2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / postreload.c
blob093dce717b0d6cb028eb79ebec6c931e3e339236
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "diagnostic-core.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "target.h"
48 #include "timevar.h"
49 #include "tree-pass.h"
50 #include "df.h"
51 #include "dbgcnt.h"
53 static int reload_cse_noop_set_p (rtx);
54 static void reload_cse_simplify (rtx, rtx);
55 static void reload_cse_regs_1 (rtx);
56 static int reload_cse_simplify_set (rtx, rtx);
57 static int reload_cse_simplify_operands (rtx, rtx);
59 static void reload_combine (void);
60 static void reload_combine_note_use (rtx *, rtx, int, rtx);
61 static void reload_combine_note_store (rtx, const_rtx, void *);
63 static bool reload_cse_move2add (rtx);
64 static void move2add_note_store (rtx, const_rtx, void *);
66 /* Call cse / combine like post-reload optimization phases.
67 FIRST is the first instruction. */
68 void
69 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
71 bool moves_converted;
72 reload_cse_regs_1 (first);
73 reload_combine ();
74 moves_converted = reload_cse_move2add (first);
75 if (flag_expensive_optimizations)
77 if (moves_converted)
78 reload_combine ();
79 reload_cse_regs_1 (first);
83 /* See whether a single set SET is a noop. */
84 static int
85 reload_cse_noop_set_p (rtx set)
87 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
88 return 0;
90 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
93 /* Try to simplify INSN. */
94 static void
95 reload_cse_simplify (rtx insn, rtx testreg)
97 rtx body = PATTERN (insn);
99 if (GET_CODE (body) == SET)
101 int count = 0;
103 /* Simplify even if we may think it is a no-op.
104 We may think a memory load of a value smaller than WORD_SIZE
105 is redundant because we haven't taken into account possible
106 implicit extension. reload_cse_simplify_set() will bring
107 this out, so it's safer to simplify before we delete. */
108 count += reload_cse_simplify_set (body, insn);
110 if (!count && reload_cse_noop_set_p (body))
112 rtx value = SET_DEST (body);
113 if (REG_P (value)
114 && ! REG_FUNCTION_VALUE_P (value))
115 value = 0;
116 delete_insn_and_edges (insn);
117 return;
120 if (count > 0)
121 apply_change_group ();
122 else
123 reload_cse_simplify_operands (insn, testreg);
125 else if (GET_CODE (body) == PARALLEL)
127 int i;
128 int count = 0;
129 rtx value = NULL_RTX;
131 /* Registers mentioned in the clobber list for an asm cannot be reused
132 within the body of the asm. Invalidate those registers now so that
133 we don't try to substitute values for them. */
134 if (asm_noperands (body) >= 0)
136 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
138 rtx part = XVECEXP (body, 0, i);
139 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
140 cselib_invalidate_rtx (XEXP (part, 0));
144 /* If every action in a PARALLEL is a noop, we can delete
145 the entire PARALLEL. */
146 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
148 rtx part = XVECEXP (body, 0, i);
149 if (GET_CODE (part) == SET)
151 if (! reload_cse_noop_set_p (part))
152 break;
153 if (REG_P (SET_DEST (part))
154 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
156 if (value)
157 break;
158 value = SET_DEST (part);
161 else if (GET_CODE (part) != CLOBBER)
162 break;
165 if (i < 0)
167 delete_insn_and_edges (insn);
168 /* We're done with this insn. */
169 return;
172 /* It's not a no-op, but we can try to simplify it. */
173 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
174 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
175 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
177 if (count > 0)
178 apply_change_group ();
179 else
180 reload_cse_simplify_operands (insn, testreg);
184 /* Do a very simple CSE pass over the hard registers.
186 This function detects no-op moves where we happened to assign two
187 different pseudo-registers to the same hard register, and then
188 copied one to the other. Reload will generate a useless
189 instruction copying a register to itself.
191 This function also detects cases where we load a value from memory
192 into two different registers, and (if memory is more expensive than
193 registers) changes it to simply copy the first register into the
194 second register.
196 Another optimization is performed that scans the operands of each
197 instruction to see whether the value is already available in a
198 hard register. It then replaces the operand with the hard register
199 if possible, much like an optional reload would. */
201 static void
202 reload_cse_regs_1 (rtx first)
204 rtx insn;
205 rtx testreg = gen_rtx_REG (VOIDmode, -1);
207 cselib_init (CSELIB_RECORD_MEMORY);
208 init_alias_analysis ();
210 for (insn = first; insn; insn = NEXT_INSN (insn))
212 if (INSN_P (insn))
213 reload_cse_simplify (insn, testreg);
215 cselib_process_insn (insn);
218 /* Clean up. */
219 end_alias_analysis ();
220 cselib_finish ();
223 /* Try to simplify a single SET instruction. SET is the set pattern.
224 INSN is the instruction it came from.
225 This function only handles one case: if we set a register to a value
226 which is not a register, we try to find that value in some other register
227 and change the set into a register copy. */
229 static int
230 reload_cse_simplify_set (rtx set, rtx insn)
232 int did_change = 0;
233 int dreg;
234 rtx src;
235 enum reg_class dclass;
236 int old_cost;
237 cselib_val *val;
238 struct elt_loc_list *l;
239 #ifdef LOAD_EXTEND_OP
240 enum rtx_code extend_op = UNKNOWN;
241 #endif
242 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
244 dreg = true_regnum (SET_DEST (set));
245 if (dreg < 0)
246 return 0;
248 src = SET_SRC (set);
249 if (side_effects_p (src) || true_regnum (src) >= 0)
250 return 0;
252 dclass = REGNO_REG_CLASS (dreg);
254 #ifdef LOAD_EXTEND_OP
255 /* When replacing a memory with a register, we need to honor assumptions
256 that combine made wrt the contents of sign bits. We'll do this by
257 generating an extend instruction instead of a reg->reg copy. Thus
258 the destination must be a register that we can widen. */
259 if (MEM_P (src)
260 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
261 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
262 && !REG_P (SET_DEST (set)))
263 return 0;
264 #endif
266 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
267 if (! val)
268 return 0;
270 /* If memory loads are cheaper than register copies, don't change them. */
271 if (MEM_P (src))
272 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
273 else if (REG_P (src))
274 old_cost = register_move_cost (GET_MODE (src),
275 REGNO_REG_CLASS (REGNO (src)), dclass);
276 else
277 old_cost = rtx_cost (src, SET, speed);
279 for (l = val->locs; l; l = l->next)
281 rtx this_rtx = l->loc;
282 int this_cost;
284 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
286 #ifdef LOAD_EXTEND_OP
287 if (extend_op != UNKNOWN)
289 HOST_WIDE_INT this_val;
291 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
292 constants, such as SYMBOL_REF, cannot be extended. */
293 if (!CONST_INT_P (this_rtx))
294 continue;
296 this_val = INTVAL (this_rtx);
297 switch (extend_op)
299 case ZERO_EXTEND:
300 this_val &= GET_MODE_MASK (GET_MODE (src));
301 break;
302 case SIGN_EXTEND:
303 /* ??? In theory we're already extended. */
304 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
305 break;
306 default:
307 gcc_unreachable ();
309 this_rtx = GEN_INT (this_val);
311 #endif
312 this_cost = rtx_cost (this_rtx, SET, speed);
314 else if (REG_P (this_rtx))
316 #ifdef LOAD_EXTEND_OP
317 if (extend_op != UNKNOWN)
319 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
320 this_cost = rtx_cost (this_rtx, SET, speed);
322 else
323 #endif
324 this_cost = register_move_cost (GET_MODE (this_rtx),
325 REGNO_REG_CLASS (REGNO (this_rtx)),
326 dclass);
328 else
329 continue;
331 /* If equal costs, prefer registers over anything else. That
332 tends to lead to smaller instructions on some machines. */
333 if (this_cost < old_cost
334 || (this_cost == old_cost
335 && REG_P (this_rtx)
336 && !REG_P (SET_SRC (set))))
338 #ifdef LOAD_EXTEND_OP
339 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
340 && extend_op != UNKNOWN
341 #ifdef CANNOT_CHANGE_MODE_CLASS
342 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
343 word_mode,
344 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
345 #endif
348 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
349 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
350 validate_change (insn, &SET_DEST (set), wide_dest, 1);
352 #endif
354 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
355 old_cost = this_cost, did_change = 1;
359 return did_change;
362 /* Try to replace operands in INSN with equivalent values that are already
363 in registers. This can be viewed as optional reloading.
