Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / tree-ssa-phiopt.c
blobb809ab30f8d44a47ceebbd974afa30bf77476988
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
3 Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "flags.h"
29 #include "tm_p.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-pass.h"
35 #include "tree-dump.h"
36 #include "langhooks.h"
37 #include "pointer-set.h"
38 #include "domwalk.h"
40 static unsigned int tree_ssa_phiopt (void);
41 static unsigned int tree_ssa_phiopt_worker (bool);
42 static bool conditional_replacement (basic_block, basic_block,
43 edge, edge, gimple, tree, tree);
44 static bool value_replacement (basic_block, basic_block,
45 edge, edge, gimple, tree, tree);
46 static bool minmax_replacement (basic_block, basic_block,
47 edge, edge, gimple, tree, tree);
48 static bool abs_replacement (basic_block, basic_block,
49 edge, edge, gimple, tree, tree);
50 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
51 struct pointer_set_t *);
52 static struct pointer_set_t * get_non_trapping (void);
53 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
55 /* This pass tries to replaces an if-then-else block with an
56 assignment. We have four kinds of transformations. Some of these
57 transformations are also performed by the ifcvt RTL optimizer.
59 Conditional Replacement
60 -----------------------
62 This transformation, implemented in conditional_replacement,
63 replaces
65 bb0:
66 if (cond) goto bb2; else goto bb1;
67 bb1:
68 bb2:
69 x = PHI <0 (bb1), 1 (bb0), ...>;
71 with
73 bb0:
74 x' = cond;
75 goto bb2;
76 bb2:
77 x = PHI <x' (bb0), ...>;
79 We remove bb1 as it becomes unreachable. This occurs often due to
80 gimplification of conditionals.
82 Value Replacement
83 -----------------
85 This transformation, implemented in value_replacement, replaces
87 bb0:
88 if (a != b) goto bb2; else goto bb1;
89 bb1:
90 bb2:
91 x = PHI <a (bb1), b (bb0), ...>;
93 with
95 bb0:
96 bb2:
97 x = PHI <b (bb0), ...>;
99 This opportunity can sometimes occur as a result of other
100 optimizations.
102 ABS Replacement
103 ---------------
105 This transformation, implemented in abs_replacement, replaces
107 bb0:
108 if (a >= 0) goto bb2; else goto bb1;
109 bb1:
110 x = -a;
111 bb2:
112 x = PHI <x (bb1), a (bb0), ...>;
114 with
116 bb0:
117 x' = ABS_EXPR< a >;
118 bb2:
119 x = PHI <x' (bb0), ...>;
121 MIN/MAX Replacement
122 -------------------
124 This transformation, minmax_replacement replaces
126 bb0:
127 if (a <= b) goto bb2; else goto bb1;
128 bb1:
129 bb2:
130 x = PHI <b (bb1), a (bb0), ...>;
132 with
134 bb0:
135 x' = MIN_EXPR (a, b)
136 bb2:
137 x = PHI <x' (bb0), ...>;
139 A similar transformation is done for MAX_EXPR. */
141 static unsigned int
142 tree_ssa_phiopt (void)
144 return tree_ssa_phiopt_worker (false);
147 /* This pass tries to transform conditional stores into unconditional
148 ones, enabling further simplifications with the simpler then and else
149 blocks. In particular it replaces this:
151 bb0:
152 if (cond) goto bb2; else goto bb1;
153 bb1:
154 *p = RHS
155 bb2:
157 with
159 bb0:
160 if (cond) goto bb1; else goto bb2;
161 bb1:
162 condtmp' = *p;
163 bb2:
164 condtmp = PHI <RHS, condtmp'>
165 *p = condtmp
167 This transformation can only be done under several constraints,
168 documented below. */
170 static unsigned int
171 tree_ssa_cs_elim (void)
173 return tree_ssa_phiopt_worker (true);
176 /* For conditional store replacement we need a temporary to
177 put the old contents of the memory in. */
178 static tree condstoretemp;
180 /* The core routine of conditional store replacement and normal
181 phi optimizations. Both share much of the infrastructure in how
182 to match applicable basic block patterns. DO_STORE_ELIM is true
183 when we want to do conditional store replacement, false otherwise. */
184 static unsigned int
185 tree_ssa_phiopt_worker (bool do_store_elim)
187 basic_block bb;
188 basic_block *bb_order;
189 unsigned n, i;
190 bool cfgchanged = false;
191 struct pointer_set_t *nontrap = 0;
193 if (do_store_elim)
195 condstoretemp = NULL_TREE;
196 /* Calculate the set of non-trapping memory accesses. */
197 nontrap = get_non_trapping ();
200 /* Search every basic block for COND_EXPR we may be able to optimize.
