2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / ada / sem_ch13.adb
blob8b1d60aa1538f4c27bff451e38212598fc84d7c7
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Exp_Tss; use Exp_Tss;
31 with Exp_Util; use Exp_Util;
32 with Lib; use Lib;
33 with Lib.Xref; use Lib.Xref;
34 with Namet; use Namet;
35 with Nlists; use Nlists;
36 with Nmake; use Nmake;
37 with Opt; use Opt;
38 with Restrict; use Restrict;
39 with Rident; use Rident;
40 with Rtsfind; use Rtsfind;
41 with Sem; use Sem;
42 with Sem_Aux; use Sem_Aux;
43 with Sem_Ch3; use Sem_Ch3;
44 with Sem_Ch8; use Sem_Ch8;
45 with Sem_Eval; use Sem_Eval;
46 with Sem_Res; use Sem_Res;
47 with Sem_Type; use Sem_Type;
48 with Sem_Util; use Sem_Util;
49 with Sem_Warn; use Sem_Warn;
50 with Snames; use Snames;
51 with Stand; use Stand;
52 with Sinfo; use Sinfo;
53 with Table;
54 with Targparm; use Targparm;
55 with Ttypes; use Ttypes;
56 with Tbuild; use Tbuild;
57 with Urealp; use Urealp;
59 with GNAT.Heap_Sort_G;
61 package body Sem_Ch13 is
63 SSU : constant Pos := System_Storage_Unit;
64 -- Convenient short hand for commonly used constant
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
70 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
71 -- This routine is called after setting the Esize of type entity Typ.
72 -- The purpose is to deal with the situation where an alignment has been
73 -- inherited from a derived type that is no longer appropriate for the
74 -- new Esize value. In this case, we reset the Alignment to unknown.
76 function Get_Alignment_Value (Expr : Node_Id) return Uint;
77 -- Given the expression for an alignment value, returns the corresponding
78 -- Uint value. If the value is inappropriate, then error messages are
79 -- posted as required, and a value of No_Uint is returned.
81 function Is_Operational_Item (N : Node_Id) return Boolean;
82 -- A specification for a stream attribute is allowed before the full
83 -- type is declared, as explained in AI-00137 and the corrigendum.
84 -- Attributes that do not specify a representation characteristic are
85 -- operational attributes.
87 procedure New_Stream_Subprogram
88 (N : Node_Id;
89 Ent : Entity_Id;
90 Subp : Entity_Id;
91 Nam : TSS_Name_Type);
92 -- Create a subprogram renaming of a given stream attribute to the
93 -- designated subprogram and then in the tagged case, provide this as a
94 -- primitive operation, or in the non-tagged case make an appropriate TSS
95 -- entry. This is more properly an expansion activity than just semantics,
96 -- but the presence of user-defined stream functions for limited types is a
97 -- legality check, which is why this takes place here rather than in
98 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
99 -- function to be generated.
101 -- To avoid elaboration anomalies with freeze nodes, for untagged types
102 -- we generate both a subprogram declaration and a subprogram renaming
103 -- declaration, so that the attribute specification is handled as a
104 -- renaming_as_body. For tagged types, the specification is one of the
105 -- primitive specs.
107 ----------------------------------------------
108 -- Table for Validate_Unchecked_Conversions --
109 ----------------------------------------------
111 -- The following table collects unchecked conversions for validation.
112 -- Entries are made by Validate_Unchecked_Conversion and then the
113 -- call to Validate_Unchecked_Conversions does the actual error
114 -- checking and posting of warnings. The reason for this delayed
115 -- processing is to take advantage of back-annotations of size and
116 -- alignment values performed by the back end.
118 -- Note: the reason we store a Source_Ptr value instead of a Node_Id
119 -- is that by the time Validate_Unchecked_Conversions is called, Sprint
120 -- will already have modified all Sloc values if the -gnatD option is set.
122 type UC_Entry is record
123 Eloc : Source_Ptr; -- node used for posting warnings
124 Source : Entity_Id; -- source type for unchecked conversion
125 Target : Entity_Id; -- target type for unchecked conversion
126 end record;
128 package Unchecked_Conversions is new Table.Table (
129 Table_Component_Type => UC_Entry,
130 Table_Index_Type => Int,
131 Table_Low_Bound => 1,
132 Table_Initial => 50,
133 Table_Increment => 200,
134 Table_Name => "Unchecked_Conversions");
136 ----------------------------------------
137 -- Table for Validate_Address_Clauses --
138 ----------------------------------------
140 -- If an address clause has the form
142 -- for X'Address use Expr
144 -- where Expr is of the form Y'Address or recursively is a reference
145 -- to a constant of either of these forms, and X and Y are entities of
146 -- objects, then if Y has a smaller alignment than X, that merits a
147 -- warning about possible bad alignment. The following table collects
148 -- address clauses of this kind. We put these in a table so that they
149 -- can be checked after the back end has completed annotation of the
150 -- alignments of objects, since we can catch more cases that way.
152 type Address_Clause_Check_Record is record
153 N : Node_Id;
154 -- The address clause
156 X : Entity_Id;
157 -- The entity of the object overlaying Y
159 Y : Entity_Id;
160 -- The entity of the object being overlaid
162 Off : Boolean;
163 -- Whether the address is offseted within Y
164 end record;
166 package Address_Clause_Checks is new Table.Table (
167 Table_Component_Type => Address_Clause_Check_Record,
168 Table_Index_Type => Int,
169 Table_Low_Bound => 1,
170 Table_Initial => 20,
171 Table_Increment => 200,
172 Table_Name => "Address_Clause_Checks");
174 -----------------------------------------
175 -- Adjust_Record_For_Reverse_Bit_Order --
176 -----------------------------------------
178 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
179 Comp : Node_Id;
180 CC : Node_Id;
182 begin
183 -- Processing depends on version of Ada
185 case Ada_Version is
187 -- For Ada 95, we just renumber bits within a storage unit. We do
188 -- the same for Ada 83 mode, since we recognize pragma Bit_Order
189 -- in Ada 83, and are free to add this extension.
191 when Ada_83 | Ada_95 =>
192 Comp := First_Component_Or_Discriminant (R);
193 while Present (Comp) loop
194 CC := Component_Clause (Comp);
196 -- If component clause is present, then deal with the non-
197 -- default bit order case for Ada 95 mode.
199 -- We only do this processing for the base type, and in
200 -- fact that's important, since otherwise if there are
201 -- record subtypes, we could reverse the bits once for
202 -- each subtype, which would be incorrect.
204 if Present (CC)
205 and then Ekind (R) = E_Record_Type
206 then
207 declare
208 CFB : constant Uint := Component_Bit_Offset (Comp);
209 CSZ : constant Uint := Esize (Comp);
210 CLC : constant Node_Id := Component_Clause (Comp);
211 Pos : constant Node_Id := Position (CLC);
212 FB : constant Node_Id := First_Bit (CLC);
214 Storage_Unit_Offset : constant Uint :=
215 CFB / System_Storage_Unit;
217 Start_Bit : constant Uint :=
218 CFB mod System_Storage_Unit;
220 begin
221 -- Cases where field goes over storage unit boundary
223 if Start_Bit + CSZ > System_Storage_Unit then
225 -- Allow multi-byte field but generate warning
227 if Start_Bit mod System_Storage_Unit = 0
228 and then CSZ mod System_Storage_Unit = 0
229 then
230 Error_Msg_N
231 ("multi-byte field specified with non-standard"
232 & " Bit_Order?", CLC);
234 if Bytes_Big_Endian then
235 Error_Msg_N
236 ("bytes are not reversed "
237 & "(component is big-endian)?", CLC);
238 else
239 Error_Msg_N
240 ("bytes are not reversed "
241 & "(component is little-endian)?", CLC);
242 end if;
244 -- Do not allow non-contiguous field
246 else
247 Error_Msg_N
248 ("attempt to specify non-contiguous field "
249 & "not permitted", CLC);
250 Error_Msg_N
251 ("\caused by non-standard Bit_Order "
252 & "specified", CLC);
253 Error_Msg_N
254 ("\consider possibility of using "
255 & "Ada 2005 mode here", CLC);
256 end if;
258 -- Case where field fits in one storage unit
260 else
261 -- Give warning if suspicious component clause
263 if Intval (FB) >= System_Storage_Unit
264 and then Warn_On_Reverse_Bit_Order
265 then
266 Error_Msg_N
267 ("?Bit_Order clause does not affect " &
268 "byte ordering", Pos);
269 Error_Msg_Uint_1 :=
270 Intval (Pos) + Intval (FB) /
271 System_Storage_Unit;
272 Error_Msg_N
273 ("?position normalized to ^ before bit " &
274 "order interpreted", Pos);
275 end if;
277 -- Here is where we fix up the Component_Bit_Offset
278 -- value to account for the reverse bit order.
279 -- Some examples of what needs to be done are:
281 -- First_Bit .. Last_Bit Component_Bit_Offset
282 -- old new old new
284 -- 0 .. 0 7 .. 7 0 7
285 -- 0 .. 1 6 .. 7 0 6
286 -- 0 .. 2 5 .. 7 0 5
287 -- 0 .. 7 0 .. 7 0 4
289 -- 1 .. 1 6 .. 6 1 6
290 -- 1 .. 4 3 .. 6 1 3
291 -- 4 .. 7 0 .. 3 4 0
293 -- The general rule is that the first bit is
294 -- is obtained by subtracting the old ending bit
295 -- from storage_unit - 1.
297 Set_Component_Bit_Offset
298 (Comp,
299 (Storage_Unit_Offset * System_Storage_Unit) +
300 (System_Storage_Unit - 1) -
301 (Start_Bit + CSZ - 1));
303 Set_Normalized_First_Bit
304 (Comp,
305 Component_Bit_Offset (Comp) mod
306 System_Storage_Unit);
307 end if;
308 end;
309 end if;
311 Next_Component_Or_Discriminant (Comp);
312 end loop;
314 -- For Ada 2005, we do machine scalar processing, as fully described
315 -- In AI-133. This involves gathering all components which start at
316 -- the same byte offset and processing them together
318 when Ada_05 .. Ada_Version_Type'Last =>
319 declare
320 Max_Machine_Scalar_Size : constant Uint :=
321 UI_From_Int
322 (Standard_Long_Long_Integer_Size);
323 -- We use this as the maximum machine scalar size
325 Num_CC : Natural;
326 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
328 begin
329 -- This first loop through components does two things. First it
330 -- deals with the case of components with component clauses
331 -- whose length is greater than the maximum machine scalar size
332 -- (either accepting them or rejecting as needed). Second, it
333 -- counts the number of components with component clauses whose
334 -- length does not exceed this maximum for later processing.
336 Num_CC := 0;
337 Comp := First_Component_Or_Discriminant (R);
338 while Present (Comp) loop
339 CC := Component_Clause (Comp);
341 if Present (CC) then
342 declare
343 Fbit : constant Uint :=
344 Static_Integer (First_Bit (CC));
346 begin
347 -- Case of component with size > max machine scalar
349 if Esize (Comp) > Max_Machine_Scalar_Size then
351 -- Must begin on byte boundary
353 if Fbit mod SSU /= 0 then
354 Error_Msg_N
355 ("illegal first bit value for "
356 & "reverse bit order",
357 First_Bit (CC));
358 Error_Msg_Uint_1 := SSU;
359 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
361 Error_Msg_N
362 ("\must be a multiple of ^ "
363 & "if size greater than ^",
364 First_Bit (CC));
366 -- Must end on byte boundary
368 elsif Esize (Comp) mod SSU /= 0 then
369 Error_Msg_N
370 ("illegal last bit value for "
371 & "reverse bit order",
372 Last_Bit (CC));
373 Error_Msg_Uint_1 := SSU;
374 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
376 Error_Msg_N
377 ("\must be a multiple of ^ if size "
378 & "greater than ^",
379 Last_Bit (CC));
381 -- OK, give warning if enabled
383 elsif Warn_On_Reverse_Bit_Order then
384 Error_Msg_N
385 ("multi-byte field specified with "
386 & " non-standard Bit_Order?", CC);
388 if Bytes_Big_Endian then
389 Error_Msg_N
390 ("\bytes are not reversed "
391 & "(component is big-endian)?", CC);
392 else
393 Error_Msg_N
394 ("\bytes are not reversed "
395 & "(component is little-endian)?", CC);
396 end if;
397 end if;
399 -- Case where size is not greater than max machine
400 -- scalar. For now, we just count these.
402 else
403 Num_CC := Num_CC + 1;
404 end if;
405 end;
406 end if;
408 Next_Component_Or_Discriminant (Comp);
409 end loop;
411 -- We need to sort the component clauses on the basis of the
412 -- Position values in the clause, so we can group clauses with
413 -- the same Position. together to determine the relevant
414 -- machine scalar size.
416 Sort_CC : declare
417 Comps : array (0 .. Num_CC) of Entity_Id;
418 -- Array to collect component and discriminant entities. The
419 -- data starts at index 1, the 0'th entry is for the sort
420 -- routine.
422 function CP_Lt (Op1, Op2 : Natural) return Boolean;
423 -- Compare routine for Sort
425 procedure CP_Move (From : Natural; To : Natural);
426 -- Move routine for Sort
428 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
430 Start : Natural;
431 Stop : Natural;
432 -- Start and stop positions in component list of set of
433 -- components with the same starting position (that
434 -- constitute components in a single machine scalar).
436 MaxL : Uint;
437 -- Maximum last bit value of any component in this set
439 MSS : Uint;
440 -- Corresponding machine scalar size
442 -----------
443 -- CP_Lt --
444 -----------
446 function CP_Lt (Op1, Op2 : Natural) return Boolean is
447 begin
448 return Position (Component_Clause (Comps (Op1))) <
449 Position (Component_Clause (Comps (Op2)));
450 end CP_Lt;
452 -------------
453 -- CP_Move --
454 -------------
456 procedure CP_Move (From : Natural; To : Natural) is
457 begin
458 Comps (To) := Comps (From);
459 end CP_Move;
461 -- Start of processing for Sort_CC
463 begin
464 -- Collect the component clauses
466 Num_CC := 0;
467 Comp := First_Component_Or_Discriminant (R);
468 while Present (Comp) loop
469 if Present (Component_Clause (Comp))
470 and then Esize (Comp) <= Max_Machine_Scalar_Size
471 then
472 Num_CC := Num_CC + 1;
473 Comps (Num_CC) := Comp;
474 end if;
476 Next_Component_Or_Discriminant (Comp);
477 end loop;
479 -- Sort by ascending position number
481 Sorting.Sort (Num_CC);
483 -- We now have all the components whose size does not exceed
484 -- the max machine scalar value, sorted by starting
485 -- position. In this loop we gather groups of clauses
486 -- starting at the same position, to process them in
487 -- accordance with Ada 2005 AI-133.
489 Stop := 0;
490 while Stop < Num_CC loop
491 Start := Stop + 1;
492 Stop := Start;
493 MaxL :=
494 Static_Integer
495 (Last_Bit (Component_Clause (Comps (Start))));
496 while Stop < Num_CC loop
497 if Static_Integer
498 (Position (Component_Clause (Comps (Stop + 1)))) =
499 Static_Integer
500 (Position (Component_Clause (Comps (Stop))))
501 then
502 Stop := Stop + 1;
503 MaxL :=
504 UI_Max
505 (MaxL,
506 Static_Integer
507 (Last_Bit
508 (Component_Clause (Comps (Stop)))));
509 else
510 exit;
511 end if;
512 end loop;
514 -- Now we have a group of component clauses from Start to
515 -- Stop whose positions are identical, and MaxL is the
516 -- maximum last bit value of any of these components.
518 -- We need to determine the corresponding machine scalar
519 -- size. This loop assumes that machine scalar sizes are
520 -- even, and that each possible machine scalar has twice
521 -- as many bits as the next smaller one.
523 MSS := Max_Machine_Scalar_Size;
524 while MSS mod 2 = 0
525 and then (MSS / 2) >= SSU
526 and then (MSS / 2) > MaxL
527 loop
528 MSS := MSS / 2;
529 end loop;
531 -- Here is where we fix up the Component_Bit_Offset value
532 -- to account for the reverse bit order. Some examples of
533 -- what needs to be done for the case of a machine scalar
534 -- size of 8 are:
536 -- First_Bit .. Last_Bit Component_Bit_Offset
537 -- old new old new
539 -- 0 .. 0 7 .. 7 0 7
540 -- 0 .. 1 6 .. 7 0 6
541 -- 0 .. 2 5 .. 7 0 5
542 -- 0 .. 7 0 .. 7 0 4
544 -- 1 .. 1 6 .. 6 1 6
545 -- 1 .. 4 3 .. 6 1 3
546 -- 4 .. 7 0 .. 3 4 0
548 -- The general rule is that the first bit is obtained by
549 -- subtracting the old ending bit from machine scalar
550 -- size - 1.
552 for C in Start .. Stop loop
553 declare
554 Comp : constant Entity_Id := Comps (C);
555 CC : constant Node_Id :=
556 Component_Clause (Comp);
557 LB : constant Uint :=
558 Static_Integer (Last_Bit (CC));
559 NFB : constant Uint := MSS - Uint_1 - LB;
560 NLB : constant Uint := NFB + Esize (Comp) - 1;
561 Pos : constant Uint :=
562 Static_Integer (Position (CC));
564 begin
565 if Warn_On_Reverse_Bit_Order then
566 Error_Msg_Uint_1 := MSS;
567 Error_Msg_N
568 ("info: reverse bit order in machine " &
569 "scalar of length^?", First_Bit (CC));
570 Error_Msg_Uint_1 := NFB;
571 Error_Msg_Uint_2 := NLB;
573 if Bytes_Big_Endian then
574 Error_Msg_NE
575 ("?\info: big-endian range for "
576 & "component & is ^ .. ^",
577 First_Bit (CC), Comp);
578 else
579 Error_Msg_NE
580 ("?\info: little-endian range "
581 & "for component & is ^ .. ^",
582 First_Bit (CC), Comp);
583 end if;
584 end if;
586 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
587 Set_Normalized_First_Bit (Comp, NFB mod SSU);
588 end;
589 end loop;
590 end loop;
591 end Sort_CC;
592 end;
593 end case;
594 end Adjust_Record_For_Reverse_Bit_Order;
596 --------------------------------------
597 -- Alignment_Check_For_Esize_Change --
598 --------------------------------------
600 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
601 begin
602 -- If the alignment is known, and not set by a rep clause, and is
603 -- inconsistent with the size being set, then reset it to unknown,
604 -- we assume in this case that the size overrides the inherited
605 -- alignment, and that the alignment must be recomputed.
607 if Known_Alignment (Typ)
608 and then not Has_Alignment_Clause (Typ)
609 and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
610 then
611 Init_Alignment (Typ);
612 end if;
613 end Alignment_Check_For_Esize_Change;
615 -----------------------
616 -- Analyze_At_Clause --
617 -----------------------
619 -- An at clause is replaced by the corresponding Address attribute
620 -- definition clause that is the preferred approach in Ada 95.
