Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / sel-sched.c
blob102dc19187f2bbed05aeb80a6dbdf73a00126293
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "toplev.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "toplev.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "output.h"
39 #include "timevar.h"
40 #include "tree-pass.h"
41 #include "sched-int.h"
42 #include "ggc.h"
43 #include "tree.h"
44 #include "vec.h"
45 #include "langhooks.h"
46 #include "rtlhooks-def.h"
47 #include "output.h"
49 #ifdef INSN_SCHEDULING
50 #include "sel-sched-ir.h"
51 #include "sel-sched-dump.h"
52 #include "sel-sched.h"
53 #include "dbgcnt.h"
55 /* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following
57 changes:
59 o the scheduler works after register allocation (but can be also tuned
60 to work before RA);
61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops
65 is not supported;
66 o control and data speculation are supported;
67 o some improvements for better compile time/performance were made.
69 Terminology
70 ===========
72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in
75 different expressions. A vinsn is described by vinsn_t type.
77 An expression is a vinsn with additional data characterizing its properties
78 at some point in the control flow graph. The data may be its usefulness,
79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type.
82 Availability set (av_set) is a set of expressions at a given control flow
83 point. It is represented as av_set_t. The expressions in av sets are kept
84 sorted in the terms of expr_greater_p function. It allows to truncate
85 the set while leaving the best expressions.
87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t.
91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize
93 the fence group when a jump is scheduled. A boundary is represented
94 via bnd_t.
96 High-level overview
97 ===================
99 The scheduler finds regions to schedule, schedules each one, and finalizes.
100 The regions are formed starting from innermost loops, so that when the inner
101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
102 outer loop. The rest of acyclic regions are found using extend_rgns:
103 the blocks that are not yet allocated to any regions are traversed in top-down
104 order, and a block is added to a region to which all its predecessors belong;
105 otherwise, the block starts its own region.
107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added.
110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is
112 required to schedule any of the expressions, we advance the current cycle
113 appropriately. So, the final group does not exactly correspond to a VLIW
114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns
117 so we feel like advancing a scheduling point.
119 Computing available expressions
120 ===============================
122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more
126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header.
129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code,
132 and moving to another fence. The first two restrictions are lifted during
133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences.
136 Choosing the best expression
137 ============================
139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers
141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of
143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming
145 only registers which are from the same regclass as the original one and
146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler.
150 Scheduling the best expression
151 ==============================
153 We run the move_op routine to perform the same type of code motion paths
154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original
156 instruction that gave birth to a chosen expression. We undo
157 the transformations performed on an expression via the history saved in it.
158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this
161 traversal. We update the saved av sets and liveness sets on the way up, too.
163 Finalizing the schedule
164 =======================
166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c.
170 Dependence analysis changes
171 ===========================
173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through
176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
180 init_global_and_expr_for_insn).
182 Initialization changes
183 ======================
185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
186 reused in all of the schedulers. We have split up the initialization of data
187 of such parts into different functions prefixed with scheduler type and
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in
192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
194 Target contexts
195 ===============
197 As we now have multiple-point scheduling, this would not work with backends
198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which
200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t).
205 Various speedups
206 ================
208 As the correct data dependence graph is not supported during scheduling (which
209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of
212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr.
215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it
217 insns that are definitely completed the execution. The results of
218 tick_check_p checks are also cached in a vector on each fence.
220 We keep a valid liveness set on each insn in a region to avoid the high
221 cost of recomputation on large basic blocks.
223 Finally, we try to minimize the number of needed updates to the availability
224 sets. The updates happen in two cases: when fill_insns terminates,
225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param.
233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos.
239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
246 for GCC. In Proceedings of GCC Developers' Summit 2006.
248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/.
254 /* True when pipelining is enabled. */
255 bool pipelining_p;
257 /* True if bookkeeping is enabled. */
258 bool bookkeeping_p;
260 /* Maximum number of insns that are eligible for renaming. */
261 int max_insns_to_rename;
264 /* Definitions of local types and macros. */
266 /* Represents possible outcomes of moving an expression through an insn. */
267 enum MOVEUP_EXPR_CODE
269 /* The expression is not changed. */
270 MOVEUP_EXPR_SAME,
272 /* Not changed, but requires a new destination register. */
273 MOVEUP_EXPR_AS_RHS,
275 /* Cannot be moved. */
276 MOVEUP_EXPR_NULL,
278 /* Changed (substituted or speculated). */
279 MOVEUP_EXPR_CHANGED
282 /* The container to be passed into rtx search & replace functions. */
283 struct rtx_search_arg
285 /* What we are searching for. */
286 rtx x;
288 /* The occurence counter. */
289 int n;
292 typedef struct rtx_search_arg *rtx_search_arg_p;
294 /* This struct contains precomputed hard reg sets that are needed when
295 computing registers available for renaming. */
296 struct hard_regs_data
298 /* For every mode, this stores registers available for use with
299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
310 /* For every mode, this stores registers not available due to
311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used;
317 #ifdef STACK_REGS
318 /* Stack registers. */
319 HARD_REG_SET stack_regs;
320 #endif
323 /* Holds the results of computation of available for renaming and
324 unavailable hard registers. */
325 struct reg_rename
327 /* These are unavailable due to calls crossing, globalness, etc. */
328 HARD_REG_SET unavailable_hard_regs;
330 /* These are *available* for renaming. */
331 HARD_REG_SET available_for_renaming;
333 /* Whether this code motion path crosses a call. */
334 bool crosses_call;
337 /* A global structure that contains the needed information about harg
338 regs. */
339 static struct hard_regs_data sel_hrd;
342 /* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are
347 read-only. */
348 struct cmpd_local_params
350 /* Local params used in move_op_* functions. */
352 /* Edges for bookkeeping generation. */
353 edge e1, e2;
355 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
356 expr_t c_expr_merged, c_expr_local;
358 /* Local params used in fur_* functions. */
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns;
363 /* Local params used in move_op_* functions. */
364 /* True when we have removed last insn in the block which was
365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1;
369 /* Stores the static parameters for move_op_* calls. */
370 struct moveop_static_params
372 /* Destination register. */
373 rtx dest;
375 /* Current C_EXPR. */
376 expr_t c_expr;
378 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
379 they are to be removed. */
380 int uid;
382 #ifdef ENABLE_CHECKING
383 /* This is initialized to the insn on which the driver stopped its traversal. */
384 insn_t failed_insn;
385 #endif
387 /* True if we scheduled an insn with different register. */
388 bool was_renamed;
391 /* Stores the static parameters for fur_* calls. */
392 struct fur_static_params
394 /* Set of registers unavailable on the code motion path. */
395 regset used_regs;
397 /* Pointer to the list of original insns definitions. */
398 def_list_t *original_insns;
400 /* True if a code motion path contains a CALL insn. */
401 bool crosses_call;
404 typedef struct fur_static_params *fur_static_params_p;
405 typedef struct cmpd_local_params *cmpd_local_params_p;
406 typedef struct moveop_static_params *moveop_static_params_p;
408 /* Set of hooks and parameters that determine behaviour specific to
409 move_op or find_used_regs functions. */
410 struct code_motion_path_driver_info_def
412 /* Called on enter to the basic block. */
413 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
415 /* Called when original expr is found. */
416 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
418 /* Called while descending current basic block if current insn is not
419 the original EXPR we're searching for. */
420 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
422 /* Function to merge C_EXPRes from different successors. */
423 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
425 /* Function to finalize merge from different successors and possibly
426 deallocate temporary data structures used for merging. */
427 void (*after_merge_succs) (cmpd_local_params_p, void *);
429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *);
433 /* Called on the ascending pass, before returning from the current basic
434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
437 /* When processing successors in move_op we need only descend into
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags;
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name;
445 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 FUR_HOOKS. */
447 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
449 /* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */
451 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
453 /* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in
455 sched-deps.c. */
456 int sched_emulate_haifa_p;
458 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
460 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
461 scheduling window. */
462 int global_level;
464 /* Current fences. */
465 flist_t fences;
467 /* True when separable insns should be scheduled as RHSes. */
468 static bool enable_schedule_as_rhs_p;
470 /* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
472 we haven't scheduled anything on the previous fence.
473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
474 have more conservative value than the one returned by the
475 find_used_regs, thus we shouldn't assert that these values are equal. */
476 static bool scheduled_something_on_previous_fence;
478 /* All newly emitted insns will have their uids greater than this value. */
479 static int first_emitted_uid;
481 /* Set of basic blocks that are forced to start new ebbs. This is a subset
482 of all the ebb heads. */
483 static bitmap_head _forced_ebb_heads;
484 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
486 /* Blocks that need to be rescheduled after pipelining. */
487 bitmap blocks_to_reschedule = NULL;
489 /* True when the first lv set should be ignored when updating liveness. */
490 static bool ignore_first = false;
492 /* Number of insns max_issue has initialized data structures for. */
493 static int max_issue_size = 0;
495 /* Whether we can issue more instructions. */
496 static int can_issue_more;
498 /* Maximum software lookahead window size, reduced when rescheduling after
499 pipelining. */
500 static int max_ws;
502 /* Number of insns scheduled in current region. */
503 static int num_insns_scheduled;
505 /* A vector of expressions is used to be able to sort them. */
506 DEF_VEC_P(expr_t);
507 DEF_VEC_ALLOC_P(expr_t,heap);
508 static VEC(expr_t, heap) *vec_av_set = NULL;
510 /* A vector of vinsns is used to hold temporary lists of vinsns. */
511 DEF_VEC_P(vinsn_t);
512 DEF_VEC_ALLOC_P(vinsn_t,heap);
513 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
515 /* This vector has the exprs which may still present in av_sets, but actually
516 can't be moved up due to bookkeeping created during code motion to another
517 fence. See comment near the call to update_and_record_unavailable_insns
518 for the detailed explanations. */
519 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
521 /* This vector has vinsns which are scheduled with renaming on the first fence
522 and then seen on the second. For expressions with such vinsns, target
523 availability information may be wrong. */
524 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
526 /* Vector to store temporary nops inserted in move_op to prevent removal
527 of empty bbs. */
528 DEF_VEC_P(insn_t);
529 DEF_VEC_ALLOC_P(insn_t,heap);
530 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
532 /* These bitmaps record original instructions scheduled on the current
533 iteration and bookkeeping copies created by them. */
534 static bitmap current_originators = NULL;
535 static bitmap current_copies = NULL;
537 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538 visit them afterwards. */
539 static bitmap code_motion_visited_blocks = NULL;
541 /* Variables to accumulate different statistics. */
543 /* The number of bookkeeping copies created. */
544 static int stat_bookkeeping_copies;
546 /* The number of insns that required bookkeeiping for their scheduling. */
547 static int stat_insns_needed_bookkeeping;
549 /* The number of insns that got renamed. */
550 static int stat_renamed_scheduled;
552 /* The number of substitutions made during scheduling. */
553 static int stat_substitutions_total;
556 /* Forward declarations of static functions. */
557 static bool rtx_ok_for_substitution_p (rtx, rtx);
558 static int sel_rank_for_schedule (const void *, const void *);
559 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
560 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
562 static rtx get_dest_from_orig_ops (av_set_t);
563 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
564 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
565 def_list_t *);
566 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
567 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
568 cmpd_local_params_p, void *);
569 static void sel_sched_region_1 (void);
570 static void sel_sched_region_2 (int);
571 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
573 static void debug_state (state_t);
576 /* Functions that work with fences. */
578 /* Advance one cycle on FENCE. */
579 static void
580 advance_one_cycle (fence_t fence)
582 unsigned i;
583 int cycle;
584 rtx insn;
586 advance_state (FENCE_STATE (fence));
587 cycle = ++FENCE_CYCLE (fence);
588 FENCE_ISSUED_INSNS (fence) = 0;
589 FENCE_STARTS_CYCLE_P (fence) = 1;
590 can_issue_more = issue_rate;
592 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
594 if (INSN_READY_CYCLE (insn) < cycle)
596 remove_from_deps (FENCE_DC (fence), insn);
597 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
598 continue;
600 i++;
602 if (sched_verbose >= 2)
604 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
605 debug_state (FENCE_STATE (fence));
609 /* Returns true when SUCC in a fallthru bb of INSN, possibly
610 skipping empty basic blocks. */
611 static bool
612 in_fallthru_bb_p (rtx insn, rtx succ)
614 basic_block bb = BLOCK_FOR_INSN (insn);
616 if (bb == BLOCK_FOR_INSN (succ))
617 return true;
619 if (find_fallthru_edge (bb))
620 bb = find_fallthru_edge (bb)->dest;
621 else
622 return false;
624 while (sel_bb_empty_p (bb))
625 bb = bb->next_bb;
627 return bb == BLOCK_FOR_INSN (succ);
630 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
631 When a successor will continue a ebb, transfer all parameters of a fence
632 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
633 of scheduling helping to distinguish between the old and the new code. */
634 static void
635 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
636 int orig_max_seqno)
638 bool was_here_p = false;
639 insn_t insn = NULL_RTX;
640 insn_t succ;
641 succ_iterator si;
642 ilist_iterator ii;
643 fence_t fence = FLIST_FENCE (old_fences);
644 basic_block bb;
646 /* Get the only element of FENCE_BNDS (fence). */
647 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
649 gcc_assert (!was_here_p);
650 was_here_p = true;
652 gcc_assert (was_here_p && insn != NULL_RTX);
654 /* When in the "middle" of the block, just move this fence
655 to the new list. */
656 bb = BLOCK_FOR_INSN (insn);
657 if (! sel_bb_end_p (insn)
658 || (single_succ_p (bb)
659 && single_pred_p (single_succ (bb))))
661 insn_t succ;
663 succ = (sel_bb_end_p (insn)
664 ? sel_bb_head (single_succ (bb))
665 : NEXT_INSN (insn));
667 if (INSN_SEQNO (succ) > 0
668 && INSN_SEQNO (succ) <= orig_max_seqno
669 && INSN_SCHED_TIMES (succ) <= 0)
671 FENCE_INSN (fence) = succ;
672 move_fence_to_fences (old_fences, new_fences);
674 if (sched_verbose >= 1)
675 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
676 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
678 return;
681 /* Otherwise copy fence's structures to (possibly) multiple successors. */
682 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
684 int seqno = INSN_SEQNO (succ);
686 if (0 < seqno && seqno <= orig_max_seqno
687 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
689 bool b = (in_same_ebb_p (insn, succ)
690 || in_fallthru_bb_p (insn, succ));
692 if (sched_verbose >= 1)
693 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
694 INSN_UID (insn), INSN_UID (succ),
695 BLOCK_NUM (succ), b ? "continue" : "reset");
697 if (b)
698 add_dirty_fence_to_fences (new_fences, succ, fence);
699 else
701 /* Mark block of the SUCC as head of the new ebb. */
702 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
703 add_clean_fence_to_fences (new_fences, succ, fence);
710 /* Functions to support substitution. */
712 /* Returns whether INSN with dependence status DS is eligible for
713 substitution, i.e. it's a copy operation x := y, and RHS that is
714 moved up through this insn should be substituted. */
715 static bool
716 can_substitute_through_p (insn_t insn, ds_t ds)
718 /* We can substitute only true dependencies. */
719 if ((ds & DEP_OUTPUT)
720 || (ds & DEP_ANTI)
721 || ! INSN_RHS (insn)
722 || ! INSN_LHS (insn))
723 return false;
725 /* Now we just need to make sure the INSN_RHS consists of only one
726 simple REG rtx. */
727 if (REG_P (INSN_LHS (insn))
728 && REG_P (INSN_RHS (insn)))
729 return true;
730 return false;
733 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
734 source (if INSN is eligible for substitution). Returns TRUE if
735 substitution was actually performed, FALSE otherwise. Substitution might
736 be not performed because it's either EXPR' vinsn doesn't contain INSN's
737 destination or the resulting insn is invalid for the target machine.
