Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / tree-loop-distribution.c
blob2defdfaff0184198c2eb0dd84f97e8d8c58d3449
1 /* Loop distribution.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
4 and Sebastian Pop <sebastian.pop@amd.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass performs loop distribution: for example, the loop
24 |DO I = 2, N
25 | A(I) = B(I) + C
26 | D(I) = A(I-1)*E
27 |ENDDO
29 is transformed to
31 |DOALL I = 2, N
32 | A(I) = B(I) + C
33 |ENDDO
35 |DOALL I = 2, N
36 | D(I) = A(I-1)*E
37 |ENDDO
39 This pass uses an RDG, Reduced Dependence Graph built on top of the
40 data dependence relations. The RDG is then topologically sorted to
41 obtain a map of information producers/consumers based on which it
42 generates the new loops. */
44 #include "config.h"
45 #include "system.h"
46 #include "coretypes.h"
47 #include "tm.h"
48 #include "ggc.h"
49 #include "tree.h"
50 #include "target.h"
52 #include "rtl.h"
53 #include "basic-block.h"
54 #include "diagnostic.h"
55 #include "tree-flow.h"
56 #include "tree-dump.h"
57 #include "timevar.h"
58 #include "cfgloop.h"
59 #include "expr.h"
60 #include "optabs.h"
61 #include "tree-chrec.h"
62 #include "tree-scalar-evolution.h"
63 #include "tree-data-ref.h"
64 #include "tree-pass.h"
65 #include "lambda.h"
66 #include "langhooks.h"
67 #include "tree-vectorizer.h"
69 /* If bit I is not set, it means that this node represents an
70 operation that has already been performed, and that should not be
71 performed again. This is the subgraph of remaining important
72 computations that is passed to the DFS algorithm for avoiding to
73 include several times the same stores in different loops. */
74 static bitmap remaining_stmts;
76 /* A node of the RDG is marked in this bitmap when it has as a
77 predecessor a node that writes to memory. */
78 static bitmap upstream_mem_writes;
80 /* Update the PHI nodes of NEW_LOOP. NEW_LOOP is a duplicate of
81 ORIG_LOOP. */
83 static void
84 update_phis_for_loop_copy (struct loop *orig_loop, struct loop *new_loop)
86 tree new_ssa_name;
87 gimple_stmt_iterator si_new, si_orig;
88 edge orig_loop_latch = loop_latch_edge (orig_loop);
89 edge orig_entry_e = loop_preheader_edge (orig_loop);
90 edge new_loop_entry_e = loop_preheader_edge (new_loop);
92 /* Scan the phis in the headers of the old and new loops
93 (they are organized in exactly the same order). */
94 for (si_new = gsi_start_phis (new_loop->header),
95 si_orig = gsi_start_phis (orig_loop->header);
96 !gsi_end_p (si_new) && !gsi_end_p (si_orig);
97 gsi_next (&si_new), gsi_next (&si_orig))
99 tree def;
100 source_location locus;
101 gimple phi_new = gsi_stmt (si_new);
102 gimple phi_orig = gsi_stmt (si_orig);
104 /* Add the first phi argument for the phi in NEW_LOOP (the one
105 associated with the entry of NEW_LOOP) */
106 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_entry_e);
107 locus = gimple_phi_arg_location_from_edge (phi_orig, orig_entry_e);
108 add_phi_arg (phi_new, def, new_loop_entry_e, locus);
110 /* Add the second phi argument for the phi in NEW_LOOP (the one
111 associated with the latch of NEW_LOOP) */
112 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
113 locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
115 if (TREE_CODE (def) == SSA_NAME)
117 new_ssa_name = get_current_def (def);
119 if (!new_ssa_name)
120 /* This only happens if there are no definitions inside the
121 loop. Use the phi_result in this case. */
122 new_ssa_name = PHI_RESULT (phi_new);
124 else
125 /* Could be an integer. */
126 new_ssa_name = def;
128 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
132 /* Return a copy of LOOP placed before LOOP. */
134 static struct loop *
135 copy_loop_before (struct loop *loop)
137 struct loop *res;
138 edge preheader = loop_preheader_edge (loop);
140 if (!single_exit (loop))
141 return NULL;
143 initialize_original_copy_tables ();
144 res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, preheader);
145 free_original_copy_tables ();
147 if (!res)
148 return NULL;
150 update_phis_for_loop_copy (loop, res);
151 rename_variables_in_loop (res);
153 return res;
156 /* Creates an empty basic block after LOOP. */
158 static void
159 create_bb_after_loop (struct loop *loop)
161 edge exit = single_exit (loop);
163 if (!exit)
164 return;
166 split_edge (exit);
169 /* Generate code for PARTITION from the code in LOOP. The loop is
