Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / tree-ssa-loop-prefetch.c
blob60f5a2f9b0dd9c1643c8ee3cf2966ecbdd60a713
1 /* Array prefetching.
2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "varray.h"
36 #include "expr.h"
37 #include "tree-pass.h"
38 #include "ggc.h"
39 #include "insn-config.h"
40 #include "recog.h"
41 #include "hashtab.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "toplev.h"
45 #include "params.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-data-ref.h"
49 #include "optabs.h"
51 /* This pass inserts prefetch instructions to optimize cache usage during
52 accesses to arrays in loops. It processes loops sequentially and:
54 1) Gathers all memory references in the single loop.
55 2) For each of the references it decides when it is profitable to prefetch
56 it. To do it, we evaluate the reuse among the accesses, and determines
57 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
58 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
59 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
60 iterations of the loop that are zero modulo PREFETCH_MOD). For example
61 (assuming cache line size is 64 bytes, char has size 1 byte and there
62 is no hardware sequential prefetch):
64 char *a;
65 for (i = 0; i < max; i++)
67 a[255] = ...; (0)
68 a[i] = ...; (1)
69 a[i + 64] = ...; (2)
70 a[16*i] = ...; (3)
71 a[187*i] = ...; (4)
72 a[187*i + 50] = ...; (5)
75 (0) obviously has PREFETCH_BEFORE 1
76 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
77 location 64 iterations before it, and PREFETCH_MOD 64 (since
78 it hits the same cache line otherwise).
79 (2) has PREFETCH_MOD 64
80 (3) has PREFETCH_MOD 4
81 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
82 the cache line accessed by (4) is the same with probability only
83 7/32.
84 (5) has PREFETCH_MOD 1 as well.
86 Additionally, we use data dependence analysis to determine for each
87 reference the distance till the first reuse; this information is used
88 to determine the temporality of the issued prefetch instruction.
90 3) We determine how much ahead we need to prefetch. The number of
91 iterations needed is time to fetch / time spent in one iteration of
92 the loop. The problem is that we do not know either of these values,
93 so we just make a heuristic guess based on a magic (possibly)
94 target-specific constant and size of the loop.
96 4) Determine which of the references we prefetch. We take into account
97 that there is a maximum number of simultaneous prefetches (provided
98 by machine description). We prefetch as many prefetches as possible
99 while still within this bound (starting with those with lowest
100 prefetch_mod, since they are responsible for most of the cache
101 misses).
103 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
104 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
105 prefetching nonaccessed memory.
106 TODO -- actually implement peeling.
108 6) We actually emit the prefetch instructions. ??? Perhaps emit the
109 prefetch instructions with guards in cases where 5) was not sufficient
110 to satisfy the constraints?
112 The function is_loop_prefetching_profitable() implements a cost model
113 to determine if prefetching is profitable for a given loop. The cost
114 model has two heuristcs:
115 1. A heuristic that determines whether the given loop has enough CPU
116 ops that can be overlapped with cache missing memory ops.
117 If not, the loop won't benefit from prefetching. This is implemented
118 by requirung the ratio between the instruction count and the mem ref
119 count to be above a certain minimum.
120 2. A heuristic that disables prefetching in a loop with an unknown trip
121 count if the prefetching cost is above a certain limit. The relative
122 prefetching cost is estimated by taking the ratio between the
123 prefetch count and the total intruction count (this models the I-cache
124 cost).
125 The limits used in these heuristics are defined as parameters with
126 reasonable default values. Machine-specific default values will be
127 added later.
129 Some other TODO:
130 -- write and use more general reuse analysis (that could be also used
131 in other cache aimed loop optimizations)
132 -- make it behave sanely together with the prefetches given by user
133 (now we just ignore them; at the very least we should avoid
134 optimizing loops in that user put his own prefetches)
135 -- we assume cache line size alignment of arrays; this could be
136 improved. */
138 /* Magic constants follow. These should be replaced by machine specific
139 numbers. */
141 /* True if write can be prefetched by a read prefetch. */
143 #ifndef WRITE_CAN_USE_READ_PREFETCH
144 #define WRITE_CAN_USE_READ_PREFETCH 1
145 #endif
147 /* True if read can be prefetched by a write prefetch. */
149 #ifndef READ_CAN_USE_WRITE_PREFETCH
150 #define READ_CAN_USE_WRITE_PREFETCH 0
151 #endif
153 /* The size of the block loaded by a single prefetch. Usually, this is
154 the same as cache line size (at the moment, we only consider one level
155 of cache hierarchy). */
157 #ifndef PREFETCH_BLOCK
158 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
159 #endif
161 /* Do we have a forward hardware sequential prefetching? */
163 #ifndef HAVE_FORWARD_PREFETCH
164 #define HAVE_FORWARD_PREFETCH 0
165 #endif
167 /* Do we have a backward hardware sequential prefetching? */
169 #ifndef HAVE_BACKWARD_PREFETCH
170 #define HAVE_BACKWARD_PREFETCH 0
171 #endif
173 /* In some cases we are only able to determine that there is a certain
174 probability that the two accesses hit the same cache line. In this
175 case, we issue the prefetches for both of them if this probability
176 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
178 #ifndef ACCEPTABLE_MISS_RATE
179 #define ACCEPTABLE_MISS_RATE 50
180 #endif
182 #ifndef HAVE_prefetch
183 #define HAVE_prefetch 0
184 #endif
186 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
187 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
