;
1980 r->sig[SIGSZ-2] = low;
1982 else
1984 gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
1985 r->sig[SIGSZ-1] = high >> (HOST_BITS_PER_LONG - 1) >> 1;
1986 r->sig[SIGSZ-2] = high;
1987 r->sig[SIGSZ-3] = low >> (HOST_BITS_PER_LONG - 1) >> 1;
1988 r->sig[SIGSZ-4] = low;
1991 normalize (r);
1994 if (mode != VOIDmode)
1995 real_convert (r, mode, r);
1998 /* Returns 10**2**N. */
2000 static const REAL_VALUE_TYPE *
2001 ten_to_ptwo (int n)
2003 static REAL_VALUE_TYPE tens[EXP_BITS];
2005 gcc_assert (n >= 0);
2006 gcc_assert (n < EXP_BITS);
2008 if (tens[n].cl == rvc_zero)
2010 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2012 HOST_WIDE_INT t = 10;
2013 int i;
2015 for (i = 0; i < n; ++i)
2016 t *= t;
2018 real_from_integer (&tens[n], VOIDmode, t, 0, 1);
2020 else
2022 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2023 do_multiply (&tens[n], t, t);
2027 return &tens[n];
2030 /* Returns 10**(-2**N). */
2032 static const REAL_VALUE_TYPE *
2033 ten_to_mptwo (int n)
2035 static REAL_VALUE_TYPE tens[EXP_BITS];
2037 gcc_assert (n >= 0);
2038 gcc_assert (n < EXP_BITS);
2040 if (tens[n].cl == rvc_zero)
2041 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2043 return &tens[n];
2046 /* Returns N. */
2048 static const REAL_VALUE_TYPE *
2049 real_digit (int n)
2051 static REAL_VALUE_TYPE num[10];
2053 gcc_assert (n >= 0);
2054 gcc_assert (n <= 9);
2056 if (n > 0 && num[n].cl == rvc_zero)
2057 real_from_integer (&num[n], VOIDmode, n, 0, 1);
2059 return &num[n];
2062 /* Multiply R by 10**EXP. */
2064 static void
2065 times_pten (REAL_VALUE_TYPE *r, int exp)
2067 REAL_VALUE_TYPE pten, *rr;
2068 bool negative = (exp < 0);
2069 int i;
2071 if (negative)
2073 exp = -exp;
2074 pten = *real_digit (1);
2075 rr = &pten;
2077 else
2078 rr = r;
2080 for (i = 0; exp > 0; ++i, exp >>= 1)
2081 if (exp & 1)
2082 do_multiply (rr, rr, ten_to_ptwo (i));
2084 if (negative)
2085 do_divide (r, r, &pten);
2088 /* Fills R with +Inf. */
2090 void
2091 real_inf (REAL_VALUE_TYPE *r)
2093 get_inf (r, 0);
2096 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2097 we force a QNaN, else we force an SNaN. The string, if not empty,
2098 is parsed as a number and placed in the significand. Return true
2099 if the string was successfully parsed. */
2101 bool
2102 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2103 enum machine_mode mode)
2105 const struct real_format *fmt;
2107 fmt = REAL_MODE_FORMAT (mode);
2108 gcc_assert (fmt);
2110 if (*str == 0)
2112 if (quiet)
2113 get_canonical_qnan (r, 0);
2114 else
2115 get_canonical_snan (r, 0);
2117 else
2119 int base = 10, d;
2120 bool neg = false;
2122 memset (r, 0, sizeof (*r));
2123 r->cl = rvc_nan;
2125 /* Parse akin to strtol into the significand of R. */
2127 while (ISSPACE (*str))
2128 str++;
2129 if (*str == '-')
2130 str++, neg = true;
2131 else if (*str == '+')
2132 str++;
2133 if (*str == '0')
2135 if (*++str == 'x')
2136 str++, base = 16;
2137 else
2138 base = 8;
2141 while ((d = hex_value (*str)) < base)
2143 REAL_VALUE_TYPE u;
2145 switch (base)
2147 case 8:
2148 lshift_significand (r, r, 3);
2149 break;
2150 case 16:
2151 lshift_significand (r, r, 4);
2152 break;
2153 case 10:
2154 lshift_significand_1 (&u, r);
2155 lshift_significand (r, r, 3);
2156 add_significands (r, r, &u);
2157 break;
2158 default:
2159 gcc_unreachable ();
2162 get_zero (&u, 0);
2163 u.sig[0] = d;
2164 add_significands (r, r, &u);
2166 str++;
2169 /* Must have consumed the entire string for success. */
2170 if (*str != 0)
2171 return false;
2173 /* Shift the significand into place such that the bits
2174 are in the most significant bits for the format. */
2175 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2177 /* Our MSB is always unset for NaNs. */
2178 r->sig[SIGSZ-1] &= ~SIG_MSB;
2180 /* Force quiet or signalling NaN. */
2181 r->signalling = !quiet;
2184 return true;
2187 /* Fills R with the largest finite value representable in mode MODE.
2188 If SIGN is nonzero, R is set to the most negative finite value. */
2190 void
2191 real_maxval (REAL_VALUE_TYPE *r, int sign, enum machine_mode mode)
2193 const struct real_format *fmt;
2194 int np2;
2196 fmt = REAL_MODE_FORMAT (mode);
2197 gcc_assert (fmt);
2199 r->cl = rvc_normal;
2200 r->sign = sign;
2201 r->signalling = 0;
2202 r->canonical = 0;
2203 SET_REAL_EXP (r, fmt->emax * fmt->log2_b);
2205 np2 = SIGNIFICAND_BITS - fmt->p * fmt->log2_b;
2206 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2207 clear_significand_below (r, np2);
2210 /* Fills R with 2**N. */
2212 void
2213 real_2expN (REAL_VALUE_TYPE *r, int n)
2215 memset (r, 0, sizeof (*r));
2217 n++;
2218 if (n > MAX_EXP)
2219 r->cl = rvc_inf;
2220 else if (n < -MAX_EXP)
2222 else
2224 r->cl = rvc_normal;
2225 SET_REAL_EXP (r, n);
2226 r->sig[SIGSZ-1] = SIG_MSB;
2231 static void
2232 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2234 int p2, np2, i, w;
2235 unsigned long sticky;
2236 bool guard, lsb;
2237 int emin2m1, emax2;
2239 p2 = fmt->p * fmt->log2_b;
2240 emin2m1 = (fmt->emin - 1) * fmt->log2_b;
2241 emax2 = fmt->emax * fmt->log2_b;
2243 np2 = SIGNIFICAND_BITS - p2;
2244 switch (r->cl)
2246 underflow:
2247 get_zero (r, r->sign);
2248 case rvc_zero:
2249 if (!fmt->has_signed_zero)
2250 r->sign = 0;
2251 return;
2253 overflow:
2254 get_inf (r, r->sign);
2255 case rvc_inf:
2256 return;
2258 case rvc_nan:
2259 clear_significand_below (r, np2);
2260 return;
2262 case rvc_normal:
2263 break;
2265 default:
2266 gcc_unreachable ();
2269 /* If we're not base2, normalize the exponent to a multiple of
2270 the true base. */
2271 if (fmt->log2_b != 1)
2273 int shift = REAL_EXP (r) & (fmt->log2_b - 1);
2274 if (shift)
2276 shift = fmt->log2_b - shift;
2277 r->sig[0] |= sticky_rshift_significand (r, r, shift);
2278 SET_REAL_EXP (r, REAL_EXP (r) + shift);
2282 /* Check the range of the exponent. If we're out of range,
2283 either underflow or overflow. */
2284 if (REAL_EXP (r) > emax2)
2285 goto overflow;
2286 else if (REAL_EXP (r) <= emin2m1)
2288 int diff;
2290 if (!fmt->has_denorm)
2292 /* Don't underflow completely until we've had a chance to round. */
2293 if (REAL_EXP (r) < emin2m1)
2294 goto underflow;
2296 else
2298 diff = emin2m1 - REAL_EXP (r) + 1;
2299 if (diff > p2)
2300 goto underflow;
2302 /* De-normalize the significand. */
2303 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2304 SET_REAL_EXP (r, REAL_EXP (r) + diff);
2308 /* There are P2 true significand bits, followed by one guard bit,
2309 followed by one sticky bit, followed by stuff. Fold nonzero
2310 stuff into the sticky bit. */
2312 sticky = 0;
2313 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2314 sticky |= r->sig[i];
2315 sticky |=
2316 r->sig[w] & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2318 guard = test_significand_bit (r, np2 - 1);
2319 lsb = test_significand_bit (r, np2);
2321 /* Round to even. */
2322 if (guard && (sticky || lsb))
2324 REAL_VALUE_TYPE u;
2325 get_zero (&u, 0);
2326 set_significand_bit (&u, np2);
2328 if (add_significands (r, r, &u))
2330 /* Overflow. Means the significand had been all ones, and
2331 is now all zeros. Need to increase the exponent, and
2332 possibly re-normalize it. */
2333 SET_REAL_EXP (r, REAL_EXP (r) + 1);
2334 if (REAL_EXP (r) > emax2)
2335 goto overflow;
2336 r->sig[SIGSZ-1] = SIG_MSB;
2338 if (fmt->log2_b != 1)
2340 int shift = REAL_EXP (r) & (fmt->log2_b - 1);
2341 if (shift)
2343 shift = fmt->log2_b - shift;
2344 rshift_significand (r, r, shift);
2345 SET_REAL_EXP (r, REAL_EXP (r) + shift);
2346 if (REAL_EXP (r) > emax2)
2347 goto overflow;
2353 /* Catch underflow that we deferred until after rounding. */
2354 if (REAL_EXP (r) <= emin2m1)
2355 goto underflow;
2357 /* Clear out trailing garbage. */
2358 clear_significand_below (r, np2);
2361 /* Extend or truncate to a new mode. */
2363 void
2364 real_convert (REAL_VALUE_TYPE *r, enum machine_mode mode,
2365 const REAL_VALUE_TYPE *a)
2367 const struct real_format *fmt;
2369 fmt = REAL_MODE_FORMAT (mode);
2370 gcc_assert (fmt);
2372 *r = *a;
2373 round_for_format (fmt, r);
2375 /* round_for_format de-normalizes denormals. Undo just that part. */
2376 if (r->cl == rvc_normal)
2377 normalize (r);
2380 /* Legacy. Likewise, except return the struct directly. */
2382 REAL_VALUE_TYPE
2383 real_value_truncate (enum machine_mode mode, REAL_VALUE_TYPE a)
2385 REAL_VALUE_TYPE r;
2386 real_convert (&r, mode, &a);
2387 return r;
2390 /* Return true if truncating to MODE is exact. */
2392 bool
2393 exact_real_truncate (enum machine_mode mode, const REAL_VALUE_TYPE *a)
2395 REAL_VALUE_TYPE t;
2396 real_convert (&t, mode, a);
2397 return real_identical (&t, a);
2400 /* Write R to the given target format. Place the words of the result
2401 in target word order in BUF. There are always 32 bits in each
2402 long, no matter the size of the host long.