170 copied when COPY_P is true. All the statements not flagged in the
171 PARTITION bitmap are removed from the loop or from its copy. The
172 statements are indexed in sequence inside a basic block, and the
173 basic blocks of a loop are taken in dom order. Returns true when
174 the code gen succeeded. */
176 static bool
177 generate_loops_for_partition (struct loop *loop, bitmap partition, bool copy_p)
179 unsigned i, x;
180 gimple_stmt_iterator bsi;
181 basic_block *bbs;
183 if (copy_p)
185 loop = copy_loop_before (loop);
186 create_preheader (loop, CP_SIMPLE_PREHEADERS);
187 create_bb_after_loop (loop);
190 if (loop == NULL)
191 return false;
193 /* Remove stmts not in the PARTITION bitmap. The order in which we
194 visit the phi nodes and the statements is exactly as in
195 stmts_from_loop. */
196 bbs = get_loop_body_in_dom_order (loop);
198 for (x = 0, i = 0; i < loop->num_nodes; i++)
200 basic_block bb = bbs[i];
202 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
203 if (!bitmap_bit_p (partition, x++))
204 remove_phi_node (&bsi, true);
205 else
206 gsi_next (&bsi);
208 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
209 if (gimple_code (gsi_stmt (bsi)) != GIMPLE_LABEL
210 && !bitmap_bit_p (partition, x++))
211 gsi_remove (&bsi, false);
212 else
213 gsi_next (&bsi);
215 mark_virtual_ops_in_bb (bb);
218 free (bbs);
219 return true;
222 /* Build the size argument for a memset call. */
224 static inline tree
225 build_size_arg_loc (location_t loc, tree nb_iter, tree op, gimple_seq* stmt_list)
227 tree nb_bytes;
228 gimple_seq stmts = NULL;
230 nb_bytes = fold_build2_loc (loc, MULT_EXPR, size_type_node,
231 fold_convert_loc (loc, size_type_node, nb_iter),
232 fold_convert_loc (loc, size_type_node,
233 TYPE_SIZE_UNIT (TREE_TYPE (op))));
234 nb_bytes = force_gimple_operand (nb_bytes, &stmts, true, NULL);
235 gimple_seq_add_seq (stmt_list, stmts);
237 return nb_bytes;
240 /* Generate a call to memset. Return true when the operation succeeded. */
242 static bool
243 generate_memset_zero (gimple stmt, tree op0, tree nb_iter,
244 gimple_stmt_iterator bsi)
246 tree addr_base;
247 tree nb_bytes = NULL;
248 bool res = false;
249 gimple_seq stmts = NULL, stmt_list = NULL;
250 gimple fn_call;
251 tree mem, fndecl, fntype, fn;
252 gimple_stmt_iterator i;
253 struct data_reference *dr = XCNEW (struct data_reference);
254 location_t loc = gimple_location (stmt);
256 DR_STMT (dr) = stmt;
257 DR_REF (dr) = op0;
258 if (!dr_analyze_innermost (dr))
259 goto end;
261 /* Test for a positive stride, iterating over every element. */
262 if (integer_zerop (fold_build2_loc (loc,
263 MINUS_EXPR, integer_type_node, DR_STEP (dr),
264 TYPE_SIZE_UNIT (TREE_TYPE (op0)))))
266 tree offset = fold_convert_loc (loc, sizetype,
267 size_binop_loc (loc, PLUS_EXPR,
268 DR_OFFSET (dr),
269 DR_INIT (dr)));
270 addr_base = fold_build2_loc (loc, POINTER_PLUS_EXPR,
271 TREE_TYPE (DR_BASE_ADDRESS (dr)),
272 DR_BASE_ADDRESS (dr), offset);
275 /* Test for a negative stride, iterating over every element. */
276 else if (integer_zerop (fold_build2_loc (loc, PLUS_EXPR, integer_type_node,
277 TYPE_SIZE_UNIT (TREE_TYPE (op0)),
278 DR_STEP (dr))))
280 nb_bytes = build_size_arg_loc (loc, nb_iter, op0, &stmt_list);
281 addr_base = size_binop_loc (loc, PLUS_EXPR, DR_OFFSET (dr), DR_INIT (dr));
282 addr_base = fold_build2_loc (loc, MINUS_EXPR, sizetype, addr_base,
283 fold_convert_loc (loc, sizetype, nb_bytes));
284 addr_base = force_gimple_operand (addr_base, &stmts, true, NULL);
285 gimple_seq_add_seq (&stmt_list, stmts);
287 addr_base = fold_build2_loc (loc, POINTER_PLUS_EXPR,
288 TREE_TYPE (DR_BASE_ADDRESS (dr)),
289 DR_BASE_ADDRESS (dr), addr_base);
291 else
292 goto end;
294 mem = force_gimple_operand (addr_base, &stmts, true, NULL);
295 gimple_seq_add_seq (&stmt_list, stmts);
297 fndecl = implicit_built_in_decls [BUILT_IN_MEMSET];
298 fntype = TREE_TYPE (fndecl);
299 fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
301 if (!nb_bytes)
302 nb_bytes = build_size_arg_loc (loc, nb_iter, op0, &stmt_list);
303 fn_call = gimple_build_call (fn, 3, mem, integer_zero_node, nb_bytes);
304 gimple_seq_add_stmt (&stmt_list, fn_call);
306 for (i = gsi_start (stmt_list); !gsi_end_p (i); gsi_next (&i))
308 gimple s = gsi_stmt (i);
309 update_stmt_if_modified (s);
312 gsi_insert_seq_after (&bsi, stmt_list, GSI_CONTINUE_LINKING);
313 res = true;
315 if (dump_file && (dump_flags & TDF_DETAILS))
316 fprintf (dump_file, "generated memset zero\n");