189 /* We consider a memory access nontemporal if it is not reused sooner than
190 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
191 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
192 so that we use nontemporal prefetches e.g. if single memory location
193 is accessed several times in a single iteration of the loop. */
194 #define NONTEMPORAL_FRACTION 16
196 /* In case we have to emit a memory fence instruction after the loop that
197 uses nontemporal stores, this defines the builtin to use. */
199 #ifndef FENCE_FOLLOWING_MOVNT
200 #define FENCE_FOLLOWING_MOVNT NULL_TREE
201 #endif
203 /* The group of references between that reuse may occur. */
205 struct mem_ref_group
207 tree base; /* Base of the reference. */
208 HOST_WIDE_INT step; /* Step of the reference. */
209 struct mem_ref *refs; /* References in the group. */
210 struct mem_ref_group *next; /* Next group of references. */
213 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
215 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
217 /* The memory reference. */
219 struct mem_ref
221 gimple stmt; /* Statement in that the reference appears. */
222 tree mem; /* The reference. */
223 HOST_WIDE_INT delta; /* Constant offset of the reference. */
224 struct mem_ref_group *group; /* The group of references it belongs to. */
225 unsigned HOST_WIDE_INT prefetch_mod;
226 /* Prefetch only each PREFETCH_MOD-th
227 iteration. */
228 unsigned HOST_WIDE_INT prefetch_before;
229 /* Prefetch only first PREFETCH_BEFORE
230 iterations. */
231 unsigned reuse_distance; /* The amount of data accessed before the first
232 reuse of this value. */
233 struct mem_ref *next; /* The next reference in the group. */
234 unsigned write_p : 1; /* Is it a write? */
235 unsigned independent_p : 1; /* True if the reference is independent on
236 all other references inside the loop. */
237 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
238 unsigned storent_p : 1; /* True if we changed the store to a
239 nontemporal one. */
242 /* Dumps information about reference REF to FILE. */
244 static void
245 dump_mem_ref (FILE *file, struct mem_ref *ref)
247 fprintf (file, "Reference %p:\n", (void *) ref);
249 fprintf (file, " group %p (base ", (void *) ref->group);
250 print_generic_expr (file, ref->group->base, TDF_SLIM);
251 fprintf (file, ", step ");
252 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
253 fprintf (file, ")\n");
255 fprintf (file, " delta ");
256 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
257 fprintf (file, "\n");
259 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
261 fprintf (file, "\n");
264 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
265 exist. */
267 static struct mem_ref_group *
268 find_or_create_group (struct mem_ref_group **groups, tree base,
269 HOST_WIDE_INT step)
271 struct mem_ref_group *group;
273 for (; *groups; groups = &(*groups)->next)
275 if ((*groups)->step == step
276 && operand_equal_p ((*groups)->base, base, 0))
277 return *groups;
279 /* Keep the list of groups sorted by decreasing step. */
280 if ((*groups)->step < step)
281 break;
284 group = XNEW (struct mem_ref_group);
285 group->base = base;
286 group->step = step;
287 group->refs = NULL;
288 group->next = *groups;
289 *groups = group;
291 return group;
294 /* Records a memory reference MEM in GROUP with offset DELTA and write status
295 WRITE_P. The reference occurs in statement STMT. */
297 static void
298 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
299 HOST_WIDE_INT delta, bool write_p)
301 struct mem_ref **aref;
303 /* Do not record the same address twice. */
304 for (aref = &group->refs; *aref; aref = &(*aref)->next)
306 /* It does not have to be possible for write reference to reuse the read
307 prefetch, or vice versa. */
308 if (!WRITE_CAN_USE_READ_PREFETCH
309 && write_p
310 && !(*aref)->write_p)
311 continue;
312 if (!READ_CAN_USE_WRITE_PREFETCH
313 && !write_p
314 && (*aref)->write_p)
315 continue;
317 if ((*aref)->delta == delta)
318 return;
321 (*aref) = XNEW (struct mem_ref);
322 (*aref)->stmt = stmt;
323 (*aref)->mem = mem;
324 (*aref)->delta = delta;
325 (*aref)->write_p = write_p;
326 (*aref)->prefetch_before = PREFETCH_ALL;
327 (*aref)->prefetch_mod = 1;
328 (*aref)->reuse_distance = 0;
329 (*aref)->issue_prefetch_p = false;
330 (*aref)->group = group;
331 (*aref)->next = NULL;
332 (*aref)->independent_p = false;
333 (*aref)->storent_p = false;
335 if (dump_file && (dump_flags & TDF_DETAILS))
336 dump_mem_ref (dump_file, *aref);
339 /* Release memory references in GROUPS. */
341 static void
342 release_mem_refs (struct mem_ref_group *groups)
344 struct mem_ref_group *next_g;
345 struct mem_ref *ref, *next_r;
347 for (; groups; groups = next_g)
349 next_g = groups->next;
350 for (ref = groups->refs; ref; ref = next_r)
352 next_r = ref->next;
353 free (ref);
355 free (groups);
359 /* A structure used to pass arguments to idx_analyze_ref. */
361 struct ar_data
363 struct loop *loop; /* Loop of the reference. */
364 gimple stmt; /* Statement of the reference. */
365 HOST_WIDE_INT *step; /* Step of the memory reference. */
366 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
369 /* Analyzes a single INDEX of a memory reference to obtain information
370 described at analyze_ref. Callback for for_each_index. */
372 static bool
373 idx_analyze_ref (tree base, tree *index, void *data)
375 struct ar_data *ar_data = (struct ar_data *) data;
376 tree ibase, step, stepsize;
377 HOST_WIDE_INT istep, idelta = 0, imult = 1;
378 affine_iv iv;
380 if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
381 || TREE_CODE (base) == ALIGN_INDIRECT_REF)
382 return false;
384 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
385 *index, &iv, false))
386 return false;
387 ibase = iv.base;
388 step = iv.step;
390 if (!cst_and_fits_in_hwi (step))
391 return false;
392 istep = int_cst_value (step);
394 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
395 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