738 When UNDO is true, perform unsubstitution instead (the difference is in
739 the part of rtx on which validate_replace_rtx is called). */
740 static bool
741 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
743 rtx *where;
744 bool new_insn_valid;
745 vinsn_t *vi = &EXPR_VINSN (expr);
746 bool has_rhs = VINSN_RHS (*vi) != NULL;
747 rtx old, new_rtx;
749 /* Do not try to replace in SET_DEST. Although we'll choose new
750 register for the RHS, we don't want to change RHS' original reg.
751 If the insn is not SET, we may still be able to substitute something
752 in it, and if we're here (don't have deps), it doesn't write INSN's
753 dest. */
754 where = (has_rhs
755 ? &VINSN_RHS (*vi)
756 : &PATTERN (VINSN_INSN_RTX (*vi)));
757 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
759 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
760 if (rtx_ok_for_substitution_p (old, *where))
762 rtx new_insn;
763 rtx *where_replace;
765 /* We should copy these rtxes before substitution. */
766 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
767 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
769 /* Where we'll replace.
770 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
771 used instead of SET_SRC. */
772 where_replace = (has_rhs
773 ? &SET_SRC (PATTERN (new_insn))
774 : &PATTERN (new_insn));
776 new_insn_valid
777 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
778 new_insn);
780 /* ??? Actually, constrain_operands result depends upon choice of
781 destination register. E.g. if we allow single register to be an rhs,
782 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
783 in invalid insn dx=dx, so we'll loose this rhs here.
784 Just can't come up with significant testcase for this, so just
785 leaving it for now. */
786 if (new_insn_valid)
788 change_vinsn_in_expr (expr,
789 create_vinsn_from_insn_rtx (new_insn, false));
791 /* Do not allow clobbering the address register of speculative
792 insns. */
793 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
794 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
795 expr_dest_regno (expr)))
796 EXPR_TARGET_AVAILABLE (expr) = false;
798 return true;
800 else
801 return false;
803 else
804 return false;
807 /* Helper function for count_occurences_equiv. */
808 static int
809 count_occurrences_1 (rtx *cur_rtx, void *arg)
811 rtx_search_arg_p p = (rtx_search_arg_p) arg;
813 /* The last param FOR_GCSE is true, because otherwise it performs excessive
814 substitutions like
815 r8 = r33
816 r16 = r33
817 for the last insn it presumes r33 equivalent to r8, so it changes it to
818 r33. Actually, there's no change, but it spoils debugging. */
819 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
821 /* Bail out if we occupy more than one register. */
822 if (REG_P (*cur_rtx)
823 && HARD_REGISTER_P (*cur_rtx)
824 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
826 p->n = 0;
827 return 1;
830 p->n++;
832 /* Do not traverse subexprs. */
833 return -1;
836 if (GET_CODE (*cur_rtx) == SUBREG
837 && REG_P (p->x)
838 && REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x))
840 /* ??? Do not support substituting regs inside subregs. In that case,
841 simplify_subreg will be called by validate_replace_rtx, and
842 unsubstitution will fail later. */
843 p->n = 0;
844 return 1;
847 /* Continue search. */
848 return 0;
851 /* Return the number of places WHAT appears within WHERE.
852 Bail out when we found a reference occupying several hard registers. */
853 static int
854 count_occurrences_equiv (rtx what, rtx where)
856 struct rtx_search_arg arg;
858 arg.x = what;
859 arg.n = 0;
861 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
863 return arg.n;
866 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
867 static bool
868 rtx_ok_for_substitution_p (rtx what, rtx where)
870 return (count_occurrences_equiv (what, where) > 0);
874 /* Functions to support register renaming. */
876 /* Substitute VI's set source with REGNO. Returns newly created pattern
877 that has REGNO as its source. */
878 static rtx
879 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
881 rtx lhs_rtx;
882 rtx pattern;
883 rtx insn_rtx;
885 lhs_rtx = copy_rtx (VINSN_LHS (vi));
887 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
888 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
890 return insn_rtx;
893 /* Returns whether INSN's src can be replaced with register number
894 NEW_SRC_REG. E.g. the following insn is valid for i386:
896 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
897 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
898 (reg:SI 0 ax [orig:770 c1 ] [770]))
899 (const_int 288 [0x120])) [0 str S1 A8])
900 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
901 (nil))
903 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
904 because of operand constraints:
906 (define_insn "*movqi_1"
907 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
908 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
911 So do constrain_operands here, before choosing NEW_SRC_REG as best
912 reg for rhs. */
914 static bool
915 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
917 vinsn_t vi = INSN_VINSN (insn);
918 enum machine_mode mode;
919 rtx dst_loc;
920 bool res;
922 gcc_assert (VINSN_SEPARABLE_P (vi));
924 get_dest_and_mode (insn, &dst_loc, &mode);
925 gcc_assert (mode == GET_MODE (new_src_reg));
927 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
928 return true;
930 /* See whether SET_SRC can be replaced with this register. */
931 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
932 res = verify_changes (0);
933 cancel_changes (0);
935 return res;
938 /* Returns whether INSN still be valid after replacing it's DEST with
939 register NEW_REG. */
940 static bool
941 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
943 vinsn_t vi = INSN_VINSN (insn);
944 bool res;
946 /* We should deal here only with separable insns. */
947 gcc_assert (VINSN_SEPARABLE_P (vi));
948 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
950 /* See whether SET_DEST can be replaced with this register. */
951 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
952 res = verify_changes (0);
953 cancel_changes (0);
955 return res;
958 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
959 static rtx
960 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
962 rtx rhs_rtx;
963 rtx pattern;
964 rtx insn_rtx;
966 rhs_rtx = copy_rtx (VINSN_RHS (vi));
968 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
969 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
971 return insn_rtx;
974 /* Substitute lhs in the given expression EXPR for the register with number
975 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
976 static void
977 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
979 rtx insn_rtx;
980 vinsn_t vinsn;
982 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
983 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
985 change_vinsn_in_expr (expr, vinsn);
986 EXPR_WAS_RENAMED (expr) = 1;
987 EXPR_TARGET_AVAILABLE (expr) = 1;
990 /* Returns whether VI writes either one of the USED_REGS registers or,
991 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
992 static bool
993 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
994 HARD_REG_SET unavailable_hard_regs)
996 unsigned regno;
997 reg_set_iterator rsi;
999 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1001 if (REGNO_REG_SET_P (used_regs, regno))
1002 return true;
1003 if (HARD_REGISTER_NUM_P (regno)
1004 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1005 return true;
1008 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1010 if (REGNO_REG_SET_P (used_regs, regno))
1011 return true;
1012 if (HARD_REGISTER_NUM_P (regno)
1013 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1014 return true;
1017 return false;
1020 /* Returns register class of the output register in INSN.
1021 Returns NO_REGS for call insns because some targets have constraints on
1022 destination register of a call insn.
1024 Code adopted from regrename.c::build_def_use. */
1025 static enum reg_class
1026 get_reg_class (rtx insn)
1028 int alt, i, n_ops;
1030 extract_insn (insn);
1031 if (! constrain_operands (1))
1032 fatal_insn_not_found (insn);
1033 preprocess_constraints ();
1034 alt = which_alternative;
1035 n_ops = recog_data.n_operands;
1037 for (i = 0; i < n_ops; ++i)
1039 int matches = recog_op_alt[i][alt].matches;
1040 if (matches >= 0)
1041 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1044 if (asm_noperands (PATTERN (insn)) > 0)
1046 for (i = 0; i < n_ops; i++)
1047 if (recog_data.operand_type[i] == OP_OUT)
1049 rtx *loc = recog_data.operand_loc[i];
1050 rtx op = *loc;
1051 enum reg_class cl = recog_op_alt[i][alt].cl;
1053 if (REG_P (op)
1054 && REGNO (op) == ORIGINAL_REGNO (op))
1055 continue;
1057 return cl;
1060 else if (!CALL_P (insn))
1062 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1064 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1065 enum reg_class cl = recog_op_alt[opn][alt].cl;
1067 if (recog_data.operand_type[opn] == OP_OUT ||
1068 recog_data.operand_type[opn] == OP_INOUT)
1069 return cl;
1073 /* Insns like
1074 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1075 may result in returning NO_REGS, cause flags is written implicitly through
1076 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1077 return NO_REGS;
1080 #ifdef HARD_REGNO_RENAME_OK
1081 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1082 static void
1083 init_hard_regno_rename (int regno)
1085 int cur_reg;
1087 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1089 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1091 /* We are not interested in renaming in other regs. */
1092 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1093 continue;
1095 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1096 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1099 #endif
1101 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1102 data first. */
1103 static inline bool
1104 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1106 #ifdef HARD_REGNO_RENAME_OK
1107 /* Check whether this is all calculated. */
1108 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1109 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1111 init_hard_regno_rename (from);
1113 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1114 #else
1115 return true;
1116 #endif
1119 /* Calculate set of registers that are capable of holding MODE. */
1120 static void
1121 init_regs_for_mode (enum machine_mode mode)
1123 int cur_reg;
1125 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1126 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1128 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1130 int nregs = hard_regno_nregs[cur_reg][mode];
1131 int i;
1133 for (i = nregs - 1; i >= 0; --i)
1134 if (fixed_regs[cur_reg + i]
1135 || global_regs[cur_reg + i]
1136 /* Can't use regs which aren't saved by
1137 the prologue. */
1138 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1139 #ifdef LEAF_REGISTERS
1140 /* We can't use a non-leaf register if we're in a
1141 leaf function. */
1142 || (current_function_is_leaf
1143 && !LEAF_REGISTERS[cur_reg + i])
1144 #endif
1146 break;
1148 if (i >= 0)
1149 continue;
1151 /* See whether it accepts all modes that occur in
1152 original insns. */
1153 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1154 continue;
1156 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1157 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1158 cur_reg);
1160 /* If the CUR_REG passed all the checks above,
1161 then it's ok. */
1162 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1165 sel_hrd.regs_for_mode_ok[mode] = true;
1168 /* Init all register sets gathered in HRD. */
1169 static void
1170 init_hard_regs_data (void)
1172 int cur_reg = 0;
1173 int cur_mode = 0;
1175 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1176 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1177 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1178 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1180 /* Initialize registers that are valid based on mode when this is
1181 really needed. */
1182 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1183 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1185 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1186 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1187 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1189 #ifdef STACK_REGS
1190 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1192 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1193 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1194 #endif
1197 /* Mark hardware regs in REG_RENAME_P that are not suitable
1198 for renaming rhs in INSN due to hardware restrictions (register class,
1199 modes compatibility etc). This doesn't affect original insn's dest reg,
1200 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1201 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1202 Registers that are in used_regs are always marked in
1203 unavailable_hard_regs as well. */
1205 static void
1206 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1207 regset used_regs ATTRIBUTE_UNUSED)
1209 enum machine_mode mode;
1210 enum reg_class cl = NO_REGS;
1211 rtx orig_dest;
1212 unsigned cur_reg, regno;
1213 hard_reg_set_iterator hrsi;
1215 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1216 gcc_assert (reg_rename_p);
1218 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1220 /* We have decided not to rename 'mem = something;' insns, as 'something'
1221 is usually a register. */
1222 if (!REG_P (orig_dest))
1223 return;
1225 regno = REGNO (orig_dest);
1227 /* If before reload, don't try to work with pseudos. */
1228 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1229 return;
1231 mode = GET_MODE (orig_dest);
1233 /* Stop when mode is not supported for renaming. Also can't proceed
1234 if the original register is one of the fixed_regs, global_regs or
1235 frame pointer. */
1236 if (fixed_regs[regno]
1237 || global_regs[regno]
1238 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1239 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1240 #else
1241 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1242 #endif
1245 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1247 /* Give a chance for original register, if it isn't in used_regs. */
1248 if (!def->crosses_call)
1249 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1251 return;
1254 /* If something allocated on stack in this function, mark frame pointer
1255 register unavailable, considering also modes.