202 We walk the blocks in order that guarantees that a block with
203 a single predecessor is processed before the predecessor.
204 This ensures that we collapse inner ifs before visiting the
205 outer ones, and also that we do not try to visit a removed
206 block. */
207 bb_order = blocks_in_phiopt_order ();
208 n = n_basic_blocks - NUM_FIXED_BLOCKS;
210 for (i = 0; i < n; i++)
212 gimple cond_stmt, phi;
213 basic_block bb1, bb2;
214 edge e1, e2;
215 tree arg0, arg1;
217 bb = bb_order[i];
219 cond_stmt = last_stmt (bb);
220 /* Check to see if the last statement is a GIMPLE_COND. */
221 if (!cond_stmt
222 || gimple_code (cond_stmt) != GIMPLE_COND)
223 continue;
225 e1 = EDGE_SUCC (bb, 0);
226 bb1 = e1->dest;
227 e2 = EDGE_SUCC (bb, 1);
228 bb2 = e2->dest;
230 /* We cannot do the optimization on abnormal edges. */
231 if ((e1->flags & EDGE_ABNORMAL) != 0
232 || (e2->flags & EDGE_ABNORMAL) != 0)
233 continue;
235 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
236 if (EDGE_COUNT (bb1->succs) == 0
237 || bb2 == NULL
238 || EDGE_COUNT (bb2->succs) == 0)
239 continue;
241 /* Find the bb which is the fall through to the other. */
242 if (EDGE_SUCC (bb1, 0)->dest == bb2)
244 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
246 basic_block bb_tmp = bb1;
247 edge e_tmp = e1;
248 bb1 = bb2;
249 bb2 = bb_tmp;
250 e1 = e2;
251 e2 = e_tmp;
253 else
254 continue;
256 e1 = EDGE_SUCC (bb1, 0);
258 /* Make sure that bb1 is just a fall through. */
259 if (!single_succ_p (bb1)
260 || (e1->flags & EDGE_FALLTHRU) == 0)
261 continue;
263 /* Also make sure that bb1 only have one predecessor and that it
264 is bb. */
265 if (!single_pred_p (bb1)
266 || single_pred (bb1) != bb)
267 continue;
269 if (do_store_elim)
271 /* bb1 is the middle block, bb2 the join block, bb the split block,
272 e1 the fallthrough edge from bb1 to bb2. We can't do the
273 optimization if the join block has more than two predecessors. */
274 if (EDGE_COUNT (bb2->preds) > 2)
275 continue;
276 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
277 cfgchanged = true;
279 else
281 gimple_seq phis = phi_nodes (bb2);
283 /* Check to make sure that there is only one PHI node.
284 TODO: we could do it with more than one iff the other PHI nodes
285 have the same elements for these two edges. */
286 if (! gimple_seq_singleton_p (phis))
287 continue;
289 phi = gsi_stmt (gsi_start (phis));
290 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
291 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
293 /* Something is wrong if we cannot find the arguments in the PHI
294 node. */
295 gcc_assert (arg0 != NULL && arg1 != NULL);
297 /* Do the replacement of conditional if it can be done. */
298 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
299 cfgchanged = true;
300 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
301 cfgchanged = true;
302 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
303 cfgchanged = true;
304 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
305 cfgchanged = true;
309 free (bb_order);
311 if (do_store_elim)
312 pointer_set_destroy (nontrap);
313 /* If the CFG has changed, we should cleanup the CFG. */
314 if (cfgchanged && do_store_elim)
316 /* In cond-store replacement we have added some loads on edges
317 and new VOPS (as we moved the store, and created a load). */
318 gsi_commit_edge_inserts ();
319 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
321 else if (cfgchanged)
322 return TODO_cleanup_cfg;
323 return 0;
326 /* Returns the list of basic blocks in the function in an order that guarantees
327 that if a block X has just a single predecessor Y, then Y is after X in the
328 ordering. */
330 basic_block *
331 blocks_in_phiopt_order (void)
333 basic_block x, y;
334 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
335 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
336 unsigned np, i;
337 sbitmap visited = sbitmap_alloc (last_basic_block);
339 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
340 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
342 sbitmap_zero (visited);
344 MARK_VISITED (ENTRY_BLOCK_PTR);
345 FOR_EACH_BB (x)
347 if (VISITED_P (x))
348 continue;
350 /* Walk the predecessors of x as long as they have precisely one
351 predecessor and add them to the list, so that they get stored
352 after x. */
353 for (y = x, np = 1;
354 single_pred_p (y) && !VISITED_P (single_pred (y));
355 y = single_pred (y))
356 np++;
357 for (y = x, i = n - np;
358 single_pred_p (y) && !VISITED_P (single_pred (y));
359 y = single_pred (y), i++)
361 order[i] = y;
362 MARK_VISITED (y);
364 order[i] = y;
365 MARK_VISITED (y);
367 gcc_assert (i == n - 1);
368 n -= np;
371 sbitmap_free (visited);
372 gcc_assert (n == 0);
373 return order;
375 #undef MARK_VISITED
376 #undef VISITED_P
380 /* Return TRUE if block BB has no executable statements, otherwise return
381 FALSE. */
383 bool
384 empty_block_p (basic_block bb)
386 /* BB must have no executable statements. */
387 gimple_stmt_iterator gsi = gsi_after_labels (bb);
388 if (gsi_end_p (gsi))
389 return true;
390 if (is_gimple_debug (gsi_stmt (gsi)))
391 gsi_next_nondebug (&gsi);
392 return gsi_end_p (gsi);
395 /* Replace PHI node element whose edge is E in block BB with variable NEW.