2404 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2406 long
2407 real_to_target_fmt (long *buf, const REAL_VALUE_TYPE *r_orig,
2408 const struct real_format *fmt)
2410 REAL_VALUE_TYPE r;
2411 long buf1;
2413 r = *r_orig;
2414 round_for_format (fmt, &r);
2416 if (!buf)
2417 buf = &buf1;
2418 (*fmt->encode) (fmt, buf, &r);
2420 return *buf;
2423 /* Similar, but look up the format from MODE. */
2425 long
2426 real_to_target (long *buf, const REAL_VALUE_TYPE *r, enum machine_mode mode)
2428 const struct real_format *fmt;
2430 fmt = REAL_MODE_FORMAT (mode);
2431 gcc_assert (fmt);
2433 return real_to_target_fmt (buf, r, fmt);
2436 /* Read R from the given target format. Read the words of the result
2437 in target word order in BUF. There are always 32 bits in each
2438 long, no matter the size of the host long. */
2440 void
2441 real_from_target_fmt (REAL_VALUE_TYPE *r, const long *buf,
2442 const struct real_format *fmt)
2444 (*fmt->decode) (fmt, r, buf);
2447 /* Similar, but look up the format from MODE. */
2449 void
2450 real_from_target (REAL_VALUE_TYPE *r, const long *buf, enum machine_mode mode)
2452 const struct real_format *fmt;
2454 fmt = REAL_MODE_FORMAT (mode);
2455 gcc_assert (fmt);
2457 (*fmt->decode) (fmt, r, buf);
2460 /* Return the number of bits in the significand for MODE. */
2461 /* ??? Legacy. Should get access to real_format directly. */
2464 significand_size (enum machine_mode mode)
2466 const struct real_format *fmt;
2468 fmt = REAL_MODE_FORMAT (mode);
2469 if (fmt == NULL)
2470 return 0;
2472 return fmt->p * fmt->log2_b;
2475 /* Return a hash value for the given real value. */
2476 /* ??? The "unsigned int" return value is intended to be hashval_t,
2477 but I didn't want to pull hashtab.h into real.h. */
2479 unsigned int
2480 real_hash (const REAL_VALUE_TYPE *r)
2482 unsigned int h;
2483 size_t i;
2485 h = r->cl | (r->sign << 2);
2486 switch (r->cl)
2488 case rvc_zero:
2489 case rvc_inf:
2490 return h;
2492 case rvc_normal:
2493 h |= REAL_EXP (r) << 3;
2494 break;
2496 case rvc_nan:
2497 if (r->signalling)
2498 h ^= (unsigned int)-1;
2499 if (r->canonical)
2500 return h;
2501 break;
2503 default:
2504 gcc_unreachable ();
2507 if (sizeof(unsigned long) > sizeof(unsigned int))
2508 for (i = 0; i < SIGSZ; ++i)
2510 unsigned long s = r->sig[i];
2511 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2513 else
2514 for (i = 0; i < SIGSZ; ++i)
2515 h ^= r->sig[i];
2517 return h;
2520 /* IEEE single-precision format. */
2522 static void encode_ieee_single (const struct real_format *fmt,
2523 long *, const REAL_VALUE_TYPE *);
2524 static void decode_ieee_single (const struct real_format *,
2525 REAL_VALUE_TYPE *, const long *);
2527 static void
2528 encode_ieee_single (const struct real_format *fmt, long *buf,
2529 const REAL_VALUE_TYPE *r)
2531 unsigned long image, sig, exp;
2532 unsigned long sign = r->sign;
2533 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2535 image = sign << 31;
2536 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2538 switch (r->cl)
2540 case rvc_zero:
2541 break;
2543 case rvc_inf:
2544 if (fmt->has_inf)
2545 image |= 255 << 23;
2546 else
2547 image |= 0x7fffffff;
2548 break;
2550 case rvc_nan:
2551 if (fmt->has_nans)
2553 if (r->canonical)
2554 sig = 0;
2555 if (r->signalling == fmt->qnan_msb_set)
2556 sig &= ~(1 << 22);
2557 else
2558 sig |= 1 << 22;
2559 /* We overload qnan_msb_set here: it's only clear for
2560 mips_ieee_single, which wants all mantissa bits but the
2561 quiet/signalling one set in canonical NaNs (at least
2562 Quiet ones). */
2563 if (r->canonical && !fmt->qnan_msb_set)
2564 sig |= (1 << 22) - 1;
2565 else if (sig == 0)
2566 sig = 1 << 21;
2568 image |= 255 << 23;
2569 image |= sig;
2571 else
2572 image |= 0x7fffffff;
2573 break;
2575 case rvc_normal:
2576 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2577 whereas the intermediate representation is 0.F x 2**exp.