1256 FIXME: it is enough to do this once per all original defs. */
1257 if (frame_pointer_needed)
1259 int i;
1261 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1262 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1263 FRAME_POINTER_REGNUM + i);
1265 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1266 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1267 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1268 HARD_FRAME_POINTER_REGNUM + i);
1269 #endif
1272 #ifdef STACK_REGS
1273 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1274 is equivalent to as if all stack regs were in this set.
1275 I.e. no stack register can be renamed, and even if it's an original
1276 register here we make sure it won't be lifted over it's previous def
1277 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1278 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1279 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1280 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1281 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1282 sel_hrd.stack_regs);
1283 #endif
1285 /* If there's a call on this path, make regs from call_used_reg_set
1286 unavailable. */
1287 if (def->crosses_call)
1288 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1289 call_used_reg_set);
1291 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1292 but not register classes. */
1293 if (!reload_completed)
1294 return;
1296 /* Leave regs as 'available' only from the current
1297 register class. */
1298 cl = get_reg_class (def->orig_insn);
1299 gcc_assert (cl != NO_REGS);
1300 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1301 reg_class_contents[cl]);
1303 /* Leave only registers available for this mode. */
1304 if (!sel_hrd.regs_for_mode_ok[mode])
1305 init_regs_for_mode (mode);
1306 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1307 sel_hrd.regs_for_mode[mode]);
1309 /* Exclude registers that are partially call clobbered. */
1310 if (def->crosses_call
1311 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1312 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1313 sel_hrd.regs_for_call_clobbered[mode]);
1315 /* Leave only those that are ok to rename. */
1316 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1317 0, cur_reg, hrsi)
1319 int nregs;
1320 int i;
1322 nregs = hard_regno_nregs[cur_reg][mode];
1323 gcc_assert (nregs > 0);
1325 for (i = nregs - 1; i >= 0; --i)
1326 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1327 break;
1329 if (i >= 0)
1330 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1331 cur_reg);
1334 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1335 reg_rename_p->unavailable_hard_regs);
1337 /* Regno is always ok from the renaming part of view, but it really
1338 could be in *unavailable_hard_regs already, so set it here instead
1339 of there. */
1340 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1343 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1344 best register more recently than REG2. */
1345 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1347 /* Indicates the number of times renaming happened before the current one. */
1348 static int reg_rename_this_tick;
1350 /* Choose the register among free, that is suitable for storing
1351 the rhs value.
1353 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1354 originally appears. There could be multiple original operations
1355 for single rhs since we moving it up and merging along different
1356 paths.
1358 Some code is adapted from regrename.c (regrename_optimize).
1359 If original register is available, function returns it.
1360 Otherwise it performs the checks, so the new register should
1361 comply with the following:
1362 - it should not violate any live ranges (such registers are in
1363 REG_RENAME_P->available_for_renaming set);
1364 - it should not be in the HARD_REGS_USED regset;
1365 - it should be in the class compatible with original uses;
1366 - it should not be clobbered through reference with different mode;
1367 - if we're in the leaf function, then the new register should
1368 not be in the LEAF_REGISTERS;
1369 - etc.
1371 If several registers meet the conditions, the register with smallest
1372 tick is returned to achieve more even register allocation.
1374 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1376 If no register satisfies the above conditions, NULL_RTX is returned. */
1377 static rtx
1378 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1379 struct reg_rename *reg_rename_p,
1380 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1382 int best_new_reg;
1383 unsigned cur_reg;
1384 enum machine_mode mode = VOIDmode;
1385 unsigned regno, i, n;
1386 hard_reg_set_iterator hrsi;
1387 def_list_iterator di;
1388 def_t def;
1390 /* If original register is available, return it. */
1391 *is_orig_reg_p_ptr = true;
1393 FOR_EACH_DEF (def, di, original_insns)
1395 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1397 gcc_assert (REG_P (orig_dest));
1399 /* Check that all original operations have the same mode.
1400 This is done for the next loop; if we'd return from this
1401 loop, we'd check only part of them, but in this case
1402 it doesn't matter. */
1403 if (mode == VOIDmode)
1404 mode = GET_MODE (orig_dest);
1405 gcc_assert (mode == GET_MODE (orig_dest));
1407 regno = REGNO (orig_dest);
1408 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1409 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1410 break;
1412 /* All hard registers are available. */
1413 if (i == n)
1415 gcc_assert (mode != VOIDmode);
1417 /* Hard registers should not be shared. */
1418 return gen_rtx_REG (mode, regno);
1422 *is_orig_reg_p_ptr = false;
1423 best_new_reg = -1;
1425 /* Among all available regs choose the register that was
1426 allocated earliest. */
1427 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1428 0, cur_reg, hrsi)
1429 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1431 /* All hard registers are available. */
1432 if (best_new_reg < 0
1433 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1435 best_new_reg = cur_reg;
1437 /* Return immediately when we know there's no better reg. */
1438 if (! reg_rename_tick[best_new_reg])
1439 break;
1443 if (best_new_reg >= 0)
1445 /* Use the check from the above loop. */
1446 gcc_assert (mode != VOIDmode);
1447 return gen_rtx_REG (mode, best_new_reg);
1450 return NULL_RTX;
1453 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1454 assumptions about available registers in the function. */
1455 static rtx
1456 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1457 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1459 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1460 original_insns, is_orig_reg_p_ptr);
1462 gcc_assert (best_reg == NULL_RTX
1463 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1465 return best_reg;
1468 /* Choose the pseudo register for storing rhs value. As this is supposed
1469 to work before reload, we return either the original register or make
1470 the new one. The parameters are the same that in choose_nest_reg_1
1471 functions, except that USED_REGS may contain pseudos.
1472 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1474 TODO: take into account register pressure while doing this. Up to this
1475 moment, this function would never return NULL for pseudos, but we should
1476 not rely on this. */
1477 static rtx
1478 choose_best_pseudo_reg (regset used_regs,
1479 struct reg_rename *reg_rename_p,
1480 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1482 def_list_iterator i;
1483 def_t def;
1484 enum machine_mode mode = VOIDmode;
1485 bool bad_hard_regs = false;
1487 /* We should not use this after reload. */
1488 gcc_assert (!reload_completed);
1490 /* If original register is available, return it. */
1491 *is_orig_reg_p_ptr = true;
1493 FOR_EACH_DEF (def, i, original_insns)
1495 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1496 int orig_regno;
1498 gcc_assert (REG_P (dest));
1500 /* Check that all original operations have the same mode. */
1501 if (mode == VOIDmode)
1502 mode = GET_MODE (dest);
1503 else
1504 gcc_assert (mode == GET_MODE (dest));
1505 orig_regno = REGNO (dest);
1507 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1509 if (orig_regno < FIRST_PSEUDO_REGISTER)
1511 gcc_assert (df_regs_ever_live_p (orig_regno));
1513 /* For hard registers, we have to check hardware imposed
1514 limitations (frame/stack registers, calls crossed). */
1515 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1516 orig_regno))
1518 /* Don't let register cross a call if it doesn't already
1519 cross one. This condition is written in accordance with
1520 that in sched-deps.c sched_analyze_reg(). */
1521 if (!reg_rename_p->crosses_call
1522 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1523 return gen_rtx_REG (mode, orig_regno);
1526 bad_hard_regs = true;
1528 else
1529 return dest;
1533 *is_orig_reg_p_ptr = false;
1535 /* We had some original hard registers that couldn't be used.
1536 Those were likely special. Don't try to create a pseudo. */
1537 if (bad_hard_regs)
1538 return NULL_RTX;
1540 /* We haven't found a register from original operations. Get a new one.
1541 FIXME: control register pressure somehow. */
1543 rtx new_reg = gen_reg_rtx (mode);
1545 gcc_assert (mode != VOIDmode);
1547 max_regno = max_reg_num ();
1548 maybe_extend_reg_info_p ();
1549 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1551 return new_reg;
1555 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1556 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1557 static void
1558 verify_target_availability (expr_t expr, regset used_regs,
1559 struct reg_rename *reg_rename_p)
1561 unsigned n, i, regno;
1562 enum machine_mode mode;
1563 bool target_available, live_available, hard_available;
1565 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1566 return;
1568 regno = expr_dest_regno (expr);
1569 mode = GET_MODE (EXPR_LHS (expr));
1570 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1571 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1573 live_available = hard_available = true;
1574 for (i = 0; i < n; i++)
1576 if (bitmap_bit_p (used_regs, regno + i))
1577 live_available = false;
1578 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1579 hard_available = false;
1582 /* When target is not available, it may be due to hard register
1583 restrictions, e.g. crosses calls, so we check hard_available too. */
1584 if (target_available)
1585 gcc_assert (live_available);
1586 else
1587 /* Check only if we haven't scheduled something on the previous fence,
1588 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1589 and having more than one fence, we may end having targ_un in a block
1590 in which successors target register is actually available.
1592 The last condition handles the case when a dependence from a call insn
1593 was created in sched-deps.c for insns with destination registers that
1594 never crossed a call before, but do cross one after our code motion.
1596 FIXME: in the latter case, we just uselessly called find_used_regs,
1597 because we can't move this expression with any other register
1598 as well. */
1599 gcc_assert (scheduled_something_on_previous_fence || !live_available
1600 || !hard_available
1601 || (!reload_completed && reg_rename_p->crosses_call
1602 && REG_N_CALLS_CROSSED (regno) == 0));
1605 /* Collect unavailable registers due to liveness for EXPR from BNDS
1606 into USED_REGS. Save additional information about available
1607 registers and unavailable due to hardware restriction registers
1608 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1609 list. */
1610 static void
1611 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1612 struct reg_rename *reg_rename_p,
1613 def_list_t *original_insns)
1615 for (; bnds; bnds = BLIST_NEXT (bnds))
1617 bool res;
1618 av_set_t orig_ops = NULL;
1619 bnd_t bnd = BLIST_BND (bnds);
1621 /* If the chosen best expr doesn't belong to current boundary,
1622 skip it. */
1623 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1624 continue;
1626 /* Put in ORIG_OPS all exprs from this boundary that became
1627 RES on top. */
1628 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1630 /* Compute used regs and OR it into the USED_REGS. */
1631 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1632 reg_rename_p, original_insns);
1634 /* FIXME: the assert is true until we'd have several boundaries. */
1635 gcc_assert (res);
1636 av_set_clear (&orig_ops);
1640 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1641 If BEST_REG is valid, replace LHS of EXPR with it. */
1642 static bool
1643 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1645 if (expr_dest_regno (expr) == REGNO (best_reg))
1647 EXPR_TARGET_AVAILABLE (expr) = 1;
1648 return true;
1651 gcc_assert (orig_insns);
1653 /* Try whether we'll be able to generate the insn
1654 'dest := best_reg' at the place of the original operation. */
1655 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1657 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1659 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1661 if (!replace_src_with_reg_ok_p (orig_insn, best_reg)
1662 || !replace_dest_with_reg_ok_p (orig_insn, best_reg))
1663 return false;
1666 /* Make sure that EXPR has the right destination
1667 register. */
1668 replace_dest_with_reg_in_expr (expr, best_reg);
1669 return true;
1672 /* Select and assign best register to EXPR searching from BNDS.