365 For each non-register operand in the insn, see if any hard regs are
366 known to be equivalent to that operand. Record the alternatives which
367 can accept these hard registers. Among all alternatives, select the
368 ones which are better or equal to the one currently matching, where
369 "better" is in terms of '?' and '!' constraints. Among the remaining
370 alternatives, select the one which replaces most operands with
371 hard registers. */
373 static int
374 reload_cse_simplify_operands (rtx insn, rtx testreg)
376 int i, j;
378 /* For each operand, all registers that are equivalent to it. */
379 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
381 const char *constraints[MAX_RECOG_OPERANDS];
383 /* Vector recording how bad an alternative is. */
384 int *alternative_reject;
385 /* Vector recording how many registers can be introduced by choosing
386 this alternative. */
387 int *alternative_nregs;
388 /* Array of vectors recording, for each operand and each alternative,
389 which hard register to substitute, or -1 if the operand should be
390 left as it is. */
391 int *op_alt_regno[MAX_RECOG_OPERANDS];
392 /* Array of alternatives, sorted in order of decreasing desirability. */
393 int *alternative_order;
395 extract_insn (insn);
397 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
398 return 0;
400 /* Figure out which alternative currently matches. */
401 if (! constrain_operands (1))
402 fatal_insn_not_found (insn);
404 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
405 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
406 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
407 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
408 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
410 /* For each operand, find out which regs are equivalent. */
411 for (i = 0; i < recog_data.n_operands; i++)
413 cselib_val *v;
414 struct elt_loc_list *l;
415 rtx op;
417 CLEAR_HARD_REG_SET (equiv_regs[i]);
419 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
420 right, so avoid the problem here. Likewise if we have a constant
421 and the insn pattern doesn't tell us the mode we need. */
422 if (LABEL_P (recog_data.operand[i])
423 || (CONSTANT_P (recog_data.operand[i])
424 && recog_data.operand_mode[i] == VOIDmode))
425 continue;
427 op = recog_data.operand[i];
428 #ifdef LOAD_EXTEND_OP
429 if (MEM_P (op)
430 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
431 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
433 rtx set = single_set (insn);
435 /* We might have multiple sets, some of which do implicit
436 extension. Punt on this for now. */
437 if (! set)
438 continue;
439 /* If the destination is also a MEM or a STRICT_LOW_PART, no
440 extension applies.
441 Also, if there is an explicit extension, we don't have to
442 worry about an implicit one. */
443 else if (MEM_P (SET_DEST (set))
444 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
445 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
446 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
447 ; /* Continue ordinary processing. */
448 #ifdef CANNOT_CHANGE_MODE_CLASS
449 /* If the register cannot change mode to word_mode, it follows that
450 it cannot have been used in word_mode. */
451 else if (REG_P (SET_DEST (set))
452 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
453 word_mode,
454 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
455 ; /* Continue ordinary processing. */
456 #endif
457 /* If this is a straight load, make the extension explicit. */
458 else if (REG_P (SET_DEST (set))
459 && recog_data.n_operands == 2
460 && SET_SRC (set) == op
461 && SET_DEST (set) == recog_data.operand[1-i])
463 validate_change (insn, recog_data.operand_loc[i],
464 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
465 word_mode, op),
467 validate_change (insn, recog_data.operand_loc[1-i],
468 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
470 if (! apply_change_group ())
471 return 0;
472 return reload_cse_simplify_operands (insn, testreg);
474 else
475 /* ??? There might be arithmetic operations with memory that are
476 safe to optimize, but is it worth the trouble? */
477 continue;
479 #endif /* LOAD_EXTEND_OP */
480 v = cselib_lookup (op, recog_data.operand_mode[i], 0);
481 if (! v)
482 continue;
484 for (l = v->locs; l; l = l->next)
485 if (REG_P (l->loc))
486 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
489 for (i = 0; i < recog_data.n_operands; i++)
491 enum machine_mode mode;
492 int regno;
493 const char *p;
495 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
496 for (j = 0; j < recog_data.n_alternatives; j++)
497 op_alt_regno[i][j] = -1;
499 p = constraints[i] = recog_data.constraints[i];
500 mode = recog_data.operand_mode[i];
502 /* Add the reject values for each alternative given by the constraints
503 for this operand. */
504 j = 0;
505 while (*p != '\0')
507 char c = *p++;
508 if (c == ',')
509 j++;
510 else if (c == '?')
511 alternative_reject[j] += 3;
512 else if (c == '!')
513 alternative_reject[j] += 300;
516 /* We won't change operands which are already registers. We
517 also don't want to modify output operands. */
518 regno = true_regnum (recog_data.operand[i]);
519 if (regno >= 0
520 || constraints[i][0] == '='
521 || constraints[i][0] == '+')
522 continue;
524 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
526 enum reg_class rclass = NO_REGS;
528 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
529 continue;
531 SET_REGNO (testreg, regno);
532 PUT_MODE (testreg, mode);
534 /* We found a register equal to this operand. Now look for all
535 alternatives that can accept this register and have not been
536 assigned a register they can use yet. */
537 j = 0;
538 p = constraints[i];
539 for (;;)
541 char c = *p;
543 switch (c)
545 case '=': case '+': case '?':
546 case '#': case '&': case '!':
547 case '*': case '%':
548 case '0': case '1': case '2': case '3': case '4':
549 case '5': case '6': case '7': case '8': case '9':
550 case '<': case '>': case 'V': case 'o':
551 case 'E': case 'F': case 'G': case 'H':
552 case 's': case 'i': case 'n':
553 case 'I': case 'J': case 'K': case 'L':
554 case 'M': case 'N': case 'O': case 'P':
555 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
556 /* These don't say anything we care about. */
557 break;
559 case 'g': case 'r':
560 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
561 break;
563 default:
564 rclass
565 = (reg_class_subunion
566 [(int) rclass]
567 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
568 break;
570 case ',': case '\0':
571 /* See if REGNO fits this alternative, and set it up as the
572 replacement register if we don't have one for this
573 alternative yet and the operand being replaced is not
574 a cheap CONST_INT. */
575 if (op_alt_regno[i][j] == -1
576 && reg_fits_class_p (testreg, rclass, 0, mode)
577 && (!CONST_INT_P (recog_data.operand[i])
578 || (rtx_cost (recog_data.operand[i], SET,
579 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
580 > rtx_cost (testreg, SET,
581 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn))))))
583 alternative_nregs[j]++;
584 op_alt_regno[i][j] = regno;
586 j++;
587 rclass = NO_REGS;
588 break;
590 p += CONSTRAINT_LEN (c, p);
592 if (c == '\0')
593 break;
598 /* Record all alternatives which are better or equal to the currently
599 matching one in the alternative_order array. */
600 for (i = j = 0; i < recog_data.n_alternatives; i++)
601 if (alternative_reject[i] <= alternative_reject[which_alternative])
602 alternative_order[j++] = i;
603 recog_data.n_alternatives = j;
605 /* Sort it. Given a small number of alternatives, a dumb algorithm
606 won't hurt too much. */
607 for (i = 0; i < recog_data.n_alternatives - 1; i++)
609 int best = i;
610 int best_reject = alternative_reject[alternative_order[i]];
611 int best_nregs = alternative_nregs[alternative_order[i]];
612 int tmp;
614 for (j = i + 1; j < recog_data.n_alternatives; j++)
616 int this_reject = alternative_reject[alternative_order[j]];
617 int this_nregs = alternative_nregs[alternative_order[j]];
619 if (this_reject < best_reject
620 || (this_reject == best_reject && this_nregs > best_nregs))
622 best = j;
623 best_reject = this_reject;
624 best_nregs = this_nregs;
628 tmp = alternative_order[best];
629 alternative_order[best] = alternative_order[i];
630 alternative_order[i] = tmp;
633 /* Substitute the operands as determined by op_alt_regno for the best
634 alternative. */
635 j = alternative_order[0];
637 for (i = 0; i < recog_data.n_operands; i++)
639 enum machine_mode mode = recog_data.operand_mode[i];
640 if (op_alt_regno[i][j] == -1)
641 continue;
643 validate_change (insn, recog_data.operand_loc[i],
644 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
647 for (i = recog_data.n_dups - 1; i >= 0; i--)
649 int op = recog_data.dup_num[i];
650 enum machine_mode mode = recog_data.operand_mode[op];
652 if (op_alt_regno[op][j] == -1)
653 continue;
655 validate_change (insn, recog_data.dup_loc[i],
656 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
659 return apply_change_group ();
662 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
663 addressing now.