622 procedure Analyze_At_Clause (N : Node_Id) is
623 CS : constant Boolean := Comes_From_Source (N);
625 begin
626 -- This is an obsolescent feature
628 Check_Restriction (No_Obsolescent_Features, N);
630 if Warn_On_Obsolescent_Feature then
631 Error_Msg_N
632 ("at clause is an obsolescent feature (RM J.7(2))?", N);
633 Error_Msg_N
634 ("\use address attribute definition clause instead?", N);
635 end if;
637 -- Rewrite as address clause
639 Rewrite (N,
640 Make_Attribute_Definition_Clause (Sloc (N),
641 Name => Identifier (N),
642 Chars => Name_Address,
643 Expression => Expression (N)));
645 -- We preserve Comes_From_Source, since logically the clause still
646 -- comes from the source program even though it is changed in form.
648 Set_Comes_From_Source (N, CS);
650 -- Analyze rewritten clause
652 Analyze_Attribute_Definition_Clause (N);
653 end Analyze_At_Clause;
655 -----------------------------------------
656 -- Analyze_Attribute_Definition_Clause --
657 -----------------------------------------
659 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
660 Loc : constant Source_Ptr := Sloc (N);
661 Nam : constant Node_Id := Name (N);
662 Attr : constant Name_Id := Chars (N);
663 Expr : constant Node_Id := Expression (N);
664 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
665 Ent : Entity_Id;
666 U_Ent : Entity_Id;
668 FOnly : Boolean := False;
669 -- Reset to True for subtype specific attribute (Alignment, Size)
670 -- and for stream attributes, i.e. those cases where in the call
671 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
672 -- rules are checked. Note that the case of stream attributes is not
673 -- clear from the RM, but see AI95-00137. Also, the RM seems to
674 -- disallow Storage_Size for derived task types, but that is also
675 -- clearly unintentional.
677 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
678 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
679 -- definition clauses.
681 -----------------------------------
682 -- Analyze_Stream_TSS_Definition --
683 -----------------------------------
685 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
686 Subp : Entity_Id := Empty;
687 I : Interp_Index;
688 It : Interp;
689 Pnam : Entity_Id;
691 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
693 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
694 -- Return true if the entity is a subprogram with an appropriate
695 -- profile for the attribute being defined.
697 ----------------------
698 -- Has_Good_Profile --
699 ----------------------
701 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
702 F : Entity_Id;
703 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
704 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
705 (False => E_Procedure, True => E_Function);
706 Typ : Entity_Id;
708 begin
709 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
710 return False;
711 end if;
713 F := First_Formal (Subp);
715 if No (F)
716 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
717 or else Designated_Type (Etype (F)) /=
718 Class_Wide_Type (RTE (RE_Root_Stream_Type))
719 then
720 return False;
721 end if;
723 if not Is_Function then
724 Next_Formal (F);
726 declare
727 Expected_Mode : constant array (Boolean) of Entity_Kind :=
728 (False => E_In_Parameter,
729 True => E_Out_Parameter);
730 begin
731 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
732 return False;
733 end if;
734 end;
736 Typ := Etype (F);
738 else
739 Typ := Etype (Subp);
740 end if;
742 return Base_Type (Typ) = Base_Type (Ent)
743 and then No (Next_Formal (F));
744 end Has_Good_Profile;
746 -- Start of processing for Analyze_Stream_TSS_Definition
748 begin
749 FOnly := True;
751 if not Is_Type (U_Ent) then
752 Error_Msg_N ("local name must be a subtype", Nam);
753 return;
754 end if;
756 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
758 -- If Pnam is present, it can be either inherited from an ancestor
759 -- type (in which case it is legal to redefine it for this type), or
760 -- be a previous definition of the attribute for the same type (in
761 -- which case it is illegal).
763 -- In the first case, it will have been analyzed already, and we
764 -- can check that its profile does not match the expected profile
765 -- for a stream attribute of U_Ent. In the second case, either Pnam
766 -- has been analyzed (and has the expected profile), or it has not
767 -- been analyzed yet (case of a type that has not been frozen yet
768 -- and for which the stream attribute has been set using Set_TSS).
770 if Present (Pnam)
771 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
772 then
773 Error_Msg_Sloc := Sloc (Pnam);
774 Error_Msg_Name_1 := Attr;
775 Error_Msg_N ("% attribute already defined #", Nam);
776 return;
777 end if;
779 Analyze (Expr);
781 if Is_Entity_Name (Expr) then
782 if not Is_Overloaded (Expr) then
783 if Has_Good_Profile (Entity (Expr)) then
784 Subp := Entity (Expr);
785 end if;
787 else
788 Get_First_Interp (Expr, I, It);
789 while Present (It.Nam) loop
790 if Has_Good_Profile (It.Nam) then
791 Subp := It.Nam;
792 exit;
793 end if;
795 Get_Next_Interp (I, It);
796 end loop;
797 end if;
798 end if;
800 if Present (Subp) then
801 if Is_Abstract_Subprogram (Subp) then
802 Error_Msg_N ("stream subprogram must not be abstract", Expr);
803 return;
804 end if;
806 Set_Entity (Expr, Subp);
807 Set_Etype (Expr, Etype (Subp));
809 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
811 else
812 Error_Msg_Name_1 := Attr;
813 Error_Msg_N ("incorrect expression for% attribute", Expr);
814 end if;
815 end Analyze_Stream_TSS_Definition;
817 -- Start of processing for Analyze_Attribute_Definition_Clause
819 begin
820 -- Process Ignore_Rep_Clauses option
822 if Ignore_Rep_Clauses then
823 case Id is
825 -- The following should be ignored. They do not affect legality
826 -- and may be target dependent. The basic idea of -gnatI is to
827 -- ignore any rep clauses that may be target dependent but do not
828 -- affect legality (except possibly to be rejected because they
829 -- are incompatible with the compilation target).
831 when Attribute_Alignment |
832 Attribute_Bit_Order |
833 Attribute_Component_Size |
834 Attribute_Machine_Radix |
835 Attribute_Object_Size |
836 Attribute_Size |
837 Attribute_Small |
838 Attribute_Stream_Size |
839 Attribute_Value_Size =>
841 Rewrite (N, Make_Null_Statement (Sloc (N)));
842 return;
844 -- The following should not be ignored, because in the first place
845 -- they are reasonably portable, and should not cause problems in
846 -- compiling code from another target, and also they do affect
847 -- legality, e.g. failing to provide a stream attribute for a
848 -- type may make a program illegal.
850 when Attribute_External_Tag |
851 Attribute_Input |
852 Attribute_Output |
853 Attribute_Read |
854 Attribute_Storage_Pool |
855 Attribute_Storage_Size |
856 Attribute_Write =>
857 null;
859 -- Other cases are errors ("attribute& cannot be set with
860 -- definition clause"), which will be caught below.
862 when others =>
863 null;
864 end case;
865 end if;
867 Analyze (Nam);
868 Ent := Entity (Nam);
870 if Rep_Item_Too_Early (Ent, N) then
871 return;
872 end if;
874 -- Rep clause applies to full view of incomplete type or private type if
875 -- we have one (if not, this is a premature use of the type). However,
876 -- certain semantic checks need to be done on the specified entity (i.e.
877 -- the private view), so we save it in Ent.
879 if Is_Private_Type (Ent)
880 and then Is_Derived_Type (Ent)
881 and then not Is_Tagged_Type (Ent)
882 and then No (Full_View (Ent))
883 then
884 -- If this is a private type whose completion is a derivation from
885 -- another private type, there is no full view, and the attribute
886 -- belongs to the type itself, not its underlying parent.
888 U_Ent := Ent;
890 elsif Ekind (Ent) = E_Incomplete_Type then
892 -- The attribute applies to the full view, set the entity of the
893 -- attribute definition accordingly.
895 Ent := Underlying_Type (Ent);
896 U_Ent := Ent;
897 Set_Entity (Nam, Ent);
899 else
900 U_Ent := Underlying_Type (Ent);
901 end if;
903 -- Complete other routine error checks
905 if Etype (Nam) = Any_Type then
906 return;
908 elsif Scope (Ent) /= Current_Scope then
909 Error_Msg_N ("entity must be declared in this scope", Nam);
910 return;
912 elsif No (U_Ent) then
913 U_Ent := Ent;
915 elsif Is_Type (U_Ent)
916 and then not Is_First_Subtype (U_Ent)
917 and then Id /= Attribute_Object_Size
918 and then Id /= Attribute_Value_Size
919 and then not From_At_Mod (N)
920 then
921 Error_Msg_N ("cannot specify attribute for subtype", Nam);
922 return;
923 end if;
925 -- Switch on particular attribute
927 case Id is
929 -------------
930 -- Address --
931 -------------
933 -- Address attribute definition clause
935 when Attribute_Address => Address : begin
937 -- A little error check, catch for X'Address use X'Address;
939 if Nkind (Nam) = N_Identifier
940 and then Nkind (Expr) = N_Attribute_Reference
941 and then Attribute_Name (Expr) = Name_Address
942 and then Nkind (Prefix (Expr)) = N_Identifier
943 and then Chars (Nam) = Chars (Prefix (Expr))
944 then
945 Error_Msg_NE
946 ("address for & is self-referencing", Prefix (Expr), Ent);
947 return;
948 end if;
950 -- Not that special case, carry on with analysis of expression
952 Analyze_And_Resolve (Expr, RTE (RE_Address));
954 -- Even when ignoring rep clauses we need to indicate that the
955 -- entity has an address clause and thus it is legal to declare
956 -- it imported.
958 if Ignore_Rep_Clauses then
959 if Ekind_In (U_Ent, E_Variable, E_Constant) then
960 Record_Rep_Item (U_Ent, N);
961 end if;
963 return;
964 end if;
966 if Present (Address_Clause (U_Ent)) then
967 Error_Msg_N ("address already given for &", Nam);
969 -- Case of address clause for subprogram
971 elsif Is_Subprogram (U_Ent) then
972 if Has_Homonym (U_Ent) then
973 Error_Msg_N
974 ("address clause cannot be given " &
975 "for overloaded subprogram",
976 Nam);
977 return;
978 end if;
980 -- For subprograms, all address clauses are permitted, and we
981 -- mark the subprogram as having a deferred freeze so that Gigi
982 -- will not elaborate it too soon.
984 -- Above needs more comments, what is too soon about???
986 Set_Has_Delayed_Freeze (U_Ent);
988 -- Case of address clause for entry
990 elsif Ekind (U_Ent) = E_Entry then
991 if Nkind (Parent (N)) = N_Task_Body then
992 Error_Msg_N
993 ("entry address must be specified in task spec", Nam);
994 return;
995 end if;
997 -- For entries, we require a constant address
999 Check_Constant_Address_Clause (Expr, U_Ent);
1001 -- Special checks for task types
1003 if Is_Task_Type (Scope (U_Ent))
1004 and then Comes_From_Source (Scope (U_Ent))
1005 then
1006 Error_Msg_N
1007 ("?entry address declared for entry in task type", N);
1008 Error_Msg_N
1009 ("\?only one task can be declared of this type", N);
1010 end if;
1012 -- Entry address clauses are obsolescent
1014 Check_Restriction (No_Obsolescent_Features, N);
1016 if Warn_On_Obsolescent_Feature then
1017 Error_Msg_N
1018 ("attaching interrupt to task entry is an " &
1019 "obsolescent feature (RM J.7.1)?", N);
1020 Error_Msg_N
1021 ("\use interrupt procedure instead?", N);
1022 end if;
1024 -- Case of an address clause for a controlled object which we
1025 -- consider to be erroneous.
1027 elsif Is_Controlled (Etype (U_Ent))
1028 or else Has_Controlled_Component (Etype (U_Ent))
1029 then
1030 Error_Msg_NE
1031 ("?controlled object& must not be overlaid", Nam, U_Ent);
1032 Error_Msg_N
1033 ("\?Program_Error will be raised at run time", Nam);
1034 Insert_Action (Declaration_Node (U_Ent),
1035 Make_Raise_Program_Error (Loc,
1036 Reason => PE_Overlaid_Controlled_Object));
1037 return;
1039 -- Case of address clause for a (non-controlled) object
1041 elsif
1042 Ekind (U_Ent) = E_Variable
1043 or else
1044 Ekind (U_Ent) = E_Constant
1045 then
1046 declare
1047 Expr : constant Node_Id := Expression (N);
1048 O_Ent : Entity_Id;
1049 Off : Boolean;
1051 begin
1052 -- Exported variables cannot have an address clause, because
1053 -- this cancels the effect of the pragma Export.
1055 if Is_Exported (U_Ent) then
1056 Error_Msg_N
1057 ("cannot export object with address clause", Nam);
1058 return;
1059 end if;
1061 Find_Overlaid_Entity (N, O_Ent, Off);
1063 -- Overlaying controlled objects is erroneous
1065 if Present (O_Ent)
1066 and then (Has_Controlled_Component (Etype (O_Ent))
1067 or else Is_Controlled (Etype (O_Ent)))
1068 then
1069 Error_Msg_N
1070 ("?cannot overlay with controlled object", Expr);
1071 Error_Msg_N
1072 ("\?Program_Error will be raised at run time", Expr);
1073 Insert_Action (Declaration_Node (U_Ent),
1074 Make_Raise_Program_Error (Loc,
1075 Reason => PE_Overlaid_Controlled_Object));
1076 return;
1078 elsif Present (O_Ent)
1079 and then Ekind (U_Ent) = E_Constant
1080 and then not Is_Constant_Object (O_Ent)
1081 then
1082 Error_Msg_N ("constant overlays a variable?", Expr);
1084 elsif Present (Renamed_Object (U_Ent)) then
1085 Error_Msg_N
1086 ("address clause not allowed"
1087 & " for a renaming declaration (RM 13.1(6))", Nam);
1088 return;
1090 -- Imported variables can have an address clause, but then
1091 -- the import is pretty meaningless except to suppress
1092 -- initializations, so we do not need such variables to
1093 -- be statically allocated (and in fact it causes trouble
1094 -- if the address clause is a local value).
1096 elsif Is_Imported (U_Ent) then
1097 Set_Is_Statically_Allocated (U_Ent, False);
1098 end if;
1100 -- We mark a possible modification of a variable with an
1101 -- address clause, since it is likely aliasing is occurring.
1103 Note_Possible_Modification (Nam, Sure => False);
1105 -- Here we are checking for explicit overlap of one variable
1106 -- by another, and if we find this then mark the overlapped
1107 -- variable as also being volatile to prevent unwanted
1108 -- optimizations. This is a significant pessimization so
1109 -- avoid it when there is an offset, i.e. when the object
1110 -- is composite; they cannot be optimized easily anyway.
1112 if Present (O_Ent)
1113 and then Is_Object (O_Ent)
1114 and then not Off
1115 then
1116 Set_Treat_As_Volatile (O_Ent);
1117 end if;
1119 -- Legality checks on the address clause for initialized
1120 -- objects is deferred until the freeze point, because
1121 -- a subsequent pragma might indicate that the object is
1122 -- imported and thus not initialized.
1124 Set_Has_Delayed_Freeze (U_Ent);
1126 -- If an initialization call has been generated for this
1127 -- object, it needs to be deferred to after the freeze node
1128 -- we have just now added, otherwise GIGI will see a
1129 -- reference to the variable (as actual to the IP call)
1130 -- before its definition.
1132 declare
1133 Init_Call : constant Node_Id := Find_Init_Call (U_Ent, N);
1134 begin
1135 if Present (Init_Call) then
1136 Remove (Init_Call);
1137 Append_Freeze_Action (U_Ent, Init_Call);
1138 end if;
1139 end;
1141 if Is_Exported (U_Ent) then
1142 Error_Msg_N
1143 ("& cannot be exported if an address clause is given",
1144 Nam);
1145 Error_Msg_N
1146 ("\define and export a variable " &
1147 "that holds its address instead",
1148 Nam);
1149 end if;
1151 -- Entity has delayed freeze, so we will generate an
1152 -- alignment check at the freeze point unless suppressed.
1154 if not Range_Checks_Suppressed (U_Ent)
1155 and then not Alignment_Checks_Suppressed (U_Ent)
1156 then
1157 Set_Check_Address_Alignment (N);
1158 end if;
1160 -- Kill the size check code, since we are not allocating
1161 -- the variable, it is somewhere else.
1163 Kill_Size_Check_Code (U_Ent);
1165 -- If the address clause is of the form:
1167 -- for Y'Address use X'Address
1169 -- or
1171 -- Const : constant Address := X'Address;
1172 -- ...
1173 -- for Y'Address use Const;
1175 -- then we make an entry in the table for checking the size
1176 -- and alignment of the overlaying variable. We defer this
1177 -- check till after code generation to take full advantage
1178 -- of the annotation done by the back end. This entry is
1179 -- only made if the address clause comes from source.
1180 -- If the entity has a generic type, the check will be
1181 -- performed in the instance if the actual type justifies
1182 -- it, and we do not insert the clause in the table to
1183 -- prevent spurious warnings.
1185 if Address_Clause_Overlay_Warnings
1186 and then Comes_From_Source (N)
1187 and then Present (O_Ent)
1188 and then Is_Object (O_Ent)
1189 then
1190 if not Is_Generic_Type (Etype (U_Ent)) then
1191 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
1192 end if;
1194 -- If variable overlays a constant view, and we are
1195 -- warning on overlays, then mark the variable as
1196 -- overlaying a constant (we will give warnings later
1197 -- if this variable is assigned).
1199 if Is_Constant_Object (O_Ent)
1200 and then Ekind (U_Ent) = E_Variable
1201 then
1202 Set_Overlays_Constant (U_Ent);
1203 end if;
1204 end if;
1205 end;
1207 -- Not a valid entity for an address clause
1209 else
1210 Error_Msg_N ("address cannot be given for &", Nam);
1211 end if;
1212 end Address;
1214 ---------------
1215 -- Alignment --
1216 ---------------
1218 -- Alignment attribute definition clause
1220 when Attribute_Alignment => Alignment : declare
1221 Align : constant Uint := Get_Alignment_Value (Expr);
1223 begin
1224 FOnly := True;
1226 if not Is_Type (U_Ent)
1227 and then Ekind (U_Ent) /= E_Variable
1228 and then Ekind (U_Ent) /= E_Constant
1229 then
1230 Error_Msg_N ("alignment cannot be given for &", Nam);
1232 elsif Has_Alignment_Clause (U_Ent) then
1233 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
1234 Error_Msg_N ("alignment clause previously given#", N);
1236 elsif Align /= No_Uint then
1237 Set_Has_Alignment_Clause (U_Ent);
1238 Set_Alignment (U_Ent, Align);
1240 -- For an array type, U_Ent is the first subtype. In that case,
1241 -- also set the alignment of the anonymous base type so that
1242 -- other subtypes (such as the itypes for aggregates of the
1243 -- type) also receive the expected alignment.
