2009-05-06 Tobias Burnus <burnus@net-b.de>
[official-gcc/alias-decl.git] / gcc / reorg.c
blob059bf755e7967062f32d89406670fb64d7cdc362
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
6 Hacked by Michael Tiemann (tiemann@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Instruction reorganization pass.
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
39 The MIPS has a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
44 The SPARC always has a branch delay slot, but its effects can be
45 annulled when the branch is not taken. This means that failing to
46 find other sources of insns, we can hoist an insn from the branch
47 target that would only be safe to execute knowing that the branch
48 is taken.
50 The HP-PA always has a branch delay slot. For unconditional branches
51 its effects can be annulled when the branch is taken. The effects
52 of the delay slot in a conditional branch can be nullified for forward
53 taken branches, or for untaken backward branches. This means
54 we can hoist insns from the fall-through path for forward branches or
55 steal insns from the target of backward branches.
57 The TMS320C3x and C4x have three branch delay slots. When the three
58 slots are filled, the branch penalty is zero. Most insns can fill the
59 delay slots except jump insns.
61 Three techniques for filling delay slots have been implemented so far:
63 (1) `fill_simple_delay_slots' is the simplest, most efficient way
64 to fill delay slots. This pass first looks for insns which come
65 from before the branch and which are safe to execute after the
66 branch. Then it searches after the insn requiring delay slots or,
67 in the case of a branch, for insns that are after the point at
68 which the branch merges into the fallthrough code, if such a point
69 exists. When such insns are found, the branch penalty decreases
70 and no code expansion takes place.
72 (2) `fill_eager_delay_slots' is more complicated: it is used for
73 scheduling conditional jumps, or for scheduling jumps which cannot
74 be filled using (1). A machine need not have annulled jumps to use
75 this strategy, but it helps (by keeping more options open).
76 `fill_eager_delay_slots' tries to guess the direction the branch
77 will go; if it guesses right 100% of the time, it can reduce the
78 branch penalty as much as `fill_simple_delay_slots' does. If it
79 guesses wrong 100% of the time, it might as well schedule nops. When
80 `fill_eager_delay_slots' takes insns from the fall-through path of
81 the jump, usually there is no code expansion; when it takes insns
82 from the branch target, there is code expansion if it is not the
83 only way to reach that target.
85 (3) `relax_delay_slots' uses a set of rules to simplify code that
86 has been reorganized by (1) and (2). It finds cases where
87 conditional test can be eliminated, jumps can be threaded, extra
88 insns can be eliminated, etc. It is the job of (1) and (2) to do a
89 good job of scheduling locally; `relax_delay_slots' takes care of
90 making the various individual schedules work well together. It is
91 especially tuned to handle the control flow interactions of branch
92 insns. It does nothing for insns with delay slots that do not
93 branch.
95 On machines that use CC0, we are very conservative. We will not make
96 a copy of an insn involving CC0 since we want to maintain a 1-1
97 correspondence between the insn that sets and uses CC0. The insns are
98 allowed to be separated by placing an insn that sets CC0 (but not an insn
99 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
100 delay slot. In that case, we point each insn at the other with REG_CC_USER
101 and REG_CC_SETTER notes. Note that these restrictions affect very few
102 machines because most RISC machines with delay slots will not use CC0
103 (the RT is the only known exception at this point).
105 Not yet implemented:
107 The Acorn Risc Machine can conditionally execute most insns, so
108 it is profitable to move single insns into a position to execute
109 based on the condition code of the previous insn.
111 The HP-PA can conditionally nullify insns, providing a similar
112 effect to the ARM, differing mostly in which insn is "in charge". */
114 #include "config.h"
115 #include "system.h"
116 #include "coretypes.h"
117 #include "tm.h"
118 #include "toplev.h"
119 #include "rtl.h"
120 #include "tm_p.h"
121 #include "expr.h"
122 #include "function.h"
123 #include "insn-config.h"
124 #include "conditions.h"
125 #include "hard-reg-set.h"
126 #include "basic-block.h"
127 #include "regs.h"
128 #include "recog.h"
129 #include "flags.h"
130 #include "output.h"
131 #include "obstack.h"
132 #include "insn-attr.h"
133 #include "resource.h"
134 #include "except.h"
135 #include "params.h"
136 #include "timevar.h"
137 #include "target.h"
138 #include "tree-pass.h"
140 #ifdef DELAY_SLOTS
142 #ifndef ANNUL_IFTRUE_SLOTS
143 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
144 #endif
145 #ifndef ANNUL_IFFALSE_SLOTS
146 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
147 #endif
149 /* Insns which have delay slots that have not yet been filled. */
151 static struct obstack unfilled_slots_obstack;
152 static rtx *unfilled_firstobj;
154 /* Define macros to refer to the first and last slot containing unfilled
155 insns. These are used because the list may move and its address
156 should be recomputed at each use. */
158 #define unfilled_slots_base \
159 ((rtx *) obstack_base (&unfilled_slots_obstack))
161 #define unfilled_slots_next \
162 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
164 /* Points to the label before the end of the function. */
165 static rtx end_of_function_label;
167 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
168 not always monotonically increase. */
169 static int *uid_to_ruid;
171 /* Highest valid index in `uid_to_ruid'. */
172 static int max_uid;
174 static int stop_search_p (rtx, int);
175 static int resource_conflicts_p (struct resources *, struct resources *);
176 static int insn_references_resource_p (rtx, struct resources *, int);
177 static int insn_sets_resource_p (rtx, struct resources *, int);
178 static rtx find_end_label (void);
179 static rtx emit_delay_sequence (rtx, rtx, int);
180 static rtx add_to_delay_list (rtx, rtx);
181 static rtx delete_from_delay_slot (rtx);
182 static void delete_scheduled_jump (rtx);
183 static void note_delay_statistics (int, int);
184 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
185 static rtx optimize_skip (rtx);
186 #endif
187 static int get_jump_flags (rtx, rtx);
188 static int rare_destination (rtx);
189 static int mostly_true_jump (rtx, rtx);
190 static rtx get_branch_condition (rtx, rtx);
191 static int condition_dominates_p (rtx, rtx);
192 static int redirect_with_delay_slots_safe_p (rtx, rtx, rtx);
193 static int redirect_with_delay_list_safe_p (rtx, rtx, rtx);
194 static int check_annul_list_true_false (int, rtx);
195 static rtx steal_delay_list_from_target (rtx, rtx, rtx, rtx,
196 struct resources *,
197 struct resources *,
198 struct resources *,
199 int, int *, int *, rtx *);
200 static rtx steal_delay_list_from_fallthrough (rtx, rtx, rtx, rtx,
201 struct resources *,
202 struct resources *,
203 struct resources *,
204 int, int *, int *);
205 static void try_merge_delay_insns (rtx, rtx);
206 static rtx redundant_insn (rtx, rtx, rtx);
207 static int own_thread_p (rtx, rtx, int);
208 static void update_block (rtx, rtx);
209 static int reorg_redirect_jump (rtx, rtx);
210 static void update_reg_dead_notes (rtx, rtx);
211 static void fix_reg_dead_note (rtx, rtx);
212 static void update_reg_unused_notes (rtx, rtx);
213 static void fill_simple_delay_slots (int);
214 static rtx fill_slots_from_thread (rtx, rtx, rtx, rtx,
215 int, int, int, int,
216 int *, rtx);
217 static void fill_eager_delay_slots (void);
218 static void relax_delay_slots (rtx);
219 #ifdef HAVE_return
220 static void make_return_insns (rtx);
221 #endif
223 /* Return TRUE if this insn should stop the search for insn to fill delay
224 slots. LABELS_P indicates that labels should terminate the search.
225 In all cases, jumps terminate the search. */
227 static int
228 stop_search_p (rtx insn, int labels_p)
230 if (insn == 0)
231 return 1;
233 /* If the insn can throw an exception that is caught within the function,
234 it may effectively perform a jump from the viewpoint of the function.
235 Therefore act like for a jump. */
236 if (can_throw_internal (insn))
237 return 1;
239 switch (GET_CODE (insn))
241 case NOTE:
242 case CALL_INSN:
243 return 0;
245 case CODE_LABEL:
246 return labels_p;
248 case JUMP_INSN:
249 case BARRIER:
250 return 1;
252 case INSN:
253 /* OK unless it contains a delay slot or is an `asm' insn of some type.
254 We don't know anything about these. */
255 return (GET_CODE (PATTERN (insn)) == SEQUENCE
256 || GET_CODE (PATTERN (insn)) == ASM_INPUT
257 || asm_noperands (PATTERN (insn)) >= 0);
259 default:
260 gcc_unreachable ();
264 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
265 resource set contains a volatile memory reference. Otherwise, return FALSE. */
267 static int
268 resource_conflicts_p (struct resources *res1, struct resources *res2)
270 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
271 || (res1->unch_memory && res2->unch_memory)
272 || res1->volatil || res2->volatil)
273 return 1;
275 #ifdef HARD_REG_SET
276 return (res1->regs & res2->regs) != HARD_CONST (0);
277 #else
279 int i;
281 for (i = 0; i < HARD_REG_SET_LONGS; i++)
282 if ((res1->regs[i] & res2->regs[i]) != 0)
283 return 1;
284 return 0;
286 #endif
289 /* Return TRUE if any resource marked in RES, a `struct resources', is
290 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
291 routine is using those resources.
293 We compute this by computing all the resources referenced by INSN and
294 seeing if this conflicts with RES. It might be faster to directly check
295 ourselves, and this is the way it used to work, but it means duplicating
296 a large block of complex code. */
298 static int
299 insn_references_resource_p (rtx insn, struct resources *res,
300 int include_delayed_effects)
302 struct resources insn_res;
304 CLEAR_RESOURCE (&insn_res);
305 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
306 return resource_conflicts_p (&insn_res, res);
309 /* Return TRUE if INSN modifies resources that are marked in RES.
310 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
311 included. CC0 is only modified if it is explicitly set; see comments
312 in front of mark_set_resources for details. */
314 static int
315 insn_sets_resource_p (rtx insn, struct resources *res,
316 int include_delayed_effects)
318 struct resources insn_sets;
320 CLEAR_RESOURCE (&insn_sets);
321 mark_set_resources (insn, &insn_sets, 0,
322 (include_delayed_effects
323 ? MARK_SRC_DEST_CALL
324 : MARK_SRC_DEST));
325 return resource_conflicts_p (&insn_sets, res);
328 /* Find a label at the end of the function or before a RETURN. If there
329 is none, try to make one. If that fails, returns 0.
331 The property of such a label is that it is placed just before the
332 epilogue or a bare RETURN insn, so that another bare RETURN can be
333 turned into a jump to the label unconditionally. In particular, the
334 label cannot be placed before a RETURN insn with a filled delay slot.
336 ??? There may be a problem with the current implementation. Suppose
337 we start with a bare RETURN insn and call find_end_label. It may set
338 end_of_function_label just before the RETURN. Suppose the machinery
339 is able to fill the delay slot of the RETURN insn afterwards. Then
340 end_of_function_label is no longer valid according to the property
341 described above and find_end_label will still return it unmodified.
342 Note that this is probably mitigated by the following observation:
343 once end_of_function_label is made, it is very likely the target of
344 a jump, so filling the delay slot of the RETURN will be much more
345 difficult. */
347 static rtx
348 find_end_label (void)
350 rtx insn;
352 /* If we found one previously, return it. */
353 if (end_of_function_label)
354 return end_of_function_label;
356 /* Otherwise, see if there is a label at the end of the function. If there
357 is, it must be that RETURN insns aren't needed, so that is our return
358 label and we don't have to do anything else. */
360 insn = get_last_insn ();
361 while (NOTE_P (insn)
362 || (NONJUMP_INSN_P (insn)
363 && (GET_CODE (PATTERN (insn)) == USE
364 || GET_CODE (PATTERN (insn)) == CLOBBER)))
365 insn = PREV_INSN (insn);
367 /* When a target threads its epilogue we might already have a
368 suitable return insn. If so put a label before it for the
369 end_of_function_label. */
370 if (BARRIER_P (insn)
371 && JUMP_P (PREV_INSN (insn))
372 && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
374 rtx temp = PREV_INSN (PREV_INSN (insn));
375 end_of_function_label = gen_label_rtx ();
376 LABEL_NUSES (end_of_function_label) = 0;
378 /* Put the label before an USE insns that may precede the RETURN insn. */
379 while (GET_CODE (temp) == USE)
380 temp = PREV_INSN (temp);
382 emit_label_after (end_of_function_label, temp);
385 else if (LABEL_P (insn))
386 end_of_function_label = insn;
387 else
389 end_of_function_label = gen_label_rtx ();
390 LABEL_NUSES (end_of_function_label) = 0;
391 /* If the basic block reorder pass moves the return insn to
392 some other place try to locate it again and put our
393 end_of_function_label there. */
394 while (insn && ! (JUMP_P (insn)
395 && (GET_CODE (PATTERN (insn)) == RETURN)))
396 insn = PREV_INSN (insn);
397 if (insn)
399 insn = PREV_INSN (insn);
401 /* Put the label before an USE insns that may proceed the
402 RETURN insn. */
403 while (GET_CODE (insn) == USE)
404 insn = PREV_INSN (insn);
406 emit_label_after (end_of_function_label, insn);
408 else
410 #ifdef HAVE_epilogue
411 if (HAVE_epilogue
412 #ifdef HAVE_return
413 && ! HAVE_return
414 #endif
417 /* The RETURN insn has its delay slot filled so we cannot
418 emit the label just before it. Since we already have
419 an epilogue and cannot emit a new RETURN, we cannot
420 emit the label at all. */
421 end_of_function_label = NULL_RTX;
422 return end_of_function_label;
424 #endif /* HAVE_epilogue */
426 /* Otherwise, make a new label and emit a RETURN and BARRIER,
427 if needed. */
428 emit_label (end_of_function_label);
429 #ifdef HAVE_return
430 /* We don't bother trying to create a return insn if the
431 epilogue has filled delay-slots; we would have to try and
432 move the delay-slot fillers to the delay-slots for the new
433 return insn or in front of the new return insn. */
434 if (crtl->epilogue_delay_list == NULL
435 && HAVE_return)
437 /* The return we make may have delay slots too. */
438 rtx insn = gen_return ();
439 insn = emit_jump_insn (insn);
440 emit_barrier ();
441 if (num_delay_slots (insn) > 0)
442 obstack_ptr_grow (&unfilled_slots_obstack, insn);
444 #endif
448 /* Show one additional use for this label so it won't go away until
449 we are done. */
450 ++LABEL_NUSES (end_of_function_label);
452 return end_of_function_label;
455 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
456 the pattern of INSN with the SEQUENCE.
458 Chain the insns so that NEXT_INSN of each insn in the sequence points to
459 the next and NEXT_INSN of the last insn in the sequence points to
460 the first insn after the sequence. Similarly for PREV_INSN. This makes
461 it easier to scan all insns.
463 Returns the SEQUENCE that replaces INSN. */
465 static rtx
466 emit_delay_sequence (rtx insn, rtx list, int length)
468 int i = 1;
469 rtx li;
470 int had_barrier = 0;
472 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
473 rtvec seqv = rtvec_alloc (length + 1);
474 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
475 rtx seq_insn = make_insn_raw (seq);
476 rtx first = get_insns ();
477 rtx last = get_last_insn ();
479 /* Make a copy of the insn having delay slots. */
480 rtx delay_insn = copy_rtx (insn);
482 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
483 confuse further processing. Update LAST in case it was the last insn.