396 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
397 is known to have two edges, one of which must reach BB). */
399 static void
400 replace_phi_edge_with_variable (basic_block cond_block,
401 edge e, gimple phi, tree new_tree)
403 basic_block bb = gimple_bb (phi);
404 basic_block block_to_remove;
405 gimple_stmt_iterator gsi;
407 /* Change the PHI argument to new. */
408 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
410 /* Remove the empty basic block. */
411 if (EDGE_SUCC (cond_block, 0)->dest == bb)
413 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
414 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
415 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
416 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
418 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
420 else
422 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
423 EDGE_SUCC (cond_block, 1)->flags
424 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
425 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
426 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
428 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
430 delete_basic_block (block_to_remove);
432 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
433 gsi = gsi_last_bb (cond_block);
434 gsi_remove (&gsi, true);
436 if (dump_file && (dump_flags & TDF_DETAILS))
437 fprintf (dump_file,
438 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
439 cond_block->index,
440 bb->index);
443 /* The function conditional_replacement does the main work of doing the
444 conditional replacement. Return true if the replacement is done.
445 Otherwise return false.
446 BB is the basic block where the replacement is going to be done on. ARG0
447 is argument 0 from PHI. Likewise for ARG1. */
449 static bool
450 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
451 edge e0, edge e1, gimple phi,
452 tree arg0, tree arg1)
454 tree result;
455 gimple stmt, new_stmt;
456 tree cond;
457 gimple_stmt_iterator gsi;
458 edge true_edge, false_edge;
459 tree new_var, new_var2;
461 /* FIXME: Gimplification of complex type is too hard for now. */
462 if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
463 || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE)
464 return false;
466 /* The PHI arguments have the constants 0 and 1, then convert
467 it to the conditional. */
468 if ((integer_zerop (arg0) && integer_onep (arg1))
469 || (integer_zerop (arg1) && integer_onep (arg0)))
471 else
472 return false;
474 if (!empty_block_p (middle_bb))
475 return false;
477 /* At this point we know we have a GIMPLE_COND with two successors.
478 One successor is BB, the other successor is an empty block which
479 falls through into BB.
481 There is a single PHI node at the join point (BB) and its arguments
482 are constants (0, 1).
484 So, given the condition COND, and the two PHI arguments, we can
485 rewrite this PHI into non-branching code:
487 dest = (COND) or dest = COND'
489 We use the condition as-is if the argument associated with the
490 true edge has the value one or the argument associated with the
491 false edge as the value zero. Note that those conditions are not
492 the same since only one of the outgoing edges from the GIMPLE_COND
493 will directly reach BB and thus be associated with an argument. */
495 stmt = last_stmt (cond_bb);
496 result = PHI_RESULT (phi);
498 /* To handle special cases like floating point comparison, it is easier and
499 less error-prone to build a tree and gimplify it on the fly though it is
500 less efficient. */
501 cond = fold_build2 (gimple_cond_code (stmt), boolean_type_node,
502 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
504 /* We need to know which is the true edge and which is the false
505 edge so that we know when to invert the condition below. */
506 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
507 if ((e0 == true_edge && integer_zerop (arg0))
508 || (e0 == false_edge && integer_onep (arg0))
509 || (e1 == true_edge && integer_zerop (arg1))
510 || (e1 == false_edge && integer_onep (arg1)))
511 cond = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
513 /* Insert our new statements at the end of conditional block before the
514 COND_STMT. */
515 gsi = gsi_for_stmt (stmt);
516 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
517 GSI_SAME_STMT);
519 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
521 source_location locus_0, locus_1;
523 new_var2 = create_tmp_var (TREE_TYPE (result), NULL);
524 add_referenced_var (new_var2);
525 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
526 new_var, NULL);
527 new_var2 = make_ssa_name (new_var2, new_stmt);
528 gimple_assign_set_lhs (new_stmt, new_var2);
529 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
530 new_var = new_var2;
532 /* Set the locus to the first argument, unless is doesn't have one. */
533 locus_0 = gimple_phi_arg_location (phi, 0);
534 locus_1 = gimple_phi_arg_location (phi, 1);
535 if (locus_0 == UNKNOWN_LOCATION)
536 locus_0 = locus_1;
537 gimple_set_location (new_stmt, locus_0);
540 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
542 /* Note that we optimized this PHI. */
543 return true;
546 /* The function value_replacement does the main work of doing the value
547 replacement. Return true if the replacement is done. Otherwise return
548 false.
