2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / ada / sem_ch4.adb
blob743d128e65d69340e6c4a29f63b4bd811984f4b9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Util; use Exp_Util;
32 with Fname; use Fname;
33 with Itypes; use Itypes;
34 with Lib; use Lib;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Namet.Sp; use Namet.Sp;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Output; use Output;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Cat; use Sem_Cat;
48 with Sem_Ch3; use Sem_Ch3;
49 with Sem_Ch6; use Sem_Ch6;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Dist; use Sem_Dist;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Stand; use Stand;
59 with Sinfo; use Sinfo;
60 with Snames; use Snames;
61 with Tbuild; use Tbuild;
63 package body Sem_Ch4 is
65 -----------------------
66 -- Local Subprograms --
67 -----------------------
69 procedure Analyze_Concatenation_Rest (N : Node_Id);
70 -- Does the "rest" of the work of Analyze_Concatenation, after the left
71 -- operand has been analyzed. See Analyze_Concatenation for details.
73 procedure Analyze_Expression (N : Node_Id);
74 -- For expressions that are not names, this is just a call to analyze.
75 -- If the expression is a name, it may be a call to a parameterless
76 -- function, and if so must be converted into an explicit call node
77 -- and analyzed as such. This deproceduring must be done during the first
78 -- pass of overload resolution, because otherwise a procedure call with
79 -- overloaded actuals may fail to resolve.
81 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
82 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
83 -- is an operator name or an expanded name whose selector is an operator
84 -- name, and one possible interpretation is as a predefined operator.
86 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
87 -- If the prefix of a selected_component is overloaded, the proper
88 -- interpretation that yields a record type with the proper selector
89 -- name must be selected.
91 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
92 -- Procedure to analyze a user defined binary operator, which is resolved
93 -- like a function, but instead of a list of actuals it is presented
94 -- with the left and right operands of an operator node.
96 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
97 -- Procedure to analyze a user defined unary operator, which is resolved
98 -- like a function, but instead of a list of actuals, it is presented with
99 -- the operand of the operator node.
101 procedure Ambiguous_Operands (N : Node_Id);
102 -- for equality, membership, and comparison operators with overloaded
103 -- arguments, list possible interpretations.
105 procedure Analyze_One_Call
106 (N : Node_Id;
107 Nam : Entity_Id;
108 Report : Boolean;
109 Success : out Boolean;
110 Skip_First : Boolean := False);
111 -- Check one interpretation of an overloaded subprogram name for
112 -- compatibility with the types of the actuals in a call. If there is a
113 -- single interpretation which does not match, post error if Report is
114 -- set to True.
116 -- Nam is the entity that provides the formals against which the actuals
117 -- are checked. Nam is either the name of a subprogram, or the internal
118 -- subprogram type constructed for an access_to_subprogram. If the actuals
119 -- are compatible with Nam, then Nam is added to the list of candidate
120 -- interpretations for N, and Success is set to True.
122 -- The flag Skip_First is used when analyzing a call that was rewritten
123 -- from object notation. In this case the first actual may have to receive
124 -- an explicit dereference, depending on the first formal of the operation
125 -- being called. The caller will have verified that the object is legal
126 -- for the call. If the remaining parameters match, the first parameter
127 -- will rewritten as a dereference if needed, prior to completing analysis.
129 procedure Check_Misspelled_Selector
130 (Prefix : Entity_Id;
131 Sel : Node_Id);
132 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
133 -- spelling of one of the selectors of the Prefix. This is called by
134 -- Analyze_Selected_Component after producing an invalid selector error
135 -- message.
137 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
138 -- Verify that type T is declared in scope S. Used to find interpretations
139 -- for operators given by expanded names. This is abstracted as a separate
140 -- function to handle extensions to System, where S is System, but T is
141 -- declared in the extension.
143 procedure Find_Arithmetic_Types
144 (L, R : Node_Id;
145 Op_Id : Entity_Id;
146 N : Node_Id);
147 -- L and R are the operands of an arithmetic operator. Find
148 -- consistent pairs of interpretations for L and R that have a
149 -- numeric type consistent with the semantics of the operator.
151 procedure Find_Comparison_Types
152 (L, R : Node_Id;
153 Op_Id : Entity_Id;
154 N : Node_Id);
155 -- L and R are operands of a comparison operator. Find consistent
156 -- pairs of interpretations for L and R.
158 procedure Find_Concatenation_Types
159 (L, R : Node_Id;
160 Op_Id : Entity_Id;
161 N : Node_Id);
162 -- For the four varieties of concatenation
164 procedure Find_Equality_Types
165 (L, R : Node_Id;
166 Op_Id : Entity_Id;
167 N : Node_Id);
168 -- Ditto for equality operators
170 procedure Find_Boolean_Types
171 (L, R : Node_Id;
172 Op_Id : Entity_Id;
173 N : Node_Id);
174 -- Ditto for binary logical operations
176 procedure Find_Negation_Types
177 (R : Node_Id;
178 Op_Id : Entity_Id;
179 N : Node_Id);
180 -- Find consistent interpretation for operand of negation operator
182 procedure Find_Non_Universal_Interpretations
183 (N : Node_Id;
184 R : Node_Id;
185 Op_Id : Entity_Id;
186 T1 : Entity_Id);
187 -- For equality and comparison operators, the result is always boolean,
188 -- and the legality of the operation is determined from the visibility
189 -- of the operand types. If one of the operands has a universal interpre-
190 -- tation, the legality check uses some compatible non-universal
191 -- interpretation of the other operand. N can be an operator node, or
192 -- a function call whose name is an operator designator.
194 function Find_Primitive_Operation (N : Node_Id) return Boolean;
195 -- Find candidate interpretations for the name Obj.Proc when it appears
196 -- in a subprogram renaming declaration.
198 procedure Find_Unary_Types
199 (R : Node_Id;
200 Op_Id : Entity_Id;
201 N : Node_Id);
202 -- Unary arithmetic types: plus, minus, abs
204 procedure Check_Arithmetic_Pair
205 (T1, T2 : Entity_Id;
206 Op_Id : Entity_Id;
207 N : Node_Id);
208 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
209 -- types for left and right operand. Determine whether they constitute
210 -- a valid pair for the given operator, and record the corresponding
211 -- interpretation of the operator node. The node N may be an operator
212 -- node (the usual case) or a function call whose prefix is an operator
213 -- designator. In both cases Op_Id is the operator name itself.
215 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
216 -- Give detailed information on overloaded call where none of the
217 -- interpretations match. N is the call node, Nam the designator for
218 -- the overloaded entity being called.
220 function Junk_Operand (N : Node_Id) return Boolean;
221 -- Test for an operand that is an inappropriate entity (e.g. a package
222 -- name or a label). If so, issue an error message and return True. If
223 -- the operand is not an inappropriate entity kind, return False.
225 procedure Operator_Check (N : Node_Id);
226 -- Verify that an operator has received some valid interpretation. If none
227 -- was found, determine whether a use clause would make the operation
228 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
229 -- every type compatible with the operator, even if the operator for the
230 -- type is not directly visible. The routine uses this type to emit a more
231 -- informative message.
233 function Process_Implicit_Dereference_Prefix
234 (E : Entity_Id;
235 P : Node_Id) return Entity_Id;
236 -- Called when P is the prefix of an implicit dereference, denoting an
237 -- object E. The function returns the designated type of the prefix, taking
238 -- into account that the designated type of an anonymous access type may be
239 -- a limited view, when the non-limited view is visible.
240 -- If in semantics only mode (-gnatc or generic), the function also records
241 -- that the prefix is a reference to E, if any. Normally, such a reference
242 -- is generated only when the implicit dereference is expanded into an
243 -- explicit one, but for consistency we must generate the reference when
244 -- expansion is disabled as well.
246 procedure Remove_Abstract_Operations (N : Node_Id);
247 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
248 -- operation is not a candidate interpretation.
250 function Try_Indexed_Call
251 (N : Node_Id;
252 Nam : Entity_Id;
253 Typ : Entity_Id;
254 Skip_First : Boolean) return Boolean;
255 -- If a function has defaults for all its actuals, a call to it may in fact
256 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
257 -- interpretation as an indexing, prior to analysis as a call. If both are
258 -- possible, the node is overloaded with both interpretations (same symbol
259 -- but two different types). If the call is written in prefix form, the
260 -- prefix becomes the first parameter in the call, and only the remaining
261 -- actuals must be checked for the presence of defaults.
263 function Try_Indirect_Call
264 (N : Node_Id;
265 Nam : Entity_Id;
266 Typ : Entity_Id) return Boolean;
267 -- Similarly, a function F that needs no actuals can return an access to a
268 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
269 -- the call may be overloaded with both interpretations.
271 function Try_Object_Operation (N : Node_Id) return Boolean;
272 -- Ada 2005 (AI-252): Support the object.operation notation
274 procedure wpo (T : Entity_Id);
275 pragma Warnings (Off, wpo);
276 -- Used for debugging: obtain list of primitive operations even if
277 -- type is not frozen and dispatch table is not built yet.
279 ------------------------
280 -- Ambiguous_Operands --
281 ------------------------
283 procedure Ambiguous_Operands (N : Node_Id) is
284 procedure List_Operand_Interps (Opnd : Node_Id);
286 --------------------------
287 -- List_Operand_Interps --
288 --------------------------
290 procedure List_Operand_Interps (Opnd : Node_Id) is
291 Nam : Node_Id;
292 Err : Node_Id := N;
294 begin
295 if Is_Overloaded (Opnd) then
296 if Nkind (Opnd) in N_Op then
297 Nam := Opnd;
298 elsif Nkind (Opnd) = N_Function_Call then
299 Nam := Name (Opnd);
300 else
301 return;
302 end if;
304 else
305 return;
306 end if;
308 if Opnd = Left_Opnd (N) then
309 Error_Msg_N ("\left operand has the following interpretations", N);
310 else
311 Error_Msg_N
312 ("\right operand has the following interpretations", N);
313 Err := Opnd;
314 end if;
316 List_Interps (Nam, Err);
317 end List_Operand_Interps;
319 -- Start of processing for Ambiguous_Operands
321 begin
322 if Nkind (N) in N_Membership_Test then
323 Error_Msg_N ("ambiguous operands for membership", N);
325 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
326 Error_Msg_N ("ambiguous operands for equality", N);
328 else
329 Error_Msg_N ("ambiguous operands for comparison", N);
330 end if;
332 if All_Errors_Mode then
333 List_Operand_Interps (Left_Opnd (N));
334 List_Operand_Interps (Right_Opnd (N));
335 else
336 Error_Msg_N ("\use -gnatf switch for details", N);
337 end if;
338 end Ambiguous_Operands;
340 -----------------------
341 -- Analyze_Aggregate --
342 -----------------------
344 -- Most of the analysis of Aggregates requires that the type be known,
345 -- and is therefore put off until resolution.
347 procedure Analyze_Aggregate (N : Node_Id) is
348 begin
349 if No (Etype (N)) then
350 Set_Etype (N, Any_Composite);
351 end if;
352 end Analyze_Aggregate;
354 -----------------------
355 -- Analyze_Allocator --
356 -----------------------
358 procedure Analyze_Allocator (N : Node_Id) is
359 Loc : constant Source_Ptr := Sloc (N);
360 Sav_Errs : constant Nat := Serious_Errors_Detected;
361 E : Node_Id := Expression (N);
362 Acc_Type : Entity_Id;
363 Type_Id : Entity_Id;
365 begin
366 -- In accordance with H.4(7), the No_Allocators restriction only applies
367 -- to user-written allocators.
369 if Comes_From_Source (N) then
370 Check_Restriction (No_Allocators, N);
371 end if;
373 if Nkind (E) = N_Qualified_Expression then
374 Acc_Type := Create_Itype (E_Allocator_Type, N);
375 Set_Etype (Acc_Type, Acc_Type);
376 Find_Type (Subtype_Mark (E));
378 -- Analyze the qualified expression, and apply the name resolution
379 -- rule given in 4.7 (3).
381 Analyze (E);
382 Type_Id := Etype (E);
383 Set_Directly_Designated_Type (Acc_Type, Type_Id);
385 Resolve (Expression (E), Type_Id);
387 if Is_Limited_Type (Type_Id)
388 and then Comes_From_Source (N)
389 and then not In_Instance_Body
390 then
391 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
392 Error_Msg_N ("initialization not allowed for limited types", N);
393 Explain_Limited_Type (Type_Id, N);
394 end if;
395 end if;
397 -- A qualified expression requires an exact match of the type,
398 -- class-wide matching is not allowed.
400 -- if Is_Class_Wide_Type (Type_Id)
401 -- and then Base_Type
402 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
403 -- then
404 -- Wrong_Type (Expression (E), Type_Id);
405 -- end if;
407 Check_Non_Static_Context (Expression (E));
409 -- We don't analyze the qualified expression itself because it's
410 -- part of the allocator
412 Set_Etype (E, Type_Id);
414 -- Case where allocator has a subtype indication
416 else
417 declare
418 Def_Id : Entity_Id;
419 Base_Typ : Entity_Id;
421 begin
422 -- If the allocator includes a N_Subtype_Indication then a
423 -- constraint is present, otherwise the node is a subtype mark.
424 -- Introduce an explicit subtype declaration into the tree
425 -- defining some anonymous subtype and rewrite the allocator to
426 -- use this subtype rather than the subtype indication.
428 -- It is important to introduce the explicit subtype declaration
429 -- so that the bounds of the subtype indication are attached to
430 -- the tree in case the allocator is inside a generic unit.
432 if Nkind (E) = N_Subtype_Indication then
434 -- A constraint is only allowed for a composite type in Ada
435 -- 95. In Ada 83, a constraint is also allowed for an
436 -- access-to-composite type, but the constraint is ignored.
438 Find_Type (Subtype_Mark (E));
439 Base_Typ := Entity (Subtype_Mark (E));
441 if Is_Elementary_Type (Base_Typ) then
442 if not (Ada_Version = Ada_83
443 and then Is_Access_Type (Base_Typ))
444 then
445 Error_Msg_N ("constraint not allowed here", E);
447 if Nkind (Constraint (E)) =
448 N_Index_Or_Discriminant_Constraint
449 then
450 Error_Msg_N -- CODEFIX
451 ("\if qualified expression was meant, " &
452 "use apostrophe", Constraint (E));
453 end if;
454 end if;
456 -- Get rid of the bogus constraint:
458 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
459 Analyze_Allocator (N);
460 return;
462 -- Ada 2005, AI-363: if the designated type has a constrained
463 -- partial view, it cannot receive a discriminant constraint,
464 -- and the allocated object is unconstrained.
466 elsif Ada_Version >= Ada_05
467 and then Has_Constrained_Partial_View (Base_Typ)
468 then
469 Error_Msg_N
470 ("constraint no allowed when type " &
471 "has a constrained partial view", Constraint (E));
472 end if;
474 if Expander_Active then
475 Def_Id := Make_Temporary (Loc, 'S');
477 Insert_Action (E,
478 Make_Subtype_Declaration (Loc,
479 Defining_Identifier => Def_Id,
480 Subtype_Indication => Relocate_Node (E)));
482 if Sav_Errs /= Serious_Errors_Detected
483 and then Nkind (Constraint (E)) =
484 N_Index_Or_Discriminant_Constraint
485 then
486 Error_Msg_N -- CODEFIX
487 ("if qualified expression was meant, " &
488 "use apostrophe!", Constraint (E));
489 end if;
491 E := New_Occurrence_Of (Def_Id, Loc);
492 Rewrite (Expression (N), E);
493 end if;
494 end if;
496 Type_Id := Process_Subtype (E, N);
497 Acc_Type := Create_Itype (E_Allocator_Type, N);
498 Set_Etype (Acc_Type, Acc_Type);
499 Set_Directly_Designated_Type (Acc_Type, Type_Id);
500 Check_Fully_Declared (Type_Id, N);
502 -- Ada 2005 (AI-231): If the designated type is itself an access
503 -- type that excludes null, its default initialization will
504 -- be a null object, and we can insert an unconditional raise
505 -- before the allocator.
507 if Can_Never_Be_Null (Type_Id) then
508 declare
509 Not_Null_Check : constant Node_Id :=
510 Make_Raise_Constraint_Error (Sloc (E),
511 Reason => CE_Null_Not_Allowed);
512 begin
513 if Expander_Active then
514 Insert_Action (N, Not_Null_Check);
515 Analyze (Not_Null_Check);
516 else
517 Error_Msg_N ("null value not allowed here?", E);
518 end if;
519 end;
520 end if;
522 -- Check restriction against dynamically allocated protected
523 -- objects. Note that when limited aggregates are supported,
524 -- a similar test should be applied to an allocator with a
525 -- qualified expression ???
527 if Is_Protected_Type (Type_Id) then
528 Check_Restriction (No_Protected_Type_Allocators, N);
529 end if;
531 -- Check for missing initialization. Skip this check if we already
532 -- had errors on analyzing the allocator, since in that case these
533 -- are probably cascaded errors.
535 if Is_Indefinite_Subtype (Type_Id)
536 and then Serious_Errors_Detected = Sav_Errs
537 then
538 if Is_Class_Wide_Type (Type_Id) then
539 Error_Msg_N
540 ("initialization required in class-wide allocation", N);
541 else
542 if Ada_Version < Ada_05
543 and then Is_Limited_Type (Type_Id)
544 then
545 Error_Msg_N ("unconstrained allocation not allowed", N);
547 if Is_Array_Type (Type_Id) then
548 Error_Msg_N
549 ("\constraint with array bounds required", N);
551 elsif Has_Unknown_Discriminants (Type_Id) then
552 null;
554 else pragma Assert (Has_Discriminants (Type_Id));
555 Error_Msg_N
556 ("\constraint with discriminant values required", N);
557 end if;
559 -- Limited Ada 2005 and general non-limited case
561 else
562 Error_Msg_N
563 ("uninitialized unconstrained allocation not allowed",
566 if Is_Array_Type (Type_Id) then
567 Error_Msg_N
568 ("\qualified expression or constraint with " &
569 "array bounds required", N);
571 elsif Has_Unknown_Discriminants (Type_Id) then
572 Error_Msg_N ("\qualified expression required", N);
574 else pragma Assert (Has_Discriminants (Type_Id));
575 Error_Msg_N
576 ("\qualified expression or constraint with " &
577 "discriminant values required", N);
578 end if;
579 end if;
580 end if;
581 end if;
582 end;
583 end if;
585 if Is_Abstract_Type (Type_Id) then
586 Error_Msg_N ("cannot allocate abstract object", E);
587 end if;
589 if Has_Task (Designated_Type (Acc_Type)) then
590 Check_Restriction (No_Tasking, N);
591 Check_Restriction (Max_Tasks, N);
592 Check_Restriction (No_Task_Allocators, N);
593 end if;
595 -- If the No_Streams restriction is set, check that the type of the
596 -- object is not, and does not contain, any subtype derived from
597 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
598 -- Has_Stream just for efficiency reasons. There is no point in
599 -- spending time on a Has_Stream check if the restriction is not set.
601 if Restrictions.Set (No_Streams) then
602 if Has_Stream (Designated_Type (Acc_Type)) then
603 Check_Restriction (No_Streams, N);
604 end if;
605 end if;
607 Set_Etype (N, Acc_Type);
609 if not Is_Library_Level_Entity (Acc_Type) then
610 Check_Restriction (No_Local_Allocators, N);
611 end if;
613 if Serious_Errors_Detected > Sav_Errs then
614 Set_Error_Posted (N);
615 Set_Etype (N, Any_Type);
616 end if;
617 end Analyze_Allocator;
619 ---------------------------
620 -- Analyze_Arithmetic_Op --
621 ---------------------------
623 procedure Analyze_Arithmetic_Op (N : Node_Id) is
624 L : constant Node_Id := Left_Opnd (N);
625 R : constant Node_Id := Right_Opnd (N);
626 Op_Id : Entity_Id;
628 begin
629 Candidate_Type := Empty;
630 Analyze_Expression (L);
631 Analyze_Expression (R);
633 -- If the entity is already set, the node is the instantiation of a
634 -- generic node with a non-local reference, or was manufactured by a
635 -- call to Make_Op_xxx. In either case the entity is known to be valid,
636 -- and we do not need to collect interpretations, instead we just get
637 -- the single possible interpretation.
639 Op_Id := Entity (N);
641 if Present (Op_Id) then
642 if Ekind (Op_Id) = E_Operator then
644 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
645 and then Treat_Fixed_As_Integer (N)
646 then
647 null;
648 else
649 Set_Etype (N, Any_Type);
650 Find_Arithmetic_Types (L, R, Op_Id, N);
651 end if;
653 else
654 Set_Etype (N, Any_Type);
655 Add_One_Interp (N, Op_Id, Etype (Op_Id));
656 end if;
658 -- Entity is not already set, so we do need to collect interpretations
660 else
661 Op_Id := Get_Name_Entity_Id (Chars (N));
662 Set_Etype (N, Any_Type);
664 while Present (Op_Id) loop
665 if Ekind (Op_Id) = E_Operator
666 and then Present (Next_Entity (First_Entity (Op_Id)))
667 then
668 Find_Arithmetic_Types (L, R, Op_Id, N);
670 -- The following may seem superfluous, because an operator cannot
671 -- be generic, but this ignores the cleverness of the author of
672 -- ACVC bc1013a.
674 elsif Is_Overloadable (Op_Id) then
675 Analyze_User_Defined_Binary_Op (N, Op_Id);
676 end if;
678 Op_Id := Homonym (Op_Id);
679 end loop;
680 end if;
682 Operator_Check (N);
683 end Analyze_Arithmetic_Op;
685 ------------------
686 -- Analyze_Call --
687 ------------------
689 -- Function, procedure, and entry calls are checked here. The Name in
690 -- the call may be overloaded. The actuals have been analyzed and may
691 -- themselves be overloaded. On exit from this procedure, the node N
692 -- may have zero, one or more interpretations. In the first case an
693 -- error message is produced. In the last case, the node is flagged
694 -- as overloaded and the interpretations are collected in All_Interp.
696 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
697 -- the type-checking is similar to that of other calls.
699 procedure Analyze_Call (N : Node_Id) is
700 Actuals : constant List_Id := Parameter_Associations (N);
701 Nam : Node_Id;
702 X : Interp_Index;
703 It : Interp;
704 Nam_Ent : Entity_Id;
705 Success : Boolean := False;
707 Deref : Boolean := False;
708 -- Flag indicates whether an interpretation of the prefix is a
709 -- parameterless call that returns an access_to_subprogram.
711 function Name_Denotes_Function return Boolean;
712 -- If the type of the name is an access to subprogram, this may be the
713 -- type of a name, or the return type of the function being called. If
714 -- the name is not an entity then it can denote a protected function.
715 -- Until we distinguish Etype from Return_Type, we must use this routine
716 -- to resolve the meaning of the name in the call.
718 procedure No_Interpretation;
719 -- Output error message when no valid interpretation exists
721 ---------------------------
722 -- Name_Denotes_Function --
723 ---------------------------
725 function Name_Denotes_Function return Boolean is
726 begin
727 if Is_Entity_Name (Nam) then
728 return Ekind (Entity (Nam)) = E_Function;
730 elsif Nkind (Nam) = N_Selected_Component then
731 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
733 else
734 return False;
735 end if;
736 end Name_Denotes_Function;
738 -----------------------
739 -- No_Interpretation --
740 -----------------------
742 procedure No_Interpretation is
743 L : constant Boolean := Is_List_Member (N);
744 K : constant Node_Kind := Nkind (Parent (N));
746 begin
747 -- If the node is in a list whose parent is not an expression then it
748 -- must be an attempted procedure call.
750 if L and then K not in N_Subexpr then
751 if Ekind (Entity (Nam)) = E_Generic_Procedure then
752 Error_Msg_NE
753 ("must instantiate generic procedure& before call",
754 Nam, Entity (Nam));
755 else
756 Error_Msg_N
757 ("procedure or entry name expected", Nam);
758 end if;
760 -- Check for tasking cases where only an entry call will do
762 elsif not L
763 and then Nkind_In (K, N_Entry_Call_Alternative,
764 N_Triggering_Alternative)
765 then
766 Error_Msg_N ("entry name expected", Nam);
768 -- Otherwise give general error message
770 else
771 Error_Msg_N ("invalid prefix in call", Nam);
772 end if;
773 end No_Interpretation;
775 -- Start of processing for Analyze_Call
777 begin
778 -- Initialize the type of the result of the call to the error type,
779 -- which will be reset if the type is successfully resolved.
781 Set_Etype (N, Any_Type);
783 Nam := Name (N);
785 if not Is_Overloaded (Nam) then
787 -- Only one interpretation to check
789 if Ekind (Etype (Nam)) = E_Subprogram_Type then
790 Nam_Ent := Etype (Nam);
792 -- If the prefix is an access_to_subprogram, this may be an indirect
793 -- call. This is the case if the name in the call is not an entity
794 -- name, or if it is a function name in the context of a procedure
795 -- call. In this latter case, we have a call to a parameterless
796 -- function that returns a pointer_to_procedure which is the entity
797 -- being called. Finally, F (X) may be a call to a parameterless
798 -- function that returns a pointer to a function with parameters.
800 elsif Is_Access_Type (Etype (Nam))
801 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
802 and then
803 (not Name_Denotes_Function
804 or else Nkind (N) = N_Procedure_Call_Statement
805 or else
806 (Nkind (Parent (N)) /= N_Explicit_Dereference
807 and then Is_Entity_Name (Nam)
808 and then No (First_Formal (Entity (Nam)))
809 and then Present (Actuals)))
810 then
811 Nam_Ent := Designated_Type (Etype (Nam));
812 Insert_Explicit_Dereference (Nam);
814 -- Selected component case. Simple entry or protected operation,
815 -- where the entry name is given by the selector name.
817 elsif Nkind (Nam) = N_Selected_Component then
818 Nam_Ent := Entity (Selector_Name (Nam));
820 if not Ekind_In (Nam_Ent, E_Entry,
821 E_Entry_Family,
822 E_Function,
823 E_Procedure)
824 then
825 Error_Msg_N ("name in call is not a callable entity", Nam);
826 Set_Etype (N, Any_Type);
827 return;
828 end if;
830 -- If the name is an Indexed component, it can be a call to a member
831 -- of an entry family. The prefix must be a selected component whose
832 -- selector is the entry. Analyze_Procedure_Call normalizes several
833 -- kinds of call into this form.
835 elsif Nkind (Nam) = N_Indexed_Component then
836 if Nkind (Prefix (Nam)) = N_Selected_Component then
837 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
838 else
839 Error_Msg_N ("name in call is not a callable entity", Nam);
840 Set_Etype (N, Any_Type);
841 return;
842 end if;
844 elsif not Is_Entity_Name (Nam) then
845 Error_Msg_N ("name in call is not a callable entity", Nam);
846 Set_Etype (N, Any_Type);
847 return;
849 else
850 Nam_Ent := Entity (Nam);
852 -- If no interpretations, give error message
854 if not Is_Overloadable (Nam_Ent) then
855 No_Interpretation;
856 return;
857 end if;
858 end if;
860 -- Operations generated for RACW stub types are called only through
861 -- dispatching, and can never be the static interpretation of a call.
863 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
864 No_Interpretation;
865 return;
866 end if;
868 Analyze_One_Call (N, Nam_Ent, True, Success);
870 -- If this is an indirect call, the return type of the access_to
871 -- subprogram may be an incomplete type. At the point of the call,
872 -- use the full type if available, and at the same time update
873 -- the return type of the access_to_subprogram.
875 if Success
876 and then Nkind (Nam) = N_Explicit_Dereference
877 and then Ekind (Etype (N)) = E_Incomplete_Type
878 and then Present (Full_View (Etype (N)))
879 then
880 Set_Etype (N, Full_View (Etype (N)));
881 Set_Etype (Nam_Ent, Etype (N));
882 end if;
884 else
885 -- An overloaded selected component must denote overloaded operations
886 -- of a concurrent type. The interpretations are attached to the
887 -- simple name of those operations.