484 We will put the BARRIER back in later. */
485 if (NEXT_INSN (insn) && BARRIER_P (NEXT_INSN (insn)))
487 delete_related_insns (NEXT_INSN (insn));
488 last = get_last_insn ();
489 had_barrier = 1;
492 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
493 NEXT_INSN (seq_insn) = NEXT_INSN (insn);
494 PREV_INSN (seq_insn) = PREV_INSN (insn);
496 if (insn != last)
497 PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
499 if (insn != first)
500 NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
502 /* Note the calls to set_new_first_and_last_insn must occur after
503 SEQ_INSN has been completely spliced into the insn stream.
505 Otherwise CUR_INSN_UID will get set to an incorrect value because
506 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
507 if (insn == last)
508 set_new_first_and_last_insn (first, seq_insn);
510 if (insn == first)
511 set_new_first_and_last_insn (seq_insn, last);
513 /* Build our SEQUENCE and rebuild the insn chain. */
514 XVECEXP (seq, 0, 0) = delay_insn;
515 INSN_DELETED_P (delay_insn) = 0;
516 PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
518 INSN_LOCATOR (seq_insn) = INSN_LOCATOR (delay_insn);
520 for (li = list; li; li = XEXP (li, 1), i++)
522 rtx tem = XEXP (li, 0);
523 rtx note, next;
525 /* Show that this copy of the insn isn't deleted. */
526 INSN_DELETED_P (tem) = 0;
528 XVECEXP (seq, 0, i) = tem;
529 PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
530 NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
532 /* SPARC assembler, for instance, emit warning when debug info is output
533 into the delay slot. */
534 if (INSN_LOCATOR (tem) && !INSN_LOCATOR (seq_insn))
535 INSN_LOCATOR (seq_insn) = INSN_LOCATOR (tem);
536 INSN_LOCATOR (tem) = 0;
538 for (note = REG_NOTES (tem); note; note = next)
540 next = XEXP (note, 1);
541 switch (REG_NOTE_KIND (note))
543 case REG_DEAD:
544 /* Remove any REG_DEAD notes because we can't rely on them now
545 that the insn has been moved. */
546 remove_note (tem, note);
547 break;
549 case REG_LABEL_OPERAND:
550 case REG_LABEL_TARGET:
551 /* Keep the label reference count up to date. */
552 if (LABEL_P (XEXP (note, 0)))
553 LABEL_NUSES (XEXP (note, 0)) ++;
554 break;
556 default:
557 break;
562 NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
564 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
565 last insn in that SEQUENCE to point to us. Similarly for the first
566 insn in the following insn if it is a SEQUENCE. */
568 if (PREV_INSN (seq_insn) && NONJUMP_INSN_P (PREV_INSN (seq_insn))
569 && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
570 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
571 XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
572 = seq_insn;
574 if (NEXT_INSN (seq_insn) && NONJUMP_INSN_P (NEXT_INSN (seq_insn))
575 && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
576 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
578 /* If there used to be a BARRIER, put it back. */
579 if (had_barrier)
580 emit_barrier_after (seq_insn);
582 gcc_assert (i == length + 1);
584 return seq_insn;
587 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
588 be in the order in which the insns are to be executed. */
590 static rtx
591 add_to_delay_list (rtx insn, rtx delay_list)
593 /* If we have an empty list, just make a new list element. If
594 INSN has its block number recorded, clear it since we may
595 be moving the insn to a new block. */
597 if (delay_list == 0)
599 clear_hashed_info_for_insn (insn);
600 return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
603 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
604 list. */
605 XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
607 return delay_list;
610 /* Delete INSN from the delay slot of the insn that it is in, which may
611 produce an insn with no delay slots. Return the new insn. */
613 static rtx
614 delete_from_delay_slot (rtx insn)
616 rtx trial, seq_insn, seq, prev;
617 rtx delay_list = 0;
618 int i;
619 int had_barrier = 0;
621 /* We first must find the insn containing the SEQUENCE with INSN in its
622 delay slot. Do this by finding an insn, TRIAL, where
623 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
625 for (trial = insn;
626 PREV_INSN (NEXT_INSN (trial)) == trial;
627 trial = NEXT_INSN (trial))
630 seq_insn = PREV_INSN (NEXT_INSN (trial));
631 seq = PATTERN (seq_insn);
633 if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
634 had_barrier = 1;
636 /* Create a delay list consisting of all the insns other than the one
637 we are deleting (unless we were the only one). */
638 if (XVECLEN (seq, 0) > 2)
639 for (i = 1; i < XVECLEN (seq, 0); i++)
640 if (XVECEXP (seq, 0, i) != insn)
641 delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
643 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
644 list, and rebuild the delay list if non-empty. */
645 prev = PREV_INSN (seq_insn);
646 trial = XVECEXP (seq, 0, 0);
647 delete_related_insns (seq_insn);
648 add_insn_after (trial, prev, NULL);
650 /* If there was a barrier after the old SEQUENCE, remit it. */
651 if (had_barrier)
652 emit_barrier_after (trial);
654 /* If there are any delay insns, remit them. Otherwise clear the
655 annul flag. */
656 if (delay_list)
657 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
658 else if (INSN_P (trial))
659 INSN_ANNULLED_BRANCH_P (trial) = 0;
661 INSN_FROM_TARGET_P (insn) = 0;
663 /* Show we need to fill this insn again. */
664 obstack_ptr_grow (&unfilled_slots_obstack, trial);
666 return trial;
669 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
670 the insn that sets CC0 for it and delete it too. */
672 static void
673 delete_scheduled_jump (rtx insn)
675 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
676 delete the insn that sets the condition code, but it is hard to find it.
677 Since this case is rare anyway, don't bother trying; there would likely
678 be other insns that became dead anyway, which we wouldn't know to
679 delete. */
681 #ifdef HAVE_cc0
682 if (reg_mentioned_p (cc0_rtx, insn))
684 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
686 /* If a reg-note was found, it points to an insn to set CC0. This
687 insn is in the delay list of some other insn. So delete it from
688 the delay list it was in. */
689 if (note)
691 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
692 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
693 delete_from_delay_slot (XEXP (note, 0));
695 else
697 /* The insn setting CC0 is our previous insn, but it may be in
698 a delay slot. It will be the last insn in the delay slot, if
699 it is. */
700 rtx trial = previous_insn (insn);
701 if (NOTE_P (trial))
702 trial = prev_nonnote_insn (trial);
703 if (sets_cc0_p (PATTERN (trial)) != 1
704 || FIND_REG_INC_NOTE (trial, NULL_RTX))
705 return;
706 if (PREV_INSN (NEXT_INSN (trial)) == trial)
707 delete_related_insns (trial);
708 else
709 delete_from_delay_slot (trial);
712 #endif
714 delete_related_insns (insn);
717 /* Counters for delay-slot filling. */
719 #define NUM_REORG_FUNCTIONS 2
720 #define MAX_DELAY_HISTOGRAM 3
721 #define MAX_REORG_PASSES 2
723 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
725 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
727 static int reorg_pass_number;
729 static void
730 note_delay_statistics (int slots_filled, int index)
732 num_insns_needing_delays[index][reorg_pass_number]++;
733 if (slots_filled > MAX_DELAY_HISTOGRAM)
734 slots_filled = MAX_DELAY_HISTOGRAM;
735 num_filled_delays[index][slots_filled][reorg_pass_number]++;
738 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
740 /* Optimize the following cases:
742 1. When a conditional branch skips over only one instruction,
743 use an annulling branch and put that insn in the delay slot.
744 Use either a branch that annuls when the condition if true or
745 invert the test with a branch that annuls when the condition is
746 false. This saves insns, since otherwise we must copy an insn
747 from the L1 target.
749 (orig) (skip) (otherwise)
750 Bcc.n L1 Bcc',a L1 Bcc,a L1'
751 insn insn insn2
752 L1: L1: L1:
753 insn2 insn2 insn2
754 insn3 insn3 L1':
755 insn3
757 2. When a conditional branch skips over only one instruction,
758 and after that, it unconditionally branches somewhere else,
759 perform the similar optimization. This saves executing the
760 second branch in the case where the inverted condition is true.
762 Bcc.n L1 Bcc',a L2
763 insn insn
764 L1: L1:
765 Bra L2 Bra L2
767 INSN is a JUMP_INSN.
769 This should be expanded to skip over N insns, where N is the number
770 of delay slots required. */
772 static rtx
773 optimize_skip (rtx insn)
775 rtx trial = next_nonnote_insn (insn);
776 rtx next_trial = next_active_insn (trial);
777 rtx delay_list = 0;
778 int flags;
780 flags = get_jump_flags (insn, JUMP_LABEL (insn));
782 if (trial == 0
783 || !NONJUMP_INSN_P (trial)
784 || GET_CODE (PATTERN (trial)) == SEQUENCE
785 || recog_memoized (trial) < 0
786 || (! eligible_for_annul_false (insn, 0, trial, flags)
787 && ! eligible_for_annul_true (insn, 0, trial, flags))
788 || can_throw_internal (trial))
789 return 0;
791 /* There are two cases where we are just executing one insn (we assume
792 here that a branch requires only one insn; this should be generalized
793 at some point): Where the branch goes around a single insn or where
794 we have one insn followed by a branch to the same label we branch to.
795 In both of these cases, inverting the jump and annulling the delay
796 slot give the same effect in fewer insns. */
797 if ((next_trial == next_active_insn (JUMP_LABEL (insn))
798 && ! (next_trial == 0 && crtl->epilogue_delay_list != 0))
799 || (next_trial != 0
800 && JUMP_P (next_trial)
801 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
802 && (simplejump_p (next_trial)
803 || GET_CODE (PATTERN (next_trial)) == RETURN)))
805 if (eligible_for_annul_false (insn, 0, trial, flags))
807 if (invert_jump (insn, JUMP_LABEL (insn), 1))
808 INSN_FROM_TARGET_P (trial) = 1;
809 else if (! eligible_for_annul_true (insn, 0, trial, flags))
810 return 0;
813 delay_list = add_to_delay_list (trial, NULL_RTX);
814 next_trial = next_active_insn (trial);
815 update_block (trial, trial);
816 delete_related_insns (trial);
818 /* Also, if we are targeting an unconditional
819 branch, thread our jump to the target of that branch. Don't
820 change this into a RETURN here, because it may not accept what
821 we have in the delay slot. We'll fix this up later. */
822 if (next_trial && JUMP_P (next_trial)
823 && (simplejump_p (next_trial)
824 || GET_CODE (PATTERN (next_trial)) == RETURN))
826 rtx target_label = JUMP_LABEL (next_trial);
827 if (target_label == 0)
828 target_label = find_end_label ();
830 if (target_label)
832 /* Recompute the flags based on TARGET_LABEL since threading
833 the jump to TARGET_LABEL may change the direction of the
834 jump (which may change the circumstances in which the
835 delay slot is nullified). */
836 flags = get_jump_flags (insn, target_label);
837 if (eligible_for_annul_true (insn, 0, trial, flags))
838 reorg_redirect_jump (insn, target_label);
842 INSN_ANNULLED_BRANCH_P (insn) = 1;
845 return delay_list;
847 #endif
849 /* Encode and return branch direction and prediction information for
850 INSN assuming it will jump to LABEL.
852 Non conditional branches return no direction information and
853 are predicted as very likely taken. */
855 static int
856 get_jump_flags (rtx insn, rtx label)
858 int flags;
860 /* get_jump_flags can be passed any insn with delay slots, these may
861 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
862 direction information, and only if they are conditional jumps.
864 If LABEL is zero, then there is no way to determine the branch
865 direction. */
866 if (JUMP_P (insn)
867 && (condjump_p (insn) || condjump_in_parallel_p (insn))
868 && INSN_UID (insn) <= max_uid
869 && label != 0
870 && INSN_UID (label) <= max_uid)
871 flags
872 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
873 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
874 /* No valid direction information. */
875 else
876 flags = 0;
878 /* If insn is a conditional branch call mostly_true_jump to get
879 determine the branch prediction.
881 Non conditional branches are predicted as very likely taken. */
882 if (JUMP_P (insn)
883 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
885 int prediction;
887 prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
888 switch (prediction)
890 case 2:
891 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
892 break;
893 case 1:
894 flags |= ATTR_FLAG_likely;
895 break;
896 case 0:
897 flags |= ATTR_FLAG_unlikely;
898 break;
899 case -1:
900 flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
901 break;
903 default:
904 gcc_unreachable ();
907 else
908 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
910 return flags;
913 /* Return 1 if INSN is a destination that will be branched to rarely (the
914 return point of a function); return 2 if DEST will be branched to very
915 rarely (a call to a function that doesn't return). Otherwise,
916 return 0. */
918 static int
919 rare_destination (rtx insn)
921 int jump_count = 0;
922 rtx next;
924 for (; insn; insn = next)
926 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
927 insn = XVECEXP (PATTERN (insn), 0, 0);
929 next = NEXT_INSN (insn);
931 switch (GET_CODE (insn))
933 case CODE_LABEL:
934 return 0;
935 case BARRIER:
936 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
937 don't scan past JUMP_INSNs, so any barrier we find here must
938 have been after a CALL_INSN and hence mean the call doesn't
939 return. */
940 return 2;
941 case JUMP_INSN:
942 if (GET_CODE (PATTERN (insn)) == RETURN)
943 return 1;
944 else if (simplejump_p (insn)
945 && jump_count++ < 10)
946 next = JUMP_LABEL (insn);
947 else
948 return 0;
950 default:
951 break;
955 /* If we got here it means we hit the end of the function. So this
956 is an unlikely destination. */
958 return 1;
961 /* Return truth value of the statement that this branch
962 is mostly taken. If we think that the branch is extremely likely
963 to be taken, we return 2. If the branch is slightly more likely to be
964 taken, return 1. If the branch is slightly less likely to be taken,
965 return 0 and if the branch is highly unlikely to be taken, return -1.