397 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
398 ibase = TREE_OPERAND (ibase, 0);
400 if (cst_and_fits_in_hwi (ibase))
402 idelta += int_cst_value (ibase);
403 ibase = build_int_cst (TREE_TYPE (ibase), 0);
406 if (TREE_CODE (base) == ARRAY_REF)
408 stepsize = array_ref_element_size (base);
409 if (!cst_and_fits_in_hwi (stepsize))
410 return false;
411 imult = int_cst_value (stepsize);
413 istep *= imult;
414 idelta *= imult;
417 *ar_data->step += istep;
418 *ar_data->delta += idelta;
419 *index = ibase;
421 return true;
424 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
425 STEP are integer constants and iter is number of iterations of LOOP. The
426 reference occurs in statement STMT. Strips nonaddressable component
427 references from REF_P. */
429 static bool
430 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
431 HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
432 gimple stmt)
434 struct ar_data ar_data;
435 tree off;
436 HOST_WIDE_INT bit_offset;
437 tree ref = *ref_p;
439 *step = 0;
440 *delta = 0;
442 /* First strip off the component references. Ignore bitfields. */
443 if (TREE_CODE (ref) == COMPONENT_REF
444 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
445 ref = TREE_OPERAND (ref, 0);
447 *ref_p = ref;
449 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
451 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
452 bit_offset = TREE_INT_CST_LOW (off);
453 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
455 *delta += bit_offset / BITS_PER_UNIT;
458 *base = unshare_expr (ref);
459 ar_data.loop = loop;
460 ar_data.stmt = stmt;
461 ar_data.step = step;
462 ar_data.delta = delta;
463 return for_each_index (base, idx_analyze_ref, &ar_data);
466 /* Record a memory reference REF to the list REFS. The reference occurs in
467 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
468 reference was recorded, false otherwise. */
470 static bool
471 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
472 tree ref, bool write_p, gimple stmt)
474 tree base;
475 HOST_WIDE_INT step, delta;
476 struct mem_ref_group *agrp;
478 if (get_base_address (ref) == NULL)
479 return false;
481 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
482 return false;
484 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
485 are integer constants. */
486 agrp = find_or_create_group (refs, base, step);
487 record_ref (agrp, stmt, ref, delta, write_p);
489 return true;
492 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
493 true if there are no other memory references inside the loop. */
495 static struct mem_ref_group *
496 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
498 basic_block *body = get_loop_body_in_dom_order (loop);
499 basic_block bb;
500 unsigned i;
501 gimple_stmt_iterator bsi;
502 gimple stmt;
503 tree lhs, rhs;
504 struct mem_ref_group *refs = NULL;
506 *no_other_refs = true;
507 *ref_count = 0;
509 /* Scan the loop body in order, so that the former references precede the
510 later ones. */
511 for (i = 0; i < loop->num_nodes; i++)
513 bb = body[i];
514 if (bb->loop_father != loop)
515 continue;
517 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
519 stmt = gsi_stmt (bsi);
521 if (gimple_code (stmt) != GIMPLE_ASSIGN)
523 if (gimple_vuse (stmt)
524 || (is_gimple_call (stmt)
525 && !(gimple_call_flags (stmt) & ECF_CONST)))
526 *no_other_refs = false;
527 continue;
530 lhs = gimple_assign_lhs (stmt);
531 rhs = gimple_assign_rhs1 (stmt);
533 if (REFERENCE_CLASS_P (rhs))
535 *no_other_refs &= gather_memory_references_ref (loop, &refs,
536 rhs, false, stmt);
537 *ref_count += 1;
539 if (REFERENCE_CLASS_P (lhs))
541 *no_other_refs &= gather_memory_references_ref (loop, &refs,
542 lhs, true, stmt);
543 *ref_count += 1;
547 free (body);
549 return refs;
552 /* Prune the prefetch candidate REF using the self-reuse. */
554 static void
555 prune_ref_by_self_reuse (struct mem_ref *ref)
557 HOST_WIDE_INT step = ref->group->step;
558 bool backward = step < 0;
560 if (step == 0)
562 /* Prefetch references to invariant address just once. */
563 ref->prefetch_before = 1;
564 return;
567 if (backward)
568 step = -step;
570 if (step > PREFETCH_BLOCK)
571 return;
573 if ((backward && HAVE_BACKWARD_PREFETCH)
574 || (!backward && HAVE_FORWARD_PREFETCH))
576 ref->prefetch_before = 1;
577 return;
580 ref->prefetch_mod = PREFETCH_BLOCK / step;
583 /* Divides X by BY, rounding down. */
585 static HOST_WIDE_INT
586 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
588 gcc_assert (by > 0);
590 if (x >= 0)
591 return x / by;
592 else
593 return (x + by - 1) / by;
596 /* Given a CACHE_LINE_SIZE and two inductive memory references
597 with a common STEP greater than CACHE_LINE_SIZE and an address
598 difference DELTA, compute the probability that they will fall
599 in different cache lines. DISTINCT_ITERS is the number of
600 distinct iterations after which the pattern repeats itself.
601 ALIGN_UNIT is the unit of alignment in bytes. */
603 static int
604 compute_miss_rate (unsigned HOST_WIDE_INT cache_line_size,
605 HOST_WIDE_INT step, HOST_WIDE_INT delta,
606 unsigned HOST_WIDE_INT distinct_iters,
607 int align_unit)
609 unsigned align, iter;
610 int total_positions, miss_positions, miss_rate;
611 int address1, address2, cache_line1, cache_line2;
613 total_positions = 0;
614 miss_positions = 0;
616 /* Iterate through all possible alignments of the first
617 memory reference within its cache line. */
618 for (align = 0; align < cache_line_size; align += align_unit)
620 /* Iterate through all distinct iterations. */
621 for (iter = 0; iter < distinct_iters; iter++)
623 address1 = align + step * iter;
624 address2 = address1 + delta;
625 cache_line1 = address1 / cache_line_size;
626 cache_line2 = address2 / cache_line_size;
627 total_positions += 1;
628 if (cache_line1 != cache_line2)
629 miss_positions += 1;
631 miss_rate = 1000 * miss_positions / total_positions;
632 return miss_rate;
635 /* Prune the prefetch candidate REF using the reuse with BY.