1245 if Is_Array_Type (U_Ent) then
1246 Set_Alignment (Base_Type (U_Ent), Align);
1247 end if;
1248 end if;
1249 end Alignment;
1251 ---------------
1252 -- Bit_Order --
1253 ---------------
1255 -- Bit_Order attribute definition clause
1257 when Attribute_Bit_Order => Bit_Order : declare
1258 begin
1259 if not Is_Record_Type (U_Ent) then
1260 Error_Msg_N
1261 ("Bit_Order can only be defined for record type", Nam);
1263 else
1264 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
1266 if Etype (Expr) = Any_Type then
1267 return;
1269 elsif not Is_Static_Expression (Expr) then
1270 Flag_Non_Static_Expr
1271 ("Bit_Order requires static expression!", Expr);
1273 else
1274 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
1275 Set_Reverse_Bit_Order (U_Ent, True);
1276 end if;
1277 end if;
1278 end if;
1279 end Bit_Order;
1281 --------------------
1282 -- Component_Size --
1283 --------------------
1285 -- Component_Size attribute definition clause
1287 when Attribute_Component_Size => Component_Size_Case : declare
1288 Csize : constant Uint := Static_Integer (Expr);
1289 Btype : Entity_Id;
1290 Biased : Boolean;
1291 New_Ctyp : Entity_Id;
1292 Decl : Node_Id;
1294 begin
1295 if not Is_Array_Type (U_Ent) then
1296 Error_Msg_N ("component size requires array type", Nam);
1297 return;
1298 end if;
1300 Btype := Base_Type (U_Ent);
1302 if Has_Component_Size_Clause (Btype) then
1303 Error_Msg_N
1304 ("component size clause for& previously given", Nam);
1306 elsif Csize /= No_Uint then
1307 Check_Size (Expr, Component_Type (Btype), Csize, Biased);
1309 if Has_Aliased_Components (Btype)
1310 and then Csize < 32
1311 and then Csize /= 8
1312 and then Csize /= 16
1313 then
1314 Error_Msg_N
1315 ("component size incorrect for aliased components", N);
1316 return;
1317 end if;
1319 -- For the biased case, build a declaration for a subtype
1320 -- that will be used to represent the biased subtype that
1321 -- reflects the biased representation of components. We need
1322 -- this subtype to get proper conversions on referencing
1323 -- elements of the array. Note that component size clauses
1324 -- are ignored in VM mode.
1326 if VM_Target = No_VM then
1327 if Biased then
1328 New_Ctyp :=
1329 Make_Defining_Identifier (Loc,
1330 Chars =>
1331 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
1333 Decl :=
1334 Make_Subtype_Declaration (Loc,
1335 Defining_Identifier => New_Ctyp,
1336 Subtype_Indication =>
1337 New_Occurrence_Of (Component_Type (Btype), Loc));
1339 Set_Parent (Decl, N);
1340 Analyze (Decl, Suppress => All_Checks);
1342 Set_Has_Delayed_Freeze (New_Ctyp, False);
1343 Set_Esize (New_Ctyp, Csize);
1344 Set_RM_Size (New_Ctyp, Csize);
1345 Init_Alignment (New_Ctyp);
1346 Set_Has_Biased_Representation (New_Ctyp, True);
1347 Set_Is_Itype (New_Ctyp, True);
1348 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
1350 Set_Component_Type (Btype, New_Ctyp);
1352 if Warn_On_Biased_Representation then
1353 Error_Msg_N
1354 ("?component size clause forces biased "
1355 & "representation", N);
1356 end if;
1357 end if;
1359 Set_Component_Size (Btype, Csize);
1361 -- For VM case, we ignore component size clauses
1363 else
1364 -- Give a warning unless we are in GNAT mode, in which case
1365 -- the warning is suppressed since it is not useful.
1367 if not GNAT_Mode then
1368 Error_Msg_N
1369 ("?component size ignored in this configuration", N);
1370 end if;
1371 end if;
1373 Set_Has_Component_Size_Clause (Btype, True);
1374 Set_Has_Non_Standard_Rep (Btype, True);
1375 end if;
1376 end Component_Size_Case;
1378 ------------------
1379 -- External_Tag --
1380 ------------------
1382 when Attribute_External_Tag => External_Tag :
1383 begin
1384 if not Is_Tagged_Type (U_Ent) then
1385 Error_Msg_N ("should be a tagged type", Nam);
1386 end if;
1388 Analyze_And_Resolve (Expr, Standard_String);
1390 if not Is_Static_Expression (Expr) then
1391 Flag_Non_Static_Expr
1392 ("static string required for tag name!", Nam);
1393 end if;
1395 if VM_Target = No_VM then
1396 Set_Has_External_Tag_Rep_Clause (U_Ent);
1397 else
1398 Error_Msg_Name_1 := Attr;
1399 Error_Msg_N
1400 ("% attribute unsupported in this configuration", Nam);
1401 end if;
1403 if not Is_Library_Level_Entity (U_Ent) then
1404 Error_Msg_NE
1405 ("?non-unique external tag supplied for &", N, U_Ent);
1406 Error_Msg_N
1407 ("?\same external tag applies to all subprogram calls", N);
1408 Error_Msg_N
1409 ("?\corresponding internal tag cannot be obtained", N);
1410 end if;
1411 end External_Tag;
1413 -----------
1414 -- Input --
1415 -----------
1417 when Attribute_Input =>
1418 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
1419 Set_Has_Specified_Stream_Input (Ent);
1421 -------------------
1422 -- Machine_Radix --
1423 -------------------
1425 -- Machine radix attribute definition clause
1427 when Attribute_Machine_Radix => Machine_Radix : declare
1428 Radix : constant Uint := Static_Integer (Expr);
1430 begin
1431 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
1432 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
1434 elsif Has_Machine_Radix_Clause (U_Ent) then
1435 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
1436 Error_Msg_N ("machine radix clause previously given#", N);
1438 elsif Radix /= No_Uint then
1439 Set_Has_Machine_Radix_Clause (U_Ent);
1440 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
1442 if Radix = 2 then
1443 null;
1444 elsif Radix = 10 then
1445 Set_Machine_Radix_10 (U_Ent);
1446 else
1447 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
1448 end if;
1449 end if;
1450 end Machine_Radix;
1452 -----------------
1453 -- Object_Size --
1454 -----------------
1456 -- Object_Size attribute definition clause
1458 when Attribute_Object_Size => Object_Size : declare
1459 Size : constant Uint := Static_Integer (Expr);
1461 Biased : Boolean;
1462 pragma Warnings (Off, Biased);
1464 begin
1465 if not Is_Type (U_Ent) then
1466 Error_Msg_N ("Object_Size cannot be given for &", Nam);
1468 elsif Has_Object_Size_Clause (U_Ent) then
1469 Error_Msg_N ("Object_Size already given for &", Nam);
1471 else
1472 Check_Size (Expr, U_Ent, Size, Biased);
1474 if Size /= 8
1475 and then
1476 Size /= 16
1477 and then
1478 Size /= 32
1479 and then
1480 UI_Mod (Size, 64) /= 0
1481 then
1482 Error_Msg_N
1483 ("Object_Size must be 8, 16, 32, or multiple of 64",
1484 Expr);
1485 end if;
1487 Set_Esize (U_Ent, Size);
1488 Set_Has_Object_Size_Clause (U_Ent);
1489 Alignment_Check_For_Esize_Change (U_Ent);
1490 end if;
1491 end Object_Size;
1493 ------------
1494 -- Output --
1495 ------------
1497 when Attribute_Output =>
1498 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
1499 Set_Has_Specified_Stream_Output (Ent);
1501 ----------
1502 -- Read --
1503 ----------
1505 when Attribute_Read =>
1506 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
1507 Set_Has_Specified_Stream_Read (Ent);
1509 ----------
1510 -- Size --
1511 ----------
1513 -- Size attribute definition clause
1515 when Attribute_Size => Size : declare
1516 Size : constant Uint := Static_Integer (Expr);
1517 Etyp : Entity_Id;
1518 Biased : Boolean;
1520 begin
1521 FOnly := True;
1523 if Has_Size_Clause (U_Ent) then
1524 Error_Msg_N ("size already given for &", Nam);
1526 elsif not Is_Type (U_Ent)
1527 and then Ekind (U_Ent) /= E_Variable
1528 and then Ekind (U_Ent) /= E_Constant
1529 then
1530 Error_Msg_N ("size cannot be given for &", Nam);
1532 elsif Is_Array_Type (U_Ent)
1533 and then not Is_Constrained (U_Ent)
1534 then
1535 Error_Msg_N
1536 ("size cannot be given for unconstrained array", Nam);
1538 elsif Size /= No_Uint then
1539 if Is_Type (U_Ent) then
1540 Etyp := U_Ent;
1541 else
1542 Etyp := Etype (U_Ent);
1543 end if;
1545 -- Check size, note that Gigi is in charge of checking that the
1546 -- size of an array or record type is OK. Also we do not check
1547 -- the size in the ordinary fixed-point case, since it is too
1548 -- early to do so (there may be subsequent small clause that
1549 -- affects the size). We can check the size if a small clause
1550 -- has already been given.
1552 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
1553 or else Has_Small_Clause (U_Ent)
1554 then
1555 Check_Size (Expr, Etyp, Size, Biased);
1556 Set_Has_Biased_Representation (U_Ent, Biased);
1558 if Biased and Warn_On_Biased_Representation then
1559 Error_Msg_N
1560 ("?size clause forces biased representation", N);
1561 end if;
1562 end if;
1564 -- For types set RM_Size and Esize if possible
1566 if Is_Type (U_Ent) then
1567 Set_RM_Size (U_Ent, Size);
1569 -- For scalar types, increase Object_Size to power of 2, but
1570 -- not less than a storage unit in any case (i.e., normally
1571 -- this means it will be byte addressable).
1573 if Is_Scalar_Type (U_Ent) then
1574 if Size <= System_Storage_Unit then
1575 Init_Esize (U_Ent, System_Storage_Unit);
1576 elsif Size <= 16 then
1577 Init_Esize (U_Ent, 16);
1578 elsif Size <= 32 then
1579 Init_Esize (U_Ent, 32);
1580 else
1581 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
1582 end if;
1584 -- For all other types, object size = value size. The
1585 -- backend will adjust as needed.
1587 else
1588 Set_Esize (U_Ent, Size);
1589 end if;
1591 Alignment_Check_For_Esize_Change (U_Ent);
1593 -- For objects, set Esize only
1595 else
1596 if Is_Elementary_Type (Etyp) then
1597 if Size /= System_Storage_Unit
1598 and then
1599 Size /= System_Storage_Unit * 2
1600 and then
1601 Size /= System_Storage_Unit * 4
1602 and then
1603 Size /= System_Storage_Unit * 8
1604 then
1605 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
1606 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
1607 Error_Msg_N
1608 ("size for primitive object must be a power of 2"
1609 & " in the range ^-^", N);
1610 end if;
1611 end if;
1613 Set_Esize (U_Ent, Size);
1614 end if;
1616 Set_Has_Size_Clause (U_Ent);
1617 end if;
1618 end Size;
1620 -----------
1621 -- Small --
1622 -----------
1624 -- Small attribute definition clause
1626 when Attribute_Small => Small : declare
1627 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
1628 Small : Ureal;
1630 begin
1631 Analyze_And_Resolve (Expr, Any_Real);
1633 if Etype (Expr) = Any_Type then
1634 return;
1636 elsif not Is_Static_Expression (Expr) then
1637 Flag_Non_Static_Expr
1638 ("small requires static expression!", Expr);
1639 return;
1641 else
1642 Small := Expr_Value_R (Expr);
1644 if Small <= Ureal_0 then
1645 Error_Msg_N ("small value must be greater than zero", Expr);
1646 return;
1647 end if;
1649 end if;
1651 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
1652 Error_Msg_N
1653 ("small requires an ordinary fixed point type", Nam);
1655 elsif Has_Small_Clause (U_Ent) then
1656 Error_Msg_N ("small already given for &", Nam);
1658 elsif Small > Delta_Value (U_Ent) then
1659 Error_Msg_N
1660 ("small value must not be greater then delta value", Nam);
1662 else
1663 Set_Small_Value (U_Ent, Small);
1664 Set_Small_Value (Implicit_Base, Small);
1665 Set_Has_Small_Clause (U_Ent);
1666 Set_Has_Small_Clause (Implicit_Base);
1667 Set_Has_Non_Standard_Rep (Implicit_Base);
1668 end if;
1669 end Small;
1671 ------------------
1672 -- Storage_Pool --
1673 ------------------
1675 -- Storage_Pool attribute definition clause
1677 when Attribute_Storage_Pool => Storage_Pool : declare
1678 Pool : Entity_Id;
1679 T : Entity_Id;
1681 begin
1682 if Ekind (U_Ent) = E_Access_Subprogram_Type then
1683 Error_Msg_N
1684 ("storage pool cannot be given for access-to-subprogram type",
1685 Nam);
1686 return;
1688 elsif not
1689 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
1690 then
1691 Error_Msg_N
1692 ("storage pool can only be given for access types", Nam);
1693 return;
1695 elsif Is_Derived_Type (U_Ent) then
1696 Error_Msg_N
1697 ("storage pool cannot be given for a derived access type",
1698 Nam);
1700 elsif Has_Storage_Size_Clause (U_Ent) then
1701 Error_Msg_N ("storage size already given for &", Nam);
1702 return;
1704 elsif Present (Associated_Storage_Pool (U_Ent)) then
1705 Error_Msg_N ("storage pool already given for &", Nam);
1706 return;
1707 end if;
1709 Analyze_And_Resolve
1710 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
1712 if not Denotes_Variable (Expr) then
1713 Error_Msg_N ("storage pool must be a variable", Expr);
1714 return;
1715 end if;
1717 if Nkind (Expr) = N_Type_Conversion then
1718 T := Etype (Expression (Expr));
1719 else
1720 T := Etype (Expr);
1721 end if;
1723 -- The Stack_Bounded_Pool is used internally for implementing
1724 -- access types with a Storage_Size. Since it only work
1725 -- properly when used on one specific type, we need to check
1726 -- that it is not hijacked improperly:
1727 -- type T is access Integer;
1728 -- for T'Storage_Size use n;
1729 -- type Q is access Float;
1730 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
1732 if RTE_Available (RE_Stack_Bounded_Pool)
1733 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
1734 then
1735 Error_Msg_N ("non-shareable internal Pool", Expr);
1736 return;
1737 end if;
1739 -- If the argument is a name that is not an entity name, then
1740 -- we construct a renaming operation to define an entity of
1741 -- type storage pool.
1743 if not Is_Entity_Name (Expr)
1744 and then Is_Object_Reference (Expr)
1745 then
1746 Pool := Make_Temporary (Loc, 'P', Expr);
1748 declare
1749 Rnode : constant Node_Id :=
1750 Make_Object_Renaming_Declaration (Loc,
1751 Defining_Identifier => Pool,
1752 Subtype_Mark =>
1753 New_Occurrence_Of (Etype (Expr), Loc),
1754 Name => Expr);
1756 begin
1757 Insert_Before (N, Rnode);
1758 Analyze (Rnode);
1759 Set_Associated_Storage_Pool (U_Ent, Pool);
1760 end;
1762 elsif Is_Entity_Name (Expr) then
1763 Pool := Entity (Expr);
1765 -- If pool is a renamed object, get original one. This can
1766 -- happen with an explicit renaming, and within instances.
1768 while Present (Renamed_Object (Pool))
1769 and then Is_Entity_Name (Renamed_Object (Pool))
1770 loop
1771 Pool := Entity (Renamed_Object (Pool));
1772 end loop;
1774 if Present (Renamed_Object (Pool))
1775 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
1776 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
1777 then
1778 Pool := Entity (Expression (Renamed_Object (Pool)));
1779 end if;
1781 Set_Associated_Storage_Pool (U_Ent, Pool);
1783 elsif Nkind (Expr) = N_Type_Conversion
1784 and then Is_Entity_Name (Expression (Expr))
1785 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
1786 then
1787 Pool := Entity (Expression (Expr));
1788 Set_Associated_Storage_Pool (U_Ent, Pool);
1790 else
1791 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
1792 return;
1793 end if;
1794 end Storage_Pool;
1796 ------------------
1797 -- Storage_Size --
1798 ------------------
1800 -- Storage_Size attribute definition clause
1802 when Attribute_Storage_Size => Storage_Size : declare
1803 Btype : constant Entity_Id := Base_Type (U_Ent);
1804 Sprag : Node_Id;
1806 begin
1807 if Is_Task_Type (U_Ent) then
1808 Check_Restriction (No_Obsolescent_Features, N);
1810 if Warn_On_Obsolescent_Feature then
1811 Error_Msg_N
1812 ("storage size clause for task is an " &
1813 "obsolescent feature (RM J.9)?", N);
1814 Error_Msg_N ("\use Storage_Size pragma instead?", N);
1815 end if;
1817 FOnly := True;
1818 end if;
1820 if not Is_Access_Type (U_Ent)
1821 and then Ekind (U_Ent) /= E_Task_Type
1822 then
1823 Error_Msg_N ("storage size cannot be given for &", Nam);
1825 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
1826 Error_Msg_N
1827 ("storage size cannot be given for a derived access type",
1828 Nam);
1830 elsif Has_Storage_Size_Clause (Btype) then
1831 Error_Msg_N ("storage size already given for &", Nam);
1833 else
1834 Analyze_And_Resolve (Expr, Any_Integer);
1836 if Is_Access_Type (U_Ent) then
1837 if Present (Associated_Storage_Pool (U_Ent)) then
1838 Error_Msg_N ("storage pool already given for &", Nam);
1839 return;
1840 end if;
1842 if Compile_Time_Known_Value (Expr)
1843 and then Expr_Value (Expr) = 0
1844 then
1845 Set_No_Pool_Assigned (Btype);
1846 end if;
1848 else -- Is_Task_Type (U_Ent)
1849 Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
1851 if Present (Sprag) then
1852 Error_Msg_Sloc := Sloc (Sprag);
1853 Error_Msg_N
1854 ("Storage_Size already specified#", Nam);
1855 return;
1856 end if;
1857 end if;
1859 Set_Has_Storage_Size_Clause (Btype);
1860 end if;
1861 end Storage_Size;
1863 -----------------
1864 -- Stream_Size --
1865 -----------------
1867 when Attribute_Stream_Size => Stream_Size : declare
1868 Size : constant Uint := Static_Integer (Expr);
1870 begin
1871 if Ada_Version <= Ada_95 then
1872 Check_Restriction (No_Implementation_Attributes, N);
1873 end if;
1875 if Has_Stream_Size_Clause (U_Ent) then
1876 Error_Msg_N ("Stream_Size already given for &", Nam);
1878 elsif Is_Elementary_Type (U_Ent) then
1879 if Size /= System_Storage_Unit
1880 and then
1881 Size /= System_Storage_Unit * 2
1882 and then
1883 Size /= System_Storage_Unit * 4
1884 and then
1885 Size /= System_Storage_Unit * 8
1886 then
1887 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
1888 Error_Msg_N
1889 ("stream size for elementary type must be a"
1890 & " power of 2 and at least ^", N);
1892 elsif RM_Size (U_Ent) > Size then
1893 Error_Msg_Uint_1 := RM_Size (U_Ent);
1894 Error_Msg_N
1895 ("stream size for elementary type must be a"
1896 & " power of 2 and at least ^", N);
1897 end if;
1899 Set_Has_Stream_Size_Clause (U_Ent);
1901 else
1902 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
1903 end if;
1904 end Stream_Size;
1906 ----------------
1907 -- Value_Size --
1908 ----------------
1910 -- Value_Size attribute definition clause
1912 when Attribute_Value_Size => Value_Size : declare
1913 Size : constant Uint := Static_Integer (Expr);
1914 Biased : Boolean;
1916 begin
1917 if not Is_Type (U_Ent) then
1918 Error_Msg_N ("Value_Size cannot be given for &", Nam);
1920 elsif Present
1921 (Get_Attribute_Definition_Clause
1922 (U_Ent, Attribute_Value_Size))
1923 then
1924 Error_Msg_N ("Value_Size already given for &", Nam);
1926 elsif Is_Array_Type (U_Ent)
1927 and then not Is_Constrained (U_Ent)
1928 then
1929 Error_Msg_N
1930 ("Value_Size cannot be given for unconstrained array", Nam);
1932 else
1933 if Is_Elementary_Type (U_Ent) then
1934 Check_Size (Expr, U_Ent, Size, Biased);
1935 Set_Has_Biased_Representation (U_Ent, Biased);
1937 if Biased and Warn_On_Biased_Representation then
1938 Error_Msg_N
1939 ("?value size clause forces biased representation", N);
1940 end if;
1941 end if;
1943 Set_RM_Size (U_Ent, Size);
1944 end if;
1945 end Value_Size;
1947 -----------
1948 -- Write --
1949 -----------
1951 when Attribute_Write =>
1952 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
1953 Set_Has_Specified_Stream_Write (Ent);
1955 -- All other attributes cannot be set
1957 when others =>
1958 Error_Msg_N
1959 ("attribute& cannot be set with definition clause", N);
1960 end case;
1962 -- The test for the type being frozen must be performed after
1963 -- any expression the clause has been analyzed since the expression
1964 -- itself might cause freezing that makes the clause illegal.