967 CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
969 static int
970 mostly_true_jump (rtx jump_insn, rtx condition)
972 rtx target_label = JUMP_LABEL (jump_insn);
973 rtx note;
974 int rare_dest, rare_fallthrough;
976 /* If branch probabilities are available, then use that number since it
977 always gives a correct answer. */
978 note = find_reg_note (jump_insn, REG_BR_PROB, 0);
979 if (note)
981 int prob = INTVAL (XEXP (note, 0));
983 if (prob >= REG_BR_PROB_BASE * 9 / 10)
984 return 2;
985 else if (prob >= REG_BR_PROB_BASE / 2)
986 return 1;
987 else if (prob >= REG_BR_PROB_BASE / 10)
988 return 0;
989 else
990 return -1;
993 /* Look at the relative rarities of the fallthrough and destination. If
994 they differ, we can predict the branch that way. */
995 rare_dest = rare_destination (target_label);
996 rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
998 switch (rare_fallthrough - rare_dest)
1000 case -2:
1001 return -1;
1002 case -1:
1003 return 0;
1004 case 0:
1005 break;
1006 case 1:
1007 return 1;
1008 case 2:
1009 return 2;
1012 /* If we couldn't figure out what this jump was, assume it won't be
1013 taken. This should be rare. */
1014 if (condition == 0)
1015 return 0;
1017 /* Predict backward branches usually take, forward branches usually not. If
1018 we don't know whether this is forward or backward, assume the branch
1019 will be taken, since most are. */
1020 return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1021 || INSN_UID (target_label) > max_uid
1022 || (uid_to_ruid[INSN_UID (jump_insn)]
1023 > uid_to_ruid[INSN_UID (target_label)]));
1026 /* Return the condition under which INSN will branch to TARGET. If TARGET
1027 is zero, return the condition under which INSN will return. If INSN is
1028 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1029 type of jump, or it doesn't go to TARGET, return 0. */
1031 static rtx
1032 get_branch_condition (rtx insn, rtx target)
1034 rtx pat = PATTERN (insn);
1035 rtx src;
1037 if (condjump_in_parallel_p (insn))
1038 pat = XVECEXP (pat, 0, 0);
1040 if (GET_CODE (pat) == RETURN)
1041 return target == 0 ? const_true_rtx : 0;
1043 else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1044 return 0;
1046 src = SET_SRC (pat);
1047 if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1048 return const_true_rtx;
1050 else if (GET_CODE (src) == IF_THEN_ELSE
1051 && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1052 || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1053 && XEXP (XEXP (src, 1), 0) == target))
1054 && XEXP (src, 2) == pc_rtx)
1055 return XEXP (src, 0);
1057 else if (GET_CODE (src) == IF_THEN_ELSE
1058 && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1059 || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1060 && XEXP (XEXP (src, 2), 0) == target))
1061 && XEXP (src, 1) == pc_rtx)
1063 enum rtx_code rev;
1064 rev = reversed_comparison_code (XEXP (src, 0), insn);
1065 if (rev != UNKNOWN)
1066 return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
1067 XEXP (XEXP (src, 0), 0),
1068 XEXP (XEXP (src, 0), 1));
1071 return 0;
1074 /* Return nonzero if CONDITION is more strict than the condition of
1075 INSN, i.e., if INSN will always branch if CONDITION is true. */
1077 static int
1078 condition_dominates_p (rtx condition, rtx insn)
1080 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1081 enum rtx_code code = GET_CODE (condition);
1082 enum rtx_code other_code;
1084 if (rtx_equal_p (condition, other_condition)
1085 || other_condition == const_true_rtx)
1086 return 1;
1088 else if (condition == const_true_rtx || other_condition == 0)
1089 return 0;
1091 other_code = GET_CODE (other_condition);
1092 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1093 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1094 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1095 return 0;
1097 return comparison_dominates_p (code, other_code);
1100 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1101 any insns already in the delay slot of JUMP. */
1103 static int
1104 redirect_with_delay_slots_safe_p (rtx jump, rtx newlabel, rtx seq)
1106 int flags, i;
1107 rtx pat = PATTERN (seq);
1109 /* Make sure all the delay slots of this jump would still
1110 be valid after threading the jump. If they are still
1111 valid, then return nonzero. */
1113 flags = get_jump_flags (jump, newlabel);
1114 for (i = 1; i < XVECLEN (pat, 0); i++)
1115 if (! (
1116 #ifdef ANNUL_IFFALSE_SLOTS
1117 (INSN_ANNULLED_BRANCH_P (jump)
1118 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1119 ? eligible_for_annul_false (jump, i - 1,
1120 XVECEXP (pat, 0, i), flags) :
1121 #endif
1122 #ifdef ANNUL_IFTRUE_SLOTS
1123 (INSN_ANNULLED_BRANCH_P (jump)
1124 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1125 ? eligible_for_annul_true (jump, i - 1,
1126 XVECEXP (pat, 0, i), flags) :
1127 #endif
1128 eligible_for_delay (jump, i - 1, XVECEXP (pat, 0, i), flags)))
1129 break;
1131 return (i == XVECLEN (pat, 0));
1134 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1135 any insns we wish to place in the delay slot of JUMP. */
1137 static int
1138 redirect_with_delay_list_safe_p (rtx jump, rtx newlabel, rtx delay_list)
1140 int flags, i;
1141 rtx li;
1143 /* Make sure all the insns in DELAY_LIST would still be
1144 valid after threading the jump. If they are still
1145 valid, then return nonzero. */
1147 flags = get_jump_flags (jump, newlabel);
1148 for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1149 if (! (
1150 #ifdef ANNUL_IFFALSE_SLOTS
1151 (INSN_ANNULLED_BRANCH_P (jump)
1152 && INSN_FROM_TARGET_P (XEXP (li, 0)))
1153 ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1154 #endif
1155 #ifdef ANNUL_IFTRUE_SLOTS
1156 (INSN_ANNULLED_BRANCH_P (jump)
1157 && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1158 ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1159 #endif
1160 eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1161 break;
1163 return (li == NULL);
1166 /* DELAY_LIST is a list of insns that have already been placed into delay
1167 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1168 If not, return 0; otherwise return 1. */
1170 static int
1171 check_annul_list_true_false (int annul_true_p, rtx delay_list)
1173 rtx temp;
1175 if (delay_list)
1177 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1179 rtx trial = XEXP (temp, 0);
1181 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1182 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1183 return 0;
1187 return 1;
1190 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1191 the condition tested by INSN is CONDITION and the resources shown in
1192 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1193 from SEQ's delay list, in addition to whatever insns it may execute
1194 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1195 needed while searching for delay slot insns. Return the concatenated
1196 delay list if possible, otherwise, return 0.
1198 SLOTS_TO_FILL is the total number of slots required by INSN, and
1199 PSLOTS_FILLED points to the number filled so far (also the number of
1200 insns in DELAY_LIST). It is updated with the number that have been
1201 filled from the SEQUENCE, if any.
1203 PANNUL_P points to a nonzero value if we already know that we need
1204 to annul INSN. If this routine determines that annulling is needed,
1205 it may set that value nonzero.
1207 PNEW_THREAD points to a location that is to receive the place at which
1208 execution should continue. */
1210 static rtx
1211 steal_delay_list_from_target (rtx insn, rtx condition, rtx seq,
1212 rtx delay_list, struct resources *sets,
1213 struct resources *needed,
1214 struct resources *other_needed,
1215 int slots_to_fill, int *pslots_filled,
1216 int *pannul_p, rtx *pnew_thread)
1218 rtx temp;
1219 int slots_remaining = slots_to_fill - *pslots_filled;
1220 int total_slots_filled = *pslots_filled;
1221 rtx new_delay_list = 0;
1222 int must_annul = *pannul_p;
1223 int used_annul = 0;
1224 int i;
1225 struct resources cc_set;
1227 /* We can't do anything if there are more delay slots in SEQ than we
1228 can handle, or if we don't know that it will be a taken branch.
1229 We know that it will be a taken branch if it is either an unconditional
1230 branch or a conditional branch with a stricter branch condition.
1232 Also, exit if the branch has more than one set, since then it is computing
1233 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1234 ??? It may be possible to move other sets into INSN in addition to
1235 moving the instructions in the delay slots.
1237 We can not steal the delay list if one of the instructions in the
1238 current delay_list modifies the condition codes and the jump in the
1239 sequence is a conditional jump. We can not do this because we can
1240 not change the direction of the jump because the condition codes
1241 will effect the direction of the jump in the sequence. */
1243 CLEAR_RESOURCE (&cc_set);
1244 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1246 rtx trial = XEXP (temp, 0);
1248 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1249 if (insn_references_resource_p (XVECEXP (seq , 0, 0), &cc_set, 0))
1250 return delay_list;
1253 if (XVECLEN (seq, 0) - 1 > slots_remaining
1254 || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1255 || ! single_set (XVECEXP (seq, 0, 0)))
1256 return delay_list;
1258 #ifdef MD_CAN_REDIRECT_BRANCH
1259 /* On some targets, branches with delay slots can have a limited
1260 displacement. Give the back end a chance to tell us we can't do
1261 this. */
1262 if (! MD_CAN_REDIRECT_BRANCH (insn, XVECEXP (seq, 0, 0)))
1263 return delay_list;
1264 #endif
1266 for (i = 1; i < XVECLEN (seq, 0); i++)
1268 rtx trial = XVECEXP (seq, 0, i);
1269 int flags;
1271 if (insn_references_resource_p (trial, sets, 0)
1272 || insn_sets_resource_p (trial, needed, 0)
1273 || insn_sets_resource_p (trial, sets, 0)
1274 #ifdef HAVE_cc0
1275 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1276 delay list. */
1277 || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1278 #endif
1279 /* If TRIAL is from the fallthrough code of an annulled branch insn
1280 in SEQ, we cannot use it. */
1281 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1282 && ! INSN_FROM_TARGET_P (trial)))
1283 return delay_list;
1285 /* If this insn was already done (usually in a previous delay slot),
1286 pretend we put it in our delay slot. */
1287 if (redundant_insn (trial, insn, new_delay_list))
1288 continue;
1290 /* We will end up re-vectoring this branch, so compute flags
1291 based on jumping to the new label. */
1292 flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1294 if (! must_annul
1295 && ((condition == const_true_rtx
1296 || (! insn_sets_resource_p (trial, other_needed, 0)
1297 && ! may_trap_or_fault_p (PATTERN (trial)))))
1298 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1299 : (must_annul || (delay_list == NULL && new_delay_list == NULL))
1300 && (must_annul = 1,
1301 check_annul_list_true_false (0, delay_list)
1302 && check_annul_list_true_false (0, new_delay_list)
1303 && eligible_for_annul_false (insn, total_slots_filled,
1304 trial, flags)))
1306 if (must_annul)
1307 used_annul = 1;
1308 temp = copy_rtx (trial);
1309 INSN_FROM_TARGET_P (temp) = 1;
1310 new_delay_list = add_to_delay_list (temp, new_delay_list);
1311 total_slots_filled++;
1313 if (--slots_remaining == 0)
1314 break;
1316 else
1317 return delay_list;
1320 /* Show the place to which we will be branching. */
1321 *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1323 /* Add any new insns to the delay list and update the count of the
1324 number of slots filled. */
1325 *pslots_filled = total_slots_filled;
1326 if (used_annul)
1327 *pannul_p = 1;
1329 if (delay_list == 0)
1330 return new_delay_list;
1332 for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1333 delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1335 return delay_list;
1338 /* Similar to steal_delay_list_from_target except that SEQ is on the
1339 fallthrough path of INSN. Here we only do something if the delay insn
1340 of SEQ is an unconditional branch. In that case we steal its delay slot
1341 for INSN since unconditional branches are much easier to fill. */
1343 static rtx
1344 steal_delay_list_from_fallthrough (rtx insn, rtx condition, rtx seq,
1345 rtx delay_list, struct resources *sets,
1346 struct resources *needed,
1347 struct resources *other_needed,
1348 int slots_to_fill, int *pslots_filled,
1349 int *pannul_p)
1351 int i;
1352 int flags;
1353 int must_annul = *pannul_p;
1354 int used_annul = 0;
1356 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1358 /* We can't do anything if SEQ's delay insn isn't an
1359 unconditional branch. */
1361 if (! simplejump_p (XVECEXP (seq, 0, 0))
1362 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1363 return delay_list;
1365 for (i = 1; i < XVECLEN (seq, 0); i++)
1367 rtx trial = XVECEXP (seq, 0, i);
1369 /* If TRIAL sets CC0, stealing it will move it too far from the use
1370 of CC0. */
1371 if (insn_references_resource_p (trial, sets, 0)
1372 || insn_sets_resource_p (trial, needed, 0)
1373 || insn_sets_resource_p (trial, sets, 0)
1374 #ifdef HAVE_cc0
1375 || sets_cc0_p (PATTERN (trial))
1376 #endif
1379 break;
1381 /* If this insn was already done, we don't need it. */
1382 if (redundant_insn (trial, insn, delay_list))
1384 delete_from_delay_slot (trial);
1385 continue;
1388 if (! must_annul
1389 && ((condition == const_true_rtx
1390 || (! insn_sets_resource_p (trial, other_needed, 0)
1391 && ! may_trap_or_fault_p (PATTERN (trial)))))
1392 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1393 : (must_annul || delay_list == NULL) && (must_annul = 1,
1394 check_annul_list_true_false (1, delay_list)
1395 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1397 if (must_annul)
1398 used_annul = 1;
1399 delete_from_delay_slot (trial);
1400 delay_list = add_to_delay_list (trial, delay_list);
1402 if (++(*pslots_filled) == slots_to_fill)
1403 break;
1405 else
1406 break;
1409 if (used_annul)
1410 *pannul_p = 1;
1411 return delay_list;
1414 /* Try merging insns starting at THREAD which match exactly the insns in
1415 INSN's delay list.
1417 If all insns were matched and the insn was previously annulling, the
1418 annul bit will be cleared.
1420 For each insn that is merged, if the branch is or will be non-annulling,
1421 we delete the merged insn. */
1423 static void
1424 try_merge_delay_insns (rtx insn, rtx thread)
1426 rtx trial, next_trial;
1427 rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1428 int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1429 int slot_number = 1;
1430 int num_slots = XVECLEN (PATTERN (insn), 0);
1431 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1432 struct resources set, needed;
1433 rtx merged_insns = 0;
1434 int i;
1435 int flags;
1437 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1439 CLEAR_RESOURCE (&needed);
1440 CLEAR_RESOURCE (&set);
1442 /* If this is not an annulling branch, take into account anything needed in
1443 INSN's delay slot. This prevents two increments from being incorrectly
1444 folded into one. If we are annulling, this would be the correct
1445 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1446 will essentially disable this optimization. This method is somewhat of
1447 a kludge, but I don't see a better way.) */
1448 if (! annul_p)
1449 for (i = 1 ; i < num_slots; i++)
1450 if (XVECEXP (PATTERN (insn), 0, i))
1451 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed, 1);
1453 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1455 rtx pat = PATTERN (trial);
1456 rtx oldtrial = trial;
1458 next_trial = next_nonnote_insn (trial);
1460 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1461 if (NONJUMP_INSN_P (trial)
1462 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1463 continue;
1465 if (GET_CODE (next_to_match) == GET_CODE (trial)
1466 #ifdef HAVE_cc0
1467 /* We can't share an insn that sets cc0. */
1468 && ! sets_cc0_p (pat)
1469 #endif
1470 && ! insn_references_resource_p (trial, &set, 1)
1471 && ! insn_sets_resource_p (trial, &set, 1)
1472 && ! insn_sets_resource_p (trial, &needed, 1)
1473 && (trial = try_split (pat, trial, 0)) != 0
1474 /* Update next_trial, in case try_split succeeded. */
1475 && (next_trial = next_nonnote_insn (trial))
1476 /* Likewise THREAD. */
1477 && (thread = oldtrial == thread ? trial : thread)
1478 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1479 /* Have to test this condition if annul condition is different
1480 from (and less restrictive than) non-annulling one. */
1481 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1484 if (! annul_p)
1486 update_block (trial, thread);
1487 if (trial == thread)
1488 thread = next_active_insn (thread);
1490 delete_related_insns (trial);
1491 INSN_FROM_TARGET_P (next_to_match) = 0;
1493 else
1494 merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
1496 if (++slot_number == num_slots)
1497 break;
1499 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1502 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1503 mark_referenced_resources (trial, &needed, 1);
1506 /* See if we stopped on a filled insn. If we did, try to see if its
1507 delay slots match. */
1508 if (slot_number != num_slots
1509 && trial && NONJUMP_INSN_P (trial)
1510 && GET_CODE (PATTERN (trial)) == SEQUENCE
1511 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1513 rtx pat = PATTERN (trial);
1514 rtx filled_insn = XVECEXP (pat, 0, 0);
1516 /* Account for resources set/needed by the filled insn. */
1517 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1518 mark_referenced_resources (filled_insn, &needed, 1);
1520 for (i = 1; i < XVECLEN (pat, 0); i++)
1522 rtx dtrial = XVECEXP (pat, 0, i);
1524 if (! insn_references_resource_p (dtrial, &set, 1)
1525 && ! insn_sets_resource_p (dtrial, &set, 1)
1526 && ! insn_sets_resource_p (dtrial, &needed, 1)
1527 #ifdef HAVE_cc0
1528 && ! sets_cc0_p (PATTERN (dtrial))
1529 #endif
1530 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1531 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1533 if (! annul_p)
1535 rtx new_rtx;
1537 update_block (dtrial, thread);
1538 new_rtx = delete_from_delay_slot (dtrial);
1539 if (INSN_DELETED_P (thread))
1540 thread = new_rtx;
1541 INSN_FROM_TARGET_P (next_to_match) = 0;
1543 else
1544 merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
1545 merged_insns);
1547 if (++slot_number == num_slots)
1548 break;
1550 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1552 else
1554 /* Keep track of the set/referenced resources for the delay
1555 slots of any trial insns we encounter. */
1556 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1557 mark_referenced_resources (dtrial, &needed, 1);
1562 /* If all insns in the delay slot have been matched and we were previously
1563 annulling the branch, we need not any more. In that case delete all the
1564 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1565 the delay list so that we know that it isn't only being used at the
1566 target. */
1567 if (slot_number == num_slots && annul_p)
1569 for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
1571 if (GET_MODE (merged_insns) == SImode)
1573 rtx new_rtx;
1575 update_block (XEXP (merged_insns, 0), thread);
1576 new_rtx = delete_from_delay_slot (XEXP (merged_insns, 0));
1577 if (INSN_DELETED_P (thread))
1578 thread = new_rtx;
1580 else
1582 update_block (XEXP (merged_insns, 0), thread);
1583 delete_related_insns (XEXP (merged_insns, 0));
1587 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1589 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1590 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1594 /* See if INSN is redundant with an insn in front of TARGET. Often this
1595 is called when INSN is a candidate for a delay slot of TARGET.