636 If BY_IS_BEFORE is true, BY is before REF in the loop. */
638 static void
639 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
640 bool by_is_before)
642 HOST_WIDE_INT step = ref->group->step;
643 bool backward = step < 0;
644 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
645 HOST_WIDE_INT delta = delta_b - delta_r;
646 HOST_WIDE_INT hit_from;
647 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
648 int miss_rate;
649 HOST_WIDE_INT reduced_step;
650 unsigned HOST_WIDE_INT reduced_prefetch_block;
651 tree ref_type;
652 int align_unit;
654 if (delta == 0)
656 /* If the references has the same address, only prefetch the
657 former. */
658 if (by_is_before)
659 ref->prefetch_before = 0;
661 return;
664 if (!step)
666 /* If the reference addresses are invariant and fall into the
667 same cache line, prefetch just the first one. */
668 if (!by_is_before)
669 return;
671 if (ddown (ref->delta, PREFETCH_BLOCK)
672 != ddown (by->delta, PREFETCH_BLOCK))
673 return;
675 ref->prefetch_before = 0;
676 return;
679 /* Only prune the reference that is behind in the array. */
680 if (backward)
682 if (delta > 0)
683 return;
685 /* Transform the data so that we may assume that the accesses
686 are forward. */
687 delta = - delta;
688 step = -step;
689 delta_r = PREFETCH_BLOCK - 1 - delta_r;
690 delta_b = PREFETCH_BLOCK - 1 - delta_b;
692 else
694 if (delta < 0)
695 return;
698 /* Check whether the two references are likely to hit the same cache
699 line, and how distant the iterations in that it occurs are from
700 each other. */
702 if (step <= PREFETCH_BLOCK)
704 /* The accesses are sure to meet. Let us check when. */
705 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
706 prefetch_before = (hit_from - delta_r + step - 1) / step;
708 if (prefetch_before < ref->prefetch_before)
709 ref->prefetch_before = prefetch_before;
711 return;
714 /* A more complicated case with step > prefetch_block. First reduce
715 the ratio between the step and the cache line size to its simplest
716 terms. The resulting denominator will then represent the number of
717 distinct iterations after which each address will go back to its
718 initial location within the cache line. This computation assumes
719 that PREFETCH_BLOCK is a power of two. */
720 prefetch_block = PREFETCH_BLOCK;
721 reduced_prefetch_block = prefetch_block;
722 reduced_step = step;
723 while ((reduced_step & 1) == 0
724 && reduced_prefetch_block > 1)
726 reduced_step >>= 1;
727 reduced_prefetch_block >>= 1;
730 prefetch_before = delta / step;
731 delta %= step;
732 ref_type = TREE_TYPE (ref->mem);
733 align_unit = TYPE_ALIGN (ref_type) / 8;
734 miss_rate = compute_miss_rate(prefetch_block, step, delta,
735 reduced_prefetch_block, align_unit);
736 if (miss_rate <= ACCEPTABLE_MISS_RATE)
738 if (prefetch_before < ref->prefetch_before)
739 ref->prefetch_before = prefetch_before;
741 return;
744 /* Try also the following iteration. */
745 prefetch_before++;
746 delta = step - delta;
747 miss_rate = compute_miss_rate(prefetch_block, step, delta,
748 reduced_prefetch_block, align_unit);
749 if (miss_rate <= ACCEPTABLE_MISS_RATE)
751 if (prefetch_before < ref->prefetch_before)
752 ref->prefetch_before = prefetch_before;
754 return;
757 /* The ref probably does not reuse by. */
758 return;
761 /* Prune the prefetch candidate REF using the reuses with other references
762 in REFS. */
764 static void
765 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
767 struct mem_ref *prune_by;
768 bool before = true;
770 prune_ref_by_self_reuse (ref);
772 for (prune_by = refs; prune_by; prune_by = prune_by->next)
774 if (prune_by == ref)
776 before = false;
777 continue;
780 if (!WRITE_CAN_USE_READ_PREFETCH
781 && ref->write_p
782 && !prune_by->write_p)
783 continue;
784 if (!READ_CAN_USE_WRITE_PREFETCH
785 && !ref->write_p
786 && prune_by->write_p)
787 continue;
789 prune_ref_by_group_reuse (ref, prune_by, before);
793 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
795 static void
796 prune_group_by_reuse (struct mem_ref_group *group)
798 struct mem_ref *ref_pruned;
800 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
802 prune_ref_by_reuse (ref_pruned, group->refs);
804 if (dump_file && (dump_flags & TDF_DETAILS))
806 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
808 if (ref_pruned->prefetch_before == PREFETCH_ALL
809 && ref_pruned->prefetch_mod == 1)
810 fprintf (dump_file, " no restrictions");
811 else if (ref_pruned->prefetch_before == 0)
812 fprintf (dump_file, " do not prefetch");
813 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
814 fprintf (dump_file, " prefetch once");
815 else
817 if (ref_pruned->prefetch_before != PREFETCH_ALL)
819 fprintf (dump_file, " prefetch before ");
820 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
821 ref_pruned->prefetch_before);
823 if (ref_pruned->prefetch_mod != 1)
825 fprintf (dump_file, " prefetch mod ");
826 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
827 ref_pruned->prefetch_mod);
830 fprintf (dump_file, "\n");
835 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
837 static void
838 prune_by_reuse (struct mem_ref_group *groups)
840 for (; groups; groups = groups->next)
841 prune_group_by_reuse (groups);
844 /* Returns true if we should issue prefetch for REF. */
846 static bool
847 should_issue_prefetch_p (struct mem_ref *ref)
849 /* For now do not issue prefetches for only first few of the
850 iterations. */
851 if (ref->prefetch_before != PREFETCH_ALL)
852 return false;
854 /* Do not prefetch nontemporal stores. */
855 if (ref->storent_p)
856 return false;
858 return true;
861 /* Decide which of the prefetch candidates in GROUPS to prefetch.
862 AHEAD is the number of iterations to prefetch ahead (which corresponds
863 to the number of simultaneous instances of one prefetch running at a
864 time). UNROLL_FACTOR is the factor by that the loop is going to be
865 unrolled. Returns true if there is anything to prefetch. */
867 static bool
868 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
869 unsigned ahead)
871 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
872 unsigned slots_per_prefetch;
873 struct mem_ref *ref;
874 bool any = false;
876 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
877 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
879 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
880 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
881 it will need a prefetch slot. */
882 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
883 if (dump_file && (dump_flags & TDF_DETAILS))
884 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
885 slots_per_prefetch);
887 /* For now we just take memory references one by one and issue
888 prefetches for as many as possible. The groups are sorted
889 starting with the largest step, since the references with
890 large step are more likely to cause many cache misses. */
892 for (; groups; groups = groups->next)
893 for (ref = groups->refs; ref; ref = ref->next)
895 if (!should_issue_prefetch_p (ref))
896 continue;
898 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
899 and we unroll the loop UNROLL_FACTOR times, we need to insert
900 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
901 iteration. */
902 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
903 / ref->prefetch_mod);
904 prefetch_slots = n_prefetches * slots_per_prefetch;
906 /* If more than half of the prefetches would be lost anyway, do not
907 issue the prefetch. */
908 if (2 * remaining_prefetch_slots < prefetch_slots)
909 continue;
911 ref->issue_prefetch_p = true;
913 if (remaining_prefetch_slots <= prefetch_slots)
914 return true;
915 remaining_prefetch_slots -= prefetch_slots;
916 any = true;
919 return any;
922 /* Estimate the number of prefetches in the given GROUPS. */
924 static int
925 estimate_prefetch_count (struct mem_ref_group *groups)
927 struct mem_ref *ref;
928 int prefetch_count = 0;
930 for (; groups; groups = groups->next)
931 for (ref = groups->refs; ref; ref = ref->next)
932 if (should_issue_prefetch_p (ref))
933 prefetch_count++;
935 return prefetch_count;
938 /* Issue prefetches for the reference REF into loop as decided before.