318 end:
319 free_data_ref (dr);
320 return res;
323 /* Propagate phis in BB b to their uses and remove them. */
325 static void
326 prop_phis (basic_block b)
328 gimple_stmt_iterator psi;
329 gimple_seq phis = phi_nodes (b);
331 for (psi = gsi_start (phis); !gsi_end_p (psi); )
333 gimple phi = gsi_stmt (psi);
334 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
336 gcc_assert (gimple_phi_num_args (phi) == 1);
338 if (!is_gimple_reg (def))
340 imm_use_iterator iter;
341 use_operand_p use_p;
342 gimple stmt;
344 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
345 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
346 SET_USE (use_p, use);
348 else
349 replace_uses_by (def, use);
351 remove_phi_node (&psi, true);
355 /* Tries to generate a builtin function for the instructions of LOOP
356 pointed to by the bits set in PARTITION. Returns true when the
357 operation succeeded. */
359 static bool
360 generate_builtin (struct loop *loop, bitmap partition, bool copy_p)
362 bool res = false;
363 unsigned i, x = 0;
364 basic_block *bbs;
365 gimple write = NULL;
366 tree op0, op1;
367 gimple_stmt_iterator bsi;
368 tree nb_iter = number_of_exit_cond_executions (loop);
370 if (!nb_iter || nb_iter == chrec_dont_know)
371 return false;
373 bbs = get_loop_body_in_dom_order (loop);
375 for (i = 0; i < loop->num_nodes; i++)
377 basic_block bb = bbs[i];
379 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
380 x++;
382 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
384 gimple stmt = gsi_stmt (bsi);
386 if (bitmap_bit_p (partition, x++)
387 && is_gimple_assign (stmt)
388 && !is_gimple_reg (gimple_assign_lhs (stmt)))
390 /* Don't generate the builtins when there are more than
391 one memory write. */
392 if (write != NULL)
393 goto end;
395 write = stmt;
400 if (!write)
401 goto end;
403 op0 = gimple_assign_lhs (write);
404 op1 = gimple_assign_rhs1 (write);
406 if (!(TREE_CODE (op0) == ARRAY_REF
407 || TREE_CODE (op0) == INDIRECT_REF))
408 goto end;
410 /* The new statements will be placed before LOOP. */
411 bsi = gsi_last_bb (loop_preheader_edge (loop)->src);
413 if (gimple_assign_rhs_code (write) == INTEGER_CST
414 && (integer_zerop (op1) || real_zerop (op1)))
415 res = generate_memset_zero (write, op0, nb_iter, bsi);
417 /* If this is the last partition for which we generate code, we have
418 to destroy the loop. */
419 if (res && !copy_p)
421 unsigned nbbs = loop->num_nodes;
422 basic_block src = loop_preheader_edge (loop)->src;
423 basic_block dest = single_exit (loop)->dest;
424 prop_phis (dest);
425 make_edge (src, dest, EDGE_FALLTHRU);
426 cancel_loop_tree (loop);
428 for (i = 0; i < nbbs; i++)
429 delete_basic_block (bbs[i]);
431 set_immediate_dominator (CDI_DOMINATORS, dest,
432 recompute_dominator (CDI_DOMINATORS, dest));
435 end:
436 free (bbs);
437 return res;
440 /* Generates code for PARTITION. For simple loops, this function can
441 generate a built-in. */
443 static bool
444 generate_code_for_partition (struct loop *loop, bitmap partition, bool copy_p)
446 if (generate_builtin (loop, partition, copy_p))
447 return true;
449 return generate_loops_for_partition (loop, partition, copy_p);
453 /* Returns true if the node V of RDG cannot be recomputed. */
455 static bool
456 rdg_cannot_recompute_vertex_p (struct graph *rdg, int v)
458 if (RDG_MEM_WRITE_STMT (rdg, v))
459 return true;
461 return false;
464 /* Returns true when the vertex V has already been generated in the
465 current partition (V is in PROCESSED), or when V belongs to another
466 partition and cannot be recomputed (V is not in REMAINING_STMTS). */
468 static inline bool
469 already_processed_vertex_p (bitmap processed, int v)
471 return (bitmap_bit_p (processed, v)
472 || !bitmap_bit_p (remaining_stmts, v));
475 /* Returns NULL when there is no anti-dependence among the successors
476 of vertex V, otherwise returns the edge with the anti-dep. */
478 static struct graph_edge *
479 has_anti_dependence (struct vertex *v)
481 struct graph_edge *e;
483 if (v->succ)
484 for (e = v->succ; e; e = e->succ_next)
485 if (RDGE_TYPE (e) == anti_dd)
486 return e;
488 return NULL;
491 /* Returns true when V has an anti-dependence edge among its successors. */
493 static bool
494 predecessor_has_mem_write (struct graph *rdg, struct vertex *v)
496 struct graph_edge *e;
498 if (v->pred)
499 for (e = v->pred; e; e = e->pred_next)
500 if (bitmap_bit_p (upstream_mem_writes, e->src)