889 if Nkind (Nam) = N_Selected_Component then
890 Nam := Selector_Name (Nam);
891 end if;
893 Get_First_Interp (Nam, X, It);
895 while Present (It.Nam) loop
896 Nam_Ent := It.Nam;
897 Deref := False;
899 -- Name may be call that returns an access to subprogram, or more
900 -- generally an overloaded expression one of whose interpretations
901 -- yields an access to subprogram. If the name is an entity, we
902 -- do not dereference, because the node is a call that returns
903 -- the access type: note difference between f(x), where the call
904 -- may return an access subprogram type, and f(x)(y), where the
905 -- type returned by the call to f is implicitly dereferenced to
906 -- analyze the outer call.
908 if Is_Access_Type (Nam_Ent) then
909 Nam_Ent := Designated_Type (Nam_Ent);
911 elsif Is_Access_Type (Etype (Nam_Ent))
912 and then
913 (not Is_Entity_Name (Nam)
914 or else Nkind (N) = N_Procedure_Call_Statement)
915 and then Ekind (Designated_Type (Etype (Nam_Ent)))
916 = E_Subprogram_Type
917 then
918 Nam_Ent := Designated_Type (Etype (Nam_Ent));
920 if Is_Entity_Name (Nam) then
921 Deref := True;
922 end if;
923 end if;
925 -- If the call has been rewritten from a prefixed call, the first
926 -- parameter has been analyzed, but may need a subsequent
927 -- dereference, so skip its analysis now.
929 if N /= Original_Node (N)
930 and then Nkind (Original_Node (N)) = Nkind (N)
931 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
932 and then Present (Parameter_Associations (N))
933 and then Present (Etype (First (Parameter_Associations (N))))
934 then
935 Analyze_One_Call
936 (N, Nam_Ent, False, Success, Skip_First => True);
937 else
938 Analyze_One_Call (N, Nam_Ent, False, Success);
939 end if;
941 -- If the interpretation succeeds, mark the proper type of the
942 -- prefix (any valid candidate will do). If not, remove the
943 -- candidate interpretation. This only needs to be done for
944 -- overloaded protected operations, for other entities disambi-
945 -- guation is done directly in Resolve.
947 if Success then
948 if Deref
949 and then Nkind (Parent (N)) /= N_Explicit_Dereference
950 then
951 Set_Entity (Nam, It.Nam);
952 Insert_Explicit_Dereference (Nam);
953 Set_Etype (Nam, Nam_Ent);
955 else
956 Set_Etype (Nam, It.Typ);
957 end if;
959 elsif Nkind_In (Name (N), N_Selected_Component,
960 N_Function_Call)
961 then
962 Remove_Interp (X);
963 end if;
965 Get_Next_Interp (X, It);
966 end loop;
968 -- If the name is the result of a function call, it can only
969 -- be a call to a function returning an access to subprogram.
970 -- Insert explicit dereference.
972 if Nkind (Nam) = N_Function_Call then
973 Insert_Explicit_Dereference (Nam);
974 end if;
976 if Etype (N) = Any_Type then
978 -- None of the interpretations is compatible with the actuals
980 Diagnose_Call (N, Nam);
982 -- Special checks for uninstantiated put routines
984 if Nkind (N) = N_Procedure_Call_Statement
985 and then Is_Entity_Name (Nam)
986 and then Chars (Nam) = Name_Put
987 and then List_Length (Actuals) = 1
988 then
989 declare
990 Arg : constant Node_Id := First (Actuals);
991 Typ : Entity_Id;
993 begin
994 if Nkind (Arg) = N_Parameter_Association then
995 Typ := Etype (Explicit_Actual_Parameter (Arg));
996 else
997 Typ := Etype (Arg);
998 end if;
1000 if Is_Signed_Integer_Type (Typ) then
1001 Error_Msg_N
1002 ("possible missing instantiation of " &
1003 "'Text_'I'O.'Integer_'I'O!", Nam);
1005 elsif Is_Modular_Integer_Type (Typ) then
1006 Error_Msg_N
1007 ("possible missing instantiation of " &
1008 "'Text_'I'O.'Modular_'I'O!", Nam);
1010 elsif Is_Floating_Point_Type (Typ) then
1011 Error_Msg_N
1012 ("possible missing instantiation of " &
1013 "'Text_'I'O.'Float_'I'O!", Nam);
1015 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1016 Error_Msg_N
1017 ("possible missing instantiation of " &
1018 "'Text_'I'O.'Fixed_'I'O!", Nam);
1020 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1021 Error_Msg_N
1022 ("possible missing instantiation of " &
1023 "'Text_'I'O.'Decimal_'I'O!", Nam);
1025 elsif Is_Enumeration_Type (Typ) then
1026 Error_Msg_N
1027 ("possible missing instantiation of " &
1028 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1029 end if;
1030 end;
1031 end if;
1033 elsif not Is_Overloaded (N)
1034 and then Is_Entity_Name (Nam)
1035 then
1036 -- Resolution yields a single interpretation. Verify that the
1037 -- reference has capitalization consistent with the declaration.
1039 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1040 Generate_Reference (Entity (Nam), Nam);
1042 Set_Etype (Nam, Etype (Entity (Nam)));
1043 else
1044 Remove_Abstract_Operations (N);
1045 end if;
1047 End_Interp_List;
1048 end if;
1049 end Analyze_Call;
1051 -----------------------------
1052 -- Analyze_Case_Expression --
1053 -----------------------------
1055 procedure Analyze_Case_Expression (N : Node_Id) is
1056 Expr : constant Node_Id := Expression (N);
1057 FirstX : constant Node_Id := Expression (First (Alternatives (N)));
1058 Alt : Node_Id;
1059 Exp_Type : Entity_Id;
1060 Exp_Btype : Entity_Id;
1062 Last_Choice : Nat;
1063 Dont_Care : Boolean;
1064 Others_Present : Boolean;
1066 procedure Non_Static_Choice_Error (Choice : Node_Id);
1067 -- Error routine invoked by the generic instantiation below when
1068 -- the case expression has a non static choice.
1070 package Case_Choices_Processing is new
1071 Generic_Choices_Processing
1072 (Get_Alternatives => Alternatives,
1073 Get_Choices => Discrete_Choices,
1074 Process_Empty_Choice => No_OP,
1075 Process_Non_Static_Choice => Non_Static_Choice_Error,
1076 Process_Associated_Node => No_OP);
1077 use Case_Choices_Processing;
1079 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
1081 -----------------------------
1082 -- Non_Static_Choice_Error --
1083 -----------------------------
1085 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1086 begin
1087 Flag_Non_Static_Expr
1088 ("choice given in case expression is not static!", Choice);
1089 end Non_Static_Choice_Error;
1091 -- Start of processing for Analyze_Case_Expression
1093 begin
1094 if Comes_From_Source (N) then
1095 Check_Compiler_Unit (N);
1096 end if;
1098 Analyze_And_Resolve (Expr, Any_Discrete);
1099 Check_Unset_Reference (Expr);
1100 Exp_Type := Etype (Expr);
1101 Exp_Btype := Base_Type (Exp_Type);
1103 Alt := First (Alternatives (N));
1104 while Present (Alt) loop
1105 Analyze (Expression (Alt));
1106 Next (Alt);
1107 end loop;
1109 if not Is_Overloaded (FirstX) then
1110 Set_Etype (N, Etype (FirstX));
1112 else
1113 declare
1114 I : Interp_Index;
1115 It : Interp;
1117 begin
1118 Set_Etype (N, Any_Type);
1120 Get_First_Interp (FirstX, I, It);
1121 while Present (It.Nam) loop
1123 -- For each intepretation of the first expression, we only
1124 -- add the intepretation if every other expression in the
1125 -- case expression alternatives has a compatible type.
1127 Alt := Next (First (Alternatives (N)));
1128 while Present (Alt) loop
1129 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1130 Next (Alt);
1131 end loop;
1133 if No (Alt) then
1134 Add_One_Interp (N, It.Typ, It.Typ);
1135 end if;
1137 Get_Next_Interp (I, It);
1138 end loop;
1139 end;
1140 end if;
1142 Exp_Btype := Base_Type (Exp_Type);
1144 -- The expression must be of a discrete type which must be determinable
1145 -- independently of the context in which the expression occurs, but
1146 -- using the fact that the expression must be of a discrete type.
1147 -- Moreover, the type this expression must not be a character literal
1148 -- (which is always ambiguous).
1150 -- If error already reported by Resolve, nothing more to do
1152 if Exp_Btype = Any_Discrete
1153 or else Exp_Btype = Any_Type
1154 then
1155 return;
1157 elsif Exp_Btype = Any_Character then
1158 Error_Msg_N
1159 ("character literal as case expression is ambiguous", Expr);
1160 return;
1161 end if;
1163 -- If the case expression is a formal object of mode in out, then
1164 -- treat it as having a nonstatic subtype by forcing use of the base
1165 -- type (which has to get passed to Check_Case_Choices below). Also
1166 -- use base type when the case expression is parenthesized.
1168 if Paren_Count (Expr) > 0
1169 or else (Is_Entity_Name (Expr)
1170 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1171 then
1172 Exp_Type := Exp_Btype;
1173 end if;
1175 -- Call instantiated Analyze_Choices which does the rest of the work
1177 Analyze_Choices
1178 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
1180 if Exp_Type = Universal_Integer and then not Others_Present then
1181 Error_Msg_N
1182 ("case on universal integer requires OTHERS choice", Expr);
1183 end if;
1184 end Analyze_Case_Expression;
1186 ---------------------------
1187 -- Analyze_Comparison_Op --
1188 ---------------------------
1190 procedure Analyze_Comparison_Op (N : Node_Id) is
1191 L : constant Node_Id := Left_Opnd (N);
1192 R : constant Node_Id := Right_Opnd (N);
1193 Op_Id : Entity_Id := Entity (N);
1195 begin
1196 Set_Etype (N, Any_Type);
1197 Candidate_Type := Empty;
1199 Analyze_Expression (L);
1200 Analyze_Expression (R);
1202 if Present (Op_Id) then
1203 if Ekind (Op_Id) = E_Operator then
1204 Find_Comparison_Types (L, R, Op_Id, N);
1205 else
1206 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1207 end if;
1209 if Is_Overloaded (L) then
1210 Set_Etype (L, Intersect_Types (L, R));
1211 end if;
1213 else
1214 Op_Id := Get_Name_Entity_Id (Chars (N));
1215 while Present (Op_Id) loop
1216 if Ekind (Op_Id) = E_Operator then
1217 Find_Comparison_Types (L, R, Op_Id, N);
1218 else
1219 Analyze_User_Defined_Binary_Op (N, Op_Id);
1220 end if;
1222 Op_Id := Homonym (Op_Id);
1223 end loop;
1224 end if;
1226 Operator_Check (N);
1227 end Analyze_Comparison_Op;
1229 ---------------------------
1230 -- Analyze_Concatenation --
1231 ---------------------------
1233 procedure Analyze_Concatenation (N : Node_Id) is
1235 -- We wish to avoid deep recursion, because concatenations are often
1236 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1237 -- operands nonrecursively until we find something that is not a
1238 -- concatenation (A in this case), or has already been analyzed. We
1239 -- analyze that, and then walk back up the tree following Parent
1240 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1241 -- work at each level. The Parent pointers allow us to avoid recursion,
1242 -- and thus avoid running out of memory.
1244 NN : Node_Id := N;
1245 L : Node_Id;
1247 begin
1248 Candidate_Type := Empty;
1250 -- The following code is equivalent to:
1252 -- Set_Etype (N, Any_Type);
1253 -- Analyze_Expression (Left_Opnd (N));
1254 -- Analyze_Concatenation_Rest (N);
1256 -- where the Analyze_Expression call recurses back here if the left
1257 -- operand is a concatenation.
1259 -- Walk down left operands
1261 loop
1262 Set_Etype (NN, Any_Type);
1263 L := Left_Opnd (NN);
1264 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1265 NN := L;
1266 end loop;
1268 -- Now (given the above example) NN is A&B and L is A
1270 -- First analyze L ...
1272 Analyze_Expression (L);
1274 -- ... then walk NN back up until we reach N (where we started), calling
1275 -- Analyze_Concatenation_Rest along the way.
1277 loop
1278 Analyze_Concatenation_Rest (NN);
1279 exit when NN = N;
1280 NN := Parent (NN);
1281 end loop;
1282 end Analyze_Concatenation;
1284 --------------------------------
1285 -- Analyze_Concatenation_Rest --
1286 --------------------------------
1288 -- If the only one-dimensional array type in scope is String,
1289 -- this is the resulting type of the operation. Otherwise there
1290 -- will be a concatenation operation defined for each user-defined
1291 -- one-dimensional array.
1293 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1294 L : constant Node_Id := Left_Opnd (N);
1295 R : constant Node_Id := Right_Opnd (N);
1296 Op_Id : Entity_Id := Entity (N);
1297 LT : Entity_Id;
1298 RT : Entity_Id;
1300 begin
1301 Analyze_Expression (R);
1303 -- If the entity is present, the node appears in an instance, and
1304 -- denotes a predefined concatenation operation. The resulting type is
1305 -- obtained from the arguments when possible. If the arguments are
1306 -- aggregates, the array type and the concatenation type must be
1307 -- visible.
1309 if Present (Op_Id) then
1310 if Ekind (Op_Id) = E_Operator then
1311 LT := Base_Type (Etype (L));
1312 RT := Base_Type (Etype (R));
1314 if Is_Array_Type (LT)
1315 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1316 then
1317 Add_One_Interp (N, Op_Id, LT);
1319 elsif Is_Array_Type (RT)
1320 and then LT = Base_Type (Component_Type (RT))
1321 then
1322 Add_One_Interp (N, Op_Id, RT);
1324 -- If one operand is a string type or a user-defined array type,
1325 -- and the other is a literal, result is of the specific type.
1327 elsif
1328 (Root_Type (LT) = Standard_String
1329 or else Scope (LT) /= Standard_Standard)
1330 and then Etype (R) = Any_String
1331 then
1332 Add_One_Interp (N, Op_Id, LT);
1334 elsif
1335 (Root_Type (RT) = Standard_String
1336 or else Scope (RT) /= Standard_Standard)
1337 and then Etype (L) = Any_String
1338 then
1339 Add_One_Interp (N, Op_Id, RT);
1341 elsif not Is_Generic_Type (Etype (Op_Id)) then
1342 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1344 else
1345 -- Type and its operations must be visible
1347 Set_Entity (N, Empty);
1348 Analyze_Concatenation (N);
1349 end if;
1351 else
1352 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1353 end if;
1355 else
1356 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1357 while Present (Op_Id) loop
1358 if Ekind (Op_Id) = E_Operator then
1360 -- Do not consider operators declared in dead code, they can
1361 -- not be part of the resolution.
1363 if Is_Eliminated (Op_Id) then
1364 null;
1365 else
1366 Find_Concatenation_Types (L, R, Op_Id, N);
1367 end if;
1369 else
1370 Analyze_User_Defined_Binary_Op (N, Op_Id);
1371 end if;
1373 Op_Id := Homonym (Op_Id);
1374 end loop;
1375 end if;
1377 Operator_Check (N);
1378 end Analyze_Concatenation_Rest;
1380 ------------------------------------
1381 -- Analyze_Conditional_Expression --
1382 ------------------------------------
1384 procedure Analyze_Conditional_Expression (N : Node_Id) is
1385 Condition : constant Node_Id := First (Expressions (N));
1386 Then_Expr : constant Node_Id := Next (Condition);
1387 Else_Expr : Node_Id;
1389 begin
1390 -- Defend against error of missing expressions from previous error
1392 if No (Then_Expr) then
1393 return;
1394 end if;
1396 Else_Expr := Next (Then_Expr);
1398 if Comes_From_Source (N) then
1399 Check_Compiler_Unit (N);
1400 end if;
1402 Analyze_Expression (Condition);
1403 Analyze_Expression (Then_Expr);
1405 if Present (Else_Expr) then
1406 Analyze_Expression (Else_Expr);
1407 end if;
1409 -- If then expression not overloaded, then that decides the type
1411 if not Is_Overloaded (Then_Expr) then
1412 Set_Etype (N, Etype (Then_Expr));
1414 -- Case where then expression is overloaded
1416 else
1417 declare
1418 I : Interp_Index;
1419 It : Interp;
1421 begin
1422 Set_Etype (N, Any_Type);
1423 Get_First_Interp (Then_Expr, I, It);
1424 while Present (It.Nam) loop
1426 -- For each possible intepretation of the Then Expression,
1427 -- add it only if the else expression has a compatible type.
1429 -- Is this right if Else_Expr is empty?
1431 if Has_Compatible_Type (Else_Expr, It.Typ) then
1432 Add_One_Interp (N, It.Typ, It.Typ);
1433 end if;
1435 Get_Next_Interp (I, It);
1436 end loop;
1437 end;
1438 end if;
1439 end Analyze_Conditional_Expression;
1441 -------------------------
1442 -- Analyze_Equality_Op --
1443 -------------------------
1445 procedure Analyze_Equality_Op (N : Node_Id) is
1446 Loc : constant Source_Ptr := Sloc (N);
1447 L : constant Node_Id := Left_Opnd (N);
1448 R : constant Node_Id := Right_Opnd (N);
1449 Op_Id : Entity_Id;
1451 begin
1452 Set_Etype (N, Any_Type);
1453 Candidate_Type := Empty;
1455 Analyze_Expression (L);
1456 Analyze_Expression (R);
1458 -- If the entity is set, the node is a generic instance with a non-local
1459 -- reference to the predefined operator or to a user-defined function.
1460 -- It can also be an inequality that is expanded into the negation of a
1461 -- call to a user-defined equality operator.
1463 -- For the predefined case, the result is Boolean, regardless of the
1464 -- type of the operands. The operands may even be limited, if they are
1465 -- generic actuals. If they are overloaded, label the left argument with
1466 -- the common type that must be present, or with the type of the formal
1467 -- of the user-defined function.
1469 if Present (Entity (N)) then
1470 Op_Id := Entity (N);
1472 if Ekind (Op_Id) = E_Operator then
1473 Add_One_Interp (N, Op_Id, Standard_Boolean);
1474 else
1475 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1476 end if;
1478 if Is_Overloaded (L) then
1479 if Ekind (Op_Id) = E_Operator then
1480 Set_Etype (L, Intersect_Types (L, R));
1481 else
1482 Set_Etype (L, Etype (First_Formal (Op_Id)));
1483 end if;
1484 end if;
1486 else
1487 Op_Id := Get_Name_Entity_Id (Chars (N));
1488 while Present (Op_Id) loop
1489 if Ekind (Op_Id) = E_Operator then
1490 Find_Equality_Types (L, R, Op_Id, N);
1491 else
1492 Analyze_User_Defined_Binary_Op (N, Op_Id);
1493 end if;
1495 Op_Id := Homonym (Op_Id);
1496 end loop;
1497 end if;
1499 -- If there was no match, and the operator is inequality, this may
1500 -- be a case where inequality has not been made explicit, as for
1501 -- tagged types. Analyze the node as the negation of an equality
1502 -- operation. This cannot be done earlier, because before analysis
1503 -- we cannot rule out the presence of an explicit inequality.
1505 if Etype (N) = Any_Type
1506 and then Nkind (N) = N_Op_Ne
1507 then
1508 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1509 while Present (Op_Id) loop
1510 if Ekind (Op_Id) = E_Operator then
1511 Find_Equality_Types (L, R, Op_Id, N);
1512 else
1513 Analyze_User_Defined_Binary_Op (N, Op_Id);
1514 end if;
1516 Op_Id := Homonym (Op_Id);
1517 end loop;
1519 if Etype (N) /= Any_Type then
1520 Op_Id := Entity (N);
1522 Rewrite (N,
1523 Make_Op_Not (Loc,
1524 Right_Opnd =>
1525 Make_Op_Eq (Loc,
1526 Left_Opnd => Left_Opnd (N),
1527 Right_Opnd => Right_Opnd (N))));
1529 Set_Entity (Right_Opnd (N), Op_Id);
1530 Analyze (N);
1531 end if;
1532 end if;
1534 Operator_Check (N);
1535 end Analyze_Equality_Op;
1537 ----------------------------------
1538 -- Analyze_Explicit_Dereference --
1539 ----------------------------------
1541 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1542 Loc : constant Source_Ptr := Sloc (N);
1543 P : constant Node_Id := Prefix (N);
1544 T : Entity_Id;
1545 I : Interp_Index;
1546 It : Interp;
1547 New_N : Node_Id;
1549 function Is_Function_Type return Boolean;
1550 -- Check whether node may be interpreted as an implicit function call
1552 ----------------------
1553 -- Is_Function_Type --
1554 ----------------------
1556 function Is_Function_Type return Boolean is
1557 I : Interp_Index;
1558 It : Interp;
1560 begin
1561 if not Is_Overloaded (N) then
1562 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1563 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1565 else
1566 Get_First_Interp (N, I, It);
1567 while Present (It.Nam) loop
1568 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1569 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1570 then
1571 return False;
1572 end if;
1574 Get_Next_Interp (I, It);
1575 end loop;
1577 return True;
1578 end if;
1579 end Is_Function_Type;
1581 -- Start of processing for Analyze_Explicit_Dereference
1583 begin
1584 Analyze (P);
1585 Set_Etype (N, Any_Type);
1587 -- Test for remote access to subprogram type, and if so return
1588 -- after rewriting the original tree.
1590 if Remote_AST_E_Dereference (P) then
1591 return;
1592 end if;
1594 -- Normal processing for other than remote access to subprogram type
1596 if not Is_Overloaded (P) then
1597 if Is_Access_Type (Etype (P)) then
1599 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1600 -- avoid other problems caused by the Private_Subtype and it is
1601 -- safe to go to the Base_Type because this is the same as
1602 -- converting the access value to its Base_Type.
1604 declare
1605 DT : Entity_Id := Designated_Type (Etype (P));
1607 begin
1608 if Ekind (DT) = E_Private_Subtype
1609 and then Is_For_Access_Subtype (DT)
1610 then
1611 DT := Base_Type (DT);
1612 end if;
1614 -- An explicit dereference is a legal occurrence of an
1615 -- incomplete type imported through a limited_with clause,
1616 -- if the full view is visible.
1618 if From_With_Type (DT)
1619 and then not From_With_Type (Scope (DT))
1620 and then
1621 (Is_Immediately_Visible (Scope (DT))
1622 or else
1623 (Is_Child_Unit (Scope (DT))
1624 and then Is_Visible_Child_Unit (Scope (DT))))
1625 then
1626 Set_Etype (N, Available_View (DT));
1628 else
1629 Set_Etype (N, DT);
1630 end if;
1631 end;
1633 elsif Etype (P) /= Any_Type then
1634 Error_Msg_N ("prefix of dereference must be an access type", N);
1635 return;
1636 end if;
1638 else
1639 Get_First_Interp (P, I, It);
1640 while Present (It.Nam) loop
1641 T := It.Typ;
1643 if Is_Access_Type (T) then
1644 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1645 end if;
1647 Get_Next_Interp (I, It);
1648 end loop;
1650 -- Error if no interpretation of the prefix has an access type
1652 if Etype (N) = Any_Type then
1653 Error_Msg_N
1654 ("access type required in prefix of explicit dereference", P);
1655 Set_Etype (N, Any_Type);
1656 return;
1657 end if;
1658 end if;
1660 if Is_Function_Type
1661 and then Nkind (Parent (N)) /= N_Indexed_Component
1663 and then (Nkind (Parent (N)) /= N_Function_Call
1664 or else N /= Name (Parent (N)))
1666 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1667 or else N /= Name (Parent (N)))
1669 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1670 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1671 or else
1672 (Attribute_Name (Parent (N)) /= Name_Address
1673 and then
1674 Attribute_Name (Parent (N)) /= Name_Access))
1675 then
1676 -- Name is a function call with no actuals, in a context that
1677 -- requires deproceduring (including as an actual in an enclosing
1678 -- function or procedure call). There are some pathological cases
1679 -- where the prefix might include functions that return access to
1680 -- subprograms and others that return a regular type. Disambiguation
1681 -- of those has to take place in Resolve.
1683 New_N :=
1684 Make_Function_Call (Loc,
1685 Name => Make_Explicit_Dereference (Loc, P),
1686 Parameter_Associations => New_List);
1688 -- If the prefix is overloaded, remove operations that have formals,
1689 -- we know that this is a parameterless call.
1691 if Is_Overloaded (P) then
1692 Get_First_Interp (P, I, It);
1693 while Present (It.Nam) loop
1694 T := It.Typ;
1696 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1697 Set_Etype (P, T);
1698 else
1699 Remove_Interp (I);
1700 end if;
1702 Get_Next_Interp (I, It);
1703 end loop;
1704 end if;
1706 Rewrite (N, New_N);
1707 Analyze (N);
1709 elsif not Is_Function_Type
1710 and then Is_Overloaded (N)
1711 then
1712 -- The prefix may include access to subprograms and other access
1713 -- types. If the context selects the interpretation that is a
1714 -- function call (not a procedure call) we cannot rewrite the node
1715 -- yet, but we include the result of the call interpretation.
1717 Get_First_Interp (N, I, It);
1718 while Present (It.Nam) loop
1719 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1720 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1721 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1722 then
1723 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1724 end if;
1726 Get_Next_Interp (I, It);
1727 end loop;
1728 end if;
1730 -- A value of remote access-to-class-wide must not be dereferenced
1731 -- (RM E.2.2(16)).
1733 Validate_Remote_Access_To_Class_Wide_Type (N);
1734 end Analyze_Explicit_Dereference;
1736 ------------------------
1737 -- Analyze_Expression --
1738 ------------------------
1740 procedure Analyze_Expression (N : Node_Id) is
1741 begin
1742 Analyze (N);
1743 Check_Parameterless_Call (N);
1744 end Analyze_Expression;
1746 -------------------------------------
1747 -- Analyze_Expression_With_Actions --
1748 -------------------------------------
1750 procedure Analyze_Expression_With_Actions (N : Node_Id) is
1751 A : Node_Id;
1753 begin
1754 A := First (Actions (N));
1755 loop
1756 Analyze (A);
1757 Next (A);
1758 exit when No (A);
1759 end loop;
1761 Analyze_Expression (Expression (N));
1762 Set_Etype (N, Etype (Expression (N)));
1763 end Analyze_Expression_With_Actions;
1765 ------------------------------------
1766 -- Analyze_Indexed_Component_Form --
1767 ------------------------------------
1769 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
1770 P : constant Node_Id := Prefix (N);
1771 Exprs : constant List_Id := Expressions (N);
1772 Exp : Node_Id;
1773 P_T : Entity_Id;
1774 E : Node_Id;
1775 U_N : Entity_Id;
1777 procedure Process_Function_Call;
1778 -- Prefix in indexed component form is an overloadable entity,
1779 -- so the node is a function call. Reformat it as such.
1781 procedure Process_Indexed_Component;
1782 -- Prefix in indexed component form is actually an indexed component.
1783 -- This routine processes it, knowing that the prefix is already
1784 -- resolved.
1786 procedure Process_Indexed_Component_Or_Slice;
1787 -- An indexed component with a single index may designate a slice if
1788 -- the index is a subtype mark. This routine disambiguates these two
1789 -- cases by resolving the prefix to see if it is a subtype mark.
1791 procedure Process_Overloaded_Indexed_Component;
1792 -- If the prefix of an indexed component is overloaded, the proper
1793 -- interpretation is selected by the index types and the context.