664 This code might also be useful when reload gave up on reg+reg addressing
665 because of clashes between the return register and INDEX_REG_CLASS. */
667 /* The maximum number of uses of a register we can keep track of to
668 replace them with reg+reg addressing. */
669 #define RELOAD_COMBINE_MAX_USES 16
671 /* Describes a recorded use of a register. */
672 struct reg_use
674 /* The insn where a register has been used. */
675 rtx insn;
676 /* Points to the memory reference enclosing the use, if any, NULL_RTX
677 otherwise. */
678 rtx containing_mem;
679 /* Location of the register withing INSN. */
680 rtx *usep;
681 /* The reverse uid of the insn. */
682 int ruid;
685 /* If the register is used in some unknown fashion, USE_INDEX is negative.
686 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
687 indicates where it is first set or clobbered.
688 Otherwise, USE_INDEX is the index of the last encountered use of the
689 register (which is first among these we have seen since we scan backwards).
690 USE_RUID indicates the first encountered, i.e. last, of these uses.
691 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
692 with a constant offset; OFFSET contains this constant in that case.
693 STORE_RUID is always meaningful if we only want to use a value in a
694 register in a different place: it denotes the next insn in the insn
695 stream (i.e. the last encountered) that sets or clobbers the register.
696 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
697 static struct
699 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
700 rtx offset;
701 int use_index;
702 int store_ruid;
703 int real_store_ruid;
704 int use_ruid;
705 bool all_offsets_match;
706 } reg_state[FIRST_PSEUDO_REGISTER];
708 /* Reverse linear uid. This is increased in reload_combine while scanning
709 the instructions from last to first. It is used to set last_label_ruid
710 and the store_ruid / use_ruid fields in reg_state. */
711 static int reload_combine_ruid;
713 /* The RUID of the last label we encountered in reload_combine. */
714 static int last_label_ruid;
716 /* The RUID of the last jump we encountered in reload_combine. */
717 static int last_jump_ruid;
719 /* The register numbers of the first and last index register. A value of
720 -1 in LAST_INDEX_REG indicates that we've previously computed these
721 values and found no suitable index registers. */
722 static int first_index_reg = -1;
723 static int last_index_reg;
725 #define LABEL_LIVE(LABEL) \
726 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
728 /* Subroutine of reload_combine_split_ruids, called to fix up a single
729 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
731 static inline void
732 reload_combine_split_one_ruid (int *pruid, int split_ruid)
734 if (*pruid > split_ruid)
735 (*pruid)++;
738 /* Called when we insert a new insn in a position we've already passed in
739 the scan. Examine all our state, increasing all ruids that are higher
740 than SPLIT_RUID by one in order to make room for a new insn. */
742 static void
743 reload_combine_split_ruids (int split_ruid)
745 unsigned i;
747 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
748 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
749 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
751 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
753 int j, idx = reg_state[i].use_index;
754 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
755 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
756 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
757 split_ruid);
758 if (idx < 0)
759 continue;
760 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
762 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
763 split_ruid);
768 /* Called when we are about to rescan a previously encountered insn with
769 reload_combine_note_use after modifying some part of it. This clears all
770 information about uses in that particular insn. */
772 static void
773 reload_combine_purge_insn_uses (rtx insn)
775 unsigned i;
777 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
779 int j, k, idx = reg_state[i].use_index;
780 if (idx < 0)
781 continue;
782 j = k = RELOAD_COMBINE_MAX_USES;
783 while (j-- > idx)
785 if (reg_state[i].reg_use[j].insn != insn)
787 k--;
788 if (k != j)
789 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
792 reg_state[i].use_index = k;
796 /* Called when we need to forget about all uses of REGNO after an insn
797 which is identified by RUID. */
799 static void
800 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
802 int j, k, idx = reg_state[regno].use_index;
803 if (idx < 0)
804 return;
805 j = k = RELOAD_COMBINE_MAX_USES;
806 while (j-- > idx)
808 if (reg_state[regno].reg_use[j].ruid >= ruid)
810 k--;
811 if (k != j)
812 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
815 reg_state[regno].use_index = k;
818 /* Find the use of REGNO with the ruid that is highest among those
819 lower than RUID_LIMIT, and return it if it is the only use of this
820 reg in the insn. Return NULL otherwise. */
822 static struct reg_use *
823 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
825 int i, best_ruid = 0;
826 int use_idx = reg_state[regno].use_index;
827 struct reg_use *retval;
829 if (use_idx < 0)
830 return NULL;
831 retval = NULL;
832 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
834 struct reg_use *use = reg_state[regno].reg_use + i;
835 int this_ruid = use->ruid;
836 if (this_ruid >= ruid_limit)
837 continue;
838 if (this_ruid > best_ruid)
840 best_ruid = this_ruid;
841 retval = use;
843 else if (this_ruid == best_ruid)
844 retval = NULL;
846 if (last_label_ruid >= best_ruid)
847 return NULL;
848 return retval;
851 /* After we've moved an add insn, fix up any debug insns that occur
852 between the old location of the add and the new location. REG is
853 the destination register of the add insn; REPLACEMENT is the
854 SET_SRC of the add. FROM and TO specify the range in which we
855 should make this change on debug insns. */
857 static void
858 fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
860 rtx insn;
861 for (insn = from; insn != to; insn = NEXT_INSN (insn))
863 rtx t;
865 if (!DEBUG_INSN_P (insn))
866 continue;
868 t = INSN_VAR_LOCATION_LOC (insn);
869 t = simplify_replace_rtx (t, reg, replacement);
870 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
874 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
875 with SRC in the insn described by USE, taking costs into account. Return
876 true if we made the replacement. */
878 static bool
879 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
881 rtx use_insn = use->insn;
882 rtx mem = use->containing_mem;
883 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
885 if (mem != NULL_RTX)
887 addr_space_t as = MEM_ADDR_SPACE (mem);
888 rtx oldaddr = XEXP (mem, 0);
889 rtx newaddr = NULL_RTX;
890 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
891 int new_cost;
893 newaddr = simplify_replace_rtx (oldaddr, reg, src);
894 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
896 XEXP (mem, 0) = newaddr;
897 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
898 XEXP (mem, 0) = oldaddr;
899 if (new_cost <= old_cost
900 && validate_change (use_insn,
901 &XEXP (mem, 0), newaddr, 0))
902 return true;
905 else
907 rtx new_set = single_set (use_insn);
908 if (new_set
909 && REG_P (SET_DEST (new_set))
910 && GET_CODE (SET_SRC (new_set)) == PLUS
911 && REG_P (XEXP (SET_SRC (new_set), 0))
912 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
914 rtx new_src;
915 int old_cost = rtx_cost (SET_SRC (new_set), SET, speed);
917 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
918 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
920 if (rtx_cost (new_src, SET, speed) <= old_cost
921 && validate_change (use_insn, &SET_SRC (new_set),
922 new_src, 0))
923 return true;
926 return false;
929 /* Called by reload_combine when scanning INSN. This function tries to detect
930 patterns where a constant is added to a register, and the result is used
931 in an address.