549 BB is the basic block where the replacement is going to be done on. ARG0
550 is argument 0 from the PHI. Likewise for ARG1. */
552 static bool
553 value_replacement (basic_block cond_bb, basic_block middle_bb,
554 edge e0, edge e1, gimple phi,
555 tree arg0, tree arg1)
557 gimple cond;
558 edge true_edge, false_edge;
559 enum tree_code code;
561 /* If the type says honor signed zeros we cannot do this
562 optimization. */
563 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
564 return false;
566 if (!empty_block_p (middle_bb))
567 return false;
569 cond = last_stmt (cond_bb);
570 code = gimple_cond_code (cond);
572 /* This transformation is only valid for equality comparisons. */
573 if (code != NE_EXPR && code != EQ_EXPR)
574 return false;
576 /* We need to know which is the true edge and which is the false
577 edge so that we know if have abs or negative abs. */
578 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
580 /* At this point we know we have a COND_EXPR with two successors.
581 One successor is BB, the other successor is an empty block which
582 falls through into BB.
584 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
586 There is a single PHI node at the join point (BB) with two arguments.
588 We now need to verify that the two arguments in the PHI node match
589 the two arguments to the equality comparison. */
591 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
592 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
593 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
594 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
596 edge e;
597 tree arg;
599 /* For NE_EXPR, we want to build an assignment result = arg where
600 arg is the PHI argument associated with the true edge. For
601 EQ_EXPR we want the PHI argument associated with the false edge. */
602 e = (code == NE_EXPR ? true_edge : false_edge);
604 /* Unfortunately, E may not reach BB (it may instead have gone to
605 OTHER_BLOCK). If that is the case, then we want the single outgoing
606 edge from OTHER_BLOCK which reaches BB and represents the desired
607 path from COND_BLOCK. */
608 if (e->dest == middle_bb)
609 e = single_succ_edge (e->dest);
611 /* Now we know the incoming edge to BB that has the argument for the
612 RHS of our new assignment statement. */
613 if (e0 == e)
614 arg = arg0;
615 else
616 arg = arg1;
618 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
620 /* Note that we optimized this PHI. */
621 return true;
623 return false;
626 /* The function minmax_replacement does the main work of doing the minmax
627 replacement. Return true if the replacement is done. Otherwise return
628 false.
629 BB is the basic block where the replacement is going to be done on. ARG0
630 is argument 0 from the PHI. Likewise for ARG1. */
632 static bool
633 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
634 edge e0, edge e1, gimple phi,
635 tree arg0, tree arg1)
637 tree result, type;
638 gimple cond, new_stmt;
639 edge true_edge, false_edge;
640 enum tree_code cmp, minmax, ass_code;
641 tree smaller, larger, arg_true, arg_false;
642 gimple_stmt_iterator gsi, gsi_from;
644 type = TREE_TYPE (PHI_RESULT (phi));
646 /* The optimization may be unsafe due to NaNs. */
647 if (HONOR_NANS (TYPE_MODE (type)))
648 return false;
650 cond = last_stmt (cond_bb);
651 cmp = gimple_cond_code (cond);
652 result = PHI_RESULT (phi);
654 /* This transformation is only valid for order comparisons. Record which
655 operand is smaller/larger if the result of the comparison is true. */
656 if (cmp == LT_EXPR || cmp == LE_EXPR)
658 smaller = gimple_cond_lhs (cond);
659 larger = gimple_cond_rhs (cond);
661 else if (cmp == GT_EXPR || cmp == GE_EXPR)
663 smaller = gimple_cond_rhs (cond);
664 larger = gimple_cond_lhs (cond);
666 else
667 return false;
669 /* We need to know which is the true edge and which is the false
670 edge so that we know if have abs or negative abs. */
671 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
673 /* Forward the edges over the middle basic block. */
674 if (true_edge->dest == middle_bb)
675 true_edge = EDGE_SUCC (true_edge->dest, 0);
676 if (false_edge->dest == middle_bb)
677 false_edge = EDGE_SUCC (false_edge->dest, 0);
679 if (true_edge == e0)
681 gcc_assert (false_edge == e1);
682 arg_true = arg0;
683 arg_false = arg1;
685 else
687 gcc_assert (false_edge == e0);