939 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
940 is the factor by which LOOP was unrolled. */
942 static void
943 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
945 HOST_WIDE_INT delta;
946 tree addr, addr_base, write_p, local;
947 gimple prefetch;
948 gimple_stmt_iterator bsi;
949 unsigned n_prefetches, ap;
950 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
952 if (dump_file && (dump_flags & TDF_DETAILS))
953 fprintf (dump_file, "Issued%s prefetch for %p.\n",
954 nontemporal ? " nontemporal" : "",
955 (void *) ref);
957 bsi = gsi_for_stmt (ref->stmt);
959 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
960 / ref->prefetch_mod);
961 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
962 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
963 true, NULL, true, GSI_SAME_STMT);
964 write_p = ref->write_p ? integer_one_node : integer_zero_node;
965 local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
967 for (ap = 0; ap < n_prefetches; ap++)
969 /* Determine the address to prefetch. */
970 delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
971 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
972 addr_base, size_int (delta));
973 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
974 true, GSI_SAME_STMT);
976 /* Create the prefetch instruction. */
977 prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
978 3, addr, write_p, local);
979 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
983 /* Issue prefetches for the references in GROUPS into loop as decided before.
984 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
985 factor by that LOOP was unrolled. */
987 static void
988 issue_prefetches (struct mem_ref_group *groups,
989 unsigned unroll_factor, unsigned ahead)
991 struct mem_ref *ref;
993 for (; groups; groups = groups->next)
994 for (ref = groups->refs; ref; ref = ref->next)
995 if (ref->issue_prefetch_p)
996 issue_prefetch_ref (ref, unroll_factor, ahead);
999 /* Returns true if REF is a memory write for that a nontemporal store insn
1000 can be used. */
1002 static bool
1003 nontemporal_store_p (struct mem_ref *ref)
1005 enum machine_mode mode;
1006 enum insn_code code;
1008 /* REF must be a write that is not reused. We require it to be independent
1009 on all other memory references in the loop, as the nontemporal stores may
1010 be reordered with respect to other memory references. */
1011 if (!ref->write_p
1012 || !ref->independent_p
1013 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1014 return false;
1016 /* Check that we have the storent instruction for the mode. */
1017 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1018 if (mode == BLKmode)
1019 return false;
1021 code = optab_handler (storent_optab, mode)->insn_code;
1022 return code != CODE_FOR_nothing;
1025 /* If REF is a nontemporal store, we mark the corresponding modify statement
1026 and return true. Otherwise, we return false. */
1028 static bool
1029 mark_nontemporal_store (struct mem_ref *ref)
1031 if (!nontemporal_store_p (ref))
1032 return false;
1034 if (dump_file && (dump_flags & TDF_DETAILS))
1035 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1036 (void *) ref);
1038 gimple_assign_set_nontemporal_move (ref->stmt, true);
1039 ref->storent_p = true;
1041 return true;
1044 /* Issue a memory fence instruction after LOOP. */
1046 static void
1047 emit_mfence_after_loop (struct loop *loop)
1049 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1050 edge exit;
1051 gimple call;
1052 gimple_stmt_iterator bsi;
1053 unsigned i;
1055 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1057 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1059 if (!single_pred_p (exit->dest)
1060 /* If possible, we prefer not to insert the fence on other paths
1061 in cfg. */
1062 && !(exit->flags & EDGE_ABNORMAL))
1063 split_loop_exit_edge (exit);
1064 bsi = gsi_after_labels (exit->dest);
1066 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1067 mark_virtual_ops_for_renaming (call);
1070 VEC_free (edge, heap, exits);
1071 update_ssa (TODO_update_ssa_only_virtuals);
1074 /* Returns true if we can use storent in loop, false otherwise. */
1076 static bool
1077 may_use_storent_in_loop_p (struct loop *loop)
1079 bool ret = true;
1081 if (loop->inner != NULL)
1082 return false;
1084 /* If we must issue a mfence insn after using storent, check that there
1085 is a suitable place for it at each of the loop exits. */
1086 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1088 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1089 unsigned i;
1090 edge exit;
1092 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1093 if ((exit->flags & EDGE_ABNORMAL)
1094 && exit->dest == EXIT_BLOCK_PTR)
1095 ret = false;
1097 VEC_free (edge, heap, exits);
1100 return ret;
1103 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1104 references in the loop. */
1106 static void
1107 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1109 struct mem_ref *ref;
1110 bool any = false;
1112 if (!may_use_storent_in_loop_p (loop))
1113 return;
1115 for (; groups; groups = groups->next)
1116 for (ref = groups->refs; ref; ref = ref->next)
1117 any |= mark_nontemporal_store (ref);
1119 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1120 emit_mfence_after_loop (loop);
1123 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1124 this is the case, fill in DESC by the description of number of
1125 iterations. */
1127 static bool
1128 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1129 unsigned factor)
1131 if (!can_unroll_loop_p (loop, factor, desc))
1132 return false;
1134 /* We only consider loops without control flow for unrolling. This is not
1135 a hard restriction -- tree_unroll_loop works with arbitrary loops
1136 as well; but the unrolling/prefetching is usually more profitable for
1137 loops consisting of a single basic block, and we want to limit the
1138 code growth. */
1139 if (loop->num_nodes > 2)
1140 return false;
1142 return true;
1145 /* Determine the coefficient by that unroll LOOP, from the information
1146 contained in the list of memory references REFS. Description of
1147 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1148 insns of the LOOP. EST_NITER is the estimated number of iterations of
1149 the loop, or -1 if no estimate is available. */
1151 static unsigned
1152 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1153 unsigned ninsns, struct tree_niter_desc *desc,
1154 HOST_WIDE_INT est_niter)
1156 unsigned upper_bound;
1157 unsigned nfactor, factor, mod_constraint;
1158 struct mem_ref_group *agp;
1159 struct mem_ref *ref;
1161 /* First check whether the loop is not too large to unroll. We ignore