1673 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1674 Return FALSE if no register can be chosen, which could happen when:
1675 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1676 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1677 that are used on the moving path. */
1678 static bool
1679 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1681 static struct reg_rename reg_rename_data;
1683 regset used_regs;
1684 def_list_t original_insns = NULL;
1685 bool reg_ok;
1687 *is_orig_reg_p = false;
1689 /* Don't bother to do anything if this insn doesn't set any registers. */
1690 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1691 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1692 return true;
1694 used_regs = get_clear_regset_from_pool ();
1695 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1697 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1698 &original_insns);
1700 #ifdef ENABLE_CHECKING
1701 /* If after reload, make sure we're working with hard regs here. */
1702 if (reload_completed)
1704 reg_set_iterator rsi;
1705 unsigned i;
1707 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1708 gcc_unreachable ();
1710 #endif
1712 if (EXPR_SEPARABLE_P (expr))
1714 rtx best_reg = NULL_RTX;
1715 /* Check that we have computed availability of a target register
1716 correctly. */
1717 verify_target_availability (expr, used_regs, &reg_rename_data);
1719 /* Turn everything in hard regs after reload. */
1720 if (reload_completed)
1722 HARD_REG_SET hard_regs_used;
1723 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1725 /* Join hard registers unavailable due to register class
1726 restrictions and live range intersection. */
1727 IOR_HARD_REG_SET (hard_regs_used,
1728 reg_rename_data.unavailable_hard_regs);
1730 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1731 original_insns, is_orig_reg_p);
1733 else
1734 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1735 original_insns, is_orig_reg_p);
1737 if (!best_reg)
1738 reg_ok = false;
1739 else if (*is_orig_reg_p)
1741 /* In case of unification BEST_REG may be different from EXPR's LHS
1742 when EXPR's LHS is unavailable, and there is another LHS among
1743 ORIGINAL_INSNS. */
1744 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1746 else
1748 /* Forbid renaming of low-cost insns. */
1749 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1750 reg_ok = false;
1751 else
1752 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1755 else
1757 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1758 any of the HARD_REGS_USED set. */
1759 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1760 reg_rename_data.unavailable_hard_regs))
1762 reg_ok = false;
1763 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1765 else
1767 reg_ok = true;
1768 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1772 ilist_clear (&original_insns);
1773 return_regset_to_pool (used_regs);
1775 return reg_ok;
1779 /* Return true if dependence described by DS can be overcomed. */
1780 static bool
1781 can_speculate_dep_p (ds_t ds)
1783 if (spec_info == NULL)
1784 return false;
1786 /* Leave only speculative data. */
1787 ds &= SPECULATIVE;
1789 if (ds == 0)
1790 return false;
1793 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1794 that we can overcome. */
1795 ds_t spec_mask = spec_info->mask;
1797 if ((ds & spec_mask) != ds)
1798 return false;
1801 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1802 return false;
1804 return true;
1807 /* Get a speculation check instruction.
1808 C_EXPR is a speculative expression,
1809 CHECK_DS describes speculations that should be checked,
1810 ORIG_INSN is the original non-speculative insn in the stream. */
1811 static insn_t
1812 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1814 rtx check_pattern;
1815 rtx insn_rtx;
1816 insn_t insn;
1817 basic_block recovery_block;
1818 rtx label;
1820 /* Create a recovery block if target is going to emit branchy check, or if
1821 ORIG_INSN was speculative already. */
1822 if (targetm.sched.needs_block_p (check_ds)
1823 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1825 recovery_block = sel_create_recovery_block (orig_insn);
1826 label = BB_HEAD (recovery_block);
1828 else
1830 recovery_block = NULL;
1831 label = NULL_RTX;
1834 /* Get pattern of the check. */
1835 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1836 check_ds);
1838 gcc_assert (check_pattern != NULL);
1840 /* Emit check. */
1841 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1843 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1844 INSN_SEQNO (orig_insn), orig_insn);
1846 /* Make check to be non-speculative. */
1847 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1848 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1850 /* Decrease priority of check by difference of load/check instruction
1851 latencies. */
1852 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1853 - sel_vinsn_cost (INSN_VINSN (insn)));
1855 /* Emit copy of original insn (though with replaced target register,
1856 if needed) to the recovery block. */
1857 if (recovery_block != NULL)
1859 rtx twin_rtx;
1860 insn_t twin;
1862 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1863 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1864 twin = sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1865 INSN_EXPR (orig_insn),
1866 INSN_SEQNO (insn),
1867 bb_note (recovery_block));
1870 /* If we've generated a data speculation check, make sure
1871 that all the bookkeeping instruction we'll create during
1872 this move_op () will allocate an ALAT entry so that the
1873 check won't fail.
1874 In case of control speculation we must convert C_EXPR to control
1875 speculative mode, because failing to do so will bring us an exception
1876 thrown by the non-control-speculative load. */
1877 check_ds = ds_get_max_dep_weak (check_ds);
1878 speculate_expr (c_expr, check_ds);
1880 return insn;
1883 /* True when INSN is a "regN = regN" copy. */
1884 static bool
1885 identical_copy_p (rtx insn)
1887 rtx lhs, rhs, pat;
1889 pat = PATTERN (insn);
1891 if (GET_CODE (pat) != SET)
1892 return false;
1894 lhs = SET_DEST (pat);
1895 if (!REG_P (lhs))
1896 return false;
1898 rhs = SET_SRC (pat);
1899 if (!REG_P (rhs))
1900 return false;
1902 return REGNO (lhs) == REGNO (rhs);
1905 /* Undo all transformations on *AV_PTR that were done when
1906 moving through INSN. */
1907 static void
1908 undo_transformations (av_set_t *av_ptr, rtx insn)
1910 av_set_iterator av_iter;
1911 expr_t expr;
1912 av_set_t new_set = NULL;
1914 /* First, kill any EXPR that uses registers set by an insn. This is
1915 required for correctness. */
1916 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1917 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1918 && bitmap_intersect_p (INSN_REG_SETS (insn),
1919 VINSN_REG_USES (EXPR_VINSN (expr)))
1920 /* When an insn looks like 'r1 = r1', we could substitute through
1921 it, but the above condition will still hold. This happened with
1922 gcc.c-torture/execute/961125-1.c. */
1923 && !identical_copy_p (insn))
1925 if (sched_verbose >= 6)
1926 sel_print ("Expr %d removed due to use/set conflict\n",
1927 INSN_UID (EXPR_INSN_RTX (expr)));
1928 av_set_iter_remove (&av_iter);
1931 /* Undo transformations looking at the history vector. */
1932 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1934 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1935 insn, EXPR_VINSN (expr), true);
1937 if (index >= 0)
1939 expr_history_def *phist;
1941 phist = VEC_index (expr_history_def,
1942 EXPR_HISTORY_OF_CHANGES (expr),
1943 index);
1945 switch (phist->type)
1947 case TRANS_SPECULATION:
1949 ds_t old_ds, new_ds;
1951 /* Compute the difference between old and new speculative
1952 statuses: that's what we need to check.
1953 Earlier we used to assert that the status will really
1954 change. This no longer works because only the probability
1955 bits in the status may have changed during compute_av_set,
1956 and in the case of merging different probabilities of the
1957 same speculative status along different paths we do not
1958 record this in the history vector. */
1959 old_ds = phist->spec_ds;
1960 new_ds = EXPR_SPEC_DONE_DS (expr);
1962 old_ds &= SPECULATIVE;
1963 new_ds &= SPECULATIVE;
1964 new_ds &= ~old_ds;
1966 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1967 break;
1969 case TRANS_SUBSTITUTION:
1971 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1972 vinsn_t new_vi;
1973 bool add = true;
1975 new_vi = phist->old_expr_vinsn;
1977 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1978 == EXPR_SEPARABLE_P (expr));
1979 copy_expr (tmp_expr, expr);
1981 if (vinsn_equal_p (phist->new_expr_vinsn,
1982 EXPR_VINSN (tmp_expr)))
1983 change_vinsn_in_expr (tmp_expr, new_vi);
1984 else
1985 /* This happens when we're unsubstituting on a bookkeeping
1986 copy, which was in turn substituted. The history is wrong
1987 in this case. Do it the hard way. */
1988 add = substitute_reg_in_expr (tmp_expr, insn, true);
1989 if (add)
1990 av_set_add (&new_set, tmp_expr);
1991 clear_expr (tmp_expr);
1992 break;
1994 default:
1995 gcc_unreachable ();
2001 av_set_union_and_clear (av_ptr, &new_set, NULL);
2005 /* Moveup_* helpers for code motion and computing av sets. */
2007 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2008 The difference from the below function is that only substitution is
2009 performed. */
2010 static enum MOVEUP_EXPR_CODE
2011 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2013 vinsn_t vi = EXPR_VINSN (expr);
2014 ds_t *has_dep_p;
2015 ds_t full_ds;
2017 /* Do this only inside insn group. */
2018 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2020 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2021 if (full_ds == 0)
2022 return MOVEUP_EXPR_SAME;
2024 /* Substitution is the possible choice in this case. */
2025 if (has_dep_p[DEPS_IN_RHS])
2027 /* Can't substitute UNIQUE VINSNs. */
2028 gcc_assert (!VINSN_UNIQUE_P (vi));
2030 if (can_substitute_through_p (through_insn,
2031 has_dep_p[DEPS_IN_RHS])
2032 && substitute_reg_in_expr (expr, through_insn, false))
2034 EXPR_WAS_SUBSTITUTED (expr) = true;
2035 return MOVEUP_EXPR_CHANGED;
2038 /* Don't care about this, as even true dependencies may be allowed
2039 in an insn group. */
2040 return MOVEUP_EXPR_SAME;
2043 /* This can catch output dependencies in COND_EXECs. */
2044 if (has_dep_p[DEPS_IN_INSN])
2045 return MOVEUP_EXPR_NULL;
2047 /* This is either an output or an anti dependence, which usually have
2048 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2049 will fix this. */
2050 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2051 return MOVEUP_EXPR_AS_RHS;
2054 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2055 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2056 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2057 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2058 && !sel_insn_is_speculation_check (through_insn))
2060 /* True when a conflict on a target register was found during moveup_expr. */
2061 static bool was_target_conflict = false;
2063 /* Return true when moving a debug INSN across THROUGH_INSN will
2064 create a bookkeeping block. We don't want to create such blocks,
2065 for they would cause codegen differences between compilations with
2066 and without debug info. */
2068 static bool
2069 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2070 insn_t through_insn)
2072 basic_block bbi, bbt;
2073 edge e1, e2;
2074 edge_iterator ei1, ei2;
2076 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2078 if (sched_verbose >= 9)
2079 sel_print ("no bookkeeping required: ");
2080 return FALSE;
2083 bbi = BLOCK_FOR_INSN (insn);
2085 if (EDGE_COUNT (bbi->preds) == 1)
2087 if (sched_verbose >= 9)
2088 sel_print ("only one pred edge: ");
2089 return TRUE;
2092 bbt = BLOCK_FOR_INSN (through_insn);
2094 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2096 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2098 if (find_block_for_bookkeeping (e1, e2, TRUE))
2100 if (sched_verbose >= 9)
2101 sel_print ("found existing block: ");
2102 return FALSE;
2107 if (sched_verbose >= 9)
2108 sel_print ("would create bookkeeping block: ");
2110 return TRUE;
2113 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2114 performing necessary transformations. Record the type of transformation
2115 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2116 permit all dependencies except true ones, and try to remove those
2117 too via forward substitution. All cases when a non-eliminable
2118 non-zero cost dependency exists inside an insn group will be fixed
2119 in tick_check_p instead. */
2120 static enum MOVEUP_EXPR_CODE
2121 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2122 enum local_trans_type *ptrans_type)
2124 vinsn_t vi = EXPR_VINSN (expr);
2125 insn_t insn = VINSN_INSN_RTX (vi);
2126 bool was_changed = false;
2127 bool as_rhs = false;
2128 ds_t *has_dep_p;
2129 ds_t full_ds;
2131 /* When inside_insn_group, delegate to the helper. */
2132 if (inside_insn_group)
2133 return moveup_expr_inside_insn_group (expr, through_insn);
2135 /* Deal with unique insns and control dependencies. */
2136 if (VINSN_UNIQUE_P (vi))
2138 /* We can move jumps without side-effects or jumps that are
2139 mutually exclusive with instruction THROUGH_INSN (all in cases
2140 dependencies allow to do so and jump is not speculative). */
2141 if (control_flow_insn_p (insn))
2143 basic_block fallthru_bb;
2145 /* Do not move checks and do not move jumps through other
2146 jumps. */
2147 if (control_flow_insn_p (through_insn)
2148 || sel_insn_is_speculation_check (insn))
2149 return MOVEUP_EXPR_NULL;
2151 /* Don't move jumps through CFG joins. */
2152 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2153 return MOVEUP_EXPR_NULL;
2155 /* The jump should have a clear fallthru block, and
2156 this block should be in the current region. */
2157 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2158 || ! in_current_region_p (fallthru_bb))
2159 return MOVEUP_EXPR_NULL;
2161 /* And it should be mutually exclusive with through_insn, or
2162 be an unconditional jump. */
2163 if (! any_uncondjump_p (insn)
2164 && ! sched_insns_conditions_mutex_p (insn, through_insn)
2165 && ! DEBUG_INSN_P (through_insn))
2166 return MOVEUP_EXPR_NULL;
2169 /* Don't move what we can't move. */
2170 if (EXPR_CANT_MOVE (expr)
2171 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2172 return MOVEUP_EXPR_NULL;
2174 /* Don't move SCHED_GROUP instruction through anything.
2175 If we don't force this, then it will be possible to start
2176 scheduling a sched_group before all its dependencies are
2177 resolved.