688 gcc_assert (true_edge == e1);
689 arg_true = arg1;
690 arg_false = arg0;
693 if (empty_block_p (middle_bb))
695 if (operand_equal_for_phi_arg_p (arg_true, smaller)
696 && operand_equal_for_phi_arg_p (arg_false, larger))
698 /* Case
700 if (smaller < larger)
701 rslt = smaller;
702 else
703 rslt = larger; */
704 minmax = MIN_EXPR;
706 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
707 && operand_equal_for_phi_arg_p (arg_true, larger))
708 minmax = MAX_EXPR;
709 else
710 return false;
712 else
714 /* Recognize the following case, assuming d <= u:
716 if (a <= u)
717 b = MAX (a, d);
718 x = PHI <b, u>
720 This is equivalent to
722 b = MAX (a, d);
723 x = MIN (b, u); */
725 gimple assign = last_and_only_stmt (middle_bb);
726 tree lhs, op0, op1, bound;
728 if (!assign
729 || gimple_code (assign) != GIMPLE_ASSIGN)
730 return false;
732 lhs = gimple_assign_lhs (assign);
733 ass_code = gimple_assign_rhs_code (assign);
734 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
735 return false;
736 op0 = gimple_assign_rhs1 (assign);
737 op1 = gimple_assign_rhs2 (assign);
739 if (true_edge->src == middle_bb)
741 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
742 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
743 return false;
745 if (operand_equal_for_phi_arg_p (arg_false, larger))
747 /* Case
749 if (smaller < larger)
751 r' = MAX_EXPR (smaller, bound)
753 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
754 if (ass_code != MAX_EXPR)
755 return false;
757 minmax = MIN_EXPR;
758 if (operand_equal_for_phi_arg_p (op0, smaller))
759 bound = op1;
760 else if (operand_equal_for_phi_arg_p (op1, smaller))
761 bound = op0;
762 else
763 return false;
765 /* We need BOUND <= LARGER. */
766 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
767 bound, larger)))
768 return false;
770 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
772 /* Case
774 if (smaller < larger)
776 r' = MIN_EXPR (larger, bound)
778 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
779 if (ass_code != MIN_EXPR)
780 return false;
782 minmax = MAX_EXPR;
783 if (operand_equal_for_phi_arg_p (op0, larger))
784 bound = op1;
785 else if (operand_equal_for_phi_arg_p (op1, larger))
786 bound = op0;
787 else
788 return false;
790 /* We need BOUND >= SMALLER. */
791 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
792 bound, smaller)))
793 return false;
795 else
796 return false;
798 else
800 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
801 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
802 return false;
804 if (operand_equal_for_phi_arg_p (arg_true, larger))
806 /* Case
808 if (smaller > larger)
810 r' = MIN_EXPR (smaller, bound)
812 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
813 if (ass_code != MIN_EXPR)
814 return false;
816 minmax = MAX_EXPR;
817 if (operand_equal_for_phi_arg_p (op0, smaller))
818 bound = op1;
819 else if (operand_equal_for_phi_arg_p (op1, smaller))
820 bound = op0;
821 else
822 return false;
824 /* We need BOUND >= LARGER. */
825 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
826 bound, larger)))
827 return false;
829 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
831 /* Case
833 if (smaller > larger)
835 r' = MAX_EXPR (larger, bound)
837 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
838 if (ass_code != MAX_EXPR)
839 return false;
841 minmax = MIN_EXPR;
842 if (operand_equal_for_phi_arg_p (op0, larger))
843 bound = op1;
844 else if (operand_equal_for_phi_arg_p (op1, larger))
845 bound = op0;
846 else
847 return false;
849 /* We need BOUND <= SMALLER. */
850 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
851 bound, smaller)))
852 return false;
854 else
855 return false;
858 /* Move the statement from the middle block. */
859 gsi = gsi_last_bb (cond_bb);
860 gsi_from = gsi_last_bb (middle_bb);
861 gsi_move_before (&gsi_from, &gsi);
864 /* Emit the statement to compute min/max. */
865 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
866 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
867 gsi = gsi_last_bb (cond_bb);
868 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
870 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
871 return true;
874 /* The function absolute_replacement does the main work of doing the absolute
875 replacement. Return true if the replacement is done. Otherwise return
876 false.