1795 ---------------------------
1796 -- Process_Function_Call --
1797 ---------------------------
1799 procedure Process_Function_Call is
1800 Actual : Node_Id;
1802 begin
1803 Change_Node (N, N_Function_Call);
1804 Set_Name (N, P);
1805 Set_Parameter_Associations (N, Exprs);
1807 -- Analyze actuals prior to analyzing the call itself
1809 Actual := First (Parameter_Associations (N));
1810 while Present (Actual) loop
1811 Analyze (Actual);
1812 Check_Parameterless_Call (Actual);
1814 -- Move to next actual. Note that we use Next, not Next_Actual
1815 -- here. The reason for this is a bit subtle. If a function call
1816 -- includes named associations, the parser recognizes the node as
1817 -- a call, and it is analyzed as such. If all associations are
1818 -- positional, the parser builds an indexed_component node, and
1819 -- it is only after analysis of the prefix that the construct
1820 -- is recognized as a call, in which case Process_Function_Call
1821 -- rewrites the node and analyzes the actuals. If the list of
1822 -- actuals is malformed, the parser may leave the node as an
1823 -- indexed component (despite the presence of named associations).
1824 -- The iterator Next_Actual is equivalent to Next if the list is
1825 -- positional, but follows the normalized chain of actuals when
1826 -- named associations are present. In this case normalization has
1827 -- not taken place, and actuals remain unanalyzed, which leads to
1828 -- subsequent crashes or loops if there is an attempt to continue
1829 -- analysis of the program.
1831 Next (Actual);
1832 end loop;
1834 Analyze_Call (N);
1835 end Process_Function_Call;
1837 -------------------------------
1838 -- Process_Indexed_Component --
1839 -------------------------------
1841 procedure Process_Indexed_Component is
1842 Exp : Node_Id;
1843 Array_Type : Entity_Id;
1844 Index : Node_Id;
1845 Pent : Entity_Id := Empty;
1847 begin
1848 Exp := First (Exprs);
1850 if Is_Overloaded (P) then
1851 Process_Overloaded_Indexed_Component;
1853 else
1854 Array_Type := Etype (P);
1856 if Is_Entity_Name (P) then
1857 Pent := Entity (P);
1858 elsif Nkind (P) = N_Selected_Component
1859 and then Is_Entity_Name (Selector_Name (P))
1860 then
1861 Pent := Entity (Selector_Name (P));
1862 end if;
1864 -- Prefix must be appropriate for an array type, taking into
1865 -- account a possible implicit dereference.
1867 if Is_Access_Type (Array_Type) then
1868 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
1869 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
1870 end if;
1872 if Is_Array_Type (Array_Type) then
1873 null;
1875 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
1876 Analyze (Exp);
1877 Set_Etype (N, Any_Type);
1879 if not Has_Compatible_Type
1880 (Exp, Entry_Index_Type (Pent))
1881 then
1882 Error_Msg_N ("invalid index type in entry name", N);
1884 elsif Present (Next (Exp)) then
1885 Error_Msg_N ("too many subscripts in entry reference", N);
1887 else
1888 Set_Etype (N, Etype (P));
1889 end if;
1891 return;
1893 elsif Is_Record_Type (Array_Type)
1894 and then Remote_AST_I_Dereference (P)
1895 then
1896 return;
1898 elsif Array_Type = Any_Type then
1899 Set_Etype (N, Any_Type);
1901 -- In most cases the analysis of the prefix will have emitted
1902 -- an error already, but if the prefix may be interpreted as a
1903 -- call in prefixed notation, the report is left to the caller.
1904 -- To prevent cascaded errors, report only if no previous ones.
1906 if Serious_Errors_Detected = 0 then
1907 Error_Msg_N ("invalid prefix in indexed component", P);
1909 if Nkind (P) = N_Expanded_Name then
1910 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
1911 end if;
1912 end if;
1914 return;
1916 -- Here we definitely have a bad indexing
1918 else
1919 if Nkind (Parent (N)) = N_Requeue_Statement
1920 and then Present (Pent) and then Ekind (Pent) = E_Entry
1921 then
1922 Error_Msg_N
1923 ("REQUEUE does not permit parameters", First (Exprs));
1925 elsif Is_Entity_Name (P)
1926 and then Etype (P) = Standard_Void_Type
1927 then
1928 Error_Msg_NE ("incorrect use of&", P, Entity (P));
1930 else
1931 Error_Msg_N ("array type required in indexed component", P);
1932 end if;
1934 Set_Etype (N, Any_Type);
1935 return;
1936 end if;
1938 Index := First_Index (Array_Type);
1939 while Present (Index) and then Present (Exp) loop
1940 if not Has_Compatible_Type (Exp, Etype (Index)) then
1941 Wrong_Type (Exp, Etype (Index));
1942 Set_Etype (N, Any_Type);
1943 return;
1944 end if;
1946 Next_Index (Index);
1947 Next (Exp);
1948 end loop;
1950 Set_Etype (N, Component_Type (Array_Type));
1952 if Present (Index) then
1953 Error_Msg_N
1954 ("too few subscripts in array reference", First (Exprs));
1956 elsif Present (Exp) then
1957 Error_Msg_N ("too many subscripts in array reference", Exp);
1958 end if;
1959 end if;
1960 end Process_Indexed_Component;
1962 ----------------------------------------
1963 -- Process_Indexed_Component_Or_Slice --
1964 ----------------------------------------
1966 procedure Process_Indexed_Component_Or_Slice is
1967 begin
1968 Exp := First (Exprs);
1969 while Present (Exp) loop
1970 Analyze_Expression (Exp);
1971 Next (Exp);
1972 end loop;
1974 Exp := First (Exprs);
1976 -- If one index is present, and it is a subtype name, then the
1977 -- node denotes a slice (note that the case of an explicit range
1978 -- for a slice was already built as an N_Slice node in the first
1979 -- place, so that case is not handled here).
1981 -- We use a replace rather than a rewrite here because this is one
1982 -- of the cases in which the tree built by the parser is plain wrong.
1984 if No (Next (Exp))
1985 and then Is_Entity_Name (Exp)
1986 and then Is_Type (Entity (Exp))
1987 then
1988 Replace (N,
1989 Make_Slice (Sloc (N),
1990 Prefix => P,
1991 Discrete_Range => New_Copy (Exp)));
1992 Analyze (N);
1994 -- Otherwise (more than one index present, or single index is not
1995 -- a subtype name), then we have the indexed component case.
1997 else
1998 Process_Indexed_Component;
1999 end if;
2000 end Process_Indexed_Component_Or_Slice;
2002 ------------------------------------------
2003 -- Process_Overloaded_Indexed_Component --
2004 ------------------------------------------
2006 procedure Process_Overloaded_Indexed_Component is
2007 Exp : Node_Id;
2008 I : Interp_Index;
2009 It : Interp;
2010 Typ : Entity_Id;
2011 Index : Node_Id;
2012 Found : Boolean;
2014 begin
2015 Set_Etype (N, Any_Type);
2017 Get_First_Interp (P, I, It);
2018 while Present (It.Nam) loop
2019 Typ := It.Typ;
2021 if Is_Access_Type (Typ) then
2022 Typ := Designated_Type (Typ);
2023 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
2024 end if;
2026 if Is_Array_Type (Typ) then
2028 -- Got a candidate: verify that index types are compatible
2030 Index := First_Index (Typ);
2031 Found := True;
2032 Exp := First (Exprs);
2033 while Present (Index) and then Present (Exp) loop
2034 if Has_Compatible_Type (Exp, Etype (Index)) then
2035 null;
2036 else
2037 Found := False;
2038 Remove_Interp (I);
2039 exit;
2040 end if;
2042 Next_Index (Index);
2043 Next (Exp);
2044 end loop;
2046 if Found and then No (Index) and then No (Exp) then
2047 Add_One_Interp (N,
2048 Etype (Component_Type (Typ)),
2049 Etype (Component_Type (Typ)));
2050 end if;
2051 end if;
2053 Get_Next_Interp (I, It);
2054 end loop;
2056 if Etype (N) = Any_Type then
2057 Error_Msg_N ("no legal interpretation for indexed component", N);
2058 Set_Is_Overloaded (N, False);
2059 end if;
2061 End_Interp_List;
2062 end Process_Overloaded_Indexed_Component;
2064 -- Start of processing for Analyze_Indexed_Component_Form
2066 begin
2067 -- Get name of array, function or type
2069 Analyze (P);
2071 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
2073 -- If P is an explicit dereference whose prefix is of a
2074 -- remote access-to-subprogram type, then N has already
2075 -- been rewritten as a subprogram call and analyzed.
2077 return;
2078 end if;
2080 pragma Assert (Nkind (N) = N_Indexed_Component);
2082 P_T := Base_Type (Etype (P));
2084 if Is_Entity_Name (P)
2085 or else Nkind (P) = N_Operator_Symbol
2086 then
2087 U_N := Entity (P);
2089 if Is_Type (U_N) then
2091 -- Reformat node as a type conversion
2093 E := Remove_Head (Exprs);
2095 if Present (First (Exprs)) then
2096 Error_Msg_N
2097 ("argument of type conversion must be single expression", N);
2098 end if;
2100 Change_Node (N, N_Type_Conversion);
2101 Set_Subtype_Mark (N, P);
2102 Set_Etype (N, U_N);
2103 Set_Expression (N, E);
2105 -- After changing the node, call for the specific Analysis
2106 -- routine directly, to avoid a double call to the expander.
2108 Analyze_Type_Conversion (N);
2109 return;
2110 end if;
2112 if Is_Overloadable (U_N) then
2113 Process_Function_Call;
2115 elsif Ekind (Etype (P)) = E_Subprogram_Type
2116 or else (Is_Access_Type (Etype (P))
2117 and then
2118 Ekind (Designated_Type (Etype (P))) =
2119 E_Subprogram_Type)
2120 then
2121 -- Call to access_to-subprogram with possible implicit dereference
2123 Process_Function_Call;
2125 elsif Is_Generic_Subprogram (U_N) then
2127 -- A common beginner's (or C++ templates fan) error
2129 Error_Msg_N ("generic subprogram cannot be called", N);
2130 Set_Etype (N, Any_Type);
2131 return;
2133 else
2134 Process_Indexed_Component_Or_Slice;
2135 end if;
2137 -- If not an entity name, prefix is an expression that may denote
2138 -- an array or an access-to-subprogram.
2140 else
2141 if Ekind (P_T) = E_Subprogram_Type
2142 or else (Is_Access_Type (P_T)
2143 and then
2144 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2145 then
2146 Process_Function_Call;
2148 elsif Nkind (P) = N_Selected_Component
2149 and then Is_Overloadable (Entity (Selector_Name (P)))
2150 then
2151 Process_Function_Call;
2153 else
2154 -- Indexed component, slice, or a call to a member of a family
2155 -- entry, which will be converted to an entry call later.
2157 Process_Indexed_Component_Or_Slice;
2158 end if;
2159 end if;
2160 end Analyze_Indexed_Component_Form;
2162 ------------------------
2163 -- Analyze_Logical_Op --
2164 ------------------------
2166 procedure Analyze_Logical_Op (N : Node_Id) is
2167 L : constant Node_Id := Left_Opnd (N);
2168 R : constant Node_Id := Right_Opnd (N);
2169 Op_Id : Entity_Id := Entity (N);
2171 begin
2172 Set_Etype (N, Any_Type);
2173 Candidate_Type := Empty;
2175 Analyze_Expression (L);
2176 Analyze_Expression (R);
2178 if Present (Op_Id) then
2180 if Ekind (Op_Id) = E_Operator then
2181 Find_Boolean_Types (L, R, Op_Id, N);
2182 else
2183 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2184 end if;
2186 else
2187 Op_Id := Get_Name_Entity_Id (Chars (N));
2188 while Present (Op_Id) loop
2189 if Ekind (Op_Id) = E_Operator then
2190 Find_Boolean_Types (L, R, Op_Id, N);
2191 else
2192 Analyze_User_Defined_Binary_Op (N, Op_Id);
2193 end if;
2195 Op_Id := Homonym (Op_Id);
2196 end loop;
2197 end if;
2199 Operator_Check (N);
2200 end Analyze_Logical_Op;
2202 ---------------------------
2203 -- Analyze_Membership_Op --
2204 ---------------------------
2206 procedure Analyze_Membership_Op (N : Node_Id) is
2207 L : constant Node_Id := Left_Opnd (N);
2208 R : constant Node_Id := Right_Opnd (N);
2210 Index : Interp_Index;
2211 It : Interp;
2212 Found : Boolean := False;
2213 I_F : Interp_Index;
2214 T_F : Entity_Id;
2216 procedure Try_One_Interp (T1 : Entity_Id);
2217 -- Routine to try one proposed interpretation. Note that the context
2218 -- of the operation plays no role in resolving the arguments, so that
2219 -- if there is more than one interpretation of the operands that is
2220 -- compatible with a membership test, the operation is ambiguous.
2222 --------------------
2223 -- Try_One_Interp --
2224 --------------------
2226 procedure Try_One_Interp (T1 : Entity_Id) is
2227 begin
2228 if Has_Compatible_Type (R, T1) then
2229 if Found
2230 and then Base_Type (T1) /= Base_Type (T_F)
2231 then
2232 It := Disambiguate (L, I_F, Index, Any_Type);
2234 if It = No_Interp then
2235 Ambiguous_Operands (N);
2236 Set_Etype (L, Any_Type);
2237 return;
2239 else
2240 T_F := It.Typ;
2241 end if;
2243 else
2244 Found := True;
2245 T_F := T1;
2246 I_F := Index;
2247 end if;
2249 Set_Etype (L, T_F);
2250 end if;
2251 end Try_One_Interp;
2253 procedure Analyze_Set_Membership;
2254 -- If a set of alternatives is present, analyze each and find the
2255 -- common type to which they must all resolve.
2257 ----------------------------
2258 -- Analyze_Set_Membership --
2259 ----------------------------
2261 procedure Analyze_Set_Membership is
2262 Alt : Node_Id;
2263 Index : Interp_Index;
2264 It : Interp;
2265 Candidate_Interps : Node_Id;
2266 Common_Type : Entity_Id := Empty;
2268 begin
2269 Analyze (L);
2270 Candidate_Interps := L;
2272 if not Is_Overloaded (L) then
2273 Common_Type := Etype (L);
2275 Alt := First (Alternatives (N));
2276 while Present (Alt) loop
2277 Analyze (Alt);
2279 if not Has_Compatible_Type (Alt, Common_Type) then
2280 Wrong_Type (Alt, Common_Type);
2281 end if;
2283 Next (Alt);
2284 end loop;
2286 else
2287 Alt := First (Alternatives (N));
2288 while Present (Alt) loop
2289 Analyze (Alt);
2290 if not Is_Overloaded (Alt) then
2291 Common_Type := Etype (Alt);
2293 else
2294 Get_First_Interp (Alt, Index, It);
2295 while Present (It.Typ) loop
2296 if not
2297 Has_Compatible_Type (Candidate_Interps, It.Typ)
2298 then
2299 Remove_Interp (Index);
2300 end if;
2302 Get_Next_Interp (Index, It);
2303 end loop;
2305 Get_First_Interp (Alt, Index, It);
2307 if No (It.Typ) then
2308 Error_Msg_N ("alternative has no legal type", Alt);
2309 return;
2310 end if;
2312 -- If alternative is not overloaded, we have a unique type
2313 -- for all of them.
2315 Set_Etype (Alt, It.Typ);
2316 Get_Next_Interp (Index, It);
2318 if No (It.Typ) then
2319 Set_Is_Overloaded (Alt, False);
2320 Common_Type := Etype (Alt);
2321 end if;
2323 Candidate_Interps := Alt;
2324 end if;
2326 Next (Alt);
2327 end loop;
2328 end if;
2330 Set_Etype (N, Standard_Boolean);
2332 if Present (Common_Type) then
2333 Set_Etype (L, Common_Type);
2334 Set_Is_Overloaded (L, False);
2336 else
2337 Error_Msg_N ("cannot resolve membership operation", N);
2338 end if;
2339 end Analyze_Set_Membership;
2341 -- Start of processing for Analyze_Membership_Op
2343 begin
2344 Analyze_Expression (L);
2346 if No (R)
2347 and then Ada_Version >= Ada_12
2348 then
2349 Analyze_Set_Membership;
2350 return;
2351 end if;
2353 if Nkind (R) = N_Range
2354 or else (Nkind (R) = N_Attribute_Reference
2355 and then Attribute_Name (R) = Name_Range)
2356 then
2357 Analyze (R);
2359 if not Is_Overloaded (L) then
2360 Try_One_Interp (Etype (L));
2362 else
2363 Get_First_Interp (L, Index, It);
2364 while Present (It.Typ) loop
2365 Try_One_Interp (It.Typ);
2366 Get_Next_Interp (Index, It);
2367 end loop;
2368 end if;
2370 -- If not a range, it can only be a subtype mark, or else there
2371 -- is a more basic error, to be diagnosed in Find_Type.
2373 else
2374 Find_Type (R);
2376 if Is_Entity_Name (R) then
2377 Check_Fully_Declared (Entity (R), R);
2378 end if;
2379 end if;
2381 -- Compatibility between expression and subtype mark or range is
2382 -- checked during resolution. The result of the operation is Boolean
2383 -- in any case.
2385 Set_Etype (N, Standard_Boolean);
2387 if Comes_From_Source (N)
2388 and then Present (Right_Opnd (N))
2389 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2390 then
2391 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2392 end if;
2393 end Analyze_Membership_Op;
2395 ----------------------
2396 -- Analyze_Negation --
2397 ----------------------
2399 procedure Analyze_Negation (N : Node_Id) is
2400 R : constant Node_Id := Right_Opnd (N);
2401 Op_Id : Entity_Id := Entity (N);
2403 begin
2404 Set_Etype (N, Any_Type);
2405 Candidate_Type := Empty;
2407 Analyze_Expression (R);
2409 if Present (Op_Id) then
2410 if Ekind (Op_Id) = E_Operator then
2411 Find_Negation_Types (R, Op_Id, N);
2412 else
2413 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2414 end if;
2416 else
2417 Op_Id := Get_Name_Entity_Id (Chars (N));
2418 while Present (Op_Id) loop
2419 if Ekind (Op_Id) = E_Operator then
2420 Find_Negation_Types (R, Op_Id, N);
2421 else
2422 Analyze_User_Defined_Unary_Op (N, Op_Id);
2423 end if;
2425 Op_Id := Homonym (Op_Id);
2426 end loop;
2427 end if;
2429 Operator_Check (N);
2430 end Analyze_Negation;
2432 ------------------
2433 -- Analyze_Null --
2434 ------------------
2436 procedure Analyze_Null (N : Node_Id) is
2437 begin
2438 Set_Etype (N, Any_Access);
2439 end Analyze_Null;
2441 ----------------------
2442 -- Analyze_One_Call --
2443 ----------------------
2445 procedure Analyze_One_Call
2446 (N : Node_Id;
2447 Nam : Entity_Id;
2448 Report : Boolean;
2449 Success : out Boolean;
2450 Skip_First : Boolean := False)
2452 Actuals : constant List_Id := Parameter_Associations (N);
2453 Prev_T : constant Entity_Id := Etype (N);
2455 Must_Skip : constant Boolean := Skip_First
2456 or else Nkind (Original_Node (N)) = N_Selected_Component
2457 or else
2458 (Nkind (Original_Node (N)) = N_Indexed_Component
2459 and then Nkind (Prefix (Original_Node (N)))
2460 = N_Selected_Component);
2461 -- The first formal must be omitted from the match when trying to find
2462 -- a primitive operation that is a possible interpretation, and also
2463 -- after the call has been rewritten, because the corresponding actual
2464 -- is already known to be compatible, and because this may be an
2465 -- indexing of a call with default parameters.
2467 Formal : Entity_Id;
2468 Actual : Node_Id;
2469 Is_Indexed : Boolean := False;
2470 Is_Indirect : Boolean := False;
2471 Subp_Type : constant Entity_Id := Etype (Nam);
2472 Norm_OK : Boolean;
2474 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2475 -- There may be a user-defined operator that hides the current
2476 -- interpretation. We must check for this independently of the
2477 -- analysis of the call with the user-defined operation, because
2478 -- the parameter names may be wrong and yet the hiding takes place.
2479 -- This fixes a problem with ACATS test B34014O.
2481 -- When the type Address is a visible integer type, and the DEC
2482 -- system extension is visible, the predefined operator may be
2483 -- hidden as well, by one of the address operations in auxdec.
2484 -- Finally, The abstract operations on address do not hide the
2485 -- predefined operator (this is the purpose of making them abstract).
2487 procedure Indicate_Name_And_Type;
2488 -- If candidate interpretation matches, indicate name and type of
2489 -- result on call node.
2491 ----------------------------
2492 -- Indicate_Name_And_Type --
2493 ----------------------------
2495 procedure Indicate_Name_And_Type is
2496 begin
2497 Add_One_Interp (N, Nam, Etype (Nam));
2498 Success := True;
2500 -- If the prefix of the call is a name, indicate the entity
2501 -- being called. If it is not a name, it is an expression that
2502 -- denotes an access to subprogram or else an entry or family. In
2503 -- the latter case, the name is a selected component, and the entity
2504 -- being called is noted on the selector.
2506 if not Is_Type (Nam) then
2507 if Is_Entity_Name (Name (N))
2508 or else Nkind (Name (N)) = N_Operator_Symbol
2509 then
2510 Set_Entity (Name (N), Nam);
2512 elsif Nkind (Name (N)) = N_Selected_Component then
2513 Set_Entity (Selector_Name (Name (N)), Nam);
2514 end if;
2515 end if;
2517 if Debug_Flag_E and not Report then
2518 Write_Str (" Overloaded call ");
2519 Write_Int (Int (N));
2520 Write_Str (" compatible with ");
2521 Write_Int (Int (Nam));
2522 Write_Eol;
2523 end if;
2524 end Indicate_Name_And_Type;
2526 ------------------------
2527 -- Operator_Hidden_By --
2528 ------------------------
2530 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2531 Act1 : constant Node_Id := First_Actual (N);
2532 Act2 : constant Node_Id := Next_Actual (Act1);
2533 Form1 : constant Entity_Id := First_Formal (Fun);
2534 Form2 : constant Entity_Id := Next_Formal (Form1);
2536 begin
2537 if Ekind (Fun) /= E_Function
2538 or else Is_Abstract_Subprogram (Fun)
2539 then
2540 return False;
2542 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2543 return False;
2545 elsif Present (Form2) then
2547 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2548 then
2549 return False;
2550 end if;
2552 elsif Present (Act2) then
2553 return False;
2554 end if;
2556 -- Now we know that the arity of the operator matches the function,
2557 -- and the function call is a valid interpretation. The function
2558 -- hides the operator if it has the right signature, or if one of
2559 -- its operands is a non-abstract operation on Address when this is
2560 -- a visible integer type.
2562 return Hides_Op (Fun, Nam)
2563 or else Is_Descendent_Of_Address (Etype (Form1))
2564 or else
2565 (Present (Form2)
2566 and then Is_Descendent_Of_Address (Etype (Form2)));
2567 end Operator_Hidden_By;
2569 -- Start of processing for Analyze_One_Call
2571 begin
2572 Success := False;
2574 -- If the subprogram has no formals or if all the formals have defaults,
2575 -- and the return type is an array type, the node may denote an indexing
2576 -- of the result of a parameterless call. In Ada 2005, the subprogram
2577 -- may have one non-defaulted formal, and the call may have been written
2578 -- in prefix notation, so that the rebuilt parameter list has more than
2579 -- one actual.
2581 if not Is_Overloadable (Nam)
2582 and then Ekind (Nam) /= E_Subprogram_Type
2583 and then Ekind (Nam) /= E_Entry_Family
2584 then
2585 return;
2586 end if;
2588 -- An indexing requires at least one actual
2590 if not Is_Empty_List (Actuals)
2591 and then
2592 (Needs_No_Actuals (Nam)
2593 or else
2594 (Needs_One_Actual (Nam)
2595 and then Present (Next_Actual (First (Actuals)))))
2596 then
2597 if Is_Array_Type (Subp_Type) then
2598 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
2600 elsif Is_Access_Type (Subp_Type)
2601 and then Is_Array_Type (Designated_Type (Subp_Type))
2602 then
2603 Is_Indexed :=
2604 Try_Indexed_Call
2605 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
2607 -- The prefix can also be a parameterless function that returns an
2608 -- access to subprogram, in which case this is an indirect call.
2609 -- If this succeeds, an explicit dereference is added later on,
2610 -- in Analyze_Call or Resolve_Call.
2612 elsif Is_Access_Type (Subp_Type)
2613 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
2614 then
2615 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
2616 end if;
2618 end if;
2620 -- If the call has been transformed into a slice, it is of the form
2621 -- F (Subtype) where F is parameterless. The node has been rewritten in
2622 -- Try_Indexed_Call and there is nothing else to do.
2624 if Is_Indexed
2625 and then Nkind (N) = N_Slice
2626 then
2627 return;
2628 end if;
2630 Normalize_Actuals
2631 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
2633 if not Norm_OK then
2635 -- If an indirect call is a possible interpretation, indicate
2636 -- success to the caller.
2638 if Is_Indirect then
2639 Success := True;
2640 return;
2642 -- Mismatch in number or names of parameters
2644 elsif Debug_Flag_E then
2645 Write_Str (" normalization fails in call ");
2646 Write_Int (Int (N));
2647 Write_Str (" with subprogram ");
2648 Write_Int (Int (Nam));
2649 Write_Eol;
2650 end if;
2652 -- If the context expects a function call, discard any interpretation
2653 -- that is a procedure. If the node is not overloaded, leave as is for
2654 -- better error reporting when type mismatch is found.
2656 elsif Nkind (N) = N_Function_Call
2657 and then Is_Overloaded (Name (N))
2658 and then Ekind (Nam) = E_Procedure
2659 then
2660 return;
2662 -- Ditto for function calls in a procedure context
2664 elsif Nkind (N) = N_Procedure_Call_Statement
2665 and then Is_Overloaded (Name (N))
2666 and then Etype (Nam) /= Standard_Void_Type
2667 then
2668 return;
2670 elsif No (Actuals) then
2672 -- If Normalize succeeds, then there are default parameters for
2673 -- all formals.
2675 Indicate_Name_And_Type;
2677 elsif Ekind (Nam) = E_Operator then
2678 if Nkind (N) = N_Procedure_Call_Statement then
2679 return;
2680 end if;
2682 -- This can occur when the prefix of the call is an operator
2683 -- name or an expanded name whose selector is an operator name.
2685 Analyze_Operator_Call (N, Nam);
2687 if Etype (N) /= Prev_T then
2689 -- Check that operator is not hidden by a function interpretation
2691 if Is_Overloaded (Name (N)) then
2692 declare
2693 I : Interp_Index;
2694 It : Interp;
2696 begin
2697 Get_First_Interp (Name (N), I, It);
2698 while Present (It.Nam) loop
2699 if Operator_Hidden_By (It.Nam) then
2700 Set_Etype (N, Prev_T);
2701 return;
2702 end if;
2704 Get_Next_Interp (I, It);
2705 end loop;
2706 end;
2707 end if;
2709 -- If operator matches formals, record its name on the call.
2710 -- If the operator is overloaded, Resolve will select the
2711 -- correct one from the list of interpretations. The call
2712 -- node itself carries the first candidate.
2714 Set_Entity (Name (N), Nam);
2715 Success := True;
2717 elsif Report and then Etype (N) = Any_Type then
2718 Error_Msg_N ("incompatible arguments for operator", N);
2719 end if;
2721 else
2722 -- Normalize_Actuals has chained the named associations in the
2723 -- correct order of the formals.
2725 Actual := First_Actual (N);
2726 Formal := First_Formal (Nam);
2728 -- If we are analyzing a call rewritten from object notation,
2729 -- skip first actual, which may be rewritten later as an
2730 -- explicit dereference.