2178 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2179 as late as possible through rank_for_schedule. */
2180 if (SCHED_GROUP_P (insn))
2181 return MOVEUP_EXPR_NULL;
2183 else
2184 gcc_assert (!control_flow_insn_p (insn));
2186 /* Don't move debug insns if this would require bookkeeping. */
2187 if (DEBUG_INSN_P (insn)
2188 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2189 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2190 return MOVEUP_EXPR_NULL;
2192 /* Deal with data dependencies. */
2193 was_target_conflict = false;
2194 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2195 if (full_ds == 0)
2197 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2198 return MOVEUP_EXPR_SAME;
2200 else
2202 /* We can move UNIQUE insn up only as a whole and unchanged,
2203 so it shouldn't have any dependencies. */
2204 if (VINSN_UNIQUE_P (vi))
2205 return MOVEUP_EXPR_NULL;
2208 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2210 int res;
2212 res = speculate_expr (expr, full_ds);
2213 if (res >= 0)
2215 /* Speculation was successful. */
2216 full_ds = 0;
2217 was_changed = (res > 0);
2218 if (res == 2)
2219 was_target_conflict = true;
2220 if (ptrans_type)
2221 *ptrans_type = TRANS_SPECULATION;
2222 sel_clear_has_dependence ();
2226 if (has_dep_p[DEPS_IN_INSN])
2227 /* We have some dependency that cannot be discarded. */
2228 return MOVEUP_EXPR_NULL;
2230 if (has_dep_p[DEPS_IN_LHS])
2232 /* Only separable insns can be moved up with the new register.
2233 Anyways, we should mark that the original register is
2234 unavailable. */
2235 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2236 return MOVEUP_EXPR_NULL;
2238 EXPR_TARGET_AVAILABLE (expr) = false;
2239 was_target_conflict = true;
2240 as_rhs = true;
2243 /* At this point we have either separable insns, that will be lifted
2244 up only as RHSes, or non-separable insns with no dependency in lhs.
2245 If dependency is in RHS, then try to perform substitution and move up
2246 substituted RHS:
2248 Ex. 1: Ex.2
2249 y = x; y = x;
2250 z = y*2; y = y*2;
2252 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2253 moved above y=x assignment as z=x*2.
2255 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2256 side can be moved because of the output dependency. The operation was
2257 cropped to its rhs above. */
2258 if (has_dep_p[DEPS_IN_RHS])
2260 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2262 /* Can't substitute UNIQUE VINSNs. */
2263 gcc_assert (!VINSN_UNIQUE_P (vi));
2265 if (can_speculate_dep_p (*rhs_dsp))
2267 int res;
2269 res = speculate_expr (expr, *rhs_dsp);
2270 if (res >= 0)
2272 /* Speculation was successful. */
2273 *rhs_dsp = 0;
2274 was_changed = (res > 0);
2275 if (res == 2)
2276 was_target_conflict = true;
2277 if (ptrans_type)
2278 *ptrans_type = TRANS_SPECULATION;
2280 else
2281 return MOVEUP_EXPR_NULL;
2283 else if (can_substitute_through_p (through_insn,
2284 *rhs_dsp)
2285 && substitute_reg_in_expr (expr, through_insn, false))
2287 /* ??? We cannot perform substitution AND speculation on the same
2288 insn. */
2289 gcc_assert (!was_changed);
2290 was_changed = true;
2291 if (ptrans_type)
2292 *ptrans_type = TRANS_SUBSTITUTION;
2293 EXPR_WAS_SUBSTITUTED (expr) = true;
2295 else
2296 return MOVEUP_EXPR_NULL;
2299 /* Don't move trapping insns through jumps.
2300 This check should be at the end to give a chance to control speculation
2301 to perform its duties. */
2302 if (CANT_MOVE_TRAPPING (expr, through_insn))
2303 return MOVEUP_EXPR_NULL;
2305 return (was_changed
2306 ? MOVEUP_EXPR_CHANGED
2307 : (as_rhs
2308 ? MOVEUP_EXPR_AS_RHS
2309 : MOVEUP_EXPR_SAME));
2312 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2313 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2314 that can exist within a parallel group. Write to RES the resulting
2315 code for moveup_expr. */
2316 static bool
2317 try_bitmap_cache (expr_t expr, insn_t insn,
2318 bool inside_insn_group,
2319 enum MOVEUP_EXPR_CODE *res)
2321 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2323 /* First check whether we've analyzed this situation already. */
2324 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2326 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2328 if (sched_verbose >= 6)
2329 sel_print ("removed (cached)\n");
2330 *res = MOVEUP_EXPR_NULL;
2331 return true;
2333 else
2335 if (sched_verbose >= 6)
2336 sel_print ("unchanged (cached)\n");
2337 *res = MOVEUP_EXPR_SAME;
2338 return true;
2341 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2343 if (inside_insn_group)
2345 if (sched_verbose >= 6)
2346 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2347 *res = MOVEUP_EXPR_SAME;
2348 return true;
2351 else
2352 EXPR_TARGET_AVAILABLE (expr) = false;
2354 /* This is the only case when propagation result can change over time,
2355 as we can dynamically switch off scheduling as RHS. In this case,
2356 just check the flag to reach the correct decision. */
2357 if (enable_schedule_as_rhs_p)
2359 if (sched_verbose >= 6)
2360 sel_print ("unchanged (as RHS, cached)\n");
2361 *res = MOVEUP_EXPR_AS_RHS;
2362 return true;
2364 else
2366 if (sched_verbose >= 6)
2367 sel_print ("removed (cached as RHS, but renaming"
2368 " is now disabled)\n");
2369 *res = MOVEUP_EXPR_NULL;
2370 return true;
2374 return false;
2377 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2378 if successful. Write to RES the resulting code for moveup_expr. */
2379 static bool
2380 try_transformation_cache (expr_t expr, insn_t insn,
2381 enum MOVEUP_EXPR_CODE *res)
2383 struct transformed_insns *pti
2384 = (struct transformed_insns *)
2385 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2386 &EXPR_VINSN (expr),
2387 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2388 if (pti)
2390 /* This EXPR was already moved through this insn and was
2391 changed as a result. Fetch the proper data from
2392 the hashtable. */
2393 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2394 INSN_UID (insn), pti->type,
2395 pti->vinsn_old, pti->vinsn_new,
2396 EXPR_SPEC_DONE_DS (expr));
2398 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2399 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2400 change_vinsn_in_expr (expr, pti->vinsn_new);
2401 if (pti->was_target_conflict)
2402 EXPR_TARGET_AVAILABLE (expr) = false;
2403 if (pti->type == TRANS_SPECULATION)
2405 ds_t ds;
2407 ds = EXPR_SPEC_DONE_DS (expr);
2409 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2410 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2413 if (sched_verbose >= 6)
2415 sel_print ("changed (cached): ");
2416 dump_expr (expr);
2417 sel_print ("\n");
2420 *res = MOVEUP_EXPR_CHANGED;
2421 return true;
2424 return false;
2427 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2428 static void
2429 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2430 enum MOVEUP_EXPR_CODE res)
2432 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2434 /* Do not cache result of propagating jumps through an insn group,
2435 as it is always true, which is not useful outside the group. */
2436 if (inside_insn_group)
2437 return;
2439 if (res == MOVEUP_EXPR_NULL)
2441 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2442 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2444 else if (res == MOVEUP_EXPR_SAME)
2446 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2447 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2449 else if (res == MOVEUP_EXPR_AS_RHS)
2451 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2452 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2454 else
2455 gcc_unreachable ();
2458 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2459 and transformation type TRANS_TYPE. */
2460 static void
2461 update_transformation_cache (expr_t expr, insn_t insn,
2462 bool inside_insn_group,
2463 enum local_trans_type trans_type,
2464 vinsn_t expr_old_vinsn)
2466 struct transformed_insns *pti;
2468 if (inside_insn_group)
2469 return;
2471 pti = XNEW (struct transformed_insns);
2472 pti->vinsn_old = expr_old_vinsn;
2473 pti->vinsn_new = EXPR_VINSN (expr);
2474 pti->type = trans_type;
2475 pti->was_target_conflict = was_target_conflict;
2476 pti->ds = EXPR_SPEC_DONE_DS (expr);
2477 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2478 vinsn_attach (pti->vinsn_old);
2479 vinsn_attach (pti->vinsn_new);
2480 *((struct transformed_insns **)
2481 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2482 pti, VINSN_HASH_RTX (expr_old_vinsn),
2483 INSERT)) = pti;
2486 /* Same as moveup_expr, but first looks up the result of
2487 transformation in caches. */
2488 static enum MOVEUP_EXPR_CODE
2489 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2491 enum MOVEUP_EXPR_CODE res;
2492 bool got_answer = false;
2494 if (sched_verbose >= 6)
2496 sel_print ("Moving ");
2497 dump_expr (expr);
2498 sel_print (" through %d: ", INSN_UID (insn));
2501 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2502 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2503 == EXPR_INSN_RTX (expr)))
2504 /* Don't use cached information for debug insns that are heads of
2505 basic blocks. */;
2506 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2507 /* When inside insn group, we do not want remove stores conflicting
2508 with previosly issued loads. */
2509 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2510 else if (try_transformation_cache (expr, insn, &res))
2511 got_answer = true;
2513 if (! got_answer)
2515 /* Invoke moveup_expr and record the results. */
2516 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2517 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2518 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2519 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2520 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2522 /* ??? Invent something better than this. We can't allow old_vinsn
2523 to go, we need it for the history vector. */
2524 vinsn_attach (expr_old_vinsn);
2526 res = moveup_expr (expr, insn, inside_insn_group,
2527 &trans_type);
2528 switch (res)
2530 case MOVEUP_EXPR_NULL:
2531 update_bitmap_cache (expr, insn, inside_insn_group, res);
2532 if (sched_verbose >= 6)
2533 sel_print ("removed\n");
2534 break;
2536 case MOVEUP_EXPR_SAME:
2537 update_bitmap_cache (expr, insn, inside_insn_group, res);
2538 if (sched_verbose >= 6)
2539 sel_print ("unchanged\n");
2540 break;
2542 case MOVEUP_EXPR_AS_RHS:
2543 gcc_assert (!unique_p || inside_insn_group);
2544 update_bitmap_cache (expr, insn, inside_insn_group, res);
2545 if (sched_verbose >= 6)
2546 sel_print ("unchanged (as RHS)\n");
2547 break;
2549 case MOVEUP_EXPR_CHANGED:
2550 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2551 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2552 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2553 INSN_UID (insn), trans_type,
2554 expr_old_vinsn, EXPR_VINSN (expr),
2555 expr_old_spec_ds);
2556 update_transformation_cache (expr, insn, inside_insn_group,
2557 trans_type, expr_old_vinsn);
2558 if (sched_verbose >= 6)
2560 sel_print ("changed: ");
2561 dump_expr (expr);
2562 sel_print ("\n");
2564 break;
2565 default:
2566 gcc_unreachable ();
2569 vinsn_detach (expr_old_vinsn);
2572 return res;
2575 /* Moves an av set AVP up through INSN, performing necessary
2576 transformations. */
2577 static void
2578 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2580 av_set_iterator i;
2581 expr_t expr;
2583 FOR_EACH_EXPR_1 (expr, i, avp)
2586 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2588 case MOVEUP_EXPR_SAME:
2589 case MOVEUP_EXPR_AS_RHS:
2590 break;
2592 case MOVEUP_EXPR_NULL:
2593 av_set_iter_remove (&i);
2594 break;
2596 case MOVEUP_EXPR_CHANGED:
2597 expr = merge_with_other_exprs (avp, &i, expr);
2598 break;
2600 default:
2601 gcc_unreachable ();
2606 /* Moves AVP set along PATH. */
2607 static void
2608 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2610 int last_cycle;
2612 if (sched_verbose >= 6)
2613 sel_print ("Moving expressions up in the insn group...\n");
2614 if (! path)
2615 return;
2616 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2617 while (path
2618 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2620 moveup_set_expr (avp, ILIST_INSN (path), true);
2621 path = ILIST_NEXT (path);
2625 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2626 static bool
2627 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2629 expr_def _tmp, *tmp = &_tmp;
2630 int last_cycle;
2631 bool res = true;
2633 copy_expr_onside (tmp, expr);
2634 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2635 while (path
2636 && res
2637 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2639 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2640 != MOVEUP_EXPR_NULL);
2641 path = ILIST_NEXT (path);
2644 if (res)
2646 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2647 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2649 if (tmp_vinsn != expr_vliw_vinsn)
2650 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2653 clear_expr (tmp);
2654 return res;
2658 /* Functions that compute av and lv sets. */
2660 /* Returns true if INSN is not a downward continuation of the given path P in
2661 the current stage. */
2662 static bool
2663 is_ineligible_successor (insn_t insn, ilist_t p)
2665 insn_t prev_insn;
2667 /* Check if insn is not deleted. */
2668 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2669 gcc_unreachable ();
2670 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2671 gcc_unreachable ();
2673 /* If it's the first insn visited, then the successor is ok. */
2674 if (!p)
2675 return false;
2677 prev_insn = ILIST_INSN (p);
2679 if (/* a backward edge. */
2680 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2681 /* is already visited. */
2682 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2683 && (ilist_is_in_p (p, insn)
2684 /* We can reach another fence here and still seqno of insn
2685 would be equal to seqno of prev_insn. This is possible
2686 when prev_insn is a previously created bookkeeping copy.