877 bb is the basic block where the replacement is going to be done on. arg0
878 is argument 0 from the phi. Likewise for arg1. */
880 static bool
881 abs_replacement (basic_block cond_bb, basic_block middle_bb,
882 edge e0 ATTRIBUTE_UNUSED, edge e1,
883 gimple phi, tree arg0, tree arg1)
885 tree result;
886 gimple new_stmt, cond;
887 gimple_stmt_iterator gsi;
888 edge true_edge, false_edge;
889 gimple assign;
890 edge e;
891 tree rhs, lhs;
892 bool negate;
893 enum tree_code cond_code;
895 /* If the type says honor signed zeros we cannot do this
896 optimization. */
897 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
898 return false;
900 /* OTHER_BLOCK must have only one executable statement which must have the
901 form arg0 = -arg1 or arg1 = -arg0. */
903 assign = last_and_only_stmt (middle_bb);
904 /* If we did not find the proper negation assignment, then we can not
905 optimize. */
906 if (assign == NULL)
907 return false;
909 /* If we got here, then we have found the only executable statement
910 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
911 arg1 = -arg0, then we can not optimize. */
912 if (gimple_code (assign) != GIMPLE_ASSIGN)
913 return false;
915 lhs = gimple_assign_lhs (assign);
917 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
918 return false;
920 rhs = gimple_assign_rhs1 (assign);
922 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
923 if (!(lhs == arg0 && rhs == arg1)
924 && !(lhs == arg1 && rhs == arg0))
925 return false;
927 cond = last_stmt (cond_bb);
928 result = PHI_RESULT (phi);
930 /* Only relationals comparing arg[01] against zero are interesting. */
931 cond_code = gimple_cond_code (cond);
932 if (cond_code != GT_EXPR && cond_code != GE_EXPR
933 && cond_code != LT_EXPR && cond_code != LE_EXPR)
934 return false;
936 /* Make sure the conditional is arg[01] OP y. */
937 if (gimple_cond_lhs (cond) != rhs)
938 return false;
940 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
941 ? real_zerop (gimple_cond_rhs (cond))
942 : integer_zerop (gimple_cond_rhs (cond)))
944 else
945 return false;
947 /* We need to know which is the true edge and which is the false
948 edge so that we know if have abs or negative abs. */
949 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
951 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
952 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
953 the false edge goes to OTHER_BLOCK. */
954 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
955 e = true_edge;
956 else
957 e = false_edge;
959 if (e->dest == middle_bb)
960 negate = true;
961 else
962 negate = false;
964 result = duplicate_ssa_name (result, NULL);
966 if (negate)
968 tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
969 add_referenced_var (tmp);
970 lhs = make_ssa_name (tmp, NULL);
972 else
973 lhs = result;
975 /* Build the modify expression with abs expression. */
976 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
978 gsi = gsi_last_bb (cond_bb);
979 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
981 if (negate)
983 /* Get the right GSI. We want to insert after the recently
984 added ABS_EXPR statement (which we know is the first statement
985 in the block. */
986 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
988 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
991 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
993 /* Note that we optimized this PHI. */
994 return true;
997 /* Auxiliary functions to determine the set of memory accesses which
998 can't trap because they are preceded by accesses to the same memory
999 portion. We do that for INDIRECT_REFs, so we only need to track
1000 the SSA_NAME of the pointer indirectly referenced. The algorithm
1001 simply is a walk over all instructions in dominator order. When
1002 we see an INDIRECT_REF we determine if we've already seen a same
1003 ref anywhere up to the root of the dominator tree. If we do the
1004 current access can't trap. If we don't see any dominating access
1005 the current access might trap, but might also make later accesses
1006 non-trapping, so we remember it. We need to be careful with loads
1007 or stores, for instance a load might not trap, while a store would,
1008 so if we see a dominating read access this doesn't mean that a later
1009 write access would not trap. Hence we also need to differentiate the
1010 type of access(es) seen.
1012 ??? We currently are very conservative and assume that a load might
1013 trap even if a store doesn't (write-only memory). This probably is
1014 overly conservative. */
1016 /* A hash-table of SSA_NAMEs, and in which basic block an INDIRECT_REF
1017 through it was seen, which would constitute a no-trap region for
1018 same accesses. */
1019 struct name_to_bb
1021 tree ssa_name;
1022 basic_block bb;
1023 unsigned store : 1;
1026 /* The hash table for remembering what we've seen. */
1027 static htab_t seen_ssa_names;
1029 /* The set of INDIRECT_REFs which can't trap. */
1030 static struct pointer_set_t *nontrap_set;
1032 /* The hash function, based on the pointer to the pointer SSA_NAME. */
1033 static hashval_t
1034 name_to_bb_hash (const void *p)
1036 const_tree n = ((const struct name_to_bb *)p)->ssa_name;
1037 return htab_hash_pointer (n) ^ ((const struct name_to_bb *)p)->store;
1040 /* The equality function of *P1 and *P2. SSA_NAMEs are shared, so
1041 it's enough to simply compare them for equality. */
1042 static int
1043 name_to_bb_eq (const void *p1, const void *p2)
1045 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1046 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
1048 return n1->ssa_name == n2->ssa_name && n1->store == n2->store;
1051 /* We see the expression EXP in basic block BB. If it's an interesting
1052 expression (an INDIRECT_REF through an SSA_NAME) possibly insert the
1053 expression into the set NONTRAP or the hash table of seen expressions.