2732 if Must_Skip then
2733 Next_Actual (Actual);
2734 Next_Formal (Formal);
2735 end if;
2737 while Present (Actual) and then Present (Formal) loop
2738 if Nkind (Parent (Actual)) /= N_Parameter_Association
2739 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
2740 then
2741 -- The actual can be compatible with the formal, but we must
2742 -- also check that the context is not an address type that is
2743 -- visibly an integer type, as is the case in VMS_64. In this
2744 -- case the use of literals is illegal, except in the body of
2745 -- descendents of system, where arithmetic operations on
2746 -- address are of course used.
2748 if Has_Compatible_Type (Actual, Etype (Formal))
2749 and then
2750 (Etype (Actual) /= Universal_Integer
2751 or else not Is_Descendent_Of_Address (Etype (Formal))
2752 or else
2753 Is_Predefined_File_Name
2754 (Unit_File_Name (Get_Source_Unit (N))))
2755 then
2756 Next_Actual (Actual);
2757 Next_Formal (Formal);
2759 else
2760 if Debug_Flag_E then
2761 Write_Str (" type checking fails in call ");
2762 Write_Int (Int (N));
2763 Write_Str (" with formal ");
2764 Write_Int (Int (Formal));
2765 Write_Str (" in subprogram ");
2766 Write_Int (Int (Nam));
2767 Write_Eol;
2768 end if;
2770 if Report and not Is_Indexed and not Is_Indirect then
2772 -- Ada 2005 (AI-251): Complete the error notification
2773 -- to help new Ada 2005 users.
2775 if Is_Class_Wide_Type (Etype (Formal))
2776 and then Is_Interface (Etype (Etype (Formal)))
2777 and then not Interface_Present_In_Ancestor
2778 (Typ => Etype (Actual),
2779 Iface => Etype (Etype (Formal)))
2780 then
2781 Error_Msg_NE
2782 ("(Ada 2005) does not implement interface }",
2783 Actual, Etype (Etype (Formal)));
2784 end if;
2786 Wrong_Type (Actual, Etype (Formal));
2788 if Nkind (Actual) = N_Op_Eq
2789 and then Nkind (Left_Opnd (Actual)) = N_Identifier
2790 then
2791 Formal := First_Formal (Nam);
2792 while Present (Formal) loop
2793 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
2794 Error_Msg_N -- CODEFIX
2795 ("possible misspelling of `='>`!", Actual);
2796 exit;
2797 end if;
2799 Next_Formal (Formal);
2800 end loop;
2801 end if;
2803 if All_Errors_Mode then
2804 Error_Msg_Sloc := Sloc (Nam);
2806 if Is_Overloadable (Nam)
2807 and then Present (Alias (Nam))
2808 and then not Comes_From_Source (Nam)
2809 then
2810 Error_Msg_NE
2811 ("\\ =='> in call to inherited operation & #!",
2812 Actual, Nam);
2814 elsif Ekind (Nam) = E_Subprogram_Type then
2815 declare
2816 Access_To_Subprogram_Typ :
2817 constant Entity_Id :=
2818 Defining_Identifier
2819 (Associated_Node_For_Itype (Nam));
2820 begin
2821 Error_Msg_NE (
2822 "\\ =='> in call to dereference of &#!",
2823 Actual, Access_To_Subprogram_Typ);
2824 end;
2826 else
2827 Error_Msg_NE
2828 ("\\ =='> in call to &#!", Actual, Nam);
2830 end if;
2831 end if;
2832 end if;
2834 return;
2835 end if;
2837 else
2838 -- Normalize_Actuals has verified that a default value exists
2839 -- for this formal. Current actual names a subsequent formal.
2841 Next_Formal (Formal);
2842 end if;
2843 end loop;
2845 -- On exit, all actuals match
2847 Indicate_Name_And_Type;
2848 end if;
2849 end Analyze_One_Call;
2851 ---------------------------
2852 -- Analyze_Operator_Call --
2853 ---------------------------
2855 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
2856 Op_Name : constant Name_Id := Chars (Op_Id);
2857 Act1 : constant Node_Id := First_Actual (N);
2858 Act2 : constant Node_Id := Next_Actual (Act1);
2860 begin
2861 -- Binary operator case
2863 if Present (Act2) then
2865 -- If more than two operands, then not binary operator after all
2867 if Present (Next_Actual (Act2)) then
2868 return;
2870 elsif Op_Name = Name_Op_Add
2871 or else Op_Name = Name_Op_Subtract
2872 or else Op_Name = Name_Op_Multiply
2873 or else Op_Name = Name_Op_Divide
2874 or else Op_Name = Name_Op_Mod
2875 or else Op_Name = Name_Op_Rem
2876 or else Op_Name = Name_Op_Expon
2877 then
2878 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
2880 elsif Op_Name = Name_Op_And
2881 or else Op_Name = Name_Op_Or
2882 or else Op_Name = Name_Op_Xor
2883 then
2884 Find_Boolean_Types (Act1, Act2, Op_Id, N);
2886 elsif Op_Name = Name_Op_Lt
2887 or else Op_Name = Name_Op_Le
2888 or else Op_Name = Name_Op_Gt
2889 or else Op_Name = Name_Op_Ge
2890 then
2891 Find_Comparison_Types (Act1, Act2, Op_Id, N);
2893 elsif Op_Name = Name_Op_Eq
2894 or else Op_Name = Name_Op_Ne
2895 then
2896 Find_Equality_Types (Act1, Act2, Op_Id, N);
2898 elsif Op_Name = Name_Op_Concat then
2899 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
2901 -- Is this else null correct, or should it be an abort???
2903 else
2904 null;
2905 end if;
2907 -- Unary operator case
2909 else
2910 if Op_Name = Name_Op_Subtract or else
2911 Op_Name = Name_Op_Add or else
2912 Op_Name = Name_Op_Abs
2913 then
2914 Find_Unary_Types (Act1, Op_Id, N);
2916 elsif
2917 Op_Name = Name_Op_Not
2918 then
2919 Find_Negation_Types (Act1, Op_Id, N);
2921 -- Is this else null correct, or should it be an abort???
2923 else
2924 null;
2925 end if;
2926 end if;
2927 end Analyze_Operator_Call;
2929 -------------------------------------------
2930 -- Analyze_Overloaded_Selected_Component --
2931 -------------------------------------------
2933 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
2934 Nam : constant Node_Id := Prefix (N);
2935 Sel : constant Node_Id := Selector_Name (N);
2936 Comp : Entity_Id;
2937 I : Interp_Index;
2938 It : Interp;
2939 T : Entity_Id;
2941 begin
2942 Set_Etype (Sel, Any_Type);
2944 Get_First_Interp (Nam, I, It);
2945 while Present (It.Typ) loop
2946 if Is_Access_Type (It.Typ) then
2947 T := Designated_Type (It.Typ);
2948 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
2949 else
2950 T := It.Typ;
2951 end if;
2953 if Is_Record_Type (T) then
2955 -- If the prefix is a class-wide type, the visible components are
2956 -- those of the base type.
2958 if Is_Class_Wide_Type (T) then
2959 T := Etype (T);
2960 end if;
2962 Comp := First_Entity (T);
2963 while Present (Comp) loop
2964 if Chars (Comp) = Chars (Sel)
2965 and then Is_Visible_Component (Comp)
2966 then
2968 -- AI05-105: if the context is an object renaming with
2969 -- an anonymous access type, the expected type of the
2970 -- object must be anonymous. This is a name resolution rule.
2972 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
2973 or else No (Access_Definition (Parent (N)))
2974 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
2975 or else
2976 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
2977 then
2978 Set_Entity (Sel, Comp);
2979 Set_Etype (Sel, Etype (Comp));
2980 Add_One_Interp (N, Etype (Comp), Etype (Comp));
2982 -- This also specifies a candidate to resolve the name.
2983 -- Further overloading will be resolved from context.
2984 -- The selector name itself does not carry overloading
2985 -- information.
2987 Set_Etype (Nam, It.Typ);
2989 else
2990 -- Named access type in the context of a renaming
2991 -- declaration with an access definition. Remove
2992 -- inapplicable candidate.
2994 Remove_Interp (I);
2995 end if;
2996 end if;
2998 Next_Entity (Comp);
2999 end loop;
3001 elsif Is_Concurrent_Type (T) then
3002 Comp := First_Entity (T);
3003 while Present (Comp)
3004 and then Comp /= First_Private_Entity (T)
3005 loop
3006 if Chars (Comp) = Chars (Sel) then
3007 if Is_Overloadable (Comp) then
3008 Add_One_Interp (Sel, Comp, Etype (Comp));
3009 else
3010 Set_Entity_With_Style_Check (Sel, Comp);
3011 Generate_Reference (Comp, Sel);
3012 end if;
3014 Set_Etype (Sel, Etype (Comp));
3015 Set_Etype (N, Etype (Comp));
3016 Set_Etype (Nam, It.Typ);
3018 -- For access type case, introduce explicit dereference for
3019 -- more uniform treatment of entry calls. Do this only once
3020 -- if several interpretations yield an access type.
3022 if Is_Access_Type (Etype (Nam))
3023 and then Nkind (Nam) /= N_Explicit_Dereference
3024 then
3025 Insert_Explicit_Dereference (Nam);
3026 Error_Msg_NW
3027 (Warn_On_Dereference, "?implicit dereference", N);
3028 end if;
3029 end if;
3031 Next_Entity (Comp);
3032 end loop;
3034 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3035 end if;
3037 Get_Next_Interp (I, It);
3038 end loop;
3040 if Etype (N) = Any_Type
3041 and then not Try_Object_Operation (N)
3042 then
3043 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3044 Set_Entity (Sel, Any_Id);
3045 Set_Etype (Sel, Any_Type);
3046 end if;
3047 end Analyze_Overloaded_Selected_Component;
3049 ----------------------------------
3050 -- Analyze_Qualified_Expression --
3051 ----------------------------------
3053 procedure Analyze_Qualified_Expression (N : Node_Id) is
3054 Mark : constant Entity_Id := Subtype_Mark (N);
3055 Expr : constant Node_Id := Expression (N);
3056 I : Interp_Index;
3057 It : Interp;
3058 T : Entity_Id;
3060 begin
3061 Analyze_Expression (Expr);
3063 Set_Etype (N, Any_Type);
3064 Find_Type (Mark);
3065 T := Entity (Mark);
3066 Set_Etype (N, T);
3068 if T = Any_Type then
3069 return;
3070 end if;
3072 Check_Fully_Declared (T, N);
3074 -- If expected type is class-wide, check for exact match before
3075 -- expansion, because if the expression is a dispatching call it
3076 -- may be rewritten as explicit dereference with class-wide result.
3077 -- If expression is overloaded, retain only interpretations that
3078 -- will yield exact matches.
3080 if Is_Class_Wide_Type (T) then
3081 if not Is_Overloaded (Expr) then
3082 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3083 if Nkind (Expr) = N_Aggregate then
3084 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3085 else
3086 Wrong_Type (Expr, T);
3087 end if;
3088 end if;
3090 else
3091 Get_First_Interp (Expr, I, It);
3093 while Present (It.Nam) loop
3094 if Base_Type (It.Typ) /= Base_Type (T) then
3095 Remove_Interp (I);
3096 end if;
3098 Get_Next_Interp (I, It);
3099 end loop;
3100 end if;
3101 end if;
3103 Set_Etype (N, T);
3104 end Analyze_Qualified_Expression;
3106 -------------------
3107 -- Analyze_Range --
3108 -------------------
3110 procedure Analyze_Range (N : Node_Id) is
3111 L : constant Node_Id := Low_Bound (N);
3112 H : constant Node_Id := High_Bound (N);
3113 I1, I2 : Interp_Index;
3114 It1, It2 : Interp;
3116 procedure Check_Common_Type (T1, T2 : Entity_Id);
3117 -- Verify the compatibility of two types, and choose the
3118 -- non universal one if the other is universal.
3120 procedure Check_High_Bound (T : Entity_Id);
3121 -- Test one interpretation of the low bound against all those
3122 -- of the high bound.
3124 procedure Check_Universal_Expression (N : Node_Id);
3125 -- In Ada83, reject bounds of a universal range that are not
3126 -- literals or entity names.
3128 -----------------------
3129 -- Check_Common_Type --
3130 -----------------------
3132 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3133 begin
3134 if Covers (T1 => T1, T2 => T2)
3135 or else
3136 Covers (T1 => T2, T2 => T1)
3137 then
3138 if T1 = Universal_Integer
3139 or else T1 = Universal_Real
3140 or else T1 = Any_Character
3141 then
3142 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3144 elsif T1 = T2 then
3145 Add_One_Interp (N, T1, T1);
3147 else
3148 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3149 end if;
3150 end if;
3151 end Check_Common_Type;
3153 ----------------------
3154 -- Check_High_Bound --
3155 ----------------------
3157 procedure Check_High_Bound (T : Entity_Id) is
3158 begin
3159 if not Is_Overloaded (H) then
3160 Check_Common_Type (T, Etype (H));
3161 else
3162 Get_First_Interp (H, I2, It2);
3163 while Present (It2.Typ) loop
3164 Check_Common_Type (T, It2.Typ);
3165 Get_Next_Interp (I2, It2);
3166 end loop;
3167 end if;
3168 end Check_High_Bound;
3170 -----------------------------
3171 -- Is_Universal_Expression --
3172 -----------------------------
3174 procedure Check_Universal_Expression (N : Node_Id) is
3175 begin
3176 if Etype (N) = Universal_Integer
3177 and then Nkind (N) /= N_Integer_Literal
3178 and then not Is_Entity_Name (N)
3179 and then Nkind (N) /= N_Attribute_Reference
3180 then
3181 Error_Msg_N ("illegal bound in discrete range", N);
3182 end if;
3183 end Check_Universal_Expression;
3185 -- Start of processing for Analyze_Range
3187 begin
3188 Set_Etype (N, Any_Type);
3189 Analyze_Expression (L);
3190 Analyze_Expression (H);
3192 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3193 return;
3195 else
3196 if not Is_Overloaded (L) then
3197 Check_High_Bound (Etype (L));
3198 else
3199 Get_First_Interp (L, I1, It1);
3200 while Present (It1.Typ) loop
3201 Check_High_Bound (It1.Typ);
3202 Get_Next_Interp (I1, It1);
3203 end loop;
3204 end if;
3206 -- If result is Any_Type, then we did not find a compatible pair
3208 if Etype (N) = Any_Type then
3209 Error_Msg_N ("incompatible types in range ", N);
3210 end if;
3211 end if;
3213 if Ada_Version = Ada_83
3214 and then
3215 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
3216 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
3217 then
3218 Check_Universal_Expression (L);
3219 Check_Universal_Expression (H);
3220 end if;
3221 end Analyze_Range;
3223 -----------------------
3224 -- Analyze_Reference --
3225 -----------------------
3227 procedure Analyze_Reference (N : Node_Id) is
3228 P : constant Node_Id := Prefix (N);
3229 E : Entity_Id;
3230 T : Entity_Id;
3231 Acc_Type : Entity_Id;
3233 begin
3234 Analyze (P);
3236 -- An interesting error check, if we take the 'Reference of an object
3237 -- for which a pragma Atomic or Volatile has been given, and the type
3238 -- of the object is not Atomic or Volatile, then we are in trouble. The
3239 -- problem is that no trace of the atomic/volatile status will remain
3240 -- for the backend to respect when it deals with the resulting pointer,
3241 -- since the pointer type will not be marked atomic (it is a pointer to
3242 -- the base type of the object).
3244 -- It is not clear if that can ever occur, but in case it does, we will
3245 -- generate an error message. Not clear if this message can ever be
3246 -- generated, and pretty clear that it represents a bug if it is, still
3247 -- seems worth checking!
3249 T := Etype (P);
3251 if Is_Entity_Name (P)
3252 and then Is_Object_Reference (P)
3253 then
3254 E := Entity (P);
3255 T := Etype (P);
3257 if (Has_Atomic_Components (E)
3258 and then not Has_Atomic_Components (T))
3259 or else
3260 (Has_Volatile_Components (E)
3261 and then not Has_Volatile_Components (T))
3262 or else (Is_Atomic (E) and then not Is_Atomic (T))
3263 or else (Is_Volatile (E) and then not Is_Volatile (T))
3264 then
3265 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3266 end if;
3267 end if;
3269 -- Carry on with normal processing
3271 Acc_Type := Create_Itype (E_Allocator_Type, N);
3272 Set_Etype (Acc_Type, Acc_Type);
3273 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3274 Set_Etype (N, Acc_Type);
3275 end Analyze_Reference;
3277 --------------------------------
3278 -- Analyze_Selected_Component --
3279 --------------------------------
3281 -- Prefix is a record type or a task or protected type. In the latter case,
3282 -- the selector must denote a visible entry.
3284 procedure Analyze_Selected_Component (N : Node_Id) is
3285 Name : constant Node_Id := Prefix (N);
3286 Sel : constant Node_Id := Selector_Name (N);
3287 Act_Decl : Node_Id;
3288 Comp : Entity_Id;
3289 Has_Candidate : Boolean := False;
3290 In_Scope : Boolean;
3291 Parent_N : Node_Id;
3292 Pent : Entity_Id := Empty;
3293 Prefix_Type : Entity_Id;
3295 Type_To_Use : Entity_Id;
3296 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3297 -- a class-wide type, we use its root type, whose components are
3298 -- present in the class-wide type.
3300 Is_Single_Concurrent_Object : Boolean;
3301 -- Set True if the prefix is a single task or a single protected object
3303 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3304 -- It is known that the parent of N denotes a subprogram call. Comp
3305 -- is an overloadable component of the concurrent type of the prefix.
3306 -- Determine whether all formals of the parent of N and Comp are mode
3307 -- conformant. If the parent node is not analyzed yet it may be an
3308 -- indexed component rather than a function call.
3310 ------------------------------
3311 -- Has_Mode_Conformant_Spec --
3312 ------------------------------
3314 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
3315 Comp_Param : Entity_Id;
3316 Param : Node_Id;
3317 Param_Typ : Entity_Id;
3319 begin
3320 Comp_Param := First_Formal (Comp);
3322 if Nkind (Parent (N)) = N_Indexed_Component then
3323 Param := First (Expressions (Parent (N)));
3324 else
3325 Param := First (Parameter_Associations (Parent (N)));
3326 end if;
3328 while Present (Comp_Param)
3329 and then Present (Param)
3330 loop
3331 Param_Typ := Find_Parameter_Type (Param);
3333 if Present (Param_Typ)
3334 and then
3335 not Conforming_Types
3336 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
3337 then
3338 return False;
3339 end if;
3341 Next_Formal (Comp_Param);
3342 Next (Param);
3343 end loop;
3345 -- One of the specs has additional formals
3347 if Present (Comp_Param) or else Present (Param) then
3348 return False;
3349 end if;
3351 return True;
3352 end Has_Mode_Conformant_Spec;
3354 -- Start of processing for Analyze_Selected_Component
3356 begin
3357 Set_Etype (N, Any_Type);
3359 if Is_Overloaded (Name) then
3360 Analyze_Overloaded_Selected_Component (N);
3361 return;
3363 elsif Etype (Name) = Any_Type then
3364 Set_Entity (Sel, Any_Id);
3365 Set_Etype (Sel, Any_Type);
3366 return;
3368 else
3369 Prefix_Type := Etype (Name);
3370 end if;
3372 if Is_Access_Type (Prefix_Type) then
3374 -- A RACW object can never be used as prefix of a selected
3375 -- component since that means it is dereferenced without
3376 -- being a controlling operand of a dispatching operation
3377 -- (RM E.2.2(16/1)). Before reporting an error, we must check
3378 -- whether this is actually a dispatching call in prefix form.
3380 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3381 and then Comes_From_Source (N)
3382 then
3383 if Try_Object_Operation (N) then
3384 return;
3385 else
3386 Error_Msg_N
3387 ("invalid dereference of a remote access-to-class-wide value",
3389 end if;
3391 -- Normal case of selected component applied to access type
3393 else
3394 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3396 if Is_Entity_Name (Name) then
3397 Pent := Entity (Name);
3398 elsif Nkind (Name) = N_Selected_Component
3399 and then Is_Entity_Name (Selector_Name (Name))
3400 then
3401 Pent := Entity (Selector_Name (Name));
3402 end if;
3404 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
3405 end if;
3407 -- If we have an explicit dereference of a remote access-to-class-wide
3408 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3409 -- have to check for the case of a prefix that is a controlling operand
3410 -- of a prefixed dispatching call, as the dereference is legal in that
3411 -- case. Normally this condition is checked in Validate_Remote_Access_
3412 -- To_Class_Wide_Type, but we have to defer the checking for selected
3413 -- component prefixes because of the prefixed dispatching call case.
3414 -- Note that implicit dereferences are checked for this just above.
3416 elsif Nkind (Name) = N_Explicit_Dereference
3417 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3418 and then Comes_From_Source (N)
3419 then
3420 if Try_Object_Operation (N) then
3421 return;
3422 else
3423 Error_Msg_N
3424 ("invalid dereference of a remote access-to-class-wide value",
3426 end if;
3427 end if;
3429 -- (Ada 2005): if the prefix is the limited view of a type, and
3430 -- the context already includes the full view, use the full view
3431 -- in what follows, either to retrieve a component of to find
3432 -- a primitive operation. If the prefix is an explicit dereference,
3433 -- set the type of the prefix to reflect this transformation.
3434 -- If the non-limited view is itself an incomplete type, get the
3435 -- full view if available.
3437 if Is_Incomplete_Type (Prefix_Type)
3438 and then From_With_Type (Prefix_Type)
3439 and then Present (Non_Limited_View (Prefix_Type))
3440 then
3441 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
3443 if Nkind (N) = N_Explicit_Dereference then
3444 Set_Etype (Prefix (N), Prefix_Type);
3445 end if;
3447 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3448 and then From_With_Type (Prefix_Type)
3449 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3450 then
3451 Prefix_Type :=
3452 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3454 if Nkind (N) = N_Explicit_Dereference then
3455 Set_Etype (Prefix (N), Prefix_Type);
3456 end if;
3457 end if;
3459 if Ekind (Prefix_Type) = E_Private_Subtype then
3460 Prefix_Type := Base_Type (Prefix_Type);
3461 end if;
3463 Type_To_Use := Prefix_Type;
3465 -- For class-wide types, use the entity list of the root type. This
3466 -- indirection is specially important for private extensions because
3467 -- only the root type get switched (not the class-wide type).
3469 if Is_Class_Wide_Type (Prefix_Type) then
3470 Type_To_Use := Root_Type (Prefix_Type);
3471 end if;
3473 -- If the prefix is a single concurrent object, use its name in error
3474 -- messages, rather than that of its anonymous type.
3476 Is_Single_Concurrent_Object :=
3477 Is_Concurrent_Type (Prefix_Type)
3478 and then Is_Internal_Name (Chars (Prefix_Type))
3479 and then not Is_Derived_Type (Prefix_Type)
3480 and then Is_Entity_Name (Name);
3482 Comp := First_Entity (Type_To_Use);
3484 -- If the selector has an original discriminant, the node appears in
3485 -- an instance. Replace the discriminant with the corresponding one
3486 -- in the current discriminated type. For nested generics, this must
3487 -- be done transitively, so note the new original discriminant.
3489 if Nkind (Sel) = N_Identifier
3490 and then Present (Original_Discriminant (Sel))
3491 then
3492 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3494 -- Mark entity before rewriting, for completeness and because
3495 -- subsequent semantic checks might examine the original node.
3497 Set_Entity (Sel, Comp);
3498 Rewrite (Selector_Name (N),
3499 New_Occurrence_Of (Comp, Sloc (N)));
3500 Set_Original_Discriminant (Selector_Name (N), Comp);
3501 Set_Etype (N, Etype (Comp));
3503 if Is_Access_Type (Etype (Name)) then
3504 Insert_Explicit_Dereference (Name);
3505 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3506 end if;
3508 elsif Is_Record_Type (Prefix_Type) then
3510 -- Find component with given name
3512 while Present (Comp) loop
3513 if Chars (Comp) = Chars (Sel)
3514 and then Is_Visible_Component (Comp)
3515 then
3516 Set_Entity_With_Style_Check (Sel, Comp);
3517 Set_Etype (Sel, Etype (Comp));
3519 if Ekind (Comp) = E_Discriminant then
3520 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
3521 Error_Msg_N
3522 ("cannot reference discriminant of Unchecked_Union",
3523 Sel);
3524 end if;
3526 if Is_Generic_Type (Prefix_Type)
3527 or else
3528 Is_Generic_Type (Root_Type (Prefix_Type))
3529 then
3530 Set_Original_Discriminant (Sel, Comp);
3531 end if;
3532 end if;
3534 -- Resolve the prefix early otherwise it is not possible to
3535 -- build the actual subtype of the component: it may need
3536 -- to duplicate this prefix and duplication is only allowed
3537 -- on fully resolved expressions.
3539 Resolve (Name);
3541 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3542 -- subtypes in a package specification.
3543 -- Example:
3545 -- limited with Pkg;
3546 -- package Pkg is
3547 -- type Acc_Inc is access Pkg.T;
3548 -- X : Acc_Inc;
3549 -- N : Natural := X.all.Comp; -- ERROR, limited view
3550 -- end Pkg; -- Comp is not visible
3552 if Nkind (Name) = N_Explicit_Dereference
3553 and then From_With_Type (Etype (Prefix (Name)))
3554 and then not Is_Potentially_Use_Visible (Etype (Name))
3555 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3556 N_Package_Specification
3557 then
3558 Error_Msg_NE
3559 ("premature usage of incomplete}", Prefix (Name),
3560 Etype (Prefix (Name)));
3561 end if;
3563 -- We never need an actual subtype for the case of a selection
3564 -- for a indexed component of a non-packed array, since in
3565 -- this case gigi generates all the checks and can find the
3566 -- necessary bounds information.
3568 -- We also do not need an actual subtype for the case of
3569 -- a first, last, length, or range attribute applied to a
3570 -- non-packed array, since gigi can again get the bounds in
3571 -- these cases (gigi cannot handle the packed case, since it
3572 -- has the bounds of the packed array type, not the original
3573 -- bounds of the type). However, if the prefix is itself a
3574 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3575 -- as a dynamic-sized temporary, so we do generate an actual
3576 -- subtype for this case.
3578 Parent_N := Parent (N);
3580 if not Is_Packed (Etype (Comp))
3581 and then
3582 ((Nkind (Parent_N) = N_Indexed_Component
3583 and then Nkind (Name) /= N_Selected_Component)
3584 or else
3585 (Nkind (Parent_N) = N_Attribute_Reference
3586 and then (Attribute_Name (Parent_N) = Name_First
3587 or else
3588 Attribute_Name (Parent_N) = Name_Last
3589 or else
3590 Attribute_Name (Parent_N) = Name_Length
3591 or else
3592 Attribute_Name (Parent_N) = Name_Range)))
3593 then
3594 Set_Etype (N, Etype (Comp));
3596 -- If full analysis is not enabled, we do not generate an
3597 -- actual subtype, because in the absence of expansion
3598 -- reference to a formal of a protected type, for example,
3599 -- will not be properly transformed, and will lead to
3600 -- out-of-scope references in gigi.
3602 -- In all other cases, we currently build an actual subtype.
3603 -- It seems likely that many of these cases can be avoided,
3604 -- but right now, the front end makes direct references to the
3605 -- bounds (e.g. in generating a length check), and if we do
3606 -- not make an actual subtype, we end up getting a direct
3607 -- reference to a discriminant, which will not do.
3609 elsif Full_Analysis then
3610 Act_Decl :=
3611 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
3612 Insert_Action (N, Act_Decl);
3614 if No (Act_Decl) then
3615 Set_Etype (N, Etype (Comp));
3617 else
3618 -- Component type depends on discriminants. Enter the
3619 -- main attributes of the subtype.