932 Return true if no further processing is needed on INSN; false if it wasn't
933 recognized and should be handled normally. */
935 static bool
936 reload_combine_recognize_const_pattern (rtx insn)
938 int from_ruid = reload_combine_ruid;
939 rtx set, pat, reg, src, addreg;
940 unsigned int regno;
941 struct reg_use *use;
942 bool must_move_add;
943 rtx add_moved_after_insn = NULL_RTX;
944 int add_moved_after_ruid = 0;
945 int clobbered_regno = -1;
947 set = single_set (insn);
948 if (set == NULL_RTX)
949 return false;
951 reg = SET_DEST (set);
952 src = SET_SRC (set);
953 if (!REG_P (reg)
954 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
955 || GET_MODE (reg) != Pmode
956 || reg == stack_pointer_rtx)
957 return false;
959 regno = REGNO (reg);
961 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
962 uses of REG1 inside an address, or inside another add insn. If
963 possible and profitable, merge the addition into subsequent
964 uses. */
965 if (GET_CODE (src) != PLUS
966 || !REG_P (XEXP (src, 0))
967 || !CONSTANT_P (XEXP (src, 1)))
968 return false;
970 addreg = XEXP (src, 0);
971 must_move_add = rtx_equal_p (reg, addreg);
973 pat = PATTERN (insn);
974 if (must_move_add && set != pat)
976 /* We have to be careful when moving the add; apart from the
977 single_set there may also be clobbers. Recognize one special
978 case, that of one clobber alongside the set (likely a clobber
979 of the CC register). */
980 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
981 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
982 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
983 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
984 return false;
985 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
990 use = reload_combine_closest_single_use (regno, from_ruid);
992 if (use)
993 /* Start the search for the next use from here. */
994 from_ruid = use->ruid;
996 if (use && GET_MODE (*use->usep) == Pmode)
998 bool delete_add = false;
999 rtx use_insn = use->insn;
1000 int use_ruid = use->ruid;
1002 /* Avoid moving the add insn past a jump. */
1003 if (must_move_add && use_ruid <= last_jump_ruid)
1004 break;
1006 /* If the add clobbers another hard reg in parallel, don't move
1007 it past a real set of this hard reg. */
1008 if (must_move_add && clobbered_regno >= 0
1009 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1010 break;
1012 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1013 /* Avoid moving a use of ADDREG past a point where it is stored. */
1014 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1015 break;
1017 /* We also must not move the addition past an insn that sets
1018 the same register, unless we can combine two add insns. */
1019 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1021 if (use->containing_mem == NULL_RTX)
1022 delete_add = true;
1023 else
1024 break;
1027 if (try_replace_in_use (use, reg, src))
1029 reload_combine_purge_insn_uses (use_insn);
1030 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1031 use_ruid, NULL_RTX);
1033 if (delete_add)
1035 fixup_debug_insns (reg, src, insn, use_insn);
1036 delete_insn (insn);
1037 return true;
1039 if (must_move_add)
1041 add_moved_after_insn = use_insn;
1042 add_moved_after_ruid = use_ruid;
1044 continue;
1047 /* If we get here, we couldn't handle this use. */
1048 if (must_move_add)
1049 break;
1051 while (use);
1053 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1054 /* Process the add normally. */
1055 return false;
1057 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1059 reorder_insns (insn, insn, add_moved_after_insn);
1060 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1061 reload_combine_split_ruids (add_moved_after_ruid - 1);
1062 reload_combine_note_use (&PATTERN (insn), insn,
1063 add_moved_after_ruid, NULL_RTX);
1064 reg_state[regno].store_ruid = add_moved_after_ruid;
1066 return true;
1069 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1070 can handle and improve. Return true if no further processing is needed on
1071 INSN; false if it wasn't recognized and should be handled normally. */
1073 static bool
1074 reload_combine_recognize_pattern (rtx insn)
1076 rtx set, reg, src;
1077 unsigned int regno;
1079 set = single_set (insn);
1080 if (set == NULL_RTX)
1081 return false;
1083 reg = SET_DEST (set);
1084 src = SET_SRC (set);
1085 if (!REG_P (reg)
1086 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1087 return false;
1089 regno = REGNO (reg);
1091 /* Look for (set (REGX) (CONST_INT))
1092 (set (REGX) (PLUS (REGX) (REGY)))
1094 ... (MEM (REGX)) ...
1095 and convert it to
1096 (set (REGZ) (CONST_INT))
1098 ... (MEM (PLUS (REGZ) (REGY)))... .
1100 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1101 and that we know all uses of REGX before it dies.