1596 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1597 of INSN. Often INSN will be redundant with an insn in a delay slot of
1598 some previous insn. This happens when we have a series of branches to the
1599 same label; in that case the first insn at the target might want to go
1600 into each of the delay slots.
1602 If we are not careful, this routine can take up a significant fraction
1603 of the total compilation time (4%), but only wins rarely. Hence we
1604 speed this routine up by making two passes. The first pass goes back
1605 until it hits a label and sees if it finds an insn with an identical
1606 pattern. Only in this (relatively rare) event does it check for
1607 data conflicts.
1609 We do not split insns we encounter. This could cause us not to find a
1610 redundant insn, but the cost of splitting seems greater than the possible
1611 gain in rare cases. */
1613 static rtx
1614 redundant_insn (rtx insn, rtx target, rtx delay_list)
1616 rtx target_main = target;
1617 rtx ipat = PATTERN (insn);
1618 rtx trial, pat;
1619 struct resources needed, set;
1620 int i;
1621 unsigned insns_to_search;
1623 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1624 are allowed to not actually assign to such a register. */
1625 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1626 return 0;
1628 /* Scan backwards looking for a match. */
1629 for (trial = PREV_INSN (target),
1630 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1631 trial && insns_to_search > 0;
1632 trial = PREV_INSN (trial), --insns_to_search)
1634 if (LABEL_P (trial))
1635 return 0;
1637 if (! INSN_P (trial))
1638 continue;
1640 pat = PATTERN (trial);
1641 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1642 continue;
1644 if (GET_CODE (pat) == SEQUENCE)
1646 /* Stop for a CALL and its delay slots because it is difficult to
1647 track its resource needs correctly. */
1648 if (CALL_P (XVECEXP (pat, 0, 0)))
1649 return 0;
1651 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1652 slots because it is difficult to track its resource needs
1653 correctly. */
1655 #ifdef INSN_SETS_ARE_DELAYED
1656 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1657 return 0;
1658 #endif
1660 #ifdef INSN_REFERENCES_ARE_DELAYED
1661 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1662 return 0;
1663 #endif
1665 /* See if any of the insns in the delay slot match, updating
1666 resource requirements as we go. */
1667 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1668 if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
1669 && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
1670 && ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
1671 break;
1673 /* If found a match, exit this loop early. */
1674 if (i > 0)
1675 break;
1678 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1679 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1680 break;
1683 /* If we didn't find an insn that matches, return 0. */
1684 if (trial == 0)
1685 return 0;
1687 /* See what resources this insn sets and needs. If they overlap, or
1688 if this insn references CC0, it can't be redundant. */
1690 CLEAR_RESOURCE (&needed);
1691 CLEAR_RESOURCE (&set);
1692 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1693 mark_referenced_resources (insn, &needed, 1);
1695 /* If TARGET is a SEQUENCE, get the main insn. */
1696 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1697 target_main = XVECEXP (PATTERN (target), 0, 0);
1699 if (resource_conflicts_p (&needed, &set)
1700 #ifdef HAVE_cc0
1701 || reg_mentioned_p (cc0_rtx, ipat)
1702 #endif
1703 /* The insn requiring the delay may not set anything needed or set by
1704 INSN. */
1705 || insn_sets_resource_p (target_main, &needed, 1)
1706 || insn_sets_resource_p (target_main, &set, 1))
1707 return 0;
1709 /* Insns we pass may not set either NEEDED or SET, so merge them for
1710 simpler tests. */
1711 needed.memory |= set.memory;
1712 needed.unch_memory |= set.unch_memory;
1713 IOR_HARD_REG_SET (needed.regs, set.regs);
1715 /* This insn isn't redundant if it conflicts with an insn that either is
1716 or will be in a delay slot of TARGET. */
1718 while (delay_list)
1720 if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1))
1721 return 0;
1722 delay_list = XEXP (delay_list, 1);
1725 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1726 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1727 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1))
1728 return 0;
1730 /* Scan backwards until we reach a label or an insn that uses something
1731 INSN sets or sets something insn uses or sets. */
1733 for (trial = PREV_INSN (target),
1734 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1735 trial && !LABEL_P (trial) && insns_to_search > 0;
1736 trial = PREV_INSN (trial), --insns_to_search)
1738 if (!INSN_P (trial))
1739 continue;
1741 pat = PATTERN (trial);
1742 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1743 continue;
1745 if (GET_CODE (pat) == SEQUENCE)
1747 /* If this is a CALL_INSN and its delay slots, it is hard to track
1748 the resource needs properly, so give up. */
1749 if (CALL_P (XVECEXP (pat, 0, 0)))
1750 return 0;
1752 /* If this is an INSN or JUMP_INSN with delayed effects, it
1753 is hard to track the resource needs properly, so give up. */
1755 #ifdef INSN_SETS_ARE_DELAYED
1756 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1757 return 0;
1758 #endif
1760 #ifdef INSN_REFERENCES_ARE_DELAYED
1761 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1762 return 0;
1763 #endif
1765 /* See if any of the insns in the delay slot match, updating
1766 resource requirements as we go. */
1767 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1769 rtx candidate = XVECEXP (pat, 0, i);
1771 /* If an insn will be annulled if the branch is false, it isn't
1772 considered as a possible duplicate insn. */
1773 if (rtx_equal_p (PATTERN (candidate), ipat)
1774 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1775 && INSN_FROM_TARGET_P (candidate)))
1777 /* Show that this insn will be used in the sequel. */
1778 INSN_FROM_TARGET_P (candidate) = 0;
1779 return candidate;
1782 /* Unless this is an annulled insn from the target of a branch,
1783 we must stop if it sets anything needed or set by INSN. */
1784 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1785 || ! INSN_FROM_TARGET_P (candidate))
1786 && insn_sets_resource_p (candidate, &needed, 1))
1787 return 0;
1790 /* If the insn requiring the delay slot conflicts with INSN, we
1791 must stop. */
1792 if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1))
1793 return 0;
1795 else
1797 /* See if TRIAL is the same as INSN. */
1798 pat = PATTERN (trial);
1799 if (rtx_equal_p (pat, ipat))
1800 return trial;
1802 /* Can't go any further if TRIAL conflicts with INSN. */
1803 if (insn_sets_resource_p (trial, &needed, 1))
1804 return 0;
1808 return 0;
1811 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1812 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1813 is nonzero, we are allowed to fall into this thread; otherwise, we are
1814 not.
1816 If LABEL is used more than one or we pass a label other than LABEL before
1817 finding an active insn, we do not own this thread. */
1819 static int
1820 own_thread_p (rtx thread, rtx label, int allow_fallthrough)
1822 rtx active_insn;
1823 rtx insn;
1825 /* We don't own the function end. */
1826 if (thread == 0)
1827 return 0;
1829 /* Get the first active insn, or THREAD, if it is an active insn. */
1830 active_insn = next_active_insn (PREV_INSN (thread));
1832 for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
1833 if (LABEL_P (insn)
1834 && (insn != label || LABEL_NUSES (insn) != 1))
1835 return 0;
1837 if (allow_fallthrough)
1838 return 1;
1840 /* Ensure that we reach a BARRIER before any insn or label. */
1841 for (insn = prev_nonnote_insn (thread);
1842 insn == 0 || !BARRIER_P (insn);
1843 insn = prev_nonnote_insn (insn))
1844 if (insn == 0
1845 || LABEL_P (insn)
1846 || (NONJUMP_INSN_P (insn)
1847 && GET_CODE (PATTERN (insn)) != USE
1848 && GET_CODE (PATTERN (insn)) != CLOBBER))
1849 return 0;
1851 return 1;
1854 /* Called when INSN is being moved from a location near the target of a jump.
1855 We leave a marker of the form (use (INSN)) immediately in front
1856 of WHERE for mark_target_live_regs. These markers will be deleted when
1857 reorg finishes.
1859 We used to try to update the live status of registers if WHERE is at
1860 the start of a basic block, but that can't work since we may remove a
1861 BARRIER in relax_delay_slots. */
1863 static void
1864 update_block (rtx insn, rtx where)
1866 /* Ignore if this was in a delay slot and it came from the target of
1867 a branch. */
1868 if (INSN_FROM_TARGET_P (insn))
1869 return;
1871 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1873 /* INSN might be making a value live in a block where it didn't use to
1874 be. So recompute liveness information for this block. */
1876 incr_ticks_for_insn (insn);
1879 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1880 the basic block containing the jump. */
1882 static int
1883 reorg_redirect_jump (rtx jump, rtx nlabel)
1885 incr_ticks_for_insn (jump);
1886 return redirect_jump (jump, nlabel, 1);
1889 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1890 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1891 that reference values used in INSN. If we find one, then we move the
1892 REG_DEAD note to INSN.
1894 This is needed to handle the case where a later insn (after INSN) has a
1895 REG_DEAD note for a register used by INSN, and this later insn subsequently
1896 gets moved before a CODE_LABEL because it is a redundant insn. In this
1897 case, mark_target_live_regs may be confused into thinking the register
1898 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1900 static void
1901 update_reg_dead_notes (rtx insn, rtx delayed_insn)
1903 rtx p, link, next;
1905 for (p = next_nonnote_insn (insn); p != delayed_insn;
1906 p = next_nonnote_insn (p))
1907 for (link = REG_NOTES (p); link; link = next)
1909 next = XEXP (link, 1);
1911 if (REG_NOTE_KIND (link) != REG_DEAD
1912 || !REG_P (XEXP (link, 0)))
1913 continue;
1915 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1917 /* Move the REG_DEAD note from P to INSN. */
1918 remove_note (p, link);
1919 XEXP (link, 1) = REG_NOTES (insn);
1920 REG_NOTES (insn) = link;
1925 /* Called when an insn redundant with start_insn is deleted. If there
1926 is a REG_DEAD note for the target of start_insn between start_insn
1927 and stop_insn, then the REG_DEAD note needs to be deleted since the
1928 value no longer dies there.
1930 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1931 confused into thinking the register is dead. */
1933 static void
1934 fix_reg_dead_note (rtx start_insn, rtx stop_insn)
1936 rtx p, link, next;
1938 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1939 p = next_nonnote_insn (p))
1940 for (link = REG_NOTES (p); link; link = next)
1942 next = XEXP (link, 1);
1944 if (REG_NOTE_KIND (link) != REG_DEAD
1945 || !REG_P (XEXP (link, 0)))
1946 continue;
1948 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1950 remove_note (p, link);
1951 return;
1956 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1958 This handles the case of udivmodXi4 instructions which optimize their
1959 output depending on whether any REG_UNUSED notes are present.
1960 we must make sure that INSN calculates as many results as REDUNDANT_INSN
1961 does. */
1963 static void
1964 update_reg_unused_notes (rtx insn, rtx redundant_insn)
1966 rtx link, next;
1968 for (link = REG_NOTES (insn); link; link = next)
1970 next = XEXP (link, 1);
1972 if (REG_NOTE_KIND (link) != REG_UNUSED
1973 || !REG_P (XEXP (link, 0)))
1974 continue;
1976 if (! find_regno_note (redundant_insn, REG_UNUSED,
1977 REGNO (XEXP (link, 0))))
1978 remove_note (insn, link);
1982 /* Return the label before INSN, or put a new label there. */
1984 static rtx
1985 get_label_before (rtx insn)
1987 rtx label;
1989 /* Find an existing label at this point
1990 or make a new one if there is none. */
1991 label = prev_nonnote_insn (insn);
1993 if (label == 0 || !LABEL_P (label))
1995 rtx prev = PREV_INSN (insn);
1997 label = gen_label_rtx ();
1998 emit_label_after (label, prev);
1999 LABEL_NUSES (label) = 0;
2001 return label;
2004 /* Scan a function looking for insns that need a delay slot and find insns to
2005 put into the delay slot.
2007 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
2008 as calls). We do these first since we don't want jump insns (that are
2009 easier to fill) to get the only insns that could be used for non-jump insns.
2010 When it is zero, only try to fill JUMP_INSNs.
2012 When slots are filled in this manner, the insns (including the
2013 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2014 it is possible to tell whether a delay slot has really been filled
2015 or not. `final' knows how to deal with this, by communicating
2016 through FINAL_SEQUENCE. */
2018 static void
2019 fill_simple_delay_slots (int non_jumps_p)
2021 rtx insn, pat, trial, next_trial;
2022 int i;
2023 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2024 struct resources needed, set;
2025 int slots_to_fill, slots_filled;
2026 rtx delay_list;
2028 for (i = 0; i < num_unfilled_slots; i++)
2030 int flags;
2031 /* Get the next insn to fill. If it has already had any slots assigned,
2032 we can't do anything with it. Maybe we'll improve this later. */
2034 insn = unfilled_slots_base[i];
2035 if (insn == 0
2036 || INSN_DELETED_P (insn)
2037 || (NONJUMP_INSN_P (insn)
2038 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2039 || (JUMP_P (insn) && non_jumps_p)
2040 || (!JUMP_P (insn) && ! non_jumps_p))
2041 continue;
2043 /* It may have been that this insn used to need delay slots, but
2044 now doesn't; ignore in that case. This can happen, for example,
2045 on the HP PA RISC, where the number of delay slots depends on
2046 what insns are nearby. */
2047 slots_to_fill = num_delay_slots (insn);
2049 /* Some machine description have defined instructions to have
2050 delay slots only in certain circumstances which may depend on
2051 nearby insns (which change due to reorg's actions).
2053 For example, the PA port normally has delay slots for unconditional
2054 jumps.
2056 However, the PA port claims such jumps do not have a delay slot
2057 if they are immediate successors of certain CALL_INSNs. This
2058 allows the port to favor filling the delay slot of the call with
2059 the unconditional jump. */
2060 if (slots_to_fill == 0)
2061 continue;
2063 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2064 says how many. After initialization, first try optimizing
2066 call _foo call _foo
2067 nop add %o7,.-L1,%o7
2068 b,a L1
2071 If this case applies, the delay slot of the call is filled with
2072 the unconditional jump. This is done first to avoid having the
2073 delay slot of the call filled in the backward scan. Also, since
2074 the unconditional jump is likely to also have a delay slot, that
2075 insn must exist when it is subsequently scanned.