501 /* Don't consider flow channels: a write to memory followed
502 by a read from memory. These channels allow the split of
503 the RDG in different partitions. */
504 && !RDG_MEM_WRITE_STMT (rdg, e->src))
505 return true;
507 return false;
510 /* Initializes the upstream_mem_writes bitmap following the
511 information from RDG. */
513 static void
514 mark_nodes_having_upstream_mem_writes (struct graph *rdg)
516 int v, x;
517 bitmap seen = BITMAP_ALLOC (NULL);
519 for (v = rdg->n_vertices - 1; v >= 0; v--)
520 if (!bitmap_bit_p (seen, v))
522 unsigned i;
523 VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
524 bool has_upstream_mem_write_p = false;
526 graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
528 for (i = 0; VEC_iterate (int, nodes, i, x); i++)
530 if (bitmap_bit_p (seen, x))
531 continue;
533 bitmap_set_bit (seen, x);
535 if (RDG_MEM_WRITE_STMT (rdg, x)
536 || predecessor_has_mem_write (rdg, &(rdg->vertices[x]))
537 /* In anti dependences the read should occur before
538 the write, this is why both the read and the write
539 should be placed in the same partition. */
540 || has_anti_dependence (&(rdg->vertices[x])))
542 has_upstream_mem_write_p = true;
543 bitmap_set_bit (upstream_mem_writes, x);
547 VEC_free (int, heap, nodes);
551 /* Returns true when vertex u has a memory write node as a predecessor
552 in RDG. */
554 static bool
555 has_upstream_mem_writes (int u)
557 return bitmap_bit_p (upstream_mem_writes, u);
560 static void rdg_flag_vertex_and_dependent (struct graph *, int, bitmap, bitmap,
561 bitmap, bool *);
563 /* Flag all the uses of U. */
565 static void
566 rdg_flag_all_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
567 bitmap processed, bool *part_has_writes)
569 struct graph_edge *e;
571 for (e = rdg->vertices[u].succ; e; e = e->succ_next)
572 if (!bitmap_bit_p (processed, e->dest))
574 rdg_flag_vertex_and_dependent (rdg, e->dest, partition, loops,
575 processed, part_has_writes);
576 rdg_flag_all_uses (rdg, e->dest, partition, loops, processed,
577 part_has_writes);
581 /* Flag the uses of U stopping following the information from
582 upstream_mem_writes. */
584 static void
585 rdg_flag_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
586 bitmap processed, bool *part_has_writes)
588 use_operand_p use_p;
589 struct vertex *x = &(rdg->vertices[u]);
590 gimple stmt = RDGV_STMT (x);
591 struct graph_edge *anti_dep = has_anti_dependence (x);
593 /* Keep in the same partition the destination of an antidependence,
594 because this is a store to the exact same location. Putting this
595 in another partition is bad for cache locality. */
596 if (anti_dep)
598 int v = anti_dep->dest;
600 if (!already_processed_vertex_p (processed, v))
601 rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
602 processed, part_has_writes);
605 if (gimple_code (stmt) != GIMPLE_PHI)
607 if ((use_p = gimple_vuse_op (stmt)) != NULL_USE_OPERAND_P)
609 tree use = USE_FROM_PTR (use_p);
611 if (TREE_CODE (use) == SSA_NAME)
613 gimple def_stmt = SSA_NAME_DEF_STMT (use);
614 int v = rdg_vertex_for_stmt (rdg, def_stmt);
616 if (v >= 0
617 && !already_processed_vertex_p (processed, v))
618 rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
619 processed, part_has_writes);
624 if (is_gimple_assign (stmt) && has_upstream_mem_writes (u))
626 tree op0 = gimple_assign_lhs (stmt);
628 /* Scalar channels don't have enough space for transmitting data
629 between tasks, unless we add more storage by privatizing. */
630 if (is_gimple_reg (op0))
632 use_operand_p use_p;
633 imm_use_iterator iter;
635 FOR_EACH_IMM_USE_FAST (use_p, iter, op0)
637 int v = rdg_vertex_for_stmt (rdg, USE_STMT (use_p));
639 if (!already_processed_vertex_p (processed, v))
640 rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
641 processed, part_has_writes);
647 /* Flag V from RDG as part of PARTITION, and also flag its loop number
648 in LOOPS. */
650 static void
651 rdg_flag_vertex (struct graph *rdg, int v, bitmap partition, bitmap loops,
652 bool *part_has_writes)
654 struct loop *loop;
656 if (bitmap_bit_p (partition, v))
657 return;
659 loop = loop_containing_stmt (RDG_STMT (rdg, v));
660 bitmap_set_bit (loops, loop->num);
661 bitmap_set_bit (partition, v);
663 if (rdg_cannot_recompute_vertex_p (rdg, v))
665 *part_has_writes = true;
666 bitmap_clear_bit (remaining_stmts, v);
670 /* Flag in the bitmap PARTITION the vertex V and all its predecessors.