2578 Which means we're off by one. */
2579 if (denormal)
2580 exp = 0;
2581 else
2582 exp = REAL_EXP (r) + 127 - 1;
2583 image |= exp << 23;
2584 image |= sig;
2585 break;
2587 default:
2588 gcc_unreachable ();
2591 buf[0] = image;
2594 static void
2595 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2596 const long *buf)
2598 unsigned long image = buf[0] & 0xffffffff;
2599 bool sign = (image >> 31) & 1;
2600 int exp = (image >> 23) & 0xff;
2602 memset (r, 0, sizeof (*r));
2603 image <<= HOST_BITS_PER_LONG - 24;
2604 image &= ~SIG_MSB;
2606 if (exp == 0)
2608 if (image && fmt->has_denorm)
2610 r->cl = rvc_normal;
2611 r->sign = sign;
2612 SET_REAL_EXP (r, -126);
2613 r->sig[SIGSZ-1] = image << 1;
2614 normalize (r);
2616 else if (fmt->has_signed_zero)
2617 r->sign = sign;
2619 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
2621 if (image)
2623 r->cl = rvc_nan;
2624 r->sign = sign;
2625 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
2626 ^ fmt->qnan_msb_set);
2627 r->sig[SIGSZ-1] = image;
2629 else
2631 r->cl = rvc_inf;
2632 r->sign = sign;
2635 else
2637 r->cl = rvc_normal;
2638 r->sign = sign;
2639 SET_REAL_EXP (r, exp - 127 + 1);
2640 r->sig[SIGSZ-1] = image | SIG_MSB;
2644 const struct real_format ieee_single_format =
2646 encode_ieee_single,
2647 decode_ieee_single,
2652 -125,
2653 128,
2655 true,
2656 true,
2657 true,
2658 true,
2659 true
2662 const struct real_format mips_single_format =
2664 encode_ieee_single,
2665 decode_ieee_single,
2670 -125,
2671 128,
2673 true,
2674 true,
2675 true,
2676 true,
2677 false
2681 /* IEEE double-precision format. */
2683 static void encode_ieee_double (const struct real_format *fmt,
2684 long *, const REAL_VALUE_TYPE *);
2685 static void decode_ieee_double (const struct real_format *,
2686 REAL_VALUE_TYPE *, const long *);
2688 static void
2689 encode_ieee_double (const struct real_format *fmt, long *buf,
2690 const REAL_VALUE_TYPE *r)
2692 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
2693 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2695 image_hi = r->sign << 31;
2696 image_lo = 0;
2698 if (HOST_BITS_PER_LONG == 64)
2700 sig_hi = r->sig[SIGSZ-1];
2701 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
2702 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
2704 else
2706 sig_hi = r->sig[SIGSZ-1];
2707 sig_lo = r->sig[SIGSZ-2];
2708 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
2709 sig_hi = (sig_hi >> 11) & 0xfffff;
2712 switch (r->cl)
2714 case rvc_zero:
2715 break;
2717 case rvc_inf:
2718 if (fmt->has_inf)
2719 image_hi |= 2047 << 20;
2720 else
2722 image_hi |= 0x7fffffff;
2723 image_lo = 0xffffffff;
2725 break;
2727 case rvc_nan:
2728 if (fmt->has_nans)
2730 if (r->canonical)
2731 sig_hi = sig_lo = 0;
2732 if (r->signalling == fmt->qnan_msb_set)
2733 sig_hi &= ~(1 << 19);
2734 else
2735 sig_hi |= 1 << 19;
2736 /* We overload qnan_msb_set here: it's only clear for
2737 mips_ieee_single, which wants all mantissa bits but the
2738 quiet/signalling one set in canonical NaNs (at least
2739 Quiet ones). */
2740 if (r->canonical && !fmt->qnan_msb_set)
2742 sig_hi |= (1 << 19) - 1;
2743 sig_lo = 0xffffffff;
2745 else if (sig_hi == 0 && sig_lo == 0)
2746 sig_hi = 1 << 18;
2748 image_hi |= 2047 << 20;
2749 image_hi |= sig_hi;
2750 image_lo = sig_lo;
2752 else
2754 image_hi |= 0x7fffffff;
2755 image_lo = 0xffffffff;
2757 break;
2759 case rvc_normal:
2760 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2761 whereas the intermediate representation is 0.F x 2**exp.
2762 Which means we're off by one. */
2763 if (denormal)
2764 exp = 0;
2765 else
2766 exp = REAL_EXP (r) + 1023 - 1;
2767 image_hi |= exp << 20;
2768 image_hi |= sig_hi;
2769 image_lo = sig_lo;
2770 break;
2772 default:
2773 gcc_unreachable ();
2776 if (FLOAT_WORDS_BIG_ENDIAN)
2777 buf[0] = image_hi, buf[1] = image_lo;
2778 else
2779 buf[0] = image_lo, buf[1] = image_hi;
2782 static void
2783 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2784 const long *buf)
2786 unsigned long image_hi, image_lo;
2787 bool sign;
2788 int exp;
2790 if (FLOAT_WORDS_BIG_ENDIAN)
2791 image_hi = buf[0], image_lo = buf[1];
2792 else
2793 image_lo = buf[0], image_hi = buf[1];
2794 image_lo &= 0xffffffff;
2795 image_hi &= 0xffffffff;
2797 sign = (image_hi >> 31) & 1;
2798 exp = (image_hi >> 20) & 0x7ff;
2800 memset (r, 0, sizeof (*r));
2802 image_hi <<= 32 - 21;
2803 image_hi |= image_lo >> 21;
2804 image_hi &= 0x7fffffff;
2805 image_lo <<= 32 - 21;
2807 if (exp == 0)
2809 if ((image_hi || image_lo) && fmt->has_denorm)
2811 r->cl = rvc_normal;
2812 r->sign = sign;
2813 SET_REAL_EXP (r, -1022);
2814 if (HOST_BITS_PER_LONG == 32)
2816 image_hi = (image_hi << 1) | (image_lo >> 31);
2817 image_lo <<= 1;
2818 r->sig[SIGSZ-1] = image_hi;
2819 r->sig[SIGSZ-2] = image_lo;
2821 else
2823 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
2824 r->sig[SIGSZ-1] = image_hi;
2826 normalize (r);
2828 else if (fmt->has_signed_zero)
2829 r->sign = sign;
2831 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
2833 if (image_hi || image_lo)
2835 r->cl = rvc_nan;
2836 r->sign = sign;
2837 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
2838 if (HOST_BITS_PER_LONG == 32)
2840 r->sig[SIGSZ-1] = image_hi;
2841 r->sig[SIGSZ-2] = image_lo;
2843 else
2844 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
2846 else
2848 r->cl = rvc_inf;
2849 r->sign = sign;
2852 else
2854 r->cl = rvc_normal;
2855 r->sign = sign;
2856 SET_REAL_EXP (r, exp - 1023 + 1);
2857 if (HOST_BITS_PER_LONG == 32)
2859 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
2860 r->sig[SIGSZ-2] = image_lo;
2862 else
2863 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
2867 const struct real_format ieee_double_format =
2869 encode_ieee_double,
2870 decode_ieee_double,
2875 -1021,
2876 1024,
2878 true,
2879 true,
2880 true,
2881 true,
2882 true
2885 const struct real_format mips_double_format =
2887 encode_ieee_double,
2888 decode_ieee_double,
2893 -1021,
2894 1024,
2896 true,
2897 true,
2898 true,
2899 true,
2900 false
2904 /* IEEE extended real format. This comes in three flavors: Intel's as
2905 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
2906 12- and 16-byte images may be big- or little endian; Motorola's is
2907 always big endian. */
2909 /* Helper subroutine which converts from the internal format to the
2910 12-byte little-endian Intel format. Functions below adjust this
2911 for the other possible formats. */
2912 static void
2913 encode_ieee_extended (const struct real_format *fmt, long *buf,
2914 const REAL_VALUE_TYPE *r)
2916 unsigned long image_hi, sig_hi, sig_lo;
2917 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2919 image_hi = r->sign << 15;
2920 sig_hi = sig_lo = 0;
2922 switch (r->cl)
2924 case rvc_zero:
2925 break;
2927 case rvc_inf:
2928 if (fmt->has_inf)
2930 image_hi |= 32767;
2932 /* Intel requires the explicit integer bit to be set, otherwise
2933 it considers the value a "pseudo-infinity". Motorola docs
2934 say it doesn't care. */
2935 sig_hi = 0x80000000;
2937 else
2939 image_hi |= 32767;
2940 sig_lo = sig_hi = 0xffffffff;
2942 break;
2944 case rvc_nan:
2945 if (fmt->has_nans)
2947 image_hi |= 32767;
2948 if (HOST_BITS_PER_LONG == 32)
2950 sig_hi = r->sig[SIGSZ-1];
2951 sig_lo = r->sig[SIGSZ-2];
2953 else
2955 sig_lo = r->sig[SIGSZ-1];
2956 sig_hi = sig_lo >> 31 >> 1;
2957 sig_lo &= 0xffffffff;
2959 if (r->signalling == fmt->qnan_msb_set)
2960 sig_hi &= ~(1 << 30);
2961 else
2962 sig_hi |= 1 << 30;
2963 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
2964 sig_hi = 1 << 29;
2966 /* Intel requires the explicit integer bit to be set, otherwise
2967 it considers the value a "pseudo-nan". Motorola docs say it
2968 doesn't care. */
2969 sig_hi |= 0x80000000;
2971 else
2973 image_hi |= 32767;
2974 sig_lo = sig_hi = 0xffffffff;
2976 break;
2978 case rvc_normal:
2980 int exp = REAL_EXP (r);
2982 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2983 whereas the intermediate representation is 0.F x 2**exp.