2077 This is tried on each insn with delay slots as some machines
2078 have insns which perform calls, but are not represented as
2079 CALL_INSNs. */
2081 slots_filled = 0;
2082 delay_list = 0;
2084 if (JUMP_P (insn))
2085 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2086 else
2087 flags = get_jump_flags (insn, NULL_RTX);
2089 if ((trial = next_active_insn (insn))
2090 && JUMP_P (trial)
2091 && simplejump_p (trial)
2092 && eligible_for_delay (insn, slots_filled, trial, flags)
2093 && no_labels_between_p (insn, trial)
2094 && ! can_throw_internal (trial))
2096 rtx *tmp;
2097 slots_filled++;
2098 delay_list = add_to_delay_list (trial, delay_list);
2100 /* TRIAL may have had its delay slot filled, then unfilled. When
2101 the delay slot is unfilled, TRIAL is placed back on the unfilled
2102 slots obstack. Unfortunately, it is placed on the end of the
2103 obstack, not in its original location. Therefore, we must search
2104 from entry i + 1 to the end of the unfilled slots obstack to
2105 try and find TRIAL. */
2106 tmp = &unfilled_slots_base[i + 1];
2107 while (*tmp != trial && tmp != unfilled_slots_next)
2108 tmp++;
2110 /* Remove the unconditional jump from consideration for delay slot
2111 filling and unthread it. */
2112 if (*tmp == trial)
2113 *tmp = 0;
2115 rtx next = NEXT_INSN (trial);
2116 rtx prev = PREV_INSN (trial);
2117 if (prev)
2118 NEXT_INSN (prev) = next;
2119 if (next)
2120 PREV_INSN (next) = prev;
2124 /* Now, scan backwards from the insn to search for a potential
2125 delay-slot candidate. Stop searching when a label or jump is hit.
2127 For each candidate, if it is to go into the delay slot (moved
2128 forward in execution sequence), it must not need or set any resources
2129 that were set by later insns and must not set any resources that
2130 are needed for those insns.
2132 The delay slot insn itself sets resources unless it is a call
2133 (in which case the called routine, not the insn itself, is doing
2134 the setting). */
2136 if (slots_filled < slots_to_fill)
2138 CLEAR_RESOURCE (&needed);
2139 CLEAR_RESOURCE (&set);
2140 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
2141 mark_referenced_resources (insn, &needed, 0);
2143 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
2144 trial = next_trial)
2146 next_trial = prev_nonnote_insn (trial);
2148 /* This must be an INSN or CALL_INSN. */
2149 pat = PATTERN (trial);
2151 /* USE and CLOBBER at this level was just for flow; ignore it. */
2152 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2153 continue;
2155 /* Check for resource conflict first, to avoid unnecessary
2156 splitting. */
2157 if (! insn_references_resource_p (trial, &set, 1)
2158 && ! insn_sets_resource_p (trial, &set, 1)
2159 && ! insn_sets_resource_p (trial, &needed, 1)
2160 #ifdef HAVE_cc0
2161 /* Can't separate set of cc0 from its use. */
2162 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2163 #endif
2164 && ! can_throw_internal (trial))
2166 trial = try_split (pat, trial, 1);
2167 next_trial = prev_nonnote_insn (trial);
2168 if (eligible_for_delay (insn, slots_filled, trial, flags))
2170 /* In this case, we are searching backward, so if we
2171 find insns to put on the delay list, we want
2172 to put them at the head, rather than the
2173 tail, of the list. */
2175 update_reg_dead_notes (trial, insn);
2176 delay_list = gen_rtx_INSN_LIST (VOIDmode,
2177 trial, delay_list);
2178 update_block (trial, trial);
2179 delete_related_insns (trial);
2180 if (slots_to_fill == ++slots_filled)
2181 break;
2182 continue;
2186 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2187 mark_referenced_resources (trial, &needed, 1);
2191 /* If all needed slots haven't been filled, we come here. */
2193 /* Try to optimize case of jumping around a single insn. */
2194 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2195 if (slots_filled != slots_to_fill
2196 && delay_list == 0
2197 && JUMP_P (insn)
2198 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
2200 delay_list = optimize_skip (insn);
2201 if (delay_list)
2202 slots_filled += 1;
2204 #endif
2206 /* Try to get insns from beyond the insn needing the delay slot.
2207 These insns can neither set or reference resources set in insns being
2208 skipped, cannot set resources in the insn being skipped, and, if this
2209 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2210 call might not return).
2212 There used to be code which continued past the target label if
2213 we saw all uses of the target label. This code did not work,
2214 because it failed to account for some instructions which were
2215 both annulled and marked as from the target. This can happen as a
2216 result of optimize_skip. Since this code was redundant with
2217 fill_eager_delay_slots anyways, it was just deleted. */
2219 if (slots_filled != slots_to_fill
2220 /* If this instruction could throw an exception which is
2221 caught in the same function, then it's not safe to fill
2222 the delay slot with an instruction from beyond this
2223 point. For example, consider:
2225 int i = 2;
2227 try {
2228 f();
2229 i = 3;
2230 } catch (...) {}
2232 return i;
2234 Even though `i' is a local variable, we must be sure not
2235 to put `i = 3' in the delay slot if `f' might throw an
2236 exception.
2238 Presumably, we should also check to see if we could get
2239 back to this function via `setjmp'. */
2240 && ! can_throw_internal (insn)
2241 && (!JUMP_P (insn)
2242 || ((condjump_p (insn) || condjump_in_parallel_p (insn))
2243 && ! simplejump_p (insn)
2244 && JUMP_LABEL (insn) != 0)))
2246 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2247 label. Otherwise, zero. */
2248 rtx target = 0;
2249 int maybe_never = 0;
2250 rtx pat, trial_delay;
2252 CLEAR_RESOURCE (&needed);
2253 CLEAR_RESOURCE (&set);
2255 if (CALL_P (insn))
2257 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2258 mark_referenced_resources (insn, &needed, 1);
2259 maybe_never = 1;
2261 else
2263 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2264 mark_referenced_resources (insn, &needed, 1);
2265 if (JUMP_P (insn))
2266 target = JUMP_LABEL (insn);
2269 if (target == 0)
2270 for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
2272 next_trial = next_nonnote_insn (trial);
2274 if (LABEL_P (trial)
2275 || BARRIER_P (trial))
2276 break;
2278 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2279 pat = PATTERN (trial);
2281 /* Stand-alone USE and CLOBBER are just for flow. */
2282 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2283 continue;
2285 /* If this already has filled delay slots, get the insn needing
2286 the delay slots. */
2287 if (GET_CODE (pat) == SEQUENCE)
2288 trial_delay = XVECEXP (pat, 0, 0);
2289 else
2290 trial_delay = trial;
2292 /* Stop our search when seeing an unconditional jump. */
2293 if (JUMP_P (trial_delay))
2294 break;
2296 /* See if we have a resource problem before we try to
2297 split. */
2298 if (GET_CODE (pat) != SEQUENCE
2299 && ! insn_references_resource_p (trial, &set, 1)
2300 && ! insn_sets_resource_p (trial, &set, 1)
2301 && ! insn_sets_resource_p (trial, &needed, 1)
2302 #ifdef HAVE_cc0
2303 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2304 #endif
2305 && ! (maybe_never && may_trap_or_fault_p (pat))
2306 && (trial = try_split (pat, trial, 0))
2307 && eligible_for_delay (insn, slots_filled, trial, flags)
2308 && ! can_throw_internal(trial))
2310 next_trial = next_nonnote_insn (trial);
2311 delay_list = add_to_delay_list (trial, delay_list);
2313 #ifdef HAVE_cc0
2314 if (reg_mentioned_p (cc0_rtx, pat))
2315 link_cc0_insns (trial);
2316 #endif
2318 delete_related_insns (trial);
2319 if (slots_to_fill == ++slots_filled)
2320 break;
2321 continue;
2324 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2325 mark_referenced_resources (trial, &needed, 1);
2327 /* Ensure we don't put insns between the setting of cc and the
2328 comparison by moving a setting of cc into an earlier delay
2329 slot since these insns could clobber the condition code. */
2330 set.cc = 1;
2332 /* If this is a call or jump, we might not get here. */
2333 if (CALL_P (trial_delay)
2334 || JUMP_P (trial_delay))
2335 maybe_never = 1;
2338 /* If there are slots left to fill and our search was stopped by an
2339 unconditional branch, try the insn at the branch target. We can
2340 redirect the branch if it works.
2342 Don't do this if the insn at the branch target is a branch. */
2343 if (slots_to_fill != slots_filled
2344 && trial
2345 && JUMP_P (trial)
2346 && simplejump_p (trial)
2347 && (target == 0 || JUMP_LABEL (trial) == target)
2348 && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
2349 && ! (NONJUMP_INSN_P (next_trial)
2350 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2351 && !JUMP_P (next_trial)
2352 && ! insn_references_resource_p (next_trial, &set, 1)
2353 && ! insn_sets_resource_p (next_trial, &set, 1)
2354 && ! insn_sets_resource_p (next_trial, &needed, 1)
2355 #ifdef HAVE_cc0
2356 && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
2357 #endif
2358 && ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
2359 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2360 && eligible_for_delay (insn, slots_filled, next_trial, flags)
2361 && ! can_throw_internal (trial))
2363 /* See comment in relax_delay_slots about necessity of using
2364 next_real_insn here. */
2365 rtx new_label = next_real_insn (next_trial);
2367 if (new_label != 0)
2368 new_label = get_label_before (new_label);
2369 else
2370 new_label = find_end_label ();
2372 if (new_label)
2374 delay_list
2375 = add_to_delay_list (copy_rtx (next_trial), delay_list);
2376 slots_filled++;
2377 reorg_redirect_jump (trial, new_label);
2379 /* If we merged because we both jumped to the same place,
2380 redirect the original insn also. */
2381 if (target)
2382 reorg_redirect_jump (insn, new_label);
2387 /* If this is an unconditional jump, then try to get insns from the
2388 target of the jump. */
2389 if (JUMP_P (insn)
2390 && simplejump_p (insn)
2391 && slots_filled != slots_to_fill)
2392 delay_list
2393 = fill_slots_from_thread (insn, const_true_rtx,
2394 next_active_insn (JUMP_LABEL (insn)),
2395 NULL, 1, 1,
2396 own_thread_p (JUMP_LABEL (insn),
2397 JUMP_LABEL (insn), 0),
2398 slots_to_fill, &slots_filled,
2399 delay_list);
2401 if (delay_list)
2402 unfilled_slots_base[i]
2403 = emit_delay_sequence (insn, delay_list, slots_filled);
2405 if (slots_to_fill == slots_filled)
2406 unfilled_slots_base[i] = 0;
2408 note_delay_statistics (slots_filled, 0);
2411 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2412 /* See if the epilogue needs any delay slots. Try to fill them if so.
2413 The only thing we can do is scan backwards from the end of the
2414 function. If we did this in a previous pass, it is incorrect to do it
2415 again. */
2416 if (crtl->epilogue_delay_list)
2417 return;
2419 slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
2420 if (slots_to_fill == 0)
2421 return;
2423 slots_filled = 0;
2424 CLEAR_RESOURCE (&set);
2426 /* The frame pointer and stack pointer are needed at the beginning of
2427 the epilogue, so instructions setting them can not be put in the
2428 epilogue delay slot. However, everything else needed at function
2429 end is safe, so we don't want to use end_of_function_needs here. */
2430 CLEAR_RESOURCE (&needed);
2431 if (frame_pointer_needed)
2433 SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
2434 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2435 SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
2436 #endif
2437 if (! EXIT_IGNORE_STACK
2438 || current_function_sp_is_unchanging)
2439 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2441 else
2442 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2444 #ifdef EPILOGUE_USES
2445 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2447 if (EPILOGUE_USES (i))
2448 SET_HARD_REG_BIT (needed.regs, i);
2450 #endif
2452 for (trial = get_last_insn (); ! stop_search_p (trial, 1);
2453 trial = PREV_INSN (trial))
2455 if (NOTE_P (trial))
2456 continue;
2457 pat = PATTERN (trial);
2458 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2459 continue;
2461 if (! insn_references_resource_p (trial, &set, 1)
2462 && ! insn_sets_resource_p (trial, &needed, 1)
2463 && ! insn_sets_resource_p (trial, &set, 1)
2464 #ifdef HAVE_cc0
2465 /* Don't want to mess with cc0 here. */
2466 && ! reg_mentioned_p (cc0_rtx, pat)
2467 #endif
2468 && ! can_throw_internal (trial))
2470 trial = try_split (pat, trial, 1);
2471 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
2473 /* Here as well we are searching backward, so put the
2474 insns we find on the head of the list. */
2476 crtl->epilogue_delay_list
2477 = gen_rtx_INSN_LIST (VOIDmode, trial,
2478 crtl->epilogue_delay_list);
2479 mark_end_of_function_resources (trial, 1);
2480 update_block (trial, trial);
2481 delete_related_insns (trial);
2483 /* Clear deleted bit so final.c will output the insn. */
2484 INSN_DELETED_P (trial) = 0;
2486 if (slots_to_fill == ++slots_filled)
2487 break;
2488 continue;
2492 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2493 mark_referenced_resources (trial, &needed, 1);
2496 note_delay_statistics (slots_filled, 0);
2497 #endif
2500 /* Follow any unconditional jump at LABEL;
2501 return the ultimate label reached by any such chain of jumps.
2502 Return null if the chain ultimately leads to a return instruction.
2503 If LABEL is not followed by a jump, return LABEL.
2504 If the chain loops or we can't find end, return LABEL,
2505 since that tells caller to avoid changing the insn. */
2507 static rtx
2508 follow_jumps (rtx label)
2510 rtx insn;
2511 rtx next;
2512 rtx value = label;
2513 int depth;
2515 for (depth = 0;
2516 (depth < 10
2517 && (insn = next_active_insn (value)) != 0
2518 && JUMP_P (insn)
2519 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2520 && onlyjump_p (insn))
2521 || GET_CODE (PATTERN (insn)) == RETURN)
2522 && (next = NEXT_INSN (insn))
2523 && BARRIER_P (next));
2524 depth++)
2526 rtx tem;
2528 /* If we have found a cycle, make the insn jump to itself. */
2529 if (JUMP_LABEL (insn) == label)
2530 return label;
2532 tem = next_active_insn (JUMP_LABEL (insn));
2533 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2534 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2535 break;
2537 value = JUMP_LABEL (insn);
2539 if (depth == 10)
2540 return label;
2541 return value;
2544 /* Try to find insns to place in delay slots.
2546 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2547 or is an unconditional branch if CONDITION is const_true_rtx.
2548 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2550 THREAD is a flow-of-control, either the insns to be executed if the
2551 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2553 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2554 to see if any potential delay slot insns set things needed there.
2556 LIKELY is nonzero if it is extremely likely that the branch will be
2557 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2558 end of a loop back up to the top.
2560 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2561 thread. I.e., it is the fallthrough code of our jump or the target of the
2562 jump when we are the only jump going there.