671 Also flag their loop number in LOOPS. */
673 static void
674 rdg_flag_vertex_and_dependent (struct graph *rdg, int v, bitmap partition,
675 bitmap loops, bitmap processed,
676 bool *part_has_writes)
678 unsigned i;
679 VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
680 int x;
682 bitmap_set_bit (processed, v);
683 rdg_flag_uses (rdg, v, partition, loops, processed, part_has_writes);
684 graphds_dfs (rdg, &v, 1, &nodes, false, remaining_stmts);
685 rdg_flag_vertex (rdg, v, partition, loops, part_has_writes);
687 for (i = 0; VEC_iterate (int, nodes, i, x); i++)
688 if (!already_processed_vertex_p (processed, x))
689 rdg_flag_vertex_and_dependent (rdg, x, partition, loops, processed,
690 part_has_writes);
692 VEC_free (int, heap, nodes);
695 /* Initialize CONDS with all the condition statements from the basic
696 blocks of LOOP. */
698 static void
699 collect_condition_stmts (struct loop *loop, VEC (gimple, heap) **conds)
701 unsigned i;
702 edge e;
703 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
705 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
707 gimple cond = last_stmt (e->src);
709 if (cond)
710 VEC_safe_push (gimple, heap, *conds, cond);
713 VEC_free (edge, heap, exits);
716 /* Add to PARTITION all the exit condition statements for LOOPS
717 together with all their dependent statements determined from
718 RDG. */
720 static void
721 rdg_flag_loop_exits (struct graph *rdg, bitmap loops, bitmap partition,
722 bitmap processed, bool *part_has_writes)
724 unsigned i;
725 bitmap_iterator bi;
726 VEC (gimple, heap) *conds = VEC_alloc (gimple, heap, 3);
728 EXECUTE_IF_SET_IN_BITMAP (loops, 0, i, bi)
729 collect_condition_stmts (get_loop (i), &conds);
731 while (!VEC_empty (gimple, conds))
733 gimple cond = VEC_pop (gimple, conds);
734 int v = rdg_vertex_for_stmt (rdg, cond);
735 bitmap new_loops = BITMAP_ALLOC (NULL);
737 if (!already_processed_vertex_p (processed, v))
738 rdg_flag_vertex_and_dependent (rdg, v, partition, new_loops, processed,
739 part_has_writes);
741 EXECUTE_IF_SET_IN_BITMAP (new_loops, 0, i, bi)
742 if (!bitmap_bit_p (loops, i))
744 bitmap_set_bit (loops, i);
745 collect_condition_stmts (get_loop (i), &conds);
748 BITMAP_FREE (new_loops);
752 /* Flag all the nodes of RDG containing memory accesses that could
753 potentially belong to arrays already accessed in the current
754 PARTITION. */
756 static void
757 rdg_flag_similar_memory_accesses (struct graph *rdg, bitmap partition,
758 bitmap loops, bitmap processed,
759 VEC (int, heap) **other_stores)
761 bool foo;
762 unsigned i, n;
763 int j, k, kk;
764 bitmap_iterator ii;
765 struct graph_edge *e;
767 EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
768 if (RDG_MEM_WRITE_STMT (rdg, i)
769 || RDG_MEM_READS_STMT (rdg, i))
771 for (j = 0; j < rdg->n_vertices; j++)
772 if (!bitmap_bit_p (processed, j)
773 && (RDG_MEM_WRITE_STMT (rdg, j)
774 || RDG_MEM_READS_STMT (rdg, j))
775 && rdg_has_similar_memory_accesses (rdg, i, j))
777 /* Flag first the node J itself, and all the nodes that
778 are needed to compute J. */
779 rdg_flag_vertex_and_dependent (rdg, j, partition, loops,
780 processed, &foo);
782 /* When J is a read, we want to coalesce in the same
783 PARTITION all the nodes that are using J: this is
784 needed for better cache locality. */
785 rdg_flag_all_uses (rdg, j, partition, loops, processed, &foo);
787 /* Remove from OTHER_STORES the vertex that we flagged. */
788 if (RDG_MEM_WRITE_STMT (rdg, j))
789 for (k = 0; VEC_iterate (int, *other_stores, k, kk); k++)
790 if (kk == j)
792 VEC_unordered_remove (int, *other_stores, k);
793 break;
797 /* If the node I has two uses, then keep these together in the
798 same PARTITION. */
799 for (n = 0, e = rdg->vertices[i].succ; e; e = e->succ_next, n++);
801 if (n > 1)
802 rdg_flag_all_uses (rdg, i, partition, loops, processed, &foo);
806 /* Returns a bitmap in which all the statements needed for computing
807 the strongly connected component C of the RDG are flagged, also
808 including the loop exit conditions. */
810 static bitmap
811 build_rdg_partition_for_component (struct graph *rdg, rdgc c,
812 bool *part_has_writes,
813 VEC (int, heap) **other_stores)
815 int i, v;