2984 Which means we're off by one.
2986 Except for Motorola, which consider exp=0 and explicit
2987 integer bit set to continue to be normalized. In theory
2988 this discrepancy has been taken care of by the difference
2989 in fmt->emin in round_for_format. */
2991 if (denormal)
2992 exp = 0;
2993 else
2995 exp += 16383 - 1;
2996 gcc_assert (exp >= 0);
2998 image_hi |= exp;
3000 if (HOST_BITS_PER_LONG == 32)
3002 sig_hi = r->sig[SIGSZ-1];
3003 sig_lo = r->sig[SIGSZ-2];
3005 else
3007 sig_lo = r->sig[SIGSZ-1];
3008 sig_hi = sig_lo >> 31 >> 1;
3009 sig_lo &= 0xffffffff;
3012 break;
3014 default:
3015 gcc_unreachable ();
3018 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3021 /* Convert from the internal format to the 12-byte Motorola format
3022 for an IEEE extended real. */
3023 static void
3024 encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
3025 const REAL_VALUE_TYPE *r)
3027 long intermed[3];
3028 encode_ieee_extended (fmt, intermed, r);
3030 /* Motorola chips are assumed always to be big-endian. Also, the
3031 padding in a Motorola extended real goes between the exponent and
3032 the mantissa. At this point the mantissa is entirely within
3033 elements 0 and 1 of intermed, and the exponent entirely within
3034 element 2, so all we have to do is swap the order around, and
3035 shift element 2 left 16 bits. */
3036 buf[0] = intermed[2] << 16;
3037 buf[1] = intermed[1];
3038 buf[2] = intermed[0];
3041 /* Convert from the internal format to the 12-byte Intel format for
3042 an IEEE extended real. */
3043 static void
3044 encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
3045 const REAL_VALUE_TYPE *r)
3047 if (FLOAT_WORDS_BIG_ENDIAN)
3049 /* All the padding in an Intel-format extended real goes at the high
3050 end, which in this case is after the mantissa, not the exponent.
3051 Therefore we must shift everything down 16 bits. */
3052 long intermed[3];
3053 encode_ieee_extended (fmt, intermed, r);
3054 buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
3055 buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
3056 buf[2] = (intermed[0] << 16);
3058 else
3059 /* encode_ieee_extended produces what we want directly. */
3060 encode_ieee_extended (fmt, buf, r);
3063 /* Convert from the internal format to the 16-byte Intel format for
3064 an IEEE extended real. */
3065 static void
3066 encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
3067 const REAL_VALUE_TYPE *r)
3069 /* All the padding in an Intel-format extended real goes at the high end. */
3070 encode_ieee_extended_intel_96 (fmt, buf, r);
3071 buf[3] = 0;
3074 /* As above, we have a helper function which converts from 12-byte
3075 little-endian Intel format to internal format. Functions below
3076 adjust for the other possible formats. */
3077 static void
3078 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3079 const long *buf)
3081 unsigned long image_hi, sig_hi, sig_lo;
3082 bool sign;
3083 int exp;
3085 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3086 sig_lo &= 0xffffffff;
3087 sig_hi &= 0xffffffff;
3088 image_hi &= 0xffffffff;
3090 sign = (image_hi >> 15) & 1;
3091 exp = image_hi & 0x7fff;
3093 memset (r, 0, sizeof (*r));
3095 if (exp == 0)
3097 if ((sig_hi || sig_lo) && fmt->has_denorm)
3099 r->cl = rvc_normal;
3100 r->sign = sign;
3102 /* When the IEEE format contains a hidden bit, we know that
3103 it's zero at this point, and so shift up the significand
3104 and decrease the exponent to match. In this case, Motorola
3105 defines the explicit integer bit to be valid, so we don't
3106 know whether the msb is set or not. */
3107 SET_REAL_EXP (r, fmt->emin);
3108 if (HOST_BITS_PER_LONG == 32)
3110 r->sig[SIGSZ-1] = sig_hi;
3111 r->sig[SIGSZ-2] = sig_lo;
3113 else
3114 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3116 normalize (r);
3118 else if (fmt->has_signed_zero)
3119 r->sign = sign;
3121 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3123 /* See above re "pseudo-infinities" and "pseudo-nans".
3124 Short summary is that the MSB will likely always be
3125 set, and that we don't care about it. */
3126 sig_hi &= 0x7fffffff;
3128 if (sig_hi || sig_lo)
3130 r->cl = rvc_nan;
3131 r->sign = sign;
3132 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3133 if (HOST_BITS_PER_LONG == 32)
3135 r->sig[SIGSZ-1] = sig_hi;
3136 r->sig[SIGSZ-2] = sig_lo;
3138 else
3139 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3141 else
3143 r->cl = rvc_inf;
3144 r->sign = sign;
3147 else
3149 r->cl = rvc_normal;
3150 r->sign = sign;
3151 SET_REAL_EXP (r, exp - 16383 + 1);
3152 if (HOST_BITS_PER_LONG == 32)
3154 r->sig[SIGSZ-1] = sig_hi;
3155 r->sig[SIGSZ-2] = sig_lo;
3157 else
3158 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3162 /* Convert from the internal format to the 12-byte Motorola format
3163 for an IEEE extended real. */
3164 static void
3165 decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3166 const long *buf)
3168 long intermed[3];
3170 /* Motorola chips are assumed always to be big-endian. Also, the
3171 padding in a Motorola extended real goes between the exponent and
3172 the mantissa; remove it. */
3173 intermed[0] = buf[2];
3174 intermed[1] = buf[1];
3175 intermed[2] = (unsigned long)buf[0] >> 16;
3177 decode_ieee_extended (fmt, r, intermed);
3180 /* Convert from the internal format to the 12-byte Intel format for
3181 an IEEE extended real. */
3182 static void
3183 decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3184 const long *buf)
3186 if (FLOAT_WORDS_BIG_ENDIAN)
3188 /* All the padding in an Intel-format extended real goes at the high
3189 end, which in this case is after the mantissa, not the exponent.
3190 Therefore we must shift everything up 16 bits. */
3191 long intermed[3];
3193 intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
3194 intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
3195 intermed[2] = ((unsigned long)buf[0] >> 16);
3197 decode_ieee_extended (fmt, r, intermed);
3199 else
3200 /* decode_ieee_extended produces what we want directly. */
3201 decode_ieee_extended (fmt, r, buf);
3204 /* Convert from the internal format to the 16-byte Intel format for
3205 an IEEE extended real. */
3206 static void
3207 decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3208 const long *buf)
3210 /* All the padding in an Intel-format extended real goes at the high end. */
3211 decode_ieee_extended_intel_96 (fmt, r, buf);
3214 const struct real_format ieee_extended_motorola_format =
3216 encode_ieee_extended_motorola,
3217 decode_ieee_extended_motorola,
3222 -16382,
3223 16384,
3225 true,
3226 true,
3227 true,
3228 true,
3229 true
3232 const struct real_format ieee_extended_intel_96_format =
3234 encode_ieee_extended_intel_96,
3235 decode_ieee_extended_intel_96,
3240 -16381,
3241 16384,
3243 true,
3244 true,
3245 true,
3246 true,
3247 true
3250 const struct real_format ieee_extended_intel_128_format =
3252 encode_ieee_extended_intel_128,
3253 decode_ieee_extended_intel_128,
3258 -16381,
3259 16384,
3261 true,
3262 true,
3263 true,
3264 true,
3265 true
3268 /* The following caters to i386 systems that set the rounding precision
3269 to 53 bits instead of 64, e.g. FreeBSD. */
3270 const struct real_format ieee_extended_intel_96_round_53_format =
3272 encode_ieee_extended_intel_96,
3273 decode_ieee_extended_intel_96,
3278 -16381,
3279 16384,
3281 true,
3282 true,
3283 true,
3284 true,
3285 true
3288 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3289 numbers whose sum is equal to the extended precision value. The number
3290 with greater magnitude is first. This format has the same magnitude
3291 range as an IEEE double precision value, but effectively 106 bits of
3292 significand precision. Infinity and NaN are represented by their IEEE