3621 declare
3622 Subt : constant Entity_Id :=
3623 Defining_Identifier (Act_Decl);
3625 begin
3626 Set_Etype (Subt, Base_Type (Etype (Comp)));
3627 Set_Ekind (Subt, Ekind (Etype (Comp)));
3628 Set_Etype (N, Subt);
3629 end;
3630 end if;
3632 -- If Full_Analysis not enabled, just set the Etype
3634 else
3635 Set_Etype (N, Etype (Comp));
3636 end if;
3638 return;
3639 end if;
3641 -- If the prefix is a private extension, check only the visible
3642 -- components of the partial view. This must include the tag,
3643 -- which can appear in expanded code in a tag check.
3645 if Ekind (Type_To_Use) = E_Record_Type_With_Private
3646 and then Chars (Selector_Name (N)) /= Name_uTag
3647 then
3648 exit when Comp = Last_Entity (Type_To_Use);
3649 end if;
3651 Next_Entity (Comp);
3652 end loop;
3654 -- Ada 2005 (AI-252): The selected component can be interpreted as
3655 -- a prefixed view of a subprogram. Depending on the context, this is
3656 -- either a name that can appear in a renaming declaration, or part
3657 -- of an enclosing call given in prefix form.
3659 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
3660 -- selected component should resolve to a name.
3662 if Ada_Version >= Ada_05
3663 and then Is_Tagged_Type (Prefix_Type)
3664 and then not Is_Concurrent_Type (Prefix_Type)
3665 then
3666 if Nkind (Parent (N)) = N_Generic_Association
3667 or else Nkind (Parent (N)) = N_Requeue_Statement
3668 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
3669 then
3670 if Find_Primitive_Operation (N) then
3671 return;
3672 end if;
3674 elsif Try_Object_Operation (N) then
3675 return;
3676 end if;
3678 -- If the transformation fails, it will be necessary to redo the
3679 -- analysis with all errors enabled, to indicate candidate
3680 -- interpretations and reasons for each failure ???
3682 end if;
3684 elsif Is_Private_Type (Prefix_Type) then
3686 -- Allow access only to discriminants of the type. If the type has
3687 -- no full view, gigi uses the parent type for the components, so we
3688 -- do the same here.
3690 if No (Full_View (Prefix_Type)) then
3691 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
3692 Comp := First_Entity (Type_To_Use);
3693 end if;
3695 while Present (Comp) loop
3696 if Chars (Comp) = Chars (Sel) then
3697 if Ekind (Comp) = E_Discriminant then
3698 Set_Entity_With_Style_Check (Sel, Comp);
3699 Generate_Reference (Comp, Sel);
3701 Set_Etype (Sel, Etype (Comp));
3702 Set_Etype (N, Etype (Comp));
3704 if Is_Generic_Type (Prefix_Type)
3705 or else Is_Generic_Type (Root_Type (Prefix_Type))
3706 then
3707 Set_Original_Discriminant (Sel, Comp);
3708 end if;
3710 -- Before declaring an error, check whether this is tagged
3711 -- private type and a call to a primitive operation.
3713 elsif Ada_Version >= Ada_05
3714 and then Is_Tagged_Type (Prefix_Type)
3715 and then Try_Object_Operation (N)
3716 then
3717 return;
3719 else
3720 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3721 Error_Msg_NE ("invisible selector& for }", N, Sel);
3722 Set_Entity (Sel, Any_Id);
3723 Set_Etype (N, Any_Type);
3724 end if;
3726 return;
3727 end if;
3729 Next_Entity (Comp);
3730 end loop;
3732 elsif Is_Concurrent_Type (Prefix_Type) then
3734 -- Find visible operation with given name. For a protected type,
3735 -- the possible candidates are discriminants, entries or protected
3736 -- procedures. For a task type, the set can only include entries or
3737 -- discriminants if the task type is not an enclosing scope. If it
3738 -- is an enclosing scope (e.g. in an inner task) then all entities
3739 -- are visible, but the prefix must denote the enclosing scope, i.e.
3740 -- can only be a direct name or an expanded name.
3742 Set_Etype (Sel, Any_Type);
3743 In_Scope := In_Open_Scopes (Prefix_Type);
3745 while Present (Comp) loop
3746 if Chars (Comp) = Chars (Sel) then
3747 if Is_Overloadable (Comp) then
3748 Add_One_Interp (Sel, Comp, Etype (Comp));
3750 -- If the prefix is tagged, the correct interpretation may
3751 -- lie in the primitive or class-wide operations of the
3752 -- type. Perform a simple conformance check to determine
3753 -- whether Try_Object_Operation should be invoked even if
3754 -- a visible entity is found.
3756 if Is_Tagged_Type (Prefix_Type)
3757 and then
3758 Nkind_In (Parent (N), N_Procedure_Call_Statement,
3759 N_Function_Call,
3760 N_Indexed_Component)
3761 and then Has_Mode_Conformant_Spec (Comp)
3762 then
3763 Has_Candidate := True;
3764 end if;
3766 -- Note: a selected component may not denote a component of a
3767 -- protected type (4.1.3(7)).
3769 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
3770 or else (In_Scope
3771 and then not Is_Protected_Type (Prefix_Type)
3772 and then Is_Entity_Name (Name))
3773 then
3774 Set_Entity_With_Style_Check (Sel, Comp);
3775 Generate_Reference (Comp, Sel);
3777 else
3778 goto Next_Comp;
3779 end if;
3781 Set_Etype (Sel, Etype (Comp));
3782 Set_Etype (N, Etype (Comp));
3784 if Ekind (Comp) = E_Discriminant then
3785 Set_Original_Discriminant (Sel, Comp);
3786 end if;
3788 -- For access type case, introduce explicit dereference for
3789 -- more uniform treatment of entry calls.
3791 if Is_Access_Type (Etype (Name)) then
3792 Insert_Explicit_Dereference (Name);
3793 Error_Msg_NW
3794 (Warn_On_Dereference, "?implicit dereference", N);
3795 end if;
3796 end if;
3798 <<Next_Comp>>
3799 Next_Entity (Comp);
3800 exit when not In_Scope
3801 and then
3802 Comp = First_Private_Entity (Base_Type (Prefix_Type));
3803 end loop;
3805 -- If there is no visible entity with the given name or none of the
3806 -- visible entities are plausible interpretations, check whether
3807 -- there is some other primitive operation with that name.
3809 if Ada_Version >= Ada_05
3810 and then Is_Tagged_Type (Prefix_Type)
3811 then
3812 if (Etype (N) = Any_Type
3813 or else not Has_Candidate)
3814 and then Try_Object_Operation (N)
3815 then
3816 return;
3818 -- If the context is not syntactically a procedure call, it
3819 -- may be a call to a primitive function declared outside of
3820 -- the synchronized type.
3822 -- If the context is a procedure call, there might still be
3823 -- an overloading between an entry and a primitive procedure
3824 -- declared outside of the synchronized type, called in prefix
3825 -- notation. This is harder to disambiguate because in one case
3826 -- the controlling formal is implicit ???
3828 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
3829 and then Nkind (Parent (N)) /= N_Indexed_Component
3830 and then Try_Object_Operation (N)
3831 then
3832 return;
3833 end if;
3834 end if;
3836 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
3837 -- Case of a prefix of a protected type: selector might denote
3838 -- an invisible private component.
3840 Comp := First_Private_Entity (Base_Type (Prefix_Type));
3841 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
3842 Next_Entity (Comp);
3843 end loop;
3845 if Present (Comp) then
3846 if Is_Single_Concurrent_Object then
3847 Error_Msg_Node_2 := Entity (Name);
3848 Error_Msg_NE ("invisible selector& for &", N, Sel);
3850 else
3851 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3852 Error_Msg_NE ("invisible selector& for }", N, Sel);
3853 end if;
3854 return;
3855 end if;
3856 end if;
3858 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3860 else
3861 -- Invalid prefix
3863 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
3864 end if;
3866 -- If N still has no type, the component is not defined in the prefix
3868 if Etype (N) = Any_Type then
3870 if Is_Single_Concurrent_Object then
3871 Error_Msg_Node_2 := Entity (Name);
3872 Error_Msg_NE ("no selector& for&", N, Sel);
3874 Check_Misspelled_Selector (Type_To_Use, Sel);
3876 elsif Is_Generic_Type (Prefix_Type)
3877 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
3878 and then Prefix_Type /= Etype (Prefix_Type)
3879 and then Is_Record_Type (Etype (Prefix_Type))
3880 then
3881 -- If this is a derived formal type, the parent may have
3882 -- different visibility at this point. Try for an inherited
3883 -- component before reporting an error.
3885 Set_Etype (Prefix (N), Etype (Prefix_Type));
3886 Analyze_Selected_Component (N);
3887 return;
3889 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
3890 and then Is_Generic_Actual_Type (Prefix_Type)
3891 and then Present (Full_View (Prefix_Type))
3892 then
3893 -- Similarly, if this the actual for a formal derived type, the
3894 -- component inherited from the generic parent may not be visible
3895 -- in the actual, but the selected component is legal.
3897 declare
3898 Comp : Entity_Id;
3900 begin
3901 Comp :=
3902 First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
3903 while Present (Comp) loop
3904 if Chars (Comp) = Chars (Sel) then
3905 Set_Entity_With_Style_Check (Sel, Comp);
3906 Set_Etype (Sel, Etype (Comp));
3907 Set_Etype (N, Etype (Comp));
3908 return;
3909 end if;
3911 Next_Component (Comp);
3912 end loop;
3914 pragma Assert (Etype (N) /= Any_Type);
3915 end;
3917 else
3918 if Ekind (Prefix_Type) = E_Record_Subtype then
3920 -- Check whether this is a component of the base type
3921 -- which is absent from a statically constrained subtype.
3922 -- This will raise constraint error at run-time, but is
3923 -- not a compile-time error. When the selector is illegal
3924 -- for base type as well fall through and generate a
3925 -- compilation error anyway.
3927 Comp := First_Component (Base_Type (Prefix_Type));
3928 while Present (Comp) loop
3929 if Chars (Comp) = Chars (Sel)
3930 and then Is_Visible_Component (Comp)
3931 then
3932 Set_Entity_With_Style_Check (Sel, Comp);
3933 Generate_Reference (Comp, Sel);
3934 Set_Etype (Sel, Etype (Comp));
3935 Set_Etype (N, Etype (Comp));
3937 -- Emit appropriate message. Gigi will replace the
3938 -- node subsequently with the appropriate Raise.
3940 Apply_Compile_Time_Constraint_Error
3941 (N, "component not present in }?",
3942 CE_Discriminant_Check_Failed,
3943 Ent => Prefix_Type, Rep => False);
3944 Set_Raises_Constraint_Error (N);
3945 return;
3946 end if;
3948 Next_Component (Comp);
3949 end loop;
3951 end if;
3953 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3954 Error_Msg_NE ("no selector& for}", N, Sel);
3956 Check_Misspelled_Selector (Type_To_Use, Sel);
3957 end if;
3959 Set_Entity (Sel, Any_Id);
3960 Set_Etype (Sel, Any_Type);
3961 end if;
3962 end Analyze_Selected_Component;
3964 ---------------------------
3965 -- Analyze_Short_Circuit --
3966 ---------------------------
3968 procedure Analyze_Short_Circuit (N : Node_Id) is
3969 L : constant Node_Id := Left_Opnd (N);
3970 R : constant Node_Id := Right_Opnd (N);
3971 Ind : Interp_Index;
3972 It : Interp;
3974 begin
3975 Analyze_Expression (L);
3976 Analyze_Expression (R);
3977 Set_Etype (N, Any_Type);
3979 if not Is_Overloaded (L) then
3980 if Root_Type (Etype (L)) = Standard_Boolean
3981 and then Has_Compatible_Type (R, Etype (L))
3982 then
3983 Add_One_Interp (N, Etype (L), Etype (L));
3984 end if;
3986 else
3987 Get_First_Interp (L, Ind, It);
3988 while Present (It.Typ) loop
3989 if Root_Type (It.Typ) = Standard_Boolean
3990 and then Has_Compatible_Type (R, It.Typ)
3991 then
3992 Add_One_Interp (N, It.Typ, It.Typ);
3993 end if;
3995 Get_Next_Interp (Ind, It);
3996 end loop;
3997 end if;
3999 -- Here we have failed to find an interpretation. Clearly we know that
4000 -- it is not the case that both operands can have an interpretation of
4001 -- Boolean, but this is by far the most likely intended interpretation.
4002 -- So we simply resolve both operands as Booleans, and at least one of
4003 -- these resolutions will generate an error message, and we do not need
4004 -- to give another error message on the short circuit operation itself.
4006 if Etype (N) = Any_Type then
4007 Resolve (L, Standard_Boolean);
4008 Resolve (R, Standard_Boolean);
4009 Set_Etype (N, Standard_Boolean);
4010 end if;
4011 end Analyze_Short_Circuit;
4013 -------------------
4014 -- Analyze_Slice --
4015 -------------------
4017 procedure Analyze_Slice (N : Node_Id) is
4018 P : constant Node_Id := Prefix (N);
4019 D : constant Node_Id := Discrete_Range (N);
4020 Array_Type : Entity_Id;
4022 procedure Analyze_Overloaded_Slice;
4023 -- If the prefix is overloaded, select those interpretations that
4024 -- yield a one-dimensional array type.
4026 ------------------------------
4027 -- Analyze_Overloaded_Slice --
4028 ------------------------------
4030 procedure Analyze_Overloaded_Slice is
4031 I : Interp_Index;
4032 It : Interp;
4033 Typ : Entity_Id;
4035 begin
4036 Set_Etype (N, Any_Type);
4038 Get_First_Interp (P, I, It);
4039 while Present (It.Nam) loop
4040 Typ := It.Typ;
4042 if Is_Access_Type (Typ) then
4043 Typ := Designated_Type (Typ);
4044 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
4045 end if;
4047 if Is_Array_Type (Typ)
4048 and then Number_Dimensions (Typ) = 1
4049 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4050 then
4051 Add_One_Interp (N, Typ, Typ);
4052 end if;
4054 Get_Next_Interp (I, It);
4055 end loop;
4057 if Etype (N) = Any_Type then
4058 Error_Msg_N ("expect array type in prefix of slice", N);
4059 end if;
4060 end Analyze_Overloaded_Slice;
4062 -- Start of processing for Analyze_Slice
4064 begin
4065 Analyze (P);
4066 Analyze (D);
4068 if Is_Overloaded (P) then
4069 Analyze_Overloaded_Slice;
4071 else
4072 Array_Type := Etype (P);
4073 Set_Etype (N, Any_Type);
4075 if Is_Access_Type (Array_Type) then
4076 Array_Type := Designated_Type (Array_Type);
4077 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
4078 end if;
4080 if not Is_Array_Type (Array_Type) then
4081 Wrong_Type (P, Any_Array);
4083 elsif Number_Dimensions (Array_Type) > 1 then
4084 Error_Msg_N
4085 ("type is not one-dimensional array in slice prefix", N);
4087 elsif not
4088 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
4089 then
4090 Wrong_Type (D, Etype (First_Index (Array_Type)));
4092 else
4093 Set_Etype (N, Array_Type);
4094 end if;
4095 end if;
4096 end Analyze_Slice;
4098 -----------------------------
4099 -- Analyze_Type_Conversion --
4100 -----------------------------
4102 procedure Analyze_Type_Conversion (N : Node_Id) is
4103 Expr : constant Node_Id := Expression (N);
4104 T : Entity_Id;
4106 begin
4107 -- If Conversion_OK is set, then the Etype is already set, and the
4108 -- only processing required is to analyze the expression. This is
4109 -- used to construct certain "illegal" conversions which are not
4110 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4111 -- Sinfo for further details.
4113 if Conversion_OK (N) then
4114 Analyze (Expr);
4115 return;
4116 end if;
4118 -- Otherwise full type analysis is required, as well as some semantic
4119 -- checks to make sure the argument of the conversion is appropriate.
4121 Find_Type (Subtype_Mark (N));
4122 T := Entity (Subtype_Mark (N));
4123 Set_Etype (N, T);
4124 Check_Fully_Declared (T, N);
4125 Analyze_Expression (Expr);
4126 Validate_Remote_Type_Type_Conversion (N);
4128 -- Only remaining step is validity checks on the argument. These
4129 -- are skipped if the conversion does not come from the source.
4131 if not Comes_From_Source (N) then
4132 return;
4134 -- If there was an error in a generic unit, no need to replicate the
4135 -- error message. Conversely, constant-folding in the generic may
4136 -- transform the argument of a conversion into a string literal, which
4137 -- is legal. Therefore the following tests are not performed in an
4138 -- instance.
4140 elsif In_Instance then
4141 return;
4143 elsif Nkind (Expr) = N_Null then
4144 Error_Msg_N ("argument of conversion cannot be null", N);
4145 Error_Msg_N ("\use qualified expression instead", N);
4146 Set_Etype (N, Any_Type);
4148 elsif Nkind (Expr) = N_Aggregate then
4149 Error_Msg_N ("argument of conversion cannot be aggregate", N);
4150 Error_Msg_N ("\use qualified expression instead", N);
4152 elsif Nkind (Expr) = N_Allocator then
4153 Error_Msg_N ("argument of conversion cannot be an allocator", N);
4154 Error_Msg_N ("\use qualified expression instead", N);
4156 elsif Nkind (Expr) = N_String_Literal then
4157 Error_Msg_N ("argument of conversion cannot be string literal", N);
4158 Error_Msg_N ("\use qualified expression instead", N);
4160 elsif Nkind (Expr) = N_Character_Literal then
4161 if Ada_Version = Ada_83 then
4162 Resolve (Expr, T);
4163 else
4164 Error_Msg_N ("argument of conversion cannot be character literal",
4166 Error_Msg_N ("\use qualified expression instead", N);
4167 end if;
4169 elsif Nkind (Expr) = N_Attribute_Reference
4170 and then
4171 (Attribute_Name (Expr) = Name_Access or else
4172 Attribute_Name (Expr) = Name_Unchecked_Access or else
4173 Attribute_Name (Expr) = Name_Unrestricted_Access)
4174 then
4175 Error_Msg_N ("argument of conversion cannot be access", N);
4176 Error_Msg_N ("\use qualified expression instead", N);
4177 end if;
4178 end Analyze_Type_Conversion;
4180 ----------------------
4181 -- Analyze_Unary_Op --
4182 ----------------------
4184 procedure Analyze_Unary_Op (N : Node_Id) is
4185 R : constant Node_Id := Right_Opnd (N);
4186 Op_Id : Entity_Id := Entity (N);
4188 begin
4189 Set_Etype (N, Any_Type);
4190 Candidate_Type := Empty;
4192 Analyze_Expression (R);
4194 if Present (Op_Id) then
4195 if Ekind (Op_Id) = E_Operator then
4196 Find_Unary_Types (R, Op_Id, N);
4197 else
4198 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4199 end if;
4201 else
4202 Op_Id := Get_Name_Entity_Id (Chars (N));
4203 while Present (Op_Id) loop
4204 if Ekind (Op_Id) = E_Operator then
4205 if No (Next_Entity (First_Entity (Op_Id))) then
4206 Find_Unary_Types (R, Op_Id, N);
4207 end if;
4209 elsif Is_Overloadable (Op_Id) then
4210 Analyze_User_Defined_Unary_Op (N, Op_Id);
4211 end if;
4213 Op_Id := Homonym (Op_Id);
4214 end loop;
4215 end if;
4217 Operator_Check (N);
4218 end Analyze_Unary_Op;
4220 ----------------------------------
4221 -- Analyze_Unchecked_Expression --
4222 ----------------------------------
4224 procedure Analyze_Unchecked_Expression (N : Node_Id) is
4225 begin
4226 Analyze (Expression (N), Suppress => All_Checks);
4227 Set_Etype (N, Etype (Expression (N)));
4228 Save_Interps (Expression (N), N);
4229 end Analyze_Unchecked_Expression;
4231 ---------------------------------------
4232 -- Analyze_Unchecked_Type_Conversion --
4233 ---------------------------------------
4235 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
4236 begin
4237 Find_Type (Subtype_Mark (N));
4238 Analyze_Expression (Expression (N));
4239 Set_Etype (N, Entity (Subtype_Mark (N)));
4240 end Analyze_Unchecked_Type_Conversion;
4242 ------------------------------------
4243 -- Analyze_User_Defined_Binary_Op --
4244 ------------------------------------
4246 procedure Analyze_User_Defined_Binary_Op
4247 (N : Node_Id;
4248 Op_Id : Entity_Id)
4250 begin
4251 -- Only do analysis if the operator Comes_From_Source, since otherwise
4252 -- the operator was generated by the expander, and all such operators
4253 -- always refer to the operators in package Standard.
4255 if Comes_From_Source (N) then
4256 declare
4257 F1 : constant Entity_Id := First_Formal (Op_Id);
4258 F2 : constant Entity_Id := Next_Formal (F1);
4260 begin
4261 -- Verify that Op_Id is a visible binary function. Note that since
4262 -- we know Op_Id is overloaded, potentially use visible means use
4263 -- visible for sure (RM 9.4(11)).
4265 if Ekind (Op_Id) = E_Function
4266 and then Present (F2)
4267 and then (Is_Immediately_Visible (Op_Id)
4268 or else Is_Potentially_Use_Visible (Op_Id))
4269 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
4270 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
4271 then
4272 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4274 -- If the left operand is overloaded, indicate that the
4275 -- current type is a viable candidate. This is redundant
4276 -- in most cases, but for equality and comparison operators
4277 -- where the context does not impose a type on the operands,
4278 -- setting the proper type is necessary to avoid subsequent
4279 -- ambiguities during resolution, when both user-defined and
4280 -- predefined operators may be candidates.
4282 if Is_Overloaded (Left_Opnd (N)) then
4283 Set_Etype (Left_Opnd (N), Etype (F1));
4284 end if;
4286 if Debug_Flag_E then
4287 Write_Str ("user defined operator ");
4288 Write_Name (Chars (Op_Id));
4289 Write_Str (" on node ");
4290 Write_Int (Int (N));
4291 Write_Eol;
4292 end if;
4293 end if;
4294 end;
4295 end if;
4296 end Analyze_User_Defined_Binary_Op;
4298 -----------------------------------
4299 -- Analyze_User_Defined_Unary_Op --
4300 -----------------------------------
4302 procedure Analyze_User_Defined_Unary_Op
4303 (N : Node_Id;
4304 Op_Id : Entity_Id)
4306 begin
4307 -- Only do analysis if the operator Comes_From_Source, since otherwise
4308 -- the operator was generated by the expander, and all such operators
4309 -- always refer to the operators in package Standard.
4311 if Comes_From_Source (N) then
4312 declare
4313 F : constant Entity_Id := First_Formal (Op_Id);
4315 begin
4316 -- Verify that Op_Id is a visible unary function. Note that since
4317 -- we know Op_Id is overloaded, potentially use visible means use
4318 -- visible for sure (RM 9.4(11)).
4320 if Ekind (Op_Id) = E_Function
4321 and then No (Next_Formal (F))
4322 and then (Is_Immediately_Visible (Op_Id)
4323 or else Is_Potentially_Use_Visible (Op_Id))
4324 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
4325 then
4326 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4327 end if;
4328 end;
4329 end if;
4330 end Analyze_User_Defined_Unary_Op;
4332 ---------------------------
4333 -- Check_Arithmetic_Pair --
4334 ---------------------------
4336 procedure Check_Arithmetic_Pair
4337 (T1, T2 : Entity_Id;
4338 Op_Id : Entity_Id;
4339 N : Node_Id)
4341 Op_Name : constant Name_Id := Chars (Op_Id);
4343 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
4344 -- Check whether the fixed-point type Typ has a user-defined operator
4345 -- (multiplication or division) that should hide the corresponding
4346 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4347 -- such operators more visible and therefore useful.
4349 -- If the name of the operation is an expanded name with prefix
4350 -- Standard, the predefined universal fixed operator is available,
4351 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4353 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
4354 -- Get specific type (i.e. non-universal type if there is one)
4356 ------------------
4357 -- Has_Fixed_Op --
4358 ------------------
4360 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
4361 Bas : constant Entity_Id := Base_Type (Typ);
4362 Ent : Entity_Id;
4363 F1 : Entity_Id;
4364 F2 : Entity_Id;
4366 begin
4367 -- If the universal_fixed operation is given explicitly the rule
4368 -- concerning primitive operations of the type do not apply.
4370 if Nkind (N) = N_Function_Call
4371 and then Nkind (Name (N)) = N_Expanded_Name
4372 and then Entity (Prefix (Name (N))) = Standard_Standard
4373 then
4374 return False;
4375 end if;
4377 -- The operation is treated as primitive if it is declared in the
4378 -- same scope as the type, and therefore on the same entity chain.
4380 Ent := Next_Entity (Typ);
4381 while Present (Ent) loop
4382 if Chars (Ent) = Chars (Op) then
4383 F1 := First_Formal (Ent);
4384 F2 := Next_Formal (F1);
4386 -- The operation counts as primitive if either operand or
4387 -- result are of the given base type, and both operands are
4388 -- fixed point types.
4390 if (Base_Type (Etype (F1)) = Bas
4391 and then Is_Fixed_Point_Type (Etype (F2)))
4393 or else
4394 (Base_Type (Etype (F2)) = Bas
4395 and then Is_Fixed_Point_Type (Etype (F1)))
4397 or else
4398 (Base_Type (Etype (Ent)) = Bas
4399 and then Is_Fixed_Point_Type (Etype (F1))
4400 and then Is_Fixed_Point_Type (Etype (F2)))
4401 then
4402 return True;
4403 end if;
4404 end if;
4406 Next_Entity (Ent);
4407 end loop;
4409 return False;
4410 end Has_Fixed_Op;
4412 -------------------
4413 -- Specific_Type --
4414 -------------------
4416 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4417 begin
4418 if T1 = Universal_Integer or else T1 = Universal_Real then
4419 return Base_Type (T2);
4420 else
4421 return Base_Type (T1);
4422 end if;
4423 end Specific_Type;
4425 -- Start of processing for Check_Arithmetic_Pair
4427 begin
4428 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4430 if Is_Numeric_Type (T1)
4431 and then Is_Numeric_Type (T2)
4432 and then (Covers (T1 => T1, T2 => T2)
4433 or else
4434 Covers (T1 => T2, T2 => T1))
4435 then
4436 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4437 end if;
4439 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4441 if Is_Fixed_Point_Type (T1)
4442 and then (Is_Fixed_Point_Type (T2)
4443 or else T2 = Universal_Real)
4444 then
4445 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4446 -- and no further processing is required (this is the case of an
4447 -- operator constructed by Exp_Fixd for a fixed point operation)
4448 -- Otherwise add one interpretation with universal fixed result
4449 -- If the operator is given in functional notation, it comes
4450 -- from source and Fixed_As_Integer cannot apply.
4452 if (Nkind (N) not in N_Op
4453 or else not Treat_Fixed_As_Integer (N))
4454 and then
4455 (not Has_Fixed_Op (T1, Op_Id)
4456 or else Nkind (Parent (N)) = N_Type_Conversion)
4457 then
4458 Add_One_Interp (N, Op_Id, Universal_Fixed);
4459 end if;
4461 elsif Is_Fixed_Point_Type (T2)
4462 and then (Nkind (N) not in N_Op
4463 or else not Treat_Fixed_As_Integer (N))
4464 and then T1 = Universal_Real
4465 and then
4466 (not Has_Fixed_Op (T1, Op_Id)
4467 or else Nkind (Parent (N)) = N_Type_Conversion)
4468 then
4469 Add_One_Interp (N, Op_Id, Universal_Fixed);
4471 elsif Is_Numeric_Type (T1)
4472 and then Is_Numeric_Type (T2)
4473 and then (Covers (T1 => T1, T2 => T2)
4474 or else
4475 Covers (T1 => T2, T2 => T1))
4476 then
4477 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4479 elsif Is_Fixed_Point_Type (T1)
4480 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4481 or else T2 = Universal_Integer)
4482 then
4483 Add_One_Interp (N, Op_Id, T1);
4485 elsif T2 = Universal_Real
4486 and then Base_Type (T1) = Base_Type (Standard_Integer)
4487 and then Op_Name = Name_Op_Multiply
4488 then
4489 Add_One_Interp (N, Op_Id, Any_Fixed);
4491 elsif T1 = Universal_Real
4492 and then Base_Type (T2) = Base_Type (Standard_Integer)
4493 then
4494 Add_One_Interp (N, Op_Id, Any_Fixed);
4496 elsif Is_Fixed_Point_Type (T2)
4497 and then (Base_Type (T1) = Base_Type (Standard_Integer)
4498 or else T1 = Universal_Integer)
4499 and then Op_Name = Name_Op_Multiply
4500 then
4501 Add_One_Interp (N, Op_Id, T2);
4503 elsif T1 = Universal_Real and then T2 = Universal_Integer then
4504 Add_One_Interp (N, Op_Id, T1);
4506 elsif T2 = Universal_Real
4507 and then T1 = Universal_Integer
4508 and then Op_Name = Name_Op_Multiply
4509 then
4510 Add_One_Interp (N, Op_Id, T2);
4511 end if;
4513 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
4515 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4516 -- set does not require any special processing, since the Etype is
4517 -- already set (case of operation constructed by Exp_Fixed).