1966 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
1967 return;
1968 end if;
1969 end Analyze_Attribute_Definition_Clause;
1971 ----------------------------
1972 -- Analyze_Code_Statement --
1973 ----------------------------
1975 procedure Analyze_Code_Statement (N : Node_Id) is
1976 HSS : constant Node_Id := Parent (N);
1977 SBody : constant Node_Id := Parent (HSS);
1978 Subp : constant Entity_Id := Current_Scope;
1979 Stmt : Node_Id;
1980 Decl : Node_Id;
1981 StmtO : Node_Id;
1982 DeclO : Node_Id;
1984 begin
1985 -- Analyze and check we get right type, note that this implements the
1986 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
1987 -- is the only way that Asm_Insn could possibly be visible.
1989 Analyze_And_Resolve (Expression (N));
1991 if Etype (Expression (N)) = Any_Type then
1992 return;
1993 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
1994 Error_Msg_N ("incorrect type for code statement", N);
1995 return;
1996 end if;
1998 Check_Code_Statement (N);
2000 -- Make sure we appear in the handled statement sequence of a
2001 -- subprogram (RM 13.8(3)).
2003 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
2004 or else Nkind (SBody) /= N_Subprogram_Body
2005 then
2006 Error_Msg_N
2007 ("code statement can only appear in body of subprogram", N);
2008 return;
2009 end if;
2011 -- Do remaining checks (RM 13.8(3)) if not already done
2013 if not Is_Machine_Code_Subprogram (Subp) then
2014 Set_Is_Machine_Code_Subprogram (Subp);
2016 -- No exception handlers allowed
2018 if Present (Exception_Handlers (HSS)) then
2019 Error_Msg_N
2020 ("exception handlers not permitted in machine code subprogram",
2021 First (Exception_Handlers (HSS)));
2022 end if;
2024 -- No declarations other than use clauses and pragmas (we allow
2025 -- certain internally generated declarations as well).
2027 Decl := First (Declarations (SBody));
2028 while Present (Decl) loop
2029 DeclO := Original_Node (Decl);
2030 if Comes_From_Source (DeclO)
2031 and not Nkind_In (DeclO, N_Pragma,
2032 N_Use_Package_Clause,
2033 N_Use_Type_Clause,
2034 N_Implicit_Label_Declaration)
2035 then
2036 Error_Msg_N
2037 ("this declaration not allowed in machine code subprogram",
2038 DeclO);
2039 end if;
2041 Next (Decl);
2042 end loop;
2044 -- No statements other than code statements, pragmas, and labels.
2045 -- Again we allow certain internally generated statements.
2047 Stmt := First (Statements (HSS));
2048 while Present (Stmt) loop
2049 StmtO := Original_Node (Stmt);
2050 if Comes_From_Source (StmtO)
2051 and then not Nkind_In (StmtO, N_Pragma,
2052 N_Label,
2053 N_Code_Statement)
2054 then
2055 Error_Msg_N
2056 ("this statement is not allowed in machine code subprogram",
2057 StmtO);
2058 end if;
2060 Next (Stmt);
2061 end loop;
2062 end if;
2063 end Analyze_Code_Statement;
2065 -----------------------------------------------
2066 -- Analyze_Enumeration_Representation_Clause --
2067 -----------------------------------------------
2069 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
2070 Ident : constant Node_Id := Identifier (N);
2071 Aggr : constant Node_Id := Array_Aggregate (N);
2072 Enumtype : Entity_Id;
2073 Elit : Entity_Id;
2074 Expr : Node_Id;
2075 Assoc : Node_Id;
2076 Choice : Node_Id;
2077 Val : Uint;
2078 Err : Boolean := False;
2080 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
2081 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
2082 Min : Uint;
2083 Max : Uint;
2085 begin
2086 if Ignore_Rep_Clauses then
2087 return;
2088 end if;
2090 -- First some basic error checks
2092 Find_Type (Ident);
2093 Enumtype := Entity (Ident);
2095 if Enumtype = Any_Type
2096 or else Rep_Item_Too_Early (Enumtype, N)
2097 then
2098 return;
2099 else
2100 Enumtype := Underlying_Type (Enumtype);
2101 end if;
2103 if not Is_Enumeration_Type (Enumtype) then
2104 Error_Msg_NE
2105 ("enumeration type required, found}",
2106 Ident, First_Subtype (Enumtype));
2107 return;
2108 end if;
2110 -- Ignore rep clause on generic actual type. This will already have
2111 -- been flagged on the template as an error, and this is the safest
2112 -- way to ensure we don't get a junk cascaded message in the instance.
2114 if Is_Generic_Actual_Type (Enumtype) then
2115 return;
2117 -- Type must be in current scope
2119 elsif Scope (Enumtype) /= Current_Scope then
2120 Error_Msg_N ("type must be declared in this scope", Ident);
2121 return;
2123 -- Type must be a first subtype
2125 elsif not Is_First_Subtype (Enumtype) then
2126 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
2127 return;
2129 -- Ignore duplicate rep clause
2131 elsif Has_Enumeration_Rep_Clause (Enumtype) then
2132 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
2133 return;
2135 -- Don't allow rep clause for standard [wide_[wide_]]character
2137 elsif Is_Standard_Character_Type (Enumtype) then
2138 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
2139 return;
2141 -- Check that the expression is a proper aggregate (no parentheses)
2143 elsif Paren_Count (Aggr) /= 0 then
2144 Error_Msg
2145 ("extra parentheses surrounding aggregate not allowed",
2146 First_Sloc (Aggr));
2147 return;
2149 -- All tests passed, so set rep clause in place
2151 else
2152 Set_Has_Enumeration_Rep_Clause (Enumtype);
2153 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
2154 end if;
2156 -- Now we process the aggregate. Note that we don't use the normal
2157 -- aggregate code for this purpose, because we don't want any of the
2158 -- normal expansion activities, and a number of special semantic
2159 -- rules apply (including the component type being any integer type)
2161 Elit := First_Literal (Enumtype);
2163 -- First the positional entries if any
2165 if Present (Expressions (Aggr)) then
2166 Expr := First (Expressions (Aggr));
2167 while Present (Expr) loop
2168 if No (Elit) then
2169 Error_Msg_N ("too many entries in aggregate", Expr);
2170 return;
2171 end if;
2173 Val := Static_Integer (Expr);
2175 -- Err signals that we found some incorrect entries processing
2176 -- the list. The final checks for completeness and ordering are
2177 -- skipped in this case.
2179 if Val = No_Uint then
2180 Err := True;
2181 elsif Val < Lo or else Hi < Val then
2182 Error_Msg_N ("value outside permitted range", Expr);
2183 Err := True;
2184 end if;
2186 Set_Enumeration_Rep (Elit, Val);
2187 Set_Enumeration_Rep_Expr (Elit, Expr);
2188 Next (Expr);
2189 Next (Elit);
2190 end loop;
2191 end if;
2193 -- Now process the named entries if present
2195 if Present (Component_Associations (Aggr)) then
2196 Assoc := First (Component_Associations (Aggr));
2197 while Present (Assoc) loop
2198 Choice := First (Choices (Assoc));
2200 if Present (Next (Choice)) then
2201 Error_Msg_N
2202 ("multiple choice not allowed here", Next (Choice));
2203 Err := True;
2204 end if;
2206 if Nkind (Choice) = N_Others_Choice then
2207 Error_Msg_N ("others choice not allowed here", Choice);
2208 Err := True;
2210 elsif Nkind (Choice) = N_Range then
2211 -- ??? should allow zero/one element range here
2212 Error_Msg_N ("range not allowed here", Choice);
2213 Err := True;
2215 else
2216 Analyze_And_Resolve (Choice, Enumtype);
2218 if Is_Entity_Name (Choice)
2219 and then Is_Type (Entity (Choice))
2220 then
2221 Error_Msg_N ("subtype name not allowed here", Choice);
2222 Err := True;
2223 -- ??? should allow static subtype with zero/one entry
2225 elsif Etype (Choice) = Base_Type (Enumtype) then
2226 if not Is_Static_Expression (Choice) then
2227 Flag_Non_Static_Expr
2228 ("non-static expression used for choice!", Choice);
2229 Err := True;
2231 else
2232 Elit := Expr_Value_E (Choice);
2234 if Present (Enumeration_Rep_Expr (Elit)) then
2235 Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
2236 Error_Msg_NE
2237 ("representation for& previously given#",
2238 Choice, Elit);
2239 Err := True;
2240 end if;
2242 Set_Enumeration_Rep_Expr (Elit, Choice);
2244 Expr := Expression (Assoc);
2245 Val := Static_Integer (Expr);
2247 if Val = No_Uint then
2248 Err := True;
2250 elsif Val < Lo or else Hi < Val then
2251 Error_Msg_N ("value outside permitted range", Expr);
2252 Err := True;
2253 end if;
2255 Set_Enumeration_Rep (Elit, Val);
2256 end if;
2257 end if;
2258 end if;
2260 Next (Assoc);
2261 end loop;
2262 end if;
2264 -- Aggregate is fully processed. Now we check that a full set of
2265 -- representations was given, and that they are in range and in order.
2266 -- These checks are only done if no other errors occurred.
2268 if not Err then
2269 Min := No_Uint;
2270 Max := No_Uint;
2272 Elit := First_Literal (Enumtype);
2273 while Present (Elit) loop
2274 if No (Enumeration_Rep_Expr (Elit)) then
2275 Error_Msg_NE ("missing representation for&!", N, Elit);
2277 else
2278 Val := Enumeration_Rep (Elit);
2280 if Min = No_Uint then
2281 Min := Val;
2282 end if;
2284 if Val /= No_Uint then
2285 if Max /= No_Uint and then Val <= Max then
2286 Error_Msg_NE
2287 ("enumeration value for& not ordered!",
2288 Enumeration_Rep_Expr (Elit), Elit);
2289 end if;
2291 Max := Val;
2292 end if;
2294 -- If there is at least one literal whose representation
2295 -- is not equal to the Pos value, then note that this
2296 -- enumeration type has a non-standard representation.
2298 if Val /= Enumeration_Pos (Elit) then
2299 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
2300 end if;
2301 end if;
2303 Next (Elit);
2304 end loop;
2306 -- Now set proper size information
2308 declare
2309 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
2311 begin
2312 if Has_Size_Clause (Enumtype) then
2313 if Esize (Enumtype) >= Minsize then
2314 null;
2316 else
2317 Minsize :=
2318 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
2320 if Esize (Enumtype) < Minsize then
2321 Error_Msg_N ("previously given size is too small", N);
2323 else
2324 Set_Has_Biased_Representation (Enumtype);
2325 end if;
2326 end if;
2328 else
2329 Set_RM_Size (Enumtype, Minsize);
2330 Set_Enum_Esize (Enumtype);
2331 end if;
2333 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
2334 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
2335 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
2336 end;
2337 end if;
2339 -- We repeat the too late test in case it froze itself!
2341 if Rep_Item_Too_Late (Enumtype, N) then
2342 null;
2343 end if;
2344 end Analyze_Enumeration_Representation_Clause;
2346 ----------------------------
2347 -- Analyze_Free_Statement --
2348 ----------------------------
2350 procedure Analyze_Free_Statement (N : Node_Id) is
2351 begin
2352 Analyze (Expression (N));
2353 end Analyze_Free_Statement;
2355 ---------------------------
2356 -- Analyze_Freeze_Entity --
2357 ---------------------------
2359 procedure Analyze_Freeze_Entity (N : Node_Id) is
2360 E : constant Entity_Id := Entity (N);
2362 begin
2363 -- For tagged types covering interfaces add internal entities that link
2364 -- the primitives of the interfaces with the primitives that cover them.
2366 -- Note: These entities were originally generated only when generating
2367 -- code because their main purpose was to provide support to initialize
2368 -- the secondary dispatch tables. They are now generated also when
2369 -- compiling with no code generation to provide ASIS the relationship
2370 -- between interface primitives and tagged type primitives. They are
2371 -- also used to locate primitives covering interfaces when processing
2372 -- generics (see Derive_Subprograms).
2374 if Ada_Version >= Ada_05
2375 and then Ekind (E) = E_Record_Type
2376 and then Is_Tagged_Type (E)
2377 and then not Is_Interface (E)
2378 and then Has_Interfaces (E)
2379 then
2380 -- This would be a good common place to call the routine that checks
2381 -- overriding of interface primitives (and thus factorize calls to
2382 -- Check_Abstract_Overriding located at different contexts in the
2383 -- compiler). However, this is not possible because it causes
2384 -- spurious errors in case of late overriding.
2386 Add_Internal_Interface_Entities (E);
2387 end if;
2388 end Analyze_Freeze_Entity;
2390 ------------------------------------------
2391 -- Analyze_Record_Representation_Clause --
2392 ------------------------------------------
2394 -- Note: we check as much as we can here, but we can't do any checks
2395 -- based on the position values (e.g. overlap checks) until freeze time
2396 -- because especially in Ada 2005 (machine scalar mode), the processing
2397 -- for non-standard bit order can substantially change the positions.
2398 -- See procedure Check_Record_Representation_Clause (called from Freeze)
2399 -- for the remainder of this processing.
2401 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
2402 Ident : constant Node_Id := Identifier (N);
2403 Rectype : Entity_Id;
2404 CC : Node_Id;
2405 Posit : Uint;
2406 Fbit : Uint;
2407 Lbit : Uint;
2408 Hbit : Uint := Uint_0;
2409 Comp : Entity_Id;
2410 Ocomp : Entity_Id;
2411 Biased : Boolean;
2413 CR_Pragma : Node_Id := Empty;
2414 -- Points to N_Pragma node if Complete_Representation pragma present
2416 begin
2417 if Ignore_Rep_Clauses then
2418 return;
2419 end if;
2421 Find_Type (Ident);
2422 Rectype := Entity (Ident);
2424 if Rectype = Any_Type
2425 or else Rep_Item_Too_Early (Rectype, N)
2426 then
2427 return;
2428 else
2429 Rectype := Underlying_Type (Rectype);
2430 end if;
2432 -- First some basic error checks
2434 if not Is_Record_Type (Rectype) then
2435 Error_Msg_NE
2436 ("record type required, found}", Ident, First_Subtype (Rectype));
2437 return;
2439 elsif Is_Unchecked_Union (Rectype) then
2440 Error_Msg_N
2441 ("record rep clause not allowed for Unchecked_Union", N);
2443 elsif Scope (Rectype) /= Current_Scope then
2444 Error_Msg_N ("type must be declared in this scope", N);
2445 return;
2447 elsif not Is_First_Subtype (Rectype) then
2448 Error_Msg_N ("cannot give record rep clause for subtype", N);
2449 return;
2451 elsif Has_Record_Rep_Clause (Rectype) then
2452 Error_Msg_N ("duplicate record rep clause ignored", N);
2453 return;
2455 elsif Rep_Item_Too_Late (Rectype, N) then
2456 return;
2457 end if;
2459 if Present (Mod_Clause (N)) then
2460 declare
2461 Loc : constant Source_Ptr := Sloc (N);
2462 M : constant Node_Id := Mod_Clause (N);
2463 P : constant List_Id := Pragmas_Before (M);
2464 AtM_Nod : Node_Id;
2466 Mod_Val : Uint;
2467 pragma Warnings (Off, Mod_Val);
2469 begin
2470 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
2472 if Warn_On_Obsolescent_Feature then
2473 Error_Msg_N
2474 ("mod clause is an obsolescent feature (RM J.8)?", N);
2475 Error_Msg_N
2476 ("\use alignment attribute definition clause instead?", N);
2477 end if;
2479 if Present (P) then
2480 Analyze_List (P);
2481 end if;
2483 -- In ASIS_Mode mode, expansion is disabled, but we must convert
2484 -- the Mod clause into an alignment clause anyway, so that the
2485 -- back-end can compute and back-annotate properly the size and
2486 -- alignment of types that may include this record.
2488 -- This seems dubious, this destroys the source tree in a manner
2489 -- not detectable by ASIS ???
2491 if Operating_Mode = Check_Semantics
2492 and then ASIS_Mode
2493 then
2494 AtM_Nod :=
2495 Make_Attribute_Definition_Clause (Loc,
2496 Name => New_Reference_To (Base_Type (Rectype), Loc),
2497 Chars => Name_Alignment,
2498 Expression => Relocate_Node (Expression (M)));
2500 Set_From_At_Mod (AtM_Nod);
2501 Insert_After (N, AtM_Nod);
2502 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
2503 Set_Mod_Clause (N, Empty);
2505 else
2506 -- Get the alignment value to perform error checking
2508 Mod_Val := Get_Alignment_Value (Expression (M));
2509 end if;
2510 end;
2511 end if;
2513 -- For untagged types, clear any existing component clauses for the
2514 -- type. If the type is derived, this is what allows us to override
2515 -- a rep clause for the parent. For type extensions, the representation
2516 -- of the inherited components is inherited, so we want to keep previous
2517 -- component clauses for completeness.
2519 if not Is_Tagged_Type (Rectype) then
2520 Comp := First_Component_Or_Discriminant (Rectype);
2521 while Present (Comp) loop
2522 Set_Component_Clause (Comp, Empty);
2523 Next_Component_Or_Discriminant (Comp);
2524 end loop;
2525 end if;
2527 -- All done if no component clauses
2529 CC := First (Component_Clauses (N));
2531 if No (CC) then
2532 return;
2533 end if;
2535 -- A representation like this applies to the base type
2537 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
2538 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
2539 Set_Has_Specified_Layout (Base_Type (Rectype));
2541 -- Process the component clauses
2543 while Present (CC) loop
2545 -- Pragma
2547 if Nkind (CC) = N_Pragma then
2548 Analyze (CC);
2550 -- The only pragma of interest is Complete_Representation
2552 if Pragma_Name (CC) = Name_Complete_Representation then
2553 CR_Pragma := CC;
2554 end if;
2556 -- Processing for real component clause
2558 else
2559 Posit := Static_Integer (Position (CC));
2560 Fbit := Static_Integer (First_Bit (CC));
2561 Lbit := Static_Integer (Last_Bit (CC));
2563 if Posit /= No_Uint
2564 and then Fbit /= No_Uint
2565 and then Lbit /= No_Uint
2566 then
2567 if Posit < 0 then
2568 Error_Msg_N
2569 ("position cannot be negative", Position (CC));
2571 elsif Fbit < 0 then
2572 Error_Msg_N
2573 ("first bit cannot be negative", First_Bit (CC));
2575 -- The Last_Bit specified in a component clause must not be
2576 -- less than the First_Bit minus one (RM-13.5.1(10)).