1102 Also, explicitly check that REGX != REGY; our life information
1103 does not yet show whether REGY changes in this insn. */
1105 if (GET_CODE (src) == PLUS
1106 && reg_state[regno].all_offsets_match
1107 && last_index_reg != -1
1108 && REG_P (XEXP (src, 1))
1109 && rtx_equal_p (XEXP (src, 0), reg)
1110 && !rtx_equal_p (XEXP (src, 1), reg)
1111 && reg_state[regno].use_index >= 0
1112 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1113 && last_label_ruid < reg_state[regno].use_ruid)
1115 rtx base = XEXP (src, 1);
1116 rtx prev = prev_nonnote_insn (insn);
1117 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1118 rtx index_reg = NULL_RTX;
1119 rtx reg_sum = NULL_RTX;
1120 int i;
1122 /* Now we need to set INDEX_REG to an index register (denoted as
1123 REGZ in the illustration above) and REG_SUM to the expression
1124 register+register that we want to use to substitute uses of REG
1125 (typically in MEMs) with. First check REG and BASE for being
1126 index registers; we can use them even if they are not dead. */
1127 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1128 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1129 REGNO (base)))
1131 index_reg = reg;
1132 reg_sum = src;
1134 else
1136 /* Otherwise, look for a free index register. Since we have
1137 checked above that neither REG nor BASE are index registers,
1138 if we find anything at all, it will be different from these
1139 two registers. */
1140 for (i = first_index_reg; i <= last_index_reg; i++)
1142 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1143 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1144 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1145 && (call_used_regs[i] || df_regs_ever_live_p (i))
1146 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1147 && !fixed_regs[i] && !global_regs[i]
1148 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1149 && targetm.hard_regno_scratch_ok (i))
1151 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1152 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1153 break;
1158 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1159 (REGY), i.e. BASE, is not clobbered before the last use we'll
1160 create. */
1161 if (reg_sum
1162 && prev_set
1163 && CONST_INT_P (SET_SRC (prev_set))
1164 && rtx_equal_p (SET_DEST (prev_set), reg)
1165 && (reg_state[REGNO (base)].store_ruid
1166 <= reg_state[regno].use_ruid))
1168 /* Change destination register and, if necessary, the constant
1169 value in PREV, the constant loading instruction. */
1170 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1171 if (reg_state[regno].offset != const0_rtx)
1172 validate_change (prev,
1173 &SET_SRC (prev_set),
1174 GEN_INT (INTVAL (SET_SRC (prev_set))
1175 + INTVAL (reg_state[regno].offset)),
1178 /* Now for every use of REG that we have recorded, replace REG
1179 with REG_SUM. */
1180 for (i = reg_state[regno].use_index;
1181 i < RELOAD_COMBINE_MAX_USES; i++)
1182 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1183 reg_state[regno].reg_use[i].usep,
1184 /* Each change must have its own
1185 replacement. */
1186 reg_sum, 1);
1188 if (apply_change_group ())
1190 struct reg_use *lowest_ruid = NULL;
1192 /* For every new use of REG_SUM, we have to record the use
1193 of BASE therein, i.e. operand 1. */
1194 for (i = reg_state[regno].use_index;
1195 i < RELOAD_COMBINE_MAX_USES; i++)
1197 struct reg_use *use = reg_state[regno].reg_use + i;
1198 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1199 use->ruid, use->containing_mem);
1200 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1201 lowest_ruid = use;
1204 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1206 /* Delete the reg-reg addition. */
1207 delete_insn (insn);
1209 if (reg_state[regno].offset != const0_rtx)
1210 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1211 are now invalid. */
1212 remove_reg_equal_equiv_notes (prev);
1214 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1215 return true;
1219 return false;
1222 static void
1223 reload_combine (void)
1225 rtx insn, prev;
1226 int i;
1227 basic_block bb;
1228 unsigned int r;
1229 int min_labelno, n_labels;
1230 HARD_REG_SET ever_live_at_start, *label_live;
1232 /* To avoid wasting too much time later searching for an index register,
1233 determine the minimum and maximum index register numbers. */
1234 if (INDEX_REG_CLASS == NO_REGS)
1235 last_index_reg = -1;
1236 else if (first_index_reg == -1 && last_index_reg == 0)
1238 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1239 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1241 if (first_index_reg == -1)
1242 first_index_reg = r;
1244 last_index_reg = r;
1247 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1248 to -1 so we'll know to quit early the next time we get here. */
1249 if (first_index_reg == -1)
1251 last_index_reg = -1;
1252 return;
1256 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1257 information is a bit fuzzy immediately after reload, but it's
1258 still good enough to determine which registers are live at a jump
1259 destination. */
1260 min_labelno = get_first_label_num ();
1261 n_labels = max_label_num () - min_labelno;
1262 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1263 CLEAR_HARD_REG_SET (ever_live_at_start);
1265 FOR_EACH_BB_REVERSE (bb)
1267 insn = BB_HEAD (bb);
1268 if (LABEL_P (insn))
1270 HARD_REG_SET live;
1271 bitmap live_in = df_get_live_in (bb);
1273 REG_SET_TO_HARD_REG_SET (live, live_in);
1274 compute_use_by_pseudos (&live, live_in);
1275 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1276 IOR_HARD_REG_SET (ever_live_at_start, live);
1280 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1281 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1282 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1284 reg_state[r].store_ruid = 0;
1285 reg_state[r].real_store_ruid = 0;
1286 if (fixed_regs[r])
1287 reg_state[r].use_index = -1;
1288 else
1289 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1292 for (insn = get_last_insn (); insn; insn = prev)
1294 rtx note;
1296 prev = PREV_INSN (insn);
1298 /* We cannot do our optimization across labels. Invalidating all the use
1299 information we have would be costly, so we just note where the label
1300 is and then later disable any optimization that would cross it. */
1301 if (LABEL_P (insn))
1302 last_label_ruid = reload_combine_ruid;
1303 else if (BARRIER_P (insn))
1304 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1305 if (! fixed_regs[r])
1306 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1308 if (! NONDEBUG_INSN_P (insn))
1309 continue;
1311 reload_combine_ruid++;
1313 if (control_flow_insn_p (insn))
1314 last_jump_ruid = reload_combine_ruid;
1316 if (reload_combine_recognize_const_pattern (insn)
1317 || reload_combine_recognize_pattern (insn))
1318 continue;
1320 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1322 if (CALL_P (insn))
1324 rtx link;
1326 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1327 if (call_used_regs[r])
1329 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1330 reg_state[r].store_ruid = reload_combine_ruid;
1333 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1334 link = XEXP (link, 1))
1336 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
1337 if (REG_P (usage_rtx))
1339 unsigned int i;
1340 unsigned int start_reg = REGNO (usage_rtx);
1341 unsigned int num_regs =
1342 hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1343 unsigned int end_reg = start_reg + num_regs - 1;
1344 for (i = start_reg; i <= end_reg; i++)
1345 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1347 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1348 reg_state[i].store_ruid = reload_combine_ruid;
1350 else
1351 reg_state[i].use_index = -1;
1356 else if (JUMP_P (insn)
1357 && GET_CODE (PATTERN (insn)) != RETURN)
1359 /* Non-spill registers might be used at the call destination in
1360 some unknown fashion, so we have to mark the unknown use. */
1361 HARD_REG_SET *live;
1363 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1364 && JUMP_LABEL (insn))
1365 live = &LABEL_LIVE (JUMP_LABEL (insn));
1366 else
1367 live = &ever_live_at_start;
1369 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
1370 if (TEST_HARD_REG_BIT (*live, i))
1371 reg_state[i].use_index = -1;
1374 reload_combine_note_use (&PATTERN (insn), insn,
1375 reload_combine_ruid, NULL_RTX);
1376 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1378 if (REG_NOTE_KIND (note) == REG_INC
1379 && REG_P (XEXP (note, 0)))
1381 int regno = REGNO (XEXP (note, 0));
1383 reg_state[regno].store_ruid = reload_combine_ruid;
1384 reg_state[regno].real_store_ruid = reload_combine_ruid;
1385 reg_state[regno].use_index = -1;
1390 free (label_live);
1393 /* Check if DST is a register or a subreg of a register; if it is,
1394 update store_ruid, real_store_ruid and use_index in the reg_state
1395 structure accordingly. Called via note_stores from reload_combine. */
1397 static void
1398 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1400 int regno = 0;
1401 int i;
1402 enum machine_mode mode = GET_MODE (dst);
1404 if (GET_CODE (dst) == SUBREG)
1406 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1407 GET_MODE (SUBREG_REG (dst)),
1408 SUBREG_BYTE (dst),
1409 GET_MODE (dst));
1410 dst = SUBREG_REG (dst);
1412 if (!REG_P (dst))
1413 return;
1414 regno += REGNO (dst);
1416 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1417 careful with registers / register parts that are not full words.