2687 In that case it'd get a seqno of insn. Thus, check here
2688 whether insn is in current fence too. */
2689 || IN_CURRENT_FENCE_P (insn)))
2690 /* Was already scheduled on this round. */
2691 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2692 && IN_CURRENT_FENCE_P (insn))
2693 /* An insn from another fence could also be
2694 scheduled earlier even if this insn is not in
2695 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2696 || (!pipelining_p
2697 && INSN_SCHED_TIMES (insn) > 0))
2698 return true;
2699 else
2700 return false;
2703 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2704 of handling multiple successors and properly merging its av_sets. P is
2705 the current path traversed. WS is the size of lookahead window.
2706 Return the av set computed. */
2707 static av_set_t
2708 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2710 struct succs_info *sinfo;
2711 av_set_t expr_in_all_succ_branches = NULL;
2712 int is;
2713 insn_t succ, zero_succ = NULL;
2714 av_set_t av1 = NULL;
2716 gcc_assert (sel_bb_end_p (insn));
2718 /* Find different kind of successors needed for correct computing of
2719 SPEC and TARGET_AVAILABLE attributes. */
2720 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2722 /* Debug output. */
2723 if (sched_verbose >= 6)
2725 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2726 dump_insn_vector (sinfo->succs_ok);
2727 sel_print ("\n");
2728 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2729 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2732 /* Add insn to to the tail of current path. */
2733 ilist_add (&p, insn);
2735 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2737 av_set_t succ_set;
2739 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2740 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2742 av_set_split_usefulness (succ_set,
2743 VEC_index (int, sinfo->probs_ok, is),
2744 sinfo->all_prob);
2746 if (sinfo->all_succs_n > 1
2747 && sinfo->all_succs_n == sinfo->succs_ok_n)
2749 /* Find EXPR'es that came from *all* successors and save them
2750 into expr_in_all_succ_branches. This set will be used later
2751 for calculating speculation attributes of EXPR'es. */
2752 if (is == 0)
2754 expr_in_all_succ_branches = av_set_copy (succ_set);
2756 /* Remember the first successor for later. */
2757 zero_succ = succ;
2759 else
2761 av_set_iterator i;
2762 expr_t expr;
2764 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2765 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2766 av_set_iter_remove (&i);
2770 /* Union the av_sets. Check liveness restrictions on target registers
2771 in special case of two successors. */
2772 if (sinfo->succs_ok_n == 2 && is == 1)
2774 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2775 basic_block bb1 = BLOCK_FOR_INSN (succ);
2777 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2778 av_set_union_and_live (&av1, &succ_set,
2779 BB_LV_SET (bb0),
2780 BB_LV_SET (bb1),
2781 insn);
2783 else
2784 av_set_union_and_clear (&av1, &succ_set, insn);
2787 /* Check liveness restrictions via hard way when there are more than
2788 two successors. */
2789 if (sinfo->succs_ok_n > 2)
2790 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2792 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2794 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2795 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2796 BB_LV_SET (succ_bb));
2799 /* Finally, check liveness restrictions on paths leaving the region. */
2800 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2801 for (is = 0; VEC_iterate (rtx, sinfo->succs_other, is, succ); is++)
2802 mark_unavailable_targets
2803 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2805 if (sinfo->all_succs_n > 1)
2807 av_set_iterator i;
2808 expr_t expr;
2810 /* Increase the spec attribute of all EXPR'es that didn't come
2811 from all successors. */
2812 FOR_EACH_EXPR (expr, i, av1)
2813 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2814 EXPR_SPEC (expr)++;
2816 av_set_clear (&expr_in_all_succ_branches);
2818 /* Do not move conditional branches through other
2819 conditional branches. So, remove all conditional
2820 branches from av_set if current operator is a conditional
2821 branch. */
2822 av_set_substract_cond_branches (&av1);
2825 ilist_remove (&p);
2826 free_succs_info (sinfo);
2828 if (sched_verbose >= 6)
2830 sel_print ("av_succs (%d): ", INSN_UID (insn));
2831 dump_av_set (av1);
2832 sel_print ("\n");
2835 return av1;
2838 /* This function computes av_set for the FIRST_INSN by dragging valid
2839 av_set through all basic block insns either from the end of basic block
2840 (computed using compute_av_set_at_bb_end) or from the insn on which
2841 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2842 below the basic block and handling conditional branches.
2843 FIRST_INSN - the basic block head, P - path consisting of the insns
2844 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2845 and bb ends are added to the path), WS - current window size,
2846 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2847 static av_set_t
2848 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2849 bool need_copy_p)
2851 insn_t cur_insn;
2852 int end_ws = ws;
2853 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2854 insn_t after_bb_end = NEXT_INSN (bb_end);
2855 insn_t last_insn;
2856 av_set_t av = NULL;
2857 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2859 /* Return NULL if insn is not on the legitimate downward path. */
2860 if (is_ineligible_successor (first_insn, p))
2862 if (sched_verbose >= 6)
2863 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2865 return NULL;
2868 /* If insn already has valid av(insn) computed, just return it. */
2869 if (AV_SET_VALID_P (first_insn))
2871 av_set_t av_set;
2873 if (sel_bb_head_p (first_insn))
2874 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2875 else
2876 av_set = NULL;
2878 if (sched_verbose >= 6)
2880 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2881 dump_av_set (av_set);
2882 sel_print ("\n");
2885 return need_copy_p ? av_set_copy (av_set) : av_set;
2888 ilist_add (&p, first_insn);
2890 /* As the result after this loop have completed, in LAST_INSN we'll
2891 have the insn which has valid av_set to start backward computation
2892 from: it either will be NULL because on it the window size was exceeded
2893 or other valid av_set as returned by compute_av_set for the last insn
2894 of the basic block. */
2895 for (last_insn = first_insn; last_insn != after_bb_end;
2896 last_insn = NEXT_INSN (last_insn))
2898 /* We may encounter valid av_set not only on bb_head, but also on
2899 those insns on which previously MAX_WS was exceeded. */
2900 if (AV_SET_VALID_P (last_insn))
2902 if (sched_verbose >= 6)
2903 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2904 break;
2907 /* The special case: the last insn of the BB may be an
2908 ineligible_successor due to its SEQ_NO that was set on
2909 it as a bookkeeping. */
2910 if (last_insn != first_insn
2911 && is_ineligible_successor (last_insn, p))
2913 if (sched_verbose >= 6)
2914 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2915 break;
2918 if (DEBUG_INSN_P (last_insn))
2919 continue;
2921 if (end_ws > max_ws)
2923 /* We can reach max lookahead size at bb_header, so clean av_set
2924 first. */
2925 INSN_WS_LEVEL (last_insn) = global_level;
2927 if (sched_verbose >= 6)
2928 sel_print ("Insn %d is beyond the software lookahead window size\n",
2929 INSN_UID (last_insn));
2930 break;
2933 end_ws++;
2936 /* Get the valid av_set into AV above the LAST_INSN to start backward
2937 computation from. It either will be empty av_set or av_set computed from
2938 the successors on the last insn of the current bb. */
2939 if (last_insn != after_bb_end)
2941 av = NULL;
2943 /* This is needed only to obtain av_sets that are identical to
2944 those computed by the old compute_av_set version. */
2945 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2946 av_set_add (&av, INSN_EXPR (last_insn));
2948 else
2949 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2950 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2952 /* Compute av_set in AV starting from below the LAST_INSN up to
2953 location above the FIRST_INSN. */
2954 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2955 cur_insn = PREV_INSN (cur_insn))
2956 if (!INSN_NOP_P (cur_insn))
2958 expr_t expr;
2960 moveup_set_expr (&av, cur_insn, false);
2962 /* If the expression for CUR_INSN is already in the set,
2963 replace it by the new one. */
2964 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2965 if (expr != NULL)
2967 clear_expr (expr);
2968 copy_expr (expr, INSN_EXPR (cur_insn));
2970 else
2971 av_set_add (&av, INSN_EXPR (cur_insn));
2974 /* Clear stale bb_av_set. */
2975 if (sel_bb_head_p (first_insn))
2977 av_set_clear (&BB_AV_SET (cur_bb));
2978 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2979 BB_AV_LEVEL (cur_bb) = global_level;
2982 if (sched_verbose >= 6)
2984 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2985 dump_av_set (av);
2986 sel_print ("\n");
2989 ilist_remove (&p);
2990 return av;
2993 /* Compute av set before INSN.
2994 INSN - the current operation (actual rtx INSN)
2995 P - the current path, which is list of insns visited so far
2996 WS - software lookahead window size.
2997 UNIQUE_P - TRUE, if returned av_set will be changed, hence
2998 if we want to save computed av_set in s_i_d, we should make a copy of it.
3000 In the resulting set we will have only expressions that don't have delay
3001 stalls and nonsubstitutable dependences. */
3002 static av_set_t
3003 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3005 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3008 /* Propagate a liveness set LV through INSN. */
3009 static void
3010 propagate_lv_set (regset lv, insn_t insn)
3012 gcc_assert (INSN_P (insn));
3014 if (INSN_NOP_P (insn))
3015 return;
3017 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3020 /* Return livness set at the end of BB. */
3021 static regset
3022 compute_live_after_bb (basic_block bb)
3024 edge e;
3025 edge_iterator ei;
3026 regset lv = get_clear_regset_from_pool ();
3028 gcc_assert (!ignore_first);
3030 FOR_EACH_EDGE (e, ei, bb->succs)
3031 if (sel_bb_empty_p (e->dest))
3033 if (! BB_LV_SET_VALID_P (e->dest))
3035 gcc_unreachable ();
3036 gcc_assert (BB_LV_SET (e->dest) == NULL);
3037 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3038 BB_LV_SET_VALID_P (e->dest) = true;
3040 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3042 else
3043 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3045 return lv;
3048 /* Compute the set of all live registers at the point before INSN and save
3049 it at INSN if INSN is bb header. */
3050 regset
3051 compute_live (insn_t insn)
3053 basic_block bb = BLOCK_FOR_INSN (insn);
3054 insn_t final, temp;
3055 regset lv;
3057 /* Return the valid set if we're already on it. */
3058 if (!ignore_first)
3060 regset src = NULL;
3062 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3063 src = BB_LV_SET (bb);
3064 else
3066 gcc_assert (in_current_region_p (bb));
3067 if (INSN_LIVE_VALID_P (insn))
3068 src = INSN_LIVE (insn);
3071 if (src)
3073 lv = get_regset_from_pool ();
3074 COPY_REG_SET (lv, src);
3076 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3078 COPY_REG_SET (BB_LV_SET (bb), lv);
3079 BB_LV_SET_VALID_P (bb) = true;
3082 return_regset_to_pool (lv);
3083 return lv;
3087 /* We've skipped the wrong lv_set. Don't skip the right one. */
3088 ignore_first = false;
3089 gcc_assert (in_current_region_p (bb));
3091 /* Find a valid LV set in this block or below, if needed.
3092 Start searching from the next insn: either ignore_first is true, or
3093 INSN doesn't have a correct live set. */
3094 temp = NEXT_INSN (insn);
3095 final = NEXT_INSN (BB_END (bb));
3096 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3097 temp = NEXT_INSN (temp);
3098 if (temp == final)
3100 lv = compute_live_after_bb (bb);
3101 temp = PREV_INSN (temp);
3103 else
3105 lv = get_regset_from_pool ();
3106 COPY_REG_SET (lv, INSN_LIVE (temp));
3109 /* Put correct lv sets on the insns which have bad sets. */
3110 final = PREV_INSN (insn);
3111 while (temp != final)
3113 propagate_lv_set (lv, temp);
3114 COPY_REG_SET (INSN_LIVE (temp), lv);
3115 INSN_LIVE_VALID_P (temp) = true;
3116 temp = PREV_INSN (temp);
3119 /* Also put it in a BB. */
3120 if (sel_bb_head_p (insn))
3122 basic_block bb = BLOCK_FOR_INSN (insn);
3124 COPY_REG_SET (BB_LV_SET (bb), lv);
3125 BB_LV_SET_VALID_P (bb) = true;
3128 /* We return LV to the pool, but will not clear it there. Thus we can
3129 legimatelly use LV till the next use of regset_pool_get (). */
3130 return_regset_to_pool (lv);
3131 return lv;
3134 /* Update liveness sets for INSN. */
3135 static inline void
3136 update_liveness_on_insn (rtx insn)
3138 ignore_first = true;
3139 compute_live (insn);
3142 /* Compute liveness below INSN and write it into REGS. */
3143 static inline void
3144 compute_live_below_insn (rtx insn, regset regs)
3146 rtx succ;
3147 succ_iterator si;
3149 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3150 IOR_REG_SET (regs, compute_live (succ));
3153 /* Update the data gathered in av and lv sets starting from INSN. */
3154 static void
3155 update_data_sets (rtx insn)
3157 update_liveness_on_insn (insn);
3158 if (sel_bb_head_p (insn))
3160 gcc_assert (AV_LEVEL (insn) != 0);
3161 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3162 compute_av_set (insn, NULL, 0, 0);
3167 /* Helper for move_op () and find_used_regs ().