2578 elsif Lbit < Fbit - 1 then
2579 Error_Msg_N
2580 ("last bit cannot be less than first bit minus one",
2581 Last_Bit (CC));
2583 -- Values look OK, so find the corresponding record component
2584 -- Even though the syntax allows an attribute reference for
2585 -- implementation-defined components, GNAT does not allow the
2586 -- tag to get an explicit position.
2588 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
2589 if Attribute_Name (Component_Name (CC)) = Name_Tag then
2590 Error_Msg_N ("position of tag cannot be specified", CC);
2591 else
2592 Error_Msg_N ("illegal component name", CC);
2593 end if;
2595 else
2596 Comp := First_Entity (Rectype);
2597 while Present (Comp) loop
2598 exit when Chars (Comp) = Chars (Component_Name (CC));
2599 Next_Entity (Comp);
2600 end loop;
2602 if No (Comp) then
2604 -- Maybe component of base type that is absent from
2605 -- statically constrained first subtype.
2607 Comp := First_Entity (Base_Type (Rectype));
2608 while Present (Comp) loop
2609 exit when Chars (Comp) = Chars (Component_Name (CC));
2610 Next_Entity (Comp);
2611 end loop;
2612 end if;
2614 if No (Comp) then
2615 Error_Msg_N
2616 ("component clause is for non-existent field", CC);
2618 elsif Present (Component_Clause (Comp)) then
2620 -- Diagnose duplicate rep clause, or check consistency
2621 -- if this is an inherited component. In a double fault,
2622 -- there may be a duplicate inconsistent clause for an
2623 -- inherited component.
2625 if Scope (Original_Record_Component (Comp)) = Rectype
2626 or else Parent (Component_Clause (Comp)) = N
2627 then
2628 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
2629 Error_Msg_N ("component clause previously given#", CC);
2631 else
2632 declare
2633 Rep1 : constant Node_Id := Component_Clause (Comp);
2634 begin
2635 if Intval (Position (Rep1)) /=
2636 Intval (Position (CC))
2637 or else Intval (First_Bit (Rep1)) /=
2638 Intval (First_Bit (CC))
2639 or else Intval (Last_Bit (Rep1)) /=
2640 Intval (Last_Bit (CC))
2641 then
2642 Error_Msg_N ("component clause inconsistent "
2643 & "with representation of ancestor", CC);
2644 elsif Warn_On_Redundant_Constructs then
2645 Error_Msg_N ("?redundant component clause "
2646 & "for inherited component!", CC);
2647 end if;
2648 end;
2649 end if;
2651 -- Normal case where this is the first component clause we
2652 -- have seen for this entity, so set it up properly.
2654 else
2655 -- Make reference for field in record rep clause and set
2656 -- appropriate entity field in the field identifier.
2658 Generate_Reference
2659 (Comp, Component_Name (CC), Set_Ref => False);
2660 Set_Entity (Component_Name (CC), Comp);
2662 -- Update Fbit and Lbit to the actual bit number
2664 Fbit := Fbit + UI_From_Int (SSU) * Posit;
2665 Lbit := Lbit + UI_From_Int (SSU) * Posit;
2667 if Has_Size_Clause (Rectype)
2668 and then Esize (Rectype) <= Lbit
2669 then
2670 Error_Msg_N
2671 ("bit number out of range of specified size",
2672 Last_Bit (CC));
2673 else
2674 Set_Component_Clause (Comp, CC);
2675 Set_Component_Bit_Offset (Comp, Fbit);
2676 Set_Esize (Comp, 1 + (Lbit - Fbit));
2677 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
2678 Set_Normalized_Position (Comp, Fbit / SSU);
2680 -- This information is also set in the corresponding
2681 -- component of the base type, found by accessing the
2682 -- Original_Record_Component link if it is present.
2684 Ocomp := Original_Record_Component (Comp);
2686 if Hbit < Lbit then
2687 Hbit := Lbit;
2688 end if;
2690 Check_Size
2691 (Component_Name (CC),
2692 Etype (Comp),
2693 Esize (Comp),
2694 Biased);
2696 Set_Has_Biased_Representation (Comp, Biased);
2698 if Biased and Warn_On_Biased_Representation then
2699 Error_Msg_F
2700 ("?component clause forces biased "
2701 & "representation", CC);
2702 end if;
2704 if Present (Ocomp) then
2705 Set_Component_Clause (Ocomp, CC);
2706 Set_Component_Bit_Offset (Ocomp, Fbit);
2707 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
2708 Set_Normalized_Position (Ocomp, Fbit / SSU);
2709 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
2711 Set_Normalized_Position_Max
2712 (Ocomp, Normalized_Position (Ocomp));
2714 Set_Has_Biased_Representation
2715 (Ocomp, Has_Biased_Representation (Comp));
2716 end if;
2718 if Esize (Comp) < 0 then
2719 Error_Msg_N ("component size is negative", CC);
2720 end if;
2721 end if;
2722 end if;
2723 end if;
2724 end if;
2725 end if;
2727 Next (CC);
2728 end loop;
2730 -- Check missing components if Complete_Representation pragma appeared
2732 if Present (CR_Pragma) then
2733 Comp := First_Component_Or_Discriminant (Rectype);
2734 while Present (Comp) loop
2735 if No (Component_Clause (Comp)) then
2736 Error_Msg_NE
2737 ("missing component clause for &", CR_Pragma, Comp);
2738 end if;
2740 Next_Component_Or_Discriminant (Comp);
2741 end loop;
2743 -- If no Complete_Representation pragma, warn if missing components
2745 elsif Warn_On_Unrepped_Components then
2746 declare
2747 Num_Repped_Components : Nat := 0;
2748 Num_Unrepped_Components : Nat := 0;
2750 begin
2751 -- First count number of repped and unrepped components
2753 Comp := First_Component_Or_Discriminant (Rectype);
2754 while Present (Comp) loop
2755 if Present (Component_Clause (Comp)) then
2756 Num_Repped_Components := Num_Repped_Components + 1;
2757 else
2758 Num_Unrepped_Components := Num_Unrepped_Components + 1;
2759 end if;
2761 Next_Component_Or_Discriminant (Comp);
2762 end loop;
2764 -- We are only interested in the case where there is at least one
2765 -- unrepped component, and at least half the components have rep
2766 -- clauses. We figure that if less than half have them, then the
2767 -- partial rep clause is really intentional. If the component
2768 -- type has no underlying type set at this point (as for a generic
2769 -- formal type), we don't know enough to give a warning on the
2770 -- component.
2772 if Num_Unrepped_Components > 0
2773 and then Num_Unrepped_Components < Num_Repped_Components
2774 then
2775 Comp := First_Component_Or_Discriminant (Rectype);
2776 while Present (Comp) loop
2777 if No (Component_Clause (Comp))
2778 and then Comes_From_Source (Comp)
2779 and then Present (Underlying_Type (Etype (Comp)))
2780 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
2781 or else Size_Known_At_Compile_Time
2782 (Underlying_Type (Etype (Comp))))
2783 and then not Has_Warnings_Off (Rectype)
2784 then
2785 Error_Msg_Sloc := Sloc (Comp);
2786 Error_Msg_NE
2787 ("?no component clause given for & declared #",
2788 N, Comp);
2789 end if;
2791 Next_Component_Or_Discriminant (Comp);
2792 end loop;
2793 end if;
2794 end;
2795 end if;
2796 end Analyze_Record_Representation_Clause;
2798 -----------------------------------
2799 -- Check_Constant_Address_Clause --
2800 -----------------------------------
2802 procedure Check_Constant_Address_Clause
2803 (Expr : Node_Id;
2804 U_Ent : Entity_Id)
2806 procedure Check_At_Constant_Address (Nod : Node_Id);
2807 -- Checks that the given node N represents a name whose 'Address is
2808 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
2809 -- address value is the same at the point of declaration of U_Ent and at
2810 -- the time of elaboration of the address clause.
2812 procedure Check_Expr_Constants (Nod : Node_Id);
2813 -- Checks that Nod meets the requirements for a constant address clause
2814 -- in the sense of the enclosing procedure.
2816 procedure Check_List_Constants (Lst : List_Id);
2817 -- Check that all elements of list Lst meet the requirements for a
2818 -- constant address clause in the sense of the enclosing procedure.
2820 -------------------------------
2821 -- Check_At_Constant_Address --
2822 -------------------------------
2824 procedure Check_At_Constant_Address (Nod : Node_Id) is
2825 begin
2826 if Is_Entity_Name (Nod) then
2827 if Present (Address_Clause (Entity ((Nod)))) then
2828 Error_Msg_NE
2829 ("invalid address clause for initialized object &!",
2830 Nod, U_Ent);
2831 Error_Msg_NE
2832 ("address for& cannot" &
2833 " depend on another address clause! (RM 13.1(22))!",
2834 Nod, U_Ent);
2836 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
2837 and then Sloc (U_Ent) < Sloc (Entity (Nod))
2838 then
2839 Error_Msg_NE
2840 ("invalid address clause for initialized object &!",
2841 Nod, U_Ent);
2842 Error_Msg_Node_2 := U_Ent;
2843 Error_Msg_NE
2844 ("\& must be defined before & (RM 13.1(22))!",
2845 Nod, Entity (Nod));
2846 end if;
2848 elsif Nkind (Nod) = N_Selected_Component then
2849 declare
2850 T : constant Entity_Id := Etype (Prefix (Nod));
2852 begin
2853 if (Is_Record_Type (T)
2854 and then Has_Discriminants (T))
2855 or else
2856 (Is_Access_Type (T)
2857 and then Is_Record_Type (Designated_Type (T))
2858 and then Has_Discriminants (Designated_Type (T)))
2859 then
2860 Error_Msg_NE
2861 ("invalid address clause for initialized object &!",
2862 Nod, U_Ent);
2863 Error_Msg_N
2864 ("\address cannot depend on component" &
2865 " of discriminated record (RM 13.1(22))!",
2866 Nod);
2867 else
2868 Check_At_Constant_Address (Prefix (Nod));
2869 end if;
2870 end;
2872 elsif Nkind (Nod) = N_Indexed_Component then
2873 Check_At_Constant_Address (Prefix (Nod));
2874 Check_List_Constants (Expressions (Nod));
2876 else
2877 Check_Expr_Constants (Nod);
2878 end if;
2879 end Check_At_Constant_Address;
2881 --------------------------
2882 -- Check_Expr_Constants --
2883 --------------------------
2885 procedure Check_Expr_Constants (Nod : Node_Id) is
2886 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
2887 Ent : Entity_Id := Empty;
2889 begin
2890 if Nkind (Nod) in N_Has_Etype
2891 and then Etype (Nod) = Any_Type
2892 then
2893 return;
2894 end if;
2896 case Nkind (Nod) is
2897 when N_Empty | N_Error =>
2898 return;
2900 when N_Identifier | N_Expanded_Name =>
2901 Ent := Entity (Nod);
2903 -- We need to look at the original node if it is different
2904 -- from the node, since we may have rewritten things and
2905 -- substituted an identifier representing the rewrite.
2907 if Original_Node (Nod) /= Nod then
2908 Check_Expr_Constants (Original_Node (Nod));
2910 -- If the node is an object declaration without initial
2911 -- value, some code has been expanded, and the expression
2912 -- is not constant, even if the constituents might be
2913 -- acceptable, as in A'Address + offset.
2915 if Ekind (Ent) = E_Variable
2916 and then
2917 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
2918 and then
2919 No (Expression (Declaration_Node (Ent)))
2920 then
2921 Error_Msg_NE
2922 ("invalid address clause for initialized object &!",
2923 Nod, U_Ent);
2925 -- If entity is constant, it may be the result of expanding
2926 -- a check. We must verify that its declaration appears
2927 -- before the object in question, else we also reject the
2928 -- address clause.
2930 elsif Ekind (Ent) = E_Constant
2931 and then In_Same_Source_Unit (Ent, U_Ent)
2932 and then Sloc (Ent) > Loc_U_Ent
2933 then
2934 Error_Msg_NE
2935 ("invalid address clause for initialized object &!",
2936 Nod, U_Ent);
2937 end if;
2939 return;
2940 end if;
2942 -- Otherwise look at the identifier and see if it is OK
2944 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
2945 or else Is_Type (Ent)
2946 then
2947 return;
2949 elsif
2950 Ekind (Ent) = E_Constant
2951 or else
2952 Ekind (Ent) = E_In_Parameter
2953 then
2954 -- This is the case where we must have Ent defined before
2955 -- U_Ent. Clearly if they are in different units this
2956 -- requirement is met since the unit containing Ent is
2957 -- already processed.
2959 if not In_Same_Source_Unit (Ent, U_Ent) then
2960 return;
2962 -- Otherwise location of Ent must be before the location
2963 -- of U_Ent, that's what prior defined means.
2965 elsif Sloc (Ent) < Loc_U_Ent then
2966 return;
2968 else
2969 Error_Msg_NE
2970 ("invalid address clause for initialized object &!",
2971 Nod, U_Ent);
2972 Error_Msg_Node_2 := U_Ent;
2973 Error_Msg_NE
2974 ("\& must be defined before & (RM 13.1(22))!",
2975 Nod, Ent);
2976 end if;
2978 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
2979 Check_Expr_Constants (Original_Node (Nod));
2981 else
2982 Error_Msg_NE
2983 ("invalid address clause for initialized object &!",
2984 Nod, U_Ent);
2986 if Comes_From_Source (Ent) then
2987 Error_Msg_NE
2988 ("\reference to variable& not allowed"
2989 & " (RM 13.1(22))!", Nod, Ent);
2990 else
2991 Error_Msg_N
2992 ("non-static expression not allowed"
2993 & " (RM 13.1(22))!", Nod);
2994 end if;
2995 end if;
2997 when N_Integer_Literal =>
2999 -- If this is a rewritten unchecked conversion, in a system
3000 -- where Address is an integer type, always use the base type
3001 -- for a literal value. This is user-friendly and prevents
3002 -- order-of-elaboration issues with instances of unchecked
3003 -- conversion.
3005 if Nkind (Original_Node (Nod)) = N_Function_Call then
3006 Set_Etype (Nod, Base_Type (Etype (Nod)));
3007 end if;
3009 when N_Real_Literal |
3010 N_String_Literal |
3011 N_Character_Literal =>
3012 return;
3014 when N_Range =>
3015 Check_Expr_Constants (Low_Bound (Nod));
3016 Check_Expr_Constants (High_Bound (Nod));
3018 when N_Explicit_Dereference =>
3019 Check_Expr_Constants (Prefix (Nod));
3021 when N_Indexed_Component =>
3022 Check_Expr_Constants (Prefix (Nod));
3023 Check_List_Constants (Expressions (Nod));
3025 when N_Slice =>
3026 Check_Expr_Constants (Prefix (Nod));
3027 Check_Expr_Constants (Discrete_Range (Nod));
3029 when N_Selected_Component =>
3030 Check_Expr_Constants (Prefix (Nod));
3032 when N_Attribute_Reference =>
3033 if Attribute_Name (Nod) = Name_Address
3034 or else
3035 Attribute_Name (Nod) = Name_Access
3036 or else
3037 Attribute_Name (Nod) = Name_Unchecked_Access
3038 or else
3039 Attribute_Name (Nod) = Name_Unrestricted_Access
3040 then
3041 Check_At_Constant_Address (Prefix (Nod));
3043 else
3044 Check_Expr_Constants (Prefix (Nod));
3045 Check_List_Constants (Expressions (Nod));
3046 end if;
3048 when N_Aggregate =>
3049 Check_List_Constants (Component_Associations (Nod));
3050 Check_List_Constants (Expressions (Nod));
3052 when N_Component_Association =>
3053 Check_Expr_Constants (Expression (Nod));
3055 when N_Extension_Aggregate =>
3056 Check_Expr_Constants (Ancestor_Part (Nod));
3057 Check_List_Constants (Component_Associations (Nod));
3058 Check_List_Constants (Expressions (Nod));
3060 when N_Null =>
3061 return;
3063 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
3064 Check_Expr_Constants (Left_Opnd (Nod));
3065 Check_Expr_Constants (Right_Opnd (Nod));
3067 when N_Unary_Op =>
3068 Check_Expr_Constants (Right_Opnd (Nod));
3070 when N_Type_Conversion |
3071 N_Qualified_Expression |
3072 N_Allocator =>
3073 Check_Expr_Constants (Expression (Nod));
3075 when N_Unchecked_Type_Conversion =>
3076 Check_Expr_Constants (Expression (Nod));
3078 -- If this is a rewritten unchecked conversion, subtypes in
3079 -- this node are those created within the instance. To avoid
3080 -- order of elaboration issues, replace them with their base
3081 -- types. Note that address clauses can cause order of
3082 -- elaboration problems because they are elaborated by the
3083 -- back-end at the point of definition, and may mention
3084 -- entities declared in between (as long as everything is
3085 -- static). It is user-friendly to allow unchecked conversions
3086 -- in this context.
3088 if Nkind (Original_Node (Nod)) = N_Function_Call then
3089 Set_Etype (Expression (Nod),
3090 Base_Type (Etype (Expression (Nod))));
3091 Set_Etype (Nod, Base_Type (Etype (Nod)));
3092 end if;
3094 when N_Function_Call =>
3095 if not Is_Pure (Entity (Name (Nod))) then
3096 Error_Msg_NE
3097 ("invalid address clause for initialized object &!",
3098 Nod, U_Ent);
3100 Error_Msg_NE
3101 ("\function & is not pure (RM 13.1(22))!",
3102 Nod, Entity (Name (Nod)));
3104 else
3105 Check_List_Constants (Parameter_Associations (Nod));
3106 end if;
3108 when N_Parameter_Association =>
3109 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
3111 when others =>
3112 Error_Msg_NE
3113 ("invalid address clause for initialized object &!",
3114 Nod, U_Ent);
3115 Error_Msg_NE
3116 ("\must be constant defined before& (RM 13.1(22))!",
3117 Nod, U_Ent);
3118 end case;
3119 end Check_Expr_Constants;
3121 --------------------------
3122 -- Check_List_Constants --
3123 --------------------------
3125 procedure Check_List_Constants (Lst : List_Id) is
3126 Nod1 : Node_Id;
3128 begin
3129 if Present (Lst) then
3130 Nod1 := First (Lst);
3131 while Present (Nod1) loop
3132 Check_Expr_Constants (Nod1);
3133 Next (Nod1);
3134 end loop;
3135 end if;
3136 end Check_List_Constants;
3138 -- Start of processing for Check_Constant_Address_Clause
3140 begin
3141 -- If rep_clauses are to be ignored, no need for legality checks. In
3142 -- particular, no need to pester user about rep clauses that violate
3143 -- the rule on constant addresses, given that these clauses will be
3144 -- removed by Freeze before they reach the back end.