2564 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2565 case, we can only take insns from the head of the thread for our delay
2566 slot. We then adjust the jump to point after the insns we have taken. */
2568 static rtx
2569 fill_slots_from_thread (rtx insn, rtx condition, rtx thread,
2570 rtx opposite_thread, int likely, int thread_if_true,
2571 int own_thread, int slots_to_fill,
2572 int *pslots_filled, rtx delay_list)
2574 rtx new_thread;
2575 struct resources opposite_needed, set, needed;
2576 rtx trial;
2577 int lose = 0;
2578 int must_annul = 0;
2579 int flags;
2581 /* Validate our arguments. */
2582 gcc_assert(condition != const_true_rtx || thread_if_true);
2583 gcc_assert(own_thread || thread_if_true);
2585 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2587 /* If our thread is the end of subroutine, we can't get any delay
2588 insns from that. */
2589 if (thread == 0)
2590 return delay_list;
2592 /* If this is an unconditional branch, nothing is needed at the
2593 opposite thread. Otherwise, compute what is needed there. */
2594 if (condition == const_true_rtx)
2595 CLEAR_RESOURCE (&opposite_needed);
2596 else
2597 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2599 /* If the insn at THREAD can be split, do it here to avoid having to
2600 update THREAD and NEW_THREAD if it is done in the loop below. Also
2601 initialize NEW_THREAD. */
2603 new_thread = thread = try_split (PATTERN (thread), thread, 0);
2605 /* Scan insns at THREAD. We are looking for an insn that can be removed
2606 from THREAD (it neither sets nor references resources that were set
2607 ahead of it and it doesn't set anything needs by the insns ahead of
2608 it) and that either can be placed in an annulling insn or aren't
2609 needed at OPPOSITE_THREAD. */
2611 CLEAR_RESOURCE (&needed);
2612 CLEAR_RESOURCE (&set);
2614 /* If we do not own this thread, we must stop as soon as we find
2615 something that we can't put in a delay slot, since all we can do
2616 is branch into THREAD at a later point. Therefore, labels stop
2617 the search if this is not the `true' thread. */
2619 for (trial = thread;
2620 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2621 trial = next_nonnote_insn (trial))
2623 rtx pat, old_trial;
2625 /* If we have passed a label, we no longer own this thread. */
2626 if (LABEL_P (trial))
2628 own_thread = 0;
2629 continue;
2632 pat = PATTERN (trial);
2633 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2634 continue;
2636 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2637 don't separate or copy insns that set and use CC0. */
2638 if (! insn_references_resource_p (trial, &set, 1)
2639 && ! insn_sets_resource_p (trial, &set, 1)
2640 && ! insn_sets_resource_p (trial, &needed, 1)
2641 #ifdef HAVE_cc0
2642 && ! (reg_mentioned_p (cc0_rtx, pat)
2643 && (! own_thread || ! sets_cc0_p (pat)))
2644 #endif
2645 && ! can_throw_internal (trial))
2647 rtx prior_insn;
2649 /* If TRIAL is redundant with some insn before INSN, we don't
2650 actually need to add it to the delay list; we can merely pretend
2651 we did. */
2652 if ((prior_insn = redundant_insn (trial, insn, delay_list)))
2654 fix_reg_dead_note (prior_insn, insn);
2655 if (own_thread)
2657 update_block (trial, thread);
2658 if (trial == thread)
2660 thread = next_active_insn (thread);
2661 if (new_thread == trial)
2662 new_thread = thread;
2665 delete_related_insns (trial);
2667 else
2669 update_reg_unused_notes (prior_insn, trial);
2670 new_thread = next_active_insn (trial);
2673 continue;
2676 /* There are two ways we can win: If TRIAL doesn't set anything
2677 needed at the opposite thread and can't trap, or if it can
2678 go into an annulled delay slot. */
2679 if (!must_annul
2680 && (condition == const_true_rtx
2681 || (! insn_sets_resource_p (trial, &opposite_needed, 1)
2682 && ! may_trap_or_fault_p (pat))))
2684 old_trial = trial;
2685 trial = try_split (pat, trial, 0);
2686 if (new_thread == old_trial)
2687 new_thread = trial;
2688 if (thread == old_trial)
2689 thread = trial;
2690 pat = PATTERN (trial);
2691 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2692 goto winner;
2694 else if (0
2695 #ifdef ANNUL_IFTRUE_SLOTS
2696 || ! thread_if_true
2697 #endif
2698 #ifdef ANNUL_IFFALSE_SLOTS
2699 || thread_if_true
2700 #endif
2703 old_trial = trial;
2704 trial = try_split (pat, trial, 0);
2705 if (new_thread == old_trial)
2706 new_thread = trial;
2707 if (thread == old_trial)
2708 thread = trial;
2709 pat = PATTERN (trial);
2710 if ((must_annul || delay_list == NULL) && (thread_if_true
2711 ? check_annul_list_true_false (0, delay_list)
2712 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2713 : check_annul_list_true_false (1, delay_list)
2714 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2716 rtx temp;
2718 must_annul = 1;
2719 winner:
2721 #ifdef HAVE_cc0
2722 if (reg_mentioned_p (cc0_rtx, pat))
2723 link_cc0_insns (trial);
2724 #endif
2726 /* If we own this thread, delete the insn. If this is the
2727 destination of a branch, show that a basic block status
2728 may have been updated. In any case, mark the new
2729 starting point of this thread. */
2730 if (own_thread)
2732 rtx note;
2734 update_block (trial, thread);
2735 if (trial == thread)
2737 thread = next_active_insn (thread);
2738 if (new_thread == trial)
2739 new_thread = thread;
2742 /* We are moving this insn, not deleting it. We must
2743 temporarily increment the use count on any referenced
2744 label lest it be deleted by delete_related_insns. */
2745 for (note = REG_NOTES (trial);
2746 note != NULL_RTX;
2747 note = XEXP (note, 1))
2748 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2749 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2751 /* REG_LABEL_OPERAND could be
2752 NOTE_INSN_DELETED_LABEL too. */
2753 if (LABEL_P (XEXP (note, 0)))
2754 LABEL_NUSES (XEXP (note, 0))++;
2755 else
2756 gcc_assert (REG_NOTE_KIND (note)
2757 == REG_LABEL_OPERAND);
2759 if (JUMP_P (trial) && JUMP_LABEL (trial))
2760 LABEL_NUSES (JUMP_LABEL (trial))++;
2762 delete_related_insns (trial);
2764 for (note = REG_NOTES (trial);
2765 note != NULL_RTX;
2766 note = XEXP (note, 1))
2767 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2768 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2770 /* REG_LABEL_OPERAND could be
2771 NOTE_INSN_DELETED_LABEL too. */
2772 if (LABEL_P (XEXP (note, 0)))
2773 LABEL_NUSES (XEXP (note, 0))--;
2774 else
2775 gcc_assert (REG_NOTE_KIND (note)
2776 == REG_LABEL_OPERAND);
2778 if (JUMP_P (trial) && JUMP_LABEL (trial))
2779 LABEL_NUSES (JUMP_LABEL (trial))--;
2781 else
2782 new_thread = next_active_insn (trial);
2784 temp = own_thread ? trial : copy_rtx (trial);
2785 if (thread_if_true)
2786 INSN_FROM_TARGET_P (temp) = 1;
2788 delay_list = add_to_delay_list (temp, delay_list);
2790 if (slots_to_fill == ++(*pslots_filled))
2792 /* Even though we have filled all the slots, we
2793 may be branching to a location that has a
2794 redundant insn. Skip any if so. */
2795 while (new_thread && ! own_thread
2796 && ! insn_sets_resource_p (new_thread, &set, 1)
2797 && ! insn_sets_resource_p (new_thread, &needed, 1)
2798 && ! insn_references_resource_p (new_thread,
2799 &set, 1)
2800 && (prior_insn
2801 = redundant_insn (new_thread, insn,
2802 delay_list)))
2804 /* We know we do not own the thread, so no need
2805 to call update_block and delete_insn. */
2806 fix_reg_dead_note (prior_insn, insn);
2807 update_reg_unused_notes (prior_insn, new_thread);
2808 new_thread = next_active_insn (new_thread);
2810 break;
2813 continue;
2818 /* This insn can't go into a delay slot. */
2819 lose = 1;
2820 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2821 mark_referenced_resources (trial, &needed, 1);
2823 /* Ensure we don't put insns between the setting of cc and the comparison
2824 by moving a setting of cc into an earlier delay slot since these insns
2825 could clobber the condition code. */
2826 set.cc = 1;
2828 /* If this insn is a register-register copy and the next insn has
2829 a use of our destination, change it to use our source. That way,
2830 it will become a candidate for our delay slot the next time
2831 through this loop. This case occurs commonly in loops that
2832 scan a list.
2834 We could check for more complex cases than those tested below,
2835 but it doesn't seem worth it. It might also be a good idea to try
2836 to swap the two insns. That might do better.
2838 We can't do this if the next insn modifies our destination, because
2839 that would make the replacement into the insn invalid. We also can't
2840 do this if it modifies our source, because it might be an earlyclobber
2841 operand. This latter test also prevents updating the contents of
2842 a PRE_INC. We also can't do this if there's overlap of source and
2843 destination. Overlap may happen for larger-than-register-size modes. */
2845 if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
2846 && REG_P (SET_SRC (pat))
2847 && REG_P (SET_DEST (pat))
2848 && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2850 rtx next = next_nonnote_insn (trial);
2852 if (next && NONJUMP_INSN_P (next)
2853 && GET_CODE (PATTERN (next)) != USE
2854 && ! reg_set_p (SET_DEST (pat), next)
2855 && ! reg_set_p (SET_SRC (pat), next)
2856 && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2857 && ! modified_in_p (SET_DEST (pat), next))
2858 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2862 /* If we stopped on a branch insn that has delay slots, see if we can
2863 steal some of the insns in those slots. */
2864 if (trial && NONJUMP_INSN_P (trial)
2865 && GET_CODE (PATTERN (trial)) == SEQUENCE
2866 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
2868 /* If this is the `true' thread, we will want to follow the jump,
2869 so we can only do this if we have taken everything up to here. */
2870 if (thread_if_true && trial == new_thread)
2872 delay_list
2873 = steal_delay_list_from_target (insn, condition, PATTERN (trial),
2874 delay_list, &set, &needed,
2875 &opposite_needed, slots_to_fill,
2876 pslots_filled, &must_annul,
2877 &new_thread);
2878 /* If we owned the thread and are told that it branched
2879 elsewhere, make sure we own the thread at the new location. */
2880 if (own_thread && trial != new_thread)
2881 own_thread = own_thread_p (new_thread, new_thread, 0);
2883 else if (! thread_if_true)
2884 delay_list
2885 = steal_delay_list_from_fallthrough (insn, condition,
2886 PATTERN (trial),
2887 delay_list, &set, &needed,
2888 &opposite_needed, slots_to_fill,
2889 pslots_filled, &must_annul);
2892 /* If we haven't found anything for this delay slot and it is very
2893 likely that the branch will be taken, see if the insn at our target
2894 increments or decrements a register with an increment that does not
2895 depend on the destination register. If so, try to place the opposite
2896 arithmetic insn after the jump insn and put the arithmetic insn in the
2897 delay slot. If we can't do this, return. */
2898 if (delay_list == 0 && likely && new_thread
2899 && NONJUMP_INSN_P (new_thread)
2900 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2901 && asm_noperands (PATTERN (new_thread)) < 0)
2903 rtx pat = PATTERN (new_thread);
2904 rtx dest;
2905 rtx src;
2907 trial = new_thread;
2908 pat = PATTERN (trial);
2910 if (!NONJUMP_INSN_P (trial)
2911 || GET_CODE (pat) != SET
2912 || ! eligible_for_delay (insn, 0, trial, flags)
2913 || can_throw_internal (trial))
2914 return 0;
2916 dest = SET_DEST (pat), src = SET_SRC (pat);
2917 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2918 && rtx_equal_p (XEXP (src, 0), dest)
2919 && (!FLOAT_MODE_P (GET_MODE (src))
2920 || flag_unsafe_math_optimizations)
2921 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2922 && ! side_effects_p (pat))
2924 rtx other = XEXP (src, 1);
2925 rtx new_arith;
2926 rtx ninsn;
2928 /* If this is a constant adjustment, use the same code with
2929 the negated constant. Otherwise, reverse the sense of the
2930 arithmetic. */
2931 if (GET_CODE (other) == CONST_INT)
2932 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2933 negate_rtx (GET_MODE (src), other));
2934 else
2935 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2936 GET_MODE (src), dest, other);
2938 ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
2939 insn);
2941 if (recog_memoized (ninsn) < 0
2942 || (extract_insn (ninsn), ! constrain_operands (1)))
2944 delete_related_insns (ninsn);
2945 return 0;
2948 if (own_thread)
2950 update_block (trial, thread);
2951 if (trial == thread)
2953 thread = next_active_insn (thread);
2954 if (new_thread == trial)
2955 new_thread = thread;
2957 delete_related_insns (trial);
2959 else
2960 new_thread = next_active_insn (trial);
2962 ninsn = own_thread ? trial : copy_rtx (trial);
2963 if (thread_if_true)
2964 INSN_FROM_TARGET_P (ninsn) = 1;
2966 delay_list = add_to_delay_list (ninsn, NULL_RTX);
2967 (*pslots_filled)++;
2971 if (delay_list && must_annul)
2972 INSN_ANNULLED_BRANCH_P (insn) = 1;
2974 /* If we are to branch into the middle of this thread, find an appropriate
2975 label or make a new one if none, and redirect INSN to it. If we hit the
2976 end of the function, use the end-of-function label. */
2977 if (new_thread != thread)
2979 rtx label;
2981 gcc_assert (thread_if_true);
2983 if (new_thread && JUMP_P (new_thread)
2984 && (simplejump_p (new_thread)
2985 || GET_CODE (PATTERN (new_thread)) == RETURN)
2986 && redirect_with_delay_list_safe_p (insn,
2987 JUMP_LABEL (new_thread),
2988 delay_list))
2989 new_thread = follow_jumps (JUMP_LABEL (new_thread));
2991 if (new_thread == 0)
2992 label = find_end_label ();
2993 else if (LABEL_P (new_thread))
2994 label = new_thread;
2995 else
2996 label = get_label_before (new_thread);
2998 if (label)
2999 reorg_redirect_jump (insn, label);
3002 return delay_list;
3005 /* Make another attempt to find insns to place in delay slots.
3007 We previously looked for insns located in front of the delay insn
3008 and, for non-jump delay insns, located behind the delay insn.
3010 Here only try to schedule jump insns and try to move insns from either
3011 the target or the following insns into the delay slot. If annulling is
3012 supported, we will be likely to do this. Otherwise, we can do this only
3013 if safe. */
3015 static void
3016 fill_eager_delay_slots (void)
3018 rtx insn;
3019 int i;
3020 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
3022 for (i = 0; i < num_unfilled_slots; i++)
3024 rtx condition;
3025 rtx target_label, insn_at_target, fallthrough_insn;
3026 rtx delay_list = 0;
3027 int own_target;
3028 int own_fallthrough;
3029 int prediction, slots_to_fill, slots_filled;
3031 insn = unfilled_slots_base[i];
3032 if (insn == 0
3033 || INSN_DELETED_P (insn)
3034 || !JUMP_P (insn)
3035 || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
3036 continue;
3038 slots_to_fill = num_delay_slots (insn);
3039 /* Some machine description have defined instructions to have
3040 delay slots only in certain circumstances which may depend on
3041 nearby insns (which change due to reorg's actions).
3043 For example, the PA port normally has delay slots for unconditional
3044 jumps.