4519 if Is_Integer_Type (T1)
4520 and then (Covers (T1 => T1, T2 => T2)
4521 or else
4522 Covers (T1 => T2, T2 => T1))
4523 then
4524 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4525 end if;
4527 elsif Op_Name = Name_Op_Expon then
4528 if Is_Numeric_Type (T1)
4529 and then not Is_Fixed_Point_Type (T1)
4530 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4531 or else T2 = Universal_Integer)
4532 then
4533 Add_One_Interp (N, Op_Id, Base_Type (T1));
4534 end if;
4536 else pragma Assert (Nkind (N) in N_Op_Shift);
4538 -- If not one of the predefined operators, the node may be one
4539 -- of the intrinsic functions. Its kind is always specific, and
4540 -- we can use it directly, rather than the name of the operation.
4542 if Is_Integer_Type (T1)
4543 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4544 or else T2 = Universal_Integer)
4545 then
4546 Add_One_Interp (N, Op_Id, Base_Type (T1));
4547 end if;
4548 end if;
4549 end Check_Arithmetic_Pair;
4551 -------------------------------
4552 -- Check_Misspelled_Selector --
4553 -------------------------------
4555 procedure Check_Misspelled_Selector
4556 (Prefix : Entity_Id;
4557 Sel : Node_Id)
4559 Max_Suggestions : constant := 2;
4560 Nr_Of_Suggestions : Natural := 0;
4562 Suggestion_1 : Entity_Id := Empty;
4563 Suggestion_2 : Entity_Id := Empty;
4565 Comp : Entity_Id;
4567 begin
4568 -- All the components of the prefix of selector Sel are matched
4569 -- against Sel and a count is maintained of possible misspellings.
4570 -- When at the end of the analysis there are one or two (not more!)
4571 -- possible misspellings, these misspellings will be suggested as
4572 -- possible correction.
4574 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
4576 -- Concurrent types should be handled as well ???
4578 return;
4579 end if;
4581 Comp := First_Entity (Prefix);
4582 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
4583 if Is_Visible_Component (Comp) then
4584 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
4585 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
4587 case Nr_Of_Suggestions is
4588 when 1 => Suggestion_1 := Comp;
4589 when 2 => Suggestion_2 := Comp;
4590 when others => exit;
4591 end case;
4592 end if;
4593 end if;
4595 Comp := Next_Entity (Comp);
4596 end loop;
4598 -- Report at most two suggestions
4600 if Nr_Of_Suggestions = 1 then
4601 Error_Msg_NE -- CODEFIX
4602 ("\possible misspelling of&", Sel, Suggestion_1);
4604 elsif Nr_Of_Suggestions = 2 then
4605 Error_Msg_Node_2 := Suggestion_2;
4606 Error_Msg_NE -- CODEFIX
4607 ("\possible misspelling of& or&", Sel, Suggestion_1);
4608 end if;
4609 end Check_Misspelled_Selector;
4611 ----------------------
4612 -- Defined_In_Scope --
4613 ----------------------
4615 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
4617 S1 : constant Entity_Id := Scope (Base_Type (T));
4618 begin
4619 return S1 = S
4620 or else (S1 = System_Aux_Id and then S = Scope (S1));
4621 end Defined_In_Scope;
4623 -------------------
4624 -- Diagnose_Call --
4625 -------------------
4627 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
4628 Actual : Node_Id;
4629 X : Interp_Index;
4630 It : Interp;
4631 Err_Mode : Boolean;
4632 New_Nam : Node_Id;
4633 Void_Interp_Seen : Boolean := False;
4635 Success : Boolean;
4636 pragma Warnings (Off, Boolean);
4638 begin
4639 if Ada_Version >= Ada_05 then
4640 Actual := First_Actual (N);
4641 while Present (Actual) loop
4643 -- Ada 2005 (AI-50217): Post an error in case of premature
4644 -- usage of an entity from the limited view.
4646 if not Analyzed (Etype (Actual))
4647 and then From_With_Type (Etype (Actual))
4648 then
4649 Error_Msg_Qual_Level := 1;
4650 Error_Msg_NE
4651 ("missing with_clause for scope of imported type&",
4652 Actual, Etype (Actual));
4653 Error_Msg_Qual_Level := 0;
4654 end if;
4656 Next_Actual (Actual);
4657 end loop;
4658 end if;
4660 -- Analyze each candidate call again, with full error reporting
4661 -- for each.
4663 Error_Msg_N
4664 ("no candidate interpretations match the actuals:!", Nam);
4665 Err_Mode := All_Errors_Mode;
4666 All_Errors_Mode := True;
4668 -- If this is a call to an operation of a concurrent type,
4669 -- the failed interpretations have been removed from the
4670 -- name. Recover them to provide full diagnostics.
4672 if Nkind (Parent (Nam)) = N_Selected_Component then
4673 Set_Entity (Nam, Empty);
4674 New_Nam := New_Copy_Tree (Parent (Nam));
4675 Set_Is_Overloaded (New_Nam, False);
4676 Set_Is_Overloaded (Selector_Name (New_Nam), False);
4677 Set_Parent (New_Nam, Parent (Parent (Nam)));
4678 Analyze_Selected_Component (New_Nam);
4679 Get_First_Interp (Selector_Name (New_Nam), X, It);
4680 else
4681 Get_First_Interp (Nam, X, It);
4682 end if;
4684 while Present (It.Nam) loop
4685 if Etype (It.Nam) = Standard_Void_Type then
4686 Void_Interp_Seen := True;
4687 end if;
4689 Analyze_One_Call (N, It.Nam, True, Success);
4690 Get_Next_Interp (X, It);
4691 end loop;
4693 if Nkind (N) = N_Function_Call then
4694 Get_First_Interp (Nam, X, It);
4695 while Present (It.Nam) loop
4696 if Ekind_In (It.Nam, E_Function, E_Operator) then
4697 return;
4698 else
4699 Get_Next_Interp (X, It);
4700 end if;
4701 end loop;
4703 -- If all interpretations are procedures, this deserves a
4704 -- more precise message. Ditto if this appears as the prefix
4705 -- of a selected component, which may be a lexical error.
4707 Error_Msg_N
4708 ("\context requires function call, found procedure name", Nam);
4710 if Nkind (Parent (N)) = N_Selected_Component
4711 and then N = Prefix (Parent (N))
4712 then
4713 Error_Msg_N -- CODEFIX
4714 ("\period should probably be semicolon", Parent (N));
4715 end if;
4717 elsif Nkind (N) = N_Procedure_Call_Statement
4718 and then not Void_Interp_Seen
4719 then
4720 Error_Msg_N (
4721 "\function name found in procedure call", Nam);
4722 end if;
4724 All_Errors_Mode := Err_Mode;
4725 end Diagnose_Call;
4727 ---------------------------
4728 -- Find_Arithmetic_Types --
4729 ---------------------------
4731 procedure Find_Arithmetic_Types
4732 (L, R : Node_Id;
4733 Op_Id : Entity_Id;
4734 N : Node_Id)
4736 Index1 : Interp_Index;
4737 Index2 : Interp_Index;
4738 It1 : Interp;
4739 It2 : Interp;
4741 procedure Check_Right_Argument (T : Entity_Id);
4742 -- Check right operand of operator
4744 --------------------------
4745 -- Check_Right_Argument --
4746 --------------------------
4748 procedure Check_Right_Argument (T : Entity_Id) is
4749 begin
4750 if not Is_Overloaded (R) then
4751 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
4752 else
4753 Get_First_Interp (R, Index2, It2);
4754 while Present (It2.Typ) loop
4755 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
4756 Get_Next_Interp (Index2, It2);
4757 end loop;
4758 end if;
4759 end Check_Right_Argument;
4761 -- Start of processing for Find_Arithmetic_Types
4763 begin
4764 if not Is_Overloaded (L) then
4765 Check_Right_Argument (Etype (L));
4767 else
4768 Get_First_Interp (L, Index1, It1);
4769 while Present (It1.Typ) loop
4770 Check_Right_Argument (It1.Typ);
4771 Get_Next_Interp (Index1, It1);
4772 end loop;
4773 end if;
4775 end Find_Arithmetic_Types;
4777 ------------------------
4778 -- Find_Boolean_Types --
4779 ------------------------
4781 procedure Find_Boolean_Types
4782 (L, R : Node_Id;
4783 Op_Id : Entity_Id;
4784 N : Node_Id)
4786 Index : Interp_Index;
4787 It : Interp;
4789 procedure Check_Numeric_Argument (T : Entity_Id);
4790 -- Special case for logical operations one of whose operands is an
4791 -- integer literal. If both are literal the result is any modular type.
4793 ----------------------------
4794 -- Check_Numeric_Argument --
4795 ----------------------------
4797 procedure Check_Numeric_Argument (T : Entity_Id) is
4798 begin
4799 if T = Universal_Integer then
4800 Add_One_Interp (N, Op_Id, Any_Modular);
4802 elsif Is_Modular_Integer_Type (T) then
4803 Add_One_Interp (N, Op_Id, T);
4804 end if;
4805 end Check_Numeric_Argument;
4807 -- Start of processing for Find_Boolean_Types
4809 begin
4810 if not Is_Overloaded (L) then
4811 if Etype (L) = Universal_Integer
4812 or else Etype (L) = Any_Modular
4813 then
4814 if not Is_Overloaded (R) then
4815 Check_Numeric_Argument (Etype (R));
4817 else
4818 Get_First_Interp (R, Index, It);
4819 while Present (It.Typ) loop
4820 Check_Numeric_Argument (It.Typ);
4821 Get_Next_Interp (Index, It);
4822 end loop;
4823 end if;
4825 -- If operands are aggregates, we must assume that they may be
4826 -- boolean arrays, and leave disambiguation for the second pass.
4827 -- If only one is an aggregate, verify that the other one has an
4828 -- interpretation as a boolean array
4830 elsif Nkind (L) = N_Aggregate then
4831 if Nkind (R) = N_Aggregate then
4832 Add_One_Interp (N, Op_Id, Etype (L));
4834 elsif not Is_Overloaded (R) then
4835 if Valid_Boolean_Arg (Etype (R)) then
4836 Add_One_Interp (N, Op_Id, Etype (R));
4837 end if;
4839 else
4840 Get_First_Interp (R, Index, It);
4841 while Present (It.Typ) loop
4842 if Valid_Boolean_Arg (It.Typ) then
4843 Add_One_Interp (N, Op_Id, It.Typ);
4844 end if;
4846 Get_Next_Interp (Index, It);
4847 end loop;
4848 end if;
4850 elsif Valid_Boolean_Arg (Etype (L))
4851 and then Has_Compatible_Type (R, Etype (L))
4852 then
4853 Add_One_Interp (N, Op_Id, Etype (L));
4854 end if;
4856 else
4857 Get_First_Interp (L, Index, It);
4858 while Present (It.Typ) loop
4859 if Valid_Boolean_Arg (It.Typ)
4860 and then Has_Compatible_Type (R, It.Typ)
4861 then
4862 Add_One_Interp (N, Op_Id, It.Typ);
4863 end if;
4865 Get_Next_Interp (Index, It);
4866 end loop;
4867 end if;
4868 end Find_Boolean_Types;
4870 ---------------------------
4871 -- Find_Comparison_Types --
4872 ---------------------------
4874 procedure Find_Comparison_Types
4875 (L, R : Node_Id;
4876 Op_Id : Entity_Id;
4877 N : Node_Id)
4879 Index : Interp_Index;
4880 It : Interp;
4881 Found : Boolean := False;
4882 I_F : Interp_Index;
4883 T_F : Entity_Id;
4884 Scop : Entity_Id := Empty;
4886 procedure Try_One_Interp (T1 : Entity_Id);
4887 -- Routine to try one proposed interpretation. Note that the context
4888 -- of the operator plays no role in resolving the arguments, so that
4889 -- if there is more than one interpretation of the operands that is
4890 -- compatible with comparison, the operation is ambiguous.
4892 --------------------
4893 -- Try_One_Interp --
4894 --------------------
4896 procedure Try_One_Interp (T1 : Entity_Id) is
4897 begin
4899 -- If the operator is an expanded name, then the type of the operand
4900 -- must be defined in the corresponding scope. If the type is
4901 -- universal, the context will impose the correct type.
4903 if Present (Scop)
4904 and then not Defined_In_Scope (T1, Scop)
4905 and then T1 /= Universal_Integer
4906 and then T1 /= Universal_Real
4907 and then T1 /= Any_String
4908 and then T1 /= Any_Composite
4909 then
4910 return;
4911 end if;
4913 if Valid_Comparison_Arg (T1)
4914 and then Has_Compatible_Type (R, T1)
4915 then
4916 if Found
4917 and then Base_Type (T1) /= Base_Type (T_F)
4918 then
4919 It := Disambiguate (L, I_F, Index, Any_Type);
4921 if It = No_Interp then
4922 Ambiguous_Operands (N);
4923 Set_Etype (L, Any_Type);
4924 return;
4926 else
4927 T_F := It.Typ;
4928 end if;
4930 else
4931 Found := True;
4932 T_F := T1;
4933 I_F := Index;
4934 end if;
4936 Set_Etype (L, T_F);
4937 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
4939 end if;
4940 end Try_One_Interp;
4942 -- Start of processing for Find_Comparison_Types
4944 begin
4945 -- If left operand is aggregate, the right operand has to
4946 -- provide a usable type for it.
4948 if Nkind (L) = N_Aggregate
4949 and then Nkind (R) /= N_Aggregate
4950 then
4951 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
4952 return;
4953 end if;
4955 if Nkind (N) = N_Function_Call
4956 and then Nkind (Name (N)) = N_Expanded_Name
4957 then
4958 Scop := Entity (Prefix (Name (N)));
4960 -- The prefix may be a package renaming, and the subsequent test
4961 -- requires the original package.
4963 if Ekind (Scop) = E_Package
4964 and then Present (Renamed_Entity (Scop))
4965 then
4966 Scop := Renamed_Entity (Scop);
4967 Set_Entity (Prefix (Name (N)), Scop);
4968 end if;
4969 end if;
4971 if not Is_Overloaded (L) then
4972 Try_One_Interp (Etype (L));
4974 else
4975 Get_First_Interp (L, Index, It);
4976 while Present (It.Typ) loop
4977 Try_One_Interp (It.Typ);
4978 Get_Next_Interp (Index, It);
4979 end loop;
4980 end if;
4981 end Find_Comparison_Types;
4983 ----------------------------------------
4984 -- Find_Non_Universal_Interpretations --
4985 ----------------------------------------
4987 procedure Find_Non_Universal_Interpretations
4988 (N : Node_Id;
4989 R : Node_Id;
4990 Op_Id : Entity_Id;
4991 T1 : Entity_Id)
4993 Index : Interp_Index;
4994 It : Interp;
4996 begin
4997 if T1 = Universal_Integer
4998 or else T1 = Universal_Real
4999 then
5000 if not Is_Overloaded (R) then
5001 Add_One_Interp
5002 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5003 else
5004 Get_First_Interp (R, Index, It);
5005 while Present (It.Typ) loop
5006 if Covers (It.Typ, T1) then
5007 Add_One_Interp
5008 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5009 end if;
5011 Get_Next_Interp (Index, It);
5012 end loop;
5013 end if;
5014 else
5015 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5016 end if;
5017 end Find_Non_Universal_Interpretations;
5019 ------------------------------
5020 -- Find_Concatenation_Types --
5021 ------------------------------
5023 procedure Find_Concatenation_Types
5024 (L, R : Node_Id;
5025 Op_Id : Entity_Id;
5026 N : Node_Id)
5028 Op_Type : constant Entity_Id := Etype (Op_Id);
5030 begin
5031 if Is_Array_Type (Op_Type)
5032 and then not Is_Limited_Type (Op_Type)
5034 and then (Has_Compatible_Type (L, Op_Type)
5035 or else
5036 Has_Compatible_Type (L, Component_Type (Op_Type)))
5038 and then (Has_Compatible_Type (R, Op_Type)
5039 or else
5040 Has_Compatible_Type (R, Component_Type (Op_Type)))
5041 then
5042 Add_One_Interp (N, Op_Id, Op_Type);
5043 end if;
5044 end Find_Concatenation_Types;
5046 -------------------------
5047 -- Find_Equality_Types --
5048 -------------------------
5050 procedure Find_Equality_Types
5051 (L, R : Node_Id;
5052 Op_Id : Entity_Id;
5053 N : Node_Id)
5055 Index : Interp_Index;
5056 It : Interp;
5057 Found : Boolean := False;
5058 I_F : Interp_Index;
5059 T_F : Entity_Id;
5060 Scop : Entity_Id := Empty;
5062 procedure Try_One_Interp (T1 : Entity_Id);
5063 -- The context of the equality operator plays no role in resolving the
5064 -- arguments, so that if there is more than one interpretation of the
5065 -- operands that is compatible with equality, the construct is ambiguous
5066 -- and an error can be emitted now, after trying to disambiguate, i.e.
5067 -- applying preference rules.
5069 --------------------
5070 -- Try_One_Interp --
5071 --------------------
5073 procedure Try_One_Interp (T1 : Entity_Id) is
5074 Bas : constant Entity_Id := Base_Type (T1);
5076 begin
5077 -- If the operator is an expanded name, then the type of the operand
5078 -- must be defined in the corresponding scope. If the type is
5079 -- universal, the context will impose the correct type. An anonymous
5080 -- type for a 'Access reference is also universal in this sense, as
5081 -- the actual type is obtained from context.
5082 -- In Ada 2005, the equality operator for anonymous access types
5083 -- is declared in Standard, and preference rules apply to it.
5085 if Present (Scop) then
5086 if Defined_In_Scope (T1, Scop)
5087 or else T1 = Universal_Integer
5088 or else T1 = Universal_Real
5089 or else T1 = Any_Access
5090 or else T1 = Any_String
5091 or else T1 = Any_Composite
5092 or else (Ekind (T1) = E_Access_Subprogram_Type
5093 and then not Comes_From_Source (T1))
5094 then
5095 null;
5097 elsif Ekind (T1) = E_Anonymous_Access_Type
5098 and then Scop = Standard_Standard
5099 then
5100 null;
5102 else
5103 -- The scope does not contain an operator for the type
5105 return;
5106 end if;
5108 -- If we have infix notation, the operator must be usable.
5109 -- Within an instance, if the type is already established we
5110 -- know it is correct.
5111 -- In Ada 2005, the equality on anonymous access types is declared
5112 -- in Standard, and is always visible.
5114 elsif In_Open_Scopes (Scope (Bas))
5115 or else Is_Potentially_Use_Visible (Bas)
5116 or else In_Use (Bas)
5117 or else (In_Use (Scope (Bas))
5118 and then not Is_Hidden (Bas))
5119 or else (In_Instance
5120 and then First_Subtype (T1) = First_Subtype (Etype (R)))
5121 or else Ekind (T1) = E_Anonymous_Access_Type
5122 then
5123 null;
5125 else
5126 -- Save candidate type for subsquent error message, if any
5128 if not Is_Limited_Type (T1) then
5129 Candidate_Type := T1;
5130 end if;
5132 return;
5133 end if;
5135 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5136 -- Do not allow anonymous access types in equality operators.
5138 if Ada_Version < Ada_05
5139 and then Ekind (T1) = E_Anonymous_Access_Type
5140 then
5141 return;
5142 end if;
5144 if T1 /= Standard_Void_Type
5145 and then not Is_Limited_Type (T1)
5146 and then not Is_Limited_Composite (T1)
5147 and then Has_Compatible_Type (R, T1)
5148 then
5149 if Found
5150 and then Base_Type (T1) /= Base_Type (T_F)
5151 then
5152 It := Disambiguate (L, I_F, Index, Any_Type);
5154 if It = No_Interp then
5155 Ambiguous_Operands (N);
5156 Set_Etype (L, Any_Type);
5157 return;
5159 else
5160 T_F := It.Typ;
5161 end if;
5163 else
5164 Found := True;
5165 T_F := T1;
5166 I_F := Index;
5167 end if;
5169 if not Analyzed (L) then
5170 Set_Etype (L, T_F);
5171 end if;
5173 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5175 -- Case of operator was not visible, Etype still set to Any_Type
5177 if Etype (N) = Any_Type then
5178 Found := False;
5179 end if;
5181 elsif Scop = Standard_Standard
5182 and then Ekind (T1) = E_Anonymous_Access_Type
5183 then
5184 Found := True;
5185 end if;
5186 end Try_One_Interp;
5188 -- Start of processing for Find_Equality_Types
5190 begin
5191 -- If left operand is aggregate, the right operand has to
5192 -- provide a usable type for it.
5194 if Nkind (L) = N_Aggregate
5195 and then Nkind (R) /= N_Aggregate
5196 then
5197 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5198 return;
5199 end if;
5201 if Nkind (N) = N_Function_Call
5202 and then Nkind (Name (N)) = N_Expanded_Name
5203 then
5204 Scop := Entity (Prefix (Name (N)));
5206 -- The prefix may be a package renaming, and the subsequent test
5207 -- requires the original package.
5209 if Ekind (Scop) = E_Package
5210 and then Present (Renamed_Entity (Scop))
5211 then
5212 Scop := Renamed_Entity (Scop);
5213 Set_Entity (Prefix (Name (N)), Scop);
5214 end if;
5215 end if;
5217 if not Is_Overloaded (L) then
5218 Try_One_Interp (Etype (L));
5220 else
5221 Get_First_Interp (L, Index, It);
5222 while Present (It.Typ) loop
5223 Try_One_Interp (It.Typ);
5224 Get_Next_Interp (Index, It);
5225 end loop;
5226 end if;
5227 end Find_Equality_Types;
5229 -------------------------
5230 -- Find_Negation_Types --
5231 -------------------------
5233 procedure Find_Negation_Types
5234 (R : Node_Id;
5235 Op_Id : Entity_Id;
5236 N : Node_Id)
5238 Index : Interp_Index;
5239 It : Interp;
5241 begin
5242 if not Is_Overloaded (R) then
5243 if Etype (R) = Universal_Integer then
5244 Add_One_Interp (N, Op_Id, Any_Modular);
5245 elsif Valid_Boolean_Arg (Etype (R)) then
5246 Add_One_Interp (N, Op_Id, Etype (R));
5247 end if;
5249 else
5250 Get_First_Interp (R, Index, It);
5251 while Present (It.Typ) loop
5252 if Valid_Boolean_Arg (It.Typ) then
5253 Add_One_Interp (N, Op_Id, It.Typ);
5254 end if;
5256 Get_Next_Interp (Index, It);
5257 end loop;
5258 end if;
5259 end Find_Negation_Types;
5261 ------------------------------
5262 -- Find_Primitive_Operation --
5263 ------------------------------
5265 function Find_Primitive_Operation (N : Node_Id) return Boolean is
5266 Obj : constant Node_Id := Prefix (N);
5267 Op : constant Node_Id := Selector_Name (N);
5269 Prim : Elmt_Id;
5270 Prims : Elist_Id;
5271 Typ : Entity_Id;
5273 begin
5274 Set_Etype (Op, Any_Type);
5276 if Is_Access_Type (Etype (Obj)) then
5277 Typ := Designated_Type (Etype (Obj));
5278 else
5279 Typ := Etype (Obj);
5280 end if;
5282 if Is_Class_Wide_Type (Typ) then
5283 Typ := Root_Type (Typ);
5284 end if;
5286 Prims := Primitive_Operations (Typ);
5288 Prim := First_Elmt (Prims);
5289 while Present (Prim) loop
5290 if Chars (Node (Prim)) = Chars (Op) then
5291 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
5292 Set_Etype (N, Etype (Node (Prim)));
5293 end if;
5295 Next_Elmt (Prim);
5296 end loop;
5298 -- Now look for class-wide operations of the type or any of its
5299 -- ancestors by iterating over the homonyms of the selector.
5301 declare
5302 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
5303 Hom : Entity_Id;
5305 begin
5306 Hom := Current_Entity (Op);
5307 while Present (Hom) loop
5308 if (Ekind (Hom) = E_Procedure
5309 or else
5310 Ekind (Hom) = E_Function)
5311 and then Scope (Hom) = Scope (Typ)
5312 and then Present (First_Formal (Hom))
5313 and then
5314 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
5315 or else
5316 (Is_Access_Type (Etype (First_Formal (Hom)))
5317 and then
5318 Ekind (Etype (First_Formal (Hom))) =
5319 E_Anonymous_Access_Type
5320 and then
5321 Base_Type
5322 (Designated_Type (Etype (First_Formal (Hom)))) =
5323 Cls_Type))
5324 then
5325 Add_One_Interp (Op, Hom, Etype (Hom));
5326 Set_Etype (N, Etype (Hom));
5327 end if;
5329 Hom := Homonym (Hom);
5330 end loop;
5331 end;
5333 return Etype (Op) /= Any_Type;
5334 end Find_Primitive_Operation;
5336 ----------------------
5337 -- Find_Unary_Types --
5338 ----------------------
5340 procedure Find_Unary_Types
5341 (R : Node_Id;
5342 Op_Id : Entity_Id;
5343 N : Node_Id)
5345 Index : Interp_Index;
5346 It : Interp;
5348 begin
5349 if not Is_Overloaded (R) then
5350 if Is_Numeric_Type (Etype (R)) then
5351 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
5352 end if;
5354 else
5355 Get_First_Interp (R, Index, It);
5356 while Present (It.Typ) loop
5357 if Is_Numeric_Type (It.Typ) then
5358 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
5359 end if;
5361 Get_Next_Interp (Index, It);
5362 end loop;
5363 end if;
5364 end Find_Unary_Types;
5366 ------------------
5367 -- Junk_Operand --
5368 ------------------
5370 function Junk_Operand (N : Node_Id) return Boolean is
5371 Enode : Node_Id;
5373 begin
5374 if Error_Posted (N) then
5375 return False;
5376 end if;
5378 -- Get entity to be tested
5380 if Is_Entity_Name (N)
5381 and then Present (Entity (N))
5382 then
5383 Enode := N;
5385 -- An odd case, a procedure name gets converted to a very peculiar
5386 -- function call, and here is where we detect this happening.