3146 if not Ignore_Rep_Clauses then
3147 Check_Expr_Constants (Expr);
3148 end if;
3149 end Check_Constant_Address_Clause;
3151 ----------------------------------------
3152 -- Check_Record_Representation_Clause --
3153 ----------------------------------------
3155 procedure Check_Record_Representation_Clause (N : Node_Id) is
3156 Loc : constant Source_Ptr := Sloc (N);
3157 Ident : constant Node_Id := Identifier (N);
3158 Rectype : Entity_Id;
3159 Fent : Entity_Id;
3160 CC : Node_Id;
3161 Fbit : Uint;
3162 Lbit : Uint;
3163 Hbit : Uint := Uint_0;
3164 Comp : Entity_Id;
3165 Pcomp : Entity_Id;
3167 Max_Bit_So_Far : Uint;
3168 -- Records the maximum bit position so far. If all field positions
3169 -- are monotonically increasing, then we can skip the circuit for
3170 -- checking for overlap, since no overlap is possible.
3172 Tagged_Parent : Entity_Id := Empty;
3173 -- This is set in the case of a derived tagged type for which we have
3174 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
3175 -- positioned by record representation clauses). In this case we must
3176 -- check for overlap between components of this tagged type, and the
3177 -- components of its parent. Tagged_Parent will point to this parent
3178 -- type. For all other cases Tagged_Parent is left set to Empty.
3180 Parent_Last_Bit : Uint;
3181 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
3182 -- last bit position for any field in the parent type. We only need to
3183 -- check overlap for fields starting below this point.
3185 Overlap_Check_Required : Boolean;
3186 -- Used to keep track of whether or not an overlap check is required
3188 Ccount : Natural := 0;
3189 -- Number of component clauses in record rep clause
3191 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
3192 -- Given two entities for record components or discriminants, checks
3193 -- if they have overlapping component clauses and issues errors if so.
3195 procedure Find_Component;
3196 -- Finds component entity corresponding to current component clause (in
3197 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
3198 -- start/stop bits for the field. If there is no matching component or
3199 -- if the matching component does not have a component clause, then
3200 -- that's an error and Comp is set to Empty, but no error message is
3201 -- issued, since the message was already given. Comp is also set to
3202 -- Empty if the current "component clause" is in fact a pragma.
3204 -----------------------------
3205 -- Check_Component_Overlap --
3206 -----------------------------
3208 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
3209 CC1 : constant Node_Id := Component_Clause (C1_Ent);
3210 CC2 : constant Node_Id := Component_Clause (C2_Ent);
3211 begin
3212 if Present (CC1) and then Present (CC2) then
3214 -- Exclude odd case where we have two tag fields in the same
3215 -- record, both at location zero. This seems a bit strange, but
3216 -- it seems to happen in some circumstances, perhaps on an error.
3218 if Chars (C1_Ent) = Name_uTag
3219 and then
3220 Chars (C2_Ent) = Name_uTag
3221 then
3222 return;
3223 end if;
3225 -- Here we check if the two fields overlap
3227 declare
3228 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
3229 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
3230 E1 : constant Uint := S1 + Esize (C1_Ent);
3231 E2 : constant Uint := S2 + Esize (C2_Ent);
3233 begin
3234 if E2 <= S1 or else E1 <= S2 then
3235 null;
3236 else
3237 Error_Msg_Node_2 := Component_Name (CC2);
3238 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
3239 Error_Msg_Node_1 := Component_Name (CC1);
3240 Error_Msg_N
3241 ("component& overlaps & #", Component_Name (CC1));
3242 end if;
3243 end;
3244 end if;
3245 end Check_Component_Overlap;
3247 --------------------
3248 -- Find_Component --
3249 --------------------
3251 procedure Find_Component is
3253 procedure Search_Component (R : Entity_Id);
3254 -- Search components of R for a match. If found, Comp is set.
3256 ----------------------
3257 -- Search_Component --
3258 ----------------------
3260 procedure Search_Component (R : Entity_Id) is
3261 begin
3262 Comp := First_Component_Or_Discriminant (R);
3263 while Present (Comp) loop
3265 -- Ignore error of attribute name for component name (we
3266 -- already gave an error message for this, so no need to
3267 -- complain here)
3269 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
3270 null;
3271 else
3272 exit when Chars (Comp) = Chars (Component_Name (CC));
3273 end if;
3275 Next_Component_Or_Discriminant (Comp);
3276 end loop;
3277 end Search_Component;
3279 -- Start of processing for Find_Component
3281 begin
3282 -- Return with Comp set to Empty if we have a pragma
3284 if Nkind (CC) = N_Pragma then
3285 Comp := Empty;
3286 return;
3287 end if;
3289 -- Search current record for matching component
3291 Search_Component (Rectype);
3293 -- If not found, maybe component of base type that is absent from
3294 -- statically constrained first subtype.
3296 if No (Comp) then
3297 Search_Component (Base_Type (Rectype));
3298 end if;
3300 -- If no component, or the component does not reference the component
3301 -- clause in question, then there was some previous error for which
3302 -- we already gave a message, so just return with Comp Empty.
3304 if No (Comp)
3305 or else Component_Clause (Comp) /= CC
3306 then
3307 Comp := Empty;
3309 -- Normal case where we have a component clause
3311 else
3312 Fbit := Component_Bit_Offset (Comp);
3313 Lbit := Fbit + Esize (Comp) - 1;
3314 end if;
3315 end Find_Component;
3317 -- Start of processing for Check_Record_Representation_Clause
3319 begin
3320 Find_Type (Ident);
3321 Rectype := Entity (Ident);
3323 if Rectype = Any_Type then
3324 return;
3325 else
3326 Rectype := Underlying_Type (Rectype);
3327 end if;
3329 -- See if we have a fully repped derived tagged type
3331 declare
3332 PS : constant Entity_Id := Parent_Subtype (Rectype);
3334 begin
3335 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
3336 Tagged_Parent := PS;
3338 -- Find maximum bit of any component of the parent type
3340 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
3341 Pcomp := First_Entity (Tagged_Parent);
3342 while Present (Pcomp) loop
3343 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
3344 if Component_Bit_Offset (Pcomp) /= No_Uint
3345 and then Known_Static_Esize (Pcomp)
3346 then
3347 Parent_Last_Bit :=
3348 UI_Max
3349 (Parent_Last_Bit,
3350 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
3351 end if;
3353 Next_Entity (Pcomp);
3354 end if;
3355 end loop;
3356 end if;
3357 end;
3359 -- All done if no component clauses
3361 CC := First (Component_Clauses (N));
3363 if No (CC) then
3364 return;
3365 end if;
3367 -- If a tag is present, then create a component clause that places it
3368 -- at the start of the record (otherwise gigi may place it after other
3369 -- fields that have rep clauses).
3371 Fent := First_Entity (Rectype);
3373 if Nkind (Fent) = N_Defining_Identifier
3374 and then Chars (Fent) = Name_uTag
3375 then
3376 Set_Component_Bit_Offset (Fent, Uint_0);
3377 Set_Normalized_Position (Fent, Uint_0);
3378 Set_Normalized_First_Bit (Fent, Uint_0);
3379 Set_Normalized_Position_Max (Fent, Uint_0);
3380 Init_Esize (Fent, System_Address_Size);
3382 Set_Component_Clause (Fent,
3383 Make_Component_Clause (Loc,
3384 Component_Name =>
3385 Make_Identifier (Loc,
3386 Chars => Name_uTag),
3388 Position =>
3389 Make_Integer_Literal (Loc,
3390 Intval => Uint_0),
3392 First_Bit =>
3393 Make_Integer_Literal (Loc,
3394 Intval => Uint_0),
3396 Last_Bit =>
3397 Make_Integer_Literal (Loc,
3398 UI_From_Int (System_Address_Size))));
3400 Ccount := Ccount + 1;
3401 end if;
3403 Max_Bit_So_Far := Uint_Minus_1;
3404 Overlap_Check_Required := False;
3406 -- Process the component clauses
3408 while Present (CC) loop
3409 Find_Component;
3411 if Present (Comp) then
3412 Ccount := Ccount + 1;
3414 if Fbit <= Max_Bit_So_Far then
3415 Overlap_Check_Required := True;
3416 else
3417 Max_Bit_So_Far := Lbit;
3418 end if;
3420 -- Check bit position out of range of specified size
3422 if Has_Size_Clause (Rectype)
3423 and then Esize (Rectype) <= Lbit
3424 then
3425 Error_Msg_N
3426 ("bit number out of range of specified size",
3427 Last_Bit (CC));
3429 -- Check for overlap with tag field
3431 else
3432 if Is_Tagged_Type (Rectype)
3433 and then Fbit < System_Address_Size
3434 then
3435 Error_Msg_NE
3436 ("component overlaps tag field of&",
3437 Component_Name (CC), Rectype);
3438 end if;
3440 if Hbit < Lbit then
3441 Hbit := Lbit;
3442 end if;
3443 end if;
3445 -- Check parent overlap if component might overlap parent field
3447 if Present (Tagged_Parent)
3448 and then Fbit <= Parent_Last_Bit
3449 then
3450 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
3451 while Present (Pcomp) loop
3452 if not Is_Tag (Pcomp)
3453 and then Chars (Pcomp) /= Name_uParent
3454 then
3455 Check_Component_Overlap (Comp, Pcomp);
3456 end if;
3458 Next_Component_Or_Discriminant (Pcomp);
3459 end loop;
3460 end if;
3461 end if;
3463 Next (CC);
3464 end loop;
3466 -- Now that we have processed all the component clauses, check for
3467 -- overlap. We have to leave this till last, since the components can
3468 -- appear in any arbitrary order in the representation clause.
3470 -- We do not need this check if all specified ranges were monotonic,
3471 -- as recorded by Overlap_Check_Required being False at this stage.
3473 -- This first section checks if there are any overlapping entries at
3474 -- all. It does this by sorting all entries and then seeing if there are
3475 -- any overlaps. If there are none, then that is decisive, but if there
3476 -- are overlaps, they may still be OK (they may result from fields in
3477 -- different variants).
3479 if Overlap_Check_Required then
3480 Overlap_Check1 : declare
3482 OC_Fbit : array (0 .. Ccount) of Uint;
3483 -- First-bit values for component clauses, the value is the offset
3484 -- of the first bit of the field from start of record. The zero
3485 -- entry is for use in sorting.
3487 OC_Lbit : array (0 .. Ccount) of Uint;
3488 -- Last-bit values for component clauses, the value is the offset
3489 -- of the last bit of the field from start of record. The zero
3490 -- entry is for use in sorting.
3492 OC_Count : Natural := 0;
3493 -- Count of entries in OC_Fbit and OC_Lbit
3495 function OC_Lt (Op1, Op2 : Natural) return Boolean;
3496 -- Compare routine for Sort
3498 procedure OC_Move (From : Natural; To : Natural);
3499 -- Move routine for Sort
3501 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
3503 -----------
3504 -- OC_Lt --
3505 -----------
3507 function OC_Lt (Op1, Op2 : Natural) return Boolean is
3508 begin
3509 return OC_Fbit (Op1) < OC_Fbit (Op2);
3510 end OC_Lt;
3512 -------------
3513 -- OC_Move --
3514 -------------
3516 procedure OC_Move (From : Natural; To : Natural) is
3517 begin
3518 OC_Fbit (To) := OC_Fbit (From);
3519 OC_Lbit (To) := OC_Lbit (From);
3520 end OC_Move;
3522 -- Start of processing for Overlap_Check
3524 begin
3525 CC := First (Component_Clauses (N));
3526 while Present (CC) loop
3528 -- Exclude component clause already marked in error
3530 if not Error_Posted (CC) then
3531 Find_Component;
3533 if Present (Comp) then
3534 OC_Count := OC_Count + 1;
3535 OC_Fbit (OC_Count) := Fbit;
3536 OC_Lbit (OC_Count) := Lbit;
3537 end if;
3538 end if;
3540 Next (CC);
3541 end loop;
3543 Sorting.Sort (OC_Count);
3545 Overlap_Check_Required := False;
3546 for J in 1 .. OC_Count - 1 loop
3547 if OC_Lbit (J) >= OC_Fbit (J + 1) then
3548 Overlap_Check_Required := True;
3549 exit;
3550 end if;
3551 end loop;
3552 end Overlap_Check1;
3553 end if;
3555 -- If Overlap_Check_Required is still True, then we have to do the full
3556 -- scale overlap check, since we have at least two fields that do
3557 -- overlap, and we need to know if that is OK since they are in
3558 -- different variant, or whether we have a definite problem.
3560 if Overlap_Check_Required then
3561 Overlap_Check2 : declare
3562 C1_Ent, C2_Ent : Entity_Id;
3563 -- Entities of components being checked for overlap
3565 Clist : Node_Id;
3566 -- Component_List node whose Component_Items are being checked
3568 Citem : Node_Id;
3569 -- Component declaration for component being checked
3571 begin
3572 C1_Ent := First_Entity (Base_Type (Rectype));
3574 -- Loop through all components in record. For each component check
3575 -- for overlap with any of the preceding elements on the component
3576 -- list containing the component and also, if the component is in
3577 -- a variant, check against components outside the case structure.
3578 -- This latter test is repeated recursively up the variant tree.
3580 Main_Component_Loop : while Present (C1_Ent) loop
3581 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
3582 goto Continue_Main_Component_Loop;
3583 end if;
3585 -- Skip overlap check if entity has no declaration node. This
3586 -- happens with discriminants in constrained derived types.
3587 -- Probably we are missing some checks as a result, but that
3588 -- does not seem terribly serious ???
3590 if No (Declaration_Node (C1_Ent)) then
3591 goto Continue_Main_Component_Loop;
3592 end if;
3594 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
3596 -- Loop through component lists that need checking. Check the
3597 -- current component list and all lists in variants above us.
3599 Component_List_Loop : loop
3601 -- If derived type definition, go to full declaration
3602 -- If at outer level, check discriminants if there are any.
3604 if Nkind (Clist) = N_Derived_Type_Definition then
3605 Clist := Parent (Clist);
3606 end if;
3608 -- Outer level of record definition, check discriminants
3610 if Nkind_In (Clist, N_Full_Type_Declaration,
3611 N_Private_Type_Declaration)
3612 then
3613 if Has_Discriminants (Defining_Identifier (Clist)) then
3614 C2_Ent :=
3615 First_Discriminant (Defining_Identifier (Clist));
3616 while Present (C2_Ent) loop
3617 exit when C1_Ent = C2_Ent;
3618 Check_Component_Overlap (C1_Ent, C2_Ent);
3619 Next_Discriminant (C2_Ent);
3620 end loop;
3621 end if;
3623 -- Record extension case
3625 elsif Nkind (Clist) = N_Derived_Type_Definition then
3626 Clist := Empty;
3628 -- Otherwise check one component list
3630 else
3631 Citem := First (Component_Items (Clist));
3633 while Present (Citem) loop
3634 if Nkind (Citem) = N_Component_Declaration then
3635 C2_Ent := Defining_Identifier (Citem);
3636 exit when C1_Ent = C2_Ent;
3637 Check_Component_Overlap (C1_Ent, C2_Ent);
3638 end if;
3640 Next (Citem);
3641 end loop;
3642 end if;
3644 -- Check for variants above us (the parent of the Clist can
3645 -- be a variant, in which case its parent is a variant part,
3646 -- and the parent of the variant part is a component list
3647 -- whose components must all be checked against the current
3648 -- component for overlap).
3650 if Nkind (Parent (Clist)) = N_Variant then
3651 Clist := Parent (Parent (Parent (Clist)));
3653 -- Check for possible discriminant part in record, this
3654 -- is treated essentially as another level in the
3655 -- recursion. For this case the parent of the component
3656 -- list is the record definition, and its parent is the
3657 -- full type declaration containing the discriminant
3658 -- specifications.
3660 elsif Nkind (Parent (Clist)) = N_Record_Definition then
3661 Clist := Parent (Parent ((Clist)));
3663 -- If neither of these two cases, we are at the top of
3664 -- the tree.
3666 else
3667 exit Component_List_Loop;
3668 end if;
3669 end loop Component_List_Loop;
3671 <<Continue_Main_Component_Loop>>
3672 Next_Entity (C1_Ent);
3674 end loop Main_Component_Loop;
3675 end Overlap_Check2;
3676 end if;
3678 -- For records that have component clauses for all components, and whose
3679 -- size is less than or equal to 32, we need to know the size in the
3680 -- front end to activate possible packed array processing where the
3681 -- component type is a record.
3683 -- At this stage Hbit + 1 represents the first unused bit from all the
3684 -- component clauses processed, so if the component clauses are
3685 -- complete, then this is the length of the record.
3687 -- For records longer than System.Storage_Unit, and for those where not
3688 -- all components have component clauses, the back end determines the
3689 -- length (it may for example be appropriate to round up the size
3690 -- to some convenient boundary, based on alignment considerations, etc).
3692 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
3694 -- Nothing to do if at least one component has no component clause
3696 Comp := First_Component_Or_Discriminant (Rectype);
3697 while Present (Comp) loop
3698 exit when No (Component_Clause (Comp));
3699 Next_Component_Or_Discriminant (Comp);
3700 end loop;
3702 -- If we fall out of loop, all components have component clauses
3703 -- and so we can set the size to the maximum value.
3705 if No (Comp) then
3706 Set_RM_Size (Rectype, Hbit + 1);
3707 end if;
3708 end if;
3709 end Check_Record_Representation_Clause;
3711 ----------------
3712 -- Check_Size --
3713 ----------------
3715 procedure Check_Size
3716 (N : Node_Id;
3717 T : Entity_Id;
3718 Siz : Uint;
3719 Biased : out Boolean)
3721 UT : constant Entity_Id := Underlying_Type (T);
3722 M : Uint;
3724 begin
3725 Biased := False;
3727 -- Dismiss cases for generic types or types with previous errors
3729 if No (UT)
3730 or else UT = Any_Type
3731 or else Is_Generic_Type (UT)
3732 or else Is_Generic_Type (Root_Type (UT))
3733 then
3734 return;
3736 -- Check case of bit packed array
3738 elsif Is_Array_Type (UT)
3739 and then Known_Static_Component_Size (UT)
3740 and then Is_Bit_Packed_Array (UT)
3741 then
3742 declare
3743 Asiz : Uint;
3744 Indx : Node_Id;
3745 Ityp : Entity_Id;
3747 begin
3748 Asiz := Component_Size (UT);
3749 Indx := First_Index (UT);
3750 loop
3751 Ityp := Etype (Indx);
3753 -- If non-static bound, then we are not in the business of
3754 -- trying to check the length, and indeed an error will be
3755 -- issued elsewhere, since sizes of non-static array types
3756 -- cannot be set implicitly or explicitly.