3046 However, the PA port claims such jumps do not have a delay slot
3047 if they are immediate successors of certain CALL_INSNs. This
3048 allows the port to favor filling the delay slot of the call with
3049 the unconditional jump. */
3050 if (slots_to_fill == 0)
3051 continue;
3053 slots_filled = 0;
3054 target_label = JUMP_LABEL (insn);
3055 condition = get_branch_condition (insn, target_label);
3057 if (condition == 0)
3058 continue;
3060 /* Get the next active fallthrough and target insns and see if we own
3061 them. Then see whether the branch is likely true. We don't need
3062 to do a lot of this for unconditional branches. */
3064 insn_at_target = next_active_insn (target_label);
3065 own_target = own_thread_p (target_label, target_label, 0);
3067 if (condition == const_true_rtx)
3069 own_fallthrough = 0;
3070 fallthrough_insn = 0;
3071 prediction = 2;
3073 else
3075 fallthrough_insn = next_active_insn (insn);
3076 own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
3077 prediction = mostly_true_jump (insn, condition);
3080 /* If this insn is expected to branch, first try to get insns from our
3081 target, then our fallthrough insns. If it is not expected to branch,
3082 try the other order. */
3084 if (prediction > 0)
3086 delay_list
3087 = fill_slots_from_thread (insn, condition, insn_at_target,
3088 fallthrough_insn, prediction == 2, 1,
3089 own_target,
3090 slots_to_fill, &slots_filled, delay_list);
3092 if (delay_list == 0 && own_fallthrough)
3094 /* Even though we didn't find anything for delay slots,
3095 we might have found a redundant insn which we deleted
3096 from the thread that was filled. So we have to recompute
3097 the next insn at the target. */
3098 target_label = JUMP_LABEL (insn);
3099 insn_at_target = next_active_insn (target_label);
3101 delay_list
3102 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3103 insn_at_target, 0, 0,
3104 own_fallthrough,
3105 slots_to_fill, &slots_filled,
3106 delay_list);
3109 else
3111 if (own_fallthrough)
3112 delay_list
3113 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3114 insn_at_target, 0, 0,
3115 own_fallthrough,
3116 slots_to_fill, &slots_filled,
3117 delay_list);
3119 if (delay_list == 0)
3120 delay_list
3121 = fill_slots_from_thread (insn, condition, insn_at_target,
3122 next_active_insn (insn), 0, 1,
3123 own_target,
3124 slots_to_fill, &slots_filled,
3125 delay_list);
3128 if (delay_list)
3129 unfilled_slots_base[i]
3130 = emit_delay_sequence (insn, delay_list, slots_filled);
3132 if (slots_to_fill == slots_filled)
3133 unfilled_slots_base[i] = 0;
3135 note_delay_statistics (slots_filled, 1);
3139 static void delete_computation (rtx insn);
3141 /* Recursively delete prior insns that compute the value (used only by INSN
3142 which the caller is deleting) stored in the register mentioned by NOTE
3143 which is a REG_DEAD note associated with INSN. */
3145 static void
3146 delete_prior_computation (rtx note, rtx insn)
3148 rtx our_prev;
3149 rtx reg = XEXP (note, 0);
3151 for (our_prev = prev_nonnote_insn (insn);
3152 our_prev && (NONJUMP_INSN_P (our_prev)
3153 || CALL_P (our_prev));
3154 our_prev = prev_nonnote_insn (our_prev))
3156 rtx pat = PATTERN (our_prev);
3158 /* If we reach a CALL which is not calling a const function
3159 or the callee pops the arguments, then give up. */
3160 if (CALL_P (our_prev)
3161 && (! RTL_CONST_CALL_P (our_prev)
3162 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
3163 break;
3165 /* If we reach a SEQUENCE, it is too complex to try to
3166 do anything with it, so give up. We can be run during
3167 and after reorg, so SEQUENCE rtl can legitimately show
3168 up here. */
3169 if (GET_CODE (pat) == SEQUENCE)
3170 break;
3172 if (GET_CODE (pat) == USE
3173 && NONJUMP_INSN_P (XEXP (pat, 0)))
3174 /* reorg creates USEs that look like this. We leave them
3175 alone because reorg needs them for its own purposes. */
3176 break;
3178 if (reg_set_p (reg, pat))
3180 if (side_effects_p (pat) && !CALL_P (our_prev))
3181 break;
3183 if (GET_CODE (pat) == PARALLEL)
3185 /* If we find a SET of something else, we can't
3186 delete the insn. */
3188 int i;
3190 for (i = 0; i < XVECLEN (pat, 0); i++)
3192 rtx part = XVECEXP (pat, 0, i);
3194 if (GET_CODE (part) == SET
3195 && SET_DEST (part) != reg)
3196 break;
3199 if (i == XVECLEN (pat, 0))
3200 delete_computation (our_prev);
3202 else if (GET_CODE (pat) == SET
3203 && REG_P (SET_DEST (pat)))
3205 int dest_regno = REGNO (SET_DEST (pat));
3206 int dest_endregno = END_REGNO (SET_DEST (pat));
3207 int regno = REGNO (reg);
3208 int endregno = END_REGNO (reg);
3210 if (dest_regno >= regno
3211 && dest_endregno <= endregno)
3212 delete_computation (our_prev);
3214 /* We may have a multi-word hard register and some, but not
3215 all, of the words of the register are needed in subsequent
3216 insns. Write REG_UNUSED notes for those parts that were not
3217 needed. */
3218 else if (dest_regno <= regno
3219 && dest_endregno >= endregno)
3221 int i;
3223 add_reg_note (our_prev, REG_UNUSED, reg);
3225 for (i = dest_regno; i < dest_endregno; i++)
3226 if (! find_regno_note (our_prev, REG_UNUSED, i))
3227 break;
3229 if (i == dest_endregno)
3230 delete_computation (our_prev);
3234 break;
3237 /* If PAT references the register that dies here, it is an
3238 additional use. Hence any prior SET isn't dead. However, this
3239 insn becomes the new place for the REG_DEAD note. */
3240 if (reg_overlap_mentioned_p (reg, pat))
3242 XEXP (note, 1) = REG_NOTES (our_prev);
3243 REG_NOTES (our_prev) = note;
3244 break;
3249 /* Delete INSN and recursively delete insns that compute values used only
3250 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3251 If we are running before flow.c, we need do nothing since flow.c will
3252 delete dead code. We also can't know if the registers being used are
3253 dead or not at this point.
3255 Otherwise, look at all our REG_DEAD notes. If a previous insn does
3256 nothing other than set a register that dies in this insn, we can delete
3257 that insn as well.
3259 On machines with CC0, if CC0 is used in this insn, we may be able to
3260 delete the insn that set it. */
3262 static void
3263 delete_computation (rtx insn)
3265 rtx note, next;
3267 #ifdef HAVE_cc0
3268 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
3270 rtx prev = prev_nonnote_insn (insn);
3271 /* We assume that at this stage
3272 CC's are always set explicitly
3273 and always immediately before the jump that
3274 will use them. So if the previous insn
3275 exists to set the CC's, delete it
3276 (unless it performs auto-increments, etc.). */
3277 if (prev && NONJUMP_INSN_P (prev)
3278 && sets_cc0_p (PATTERN (prev)))
3280 if (sets_cc0_p (PATTERN (prev)) > 0
3281 && ! side_effects_p (PATTERN (prev)))
3282 delete_computation (prev);
3283 else
3284 /* Otherwise, show that cc0 won't be used. */
3285 add_reg_note (prev, REG_UNUSED, cc0_rtx);
3288 #endif
3290 for (note = REG_NOTES (insn); note; note = next)
3292 next = XEXP (note, 1);
3294 if (REG_NOTE_KIND (note) != REG_DEAD
3295 /* Verify that the REG_NOTE is legitimate. */
3296 || !REG_P (XEXP (note, 0)))
3297 continue;
3299 delete_prior_computation (note, insn);
3302 delete_related_insns (insn);
3305 /* If all INSN does is set the pc, delete it,
3306 and delete the insn that set the condition codes for it
3307 if that's what the previous thing was. */
3309 static void
3310 delete_jump (rtx insn)
3312 rtx set = single_set (insn);
3314 if (set && GET_CODE (SET_DEST (set)) == PC)
3315 delete_computation (insn);
3319 /* Once we have tried two ways to fill a delay slot, make a pass over the
3320 code to try to improve the results and to do such things as more jump
3321 threading. */
3323 static void
3324 relax_delay_slots (rtx first)
3326 rtx insn, next, pat;
3327 rtx trial, delay_insn, target_label;
3329 /* Look at every JUMP_INSN and see if we can improve it. */
3330 for (insn = first; insn; insn = next)
3332 rtx other;
3334 next = next_active_insn (insn);
3336 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3337 the next insn, or jumps to a label that is not the last of a
3338 group of consecutive labels. */
3339 if (JUMP_P (insn)
3340 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3341 && (target_label = JUMP_LABEL (insn)) != 0)
3343 target_label = skip_consecutive_labels (follow_jumps (target_label));
3344 if (target_label == 0)
3345 target_label = find_end_label ();
3347 if (target_label && next_active_insn (target_label) == next
3348 && ! condjump_in_parallel_p (insn))
3350 delete_jump (insn);
3351 continue;
3354 if (target_label && target_label != JUMP_LABEL (insn))
3355 reorg_redirect_jump (insn, target_label);
3357 /* See if this jump conditionally branches around an unconditional
3358 jump. If so, invert this jump and point it to the target of the
3359 second jump. */
3360 if (next && JUMP_P (next)
3361 && any_condjump_p (insn)
3362 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3363 && target_label
3364 && next_active_insn (target_label) == next_active_insn (next)
3365 && no_labels_between_p (insn, next))
3367 rtx label = JUMP_LABEL (next);
3369 /* Be careful how we do this to avoid deleting code or
3370 labels that are momentarily dead. See similar optimization
3371 in jump.c.
3373 We also need to ensure we properly handle the case when
3374 invert_jump fails. */
3376 ++LABEL_NUSES (target_label);
3377 if (label)
3378 ++LABEL_NUSES (label);
3380 if (invert_jump (insn, label, 1))
3382 delete_related_insns (next);
3383 next = insn;
3386 if (label)
3387 --LABEL_NUSES (label);
3389 if (--LABEL_NUSES (target_label) == 0)
3390 delete_related_insns (target_label);
3392 continue;
3396 /* If this is an unconditional jump and the previous insn is a
3397 conditional jump, try reversing the condition of the previous
3398 insn and swapping our targets. The next pass might be able to
3399 fill the slots.
3401 Don't do this if we expect the conditional branch to be true, because
3402 we would then be making the more common case longer. */
3404 if (JUMP_P (insn)
3405 && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
3406 && (other = prev_active_insn (insn)) != 0
3407 && any_condjump_p (other)
3408 && no_labels_between_p (other, insn)
3409 && 0 > mostly_true_jump (other,
3410 get_branch_condition (other,
3411 JUMP_LABEL (other))))
3413 rtx other_target = JUMP_LABEL (other);
3414 target_label = JUMP_LABEL (insn);
3416 if (invert_jump (other, target_label, 0))
3417 reorg_redirect_jump (insn, other_target);
3420 /* Now look only at cases where we have filled a delay slot. */
3421 if (!NONJUMP_INSN_P (insn)
3422 || GET_CODE (PATTERN (insn)) != SEQUENCE)
3423 continue;
3425 pat = PATTERN (insn);
3426 delay_insn = XVECEXP (pat, 0, 0);
3428 /* See if the first insn in the delay slot is redundant with some
3429 previous insn. Remove it from the delay slot if so; then set up
3430 to reprocess this insn. */
3431 if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
3433 delete_from_delay_slot (XVECEXP (pat, 0, 1));
3434 next = prev_active_insn (next);
3435 continue;
3438 /* See if we have a RETURN insn with a filled delay slot followed
3439 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3440 the first RETURN (but not its delay insn). This gives the same
3441 effect in fewer instructions.
3443 Only do so if optimizing for size since this results in slower, but
3444 smaller code. */
3445 if (optimize_function_for_size_p (cfun)
3446 && GET_CODE (PATTERN (delay_insn)) == RETURN
3447 && next
3448 && JUMP_P (next)
3449 && GET_CODE (PATTERN (next)) == RETURN)
3451 rtx after;
3452 int i;
3454 /* Delete the RETURN and just execute the delay list insns.
3456 We do this by deleting the INSN containing the SEQUENCE, then
3457 re-emitting the insns separately, and then deleting the RETURN.
3458 This allows the count of the jump target to be properly
3459 decremented. */
3461 /* Clear the from target bit, since these insns are no longer
3462 in delay slots. */
3463 for (i = 0; i < XVECLEN (pat, 0); i++)
3464 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3466 trial = PREV_INSN (insn);
3467 delete_related_insns (insn);
3468 gcc_assert (GET_CODE (pat) == SEQUENCE);
3469 after = trial;
3470 for (i = 0; i < XVECLEN (pat, 0); i++)
3472 rtx this_insn = XVECEXP (pat, 0, i);
3473 add_insn_after (this_insn, after, NULL);
3474 after = this_insn;
3476 delete_scheduled_jump (delay_insn);
3477 continue;
3480 /* Now look only at the cases where we have a filled JUMP_INSN. */
3481 if (!JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3482 || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
3483 || condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
3484 continue;
3486 target_label = JUMP_LABEL (delay_insn);
3488 if (target_label)
3490 /* If this jump goes to another unconditional jump, thread it, but
3491 don't convert a jump into a RETURN here. */
3492 trial = skip_consecutive_labels (follow_jumps (target_label));
3493 if (trial == 0)
3494 trial = find_end_label ();
3496 if (trial && trial != target_label
3497 && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
3499 reorg_redirect_jump (delay_insn, trial);
3500 target_label = trial;
3503 /* If the first insn at TARGET_LABEL is redundant with a previous
3504 insn, redirect the jump to the following insn process again. */
3505 trial = next_active_insn (target_label);
3506 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3507 && redundant_insn (trial, insn, 0)
3508 && ! can_throw_internal (trial))
3510 /* Figure out where to emit the special USE insn so we don't
3511 later incorrectly compute register live/death info. */
3512 rtx tmp = next_active_insn (trial);
3513 if (tmp == 0)
3514 tmp = find_end_label ();
3516 if (tmp)
3518 /* Insert the special USE insn and update dataflow info. */
3519 update_block (trial, tmp);
3521 /* Now emit a label before the special USE insn, and
3522 redirect our jump to the new label. */
3523 target_label = get_label_before (PREV_INSN (tmp));
3524 reorg_redirect_jump (delay_insn, target_label);
3525 next = insn;
3526 continue;
3530 /* Similarly, if it is an unconditional jump with one insn in its
3531 delay list and that insn is redundant, thread the jump. */
3532 if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
3533 && XVECLEN (PATTERN (trial), 0) == 2
3534 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
3535 && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
3536 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
3537 && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
3539 target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
3540 if (target_label == 0)
3541 target_label = find_end_label ();
3543 if (target_label
3544 && redirect_with_delay_slots_safe_p (delay_insn, target_label,
3545 insn))
3547 reorg_redirect_jump (delay_insn, target_label);
3548 next = insn;
3549 continue;
3554 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3555 && prev_active_insn (target_label) == insn
3556 && ! condjump_in_parallel_p (delay_insn)
3557 #ifdef HAVE_cc0
3558 /* If the last insn in the delay slot sets CC0 for some insn,
3559 various code assumes that it is in a delay slot. We could
3560 put it back where it belonged and delete the register notes,
3561 but it doesn't seem worthwhile in this uncommon case. */
3562 && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
3563 REG_CC_USER, NULL_RTX)
3564 #endif
3567 rtx after;
3568 int i;
3570 /* All this insn does is execute its delay list and jump to the
3571 following insn. So delete the jump and just execute the delay
3572 list insns.
3574 We do this by deleting the INSN containing the SEQUENCE, then
3575 re-emitting the insns separately, and then deleting the jump.