816 bitmap partition = BITMAP_ALLOC (NULL);
817 bitmap loops = BITMAP_ALLOC (NULL);
818 bitmap processed = BITMAP_ALLOC (NULL);
820 for (i = 0; VEC_iterate (int, c->vertices, i, v); i++)
821 if (!already_processed_vertex_p (processed, v))
822 rdg_flag_vertex_and_dependent (rdg, v, partition, loops, processed,
823 part_has_writes);
825 /* Also iterate on the array of stores not in the starting vertices,
826 and determine those vertices that have some memory affinity with
827 the current nodes in the component: these are stores to the same
828 arrays, i.e. we're taking care of cache locality. */
829 rdg_flag_similar_memory_accesses (rdg, partition, loops, processed,
830 other_stores);
832 rdg_flag_loop_exits (rdg, loops, partition, processed, part_has_writes);
834 BITMAP_FREE (processed);
835 BITMAP_FREE (loops);
836 return partition;
839 /* Free memory for COMPONENTS. */
841 static void
842 free_rdg_components (VEC (rdgc, heap) *components)
844 int i;
845 rdgc x;
847 for (i = 0; VEC_iterate (rdgc, components, i, x); i++)
849 VEC_free (int, heap, x->vertices);
850 free (x);
854 /* Build the COMPONENTS vector with the strongly connected components
855 of RDG in which the STARTING_VERTICES occur. */
857 static void
858 rdg_build_components (struct graph *rdg, VEC (int, heap) *starting_vertices,
859 VEC (rdgc, heap) **components)
861 int i, v;
862 bitmap saved_components = BITMAP_ALLOC (NULL);
863 int n_components = graphds_scc (rdg, NULL);
864 VEC (int, heap) **all_components = XNEWVEC (VEC (int, heap) *, n_components);
866 for (i = 0; i < n_components; i++)
867 all_components[i] = VEC_alloc (int, heap, 3);
869 for (i = 0; i < rdg->n_vertices; i++)
870 VEC_safe_push (int, heap, all_components[rdg->vertices[i].component], i);
872 for (i = 0; VEC_iterate (int, starting_vertices, i, v); i++)
874 int c = rdg->vertices[v].component;
876 if (!bitmap_bit_p (saved_components, c))
878 rdgc x = XCNEW (struct rdg_component);
879 x->num = c;
880 x->vertices = all_components[c];
882 VEC_safe_push (rdgc, heap, *components, x);
883 bitmap_set_bit (saved_components, c);
887 for (i = 0; i < n_components; i++)
888 if (!bitmap_bit_p (saved_components, i))
889 VEC_free (int, heap, all_components[i]);
891 free (all_components);
892 BITMAP_FREE (saved_components);
895 /* Aggregate several components into a useful partition that is
896 registered in the PARTITIONS vector. Partitions will be
897 distributed in different loops. */
899 static void
900 rdg_build_partitions (struct graph *rdg, VEC (rdgc, heap) *components,
901 VEC (int, heap) **other_stores,
902 VEC (bitmap, heap) **partitions, bitmap processed)
904 int i;
905 rdgc x;
906 bitmap partition = BITMAP_ALLOC (NULL);
908 for (i = 0; VEC_iterate (rdgc, components, i, x); i++)
910 bitmap np;
911 bool part_has_writes = false;
912 int v = VEC_index (int, x->vertices, 0);
914 if (bitmap_bit_p (processed, v))
915 continue;
917 np = build_rdg_partition_for_component (rdg, x, &part_has_writes,
918 other_stores);
919 bitmap_ior_into (partition, np);
920 bitmap_ior_into (processed, np);
921 BITMAP_FREE (np);
923 if (part_has_writes)
925 if (dump_file && (dump_flags & TDF_DETAILS))
927 fprintf (dump_file, "ldist useful partition:\n");
928 dump_bitmap (dump_file, partition);
931 VEC_safe_push (bitmap, heap, *partitions, partition);
932 partition = BITMAP_ALLOC (NULL);
936 /* Add the nodes from the RDG that were not marked as processed, and
937 that are used outside the current loop. These are scalar
938 computations that are not yet part of previous partitions. */
939 for (i = 0; i < rdg->n_vertices; i++)
940 if (!bitmap_bit_p (processed, i)
941 && rdg_defs_used_in_other_loops_p (rdg, i))
942 VEC_safe_push (int, heap, *other_stores, i);
944 /* If there are still statements left in the OTHER_STORES array,
945 create other components and partitions with these stores and
946 their dependences. */
947 if (VEC_length (int, *other_stores) > 0)
949 VEC (rdgc, heap) *comps = VEC_alloc (rdgc, heap, 3);
950 VEC (int, heap) *foo = VEC_alloc (int, heap, 3);
952 rdg_build_components (rdg, *other_stores, &comps);
953 rdg_build_partitions (rdg, comps, &foo, partitions, processed);
955 VEC_free (int, heap, foo);
956 free_rdg_components (comps);