3293 double precision value stored in the first number, the second number is
3294 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3296 static void encode_ibm_extended (const struct real_format *fmt,
3297 long *, const REAL_VALUE_TYPE *);
3298 static void decode_ibm_extended (const struct real_format *,
3299 REAL_VALUE_TYPE *, const long *);
3301 static void
3302 encode_ibm_extended (const struct real_format *fmt, long *buf,
3303 const REAL_VALUE_TYPE *r)
3305 REAL_VALUE_TYPE u, normr, v;
3306 const struct real_format *base_fmt;
3308 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3310 /* Renormlize R before doing any arithmetic on it. */
3311 normr = *r;
3312 if (normr.cl == rvc_normal)
3313 normalize (&normr);
3315 /* u = IEEE double precision portion of significand. */
3316 u = normr;
3317 round_for_format (base_fmt, &u);
3318 encode_ieee_double (base_fmt, &buf[0], &u);
3320 if (u.cl == rvc_normal)
3322 do_add (&v, &normr, &u, 1);
3323 /* Call round_for_format since we might need to denormalize. */
3324 round_for_format (base_fmt, &v);
3325 encode_ieee_double (base_fmt, &buf[2], &v);
3327 else
3329 /* Inf, NaN, 0 are all representable as doubles, so the
3330 least-significant part can be 0.0. */
3331 buf[2] = 0;
3332 buf[3] = 0;
3336 static void
3337 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3338 const long *buf)
3340 REAL_VALUE_TYPE u, v;
3341 const struct real_format *base_fmt;
3343 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3344 decode_ieee_double (base_fmt, &u, &buf[0]);
3346 if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
3348 decode_ieee_double (base_fmt, &v, &buf[2]);
3349 do_add (r, &u, &v, 0);
3351 else
3352 *r = u;
3355 const struct real_format ibm_extended_format =
3357 encode_ibm_extended,
3358 decode_ibm_extended,
3361 53 + 53,
3363 -1021 + 53,
3364 1024,
3366 true,
3367 true,
3368 true,
3369 true,
3370 true
3373 const struct real_format mips_extended_format =
3375 encode_ibm_extended,
3376 decode_ibm_extended,
3379 53 + 53,
3381 -1021 + 53,
3382 1024,
3384 true,
3385 true,
3386 true,
3387 true,
3388 false
3392 /* IEEE quad precision format. */
3394 static void encode_ieee_quad (const struct real_format *fmt,
3395 long *, const REAL_VALUE_TYPE *);
3396 static void decode_ieee_quad (const struct real_format *,
3397 REAL_VALUE_TYPE *, const long *);
3399 static void
3400 encode_ieee_quad (const struct real_format *fmt, long *buf,
3401 const REAL_VALUE_TYPE *r)
3403 unsigned long image3, image2, image1, image0, exp;
3404 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3405 REAL_VALUE_TYPE u;
3407 image3 = r->sign << 31;
3408 image2 = 0;
3409 image1 = 0;
3410 image0 = 0;
3412 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3414 switch (r->cl)
3416 case rvc_zero:
3417 break;
3419 case rvc_inf:
3420 if (fmt->has_inf)
3421 image3 |= 32767 << 16;
3422 else
3424 image3 |= 0x7fffffff;
3425 image2 = 0xffffffff;
3426 image1 = 0xffffffff;
3427 image0 = 0xffffffff;
3429 break;
3431 case rvc_nan:
3432 if (fmt->has_nans)
3434 image3 |= 32767 << 16;
3436 if (r->canonical)
3438 /* Don't use bits from the significand. The
3439 initialization above is right. */
3441 else if (HOST_BITS_PER_LONG == 32)
3443 image0 = u.sig[0];
3444 image1 = u.sig[1];
3445 image2 = u.sig[2];
3446 image3 |= u.sig[3] & 0xffff;
3448 else
3450 image0 = u.sig[0];
3451 image1 = image0 >> 31 >> 1;
3452 image2 = u.sig[1];
3453 image3 |= (image2 >> 31 >> 1) & 0xffff;
3454 image0 &= 0xffffffff;
3455 image2 &= 0xffffffff;
3457 if (r->signalling == fmt->qnan_msb_set)
3458 image3 &= ~0x8000;
3459 else
3460 image3 |= 0x8000;
3461 /* We overload qnan_msb_set here: it's only clear for
3462 mips_ieee_single, which wants all mantissa bits but the
3463 quiet/signalling one set in canonical NaNs (at least
3464 Quiet ones). */
3465 if (r->canonical && !fmt->qnan_msb_set)
3467 image3 |= 0x7fff;
3468 image2 = image1 = image0 = 0xffffffff;
3470 else if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
3471 image3 |= 0x4000;
3473 else
3475 image3 |= 0x7fffffff;
3476 image2 = 0xffffffff;
3477 image1 = 0xffffffff;
3478 image0 = 0xffffffff;
3480 break;
3482 case rvc_normal:
3483 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3484 whereas the intermediate representation is 0.F x 2**exp.
3485 Which means we're off by one. */
3486 if (denormal)
3487 exp = 0;
3488 else
3489 exp = REAL_EXP (r) + 16383 - 1;
3490 image3 |= exp << 16;
3492 if (HOST_BITS_PER_LONG == 32)
3494 image0 = u.sig[0];
3495 image1 = u.sig[1];
3496 image2 = u.sig[2];
3497 image3 |= u.sig[3] & 0xffff;
3499 else
3501 image0 = u.sig[0];
3502 image1 = image0 >> 31 >> 1;
3503 image2 = u.sig[1];
3504 image3 |= (image2 >> 31 >> 1) & 0xffff;
3505 image0 &= 0xffffffff;
3506 image2 &= 0xffffffff;
3508 break;
3510 default:
3511 gcc_unreachable ();
3514 if (FLOAT_WORDS_BIG_ENDIAN)
3516 buf[0] = image3;
3517 buf[1] = image2;
3518 buf[2] = image1;
3519 buf[3] = image0;
3521 else
3523 buf[0] = image0;
3524 buf[1] = image1;
3525 buf[2] = image2;
3526 buf[3] = image3;
3530 static void
3531 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3532 const long *buf)
3534 unsigned long image3, image2, image1, image0;
3535 bool sign;
3536 int exp;
3538 if (FLOAT_WORDS_BIG_ENDIAN)
3540 image3 = buf[0];
3541 image2 = buf[1];
3542 image1 = buf[2];
3543 image0 = buf[3];
3545 else
3547 image0 = buf[0];
3548 image1 = buf[1];
3549 image2 = buf[2];
3550 image3 = buf[3];
3552 image0 &= 0xffffffff;
3553 image1 &= 0xffffffff;
3554 image2 &= 0xffffffff;
3556 sign = (image3 >> 31) & 1;
3557 exp = (image3 >> 16) & 0x7fff;
3558 image3 &= 0xffff;
3560 memset (r, 0, sizeof (*r));
3562 if (exp == 0)
3564 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
3566 r->cl = rvc_normal;
3567 r->sign = sign;
3569 SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
3570 if (HOST_BITS_PER_LONG == 32)
3572 r->sig[0] = image0;
3573 r->sig[1] = image1;
3574 r->sig[2] = image2;
3575 r->sig[3] = image3;
3577 else
3579 r->sig[0] = (image1 << 31 << 1) | image0;
3580 r->sig[1] = (image3 << 31 << 1) | image2;
3583 normalize (r);
3585 else if (fmt->has_signed_zero)
3586 r->sign = sign;
3588 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3590 if (image3 | image2 | image1 | image0)
3592 r->cl = rvc_nan;
3593 r->sign = sign;
3594 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
3596 if (HOST_BITS_PER_LONG == 32)
3598 r->sig[0] = image0;
3599 r->sig[1] = image1;
3600 r->sig[2] = image2;
3601 r->sig[3] = image3;
3603 else
3605 r->sig[0] = (image1 << 31 << 1) | image0;
3606 r->sig[1] = (image3 << 31 << 1) | image2;
3608 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3610 else
3612 r->cl = rvc_inf;
3613 r->sign = sign;
3616 else
3618 r->cl = rvc_normal;
3619 r->sign = sign;
3620 SET_REAL_EXP (r, exp - 16383 + 1);
3622 if (HOST_BITS_PER_LONG == 32)
3624 r->sig[0] = image0;
3625 r->sig[1] = image1;
3626 r->sig[2] = image2;
3627 r->sig[3] = image3;
3629 else
3631 r->sig[0] = (image1 << 31 << 1) | image0;
3632 r->sig[1] = (image3 << 31 << 1) | image2;
3634 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3635 r->sig[SIGSZ-1] |= SIG_MSB;
3639 const struct real_format ieee_quad_format =
3641 encode_ieee_quad,
3642 decode_ieee_quad,
3645 113,
3646 113,
3647 -16381,
3648 16384,
3649 127,
3650 true,
3651 true,
3652 true,
3653 true,
3654 true
3657 const struct real_format mips_quad_format =
3659 encode_ieee_quad,
3660 decode_ieee_quad,
3663 113,
3664 113,
3665 -16381,
3666 16384,
3667 127,
3668 true,
3669 true,
3670 true,
3671 true,
3672 false
3675 /* Descriptions of VAX floating point formats can be found beginning at
3677 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3679 The thing to remember is that they're almost IEEE, except for word
3680 order, exponent bias, and the lack of infinities, nans, and denormals.