1162 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1163 from unrolling them enough to make exactly one cache line covered by each
1164 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1165 us from unrolling the loops too many times in cases where we only expect
1166 gains from better scheduling and decreasing loop overhead, which is not
1167 the case here. */
1168 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1170 /* If we unrolled the loop more times than it iterates, the unrolled version
1171 of the loop would be never entered. */
1172 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1173 upper_bound = est_niter;
1175 if (upper_bound <= 1)
1176 return 1;
1178 /* Choose the factor so that we may prefetch each cache just once,
1179 but bound the unrolling by UPPER_BOUND. */
1180 factor = 1;
1181 for (agp = refs; agp; agp = agp->next)
1182 for (ref = agp->refs; ref; ref = ref->next)
1183 if (should_issue_prefetch_p (ref))
1185 mod_constraint = ref->prefetch_mod;
1186 nfactor = least_common_multiple (mod_constraint, factor);
1187 if (nfactor <= upper_bound)
1188 factor = nfactor;
1191 if (!should_unroll_loop_p (loop, desc, factor))
1192 return 1;
1194 return factor;
1197 /* Returns the total volume of the memory references REFS, taking into account
1198 reuses in the innermost loop and cache line size. TODO -- we should also
1199 take into account reuses across the iterations of the loops in the loop
1200 nest. */
1202 static unsigned
1203 volume_of_references (struct mem_ref_group *refs)
1205 unsigned volume = 0;
1206 struct mem_ref_group *gr;
1207 struct mem_ref *ref;
1209 for (gr = refs; gr; gr = gr->next)
1210 for (ref = gr->refs; ref; ref = ref->next)
1212 /* Almost always reuses another value? */
1213 if (ref->prefetch_before != PREFETCH_ALL)
1214 continue;
1216 /* If several iterations access the same cache line, use the size of
1217 the line divided by this number. Otherwise, a cache line is
1218 accessed in each iteration. TODO -- in the latter case, we should
1219 take the size of the reference into account, rounding it up on cache
1220 line size multiple. */
1221 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1223 return volume;
1226 /* Returns the volume of memory references accessed across VEC iterations of
1227 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1228 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1230 static unsigned
1231 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1233 unsigned i;
1235 for (i = 0; i < n; i++)
1236 if (vec[i] != 0)
1237 break;
1239 if (i == n)
1240 return 0;
1242 gcc_assert (vec[i] > 0);
1244 /* We ignore the parts of the distance vector in subloops, since usually
1245 the numbers of iterations are much smaller. */
1246 return loop_sizes[i] * vec[i];
1249 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1250 at the position corresponding to the loop of the step. N is the depth
1251 of the considered loop nest, and, LOOP is its innermost loop. */
1253 static void
1254 add_subscript_strides (tree access_fn, unsigned stride,
1255 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1257 struct loop *aloop;
1258 tree step;
1259 HOST_WIDE_INT astep;
1260 unsigned min_depth = loop_depth (loop) - n;
1262 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1264 aloop = get_chrec_loop (access_fn);
1265 step = CHREC_RIGHT (access_fn);
1266 access_fn = CHREC_LEFT (access_fn);
1268 if ((unsigned) loop_depth (aloop) <= min_depth)
1269 continue;
1271 if (host_integerp (step, 0))
1272 astep = tree_low_cst (step, 0);
1273 else
1274 astep = L1_CACHE_LINE_SIZE;
1276 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1281 /* Returns the volume of memory references accessed between two consecutive
1282 self-reuses of the reference DR. We consider the subscripts of DR in N
1283 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1284 loops. LOOP is the innermost loop of the current loop nest. */
1286 static unsigned
1287 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1288 struct loop *loop)
1290 tree stride, access_fn;
1291 HOST_WIDE_INT *strides, astride;
1292 VEC (tree, heap) *access_fns;
1293 tree ref = DR_REF (dr);
1294 unsigned i, ret = ~0u;
1296 /* In the following example:
1298 for (i = 0; i < N; i++)
1299 for (j = 0; j < N; j++)
1300 use (a[j][i]);
1301 the same cache line is accessed each N steps (except if the change from
1302 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1303 we cannot rely purely on the results of the data dependence analysis.
1305 Instead, we compute the stride of the reference in each loop, and consider
1306 the innermost loop in that the stride is less than cache size. */
1308 strides = XCNEWVEC (HOST_WIDE_INT, n);
1309 access_fns = DR_ACCESS_FNS (dr);
1311 for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
1313 /* Keep track of the reference corresponding to the subscript, so that we
1314 know its stride. */
1315 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1316 ref = TREE_OPERAND (ref, 0);
1318 if (TREE_CODE (ref) == ARRAY_REF)
1320 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1321 if (host_integerp (stride, 1))
1322 astride = tree_low_cst (stride, 1);
1323 else
1324 astride = L1_CACHE_LINE_SIZE;
1326 ref = TREE_OPERAND (ref, 0);
1328 else
1329 astride = 1;
1331 add_subscript_strides (access_fn, astride, strides, n, loop);
1334 for (i = n; i-- > 0; )
1336 unsigned HOST_WIDE_INT s;
1338 s = strides[i] < 0 ? -strides[i] : strides[i];
1340 if (s < (unsigned) L1_CACHE_LINE_SIZE
1341 && (loop_sizes[i]
1342 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1344 ret = loop_sizes[i];
1345 break;
1349 free (strides);
1350 return ret;
1353 /* Determines the distance till the first reuse of each reference in REFS
1354 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1355 memory references in the loop. */
1357 static void
1358 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1359 bool no_other_refs)
1361 struct loop *nest, *aloop;
1362 VEC (data_reference_p, heap) *datarefs = NULL;
1363 VEC (ddr_p, heap) *dependences = NULL;
1364 struct mem_ref_group *gr;
1365 struct mem_ref *ref, *refb;
1366 VEC (loop_p, heap) *vloops = NULL;
1367 unsigned *loop_data_size;
1368 unsigned i, j, n;
1369 unsigned volume, dist, adist;
1370 HOST_WIDE_INT vol;
1371 data_reference_p dr;
1372 ddr_p dep;
1374 if (loop->inner)
1375 return;
1377 /* Find the outermost loop of the loop nest of loop (we require that
1378 there are no sibling loops inside the nest). */
1379 nest = loop;
1380 while (1)
1382 aloop = loop_outer (nest);
1384 if (aloop == current_loops->tree_root
1385 || aloop->inner->next)
1386 break;
1388 nest = aloop;
1391 /* For each loop, determine the amount of data accessed in each iteration.