5388 elsif Nkind (N) = N_Function_Call
5389 and then Is_Entity_Name (Name (N))
5390 and then Present (Entity (Name (N)))
5391 then
5392 Enode := Name (N);
5394 -- Another odd case, there are at least some cases of selected
5395 -- components where the selected component is not marked as having
5396 -- an entity, even though the selector does have an entity
5398 elsif Nkind (N) = N_Selected_Component
5399 and then Present (Entity (Selector_Name (N)))
5400 then
5401 Enode := Selector_Name (N);
5403 else
5404 return False;
5405 end if;
5407 -- Now test the entity we got to see if it is a bad case
5409 case Ekind (Entity (Enode)) is
5411 when E_Package =>
5412 Error_Msg_N
5413 ("package name cannot be used as operand", Enode);
5415 when Generic_Unit_Kind =>
5416 Error_Msg_N
5417 ("generic unit name cannot be used as operand", Enode);
5419 when Type_Kind =>
5420 Error_Msg_N
5421 ("subtype name cannot be used as operand", Enode);
5423 when Entry_Kind =>
5424 Error_Msg_N
5425 ("entry name cannot be used as operand", Enode);
5427 when E_Procedure =>
5428 Error_Msg_N
5429 ("procedure name cannot be used as operand", Enode);
5431 when E_Exception =>
5432 Error_Msg_N
5433 ("exception name cannot be used as operand", Enode);
5435 when E_Block | E_Label | E_Loop =>
5436 Error_Msg_N
5437 ("label name cannot be used as operand", Enode);
5439 when others =>
5440 return False;
5442 end case;
5444 return True;
5445 end Junk_Operand;
5447 --------------------
5448 -- Operator_Check --
5449 --------------------
5451 procedure Operator_Check (N : Node_Id) is
5452 begin
5453 Remove_Abstract_Operations (N);
5455 -- Test for case of no interpretation found for operator
5457 if Etype (N) = Any_Type then
5458 declare
5459 L : Node_Id;
5460 R : Node_Id;
5461 Op_Id : Entity_Id := Empty;
5463 begin
5464 R := Right_Opnd (N);
5466 if Nkind (N) in N_Binary_Op then
5467 L := Left_Opnd (N);
5468 else
5469 L := Empty;
5470 end if;
5472 -- If either operand has no type, then don't complain further,
5473 -- since this simply means that we have a propagated error.
5475 if R = Error
5476 or else Etype (R) = Any_Type
5477 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
5478 then
5479 return;
5481 -- We explicitly check for the case of concatenation of component
5482 -- with component to avoid reporting spurious matching array types
5483 -- that might happen to be lurking in distant packages (such as
5484 -- run-time packages). This also prevents inconsistencies in the
5485 -- messages for certain ACVC B tests, which can vary depending on
5486 -- types declared in run-time interfaces. Another improvement when
5487 -- aggregates are present is to look for a well-typed operand.
5489 elsif Present (Candidate_Type)
5490 and then (Nkind (N) /= N_Op_Concat
5491 or else Is_Array_Type (Etype (L))
5492 or else Is_Array_Type (Etype (R)))
5493 then
5495 if Nkind (N) = N_Op_Concat then
5496 if Etype (L) /= Any_Composite
5497 and then Is_Array_Type (Etype (L))
5498 then
5499 Candidate_Type := Etype (L);
5501 elsif Etype (R) /= Any_Composite
5502 and then Is_Array_Type (Etype (R))
5503 then
5504 Candidate_Type := Etype (R);
5505 end if;
5506 end if;
5508 Error_Msg_NE -- CODEFIX
5509 ("operator for} is not directly visible!",
5510 N, First_Subtype (Candidate_Type));
5511 Error_Msg_N -- CODEFIX
5512 ("use clause would make operation legal!", N);
5513 return;
5515 -- If either operand is a junk operand (e.g. package name), then
5516 -- post appropriate error messages, but do not complain further.
5518 -- Note that the use of OR in this test instead of OR ELSE is
5519 -- quite deliberate, we may as well check both operands in the
5520 -- binary operator case.
5522 elsif Junk_Operand (R)
5523 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
5524 then
5525 return;
5527 -- If we have a logical operator, one of whose operands is
5528 -- Boolean, then we know that the other operand cannot resolve to
5529 -- Boolean (since we got no interpretations), but in that case we
5530 -- pretty much know that the other operand should be Boolean, so
5531 -- resolve it that way (generating an error)
5533 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
5534 if Etype (L) = Standard_Boolean then
5535 Resolve (R, Standard_Boolean);
5536 return;
5537 elsif Etype (R) = Standard_Boolean then
5538 Resolve (L, Standard_Boolean);
5539 return;
5540 end if;
5542 -- For an arithmetic operator or comparison operator, if one
5543 -- of the operands is numeric, then we know the other operand
5544 -- is not the same numeric type. If it is a non-numeric type,
5545 -- then probably it is intended to match the other operand.
5547 elsif Nkind_In (N, N_Op_Add,
5548 N_Op_Divide,
5549 N_Op_Ge,
5550 N_Op_Gt,
5551 N_Op_Le)
5552 or else
5553 Nkind_In (N, N_Op_Lt,
5554 N_Op_Mod,
5555 N_Op_Multiply,
5556 N_Op_Rem,
5557 N_Op_Subtract)
5558 then
5559 if Is_Numeric_Type (Etype (L))
5560 and then not Is_Numeric_Type (Etype (R))
5561 then
5562 Resolve (R, Etype (L));
5563 return;
5565 elsif Is_Numeric_Type (Etype (R))
5566 and then not Is_Numeric_Type (Etype (L))
5567 then
5568 Resolve (L, Etype (R));
5569 return;
5570 end if;
5572 -- Comparisons on A'Access are common enough to deserve a
5573 -- special message.
5575 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
5576 and then Ekind (Etype (L)) = E_Access_Attribute_Type
5577 and then Ekind (Etype (R)) = E_Access_Attribute_Type
5578 then
5579 Error_Msg_N
5580 ("two access attributes cannot be compared directly", N);
5581 Error_Msg_N
5582 ("\use qualified expression for one of the operands",
5584 return;
5586 -- Another one for C programmers
5588 elsif Nkind (N) = N_Op_Concat
5589 and then Valid_Boolean_Arg (Etype (L))
5590 and then Valid_Boolean_Arg (Etype (R))
5591 then
5592 Error_Msg_N ("invalid operands for concatenation", N);
5593 Error_Msg_N -- CODEFIX
5594 ("\maybe AND was meant", N);
5595 return;
5597 -- A special case for comparison of access parameter with null
5599 elsif Nkind (N) = N_Op_Eq
5600 and then Is_Entity_Name (L)
5601 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
5602 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
5603 N_Access_Definition
5604 and then Nkind (R) = N_Null
5605 then
5606 Error_Msg_N ("access parameter is not allowed to be null", L);
5607 Error_Msg_N ("\(call would raise Constraint_Error)", L);
5608 return;
5610 -- Another special case for exponentiation, where the right
5611 -- operand must be Natural, independently of the base.
5613 elsif Nkind (N) = N_Op_Expon
5614 and then Is_Numeric_Type (Etype (L))
5615 and then not Is_Overloaded (R)
5616 and then
5617 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
5618 and then Base_Type (Etype (R)) /= Universal_Integer
5619 then
5620 Error_Msg_NE
5621 ("exponent must be of type Natural, found}", R, Etype (R));
5622 return;
5623 end if;
5625 -- If we fall through then just give general message. Note that in
5626 -- the following messages, if the operand is overloaded we choose
5627 -- an arbitrary type to complain about, but that is probably more
5628 -- useful than not giving a type at all.
5630 if Nkind (N) in N_Unary_Op then
5631 Error_Msg_Node_2 := Etype (R);
5632 Error_Msg_N ("operator& not defined for}", N);
5633 return;
5635 else
5636 if Nkind (N) in N_Binary_Op then
5637 if not Is_Overloaded (L)
5638 and then not Is_Overloaded (R)
5639 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
5640 then
5641 Error_Msg_Node_2 := First_Subtype (Etype (R));
5642 Error_Msg_N ("there is no applicable operator& for}", N);
5644 else
5645 -- Another attempt to find a fix: one of the candidate
5646 -- interpretations may not be use-visible. This has
5647 -- already been checked for predefined operators, so
5648 -- we examine only user-defined functions.
5650 Op_Id := Get_Name_Entity_Id (Chars (N));
5652 while Present (Op_Id) loop
5653 if Ekind (Op_Id) /= E_Operator
5654 and then Is_Overloadable (Op_Id)
5655 then
5656 if not Is_Immediately_Visible (Op_Id)
5657 and then not In_Use (Scope (Op_Id))
5658 and then not Is_Abstract_Subprogram (Op_Id)
5659 and then not Is_Hidden (Op_Id)
5660 and then Ekind (Scope (Op_Id)) = E_Package
5661 and then
5662 Has_Compatible_Type
5663 (L, Etype (First_Formal (Op_Id)))
5664 and then Present
5665 (Next_Formal (First_Formal (Op_Id)))
5666 and then
5667 Has_Compatible_Type
5669 Etype (Next_Formal (First_Formal (Op_Id))))
5670 then
5671 Error_Msg_N
5672 ("No legal interpretation for operator&", N);
5673 Error_Msg_NE
5674 ("\use clause on& would make operation legal",
5675 N, Scope (Op_Id));
5676 exit;
5677 end if;
5678 end if;
5680 Op_Id := Homonym (Op_Id);
5681 end loop;
5683 if No (Op_Id) then
5684 Error_Msg_N ("invalid operand types for operator&", N);
5686 if Nkind (N) /= N_Op_Concat then
5687 Error_Msg_NE ("\left operand has}!", N, Etype (L));
5688 Error_Msg_NE ("\right operand has}!", N, Etype (R));
5689 end if;
5690 end if;
5691 end if;
5692 end if;
5693 end if;
5694 end;
5695 end if;
5696 end Operator_Check;
5698 -----------------------------------------
5699 -- Process_Implicit_Dereference_Prefix --
5700 -----------------------------------------
5702 function Process_Implicit_Dereference_Prefix
5703 (E : Entity_Id;
5704 P : Entity_Id) return Entity_Id
5706 Ref : Node_Id;
5707 Typ : constant Entity_Id := Designated_Type (Etype (P));
5709 begin
5710 if Present (E)
5711 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
5712 then
5713 -- We create a dummy reference to E to ensure that the reference
5714 -- is not considered as part of an assignment (an implicit
5715 -- dereference can never assign to its prefix). The Comes_From_Source
5716 -- attribute needs to be propagated for accurate warnings.
5718 Ref := New_Reference_To (E, Sloc (P));
5719 Set_Comes_From_Source (Ref, Comes_From_Source (P));
5720 Generate_Reference (E, Ref);
5721 end if;
5723 -- An implicit dereference is a legal occurrence of an
5724 -- incomplete type imported through a limited_with clause,
5725 -- if the full view is visible.
5727 if From_With_Type (Typ)
5728 and then not From_With_Type (Scope (Typ))
5729 and then
5730 (Is_Immediately_Visible (Scope (Typ))
5731 or else
5732 (Is_Child_Unit (Scope (Typ))
5733 and then Is_Visible_Child_Unit (Scope (Typ))))
5734 then
5735 return Available_View (Typ);
5736 else
5737 return Typ;
5738 end if;
5740 end Process_Implicit_Dereference_Prefix;
5742 --------------------------------
5743 -- Remove_Abstract_Operations --
5744 --------------------------------
5746 procedure Remove_Abstract_Operations (N : Node_Id) is
5747 Abstract_Op : Entity_Id := Empty;
5748 Address_Kludge : Boolean := False;
5749 I : Interp_Index;
5750 It : Interp;
5752 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
5753 -- activate this if either extensions are enabled, or if the abstract
5754 -- operation in question comes from a predefined file. This latter test
5755 -- allows us to use abstract to make operations invisible to users. In
5756 -- particular, if type Address is non-private and abstract subprograms
5757 -- are used to hide its operators, they will be truly hidden.
5759 type Operand_Position is (First_Op, Second_Op);
5760 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5762 procedure Remove_Address_Interpretations (Op : Operand_Position);
5763 -- Ambiguities may arise when the operands are literal and the address
5764 -- operations in s-auxdec are visible. In that case, remove the
5765 -- interpretation of a literal as Address, to retain the semantics of
5766 -- Address as a private type.
5768 ------------------------------------
5769 -- Remove_Address_Interpretations --
5770 ------------------------------------
5772 procedure Remove_Address_Interpretations (Op : Operand_Position) is
5773 Formal : Entity_Id;
5775 begin
5776 if Is_Overloaded (N) then
5777 Get_First_Interp (N, I, It);
5778 while Present (It.Nam) loop
5779 Formal := First_Entity (It.Nam);
5781 if Op = Second_Op then
5782 Formal := Next_Entity (Formal);
5783 end if;
5785 if Is_Descendent_Of_Address (Etype (Formal)) then
5786 Address_Kludge := True;
5787 Remove_Interp (I);
5788 end if;
5790 Get_Next_Interp (I, It);
5791 end loop;
5792 end if;
5793 end Remove_Address_Interpretations;
5795 -- Start of processing for Remove_Abstract_Operations
5797 begin
5798 if Is_Overloaded (N) then
5799 Get_First_Interp (N, I, It);
5801 while Present (It.Nam) loop
5802 if Is_Overloadable (It.Nam)
5803 and then Is_Abstract_Subprogram (It.Nam)
5804 and then not Is_Dispatching_Operation (It.Nam)
5805 then
5806 Abstract_Op := It.Nam;
5808 if Is_Descendent_Of_Address (It.Typ) then
5809 Address_Kludge := True;
5810 Remove_Interp (I);
5811 exit;
5813 -- In Ada 2005, this operation does not participate in Overload
5814 -- resolution. If the operation is defined in a predefined
5815 -- unit, it is one of the operations declared abstract in some
5816 -- variants of System, and it must be removed as well.
5818 elsif Ada_Version >= Ada_05
5819 or else Is_Predefined_File_Name
5820 (Unit_File_Name (Get_Source_Unit (It.Nam)))
5821 then
5822 Remove_Interp (I);
5823 exit;
5824 end if;
5825 end if;
5827 Get_Next_Interp (I, It);
5828 end loop;
5830 if No (Abstract_Op) then
5832 -- If some interpretation yields an integer type, it is still
5833 -- possible that there are address interpretations. Remove them
5834 -- if one operand is a literal, to avoid spurious ambiguities
5835 -- on systems where Address is a visible integer type.
5837 if Is_Overloaded (N)
5838 and then Nkind (N) in N_Op
5839 and then Is_Integer_Type (Etype (N))
5840 then
5841 if Nkind (N) in N_Binary_Op then
5842 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
5843 Remove_Address_Interpretations (Second_Op);
5845 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
5846 Remove_Address_Interpretations (First_Op);
5847 end if;
5848 end if;
5849 end if;
5851 elsif Nkind (N) in N_Op then
5853 -- Remove interpretations that treat literals as addresses. This
5854 -- is never appropriate, even when Address is defined as a visible
5855 -- Integer type. The reason is that we would really prefer Address
5856 -- to behave as a private type, even in this case, which is there
5857 -- only to accommodate oddities of VMS address sizes. If Address
5858 -- is a visible integer type, we get lots of overload ambiguities.
5860 if Nkind (N) in N_Binary_Op then
5861 declare
5862 U1 : constant Boolean :=
5863 Present (Universal_Interpretation (Right_Opnd (N)));
5864 U2 : constant Boolean :=
5865 Present (Universal_Interpretation (Left_Opnd (N)));
5867 begin
5868 if U1 then
5869 Remove_Address_Interpretations (Second_Op);
5870 end if;
5872 if U2 then
5873 Remove_Address_Interpretations (First_Op);
5874 end if;
5876 if not (U1 and U2) then
5878 -- Remove corresponding predefined operator, which is
5879 -- always added to the overload set.
5881 Get_First_Interp (N, I, It);
5882 while Present (It.Nam) loop
5883 if Scope (It.Nam) = Standard_Standard
5884 and then Base_Type (It.Typ) =
5885 Base_Type (Etype (Abstract_Op))
5886 then
5887 Remove_Interp (I);
5888 end if;
5890 Get_Next_Interp (I, It);
5891 end loop;
5893 elsif Is_Overloaded (N)
5894 and then Present (Univ_Type)
5895 then
5896 -- If both operands have a universal interpretation,
5897 -- it is still necessary to remove interpretations that
5898 -- yield Address. Any remaining ambiguities will be
5899 -- removed in Disambiguate.
5901 Get_First_Interp (N, I, It);
5902 while Present (It.Nam) loop
5903 if Is_Descendent_Of_Address (It.Typ) then
5904 Remove_Interp (I);
5906 elsif not Is_Type (It.Nam) then
5907 Set_Entity (N, It.Nam);
5908 end if;
5910 Get_Next_Interp (I, It);
5911 end loop;
5912 end if;
5913 end;
5914 end if;
5916 elsif Nkind (N) = N_Function_Call
5917 and then
5918 (Nkind (Name (N)) = N_Operator_Symbol
5919 or else
5920 (Nkind (Name (N)) = N_Expanded_Name
5921 and then
5922 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
5923 then
5925 declare
5926 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5927 U1 : constant Boolean :=
5928 Present (Universal_Interpretation (Arg1));
5929 U2 : constant Boolean :=
5930 Present (Next (Arg1)) and then
5931 Present (Universal_Interpretation (Next (Arg1)));
5933 begin
5934 if U1 then
5935 Remove_Address_Interpretations (First_Op);
5936 end if;
5938 if U2 then
5939 Remove_Address_Interpretations (Second_Op);
5940 end if;
5942 if not (U1 and U2) then
5943 Get_First_Interp (N, I, It);
5944 while Present (It.Nam) loop
5945 if Scope (It.Nam) = Standard_Standard
5946 and then It.Typ = Base_Type (Etype (Abstract_Op))
5947 then
5948 Remove_Interp (I);
5949 end if;
5951 Get_Next_Interp (I, It);
5952 end loop;
5953 end if;
5954 end;
5955 end if;
5957 -- If the removal has left no valid interpretations, emit an error
5958 -- message now and label node as illegal.
5960 if Present (Abstract_Op) then
5961 Get_First_Interp (N, I, It);
5963 if No (It.Nam) then
5965 -- Removal of abstract operation left no viable candidate
5967 Set_Etype (N, Any_Type);
5968 Error_Msg_Sloc := Sloc (Abstract_Op);
5969 Error_Msg_NE
5970 ("cannot call abstract operation& declared#", N, Abstract_Op);
5972 -- In Ada 2005, an abstract operation may disable predefined
5973 -- operators. Since the context is not yet known, we mark the
5974 -- predefined operators as potentially hidden. Do not include
5975 -- predefined operators when addresses are involved since this
5976 -- case is handled separately.
5978 elsif Ada_Version >= Ada_05
5979 and then not Address_Kludge
5980 then
5981 while Present (It.Nam) loop
5982 if Is_Numeric_Type (It.Typ)
5983 and then Scope (It.Typ) = Standard_Standard
5984 then
5985 Set_Abstract_Op (I, Abstract_Op);
5986 end if;
5988 Get_Next_Interp (I, It);
5989 end loop;
5990 end if;
5991 end if;
5992 end if;
5993 end Remove_Abstract_Operations;
5995 -----------------------
5996 -- Try_Indirect_Call --
5997 -----------------------
5999 function Try_Indirect_Call
6000 (N : Node_Id;
6001 Nam : Entity_Id;
6002 Typ : Entity_Id) return Boolean
6004 Actual : Node_Id;
6005 Formal : Entity_Id;
6007 Call_OK : Boolean;
6008 pragma Warnings (Off, Call_OK);
6010 begin
6011 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
6013 Actual := First_Actual (N);
6014 Formal := First_Formal (Designated_Type (Typ));
6015 while Present (Actual) and then Present (Formal) loop
6016 if not Has_Compatible_Type (Actual, Etype (Formal)) then
6017 return False;
6018 end if;
6020 Next (Actual);
6021 Next_Formal (Formal);
6022 end loop;
6024 if No (Actual) and then No (Formal) then
6025 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
6027 -- Nam is a candidate interpretation for the name in the call,
6028 -- if it is not an indirect call.
6030 if not Is_Type (Nam)
6031 and then Is_Entity_Name (Name (N))
6032 then
6033 Set_Entity (Name (N), Nam);
6034 end if;
6036 return True;
6037 else
6038 return False;
6039 end if;
6040 end Try_Indirect_Call;
6042 ----------------------
6043 -- Try_Indexed_Call --
6044 ----------------------
6046 function Try_Indexed_Call
6047 (N : Node_Id;
6048 Nam : Entity_Id;
6049 Typ : Entity_Id;
6050 Skip_First : Boolean) return Boolean
6052 Loc : constant Source_Ptr := Sloc (N);
6053 Actuals : constant List_Id := Parameter_Associations (N);
6054 Actual : Node_Id;
6055 Index : Entity_Id;
6057 begin
6058 Actual := First (Actuals);
6060 -- If the call was originally written in prefix form, skip the first
6061 -- actual, which is obviously not defaulted.
6063 if Skip_First then
6064 Next (Actual);
6065 end if;
6067 Index := First_Index (Typ);
6068 while Present (Actual) and then Present (Index) loop
6070 -- If the parameter list has a named association, the expression
6071 -- is definitely a call and not an indexed component.
6073 if Nkind (Actual) = N_Parameter_Association then
6074 return False;
6075 end if;
6077 if Is_Entity_Name (Actual)
6078 and then Is_Type (Entity (Actual))
6079 and then No (Next (Actual))
6080 then
6081 Rewrite (N,
6082 Make_Slice (Loc,
6083 Prefix => Make_Function_Call (Loc,
6084 Name => Relocate_Node (Name (N))),
6085 Discrete_Range =>
6086 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
6088 Analyze (N);
6089 return True;
6091 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
6092 return False;
6093 end if;
6095 Next (Actual);
6096 Next_Index (Index);
6097 end loop;
6099 if No (Actual) and then No (Index) then
6100 Add_One_Interp (N, Nam, Component_Type (Typ));
6102 -- Nam is a candidate interpretation for the name in the call,
6103 -- if it is not an indirect call.
6105 if not Is_Type (Nam)
6106 and then Is_Entity_Name (Name (N))
6107 then
6108 Set_Entity (Name (N), Nam);
6109 end if;
6111 return True;
6112 else
6113 return False;
6114 end if;
6115 end Try_Indexed_Call;
6117 --------------------------
6118 -- Try_Object_Operation --
6119 --------------------------
6121 function Try_Object_Operation (N : Node_Id) return Boolean is
6122 K : constant Node_Kind := Nkind (Parent (N));
6123 Is_Subprg_Call : constant Boolean := Nkind_In
6124 (K, N_Procedure_Call_Statement,
6125 N_Function_Call);
6126 Loc : constant Source_Ptr := Sloc (N);
6127 Obj : constant Node_Id := Prefix (N);
6128 Subprog : constant Node_Id :=
6129 Make_Identifier (Sloc (Selector_Name (N)),
6130 Chars => Chars (Selector_Name (N)));
6131 -- Identifier on which possible interpretations will be collected
6133 Report_Error : Boolean := False;
6134 -- If no candidate interpretation matches the context, redo the
6135 -- analysis with error enabled to provide additional information.
6137 Actual : Node_Id;
6138 Candidate : Entity_Id := Empty;
6139 New_Call_Node : Node_Id := Empty;
6140 Node_To_Replace : Node_Id;
6141 Obj_Type : Entity_Id := Etype (Obj);
6142 Success : Boolean := False;
6144 function Valid_Candidate
6145 (Success : Boolean;
6146 Call : Node_Id;
6147 Subp : Entity_Id) return Entity_Id;
6148 -- If the subprogram is a valid interpretation, record it, and add
6149 -- to the list of interpretations of Subprog.
6151 procedure Complete_Object_Operation
6152 (Call_Node : Node_Id;
6153 Node_To_Replace : Node_Id);
6154 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
6155 -- Call_Node, insert the object (or its dereference) as the first actual
6156 -- in the call, and complete the analysis of the call.
6158 procedure Report_Ambiguity (Op : Entity_Id);
6159 -- If a prefixed procedure call is ambiguous, indicate whether the
6160 -- call includes an implicit dereference or an implicit 'Access.
6162 procedure Transform_Object_Operation
6163 (Call_Node : out Node_Id;
6164 Node_To_Replace : out Node_Id);
6165 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
6166 -- Call_Node is the resulting subprogram call, Node_To_Replace is
6167 -- either N or the parent of N, and Subprog is a reference to the
6168 -- subprogram we are trying to match.
6170 function Try_Class_Wide_Operation
6171 (Call_Node : Node_Id;
6172 Node_To_Replace : Node_Id) return Boolean;
6173 -- Traverse all ancestor types looking for a class-wide subprogram
6174 -- for which the current operation is a valid non-dispatching call.
6176 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
6177 -- If prefix is overloaded, its interpretation may include different
6178 -- tagged types, and we must examine the primitive operations and
6179 -- the class-wide operations of each in order to find candidate
6180 -- interpretations for the call as a whole.
6182 function Try_Primitive_Operation
6183 (Call_Node : Node_Id;
6184 Node_To_Replace : Node_Id) return Boolean;
6185 -- Traverse the list of primitive subprograms looking for a dispatching
6186 -- operation for which the current node is a valid call .
6188 ---------------------
6189 -- Valid_Candidate --
6190 ---------------------
6192 function Valid_Candidate
6193 (Success : Boolean;
6194 Call : Node_Id;
6195 Subp : Entity_Id) return Entity_Id
6197 Arr_Type : Entity_Id;
6198 Comp_Type : Entity_Id;
6200 begin
6201 -- If the subprogram is a valid interpretation, record it in global
6202 -- variable Subprog, to collect all possible overloadings.
6204 if Success then
6205 if Subp /= Entity (Subprog) then
6206 Add_One_Interp (Subprog, Subp, Etype (Subp));
6207 end if;
6208 end if;
6210 -- If the call may be an indexed call, retrieve component type of
6211 -- resulting expression, and add possible interpretation.
6213 Arr_Type := Empty;
6214 Comp_Type := Empty;
6216 if Nkind (Call) = N_Function_Call
6217 and then Nkind (Parent (N)) = N_Indexed_Component
6218 and then Needs_One_Actual (Subp)
6219 then
6220 if Is_Array_Type (Etype (Subp)) then
6221 Arr_Type := Etype (Subp);
6223 elsif Is_Access_Type (Etype (Subp))
6224 and then Is_Array_Type (Designated_Type (Etype (Subp)))
6225 then
6226 Arr_Type := Designated_Type (Etype (Subp));
6227 end if;
6228 end if;
6230 if Present (Arr_Type) then
6232 -- Verify that the actuals (excluding the object)
6233 -- match the types of the indices.
6235 declare
6236 Actual : Node_Id;
6237 Index : Node_Id;
6239 begin
6240 Actual := Next (First_Actual (Call));
6241 Index := First_Index (Arr_Type);
6242 while Present (Actual) and then Present (Index) loop
6243 if not Has_Compatible_Type (Actual, Etype (Index)) then
6244 Arr_Type := Empty;
6245 exit;
6246 end if;
6248 Next_Actual (Actual);
6249 Next_Index (Index);
6250 end loop;
6252 if No (Actual)
6253 and then No (Index)
6254 and then Present (Arr_Type)
6255 then
6256 Comp_Type := Component_Type (Arr_Type);
6257 end if;
6258 end;
6260 if Present (Comp_Type)
6261 and then Etype (Subprog) /= Comp_Type
6262 then
6263 Add_One_Interp (Subprog, Subp, Comp_Type);
6264 end if;
6265 end if;
6267 if Etype (Call) /= Any_Type then
6268 return Subp;
6269 else
6270 return Empty;
6271 end if;
6272 end Valid_Candidate;
6274 -------------------------------
6275 -- Complete_Object_Operation --
6276 -------------------------------
6278 procedure Complete_Object_Operation
6279 (Call_Node : Node_Id;
6280 Node_To_Replace : Node_Id)
6282 Control : constant Entity_Id := First_Formal (Entity (Subprog));
6283 Formal_Type : constant Entity_Id := Etype (Control);
6284 First_Actual : Node_Id;
6286 begin
6287 -- Place the name of the operation, with its interpretations,
6288 -- on the rewritten call.
6290 Set_Name (Call_Node, Subprog);
6292 First_Actual := First (Parameter_Associations (Call_Node));
6294 -- For cross-reference purposes, treat the new node as being in
6295 -- the source if the original one is.