3682 We don't implement the H_floating format here, simply because neither
3683 the VAX or Alpha ports use it. */
3685 static void encode_vax_f (const struct real_format *fmt,
3686 long *, const REAL_VALUE_TYPE *);
3687 static void decode_vax_f (const struct real_format *,
3688 REAL_VALUE_TYPE *, const long *);
3689 static void encode_vax_d (const struct real_format *fmt,
3690 long *, const REAL_VALUE_TYPE *);
3691 static void decode_vax_d (const struct real_format *,
3692 REAL_VALUE_TYPE *, const long *);
3693 static void encode_vax_g (const struct real_format *fmt,
3694 long *, const REAL_VALUE_TYPE *);
3695 static void decode_vax_g (const struct real_format *,
3696 REAL_VALUE_TYPE *, const long *);
3698 static void
3699 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3700 const REAL_VALUE_TYPE *r)
3702 unsigned long sign, exp, sig, image;
3704 sign = r->sign << 15;
3706 switch (r->cl)
3708 case rvc_zero:
3709 image = 0;
3710 break;
3712 case rvc_inf:
3713 case rvc_nan:
3714 image = 0xffff7fff | sign;
3715 break;
3717 case rvc_normal:
3718 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
3719 exp = REAL_EXP (r) + 128;
3721 image = (sig << 16) & 0xffff0000;
3722 image |= sign;
3723 image |= exp << 7;
3724 image |= sig >> 16;
3725 break;
3727 default:
3728 gcc_unreachable ();
3731 buf[0] = image;
3734 static void
3735 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
3736 REAL_VALUE_TYPE *r, const long *buf)
3738 unsigned long image = buf[0] & 0xffffffff;
3739 int exp = (image >> 7) & 0xff;
3741 memset (r, 0, sizeof (*r));
3743 if (exp != 0)
3745 r->cl = rvc_normal;
3746 r->sign = (image >> 15) & 1;
3747 SET_REAL_EXP (r, exp - 128);
3749 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
3750 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
3754 static void
3755 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3756 const REAL_VALUE_TYPE *r)
3758 unsigned long image0, image1, sign = r->sign << 15;
3760 switch (r->cl)
3762 case rvc_zero:
3763 image0 = image1 = 0;
3764 break;
3766 case rvc_inf:
3767 case rvc_nan:
3768 image0 = 0xffff7fff | sign;
3769 image1 = 0xffffffff;
3770 break;
3772 case rvc_normal:
3773 /* Extract the significand into straight hi:lo. */
3774 if (HOST_BITS_PER_LONG == 64)
3776 image0 = r->sig[SIGSZ-1];
3777 image1 = (image0 >> (64 - 56)) & 0xffffffff;
3778 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
3780 else
3782 image0 = r->sig[SIGSZ-1];
3783 image1 = r->sig[SIGSZ-2];
3784 image1 = (image0 << 24) | (image1 >> 8);
3785 image0 = (image0 >> 8) & 0xffffff;
3788 /* Rearrange the half-words of the significand to match the
3789 external format. */
3790 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
3791 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
3793 /* Add the sign and exponent. */
3794 image0 |= sign;
3795 image0 |= (REAL_EXP (r) + 128) << 7;
3796 break;
3798 default:
3799 gcc_unreachable ();
3802 if (FLOAT_WORDS_BIG_ENDIAN)
3803 buf[0] = image1, buf[1] = image0;
3804 else
3805 buf[0] = image0, buf[1] = image1;
3808 static void
3809 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
3810 REAL_VALUE_TYPE *r, const long *buf)
3812 unsigned long image0, image1;
3813 int exp;
3815 if (FLOAT_WORDS_BIG_ENDIAN)
3816 image1 = buf[0], image0 = buf[1];
3817 else
3818 image0 = buf[0], image1 = buf[1];
3819 image0 &= 0xffffffff;
3820 image1 &= 0xffffffff;
3822 exp = (image0 >> 7) & 0xff;
3824 memset (r, 0, sizeof (*r));
3826 if (exp != 0)
3828 r->cl = rvc_normal;
3829 r->sign = (image0 >> 15) & 1;
3830 SET_REAL_EXP (r, exp - 128);
3832 /* Rearrange the half-words of the external format into
3833 proper ascending order. */
3834 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
3835 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
3837 if (HOST_BITS_PER_LONG == 64)
3839 image0 = (image0 << 31 << 1) | image1;
3840 image0 <<= 64 - 56;
3841 image0 |= SIG_MSB;
3842 r->sig[SIGSZ-1] = image0;
3844 else
3846 r->sig[SIGSZ-1] = image0;
3847 r->sig[SIGSZ-2] = image1;
3848 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
3849 r->sig[SIGSZ-1] |= SIG_MSB;
3854 static void
3855 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3856 const REAL_VALUE_TYPE *r)
3858 unsigned long image0, image1, sign = r->sign << 15;
3860 switch (r->cl)
3862 case rvc_zero:
3863 image0 = image1 = 0;
3864 break;
3866 case rvc_inf:
3867 case rvc_nan:
3868 image0 = 0xffff7fff | sign;
3869 image1 = 0xffffffff;
3870 break;
3872 case rvc_normal:
3873 /* Extract the significand into straight hi:lo. */
3874 if (HOST_BITS_PER_LONG == 64)
3876 image0 = r->sig[SIGSZ-1];
3877 image1 = (image0 >> (64 - 53)) & 0xffffffff;
3878 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
3880 else
3882 image0 = r->sig[SIGSZ-1];
3883 image1 = r->sig[SIGSZ-2];
3884 image1 = (image0 << 21) | (image1 >> 11);
3885 image0 = (image0 >> 11) & 0xfffff;
3888 /* Rearrange the half-words of the significand to match the
3889 external format. */
3890 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
3891 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
3893 /* Add the sign and exponent. */
3894 image0 |= sign;
3895 image0 |= (REAL_EXP (r) + 1024) << 4;
3896 break;
3898 default:
3899 gcc_unreachable ();
3902 if (FLOAT_WORDS_BIG_ENDIAN)
3903 buf[0] = image1, buf[1] = image0;
3904 else
3905 buf[0] = image0, buf[1] = image1;
3908 static void
3909 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
3910 REAL_VALUE_TYPE *r, const long *buf)
3912 unsigned long image0, image1;
3913 int exp;
3915 if (FLOAT_WORDS_BIG_ENDIAN)
3916 image1 = buf[0], image0 = buf[1];
3917 else
3918 image0 = buf[0], image1 = buf[1];
3919 image0 &= 0xffffffff;
3920 image1 &= 0xffffffff;
3922 exp = (image0 >> 4) & 0x7ff;
3924 memset (r, 0, sizeof (*r));
3926 if (exp != 0)
3928 r->cl = rvc_normal;
3929 r->sign = (image0 >> 15) & 1;
3930 SET_REAL_EXP (r, exp - 1024);
3932 /* Rearrange the half-words of the external format into
3933 proper ascending order. */
3934 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
3935 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
3937 if (HOST_BITS_PER_LONG == 64)
3939 image0 = (image0 << 31 << 1) | image1;
3940 image0 <<= 64 - 53;
3941 image0 |= SIG_MSB;
3942 r->sig[SIGSZ-1] = image0;
3944 else
3946 r->sig[SIGSZ-1] = image0;
3947 r->sig[SIGSZ-2] = image1;
3948 lshift_significand (r, r, 64 - 53);
3949 r->sig[SIGSZ-1] |= SIG_MSB;
3954 const struct real_format vax_f_format =
3956 encode_vax_f,
3957 decode_vax_f,
3962 -127,
3963 127,
3965 false,
3966 false,
3967 false,
3968 false,
3969 false
3972 const struct real_format vax_d_format =
3974 encode_vax_d,
3975 decode_vax_d,
3980 -127,
3981 127,
3983 false,
3984 false,
3985 false,
3986 false,
3987 false
3990 const struct real_format vax_g_format =
3992 encode_vax_g,
3993 decode_vax_g,
3998 -1023,
3999 1023,
4001 false,
4002 false,
4003 false,
4004 false,
4005 false
4008 /* A good reference for these can be found in chapter 9 of
4009 "ESA/390 Principles of Operation", IBM document number SA22-7201-01.