959 /* If there is something left in the last partition, save it. */
960 if (bitmap_count_bits (partition) > 0)
961 VEC_safe_push (bitmap, heap, *partitions, partition);
962 else
963 BITMAP_FREE (partition);
966 /* Dump to FILE the PARTITIONS. */
968 static void
969 dump_rdg_partitions (FILE *file, VEC (bitmap, heap) *partitions)
971 int i;
972 bitmap partition;
974 for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
975 debug_bitmap_file (file, partition);
978 /* Debug PARTITIONS. */
979 extern void debug_rdg_partitions (VEC (bitmap, heap) *);
981 void
982 debug_rdg_partitions (VEC (bitmap, heap) *partitions)
984 dump_rdg_partitions (stderr, partitions);
987 /* Returns the number of read and write operations in the RDG. */
989 static int
990 number_of_rw_in_rdg (struct graph *rdg)
992 int i, res = 0;
994 for (i = 0; i < rdg->n_vertices; i++)
996 if (RDG_MEM_WRITE_STMT (rdg, i))
997 ++res;
999 if (RDG_MEM_READS_STMT (rdg, i))
1000 ++res;
1003 return res;
1006 /* Returns the number of read and write operations in a PARTITION of
1007 the RDG. */
1009 static int
1010 number_of_rw_in_partition (struct graph *rdg, bitmap partition)
1012 int res = 0;
1013 unsigned i;
1014 bitmap_iterator ii;
1016 EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
1018 if (RDG_MEM_WRITE_STMT (rdg, i))
1019 ++res;
1021 if (RDG_MEM_READS_STMT (rdg, i))
1022 ++res;
1025 return res;
1028 /* Returns true when one of the PARTITIONS contains all the read or
1029 write operations of RDG. */
1031 static bool
1032 partition_contains_all_rw (struct graph *rdg, VEC (bitmap, heap) *partitions)
1034 int i;
1035 bitmap partition;
1036 int nrw = number_of_rw_in_rdg (rdg);
1038 for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
1039 if (nrw == number_of_rw_in_partition (rdg, partition))
1040 return true;
1042 return false;
1045 /* Generate code from STARTING_VERTICES in RDG. Returns the number of
1046 distributed loops. */
1048 static int
1049 ldist_gen (struct loop *loop, struct graph *rdg,
1050 VEC (int, heap) *starting_vertices)
1052 int i, nbp;
1053 VEC (rdgc, heap) *components = VEC_alloc (rdgc, heap, 3);
1054 VEC (bitmap, heap) *partitions = VEC_alloc (bitmap, heap, 3);
1055 VEC (int, heap) *other_stores = VEC_alloc (int, heap, 3);
1056 bitmap partition, processed = BITMAP_ALLOC (NULL);
1058 remaining_stmts = BITMAP_ALLOC (NULL);
1059 upstream_mem_writes = BITMAP_ALLOC (NULL);
1061 for (i = 0; i < rdg->n_vertices; i++)
1063 bitmap_set_bit (remaining_stmts, i);
1065 /* Save in OTHER_STORES all the memory writes that are not in
1066 STARTING_VERTICES. */
1067 if (RDG_MEM_WRITE_STMT (rdg, i))
1069 int v;
1070 unsigned j;
1071 bool found = false;
1073 for (j = 0; VEC_iterate (int, starting_vertices, j, v); j++)
1074 if (i == v)
1076 found = true;
1077 break;
1080 if (!found)
1081 VEC_safe_push (int, heap, other_stores, i);
1085 mark_nodes_having_upstream_mem_writes (rdg);
1086 rdg_build_components (rdg, starting_vertices, &components);
1087 rdg_build_partitions (rdg, components, &other_stores, &partitions,
1088 processed);
1089 BITMAP_FREE (processed);
1090 nbp = VEC_length (bitmap, partitions);
1092 if (nbp <= 1
1093 || partition_contains_all_rw (rdg, partitions))
1094 goto ldist_done;
1096 if (dump_file && (dump_flags & TDF_DETAILS))
1097 dump_rdg_partitions (dump_file, partitions);
1099 for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
1100 if (!generate_code_for_partition (loop, partition, i < nbp - 1))
1101 goto ldist_done;
1103 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1104 update_ssa (TODO_update_ssa_only_virtuals | TODO_update_ssa);
1106 ldist_done:
1108 BITMAP_FREE (remaining_stmts);
1109 BITMAP_FREE (upstream_mem_writes);
1111 for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
1112 BITMAP_FREE (partition);
1114 VEC_free (int, heap, other_stores);
1115 VEC_free (bitmap, heap, partitions);
1116 free_rdg_components (components);
1117 return nbp;
1120 /* Distributes the code from LOOP in such a way that producer
1121 statements are placed before consumer statements. When STMTS is
1122 NULL, performs the maximal distribution, if STMTS is not NULL,
1123 tries to separate only these statements from the LOOP's body.