1054 STORE is true if this expression is on the LHS, otherwise it's on
1055 the RHS. */
1056 static void
1057 add_or_mark_expr (basic_block bb, tree exp,
1058 struct pointer_set_t *nontrap, bool store)
1060 if (INDIRECT_REF_P (exp)
1061 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME)
1063 tree name = TREE_OPERAND (exp, 0);
1064 struct name_to_bb map;
1065 void **slot;
1066 struct name_to_bb *n2bb;
1067 basic_block found_bb = 0;
1069 /* Try to find the last seen INDIRECT_REF through the same
1070 SSA_NAME, which can trap. */
1071 map.ssa_name = name;
1072 map.bb = 0;
1073 map.store = store;
1074 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
1075 n2bb = (struct name_to_bb *) *slot;
1076 if (n2bb)
1077 found_bb = n2bb->bb;
1079 /* If we've found a trapping INDIRECT_REF, _and_ it dominates EXP
1080 (it's in a basic block on the path from us to the dominator root)
1081 then we can't trap. */
1082 if (found_bb && found_bb->aux == (void *)1)
1084 pointer_set_insert (nontrap, exp);
1086 else
1088 /* EXP might trap, so insert it into the hash table. */
1089 if (n2bb)
1091 n2bb->bb = bb;
1093 else
1095 n2bb = XNEW (struct name_to_bb);
1096 n2bb->ssa_name = name;
1097 n2bb->bb = bb;
1098 n2bb->store = store;
1099 *slot = n2bb;
1105 /* Called by walk_dominator_tree, when entering the block BB. */
1106 static void
1107 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1109 gimple_stmt_iterator gsi;
1110 /* Mark this BB as being on the path to dominator root. */
1111 bb->aux = (void*)1;
1113 /* And walk the statements in order. */
1114 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1116 gimple stmt = gsi_stmt (gsi);
1118 if (is_gimple_assign (stmt))
1120 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1121 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
1122 if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt)) > 1)
1123 add_or_mark_expr (bb, gimple_assign_rhs2 (stmt), nontrap_set,
1124 false);
1129 /* Called by walk_dominator_tree, when basic block BB is exited. */
1130 static void
1131 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1133 /* This BB isn't on the path to dominator root anymore. */
1134 bb->aux = NULL;
1137 /* This is the entry point of gathering non trapping memory accesses.
1138 It will do a dominator walk over the whole function, and it will
1139 make use of the bb->aux pointers. It returns a set of trees
1140 (the INDIRECT_REFs itself) which can't trap. */
1141 static struct pointer_set_t *
1142 get_non_trapping (void)
1144 struct pointer_set_t *nontrap;
1145 struct dom_walk_data walk_data;
1147 nontrap = pointer_set_create ();
1148 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1149 free);
1150 /* We're going to do a dominator walk, so ensure that we have
1151 dominance information. */
1152 calculate_dominance_info (CDI_DOMINATORS);
1154 /* Setup callbacks for the generic dominator tree walker. */
1155 nontrap_set = nontrap;
1156 walk_data.dom_direction = CDI_DOMINATORS;
1157 walk_data.initialize_block_local_data = NULL;
1158 walk_data.before_dom_children = nt_init_block;
1159 walk_data.after_dom_children = nt_fini_block;
1160 walk_data.global_data = NULL;
1161 walk_data.block_local_data_size = 0;
1163 init_walk_dominator_tree (&walk_data);
1164 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1165 fini_walk_dominator_tree (&walk_data);
1166 htab_delete (seen_ssa_names);
1168 return nontrap;
1171 /* Do the main work of conditional store replacement. We already know
1172 that the recognized pattern looks like so:
1174 split:
1175 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1176 MIDDLE_BB:
1177 something
1178 fallthrough (edge E0)
1179 JOIN_BB:
1180 some more
1182 We check that MIDDLE_BB contains only one store, that that store
1183 doesn't trap (not via NOTRAP, but via checking if an access to the same
1184 memory location dominates us) and that the store has a "simple" RHS. */
1186 static bool
1187 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1188 edge e0, edge e1, struct pointer_set_t *nontrap)
1190 gimple assign = last_and_only_stmt (middle_bb);
1191 tree lhs, rhs, name;