4010 An on-line version can be found here:
4012 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR001/9.1?DT=19930923083613
4015 static void encode_i370_single (const struct real_format *fmt,
4016 long *, const REAL_VALUE_TYPE *);
4017 static void decode_i370_single (const struct real_format *,
4018 REAL_VALUE_TYPE *, const long *);
4019 static void encode_i370_double (const struct real_format *fmt,
4020 long *, const REAL_VALUE_TYPE *);
4021 static void decode_i370_double (const struct real_format *,
4022 REAL_VALUE_TYPE *, const long *);
4024 static void
4025 encode_i370_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4026 long *buf, const REAL_VALUE_TYPE *r)
4028 unsigned long sign, exp, sig, image;
4030 sign = r->sign << 31;
4032 switch (r->cl)
4034 case rvc_zero:
4035 image = 0;
4036 break;
4038 case rvc_inf:
4039 case rvc_nan:
4040 image = 0x7fffffff | sign;
4041 break;
4043 case rvc_normal:
4044 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0xffffff;
4045 exp = ((REAL_EXP (r) / 4) + 64) << 24;
4046 image = sign | exp | sig;
4047 break;
4049 default:
4050 gcc_unreachable ();
4053 buf[0] = image;
4056 static void
4057 decode_i370_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4058 REAL_VALUE_TYPE *r, const long *buf)
4060 unsigned long sign, sig, image = buf[0];
4061 int exp;
4063 sign = (image >> 31) & 1;
4064 exp = (image >> 24) & 0x7f;
4065 sig = image & 0xffffff;
4067 memset (r, 0, sizeof (*r));
4069 if (exp || sig)
4071 r->cl = rvc_normal;
4072 r->sign = sign;
4073 SET_REAL_EXP (r, (exp - 64) * 4);
4074 r->sig[SIGSZ-1] = sig << (HOST_BITS_PER_LONG - 24);
4075 normalize (r);
4079 static void
4080 encode_i370_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4081 long *buf, const REAL_VALUE_TYPE *r)
4083 unsigned long sign, exp, image_hi, image_lo;
4085 sign = r->sign << 31;
4087 switch (r->cl)
4089 case rvc_zero:
4090 image_hi = image_lo = 0;
4091 break;
4093 case rvc_inf:
4094 case rvc_nan:
4095 image_hi = 0x7fffffff | sign;
4096 image_lo = 0xffffffff;
4097 break;
4099 case rvc_normal:
4100 if (HOST_BITS_PER_LONG == 64)
4102 image_hi = r->sig[SIGSZ-1];
4103 image_lo = (image_hi >> (64 - 56)) & 0xffffffff;
4104 image_hi = (image_hi >> (64 - 56 + 1) >> 31) & 0xffffff;
4106 else
4108 image_hi = r->sig[SIGSZ-1];
4109 image_lo = r->sig[SIGSZ-2];
4110 image_lo = (image_lo >> 8) | (image_hi << 24);
4111 image_hi >>= 8;
4114 exp = ((REAL_EXP (r) / 4) + 64) << 24;
4115 image_hi |= sign | exp;
4116 break;
4118 default:
4119 gcc_unreachable ();
4122 if (FLOAT_WORDS_BIG_ENDIAN)
4123 buf[0] = image_hi, buf[1] = image_lo;
4124 else
4125 buf[0] = image_lo, buf[1] = image_hi;
4128 static void
4129 decode_i370_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4130 REAL_VALUE_TYPE *r, const long *buf)
4132 unsigned long sign, image_hi, image_lo;
4133 int exp;
4135 if (FLOAT_WORDS_BIG_ENDIAN)
4136 image_hi = buf[0], image_lo = buf[1];
4137 else
4138 image_lo = buf[0], image_hi = buf[1];
4140 sign = (image_hi >> 31) & 1;
4141 exp = (image_hi >> 24) & 0x7f;
4142 image_hi &= 0xffffff;
4143 image_lo &= 0xffffffff;
4145 memset (r, 0, sizeof (*r));
4147 if (exp || image_hi || image_lo)
4149 r->cl = rvc_normal;
4150 r->sign = sign;
4151 SET_REAL_EXP (r, (exp - 64) * 4 + (SIGNIFICAND_BITS - 56));
4153 if (HOST_BITS_PER_LONG == 32)
4155 r->sig[0] = image_lo;
4156 r->sig[1] = image_hi;
4158 else
4159 r->sig[0] = image_lo | (image_hi << 31 << 1);
4161 normalize (r);
4165 const struct real_format i370_single_format =
4167 encode_i370_single,
4168 decode_i370_single,
4173 -64,
4176 false,
4177 false,
4178 false, /* ??? The encoding does allow for "unnormals". */
4179 false, /* ??? The encoding does allow for "unnormals". */
4180 false
4183 const struct real_format i370_double_format =
4185 encode_i370_double,
4186 decode_i370_double,
4191 -64,
4194 false,
4195 false,
4196 false, /* ??? The encoding does allow for "unnormals". */
4197 false, /* ??? The encoding does allow for "unnormals". */
4198 false
4201 /* The "twos-complement" c4x format is officially defined as
4203 x = s(~s).f * 2**e
4205 This is rather misleading. One must remember that F is signed.
4206 A better description would be
4208 x = -1**s * ((s + 1 + .f) * 2**e
4210 So if we have a (4 bit) fraction of .1000 with a sign bit of 1,
4211 that's -1 * (1+1+(-.5)) == -1.5. I think.
4213 The constructions here are taken from Tables 5-1 and 5-2 of the
4214 TMS320C4x User's Guide wherein step-by-step instructions for
4215 conversion from IEEE are presented. That's close enough to our
4216 internal representation so as to make things easy.
4218 See http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf */
4220 static void encode_c4x_single (const struct real_format *fmt,
4221 long *, const REAL_VALUE_TYPE *);
4222 static void decode_c4x_single (const struct real_format *,
4223 REAL_VALUE_TYPE *, const long *);
4224 static void encode_c4x_extended (const struct real_format *fmt,
4225 long *, const REAL_VALUE_TYPE *);
4226 static void decode_c4x_extended (const struct real_format *,
4227 REAL_VALUE_TYPE *, const long *);
4229 static void
4230 encode_c4x_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4231 long *buf, const REAL_VALUE_TYPE *r)
4233 unsigned long image, exp, sig;
4235 switch (r->cl)
4237 case rvc_zero:
4238 exp = -128;
4239 sig = 0;
4240 break;
4242 case rvc_inf:
4243 case rvc_nan:
4244 exp = 127;
4245 sig = 0x800000 - r->sign;
4246 break;
4248 case rvc_normal:
4249 exp = REAL_EXP (r) - 1;
4250 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
4251 if (r->sign)
4253 if (sig)
4254 sig = -sig;
4255 else
4256 exp--;
4257 sig |= 0x800000;
4259 break;
4261 default:
4262 gcc_unreachable ();
4265 image = ((exp & 0xff) << 24) | (sig & 0xffffff);
4266 buf[0] = image;
4269 static void
4270 decode_c4x_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4271 REAL_VALUE_TYPE *r, const long *buf)
4273 unsigned long image = buf[0];
4274 unsigned long sig;
4275 int exp, sf;
4277 exp = (((image >> 24) & 0xff) ^ 0x80) - 0x80;
4278 sf = ((image & 0xffffff) ^ 0x800000) - 0x800000;
4280 memset (r, 0, sizeof (*r));
4282 if (exp != -128)
4284 r->cl = rvc_normal;
4286 sig = sf & 0x7fffff;
4287 if (sf < 0)
4289 r->sign = 1;
4290 if (sig)
4291 sig = -sig;
4292 else
4293 exp++;
4295 sig = (sig << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
4297 SET_REAL_EXP (r, exp + 1);
4298 r->sig[SIGSZ-1] = sig;
4302 static void
4303 encode_c4x_extended (const struct real_format *fmt ATTRIBUTE_UNUSED,
4304 long *buf, const REAL_VALUE_TYPE *r)
4306 unsigned long exp, sig;
4308 switch (r->cl)
4310 case rvc_zero:
4311 exp = -128;
4312 sig = 0;
4313 break;
4315 case rvc_inf:
4316 case rvc_nan:
4317 exp = 127;
4318 sig = 0x80000000 - r->sign;
4319 break;
4321 case rvc_normal:
4322 exp = REAL_EXP (r) - 1;
4324 sig = r->sig[SIGSZ-1];
4325 if (HOST_BITS_PER_LONG == 64)
4326 sig = sig >> 1 >> 31;
4327 sig &= 0x7fffffff;
4329 if (r->sign)
4331 if (sig)
4332 sig = -sig;
4333 else
4334 exp--;
4335 sig |= 0x80000000;
4337 break;
4339 default:
4340 gcc_unreachable ();
4343 exp = (exp & 0xff) << 24;
4344 sig &= 0xffffffff;
4346 if (FLOAT_WORDS_BIG_ENDIAN)
4347 buf[0] = exp, buf[1] = sig;
4348 else
4349 buf[0] = sig, buf[0] = exp;
4352 static void
4353 decode_c4x_extended (const struct real_format *fmt ATTRIBUTE_UNUSED,
4354 REAL_VALUE_TYPE *r, const long *buf)
4356 unsigned long sig;
4357 int exp, sf;
4359 if (FLOAT_WORDS_BIG_ENDIAN)
4360 exp = buf[0], sf = buf[1];
4361 else
4362 sf = buf[0], exp = buf[1];
4364 exp = (((exp >> 24) & 0xff) & 0x80) - 0x80;
4365 sf = ((sf & 0xffffffff) ^ 0x80000000) - 0x80000000;
4367 memset (r, 0, sizeof (*r));
4369 if (exp != -128)
4371 r->cl = rvc_normal;
4373 sig = sf & 0x7fffffff;
4374 if (sf < 0)
4376 r->sign = 1;
4377 if (sig)
4378 sig = -sig;
4379 else
4380 exp++;
4382 if (HOST_BITS_PER_LONG == 64)
4383 sig = sig << 1 << 31;
4384 sig |= SIG_MSB;
4386 SET_REAL_EXP (r, exp + 1);
4387 r->sig[SIGSZ-1] = sig;
4391 const struct real_format c4x_single_format =
4393 encode_c4x_single,
4394 decode_c4x_single,
4399 -126,
4400 128,
4402 false,
4403 false,
4404 false,
4405 false,
4406 false
4409 const struct real_format c4x_extended_format =
4411 encode_c4x_extended,
4412 decode_c4x_extended,
4417 -126,
4418 128,
4420 false,
4421 false,
4422 false,
4423 false,
4424 false
4428 /* A synthetic "format" for internal arithmetic. It's the size of the
4429 internal significand minus the two bits needed for proper rounding.