3758 if not Is_Static_Subtype (Ityp) then
3759 return;
3760 end if;
3762 -- Otherwise accumulate next dimension
3764 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
3765 Expr_Value (Type_Low_Bound (Ityp)) +
3766 Uint_1);
3768 Next_Index (Indx);
3769 exit when No (Indx);
3770 end loop;
3772 if Asiz <= Siz then
3773 return;
3774 else
3775 Error_Msg_Uint_1 := Asiz;
3776 Error_Msg_NE
3777 ("size for& too small, minimum allowed is ^", N, T);
3778 Set_Esize (T, Asiz);
3779 Set_RM_Size (T, Asiz);
3780 end if;
3781 end;
3783 -- All other composite types are ignored
3785 elsif Is_Composite_Type (UT) then
3786 return;
3788 -- For fixed-point types, don't check minimum if type is not frozen,
3789 -- since we don't know all the characteristics of the type that can
3790 -- affect the size (e.g. a specified small) till freeze time.
3792 elsif Is_Fixed_Point_Type (UT)
3793 and then not Is_Frozen (UT)
3794 then
3795 null;
3797 -- Cases for which a minimum check is required
3799 else
3800 -- Ignore if specified size is correct for the type
3802 if Known_Esize (UT) and then Siz = Esize (UT) then
3803 return;
3804 end if;
3806 -- Otherwise get minimum size
3808 M := UI_From_Int (Minimum_Size (UT));
3810 if Siz < M then
3812 -- Size is less than minimum size, but one possibility remains
3813 -- that we can manage with the new size if we bias the type.
3815 M := UI_From_Int (Minimum_Size (UT, Biased => True));
3817 if Siz < M then
3818 Error_Msg_Uint_1 := M;
3819 Error_Msg_NE
3820 ("size for& too small, minimum allowed is ^", N, T);
3821 Set_Esize (T, M);
3822 Set_RM_Size (T, M);
3823 else
3824 Biased := True;
3825 end if;
3826 end if;
3827 end if;
3828 end Check_Size;
3830 -------------------------
3831 -- Get_Alignment_Value --
3832 -------------------------
3834 function Get_Alignment_Value (Expr : Node_Id) return Uint is
3835 Align : constant Uint := Static_Integer (Expr);
3837 begin
3838 if Align = No_Uint then
3839 return No_Uint;
3841 elsif Align <= 0 then
3842 Error_Msg_N ("alignment value must be positive", Expr);
3843 return No_Uint;
3845 else
3846 for J in Int range 0 .. 64 loop
3847 declare
3848 M : constant Uint := Uint_2 ** J;
3850 begin
3851 exit when M = Align;
3853 if M > Align then
3854 Error_Msg_N
3855 ("alignment value must be power of 2", Expr);
3856 return No_Uint;
3857 end if;
3858 end;
3859 end loop;
3861 return Align;
3862 end if;
3863 end Get_Alignment_Value;
3865 ----------------
3866 -- Initialize --
3867 ----------------
3869 procedure Initialize is
3870 begin
3871 Unchecked_Conversions.Init;
3872 end Initialize;
3874 -------------------------
3875 -- Is_Operational_Item --
3876 -------------------------
3878 function Is_Operational_Item (N : Node_Id) return Boolean is
3879 begin
3880 if Nkind (N) /= N_Attribute_Definition_Clause then
3881 return False;
3882 else
3883 declare
3884 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
3885 begin
3886 return Id = Attribute_Input
3887 or else Id = Attribute_Output
3888 or else Id = Attribute_Read
3889 or else Id = Attribute_Write
3890 or else Id = Attribute_External_Tag;
3891 end;
3892 end if;
3893 end Is_Operational_Item;
3895 ------------------
3896 -- Minimum_Size --
3897 ------------------
3899 function Minimum_Size
3900 (T : Entity_Id;
3901 Biased : Boolean := False) return Nat
3903 Lo : Uint := No_Uint;
3904 Hi : Uint := No_Uint;
3905 LoR : Ureal := No_Ureal;
3906 HiR : Ureal := No_Ureal;
3907 LoSet : Boolean := False;
3908 HiSet : Boolean := False;
3909 B : Uint;
3910 S : Nat;
3911 Ancest : Entity_Id;
3912 R_Typ : constant Entity_Id := Root_Type (T);
3914 begin
3915 -- If bad type, return 0
3917 if T = Any_Type then
3918 return 0;
3920 -- For generic types, just return zero. There cannot be any legitimate
3921 -- need to know such a size, but this routine may be called with a
3922 -- generic type as part of normal processing.
3924 elsif Is_Generic_Type (R_Typ)
3925 or else R_Typ = Any_Type
3926 then
3927 return 0;
3929 -- Access types. Normally an access type cannot have a size smaller
3930 -- than the size of System.Address. The exception is on VMS, where
3931 -- we have short and long addresses, and it is possible for an access
3932 -- type to have a short address size (and thus be less than the size
3933 -- of System.Address itself). We simply skip the check for VMS, and
3934 -- leave it to the back end to do the check.
3936 elsif Is_Access_Type (T) then
3937 if OpenVMS_On_Target then
3938 return 0;
3939 else
3940 return System_Address_Size;
3941 end if;
3943 -- Floating-point types
3945 elsif Is_Floating_Point_Type (T) then
3946 return UI_To_Int (Esize (R_Typ));
3948 -- Discrete types
3950 elsif Is_Discrete_Type (T) then
3952 -- The following loop is looking for the nearest compile time known
3953 -- bounds following the ancestor subtype chain. The idea is to find
3954 -- the most restrictive known bounds information.
3956 Ancest := T;
3957 loop
3958 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
3959 return 0;
3960 end if;
3962 if not LoSet then
3963 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
3964 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
3965 LoSet := True;
3966 exit when HiSet;
3967 end if;
3968 end if;
3970 if not HiSet then
3971 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
3972 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
3973 HiSet := True;
3974 exit when LoSet;
3975 end if;
3976 end if;
3978 Ancest := Ancestor_Subtype (Ancest);
3980 if No (Ancest) then
3981 Ancest := Base_Type (T);
3983 if Is_Generic_Type (Ancest) then
3984 return 0;
3985 end if;
3986 end if;
3987 end loop;
3989 -- Fixed-point types. We can't simply use Expr_Value to get the
3990 -- Corresponding_Integer_Value values of the bounds, since these do not
3991 -- get set till the type is frozen, and this routine can be called
3992 -- before the type is frozen. Similarly the test for bounds being static
3993 -- needs to include the case where we have unanalyzed real literals for
3994 -- the same reason.
3996 elsif Is_Fixed_Point_Type (T) then
3998 -- The following loop is looking for the nearest compile time known
3999 -- bounds following the ancestor subtype chain. The idea is to find
4000 -- the most restrictive known bounds information.
4002 Ancest := T;
4003 loop
4004 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
4005 return 0;
4006 end if;
4008 -- Note: In the following two tests for LoSet and HiSet, it may
4009 -- seem redundant to test for N_Real_Literal here since normally
4010 -- one would assume that the test for the value being known at
4011 -- compile time includes this case. However, there is a glitch.
4012 -- If the real literal comes from folding a non-static expression,
4013 -- then we don't consider any non- static expression to be known
4014 -- at compile time if we are in configurable run time mode (needed
4015 -- in some cases to give a clearer definition of what is and what
4016 -- is not accepted). So the test is indeed needed. Without it, we
4017 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
4019 if not LoSet then
4020 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
4021 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
4022 then
4023 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
4024 LoSet := True;
4025 exit when HiSet;
4026 end if;
4027 end if;
4029 if not HiSet then
4030 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
4031 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
4032 then
4033 HiR := Expr_Value_R (Type_High_Bound (Ancest));
4034 HiSet := True;
4035 exit when LoSet;
4036 end if;
4037 end if;
4039 Ancest := Ancestor_Subtype (Ancest);
4041 if No (Ancest) then
4042 Ancest := Base_Type (T);
4044 if Is_Generic_Type (Ancest) then
4045 return 0;
4046 end if;
4047 end if;
4048 end loop;
4050 Lo := UR_To_Uint (LoR / Small_Value (T));
4051 Hi := UR_To_Uint (HiR / Small_Value (T));
4053 -- No other types allowed
4055 else
4056 raise Program_Error;
4057 end if;
4059 -- Fall through with Hi and Lo set. Deal with biased case
4061 if (Biased
4062 and then not Is_Fixed_Point_Type (T)
4063 and then not (Is_Enumeration_Type (T)
4064 and then Has_Non_Standard_Rep (T)))
4065 or else Has_Biased_Representation (T)
4066 then
4067 Hi := Hi - Lo;
4068 Lo := Uint_0;
4069 end if;
4071 -- Signed case. Note that we consider types like range 1 .. -1 to be
4072 -- signed for the purpose of computing the size, since the bounds have
4073 -- to be accommodated in the base type.
4075 if Lo < 0 or else Hi < 0 then
4076 S := 1;
4077 B := Uint_1;
4079 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
4080 -- Note that we accommodate the case where the bounds cross. This
4081 -- can happen either because of the way the bounds are declared
4082 -- or because of the algorithm in Freeze_Fixed_Point_Type.
4084 while Lo < -B
4085 or else Hi < -B
4086 or else Lo >= B
4087 or else Hi >= B
4088 loop
4089 B := Uint_2 ** S;
4090 S := S + 1;
4091 end loop;
4093 -- Unsigned case
4095 else
4096 -- If both bounds are positive, make sure that both are represen-
4097 -- table in the case where the bounds are crossed. This can happen
4098 -- either because of the way the bounds are declared, or because of
4099 -- the algorithm in Freeze_Fixed_Point_Type.
4101 if Lo > Hi then
4102 Hi := Lo;
4103 end if;
4105 -- S = size, (can accommodate 0 .. (2**size - 1))
4107 S := 0;
4108 while Hi >= Uint_2 ** S loop
4109 S := S + 1;
4110 end loop;
4111 end if;
4113 return S;
4114 end Minimum_Size;
4116 ---------------------------
4117 -- New_Stream_Subprogram --
4118 ---------------------------
4120 procedure New_Stream_Subprogram
4121 (N : Node_Id;
4122 Ent : Entity_Id;
4123 Subp : Entity_Id;
4124 Nam : TSS_Name_Type)
4126 Loc : constant Source_Ptr := Sloc (N);
4127 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
4128 Subp_Id : Entity_Id;
4129 Subp_Decl : Node_Id;
4130 F : Entity_Id;
4131 Etyp : Entity_Id;
4133 Defer_Declaration : constant Boolean :=
4134 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
4135 -- For a tagged type, there is a declaration for each stream attribute
4136 -- at the freeze point, and we must generate only a completion of this
4137 -- declaration. We do the same for private types, because the full view
4138 -- might be tagged. Otherwise we generate a declaration at the point of
4139 -- the attribute definition clause.
4141 function Build_Spec return Node_Id;
4142 -- Used for declaration and renaming declaration, so that this is
4143 -- treated as a renaming_as_body.
4145 ----------------
4146 -- Build_Spec --
4147 ----------------
4149 function Build_Spec return Node_Id is
4150 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
4151 Formals : List_Id;
4152 Spec : Node_Id;
4153 T_Ref : constant Node_Id := New_Reference_To (Etyp, Loc);
4155 begin
4156 Subp_Id := Make_Defining_Identifier (Loc, Sname);
4158 -- S : access Root_Stream_Type'Class
4160 Formals := New_List (
4161 Make_Parameter_Specification (Loc,
4162 Defining_Identifier =>
4163 Make_Defining_Identifier (Loc, Name_S),
4164 Parameter_Type =>
4165 Make_Access_Definition (Loc,
4166 Subtype_Mark =>
4167 New_Reference_To (
4168 Designated_Type (Etype (F)), Loc))));
4170 if Nam = TSS_Stream_Input then
4171 Spec := Make_Function_Specification (Loc,
4172 Defining_Unit_Name => Subp_Id,
4173 Parameter_Specifications => Formals,
4174 Result_Definition => T_Ref);
4175 else
4176 -- V : [out] T
4178 Append_To (Formals,
4179 Make_Parameter_Specification (Loc,
4180 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
4181 Out_Present => Out_P,
4182 Parameter_Type => T_Ref));
4184 Spec :=
4185 Make_Procedure_Specification (Loc,
4186 Defining_Unit_Name => Subp_Id,
4187 Parameter_Specifications => Formals);
4188 end if;
4190 return Spec;
4191 end Build_Spec;
4193 -- Start of processing for New_Stream_Subprogram
4195 begin
4196 F := First_Formal (Subp);
4198 if Ekind (Subp) = E_Procedure then
4199 Etyp := Etype (Next_Formal (F));
4200 else
4201 Etyp := Etype (Subp);
4202 end if;
4204 -- Prepare subprogram declaration and insert it as an action on the
4205 -- clause node. The visibility for this entity is used to test for
4206 -- visibility of the attribute definition clause (in the sense of
4207 -- 8.3(23) as amended by AI-195).
4209 if not Defer_Declaration then
4210 Subp_Decl :=
4211 Make_Subprogram_Declaration (Loc,
4212 Specification => Build_Spec);
4214 -- For a tagged type, there is always a visible declaration for each
4215 -- stream TSS (it is a predefined primitive operation), and the
4216 -- completion of this declaration occurs at the freeze point, which is
4217 -- not always visible at places where the attribute definition clause is
4218 -- visible. So, we create a dummy entity here for the purpose of
4219 -- tracking the visibility of the attribute definition clause itself.
4221 else
4222 Subp_Id :=
4223 Make_Defining_Identifier (Loc,
4224 Chars => New_External_Name (Sname, 'V'));
4225 Subp_Decl :=
4226 Make_Object_Declaration (Loc,
4227 Defining_Identifier => Subp_Id,
4228 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
4229 end if;
4231 Insert_Action (N, Subp_Decl);
4232 Set_Entity (N, Subp_Id);
4234 Subp_Decl :=
4235 Make_Subprogram_Renaming_Declaration (Loc,
4236 Specification => Build_Spec,
4237 Name => New_Reference_To (Subp, Loc));
4239 if Defer_Declaration then
4240 Set_TSS (Base_Type (Ent), Subp_Id);
4241 else
4242 Insert_Action (N, Subp_Decl);
4243 Copy_TSS (Subp_Id, Base_Type (Ent));
4244 end if;
4245 end New_Stream_Subprogram;
4247 ------------------------
4248 -- Rep_Item_Too_Early --
4249 ------------------------
4251 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
4252 begin
4253 -- Cannot apply non-operational rep items to generic types
4255 if Is_Operational_Item (N) then
4256 return False;
4258 elsif Is_Type (T)
4259 and then Is_Generic_Type (Root_Type (T))
4260 then
4261 Error_Msg_N ("representation item not allowed for generic type", N);
4262 return True;
4263 end if;
4265 -- Otherwise check for incomplete type
4267 if Is_Incomplete_Or_Private_Type (T)
4268 and then No (Underlying_Type (T))
4269 then
4270 Error_Msg_N
4271 ("representation item must be after full type declaration", N);
4272 return True;
4274 -- If the type has incomplete components, a representation clause is
4275 -- illegal but stream attributes and Convention pragmas are correct.
4277 elsif Has_Private_Component (T) then
4278 if Nkind (N) = N_Pragma then
4279 return False;
4280 else
4281 Error_Msg_N
4282 ("representation item must appear after type is fully defined",
4284 return True;
4285 end if;
4286 else
4287 return False;
4288 end if;
4289 end Rep_Item_Too_Early;
4291 -----------------------
4292 -- Rep_Item_Too_Late --
4293 -----------------------
4295 function Rep_Item_Too_Late
4296 (T : Entity_Id;
4297 N : Node_Id;
4298 FOnly : Boolean := False) return Boolean
4300 S : Entity_Id;
4301 Parent_Type : Entity_Id;
4303 procedure Too_Late;
4304 -- Output the too late message. Note that this is not considered a
4305 -- serious error, since the effect is simply that we ignore the
4306 -- representation clause in this case.
4308 --------------
4309 -- Too_Late --
4310 --------------
4312 procedure Too_Late is
4313 begin
4314 Error_Msg_N ("|representation item appears too late!", N);
4315 end Too_Late;
4317 -- Start of processing for Rep_Item_Too_Late
4319 begin
4320 -- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
4321 -- types, which may be frozen if they appear in a representation clause
4322 -- for a local type.
4324 if Is_Frozen (T)
4325 and then not From_With_Type (T)
4326 then
4327 Too_Late;
4328 S := First_Subtype (T);
4330 if Present (Freeze_Node (S)) then
4331 Error_Msg_NE
4332 ("?no more representation items for }", Freeze_Node (S), S);
4333 end if;
4335 return True;
4337 -- Check for case of non-tagged derived type whose parent either has
4338 -- primitive operations, or is a by reference type (RM 13.1(10)).
4340 elsif Is_Type (T)
4341 and then not FOnly
4342 and then Is_Derived_Type (T)
4343 and then not Is_Tagged_Type (T)
4344 then
4345 Parent_Type := Etype (Base_Type (T));
4347 if Has_Primitive_Operations (Parent_Type) then
4348 Too_Late;
4349 Error_Msg_NE
4350 ("primitive operations already defined for&!", N, Parent_Type);
4351 return True;
4353 elsif Is_By_Reference_Type (Parent_Type) then
4354 Too_Late;
4355 Error_Msg_NE
4356 ("parent type & is a by reference type!", N, Parent_Type);
4357 return True;
4358 end if;
4359 end if;
4361 -- No error, link item into head of chain of rep items for the entity,
4362 -- but avoid chaining if we have an overloadable entity, and the pragma
4363 -- is one that can apply to multiple overloaded entities.
4365 if Is_Overloadable (T)
4366 and then Nkind (N) = N_Pragma
4367 then
4368 declare
4369 Pname : constant Name_Id := Pragma_Name (N);
4370 begin
4371 if Pname = Name_Convention or else
4372 Pname = Name_Import or else
4373 Pname = Name_Export or else
4374 Pname = Name_External or else
4375 Pname = Name_Interface
4376 then
4377 return False;
4378 end if;
4379 end;
4380 end if;
4382 Record_Rep_Item (T, N);
4383 return False;
4384 end Rep_Item_Too_Late;
4386 -------------------------
4387 -- Same_Representation --
4388 -------------------------
4390 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
4391 T1 : constant Entity_Id := Underlying_Type (Typ1);
4392 T2 : constant Entity_Id := Underlying_Type (Typ2);
4394 begin
4395 -- A quick check, if base types are the same, then we definitely have
4396 -- the same representation, because the subtype specific representation
4397 -- attributes (Size and Alignment) do not affect representation from
4398 -- the point of view of this test.
4400 if Base_Type (T1) = Base_Type (T2) then
4401 return True;
4403 elsif Is_Private_Type (Base_Type (T2))
4404 and then Base_Type (T1) = Full_View (Base_Type (T2))
4405 then
4406 return True;
4407 end if;
4409 -- Tagged types never have differing representations
4411 if Is_Tagged_Type (T1) then
4412 return True;
4413 end if;
4415 -- Representations are definitely different if conventions differ
4417 if Convention (T1) /= Convention (T2) then
4418 return False;
4419 end if;
4421 -- Representations are different if component alignments differ
4423 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
4424 and then
4425 (Is_Record_Type (T2) or else Is_Array_Type (T2))
4426 and then Component_Alignment (T1) /= Component_Alignment (T2)
4427 then
4428 return False;
4429 end if;
4431 -- For arrays, the only real issue is component size. If we know the
4432 -- component size for both arrays, and it is the same, then that's
4433 -- good enough to know we don't have a change of representation.