6297 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
6298 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
6300 if Nkind (N) = N_Selected_Component
6301 and then not Inside_A_Generic
6302 then
6303 Set_Entity (Selector_Name (N), Entity (Subprog));
6304 end if;
6306 -- If need be, rewrite first actual as an explicit dereference
6307 -- If the call is overloaded, the rewriting can only be done
6308 -- once the primitive operation is identified.
6310 if Is_Overloaded (Subprog) then
6312 -- The prefix itself may be overloaded, and its interpretations
6313 -- must be propagated to the new actual in the call.
6315 if Is_Overloaded (Obj) then
6316 Save_Interps (Obj, First_Actual);
6317 end if;
6319 Rewrite (First_Actual, Obj);
6321 elsif not Is_Access_Type (Formal_Type)
6322 and then Is_Access_Type (Etype (Obj))
6323 then
6324 Rewrite (First_Actual,
6325 Make_Explicit_Dereference (Sloc (Obj), Obj));
6326 Analyze (First_Actual);
6328 -- If we need to introduce an explicit dereference, verify that
6329 -- the resulting actual is compatible with the mode of the formal.
6331 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
6332 and then Is_Access_Constant (Etype (Obj))
6333 then
6334 Error_Msg_NE
6335 ("expect variable in call to&", Prefix (N), Entity (Subprog));
6336 end if;
6338 -- Conversely, if the formal is an access parameter and the object
6339 -- is not, replace the actual with a 'Access reference. Its analysis
6340 -- will check that the object is aliased.
6342 elsif Is_Access_Type (Formal_Type)
6343 and then not Is_Access_Type (Etype (Obj))
6344 then
6345 -- A special case: A.all'access is illegal if A is an access to a
6346 -- constant and the context requires an access to a variable.
6348 if not Is_Access_Constant (Formal_Type) then
6349 if (Nkind (Obj) = N_Explicit_Dereference
6350 and then Is_Access_Constant (Etype (Prefix (Obj))))
6351 or else not Is_Variable (Obj)
6352 then
6353 Error_Msg_NE
6354 ("actual for& must be a variable", Obj, Control);
6355 end if;
6356 end if;
6358 Rewrite (First_Actual,
6359 Make_Attribute_Reference (Loc,
6360 Attribute_Name => Name_Access,
6361 Prefix => Relocate_Node (Obj)));
6363 if not Is_Aliased_View (Obj) then
6364 Error_Msg_NE
6365 ("object in prefixed call to& must be aliased"
6366 & " (RM-2005 4.3.1 (13))",
6367 Prefix (First_Actual), Subprog);
6368 end if;
6370 Analyze (First_Actual);
6372 else
6373 if Is_Overloaded (Obj) then
6374 Save_Interps (Obj, First_Actual);
6375 end if;
6377 Rewrite (First_Actual, Obj);
6378 end if;
6380 Rewrite (Node_To_Replace, Call_Node);
6382 -- Propagate the interpretations collected in subprog to the new
6383 -- function call node, to be resolved from context.
6385 if Is_Overloaded (Subprog) then
6386 Save_Interps (Subprog, Node_To_Replace);
6388 else
6389 Analyze (Node_To_Replace);
6391 -- If the operation has been rewritten into a call, which may
6392 -- get subsequently an explicit dereference, preserve the
6393 -- type on the original node (selected component or indexed
6394 -- component) for subsequent legality tests, e.g. Is_Variable.
6395 -- which examines the original node.
6397 if Nkind (Node_To_Replace) = N_Function_Call then
6398 Set_Etype
6399 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
6400 end if;
6401 end if;
6402 end Complete_Object_Operation;
6404 ----------------------
6405 -- Report_Ambiguity --
6406 ----------------------
6408 procedure Report_Ambiguity (Op : Entity_Id) is
6409 Access_Formal : constant Boolean :=
6410 Is_Access_Type (Etype (First_Formal (Op)));
6411 Access_Actual : constant Boolean :=
6412 Is_Access_Type (Etype (Prefix (N)));
6414 begin
6415 Error_Msg_Sloc := Sloc (Op);
6417 if Access_Formal and then not Access_Actual then
6418 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6419 Error_Msg_N
6420 ("\possible interpretation"
6421 & " (inherited, with implicit 'Access) #", N);
6422 else
6423 Error_Msg_N
6424 ("\possible interpretation (with implicit 'Access) #", N);
6425 end if;
6427 elsif not Access_Formal and then Access_Actual then
6428 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6429 Error_Msg_N
6430 ("\possible interpretation"
6431 & " ( inherited, with implicit dereference) #", N);
6432 else
6433 Error_Msg_N
6434 ("\possible interpretation (with implicit dereference) #", N);
6435 end if;
6437 else
6438 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6439 Error_Msg_N ("\possible interpretation (inherited)#", N);
6440 else
6441 Error_Msg_N -- CODEFIX
6442 ("\possible interpretation#", N);
6443 end if;
6444 end if;
6445 end Report_Ambiguity;
6447 --------------------------------
6448 -- Transform_Object_Operation --
6449 --------------------------------
6451 procedure Transform_Object_Operation
6452 (Call_Node : out Node_Id;
6453 Node_To_Replace : out Node_Id)
6455 Dummy : constant Node_Id := New_Copy (Obj);
6456 -- Placeholder used as a first parameter in the call, replaced
6457 -- eventually by the proper object.
6459 Parent_Node : constant Node_Id := Parent (N);
6461 Actual : Node_Id;
6462 Actuals : List_Id;
6464 begin
6465 -- Common case covering 1) Call to a procedure and 2) Call to a
6466 -- function that has some additional actuals.
6468 if Nkind_In (Parent_Node, N_Function_Call,
6469 N_Procedure_Call_Statement)
6471 -- N is a selected component node containing the name of the
6472 -- subprogram. If N is not the name of the parent node we must
6473 -- not replace the parent node by the new construct. This case
6474 -- occurs when N is a parameterless call to a subprogram that
6475 -- is an actual parameter of a call to another subprogram. For
6476 -- example:
6477 -- Some_Subprogram (..., Obj.Operation, ...)
6479 and then Name (Parent_Node) = N
6480 then
6481 Node_To_Replace := Parent_Node;
6483 Actuals := Parameter_Associations (Parent_Node);
6485 if Present (Actuals) then
6486 Prepend (Dummy, Actuals);
6487 else
6488 Actuals := New_List (Dummy);
6489 end if;
6491 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
6492 Call_Node :=
6493 Make_Procedure_Call_Statement (Loc,
6494 Name => New_Copy (Subprog),
6495 Parameter_Associations => Actuals);
6497 else
6498 Call_Node :=
6499 Make_Function_Call (Loc,
6500 Name => New_Copy (Subprog),
6501 Parameter_Associations => Actuals);
6503 end if;
6505 -- Before analysis, a function call appears as an indexed component
6506 -- if there are no named associations.
6508 elsif Nkind (Parent_Node) = N_Indexed_Component
6509 and then N = Prefix (Parent_Node)
6510 then
6511 Node_To_Replace := Parent_Node;
6513 Actuals := Expressions (Parent_Node);
6515 Actual := First (Actuals);
6516 while Present (Actual) loop
6517 Analyze (Actual);
6518 Next (Actual);
6519 end loop;
6521 Prepend (Dummy, Actuals);
6523 Call_Node :=
6524 Make_Function_Call (Loc,
6525 Name => New_Copy (Subprog),
6526 Parameter_Associations => Actuals);
6528 -- Parameterless call: Obj.F is rewritten as F (Obj)
6530 else
6531 Node_To_Replace := N;
6533 Call_Node :=
6534 Make_Function_Call (Loc,
6535 Name => New_Copy (Subprog),
6536 Parameter_Associations => New_List (Dummy));
6537 end if;
6538 end Transform_Object_Operation;
6540 ------------------------------
6541 -- Try_Class_Wide_Operation --
6542 ------------------------------
6544 function Try_Class_Wide_Operation
6545 (Call_Node : Node_Id;
6546 Node_To_Replace : Node_Id) return Boolean
6548 Anc_Type : Entity_Id;
6549 Matching_Op : Entity_Id := Empty;
6550 Error : Boolean;
6552 procedure Traverse_Homonyms
6553 (Anc_Type : Entity_Id;
6554 Error : out Boolean);
6555 -- Traverse the homonym chain of the subprogram searching for those
6556 -- homonyms whose first formal has the Anc_Type's class-wide type,
6557 -- or an anonymous access type designating the class-wide type. If
6558 -- an ambiguity is detected, then Error is set to True.
6560 procedure Traverse_Interfaces
6561 (Anc_Type : Entity_Id;
6562 Error : out Boolean);
6563 -- Traverse the list of interfaces, if any, associated with Anc_Type
6564 -- and search for acceptable class-wide homonyms associated with each
6565 -- interface. If an ambiguity is detected, then Error is set to True.
6567 -----------------------
6568 -- Traverse_Homonyms --
6569 -----------------------
6571 procedure Traverse_Homonyms
6572 (Anc_Type : Entity_Id;
6573 Error : out Boolean)
6575 Cls_Type : Entity_Id;
6576 Hom : Entity_Id;
6577 Hom_Ref : Node_Id;
6578 Success : Boolean;
6580 begin
6581 Error := False;
6583 Cls_Type := Class_Wide_Type (Anc_Type);
6585 Hom := Current_Entity (Subprog);
6587 -- Find operation whose first parameter is of the class-wide
6588 -- type, a subtype thereof, or an anonymous access to same.
6590 while Present (Hom) loop
6591 if (Ekind (Hom) = E_Procedure
6592 or else
6593 Ekind (Hom) = E_Function)
6594 and then Scope (Hom) = Scope (Anc_Type)
6595 and then Present (First_Formal (Hom))
6596 and then
6597 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6598 or else
6599 (Is_Access_Type (Etype (First_Formal (Hom)))
6600 and then
6601 Ekind (Etype (First_Formal (Hom))) =
6602 E_Anonymous_Access_Type
6603 and then
6604 Base_Type
6605 (Designated_Type (Etype (First_Formal (Hom)))) =
6606 Cls_Type))
6607 then
6608 Set_Etype (Call_Node, Any_Type);
6609 Set_Is_Overloaded (Call_Node, False);
6610 Success := False;
6612 if No (Matching_Op) then
6613 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
6614 Set_Etype (Call_Node, Any_Type);
6615 Set_Parent (Call_Node, Parent (Node_To_Replace));
6617 Set_Name (Call_Node, Hom_Ref);
6619 Analyze_One_Call
6620 (N => Call_Node,
6621 Nam => Hom,
6622 Report => Report_Error,
6623 Success => Success,
6624 Skip_First => True);
6626 Matching_Op :=
6627 Valid_Candidate (Success, Call_Node, Hom);
6629 else
6630 Analyze_One_Call
6631 (N => Call_Node,
6632 Nam => Hom,
6633 Report => Report_Error,
6634 Success => Success,
6635 Skip_First => True);
6637 if Present (Valid_Candidate (Success, Call_Node, Hom))
6638 and then Nkind (Call_Node) /= N_Function_Call
6639 then
6640 Error_Msg_NE ("ambiguous call to&", N, Hom);
6641 Report_Ambiguity (Matching_Op);
6642 Report_Ambiguity (Hom);
6643 Error := True;
6644 return;
6645 end if;
6646 end if;
6647 end if;
6649 Hom := Homonym (Hom);
6650 end loop;
6651 end Traverse_Homonyms;
6653 -------------------------
6654 -- Traverse_Interfaces --
6655 -------------------------
6657 procedure Traverse_Interfaces
6658 (Anc_Type : Entity_Id;
6659 Error : out Boolean)
6661 Intface_List : constant List_Id :=
6662 Abstract_Interface_List (Anc_Type);
6663 Intface : Node_Id;
6665 begin
6666 Error := False;
6668 if Is_Non_Empty_List (Intface_List) then
6669 Intface := First (Intface_List);
6670 while Present (Intface) loop
6672 -- Look for acceptable class-wide homonyms associated with
6673 -- the interface.
6675 Traverse_Homonyms (Etype (Intface), Error);
6677 if Error then
6678 return;
6679 end if;
6681 -- Continue the search by looking at each of the interface's
6682 -- associated interface ancestors.
6684 Traverse_Interfaces (Etype (Intface), Error);
6686 if Error then
6687 return;
6688 end if;
6690 Next (Intface);
6691 end loop;
6692 end if;
6693 end Traverse_Interfaces;
6695 -- Start of processing for Try_Class_Wide_Operation
6697 begin
6698 -- Loop through ancestor types (including interfaces), traversing
6699 -- the homonym chain of the subprogram, trying out those homonyms
6700 -- whose first formal has the class-wide type of the ancestor, or
6701 -- an anonymous access type designating the class-wide type.
6703 Anc_Type := Obj_Type;
6704 loop
6705 -- Look for a match among homonyms associated with the ancestor
6707 Traverse_Homonyms (Anc_Type, Error);
6709 if Error then
6710 return True;
6711 end if;
6713 -- Continue the search for matches among homonyms associated with
6714 -- any interfaces implemented by the ancestor.
6716 Traverse_Interfaces (Anc_Type, Error);
6718 if Error then
6719 return True;
6720 end if;
6722 exit when Etype (Anc_Type) = Anc_Type;
6723 Anc_Type := Etype (Anc_Type);
6724 end loop;
6726 if Present (Matching_Op) then
6727 Set_Etype (Call_Node, Etype (Matching_Op));
6728 end if;
6730 return Present (Matching_Op);
6731 end Try_Class_Wide_Operation;
6733 -----------------------------------
6734 -- Try_One_Prefix_Interpretation --
6735 -----------------------------------
6737 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
6738 begin
6739 Obj_Type := T;
6741 if Is_Access_Type (Obj_Type) then
6742 Obj_Type := Designated_Type (Obj_Type);
6743 end if;
6745 if Ekind (Obj_Type) = E_Private_Subtype then
6746 Obj_Type := Base_Type (Obj_Type);
6747 end if;
6749 if Is_Class_Wide_Type (Obj_Type) then
6750 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
6751 end if;
6753 -- The type may have be obtained through a limited_with clause,
6754 -- in which case the primitive operations are available on its
6755 -- non-limited view. If still incomplete, retrieve full view.
6757 if Ekind (Obj_Type) = E_Incomplete_Type
6758 and then From_With_Type (Obj_Type)
6759 then
6760 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
6761 end if;
6763 -- If the object is not tagged, or the type is still an incomplete
6764 -- type, this is not a prefixed call.
6766 if not Is_Tagged_Type (Obj_Type)
6767 or else Is_Incomplete_Type (Obj_Type)
6768 then
6769 return;
6770 end if;
6772 if Try_Primitive_Operation
6773 (Call_Node => New_Call_Node,
6774 Node_To_Replace => Node_To_Replace)
6775 or else
6776 Try_Class_Wide_Operation
6777 (Call_Node => New_Call_Node,
6778 Node_To_Replace => Node_To_Replace)
6779 then
6780 null;
6781 end if;
6782 end Try_One_Prefix_Interpretation;
6784 -----------------------------
6785 -- Try_Primitive_Operation --
6786 -----------------------------
6788 function Try_Primitive_Operation
6789 (Call_Node : Node_Id;
6790 Node_To_Replace : Node_Id) return Boolean
6792 Elmt : Elmt_Id;
6793 Prim_Op : Entity_Id;
6794 Matching_Op : Entity_Id := Empty;
6795 Prim_Op_Ref : Node_Id := Empty;
6797 Corr_Type : Entity_Id := Empty;
6798 -- If the prefix is a synchronized type, the controlling type of
6799 -- the primitive operation is the corresponding record type, else
6800 -- this is the object type itself.
6802 Success : Boolean := False;
6804 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
6805 -- For tagged types the candidate interpretations are found in
6806 -- the list of primitive operations of the type and its ancestors.
6807 -- For formal tagged types we have to find the operations declared
6808 -- in the same scope as the type (including in the generic formal
6809 -- part) because the type itself carries no primitive operations,
6810 -- except for formal derived types that inherit the operations of
6811 -- the parent and progenitors.
6812 -- If the context is a generic subprogram body, the generic formals
6813 -- are visible by name, but are not in the entity list of the
6814 -- subprogram because that list starts with the subprogram formals.
6815 -- We retrieve the candidate operations from the generic declaration.
6817 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
6818 -- An operation that overrides an inherited operation in the private
6819 -- part of its package may be hidden, but if the inherited operation
6820 -- is visible a direct call to it will dispatch to the private one,
6821 -- which is therefore a valid candidate.
6823 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
6824 -- Verify that the prefix, dereferenced if need be, is a valid
6825 -- controlling argument in a call to Op. The remaining actuals
6826 -- are checked in the subsequent call to Analyze_One_Call.
6828 ------------------------------
6829 -- Collect_Generic_Type_Ops --
6830 ------------------------------
6832 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
6833 Bas : constant Entity_Id := Base_Type (T);
6834 Candidates : constant Elist_Id := New_Elmt_List;
6835 Subp : Entity_Id;
6836 Formal : Entity_Id;
6838 procedure Check_Candidate;
6839 -- The operation is a candidate if its first parameter is a
6840 -- controlling operand of the desired type.
6842 -----------------------
6843 -- Check_Candidate; --
6844 -----------------------
6846 procedure Check_Candidate is
6847 begin
6848 Formal := First_Formal (Subp);
6850 if Present (Formal)
6851 and then Is_Controlling_Formal (Formal)
6852 and then
6853 (Base_Type (Etype (Formal)) = Bas
6854 or else
6855 (Is_Access_Type (Etype (Formal))
6856 and then Designated_Type (Etype (Formal)) = Bas))
6857 then
6858 Append_Elmt (Subp, Candidates);
6859 end if;
6860 end Check_Candidate;
6862 -- Start of processing for Collect_Generic_Type_Ops
6864 begin
6865 if Is_Derived_Type (T) then
6866 return Primitive_Operations (T);
6868 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
6870 -- Scan the list of generic formals to find subprograms
6871 -- that may have a first controlling formal of the type.
6873 if Nkind (Unit_Declaration_Node (Scope (T)))
6874 = N_Generic_Subprogram_Declaration
6875 then
6876 declare
6877 Decl : Node_Id;
6879 begin
6880 Decl :=
6881 First (Generic_Formal_Declarations
6882 (Unit_Declaration_Node (Scope (T))));
6883 while Present (Decl) loop
6884 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
6885 Subp := Defining_Entity (Decl);
6886 Check_Candidate;
6887 end if;
6889 Next (Decl);
6890 end loop;
6891 end;
6892 end if;
6893 return Candidates;
6895 else
6896 -- Scan the list of entities declared in the same scope as
6897 -- the type. In general this will be an open scope, given that
6898 -- the call we are analyzing can only appear within a generic
6899 -- declaration or body (either the one that declares T, or a
6900 -- child unit).
6902 -- For a subtype representing a generic actual type, go to the
6903 -- base type.
6905 if Is_Generic_Actual_Type (T) then
6906 Subp := First_Entity (Scope (Base_Type (T)));
6907 else
6908 Subp := First_Entity (Scope (T));
6909 end if;
6911 while Present (Subp) loop
6912 if Is_Overloadable (Subp) then
6913 Check_Candidate;
6914 end if;
6916 Next_Entity (Subp);
6917 end loop;
6919 return Candidates;
6920 end if;
6921 end Collect_Generic_Type_Ops;
6923 ---------------------------
6924 -- Is_Private_Overriding --
6925 ---------------------------
6927 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
6928 Visible_Op : constant Entity_Id := Homonym (Op);
6930 begin
6931 return Present (Visible_Op)
6932 and then Scope (Op) = Scope (Visible_Op)
6933 and then not Comes_From_Source (Visible_Op)
6934 and then Alias (Visible_Op) = Op
6935 and then not Is_Hidden (Visible_Op);
6936 end Is_Private_Overriding;
6938 -----------------------------
6939 -- Valid_First_Argument_Of --
6940 -----------------------------
6942 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
6943 Typ : Entity_Id := Etype (First_Formal (Op));
6945 begin
6946 if Is_Concurrent_Type (Typ)
6947 and then Present (Corresponding_Record_Type (Typ))
6948 then
6949 Typ := Corresponding_Record_Type (Typ);
6950 end if;
6952 -- Simple case. Object may be a subtype of the tagged type or
6953 -- may be the corresponding record of a synchronized type.
6955 return Obj_Type = Typ
6956 or else Base_Type (Obj_Type) = Typ
6957 or else Corr_Type = Typ
6959 -- Prefix can be dereferenced
6961 or else
6962 (Is_Access_Type (Corr_Type)
6963 and then Designated_Type (Corr_Type) = Typ)
6965 -- Formal is an access parameter, for which the object
6966 -- can provide an access.
6968 or else
6969 (Ekind (Typ) = E_Anonymous_Access_Type
6970 and then Designated_Type (Typ) = Base_Type (Corr_Type));
6971 end Valid_First_Argument_Of;
6973 -- Start of processing for Try_Primitive_Operation
6975 begin
6976 -- Look for subprograms in the list of primitive operations. The name
6977 -- must be identical, and the kind of call indicates the expected
6978 -- kind of operation (function or procedure). If the type is a
6979 -- (tagged) synchronized type, the primitive ops are attached to the
6980 -- corresponding record (base) type.
6982 if Is_Concurrent_Type (Obj_Type) then
6983 if Present (Corresponding_Record_Type (Obj_Type)) then
6984 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
6985 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
6986 else
6987 Corr_Type := Obj_Type;
6988 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
6989 end if;
6991 elsif not Is_Generic_Type (Obj_Type) then
6992 Corr_Type := Obj_Type;
6993 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
6995 else
6996 Corr_Type := Obj_Type;
6997 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
6998 end if;
7000 while Present (Elmt) loop
7001 Prim_Op := Node (Elmt);
7003 if Chars (Prim_Op) = Chars (Subprog)
7004 and then Present (First_Formal (Prim_Op))
7005 and then Valid_First_Argument_Of (Prim_Op)
7006 and then
7007 (Nkind (Call_Node) = N_Function_Call)
7008 = (Ekind (Prim_Op) = E_Function)
7009 then
7010 -- Ada 2005 (AI-251): If this primitive operation corresponds
7011 -- with an immediate ancestor interface there is no need to add
7012 -- it to the list of interpretations; the corresponding aliased
7013 -- primitive is also in this list of primitive operations and
7014 -- will be used instead.
7016 if (Present (Interface_Alias (Prim_Op))
7017 and then Is_Ancestor (Find_Dispatching_Type
7018 (Alias (Prim_Op)), Corr_Type))
7020 -- Do not consider hidden primitives unless the type is in an
7021 -- open scope or we are within an instance, where visibility
7022 -- is known to be correct, or else if this is an overriding
7023 -- operation in the private part for an inherited operation.
7025 or else (Is_Hidden (Prim_Op)
7026 and then not Is_Immediately_Visible (Obj_Type)
7027 and then not In_Instance
7028 and then not Is_Private_Overriding (Prim_Op))
7029 then
7030 goto Continue;
7031 end if;
7033 Set_Etype (Call_Node, Any_Type);
7034 Set_Is_Overloaded (Call_Node, False);
7036 if No (Matching_Op) then
7037 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
7038 Candidate := Prim_Op;
7040 Set_Parent (Call_Node, Parent (Node_To_Replace));
7042 Set_Name (Call_Node, Prim_Op_Ref);
7043 Success := False;
7045 Analyze_One_Call
7046 (N => Call_Node,
7047 Nam => Prim_Op,
7048 Report => Report_Error,
7049 Success => Success,
7050 Skip_First => True);
7052 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
7054 -- More than one interpretation, collect for subsequent
7055 -- disambiguation. If this is a procedure call and there
7056 -- is another match, report ambiguity now.
7058 else
7059 Analyze_One_Call
7060 (N => Call_Node,
7061 Nam => Prim_Op,
7062 Report => Report_Error,
7063 Success => Success,
7064 Skip_First => True);
7066 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
7067 and then Nkind (Call_Node) /= N_Function_Call
7068 then
7069 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
7070 Report_Ambiguity (Matching_Op);
7071 Report_Ambiguity (Prim_Op);
7072 return True;
7073 end if;
7074 end if;
7075 end if;
7077 <<Continue>>
7078 Next_Elmt (Elmt);
7079 end loop;
7081 if Present (Matching_Op) then
7082 Set_Etype (Call_Node, Etype (Matching_Op));
7083 end if;
7085 return Present (Matching_Op);
7086 end Try_Primitive_Operation;
7088 -- Start of processing for Try_Object_Operation
7090 begin
7091 Analyze_Expression (Obj);
7093 -- Analyze the actuals if node is known to be a subprogram call
7095 if Is_Subprg_Call and then N = Name (Parent (N)) then
7096 Actual := First (Parameter_Associations (Parent (N)));
7097 while Present (Actual) loop
7098 Analyze_Expression (Actual);
7099 Next (Actual);
7100 end loop;
7101 end if;
7103 -- Build a subprogram call node, using a copy of Obj as its first
7104 -- actual. This is a placeholder, to be replaced by an explicit
7105 -- dereference when needed.
7107 Transform_Object_Operation
7108 (Call_Node => New_Call_Node,
7109 Node_To_Replace => Node_To_Replace);
7111 Set_Etype (New_Call_Node, Any_Type);
7112 Set_Etype (Subprog, Any_Type);
7113 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
7115 if not Is_Overloaded (Obj) then
7116 Try_One_Prefix_Interpretation (Obj_Type);
7118 else
7119 declare
7120 I : Interp_Index;
7121 It : Interp;
7122 begin
7123 Get_First_Interp (Obj, I, It);
7124 while Present (It.Nam) loop
7125 Try_One_Prefix_Interpretation (It.Typ);
7126 Get_Next_Interp (I, It);
7127 end loop;
7128 end;
7129 end if;
7131 if Etype (New_Call_Node) /= Any_Type then
7132 Complete_Object_Operation
7133 (Call_Node => New_Call_Node,
7134 Node_To_Replace => Node_To_Replace);
7135 return True;
7137 elsif Present (Candidate) then
7139 -- The argument list is not type correct. Re-analyze with error
7140 -- reporting enabled, and use one of the possible candidates.
7141 -- In All_Errors_Mode, re-analyze all failed interpretations.
7143 if All_Errors_Mode then
7144 Report_Error := True;
7145 if Try_Primitive_Operation
7146 (Call_Node => New_Call_Node,
7147 Node_To_Replace => Node_To_Replace)
7149 or else
7150 Try_Class_Wide_Operation
7151 (Call_Node => New_Call_Node,
7152 Node_To_Replace => Node_To_Replace)
7153 then
7154 null;
7155 end if;
7157 else
7158 Analyze_One_Call
7159 (N => New_Call_Node,
7160 Nam => Candidate,
7161 Report => True,
7162 Success => Success,
7163 Skip_First => True);
7164 end if;
7166 -- No need for further errors
7168 return True;
7170 else
7171 -- There was no candidate operation, so report it as an error
7172 -- in the caller: Analyze_Selected_Component.
7174 return False;
7175 end if;
7176 end Try_Object_Operation;
7178 ---------
7179 -- wpo --
7180 ---------
7182 procedure wpo (T : Entity_Id) is
7183 Op : Entity_Id;
7184 E : Elmt_Id;
7186 begin
7187 if not Is_Tagged_Type (T) then
7188 return;
7189 end if;
7191 E := First_Elmt (Primitive_Operations (Base_Type (T)));
7192 while Present (E) loop
7193 Op := Node (E);
7194 Write_Int (Int (Op));
7195 Write_Str (" === ");
7196 Write_Name (Chars (Op));
7197 Write_Str (" in ");
7198 Write_Name (Chars (Scope (Op)));
7199 Next_Elmt (E);
7200 Write_Eol;
7201 end loop;
7202 end wpo;
7204 end Sem_Ch4;