1192 gimple newphi, new_stmt;
1193 gimple_stmt_iterator gsi;
1194 source_location locus;
1195 enum tree_code code;
1197 /* Check if middle_bb contains of only one store. */
1198 if (!assign
1199 || gimple_code (assign) != GIMPLE_ASSIGN)
1200 return false;
1202 locus = gimple_location (assign);
1203 lhs = gimple_assign_lhs (assign);
1204 rhs = gimple_assign_rhs1 (assign);
1205 if (!INDIRECT_REF_P (lhs))
1206 return false;
1208 /* RHS is either a single SSA_NAME or a constant. */
1209 code = gimple_assign_rhs_code (assign);
1210 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
1211 || (code != SSA_NAME && !is_gimple_min_invariant (rhs)))
1212 return false;
1213 /* Prove that we can move the store down. We could also check
1214 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1215 whose value is not available readily, which we want to avoid. */
1216 if (!pointer_set_contains (nontrap, lhs))
1217 return false;
1219 /* Now we've checked the constraints, so do the transformation:
1220 1) Remove the single store. */
1221 mark_symbols_for_renaming (assign);
1222 gsi = gsi_for_stmt (assign);
1223 gsi_remove (&gsi, true);
1225 /* 2) Create a temporary where we can store the old content
1226 of the memory touched by the store, if we need to. */
1227 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1229 condstoretemp = create_tmp_var (TREE_TYPE (lhs), "cstore");
1230 get_var_ann (condstoretemp);
1231 if (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE
1232 || TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE)
1233 DECL_GIMPLE_REG_P (condstoretemp) = 1;
1235 add_referenced_var (condstoretemp);
1237 /* 3) Insert a load from the memory of the store to the temporary
1238 on the edge which did not contain the store. */
1239 lhs = unshare_expr (lhs);
1240 new_stmt = gimple_build_assign (condstoretemp, lhs);
1241 name = make_ssa_name (condstoretemp, new_stmt);
1242 gimple_assign_set_lhs (new_stmt, name);
1243 gimple_set_location (new_stmt, locus);
1244 mark_symbols_for_renaming (new_stmt);
1245 gsi_insert_on_edge (e1, new_stmt);
1247 /* 4) Create a PHI node at the join block, with one argument
1248 holding the old RHS, and the other holding the temporary
1249 where we stored the old memory contents. */
1250 newphi = create_phi_node (condstoretemp, join_bb);
1251 add_phi_arg (newphi, rhs, e0, locus);
1252 add_phi_arg (newphi, name, e1, locus);
1254 lhs = unshare_expr (lhs);
1255 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1256 mark_symbols_for_renaming (new_stmt);
1258 /* 5) Insert that PHI node. */
1259 gsi = gsi_after_labels (join_bb);
1260 if (gsi_end_p (gsi))
1262 gsi = gsi_last_bb (join_bb);
1263 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1265 else
1266 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1268 return true;
1271 /* Always do these optimizations if we have SSA
1272 trees to work on. */
1273 static bool
1274 gate_phiopt (void)
1276 return 1;
1279 struct gimple_opt_pass pass_phiopt =
1282 GIMPLE_PASS,
1283 "phiopt", /* name */
1284 gate_phiopt, /* gate */
1285 tree_ssa_phiopt, /* execute */
1286 NULL, /* sub */
1287 NULL, /* next */
1288 0, /* static_pass_number */
1289 TV_TREE_PHIOPT, /* tv_id */
1290 PROP_cfg | PROP_ssa, /* properties_required */
1291 0, /* properties_provided */
1292 0, /* properties_destroyed */
1293 0, /* todo_flags_start */
1294 TODO_dump_func
1295 | TODO_ggc_collect
1296 | TODO_verify_ssa
1297 | TODO_verify_flow
1298 | TODO_verify_stmts /* todo_flags_finish */
1302 static bool
1303 gate_cselim (void)
1305 return flag_tree_cselim;
1308 struct gimple_opt_pass pass_cselim =
1311 GIMPLE_PASS,
1312 "cselim", /* name */
1313 gate_cselim, /* gate */
1314 tree_ssa_cs_elim, /* execute */
1315 NULL, /* sub */
1316 NULL, /* next */
1317 0, /* static_pass_number */
1318 TV_TREE_PHIOPT, /* tv_id */
1319 PROP_cfg | PROP_ssa, /* properties_required */
1320 0, /* properties_provided */
1321 0, /* properties_destroyed */
1322 0, /* todo_flags_start */
1323 TODO_dump_func
1324 | TODO_ggc_collect
1325 | TODO_verify_ssa
1326 | TODO_verify_flow
1327 | TODO_verify_stmts /* todo_flags_finish */