1418 Similarly for ZERO_EXTRACT. */
1419 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1420 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1422 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1424 reg_state[i].use_index = -1;
1425 reg_state[i].store_ruid = reload_combine_ruid;
1426 reg_state[i].real_store_ruid = reload_combine_ruid;
1429 else
1431 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1433 reg_state[i].store_ruid = reload_combine_ruid;
1434 if (GET_CODE (set) == SET)
1435 reg_state[i].real_store_ruid = reload_combine_ruid;
1436 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1441 /* XP points to a piece of rtl that has to be checked for any uses of
1442 registers.
1443 *XP is the pattern of INSN, or a part of it.
1444 Called from reload_combine, and recursively by itself. */
1445 static void
1446 reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
1448 rtx x = *xp;
1449 enum rtx_code code = x->code;
1450 const char *fmt;
1451 int i, j;
1452 rtx offset = const0_rtx; /* For the REG case below. */
1454 switch (code)
1456 case SET:
1457 if (REG_P (SET_DEST (x)))
1459 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1460 return;
1462 break;
1464 case USE:
1465 /* If this is the USE of a return value, we can't change it. */
1466 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1468 /* Mark the return register as used in an unknown fashion. */
1469 rtx reg = XEXP (x, 0);
1470 int regno = REGNO (reg);
1471 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1473 while (--nregs >= 0)
1474 reg_state[regno + nregs].use_index = -1;
1475 return;
1477 break;
1479 case CLOBBER:
1480 if (REG_P (SET_DEST (x)))
1482 /* No spurious CLOBBERs of pseudo registers may remain. */
1483 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1484 return;
1486 break;
1488 case PLUS:
1489 /* We are interested in (plus (reg) (const_int)) . */
1490 if (!REG_P (XEXP (x, 0))
1491 || !CONST_INT_P (XEXP (x, 1)))
1492 break;
1493 offset = XEXP (x, 1);
1494 x = XEXP (x, 0);
1495 /* Fall through. */
1496 case REG:
1498 int regno = REGNO (x);
1499 int use_index;
1500 int nregs;
1502 /* No spurious USEs of pseudo registers may remain. */
1503 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1505 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1507 /* We can't substitute into multi-hard-reg uses. */
1508 if (nregs > 1)
1510 while (--nregs >= 0)
1511 reg_state[regno + nregs].use_index = -1;
1512 return;
1515 /* We may be called to update uses in previously seen insns.
1516 Don't add uses beyond the last store we saw. */
1517 if (ruid < reg_state[regno].store_ruid)
1518 return;
1520 /* If this register is already used in some unknown fashion, we
1521 can't do anything.
1522 If we decrement the index from zero to -1, we can't store more
1523 uses, so this register becomes used in an unknown fashion. */
1524 use_index = --reg_state[regno].use_index;
1525 if (use_index < 0)
1526 return;
1528 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1530 /* This is the first use of this register we have seen since we
1531 marked it as dead. */
1532 reg_state[regno].offset = offset;
1533 reg_state[regno].all_offsets_match = true;
1534 reg_state[regno].use_ruid = ruid;
1536 else
1538 if (reg_state[regno].use_ruid > ruid)
1539 reg_state[regno].use_ruid = ruid;
1541 if (! rtx_equal_p (offset, reg_state[regno].offset))
1542 reg_state[regno].all_offsets_match = false;
1545 reg_state[regno].reg_use[use_index].insn = insn;
1546 reg_state[regno].reg_use[use_index].ruid = ruid;
1547 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1548 reg_state[regno].reg_use[use_index].usep = xp;
1549 return;
1552 case MEM:
1553 containing_mem = x;
1554 break;
1556 default:
1557 break;
1560 /* Recursively process the components of X. */
1561 fmt = GET_RTX_FORMAT (code);
1562 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1564 if (fmt[i] == 'e')
1565 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1566 else if (fmt[i] == 'E')
1568 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1569 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1570 containing_mem);
1575 /* See if we can reduce the cost of a constant by replacing a move
1576 with an add. We track situations in which a register is set to a
1577 constant or to a register plus a constant. */
1578 /* We cannot do our optimization across labels. Invalidating all the
1579 information about register contents we have would be costly, so we
1580 use move2add_last_label_luid to note where the label is and then
1581 later disable any optimization that would cross it.
1582 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1583 are only valid if reg_set_luid[n] is greater than
1584 move2add_last_label_luid. */
1585 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1587 /* If reg_base_reg[n] is negative, register n has been set to
1588 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1589 If reg_base_reg[n] is non-negative, register n has been set to the
1590 sum of reg_offset[n] and the value of register reg_base_reg[n]
1591 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1592 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1593 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1594 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1595 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1597 /* move2add_luid is linearly increased while scanning the instructions
1598 from first to last. It is used to set reg_set_luid in
1599 reload_cse_move2add and move2add_note_store. */
1600 static int move2add_luid;
1602 /* move2add_last_label_luid is set whenever a label is found. Labels
1603 invalidate all previously collected reg_offset data. */
1604 static int move2add_last_label_luid;
1606 /* ??? We don't know how zero / sign extension is handled, hence we
1607 can't go from a narrower to a wider mode. */
1608 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1609 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1610 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1611 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1612 GET_MODE_BITSIZE (INMODE))))
1614 /* This function is called with INSN that sets REG to (SYM + OFF),
1615 while REG is known to already have value (SYM + offset).
1616 This function tries to change INSN into an add instruction
1617 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1618 It also updates the information about REG's known value.
1619 Return true if we made a change. */
1621 static bool
1622 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
1624 rtx pat = PATTERN (insn);
1625 rtx src = SET_SRC (pat);
1626 int regno = REGNO (reg);
1627 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[regno],
1628 GET_MODE (reg));
1629 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1630 bool changed = false;
1632 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1633 use (set (reg) (reg)) instead.
1634 We don't delete this insn, nor do we convert it into a
1635 note, to avoid losing register notes or the return
1636 value flag. jump2 already knows how to get rid of
1637 no-op moves. */
1638 if (new_src == const0_rtx)
1640 /* If the constants are different, this is a
1641 truncation, that, if turned into (set (reg)
1642 (reg)), would be discarded. Maybe we should
1643 try a truncMN pattern? */
1644 if (INTVAL (off) == reg_offset [regno])
1645 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1647 else if (rtx_cost (new_src, PLUS, speed) < rtx_cost (src, SET, speed)
1648 && have_add2_insn (reg, new_src))
1650 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1651 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1653 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1655 enum machine_mode narrow_mode;
1656 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1657 narrow_mode != VOIDmode
1658 && narrow_mode != GET_MODE (reg);
1659 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1661 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1662 && ((reg_offset[regno]
1663 & ~GET_MODE_MASK (narrow_mode))
1664 == (INTVAL (off)
1665 & ~GET_MODE_MASK (narrow_mode))))
1667 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1668 REGNO (reg));
1669 rtx narrow_src = gen_int_mode (INTVAL (off),
1670 narrow_mode);
1671 rtx new_set =
1672 gen_rtx_SET (VOIDmode,
1673 gen_rtx_STRICT_LOW_PART (VOIDmode,
1674 narrow_reg),
1675 narrow_src);
1676 changed = validate_change (insn, &PATTERN (insn),
1677 new_set, 0);
1678 if (changed)
1679 break;
1683 reg_set_luid[regno] = move2add_luid;
1684 reg_base_reg[regno] = -1;
1685 reg_mode[regno] = GET_MODE (reg);
1686 reg_symbol_ref[regno] = sym;
1687 reg_offset[regno] = INTVAL (off);
1688 return changed;
1692 /* This function is called with INSN that sets REG to (SYM + OFF),
1693 but REG doesn't have known value (SYM + offset). This function
1694 tries to find another register which is known to already have
1695 value (SYM + offset) and change INSN into an add instruction
1696 (set (REG) (plus (the found register) (OFF - offset))) if such
1697 a register is found. It also updates the information about
1698 REG's known value.
1699 Return true iff we made a change. */
1701 static bool
1702 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
1704 rtx pat = PATTERN (insn);
1705 rtx src = SET_SRC (pat);
1706 int regno = REGNO (reg);
1707 int min_cost = INT_MAX;
1708 int min_regno = 0;
1709 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1710 int i;
1711 bool changed = false;
1713 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1714 if (reg_set_luid[i] > move2add_last_label_luid
1715 && reg_mode[i] == GET_MODE (reg)
1716 && reg_base_reg[i] < 0
1717 && reg_symbol_ref[i] != NULL_RTX
1718 && rtx_equal_p (sym, reg_symbol_ref[i]))
1720 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[i],
1721 GET_MODE (reg));
1722 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1723 use (set (reg) (reg)) instead.