1124 Returns the number of distributed loops. */
1126 static int
1127 distribute_loop (struct loop *loop, VEC (gimple, heap) *stmts)
1129 bool res = false;
1130 struct graph *rdg;
1131 gimple s;
1132 unsigned i;
1133 VEC (int, heap) *vertices;
1135 if (loop->num_nodes > 2)
1137 if (dump_file && (dump_flags & TDF_DETAILS))
1138 fprintf (dump_file,
1139 "FIXME: Loop %d not distributed: it has more than two basic blocks.\n",
1140 loop->num);
1142 return res;
1145 rdg = build_rdg (loop);
1147 if (!rdg)
1149 if (dump_file && (dump_flags & TDF_DETAILS))
1150 fprintf (dump_file,
1151 "FIXME: Loop %d not distributed: failed to build the RDG.\n",
1152 loop->num);
1154 return res;
1157 vertices = VEC_alloc (int, heap, 3);
1159 if (dump_file && (dump_flags & TDF_DETAILS))
1160 dump_rdg (dump_file, rdg);
1162 for (i = 0; VEC_iterate (gimple, stmts, i, s); i++)
1164 int v = rdg_vertex_for_stmt (rdg, s);
1166 if (v >= 0)
1168 VEC_safe_push (int, heap, vertices, v);
1170 if (dump_file && (dump_flags & TDF_DETAILS))
1171 fprintf (dump_file,
1172 "ldist asked to generate code for vertex %d\n", v);
1176 res = ldist_gen (loop, rdg, vertices);
1177 VEC_free (int, heap, vertices);
1178 free_rdg (rdg);
1180 return res;
1183 /* Distribute all loops in the current function. */
1185 static unsigned int
1186 tree_loop_distribution (void)
1188 struct loop *loop;
1189 loop_iterator li;
1190 int nb_generated_loops = 0;
1192 FOR_EACH_LOOP (li, loop, 0)
1194 VEC (gimple, heap) *work_list = VEC_alloc (gimple, heap, 3);
1196 /* With the following working list, we're asking distribute_loop
1197 to separate the stores of the loop: when dependences allow,
1198 it will end on having one store per loop. */
1199 stores_from_loop (loop, &work_list);
1201 /* A simple heuristic for cache locality is to not split stores
1202 to the same array. Without this call, an unrolled loop would
1203 be split into as many loops as unroll factor, each loop
1204 storing in the same array. */
1205 remove_similar_memory_refs (&work_list);
1207 nb_generated_loops = distribute_loop (loop, work_list);
1209 if (dump_file && (dump_flags & TDF_DETAILS))
1211 if (nb_generated_loops > 1)
1212 fprintf (dump_file, "Loop %d distributed: split to %d loops.\n",
1213 loop->num, nb_generated_loops);
1214 else
1215 fprintf (dump_file, "Loop %d is the same.\n", loop->num);
1218 verify_loop_structure ();
1220 VEC_free (gimple, heap, work_list);
1223 return 0;
1226 static bool
1227 gate_tree_loop_distribution (void)
1229 return flag_tree_loop_distribution != 0;
1232 struct gimple_opt_pass pass_loop_distribution =
1235 GIMPLE_PASS,
1236 "ldist", /* name */
1237 gate_tree_loop_distribution, /* gate */
1238 tree_loop_distribution, /* execute */
1239 NULL, /* sub */
1240 NULL, /* next */
1241 0, /* static_pass_number */
1242 TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
1243 PROP_cfg | PROP_ssa, /* properties_required */
1244 0, /* properties_provided */
1245 0, /* properties_destroyed */
1246 0, /* todo_flags_start */
1247 TODO_dump_func | TODO_verify_loops /* todo_flags_finish */