3168 Return speculation type for which a check should be created on the place
3169 of INSN. EXPR is one of the original ops we are searching for. */
3170 static ds_t
3171 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3173 ds_t to_check_ds;
3174 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3176 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3178 if (targetm.sched.get_insn_checked_ds)
3179 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3181 if (spec_info != NULL
3182 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3183 already_checked_ds |= BEGIN_CONTROL;
3185 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3187 to_check_ds &= ~already_checked_ds;
3189 return to_check_ds;
3192 /* Find the set of registers that are unavailable for storing expres
3193 while moving ORIG_OPS up on the path starting from INSN due to
3194 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3196 All the original operations found during the traversal are saved in the
3197 ORIGINAL_INSNS list.
3199 REG_RENAME_P denotes the set of hardware registers that
3200 can not be used with renaming due to the register class restrictions,
3201 mode restrictions and other (the register we'll choose should be
3202 compatible class with the original uses, shouldn't be in call_used_regs,
3203 should be HARD_REGNO_RENAME_OK etc).
3205 Returns TRUE if we've found all original insns, FALSE otherwise.
3207 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3208 to traverse the code motion paths. This helper function finds registers
3209 that are not available for storing expres while moving ORIG_OPS up on the
3210 path starting from INSN. A register considered as used on the moving path,
3211 if one of the following conditions is not satisfied:
3213 (1) a register not set or read on any path from xi to an instance of
3214 the original operation,
3215 (2) not among the live registers of the point immediately following the
3216 first original operation on a given downward path, except for the
3217 original target register of the operation,
3218 (3) not live on the other path of any conditional branch that is passed
3219 by the operation, in case original operations are not present on
3220 both paths of the conditional branch.
3222 All the original operations found during the traversal are saved in the
3223 ORIGINAL_INSNS list.
3225 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3226 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3227 to unavailable hard regs at the point original operation is found. */
3229 static bool
3230 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3231 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3233 def_list_iterator i;
3234 def_t def;
3235 int res;
3236 bool needs_spec_check_p = false;
3237 expr_t expr;
3238 av_set_iterator expr_iter;
3239 struct fur_static_params sparams;
3240 struct cmpd_local_params lparams;
3242 /* We haven't visited any blocks yet. */
3243 bitmap_clear (code_motion_visited_blocks);
3245 /* Init parameters for code_motion_path_driver. */
3246 sparams.crosses_call = false;
3247 sparams.original_insns = original_insns;
3248 sparams.used_regs = used_regs;
3250 /* Set the appropriate hooks and data. */
3251 code_motion_path_driver_info = &fur_hooks;
3253 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3255 reg_rename_p->crosses_call |= sparams.crosses_call;
3257 gcc_assert (res == 1);
3258 gcc_assert (original_insns && *original_insns);
3260 /* ??? We calculate whether an expression needs a check when computing
3261 av sets. This information is not as precise as it could be due to
3262 merging this bit in merge_expr. We can do better in find_used_regs,
3263 but we want to avoid multiple traversals of the same code motion
3264 paths. */
3265 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3266 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3268 /* Mark hardware regs in REG_RENAME_P that are not suitable
3269 for renaming expr in INSN due to hardware restrictions (register class,
3270 modes compatibility etc). */
3271 FOR_EACH_DEF (def, i, *original_insns)
3273 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3275 if (VINSN_SEPARABLE_P (vinsn))
3276 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3278 /* Do not allow clobbering of ld.[sa] address in case some of the
3279 original operations need a check. */
3280 if (needs_spec_check_p)
3281 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3284 return true;
3288 /* Functions to choose the best insn from available ones. */
3290 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3291 static int
3292 sel_target_adjust_priority (expr_t expr)
3294 int priority = EXPR_PRIORITY (expr);
3295 int new_priority;
3297 if (targetm.sched.adjust_priority)
3298 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3299 else
3300 new_priority = priority;
3302 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3303 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3305 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3307 if (sched_verbose >= 2)
3308 sel_print ("sel_target_adjust_priority: insn %d, %d +%d = %d.\n",
3309 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3310 EXPR_PRIORITY_ADJ (expr), new_priority);
3312 return new_priority;
3315 /* Rank two available exprs for schedule. Never return 0 here. */
3316 static int
3317 sel_rank_for_schedule (const void *x, const void *y)
3319 expr_t tmp = *(const expr_t *) y;
3320 expr_t tmp2 = *(const expr_t *) x;
3321 insn_t tmp_insn, tmp2_insn;
3322 vinsn_t tmp_vinsn, tmp2_vinsn;
3323 int val;
3325 tmp_vinsn = EXPR_VINSN (tmp);
3326 tmp2_vinsn = EXPR_VINSN (tmp2);
3327 tmp_insn = EXPR_INSN_RTX (tmp);
3328 tmp2_insn = EXPR_INSN_RTX (tmp2);
3330 /* Schedule debug insns as early as possible. */
3331 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3332 return -1;
3333 else if (DEBUG_INSN_P (tmp2_insn))
3334 return 1;
3336 /* Prefer SCHED_GROUP_P insns to any others. */
3337 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3339 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3340 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3342 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3343 cannot be cloned. */
3344 if (VINSN_UNIQUE_P (tmp2_vinsn))
3345 return 1;
3346 return -1;
3349 /* Discourage scheduling of speculative checks. */
3350 val = (sel_insn_is_speculation_check (tmp_insn)
3351 - sel_insn_is_speculation_check (tmp2_insn));
3352 if (val)
3353 return val;
3355 /* Prefer not scheduled insn over scheduled one. */
3356 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3358 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3359 if (val)
3360 return val;
3363 /* Prefer jump over non-jump instruction. */
3364 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3365 return -1;
3366 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3367 return 1;
3369 /* Prefer an expr with greater priority. */
3370 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3372 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3373 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3375 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3377 else
3378 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3379 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3380 if (val)
3381 return val;
3383 if (spec_info != NULL && spec_info->mask != 0)
3384 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3386 ds_t ds1, ds2;
3387 dw_t dw1, dw2;
3388 int dw;
3390 ds1 = EXPR_SPEC_DONE_DS (tmp);
3391 if (ds1)
3392 dw1 = ds_weak (ds1);
3393 else
3394 dw1 = NO_DEP_WEAK;
3396 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3397 if (ds2)
3398 dw2 = ds_weak (ds2);
3399 else
3400 dw2 = NO_DEP_WEAK;
3402 dw = dw2 - dw1;
3403 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3404 return dw;
3407 /* Prefer an old insn to a bookkeeping insn. */
3408 if (INSN_UID (tmp_insn) < first_emitted_uid
3409 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3410 return -1;
3411 if (INSN_UID (tmp_insn) >= first_emitted_uid
3412 && INSN_UID (tmp2_insn) < first_emitted_uid)
3413 return 1;
3415 /* Prefer an insn with smaller UID, as a last resort.
3416 We can't safely use INSN_LUID as it is defined only for those insns
3417 that are in the stream. */
3418 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3421 /* Filter out expressions from av set pointed to by AV_PTR
3422 that are pipelined too many times. */
3423 static void
3424 process_pipelined_exprs (av_set_t *av_ptr)
3426 expr_t expr;
3427 av_set_iterator si;
3429 /* Don't pipeline already pipelined code as that would increase
3430 number of unnecessary register moves. */
3431 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3433 if (EXPR_SCHED_TIMES (expr)
3434 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3435 av_set_iter_remove (&si);
3439 /* Filter speculative insns from AV_PTR if we don't want them. */
3440 static void
3441 process_spec_exprs (av_set_t *av_ptr)
3443 bool try_data_p = true;
3444 bool try_control_p = true;
3445 expr_t expr;
3446 av_set_iterator si;
3448 if (spec_info == NULL)
3449 return;
3451 /* Scan *AV_PTR to find out if we want to consider speculative
3452 instructions for scheduling. */
3453 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3455 ds_t ds;
3457 ds = EXPR_SPEC_DONE_DS (expr);
3459 /* The probability of a success is too low - don't speculate. */
3460 if ((ds & SPECULATIVE)
3461 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3462 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3463 || (pipelining_p && false
3464 && (ds & DATA_SPEC)
3465 && (ds & CONTROL_SPEC))))
3467 av_set_iter_remove (&si);
3468 continue;
3471 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3472 && !(ds & BEGIN_DATA))
3473 try_data_p = false;
3475 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3476 && !(ds & BEGIN_CONTROL))
3477 try_control_p = false;
3480 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3482 ds_t ds;
3484 ds = EXPR_SPEC_DONE_DS (expr);
3486 if (ds & SPECULATIVE)
3488 if ((ds & BEGIN_DATA) && !try_data_p)
3489 /* We don't want any data speculative instructions right
3490 now. */
3491 av_set_iter_remove (&si);
3493 if ((ds & BEGIN_CONTROL) && !try_control_p)
3494 /* We don't want any control speculative instructions right
3495 now. */
3496 av_set_iter_remove (&si);
3501 /* Search for any use-like insns in AV_PTR and decide on scheduling
3502 them. Return one when found, and NULL otherwise.
3503 Note that we check here whether a USE could be scheduled to avoid
3504 an infinite loop later. */
3505 static expr_t
3506 process_use_exprs (av_set_t *av_ptr)
3508 expr_t expr;
3509 av_set_iterator si;
3510 bool uses_present_p = false;
3511 bool try_uses_p = true;
3513 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3515 /* This will also initialize INSN_CODE for later use. */
3516 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3518 /* If we have a USE in *AV_PTR that was not scheduled yet,
3519 do so because it will do good only. */
3520 if (EXPR_SCHED_TIMES (expr) <= 0)
3522 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3523 return expr;
3525 av_set_iter_remove (&si);
3527 else
3529 gcc_assert (pipelining_p);
3531 uses_present_p = true;
3534 else
3535 try_uses_p = false;
3538 if (uses_present_p)
3540 /* If we don't want to schedule any USEs right now and we have some
3541 in *AV_PTR, remove them, else just return the first one found. */
3542 if (!try_uses_p)
3544 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3545 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3546 av_set_iter_remove (&si);
3548 else
3550 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3552 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3554 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3555 return expr;
3557 av_set_iter_remove (&si);
3562 return NULL;
3565 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3566 static bool
3567 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3569 vinsn_t vinsn;
3570 int n;
3572 for (n = 0; VEC_iterate (vinsn_t, vinsn_vec, n, vinsn); n++)
3573 if (VINSN_SEPARABLE_P (vinsn))
3575 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3576 return true;
3578 else
3580 /* For non-separable instructions, the blocking insn can have
3581 another pattern due to substitution, and we can't choose
3582 different register as in the above case. Check all registers
3583 being written instead. */
3584 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3585 VINSN_REG_SETS (EXPR_VINSN (expr))))
3586 return true;
3589 return false;
3592 #ifdef ENABLE_CHECKING
3593 /* Return true if either of expressions from ORIG_OPS can be blocked
3594 by previously created bookkeeping code. STATIC_PARAMS points to static
3595 parameters of move_op. */
3596 static bool
3597 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3599 expr_t expr;
3600 av_set_iterator iter;
3601 moveop_static_params_p sparams;
3603 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3604 created while scheduling on another fence. */
3605 FOR_EACH_EXPR (expr, iter, orig_ops)
3606 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3607 return true;
3609 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3610 sparams = (moveop_static_params_p) static_params;
3612 /* Expressions can be also blocked by bookkeeping created during current
3613 move_op. */
3614 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3615 FOR_EACH_EXPR (expr, iter, orig_ops)
3616 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3617 return true;
3619 /* Expressions in ORIG_OPS may have wrong destination register due to
3620 renaming. Check with the right register instead. */
3621 if (sparams->dest && REG_P (sparams->dest))
3623 unsigned regno = REGNO (sparams->dest);
3624 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3626 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3627 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3628 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3629 return true;
3632 return false;
3634 #endif
3636 /* Clear VINSN_VEC and detach vinsns. */
3637 static void
3638 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3640 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3641 if (len > 0)
3643 vinsn_t vinsn;
3644 int n;
3646 for (n = 0; VEC_iterate (vinsn_t, *vinsn_vec, n, vinsn); n++)
3647 vinsn_detach (vinsn);
3648 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3652 /* Add the vinsn of EXPR to the VINSN_VEC. */
3653 static void
3654 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3656 vinsn_attach (EXPR_VINSN (expr));
3657 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3660 /* Free the vector representing blocked expressions. */
3661 static void
3662 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3664 if (*vinsn_vec)
3665 VEC_free (vinsn_t, heap, *vinsn_vec);
3668 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3670 void sel_add_to_insn_priority (rtx insn, int amount)
3672 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3674 if (sched_verbose >= 2)
3675 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3676 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3677 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3680 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3681 true if there is something to schedule. BNDS and FENCE are current
3682 boundaries and fence, respectively. If we need to stall for some cycles
3683 before an expr from AV would become available, write this number to
3684 *PNEED_STALL. */
3685 static bool
3686 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3687 int *pneed_stall)
3689 av_set_iterator si;
3690 expr_t expr;
3691 int sched_next_worked = 0, stalled, n;
3692 static int av_max_prio, est_ticks_till_branch;
3693 int min_need_stall = -1;
3694 deps_t dc = BND_DC (BLIST_BND (bnds));
3696 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3697 already scheduled. */
3698 if (av == NULL)
3699 return false;
3701 /* Empty vector from the previous stuff. */
3702 if (VEC_length (expr_t, vec_av_set) > 0)
3703 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3705 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3706 for each insn. */
3707 gcc_assert (VEC_empty (expr_t, vec_av_set));
3708 FOR_EACH_EXPR (expr, si, av)
3710 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3712 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3714 /* Adjust priority using target backend hook. */
3715 sel_target_adjust_priority (expr);
3718 /* Sort the vector. */
3719 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3720 sizeof (expr_t), sel_rank_for_schedule);
3722 /* We record maximal priority of insns in av set for current instruction
3723 group. */
3724 if (FENCE_STARTS_CYCLE_P (fence))
3725 av_max_prio = est_ticks_till_branch = INT_MIN;
3727 /* Filter out inappropriate expressions. Loop's direction is reversed to
3728 visit "best" instructions first. We assume that VEC_unordered_remove
3729 moves last element in place of one being deleted. */
3730 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3732 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3733 insn_t insn = EXPR_INSN_RTX (expr);
3734 char target_available;
3735 bool is_orig_reg_p = true;
3736 int need_cycles, new_prio;
3738 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3739 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3741 VEC_unordered_remove (expr_t, vec_av_set, n);
3742 continue;
3745 /* Set number of sched_next insns (just in case there
3746 could be several). */
3747 if (FENCE_SCHED_NEXT (fence))
3748 sched_next_worked++;
3750 /* Check all liveness requirements and try renaming.