1724 We don't delete this insn, nor do we convert it into a
1725 note, to avoid losing register notes or the return
1726 value flag. jump2 already knows how to get rid of
1727 no-op moves. */
1728 if (new_src == const0_rtx)
1730 min_cost = 0;
1731 min_regno = i;
1732 break;
1734 else
1736 int cost = rtx_cost (new_src, PLUS, speed);
1737 if (cost < min_cost)
1739 min_cost = cost;
1740 min_regno = i;
1745 if (min_cost < rtx_cost (src, SET, speed))
1747 rtx tem;
1749 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1750 if (i != min_regno)
1752 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[min_regno],
1753 GET_MODE (reg));
1754 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1756 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1757 changed = true;
1759 reg_set_luid[regno] = move2add_luid;
1760 reg_base_reg[regno] = -1;
1761 reg_mode[regno] = GET_MODE (reg);
1762 reg_symbol_ref[regno] = sym;
1763 reg_offset[regno] = INTVAL (off);
1764 return changed;
1767 /* Convert move insns with constant inputs to additions if they are cheaper.
1768 Return true if any changes were made. */
1769 static bool
1770 reload_cse_move2add (rtx first)
1772 int i;
1773 rtx insn;
1774 bool changed = false;
1776 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1778 reg_set_luid[i] = 0;
1779 reg_offset[i] = 0;
1780 reg_base_reg[i] = 0;
1781 reg_symbol_ref[i] = NULL_RTX;
1782 reg_mode[i] = VOIDmode;
1785 move2add_last_label_luid = 0;
1786 move2add_luid = 2;
1787 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1789 rtx pat, note;
1791 if (LABEL_P (insn))
1793 move2add_last_label_luid = move2add_luid;
1794 /* We're going to increment move2add_luid twice after a
1795 label, so that we can use move2add_last_label_luid + 1 as
1796 the luid for constants. */
1797 move2add_luid++;
1798 continue;
1800 if (! INSN_P (insn))
1801 continue;
1802 pat = PATTERN (insn);
1803 /* For simplicity, we only perform this optimization on
1804 straightforward SETs. */
1805 if (GET_CODE (pat) == SET
1806 && REG_P (SET_DEST (pat)))
1808 rtx reg = SET_DEST (pat);
1809 int regno = REGNO (reg);
1810 rtx src = SET_SRC (pat);
1812 /* Check if we have valid information on the contents of this
1813 register in the mode of REG. */
1814 if (reg_set_luid[regno] > move2add_last_label_luid
1815 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1816 && dbg_cnt (cse2_move2add))
1818 /* Try to transform (set (REGX) (CONST_INT A))
1820 (set (REGX) (CONST_INT B))
1822 (set (REGX) (CONST_INT A))
1824 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1826 (set (REGX) (CONST_INT A))
1828 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1831 if (CONST_INT_P (src)
1832 && reg_base_reg[regno] < 0
1833 && reg_symbol_ref[regno] == NULL_RTX)
1835 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1836 continue;
1839 /* Try to transform (set (REGX) (REGY))
1840 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1842 (set (REGX) (REGY))
1843 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1845 (set (REGX) (REGY))
1846 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1848 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1849 else if (REG_P (src)
1850 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1851 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1852 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1853 reg_mode[REGNO (src)]))
1855 rtx next = next_nonnote_insn (insn);
1856 rtx set = NULL_RTX;
1857 if (next)
1858 set = single_set (next);
1859 if (set
1860 && SET_DEST (set) == reg
1861 && GET_CODE (SET_SRC (set)) == PLUS
1862 && XEXP (SET_SRC (set), 0) == reg
1863 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1865 rtx src3 = XEXP (SET_SRC (set), 1);
1866 HOST_WIDE_INT added_offset = INTVAL (src3);
1867 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1868 HOST_WIDE_INT regno_offset = reg_offset[regno];
1869 rtx new_src =
1870 gen_int_mode (added_offset
1871 + base_offset
1872 - regno_offset,
1873 GET_MODE (reg));
1874 bool success = false;
1875 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1877 if (new_src == const0_rtx)
1878 /* See above why we create (set (reg) (reg)) here. */
1879 success
1880 = validate_change (next, &SET_SRC (set), reg, 0);
1881 else if ((rtx_cost (new_src, PLUS, speed)
1882 < COSTS_N_INSNS (1) + rtx_cost (src3, SET, speed))
1883 && have_add2_insn (reg, new_src))
1885 rtx newpat = gen_rtx_SET (VOIDmode,
1886 reg,
1887 gen_rtx_PLUS (GET_MODE (reg),
1888 reg,
1889 new_src));
1890 success
1891 = validate_change (next, &PATTERN (next),
1892 newpat, 0);
1894 if (success)
1895 delete_insn (insn);
1896 changed |= success;
1897 insn = next;
1898 reg_mode[regno] = GET_MODE (reg);
1899 reg_offset[regno] =
1900 trunc_int_for_mode (added_offset + base_offset,
1901 GET_MODE (reg));
1902 continue;
1907 /* Try to transform
1908 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1910 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
1912 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1914 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
1915 if ((GET_CODE (src) == SYMBOL_REF
1916 || (GET_CODE (src) == CONST
1917 && GET_CODE (XEXP (src, 0)) == PLUS
1918 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
1919 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
1920 && dbg_cnt (cse2_move2add))
1922 rtx sym, off;
1924 if (GET_CODE (src) == SYMBOL_REF)
1926 sym = src;
1927 off = const0_rtx;
1929 else
1931 sym = XEXP (XEXP (src, 0), 0);
1932 off = XEXP (XEXP (src, 0), 1);
1935 /* If the reg already contains the value which is sum of
1936 sym and some constant value, we can use an add2 insn. */
1937 if (reg_set_luid[regno] > move2add_last_label_luid
1938 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1939 && reg_base_reg[regno] < 0
1940 && reg_symbol_ref[regno] != NULL_RTX
1941 && rtx_equal_p (sym, reg_symbol_ref[regno]))
1942 changed |= move2add_use_add2_insn (reg, sym, off, insn);
1944 /* Otherwise, we have to find a register whose value is sum
1945 of sym and some constant value. */
1946 else
1947 changed |= move2add_use_add3_insn (reg, sym, off, insn);
1949 continue;
1953 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1955 if (REG_NOTE_KIND (note) == REG_INC
1956 && REG_P (XEXP (note, 0)))
1958 /* Reset the information about this register. */
1959 int regno = REGNO (XEXP (note, 0));
1960 if (regno < FIRST_PSEUDO_REGISTER)
1961 reg_set_luid[regno] = 0;
1964 note_stores (PATTERN (insn), move2add_note_store, insn);
1966 /* If INSN is a conditional branch, we try to extract an
1967 implicit set out of it. */
1968 if (any_condjump_p (insn))
1970 rtx cnd = fis_get_condition (insn);
1972 if (cnd != NULL_RTX
1973 && GET_CODE (cnd) == NE
1974 && REG_P (XEXP (cnd, 0))
1975 && !reg_set_p (XEXP (cnd, 0), insn)
1976 /* The following two checks, which are also in
1977 move2add_note_store, are intended to reduce the
1978 number of calls to gen_rtx_SET to avoid memory
1979 allocation if possible. */
1980 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
1981 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
1982 && CONST_INT_P (XEXP (cnd, 1)))
1984 rtx implicit_set =
1985 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
1986 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
1990 /* If this is a CALL_INSN, all call used registers are stored with
1991 unknown values. */
1992 if (CALL_P (insn))
1994 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1996 if (call_used_regs[i])
1997 /* Reset the information about this register. */
1998 reg_set_luid[i] = 0;
2002 return changed;
2005 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2006 contains SET.