1392 We use this to estimate whether the reference is evicted from the
1393 cache before its reuse. */
1394 find_loop_nest (nest, &vloops);
1395 n = VEC_length (loop_p, vloops);
1396 loop_data_size = XNEWVEC (unsigned, n);
1397 volume = volume_of_references (refs);
1398 i = n;
1399 while (i-- != 0)
1401 loop_data_size[i] = volume;
1402 /* Bound the volume by the L2 cache size, since above this bound,
1403 all dependence distances are equivalent. */
1404 if (volume > L2_CACHE_SIZE_BYTES)
1405 continue;
1407 aloop = VEC_index (loop_p, vloops, i);
1408 vol = estimated_loop_iterations_int (aloop, false);
1409 if (vol < 0)
1410 vol = expected_loop_iterations (aloop);
1411 volume *= vol;
1414 /* Prepare the references in the form suitable for data dependence
1415 analysis. We ignore unanalyzable data references (the results
1416 are used just as a heuristics to estimate temporality of the
1417 references, hence we do not need to worry about correctness). */
1418 for (gr = refs; gr; gr = gr->next)
1419 for (ref = gr->refs; ref; ref = ref->next)
1421 dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
1423 if (dr)
1425 ref->reuse_distance = volume;
1426 dr->aux = ref;
1427 VEC_safe_push (data_reference_p, heap, datarefs, dr);
1429 else
1430 no_other_refs = false;
1433 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1435 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1436 ref = (struct mem_ref *) dr->aux;
1437 if (ref->reuse_distance > dist)
1438 ref->reuse_distance = dist;
1440 if (no_other_refs)
1441 ref->independent_p = true;
1444 compute_all_dependences (datarefs, &dependences, vloops, true);
1446 for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
1448 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1449 continue;
1451 ref = (struct mem_ref *) DDR_A (dep)->aux;
1452 refb = (struct mem_ref *) DDR_B (dep)->aux;
1454 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1455 || DDR_NUM_DIST_VECTS (dep) == 0)
1457 /* If the dependence cannot be analyzed, assume that there might be
1458 a reuse. */
1459 dist = 0;
1461 ref->independent_p = false;
1462 refb->independent_p = false;
1464 else
1466 /* The distance vectors are normalized to be always lexicographically
1467 positive, hence we cannot tell just from them whether DDR_A comes
1468 before DDR_B or vice versa. However, it is not important,
1469 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1470 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1471 in cache (and marking it as nontemporal would not affect
1472 anything). */
1474 dist = volume;
1475 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1477 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1478 loop_data_size, n);
1480 /* If this is a dependence in the innermost loop (i.e., the
1481 distances in all superloops are zero) and it is not
1482 the trivial self-dependence with distance zero, record that
1483 the references are not completely independent. */
1484 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1485 && (ref != refb
1486 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1488 ref->independent_p = false;
1489 refb->independent_p = false;
1492 /* Ignore accesses closer than
1493 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1494 so that we use nontemporal prefetches e.g. if single memory
1495 location is accessed several times in a single iteration of
1496 the loop. */
1497 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1498 continue;
1500 if (adist < dist)
1501 dist = adist;
1505 if (ref->reuse_distance > dist)
1506 ref->reuse_distance = dist;
1507 if (refb->reuse_distance > dist)
1508 refb->reuse_distance = dist;
1511 free_dependence_relations (dependences);
1512 free_data_refs (datarefs);
1513 free (loop_data_size);
1515 if (dump_file && (dump_flags & TDF_DETAILS))
1517 fprintf (dump_file, "Reuse distances:\n");
1518 for (gr = refs; gr; gr = gr->next)
1519 for (ref = gr->refs; ref; ref = ref->next)
1520 fprintf (dump_file, " ref %p distance %u\n",
1521 (void *) ref, ref->reuse_distance);
1525 /* Do a cost-benefit analysis to determine if prefetching is profitable
1526 for the current loop given the following parameters:
1527 AHEAD: the iteration ahead distance,
1528 EST_NITER: the estimated trip count,
1529 NINSNS: estimated number of instructions in the loop,
1530 PREFETCH_COUNT: an estimate of the number of prefetches
1531 MEM_REF_COUNT: total number of memory references in the loop. */
1533 static bool
1534 is_loop_prefetching_profitable (unsigned ahead, HOST_WIDE_INT est_niter,
1535 unsigned ninsns, unsigned prefetch_count,
1536 unsigned mem_ref_count)
1538 int insn_to_mem_ratio, insn_to_prefetch_ratio;
1540 if (mem_ref_count == 0)
1541 return false;
1543 /* Prefetching improves performance by overlapping cache missing
1544 memory accesses with CPU operations. If the loop does not have
1545 enough CPU operations to overlap with memory operations, prefetching
1546 won't give a significant benefit. One approximate way of checking
1547 this is to require the ratio of instructions to memory references to
1548 be above a certain limit. This approximation works well in practice.