4435 if Is_Array_Type (T1) then
4436 if Known_Component_Size (T1)
4437 and then Known_Component_Size (T2)
4438 and then Component_Size (T1) = Component_Size (T2)
4439 then
4440 return True;
4441 end if;
4442 end if;
4444 -- Types definitely have same representation if neither has non-standard
4445 -- representation since default representations are always consistent.
4446 -- If only one has non-standard representation, and the other does not,
4447 -- then we consider that they do not have the same representation. They
4448 -- might, but there is no way of telling early enough.
4450 if Has_Non_Standard_Rep (T1) then
4451 if not Has_Non_Standard_Rep (T2) then
4452 return False;
4453 end if;
4454 else
4455 return not Has_Non_Standard_Rep (T2);
4456 end if;
4458 -- Here the two types both have non-standard representation, and we need
4459 -- to determine if they have the same non-standard representation.
4461 -- For arrays, we simply need to test if the component sizes are the
4462 -- same. Pragma Pack is reflected in modified component sizes, so this
4463 -- check also deals with pragma Pack.
4465 if Is_Array_Type (T1) then
4466 return Component_Size (T1) = Component_Size (T2);
4468 -- Tagged types always have the same representation, because it is not
4469 -- possible to specify different representations for common fields.
4471 elsif Is_Tagged_Type (T1) then
4472 return True;
4474 -- Case of record types
4476 elsif Is_Record_Type (T1) then
4478 -- Packed status must conform
4480 if Is_Packed (T1) /= Is_Packed (T2) then
4481 return False;
4483 -- Otherwise we must check components. Typ2 maybe a constrained
4484 -- subtype with fewer components, so we compare the components
4485 -- of the base types.
4487 else
4488 Record_Case : declare
4489 CD1, CD2 : Entity_Id;
4491 function Same_Rep return Boolean;
4492 -- CD1 and CD2 are either components or discriminants. This
4493 -- function tests whether the two have the same representation
4495 --------------
4496 -- Same_Rep --
4497 --------------
4499 function Same_Rep return Boolean is
4500 begin
4501 if No (Component_Clause (CD1)) then
4502 return No (Component_Clause (CD2));
4504 else
4505 return
4506 Present (Component_Clause (CD2))
4507 and then
4508 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
4509 and then
4510 Esize (CD1) = Esize (CD2);
4511 end if;
4512 end Same_Rep;
4514 -- Start of processing for Record_Case
4516 begin
4517 if Has_Discriminants (T1) then
4518 CD1 := First_Discriminant (T1);
4519 CD2 := First_Discriminant (T2);
4521 -- The number of discriminants may be different if the
4522 -- derived type has fewer (constrained by values). The
4523 -- invisible discriminants retain the representation of
4524 -- the original, so the discrepancy does not per se
4525 -- indicate a different representation.
4527 while Present (CD1)
4528 and then Present (CD2)
4529 loop
4530 if not Same_Rep then
4531 return False;
4532 else
4533 Next_Discriminant (CD1);
4534 Next_Discriminant (CD2);
4535 end if;
4536 end loop;
4537 end if;
4539 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
4540 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
4542 while Present (CD1) loop
4543 if not Same_Rep then
4544 return False;
4545 else
4546 Next_Component (CD1);
4547 Next_Component (CD2);
4548 end if;
4549 end loop;
4551 return True;
4552 end Record_Case;
4553 end if;
4555 -- For enumeration types, we must check each literal to see if the
4556 -- representation is the same. Note that we do not permit enumeration
4557 -- representation clauses for Character and Wide_Character, so these
4558 -- cases were already dealt with.
4560 elsif Is_Enumeration_Type (T1) then
4562 Enumeration_Case : declare
4563 L1, L2 : Entity_Id;
4565 begin
4566 L1 := First_Literal (T1);
4567 L2 := First_Literal (T2);
4569 while Present (L1) loop
4570 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
4571 return False;
4572 else
4573 Next_Literal (L1);
4574 Next_Literal (L2);
4575 end if;
4576 end loop;
4578 return True;
4580 end Enumeration_Case;
4582 -- Any other types have the same representation for these purposes
4584 else
4585 return True;
4586 end if;
4587 end Same_Representation;
4589 --------------------
4590 -- Set_Enum_Esize --
4591 --------------------
4593 procedure Set_Enum_Esize (T : Entity_Id) is
4594 Lo : Uint;
4595 Hi : Uint;
4596 Sz : Nat;
4598 begin
4599 Init_Alignment (T);
4601 -- Find the minimum standard size (8,16,32,64) that fits
4603 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
4604 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
4606 if Lo < 0 then
4607 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
4608 Sz := Standard_Character_Size; -- May be > 8 on some targets
4610 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
4611 Sz := 16;
4613 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
4614 Sz := 32;
4616 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
4617 Sz := 64;
4618 end if;
4620 else
4621 if Hi < Uint_2**08 then
4622 Sz := Standard_Character_Size; -- May be > 8 on some targets
4624 elsif Hi < Uint_2**16 then
4625 Sz := 16;
4627 elsif Hi < Uint_2**32 then
4628 Sz := 32;
4630 else pragma Assert (Hi < Uint_2**63);
4631 Sz := 64;
4632 end if;
4633 end if;
4635 -- That minimum is the proper size unless we have a foreign convention
4636 -- and the size required is 32 or less, in which case we bump the size
4637 -- up to 32. This is required for C and C++ and seems reasonable for
4638 -- all other foreign conventions.
4640 if Has_Foreign_Convention (T)
4641 and then Esize (T) < Standard_Integer_Size
4642 then
4643 Init_Esize (T, Standard_Integer_Size);
4644 else
4645 Init_Esize (T, Sz);
4646 end if;
4647 end Set_Enum_Esize;
4649 ------------------------------
4650 -- Validate_Address_Clauses --
4651 ------------------------------
4653 procedure Validate_Address_Clauses is
4654 begin
4655 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
4656 declare
4657 ACCR : Address_Clause_Check_Record
4658 renames Address_Clause_Checks.Table (J);
4660 Expr : Node_Id;
4662 X_Alignment : Uint;
4663 Y_Alignment : Uint;
4665 X_Size : Uint;
4666 Y_Size : Uint;
4668 begin
4669 -- Skip processing of this entry if warning already posted
4671 if not Address_Warning_Posted (ACCR.N) then
4673 Expr := Original_Node (Expression (ACCR.N));
4675 -- Get alignments
4677 X_Alignment := Alignment (ACCR.X);
4678 Y_Alignment := Alignment (ACCR.Y);
4680 -- Similarly obtain sizes
4682 X_Size := Esize (ACCR.X);
4683 Y_Size := Esize (ACCR.Y);
4685 -- Check for large object overlaying smaller one
4687 if Y_Size > Uint_0
4688 and then X_Size > Uint_0
4689 and then X_Size > Y_Size
4690 then
4691 Error_Msg_NE
4692 ("?& overlays smaller object", ACCR.N, ACCR.X);
4693 Error_Msg_N
4694 ("\?program execution may be erroneous", ACCR.N);
4695 Error_Msg_Uint_1 := X_Size;
4696 Error_Msg_NE
4697 ("\?size of & is ^", ACCR.N, ACCR.X);
4698 Error_Msg_Uint_1 := Y_Size;
4699 Error_Msg_NE
4700 ("\?size of & is ^", ACCR.N, ACCR.Y);
4702 -- Check for inadequate alignment, both of the base object
4703 -- and of the offset, if any.
4705 -- Note: we do not check the alignment if we gave a size
4706 -- warning, since it would likely be redundant.
4708 elsif Y_Alignment /= Uint_0
4709 and then (Y_Alignment < X_Alignment
4710 or else (ACCR.Off
4711 and then
4712 Nkind (Expr) = N_Attribute_Reference
4713 and then
4714 Attribute_Name (Expr) = Name_Address
4715 and then
4716 Has_Compatible_Alignment
4717 (ACCR.X, Prefix (Expr))
4718 /= Known_Compatible))
4719 then
4720 Error_Msg_NE
4721 ("?specified address for& may be inconsistent "
4722 & "with alignment",
4723 ACCR.N, ACCR.X);
4724 Error_Msg_N
4725 ("\?program execution may be erroneous (RM 13.3(27))",
4726 ACCR.N);
4727 Error_Msg_Uint_1 := X_Alignment;
4728 Error_Msg_NE
4729 ("\?alignment of & is ^",
4730 ACCR.N, ACCR.X);
4731 Error_Msg_Uint_1 := Y_Alignment;
4732 Error_Msg_NE
4733 ("\?alignment of & is ^",
4734 ACCR.N, ACCR.Y);
4735 if Y_Alignment >= X_Alignment then
4736 Error_Msg_N
4737 ("\?but offset is not multiple of alignment",
4738 ACCR.N);
4739 end if;
4740 end if;
4741 end if;
4742 end;
4743 end loop;
4744 end Validate_Address_Clauses;
4746 -----------------------------------
4747 -- Validate_Unchecked_Conversion --
4748 -----------------------------------
4750 procedure Validate_Unchecked_Conversion
4751 (N : Node_Id;
4752 Act_Unit : Entity_Id)
4754 Source : Entity_Id;
4755 Target : Entity_Id;
4756 Vnode : Node_Id;
4758 begin
4759 -- Obtain source and target types. Note that we call Ancestor_Subtype
4760 -- here because the processing for generic instantiation always makes
4761 -- subtypes, and we want the original frozen actual types.
4763 -- If we are dealing with private types, then do the check on their
4764 -- fully declared counterparts if the full declarations have been
4765 -- encountered (they don't have to be visible, but they must exist!)
4767 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
4769 if Is_Private_Type (Source)
4770 and then Present (Underlying_Type (Source))
4771 then
4772 Source := Underlying_Type (Source);
4773 end if;
4775 Target := Ancestor_Subtype (Etype (Act_Unit));
4777 -- If either type is generic, the instantiation happens within a generic
4778 -- unit, and there is nothing to check. The proper check
4779 -- will happen when the enclosing generic is instantiated.
4781 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
4782 return;
4783 end if;
4785 if Is_Private_Type (Target)
4786 and then Present (Underlying_Type (Target))
4787 then
4788 Target := Underlying_Type (Target);
4789 end if;
4791 -- Source may be unconstrained array, but not target
4793 if Is_Array_Type (Target)
4794 and then not Is_Constrained (Target)
4795 then
4796 Error_Msg_N
4797 ("unchecked conversion to unconstrained array not allowed", N);
4798 return;
4799 end if;
4801 -- Warn if conversion between two different convention pointers
4803 if Is_Access_Type (Target)
4804 and then Is_Access_Type (Source)
4805 and then Convention (Target) /= Convention (Source)
4806 and then Warn_On_Unchecked_Conversion
4807 then
4808 -- Give warnings for subprogram pointers only on most targets. The
4809 -- exception is VMS, where data pointers can have different lengths
4810 -- depending on the pointer convention.
4812 if Is_Access_Subprogram_Type (Target)
4813 or else Is_Access_Subprogram_Type (Source)
4814 or else OpenVMS_On_Target
4815 then
4816 Error_Msg_N
4817 ("?conversion between pointers with different conventions!", N);
4818 end if;
4819 end if;
4821 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
4822 -- warning when compiling GNAT-related sources.
4824 if Warn_On_Unchecked_Conversion
4825 and then not In_Predefined_Unit (N)
4826 and then RTU_Loaded (Ada_Calendar)
4827 and then
4828 (Chars (Source) = Name_Time
4829 or else
4830 Chars (Target) = Name_Time)
4831 then
4832 -- If Ada.Calendar is loaded and the name of one of the operands is
4833 -- Time, there is a good chance that this is Ada.Calendar.Time.
4835 declare
4836 Calendar_Time : constant Entity_Id :=
4837 Full_View (RTE (RO_CA_Time));
4838 begin
4839 pragma Assert (Present (Calendar_Time));
4841 if Source = Calendar_Time
4842 or else Target = Calendar_Time
4843 then
4844 Error_Msg_N
4845 ("?representation of 'Time values may change between " &
4846 "'G'N'A'T versions", N);
4847 end if;
4848 end;
4849 end if;
4851 -- Make entry in unchecked conversion table for later processing by
4852 -- Validate_Unchecked_Conversions, which will check sizes and alignments
4853 -- (using values set by the back-end where possible). This is only done
4854 -- if the appropriate warning is active.
4856 if Warn_On_Unchecked_Conversion then
4857 Unchecked_Conversions.Append
4858 (New_Val => UC_Entry'
4859 (Eloc => Sloc (N),
4860 Source => Source,
4861 Target => Target));
4863 -- If both sizes are known statically now, then back end annotation
4864 -- is not required to do a proper check but if either size is not
4865 -- known statically, then we need the annotation.
4867 if Known_Static_RM_Size (Source)
4868 and then Known_Static_RM_Size (Target)
4869 then
4870 null;
4871 else
4872 Back_Annotate_Rep_Info := True;
4873 end if;
4874 end if;
4876 -- If unchecked conversion to access type, and access type is declared
4877 -- in the same unit as the unchecked conversion, then set the
4878 -- No_Strict_Aliasing flag (no strict aliasing is implicit in this
4879 -- situation).
4881 if Is_Access_Type (Target) and then
4882 In_Same_Source_Unit (Target, N)
4883 then
4884 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
4885 end if;
4887 -- Generate N_Validate_Unchecked_Conversion node for back end in
4888 -- case the back end needs to perform special validation checks.
4890 -- Shouldn't this be in Exp_Ch13, since the check only gets done
4891 -- if we have full expansion and the back end is called ???
4893 Vnode :=
4894 Make_Validate_Unchecked_Conversion (Sloc (N));
4895 Set_Source_Type (Vnode, Source);
4896 Set_Target_Type (Vnode, Target);
4898 -- If the unchecked conversion node is in a list, just insert before it.
4899 -- If not we have some strange case, not worth bothering about.
4901 if Is_List_Member (N) then
4902 Insert_After (N, Vnode);
4903 end if;
4904 end Validate_Unchecked_Conversion;
4906 ------------------------------------
4907 -- Validate_Unchecked_Conversions --
4908 ------------------------------------
4910 procedure Validate_Unchecked_Conversions is
4911 begin
4912 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
4913 declare
4914 T : UC_Entry renames Unchecked_Conversions.Table (N);
4916 Eloc : constant Source_Ptr := T.Eloc;
4917 Source : constant Entity_Id := T.Source;
4918 Target : constant Entity_Id := T.Target;
4920 Source_Siz : Uint;
4921 Target_Siz : Uint;
4923 begin
4924 -- This validation check, which warns if we have unequal sizes for
4925 -- unchecked conversion, and thus potentially implementation
4926 -- dependent semantics, is one of the few occasions on which we
4927 -- use the official RM size instead of Esize. See description in
4928 -- Einfo "Handling of Type'Size Values" for details.
4930 if Serious_Errors_Detected = 0
4931 and then Known_Static_RM_Size (Source)
4932 and then Known_Static_RM_Size (Target)
4934 -- Don't do the check if warnings off for either type, note the
4935 -- deliberate use of OR here instead of OR ELSE to get the flag
4936 -- Warnings_Off_Used set for both types if appropriate.
4938 and then not (Has_Warnings_Off (Source)
4940 Has_Warnings_Off (Target))
4941 then
4942 Source_Siz := RM_Size (Source);
4943 Target_Siz := RM_Size (Target);
4945 if Source_Siz /= Target_Siz then
4946 Error_Msg
4947 ("?types for unchecked conversion have different sizes!",
4948 Eloc);
4950 if All_Errors_Mode then
4951 Error_Msg_Name_1 := Chars (Source);
4952 Error_Msg_Uint_1 := Source_Siz;
4953 Error_Msg_Name_2 := Chars (Target);
4954 Error_Msg_Uint_2 := Target_Siz;
4955 Error_Msg ("\size of % is ^, size of % is ^?", Eloc);
4957 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
4959 if Is_Discrete_Type (Source)
4960 and then Is_Discrete_Type (Target)
4961 then
4962 if Source_Siz > Target_Siz then
4963 Error_Msg
4964 ("\?^ high order bits of source will be ignored!",
4965 Eloc);
4967 elsif Is_Unsigned_Type (Source) then
4968 Error_Msg
4969 ("\?source will be extended with ^ high order " &
4970 "zero bits?!", Eloc);
4972 else
4973 Error_Msg
4974 ("\?source will be extended with ^ high order " &
4975 "sign bits!",
4976 Eloc);
4977 end if;
4979 elsif Source_Siz < Target_Siz then
4980 if Is_Discrete_Type (Target) then
4981 if Bytes_Big_Endian then
4982 Error_Msg
4983 ("\?target value will include ^ undefined " &
4984 "low order bits!",
4985 Eloc);
4986 else
4987 Error_Msg
4988 ("\?target value will include ^ undefined " &
4989 "high order bits!",
4990 Eloc);
4991 end if;
4993 else
4994 Error_Msg
4995 ("\?^ trailing bits of target value will be " &
4996 "undefined!", Eloc);
4997 end if;
4999 else pragma Assert (Source_Siz > Target_Siz);
5000 Error_Msg
5001 ("\?^ trailing bits of source will be ignored!",
5002 Eloc);
5003 end if;
5004 end if;
5005 end if;
5006 end if;
5008 -- If both types are access types, we need to check the alignment.
5009 -- If the alignment of both is specified, we can do it here.
5011 if Serious_Errors_Detected = 0
5012 and then Ekind (Source) in Access_Kind
5013 and then Ekind (Target) in Access_Kind
5014 and then Target_Strict_Alignment
5015 and then Present (Designated_Type (Source))
5016 and then Present (Designated_Type (Target))
5017 then
5018 declare
5019 D_Source : constant Entity_Id := Designated_Type (Source);
5020 D_Target : constant Entity_Id := Designated_Type (Target);
5022 begin
5023 if Known_Alignment (D_Source)
5024 and then Known_Alignment (D_Target)
5025 then
5026 declare
5027 Source_Align : constant Uint := Alignment (D_Source);
5028 Target_Align : constant Uint := Alignment (D_Target);
5030 begin
5031 if Source_Align < Target_Align
5032 and then not Is_Tagged_Type (D_Source)
5034 -- Suppress warning if warnings suppressed on either
5035 -- type or either designated type. Note the use of
5036 -- OR here instead of OR ELSE. That is intentional,
5037 -- we would like to set flag Warnings_Off_Used in
5038 -- all types for which warnings are suppressed.
5040 and then not (Has_Warnings_Off (D_Source)
5042 Has_Warnings_Off (D_Target)
5044 Has_Warnings_Off (Source)
5046 Has_Warnings_Off (Target))
5047 then
5048 Error_Msg_Uint_1 := Target_Align;
5049 Error_Msg_Uint_2 := Source_Align;
5050 Error_Msg_Node_1 := D_Target;
5051 Error_Msg_Node_2 := D_Source;
5052 Error_Msg
5053 ("?alignment of & (^) is stricter than " &
5054 "alignment of & (^)!", Eloc);
5055 Error_Msg
5056 ("\?resulting access value may have invalid " &
5057 "alignment!", Eloc);
5058 end if;
5059 end;
5060 end if;
5061 end;
5062 end if;
5063 end;
5064 end loop;
5065 end Validate_Unchecked_Conversions;
5067 end Sem_Ch13;