4430 The encode and decode routines exist only to satisfy our paranoia
4431 harness. */
4433 static void encode_internal (const struct real_format *fmt,
4434 long *, const REAL_VALUE_TYPE *);
4435 static void decode_internal (const struct real_format *,
4436 REAL_VALUE_TYPE *, const long *);
4438 static void
4439 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4440 const REAL_VALUE_TYPE *r)
4442 memcpy (buf, r, sizeof (*r));
4445 static void
4446 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
4447 REAL_VALUE_TYPE *r, const long *buf)
4449 memcpy (r, buf, sizeof (*r));
4452 const struct real_format real_internal_format =
4454 encode_internal,
4455 decode_internal,
4458 SIGNIFICAND_BITS - 2,
4459 SIGNIFICAND_BITS - 2,
4460 -MAX_EXP,
4461 MAX_EXP,
4463 true,
4464 true,
4465 false,
4466 true,
4467 true
4470 /* Calculate the square root of X in mode MODE, and store the result
4471 in R. Return TRUE if the operation does not raise an exception.
4472 For details see "High Precision Division and Square Root",
4473 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4474 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4476 bool
4477 real_sqrt (REAL_VALUE_TYPE *r, enum machine_mode mode,
4478 const REAL_VALUE_TYPE *x)
4480 static REAL_VALUE_TYPE halfthree;
4481 static bool init = false;
4482 REAL_VALUE_TYPE h, t, i;
4483 int iter, exp;
4485 /* sqrt(-0.0) is -0.0. */
4486 if (real_isnegzero (x))
4488 *r = *x;
4489 return false;
4492 /* Negative arguments return NaN. */
4493 if (real_isneg (x))
4495 get_canonical_qnan (r, 0);
4496 return false;
4499 /* Infinity and NaN return themselves. */
4500 if (real_isinf (x) || real_isnan (x))
4502 *r = *x;
4503 return false;
4506 if (!init)
4508 do_add (&halfthree, &dconst1, &dconsthalf, 0);
4509 init = true;
4512 /* Initial guess for reciprocal sqrt, i. */
4513 exp = real_exponent (x);
4514 real_ldexp (&i, &dconst1, -exp/2);
4516 /* Newton's iteration for reciprocal sqrt, i. */
4517 for (iter = 0; iter < 16; iter++)
4519 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4520 do_multiply (&t, x, &i);
4521 do_multiply (&h, &t, &i);
4522 do_multiply (&t, &h, &dconsthalf);
4523 do_add (&h, &halfthree, &t, 1);
4524 do_multiply (&t, &i, &h);
4526 /* Check for early convergence. */
4527 if (iter >= 6 && real_identical (&i, &t))
4528 break;
4530 /* ??? Unroll loop to avoid copying. */
4531 i = t;
4534 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4535 do_multiply (&t, x, &i);
4536 do_multiply (&h, &t, &i);
4537 do_add (&i, &dconst1, &h, 1);
4538 do_multiply (&h, &t, &i);
4539 do_multiply (&i, &dconsthalf, &h);
4540 do_add (&h, &t, &i, 0);
4542 /* ??? We need a Tuckerman test to get the last bit. */
4544 real_convert (r, mode, &h);
4545 return true;
4548 /* Calculate X raised to the integer exponent N in mode MODE and store
4549 the result in R. Return true if the result may be inexact due to
4550 loss of precision. The algorithm is the classic "left-to-right binary
4551 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4552 Algorithms", "The Art of Computer Programming", Volume 2. */
4554 bool
4555 real_powi (REAL_VALUE_TYPE *r, enum machine_mode mode,
4556 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
4558 unsigned HOST_WIDE_INT bit;
4559 REAL_VALUE_TYPE t;
4560 bool inexact = false;
4561 bool init = false;
4562 bool neg;
4563 int i;
4565 if (n == 0)
4567 *r = dconst1;
4568 return false;
4570 else if (n < 0)
4572 /* Don't worry about overflow, from now on n is unsigned. */
4573 neg = true;
4574 n = -n;
4576 else
4577 neg = false;
4579 t = *x;
4580 bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
4581 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
4583 if (init)
4585 inexact |= do_multiply (&t, &t, &t);
4586 if (n & bit)
4587 inexact |= do_multiply (&t, &t, x);
4589 else if (n & bit)
4590 init = true;
4591 bit >>= 1;
4594 if (neg)
4595 inexact |= do_divide (&t, &dconst1, &t);
4597 real_convert (r, mode, &t);
4598 return inexact;
4601 /* Round X to the nearest integer not larger in absolute value, i.e.
4602 towards zero, placing the result in R in mode MODE. */
4604 void
4605 real_trunc (REAL_VALUE_TYPE *r, enum machine_mode mode,
4606 const REAL_VALUE_TYPE *x)
4608 do_fix_trunc (r, x);
4609 if (mode != VOIDmode)
4610 real_convert (r, mode, r);
4613 /* Round X to the largest integer not greater in value, i.e. round
4614 down, placing the result in R in mode MODE. */
4616 void
4617 real_floor (REAL_VALUE_TYPE *r, enum machine_mode mode,
4618 const REAL_VALUE_TYPE *x)
4620 REAL_VALUE_TYPE t;
4622 do_fix_trunc (&t, x);
4623 if (! real_identical (&t, x) && x->sign)
4624 do_add (&t, &t, &dconstm1, 0);
4625 if (mode != VOIDmode)
4626 real_convert (r, mode, &t);
4627 else
4628 *r = t;
4631 /* Round X to the smallest integer not less then argument, i.e. round
4632 up, placing the result in R in mode MODE. */
4634 void
4635 real_ceil (REAL_VALUE_TYPE *r, enum machine_mode mode,
4636 const REAL_VALUE_TYPE *x)
4638 REAL_VALUE_TYPE t;
4640 do_fix_trunc (&t, x);
4641 if (! real_identical (&t, x) && ! x->sign)
4642 do_add (&t, &t, &dconst1, 0);
4643 if (mode != VOIDmode)
4644 real_convert (r, mode, &t);
4645 else
4646 *r = t;
4649 /* Round X to the nearest integer, but round halfway cases away from
4650 zero. */
4652 void
4653 real_round (REAL_VALUE_TYPE *r, enum machine_mode mode,
4654 const REAL_VALUE_TYPE *x)
4656 do_add (r, x, &dconsthalf, x->sign);
4657 do_fix_trunc (r, r);
4658 if (mode != VOIDmode)
4659 real_convert (r, mode, r);
4662 /* Set the sign of R to the sign of X. */
4664 void
4665 real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
4667 r->sign = x->sign;