1549 TODO: Implement a more precise computation by estimating the time
1550 for each CPU or memory op in the loop. Time estimates for memory ops
1551 should account for cache misses. */
1552 insn_to_mem_ratio = ninsns / mem_ref_count;
1554 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1555 return false;
1557 /* Profitability of prefetching is highly dependent on the trip count.
1558 For a given AHEAD distance, the first AHEAD iterations do not benefit
1559 from prefetching, and the last AHEAD iterations execute useless
1560 prefetches. So, if the trip count is not large enough relative to AHEAD,
1561 prefetching may cause serious performance degradation. To avoid this
1562 problem when the trip count is not known at compile time, we
1563 conservatively skip loops with high prefetching costs. For now, only
1564 the I-cache cost is considered. The relative I-cache cost is estimated
1565 by taking the ratio between the number of prefetches and the total
1566 number of instructions. Since we are using integer arithmetic, we
1567 compute the reciprocal of this ratio.
1568 TODO: Account for loop unrolling, which may reduce the costs of
1569 shorter stride prefetches. Note that not accounting for loop
1570 unrolling over-estimates the cost and hence gives more conservative
1571 results. */
1572 if (est_niter < 0)
1574 insn_to_prefetch_ratio = ninsns / prefetch_count;
1575 return insn_to_prefetch_ratio >= MIN_INSN_TO_PREFETCH_RATIO;
1578 if (est_niter <= (HOST_WIDE_INT) ahead)
1580 if (dump_file && (dump_flags & TDF_DETAILS))
1581 fprintf (dump_file,
1582 "Not prefetching -- loop estimated to roll only %d times\n",
1583 (int) est_niter);
1584 return false;
1586 return true;
1590 /* Issue prefetch instructions for array references in LOOP. Returns
1591 true if the LOOP was unrolled. */
1593 static bool
1594 loop_prefetch_arrays (struct loop *loop)
1596 struct mem_ref_group *refs;
1597 unsigned ahead, ninsns, time, unroll_factor;
1598 HOST_WIDE_INT est_niter;
1599 struct tree_niter_desc desc;
1600 bool unrolled = false, no_other_refs;
1601 unsigned prefetch_count;
1602 unsigned mem_ref_count;
1604 if (optimize_loop_nest_for_size_p (loop))
1606 if (dump_file && (dump_flags & TDF_DETAILS))
1607 fprintf (dump_file, " ignored (cold area)\n");
1608 return false;
1611 /* Step 1: gather the memory references. */
1612 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1614 /* Step 2: estimate the reuse effects. */
1615 prune_by_reuse (refs);
1617 prefetch_count = estimate_prefetch_count (refs);
1618 if (prefetch_count == 0)
1619 goto fail;
1621 determine_loop_nest_reuse (loop, refs, no_other_refs);
1623 /* Step 3: determine the ahead and unroll factor. */
1625 /* FIXME: the time should be weighted by the probabilities of the blocks in
1626 the loop body. */
1627 time = tree_num_loop_insns (loop, &eni_time_weights);
1628 ahead = (PREFETCH_LATENCY + time - 1) / time;
1629 est_niter = estimated_loop_iterations_int (loop, false);
1631 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1632 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1633 est_niter);
1634 if (dump_file && (dump_flags & TDF_DETAILS))
1635 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1636 HOST_WIDE_INT_PRINT_DEC "\n"
1637 "insn count %d, mem ref count %d, prefetch count %d\n",
1638 ahead, unroll_factor, est_niter,
1639 ninsns, mem_ref_count, prefetch_count);
1641 if (!is_loop_prefetching_profitable (ahead, est_niter, ninsns,
1642 prefetch_count, mem_ref_count))
1643 goto fail;
1645 mark_nontemporal_stores (loop, refs);
1647 /* Step 4: what to prefetch? */
1648 if (!schedule_prefetches (refs, unroll_factor, ahead))
1649 goto fail;
1651 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1652 iterations so that we do not issue superfluous prefetches. */
1653 if (unroll_factor != 1)
1655 tree_unroll_loop (loop, unroll_factor,
1656 single_dom_exit (loop), &desc);
1657 unrolled = true;
1660 /* Step 6: issue the prefetches. */
1661 issue_prefetches (refs, unroll_factor, ahead);
1663 fail:
1664 release_mem_refs (refs);
1665 return unrolled;
1668 /* Issue prefetch instructions for array references in loops. */
1670 unsigned int
1671 tree_ssa_prefetch_arrays (void)
1673 loop_iterator li;
1674 struct loop *loop;
1675 bool unrolled = false;
1676 int todo_flags = 0;
1678 if (!HAVE_prefetch
1679 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1680 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1681 of processor costs and i486 does not have prefetch, but
1682 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1683 || PREFETCH_BLOCK == 0)
1684 return 0;
1686 if (dump_file && (dump_flags & TDF_DETAILS))
1688 fprintf (dump_file, "Prefetching parameters:\n");
1689 fprintf (dump_file, " simultaneous prefetches: %d\n",
1690 SIMULTANEOUS_PREFETCHES);
1691 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1692 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1693 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1694 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1695 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1696 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1697 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1698 MIN_INSN_TO_PREFETCH_RATIO);
1699 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1700 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1701 fprintf (dump_file, "\n");
1704 initialize_original_copy_tables ();
1706 if (!built_in_decls[BUILT_IN_PREFETCH])
1708 tree type = build_function_type (void_type_node,
1709 tree_cons (NULL_TREE,
1710 const_ptr_type_node,
1711 NULL_TREE));
1712 tree decl = add_builtin_function ("__builtin_prefetch", type,
1713 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1714 NULL, NULL_TREE);
1715 DECL_IS_NOVOPS (decl) = true;
1716 built_in_decls[BUILT_IN_PREFETCH] = decl;
1719 /* We assume that size of cache line is a power of two, so verify this
1720 here. */
1721 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1723 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1725 if (dump_file && (dump_flags & TDF_DETAILS))
1726 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1728 unrolled |= loop_prefetch_arrays (loop);
1730 if (dump_file && (dump_flags & TDF_DETAILS))
1731 fprintf (dump_file, "\n\n");
1734 if (unrolled)
1736 scev_reset ();
1737 todo_flags |= TODO_cleanup_cfg;
1740 free_original_copy_tables ();
1741 return todo_flags;