2007 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2008 Called from reload_cse_move2add via note_stores. */
2010 static void
2011 move2add_note_store (rtx dst, const_rtx set, void *data)
2013 rtx insn = (rtx) data;
2014 unsigned int regno = 0;
2015 unsigned int nregs = 0;
2016 unsigned int i;
2017 enum machine_mode mode = GET_MODE (dst);
2019 if (GET_CODE (dst) == SUBREG)
2021 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
2022 GET_MODE (SUBREG_REG (dst)),
2023 SUBREG_BYTE (dst),
2024 GET_MODE (dst));
2025 nregs = subreg_nregs (dst);
2026 dst = SUBREG_REG (dst);
2029 /* Some targets do argument pushes without adding REG_INC notes. */
2031 if (MEM_P (dst))
2033 dst = XEXP (dst, 0);
2034 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2035 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2036 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
2037 return;
2039 if (!REG_P (dst))
2040 return;
2042 regno += REGNO (dst);
2043 if (!nregs)
2044 nregs = hard_regno_nregs[regno][mode];
2046 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2047 && nregs == 1 && GET_CODE (set) == SET)
2049 rtx note, sym = NULL_RTX;
2050 HOST_WIDE_INT off;
2052 note = find_reg_equal_equiv_note (insn);
2053 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2055 sym = XEXP (note, 0);
2056 off = 0;
2058 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2059 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2060 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2061 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2063 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2064 off = INTVAL (XEXP (XEXP (XEXP (note, 0), 0), 1));
2067 if (sym != NULL_RTX)
2069 reg_base_reg[regno] = -1;
2070 reg_symbol_ref[regno] = sym;
2071 reg_offset[regno] = off;
2072 reg_mode[regno] = mode;
2073 reg_set_luid[regno] = move2add_luid;
2074 return;
2078 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2079 && nregs == 1 && GET_CODE (set) == SET
2080 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2081 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2083 rtx src = SET_SRC (set);
2084 rtx base_reg;
2085 HOST_WIDE_INT offset;
2086 int base_regno;
2087 /* This may be different from mode, if SET_DEST (set) is a
2088 SUBREG. */
2089 enum machine_mode dst_mode = GET_MODE (dst);
2091 switch (GET_CODE (src))
2093 case PLUS:
2094 if (REG_P (XEXP (src, 0)))
2096 base_reg = XEXP (src, 0);
2098 if (CONST_INT_P (XEXP (src, 1)))
2099 offset = INTVAL (XEXP (src, 1));
2100 else if (REG_P (XEXP (src, 1))
2101 && (reg_set_luid[REGNO (XEXP (src, 1))]
2102 > move2add_last_label_luid)
2103 && (MODES_OK_FOR_MOVE2ADD
2104 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
2106 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
2107 offset = reg_offset[REGNO (XEXP (src, 1))];
2108 /* Maybe the first register is known to be a
2109 constant. */
2110 else if (reg_set_luid[REGNO (base_reg)]
2111 > move2add_last_label_luid
2112 && (MODES_OK_FOR_MOVE2ADD
2113 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
2114 && reg_base_reg[REGNO (base_reg)] < 0)
2116 offset = reg_offset[REGNO (base_reg)];
2117 base_reg = XEXP (src, 1);
2119 else
2120 goto invalidate;
2122 else
2123 goto invalidate;
2125 break;
2128 goto invalidate;
2130 case REG:
2131 base_reg = src;
2132 offset = 0;
2133 break;
2135 case CONST_INT:
2136 /* Start tracking the register as a constant. */
2137 reg_base_reg[regno] = -1;
2138 reg_symbol_ref[regno] = NULL_RTX;
2139 reg_offset[regno] = INTVAL (SET_SRC (set));
2140 /* We assign the same luid to all registers set to constants. */
2141 reg_set_luid[regno] = move2add_last_label_luid + 1;
2142 reg_mode[regno] = mode;
2143 return;
2145 default:
2146 invalidate:
2147 /* Invalidate the contents of the register. */
2148 reg_set_luid[regno] = 0;
2149 return;
2152 base_regno = REGNO (base_reg);
2153 /* If information about the base register is not valid, set it
2154 up as a new base register, pretending its value is known
2155 starting from the current insn. */
2156 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
2158 reg_base_reg[base_regno] = base_regno;
2159 reg_symbol_ref[base_regno] = NULL_RTX;
2160 reg_offset[base_regno] = 0;
2161 reg_set_luid[base_regno] = move2add_luid;
2162 reg_mode[base_regno] = mode;
2164 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
2165 reg_mode[base_regno]))
2166 goto invalidate;
2168 reg_mode[regno] = mode;
2170 /* Copy base information from our base register. */
2171 reg_set_luid[regno] = reg_set_luid[base_regno];
2172 reg_base_reg[regno] = reg_base_reg[base_regno];
2173 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2175 /* Compute the sum of the offsets or constants. */
2176 reg_offset[regno] = trunc_int_for_mode (offset
2177 + reg_offset[base_regno],
2178 dst_mode);
2180 else
2182 unsigned int endregno = regno + nregs;
2184 for (i = regno; i < endregno; i++)
2185 /* Reset the information about this register. */
2186 reg_set_luid[i] = 0;
2190 static bool
2191 gate_handle_postreload (void)
2193 return (optimize > 0 && reload_completed);
2197 static unsigned int
2198 rest_of_handle_postreload (void)
2200 if (!dbg_cnt (postreload_cse))
2201 return 0;
2203 /* Do a very simple CSE pass over just the hard registers. */
2204 reload_cse_regs (get_insns ());
2205 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2206 Remove any EH edges associated with them. */
2207 if (cfun->can_throw_non_call_exceptions)
2208 purge_all_dead_edges ();
2210 return 0;
2213 struct rtl_opt_pass pass_postreload_cse =
2216 RTL_PASS,
2217 "postreload", /* name */
2218 gate_handle_postreload, /* gate */
2219 rest_of_handle_postreload, /* execute */
2220 NULL, /* sub */
2221 NULL, /* next */
2222 0, /* static_pass_number */
2223 TV_RELOAD_CSE_REGS, /* tv_id */
2224 0, /* properties_required */
2225 0, /* properties_provided */
2226 0, /* properties_destroyed */
2227 0, /* todo_flags_start */
2228 TODO_df_finish | TODO_verify_rtl_sharing |
2229 TODO_dump_func /* todo_flags_finish */