3576 This allows the count of the jump target to be properly
3577 decremented. */
3579 /* Clear the from target bit, since these insns are no longer
3580 in delay slots. */
3581 for (i = 0; i < XVECLEN (pat, 0); i++)
3582 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3584 trial = PREV_INSN (insn);
3585 delete_related_insns (insn);
3586 gcc_assert (GET_CODE (pat) == SEQUENCE);
3587 after = trial;
3588 for (i = 0; i < XVECLEN (pat, 0); i++)
3590 rtx this_insn = XVECEXP (pat, 0, i);
3591 add_insn_after (this_insn, after, NULL);
3592 after = this_insn;
3594 delete_scheduled_jump (delay_insn);
3595 continue;
3598 /* See if this is an unconditional jump around a single insn which is
3599 identical to the one in its delay slot. In this case, we can just
3600 delete the branch and the insn in its delay slot. */
3601 if (next && NONJUMP_INSN_P (next)
3602 && prev_label (next_active_insn (next)) == target_label
3603 && simplejump_p (insn)
3604 && XVECLEN (pat, 0) == 2
3605 && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
3607 delete_related_insns (insn);
3608 continue;
3611 /* See if this jump (with its delay slots) conditionally branches
3612 around an unconditional jump (without delay slots). If so, invert
3613 this jump and point it to the target of the second jump. We cannot
3614 do this for annulled jumps, though. Again, don't convert a jump to
3615 a RETURN here. */
3616 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3617 && any_condjump_p (delay_insn)
3618 && next && JUMP_P (next)
3619 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3620 && next_active_insn (target_label) == next_active_insn (next)
3621 && no_labels_between_p (insn, next))
3623 rtx label = JUMP_LABEL (next);
3624 rtx old_label = JUMP_LABEL (delay_insn);
3626 if (label == 0)
3627 label = find_end_label ();
3629 /* find_end_label can generate a new label. Check this first. */
3630 if (label
3631 && no_labels_between_p (insn, next)
3632 && redirect_with_delay_slots_safe_p (delay_insn, label, insn))
3634 /* Be careful how we do this to avoid deleting code or labels
3635 that are momentarily dead. See similar optimization in
3636 jump.c */
3637 if (old_label)
3638 ++LABEL_NUSES (old_label);
3640 if (invert_jump (delay_insn, label, 1))
3642 int i;
3644 /* Must update the INSN_FROM_TARGET_P bits now that
3645 the branch is reversed, so that mark_target_live_regs
3646 will handle the delay slot insn correctly. */
3647 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3649 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3650 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3653 delete_related_insns (next);
3654 next = insn;
3657 if (old_label && --LABEL_NUSES (old_label) == 0)
3658 delete_related_insns (old_label);
3659 continue;
3663 /* If we own the thread opposite the way this insn branches, see if we
3664 can merge its delay slots with following insns. */
3665 if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3666 && own_thread_p (NEXT_INSN (insn), 0, 1))
3667 try_merge_delay_insns (insn, next);
3668 else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3669 && own_thread_p (target_label, target_label, 0))
3670 try_merge_delay_insns (insn, next_active_insn (target_label));
3672 /* If we get here, we haven't deleted INSN. But we may have deleted
3673 NEXT, so recompute it. */
3674 next = next_active_insn (insn);
3678 #ifdef HAVE_return
3680 /* Look for filled jumps to the end of function label. We can try to convert
3681 them into RETURN insns if the insns in the delay slot are valid for the
3682 RETURN as well. */
3684 static void
3685 make_return_insns (rtx first)
3687 rtx insn, jump_insn, pat;
3688 rtx real_return_label = end_of_function_label;
3689 int slots, i;
3691 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3692 /* If a previous pass filled delay slots in the epilogue, things get a
3693 bit more complicated, as those filler insns would generally (without
3694 data flow analysis) have to be executed after any existing branch
3695 delay slot filler insns. It is also unknown whether such a
3696 transformation would actually be profitable. Note that the existing
3697 code only cares for branches with (some) filled delay slots. */
3698 if (crtl->epilogue_delay_list != NULL)
3699 return;
3700 #endif
3702 /* See if there is a RETURN insn in the function other than the one we
3703 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3704 into a RETURN to jump to it. */
3705 for (insn = first; insn; insn = NEXT_INSN (insn))
3706 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
3708 real_return_label = get_label_before (insn);
3709 break;
3712 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3713 was equal to END_OF_FUNCTION_LABEL. */
3714 LABEL_NUSES (real_return_label)++;
3716 /* Clear the list of insns to fill so we can use it. */
3717 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3719 for (insn = first; insn; insn = NEXT_INSN (insn))
3721 int flags;
3723 /* Only look at filled JUMP_INSNs that go to the end of function
3724 label. */
3725 if (!NONJUMP_INSN_P (insn)
3726 || GET_CODE (PATTERN (insn)) != SEQUENCE
3727 || !JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3728 || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
3729 continue;
3731 pat = PATTERN (insn);
3732 jump_insn = XVECEXP (pat, 0, 0);
3734 /* If we can't make the jump into a RETURN, try to redirect it to the best
3735 RETURN and go on to the next insn. */
3736 if (! reorg_redirect_jump (jump_insn, NULL_RTX))
3738 /* Make sure redirecting the jump will not invalidate the delay
3739 slot insns. */
3740 if (redirect_with_delay_slots_safe_p (jump_insn,
3741 real_return_label,
3742 insn))
3743 reorg_redirect_jump (jump_insn, real_return_label);
3744 continue;
3747 /* See if this RETURN can accept the insns current in its delay slot.
3748 It can if it has more or an equal number of slots and the contents
3749 of each is valid. */
3751 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3752 slots = num_delay_slots (jump_insn);
3753 if (slots >= XVECLEN (pat, 0) - 1)
3755 for (i = 1; i < XVECLEN (pat, 0); i++)
3756 if (! (
3757 #ifdef ANNUL_IFFALSE_SLOTS
3758 (INSN_ANNULLED_BRANCH_P (jump_insn)
3759 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3760 ? eligible_for_annul_false (jump_insn, i - 1,
3761 XVECEXP (pat, 0, i), flags) :
3762 #endif
3763 #ifdef ANNUL_IFTRUE_SLOTS
3764 (INSN_ANNULLED_BRANCH_P (jump_insn)
3765 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3766 ? eligible_for_annul_true (jump_insn, i - 1,
3767 XVECEXP (pat, 0, i), flags) :
3768 #endif
3769 eligible_for_delay (jump_insn, i - 1,
3770 XVECEXP (pat, 0, i), flags)))
3771 break;
3773 else
3774 i = 0;
3776 if (i == XVECLEN (pat, 0))
3777 continue;
3779 /* We have to do something with this insn. If it is an unconditional
3780 RETURN, delete the SEQUENCE and output the individual insns,
3781 followed by the RETURN. Then set things up so we try to find
3782 insns for its delay slots, if it needs some. */
3783 if (GET_CODE (PATTERN (jump_insn)) == RETURN)
3785 rtx prev = PREV_INSN (insn);
3787 delete_related_insns (insn);
3788 for (i = 1; i < XVECLEN (pat, 0); i++)
3789 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
3791 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
3792 emit_barrier_after (insn);
3794 if (slots)
3795 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3797 else
3798 /* It is probably more efficient to keep this with its current
3799 delay slot as a branch to a RETURN. */
3800 reorg_redirect_jump (jump_insn, real_return_label);
3803 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3804 new delay slots we have created. */
3805 if (--LABEL_NUSES (real_return_label) == 0)
3806 delete_related_insns (real_return_label);
3808 fill_simple_delay_slots (1);
3809 fill_simple_delay_slots (0);
3811 #endif
3813 /* Try to find insns to place in delay slots. */
3815 void
3816 dbr_schedule (rtx first)
3818 rtx insn, next, epilogue_insn = 0;
3819 int i;
3821 /* If the current function has no insns other than the prologue and
3822 epilogue, then do not try to fill any delay slots. */
3823 if (n_basic_blocks == NUM_FIXED_BLOCKS)
3824 return;
3826 /* Find the highest INSN_UID and allocate and initialize our map from
3827 INSN_UID's to position in code. */
3828 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3830 if (INSN_UID (insn) > max_uid)
3831 max_uid = INSN_UID (insn);
3832 if (NOTE_P (insn)
3833 && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
3834 epilogue_insn = insn;
3837 uid_to_ruid = XNEWVEC (int, max_uid + 1);
3838 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3839 uid_to_ruid[INSN_UID (insn)] = i;
3841 /* Initialize the list of insns that need filling. */
3842 if (unfilled_firstobj == 0)
3844 gcc_obstack_init (&unfilled_slots_obstack);
3845 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3848 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3850 rtx target;
3852 INSN_ANNULLED_BRANCH_P (insn) = 0;
3853 INSN_FROM_TARGET_P (insn) = 0;
3855 /* Skip vector tables. We can't get attributes for them. */
3856 if (JUMP_P (insn)
3857 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
3858 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
3859 continue;
3861 if (num_delay_slots (insn) > 0)
3862 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3864 /* Ensure all jumps go to the last of a set of consecutive labels. */
3865 if (JUMP_P (insn)
3866 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3867 && JUMP_LABEL (insn) != 0
3868 && ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
3869 != JUMP_LABEL (insn)))
3870 redirect_jump (insn, target, 1);
3873 init_resource_info (epilogue_insn);
3875 /* Show we haven't computed an end-of-function label yet. */
3876 end_of_function_label = 0;
3878 /* Initialize the statistics for this function. */
3879 memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3880 memset (num_filled_delays, 0, sizeof num_filled_delays);
3882 /* Now do the delay slot filling. Try everything twice in case earlier
3883 changes make more slots fillable. */
3885 for (reorg_pass_number = 0;
3886 reorg_pass_number < MAX_REORG_PASSES;
3887 reorg_pass_number++)
3889 fill_simple_delay_slots (1);
3890 fill_simple_delay_slots (0);
3891 fill_eager_delay_slots ();
3892 relax_delay_slots (first);
3895 /* If we made an end of function label, indicate that it is now
3896 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3897 If it is now unused, delete it. */
3898 if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
3899 delete_related_insns (end_of_function_label);
3901 #ifdef HAVE_return
3902 if (HAVE_return && end_of_function_label != 0)
3903 make_return_insns (first);
3904 #endif
3906 /* Delete any USE insns made by update_block; subsequent passes don't need
3907 them or know how to deal with them. */
3908 for (insn = first; insn; insn = next)
3910 next = NEXT_INSN (insn);
3912 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
3913 && INSN_P (XEXP (PATTERN (insn), 0)))
3914 next = delete_related_insns (insn);
3917 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3919 /* It is not clear why the line below is needed, but it does seem to be. */
3920 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3922 if (dump_file)
3924 int i, j, need_comma;
3925 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3926 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3928 for (reorg_pass_number = 0;
3929 reorg_pass_number < MAX_REORG_PASSES;
3930 reorg_pass_number++)
3932 fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3933 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3935 need_comma = 0;
3936 fprintf (dump_file, ";; Reorg function #%d\n", i);
3938 fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
3939 num_insns_needing_delays[i][reorg_pass_number]);
3941 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3942 if (num_filled_delays[i][j][reorg_pass_number])
3944 if (need_comma)
3945 fprintf (dump_file, ", ");
3946 need_comma = 1;
3947 fprintf (dump_file, "%d got %d delays",
3948 num_filled_delays[i][j][reorg_pass_number], j);
3950 fprintf (dump_file, "\n");
3953 memset (total_delay_slots, 0, sizeof total_delay_slots);
3954 memset (total_annul_slots, 0, sizeof total_annul_slots);
3955 for (insn = first; insn; insn = NEXT_INSN (insn))
3957 if (! INSN_DELETED_P (insn)
3958 && NONJUMP_INSN_P (insn)
3959 && GET_CODE (PATTERN (insn)) != USE
3960 && GET_CODE (PATTERN (insn)) != CLOBBER)
3962 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3964 j = XVECLEN (PATTERN (insn), 0) - 1;
3965 if (j > MAX_DELAY_HISTOGRAM)
3966 j = MAX_DELAY_HISTOGRAM;
3967 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn), 0, 0)))
3968 total_annul_slots[j]++;
3969 else
3970 total_delay_slots[j]++;
3972 else if (num_delay_slots (insn) > 0)
3973 total_delay_slots[0]++;
3976 fprintf (dump_file, ";; Reorg totals: ");
3977 need_comma = 0;
3978 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3980 if (total_delay_slots[j])
3982 if (need_comma)
3983 fprintf (dump_file, ", ");
3984 need_comma = 1;
3985 fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
3988 fprintf (dump_file, "\n");
3989 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3990 fprintf (dump_file, ";; Reorg annuls: ");
3991 need_comma = 0;
3992 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3994 if (total_annul_slots[j])
3996 if (need_comma)
3997 fprintf (dump_file, ", ");
3998 need_comma = 1;
3999 fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
4002 fprintf (dump_file, "\n");
4003 #endif
4004 fprintf (dump_file, "\n");
4007 /* For all JUMP insns, fill in branch prediction notes, so that during
4008 assembler output a target can set branch prediction bits in the code.
4009 We have to do this now, as up until this point the destinations of
4010 JUMPS can be moved around and changed, but past right here that cannot
4011 happen. */
4012 for (insn = first; insn; insn = NEXT_INSN (insn))
4014 int pred_flags;
4016 if (NONJUMP_INSN_P (insn))
4018 rtx pat = PATTERN (insn);
4020 if (GET_CODE (pat) == SEQUENCE)
4021 insn = XVECEXP (pat, 0, 0);
4023 if (!JUMP_P (insn))
4024 continue;
4026 pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
4027 add_reg_note (insn, REG_BR_PRED, GEN_INT (pred_flags));
4029 free_resource_info ();
4030 free (uid_to_ruid);
4031 #ifdef DELAY_SLOTS_FOR_EPILOGUE
4032 /* SPARC assembler, for instance, emit warning when debug info is output
4033 into the delay slot. */
4035 rtx link;
4037 for (link = crtl->epilogue_delay_list;
4038 link;
4039 link = XEXP (link, 1))
4040 INSN_LOCATOR (XEXP (link, 0)) = 0;
4043 #endif
4044 crtl->dbr_scheduled_p = true;
4046 #endif /* DELAY_SLOTS */
4048 static bool
4049 gate_handle_delay_slots (void)
4051 #ifdef DELAY_SLOTS
4052 /* At -O0 dataflow info isn't updated after RA. */
4053 return optimize > 0 && flag_delayed_branch && !crtl->dbr_scheduled_p;
4054 #else
4055 return 0;
4056 #endif
4059 /* Run delay slot optimization. */
4060 static unsigned int
4061 rest_of_handle_delay_slots (void)
4063 #ifdef DELAY_SLOTS
4064 dbr_schedule (get_insns ());
4065 #endif
4066 return 0;
4069 struct rtl_opt_pass pass_delay_slots =
4072 RTL_PASS,
4073 "dbr", /* name */
4074 gate_handle_delay_slots, /* gate */
4075 rest_of_handle_delay_slots, /* execute */
4076 NULL, /* sub */
4077 NULL, /* next */
4078 0, /* static_pass_number */
4079 TV_DBR_SCHED, /* tv_id */
4080 0, /* properties_required */
4081 0, /* properties_provided */
4082 0, /* properties_destroyed */
4083 0, /* todo_flags_start */
4084 TODO_dump_func |
4085 TODO_ggc_collect /* todo_flags_finish */
4089 /* Machine dependent reorg pass. */
4090 static bool
4091 gate_handle_machine_reorg (void)
4093 return targetm.machine_dependent_reorg != 0;
4097 static unsigned int
4098 rest_of_handle_machine_reorg (void)
4100 targetm.machine_dependent_reorg ();
4101 return 0;
4104 struct rtl_opt_pass pass_machine_reorg =
4107 RTL_PASS,
4108 "mach", /* name */
4109 gate_handle_machine_reorg, /* gate */
4110 rest_of_handle_machine_reorg, /* execute */
4111 NULL, /* sub */
4112 NULL, /* next */
4113 0, /* static_pass_number */
4114 TV_MACH_DEP, /* tv_id */
4115 0, /* properties_required */
4116 0, /* properties_provided */
4117 0, /* properties_destroyed */
4118 0, /* todo_flags_start */
4119 TODO_dump_func |
4120 TODO_ggc_collect /* todo_flags_finish */