3751 FIXME: try to minimize calls to this. */
3752 target_available = EXPR_TARGET_AVAILABLE (expr);
3754 /* If insn was already scheduled on the current fence,
3755 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3756 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3757 target_available = -1;
3759 /* If the availability of the EXPR is invalidated by the insertion of
3760 bookkeeping earlier, make sure that we won't choose this expr for
3761 scheduling if it's not separable, and if it is separable, then
3762 we have to recompute the set of available registers for it. */
3763 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3765 VEC_unordered_remove (expr_t, vec_av_set, n);
3766 if (sched_verbose >= 4)
3767 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3768 INSN_UID (insn));
3769 continue;
3772 if (target_available == true)
3774 /* Do nothing -- we can use an existing register. */
3775 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3777 else if (/* Non-separable instruction will never
3778 get another register. */
3779 (target_available == false
3780 && !EXPR_SEPARABLE_P (expr))
3781 /* Don't try to find a register for low-priority expression. */
3782 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3783 /* ??? FIXME: Don't try to rename data speculation. */
3784 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3785 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3787 VEC_unordered_remove (expr_t, vec_av_set, n);
3788 if (sched_verbose >= 4)
3789 sel_print ("Expr %d has no suitable target register\n",
3790 INSN_UID (insn));
3791 continue;
3794 /* Filter expressions that need to be renamed or speculated when
3795 pipelining, because compensating register copies or speculation
3796 checks are likely to be placed near the beginning of the loop,
3797 causing a stall. */
3798 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3799 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3801 /* Estimation of number of cycles until loop branch for
3802 renaming/speculation to be successful. */
3803 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3805 if ((int) current_loop_nest->ninsns < 9)
3807 VEC_unordered_remove (expr_t, vec_av_set, n);
3808 if (sched_verbose >= 4)
3809 sel_print ("Pipelining expr %d will likely cause stall\n",
3810 INSN_UID (insn));
3811 continue;
3814 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3815 < need_n_ticks_till_branch * issue_rate / 2
3816 && est_ticks_till_branch < need_n_ticks_till_branch)
3818 VEC_unordered_remove (expr_t, vec_av_set, n);
3819 if (sched_verbose >= 4)
3820 sel_print ("Pipelining expr %d will likely cause stall\n",
3821 INSN_UID (insn));
3822 continue;
3826 /* We want to schedule speculation checks as late as possible. Discard
3827 them from av set if there are instructions with higher priority. */
3828 if (sel_insn_is_speculation_check (insn)
3829 && EXPR_PRIORITY (expr) < av_max_prio)
3831 stalled++;
3832 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3833 VEC_unordered_remove (expr_t, vec_av_set, n);
3834 if (sched_verbose >= 4)
3835 sel_print ("Delaying speculation check %d until its first use\n",
3836 INSN_UID (insn));
3837 continue;
3840 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3841 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3842 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3844 /* Don't allow any insns whose data is not yet ready.
3845 Check first whether we've already tried them and failed. */
3846 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3848 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3849 - FENCE_CYCLE (fence));
3850 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3851 est_ticks_till_branch = MAX (est_ticks_till_branch,
3852 EXPR_PRIORITY (expr) + need_cycles);
3854 if (need_cycles > 0)
3856 stalled++;
3857 min_need_stall = (min_need_stall < 0
3858 ? need_cycles
3859 : MIN (min_need_stall, need_cycles));
3860 VEC_unordered_remove (expr_t, vec_av_set, n);
3862 if (sched_verbose >= 4)
3863 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3864 INSN_UID (insn),
3865 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3866 continue;
3870 /* Now resort to dependence analysis to find whether EXPR might be
3871 stalled due to dependencies from FENCE's context. */
3872 need_cycles = tick_check_p (expr, dc, fence);
3873 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3875 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3876 est_ticks_till_branch = MAX (est_ticks_till_branch,
3877 new_prio);
3879 if (need_cycles > 0)
3881 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3883 int new_size = INSN_UID (insn) * 3 / 2;
3885 FENCE_READY_TICKS (fence)
3886 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3887 new_size, FENCE_READY_TICKS_SIZE (fence),
3888 sizeof (int));
3890 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3891 = FENCE_CYCLE (fence) + need_cycles;
3893 stalled++;
3894 min_need_stall = (min_need_stall < 0
3895 ? need_cycles
3896 : MIN (min_need_stall, need_cycles));
3898 VEC_unordered_remove (expr_t, vec_av_set, n);
3900 if (sched_verbose >= 4)
3901 sel_print ("Expr %d is not ready yet until cycle %d\n",
3902 INSN_UID (insn),
3903 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3904 continue;
3907 if (sched_verbose >= 4)
3908 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3909 min_need_stall = 0;
3912 /* Clear SCHED_NEXT. */
3913 if (FENCE_SCHED_NEXT (fence))
3915 gcc_assert (sched_next_worked == 1);
3916 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3919 /* No need to stall if this variable was not initialized. */
3920 if (min_need_stall < 0)
3921 min_need_stall = 0;
3923 if (VEC_empty (expr_t, vec_av_set))
3925 /* We need to set *pneed_stall here, because later we skip this code
3926 when ready list is empty. */
3927 *pneed_stall = min_need_stall;
3928 return false;
3930 else
3931 gcc_assert (min_need_stall == 0);
3933 /* Sort the vector. */
3934 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3935 sizeof (expr_t), sel_rank_for_schedule);
3937 if (sched_verbose >= 4)
3939 sel_print ("Total ready exprs: %d, stalled: %d\n",
3940 VEC_length (expr_t, vec_av_set), stalled);
3941 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3942 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3943 dump_expr (expr);
3944 sel_print ("\n");
3947 *pneed_stall = 0;
3948 return true;
3951 /* Convert a vectored and sorted av set to the ready list that
3952 the rest of the backend wants to see. */
3953 static void
3954 convert_vec_av_set_to_ready (void)
3956 int n;
3957 expr_t expr;
3959 /* Allocate and fill the ready list from the sorted vector. */
3960 ready.n_ready = VEC_length (expr_t, vec_av_set);
3961 ready.first = ready.n_ready - 1;
3963 gcc_assert (ready.n_ready > 0);
3965 if (ready.n_ready > max_issue_size)
3967 max_issue_size = ready.n_ready;
3968 sched_extend_ready_list (ready.n_ready);
3971 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3973 vinsn_t vi = EXPR_VINSN (expr);
3974 insn_t insn = VINSN_INSN_RTX (vi);
3976 ready_try[n] = 0;
3977 ready.vec[n] = insn;
3981 /* Initialize ready list from *AV_PTR for the max_issue () call.
3982 If any unrecognizable insn found in *AV_PTR, return it (and skip
3983 max_issue). BND and FENCE are current boundary and fence,
3984 respectively. If we need to stall for some cycles before an expr
3985 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3986 static expr_t
3987 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3988 int *pneed_stall)
3990 expr_t expr;
3992 /* We do not support multiple boundaries per fence. */
3993 gcc_assert (BLIST_NEXT (bnds) == NULL);
3995 /* Process expressions required special handling, i.e. pipelined,
3996 speculative and recog() < 0 expressions first. */
3997 process_pipelined_exprs (av_ptr);
3998 process_spec_exprs (av_ptr);
4000 /* A USE could be scheduled immediately. */
4001 expr = process_use_exprs (av_ptr);
4002 if (expr)
4004 *pneed_stall = 0;
4005 return expr;
4008 /* Turn the av set to a vector for sorting. */
4009 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4011 ready.n_ready = 0;
4012 return NULL;
4015 /* Build the final ready list. */
4016 convert_vec_av_set_to_ready ();
4017 return NULL;
4020 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4021 static bool
4022 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4024 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4025 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4026 : FENCE_CYCLE (fence) - 1;
4027 bool res = false;
4028 int sort_p = 0;
4030 if (!targetm.sched.dfa_new_cycle)
4031 return false;
4033 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4035 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4036 insn, last_scheduled_cycle,
4037 FENCE_CYCLE (fence), &sort_p))
4039 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4040 advance_one_cycle (fence);
4041 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4042 res = true;
4045 return res;
4048 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4049 we can issue. FENCE is the current fence. */
4050 static int
4051 invoke_reorder_hooks (fence_t fence)
4053 int issue_more;
4054 bool ran_hook = false;
4056 /* Call the reorder hook at the beginning of the cycle, and call
4057 the reorder2 hook in the middle of the cycle. */
4058 if (FENCE_ISSUED_INSNS (fence) == 0)
4060 if (targetm.sched.reorder
4061 && !SCHED_GROUP_P (ready_element (&ready, 0))
4062 && ready.n_ready > 1)
4064 /* Don't give reorder the most prioritized insn as it can break
4065 pipelining. */
4066 if (pipelining_p)
4067 --ready.n_ready;
4069 issue_more
4070 = targetm.sched.reorder (sched_dump, sched_verbose,
4071 ready_lastpos (&ready),
4072 &ready.n_ready, FENCE_CYCLE (fence));
4074 if (pipelining_p)
4075 ++ready.n_ready;
4077 ran_hook = true;
4079 else
4080 /* Initialize can_issue_more for variable_issue. */
4081 issue_more = issue_rate;
4083 else if (targetm.sched.reorder2
4084 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4086 if (ready.n_ready == 1)
4087 issue_more =
4088 targetm.sched.reorder2 (sched_dump, sched_verbose,
4089 ready_lastpos (&ready),
4090 &ready.n_ready, FENCE_CYCLE (fence));
4091 else
4093 if (pipelining_p)
4094 --ready.n_ready;
4096 issue_more =
4097 targetm.sched.reorder2 (sched_dump, sched_verbose,
4098 ready.n_ready
4099 ? ready_lastpos (&ready) : NULL,
4100 &ready.n_ready, FENCE_CYCLE (fence));
4102 if (pipelining_p)
4103 ++ready.n_ready;
4106 ran_hook = true;
4108 else
4109 issue_more = issue_rate;
4111 /* Ensure that ready list and vec_av_set are in line with each other,
4112 i.e. vec_av_set[i] == ready_element (&ready, i). */
4113 if (issue_more && ran_hook)
4115 int i, j, n;
4116 rtx *arr = ready.vec;
4117 expr_t *vec = VEC_address (expr_t, vec_av_set);
4119 for (i = 0, n = ready.n_ready; i < n; i++)
4120 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4122 expr_t tmp;
4124 for (j = i; j < n; j++)
4125 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4126 break;
4127 gcc_assert (j < n);
4129 tmp = vec[i];
4130 vec[i] = vec[j];
4131 vec[j] = tmp;
4135 return issue_more;
4138 /* Return an EXPR correponding to INDEX element of ready list, if
4139 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4140 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4141 ready.vec otherwise. */
4142 static inline expr_t
4143 find_expr_for_ready (int index, bool follow_ready_element)
4145 expr_t expr;
4146 int real_index;
4148 real_index = follow_ready_element ? ready.first - index : index;
4150 expr = VEC_index (expr_t, vec_av_set, real_index);
4151 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4153 return expr;
4156 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4157 of such insns found. */
4158 static int
4159 invoke_dfa_lookahead_guard (void)
4161 int i, n;
4162 bool have_hook
4163 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4165 if (sched_verbose >= 2)
4166 sel_print ("ready after reorder: ");
4168 for (i = 0, n = 0; i < ready.n_ready; i++)
4170 expr_t expr;
4171 insn_t insn;
4172 int r;
4174 /* In this loop insn is Ith element of the ready list given by
4175 ready_element, not Ith element of ready.vec. */
4176 insn = ready_element (&ready, i);
4178 if (! have_hook || i == 0)
4179 r = 0;
4180 else
4181 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4183 gcc_assert (INSN_CODE (insn) >= 0);
4185 /* Only insns with ready_try = 0 can get here
4186 from fill_ready_list. */
4187 gcc_assert (ready_try [i] == 0);
4188 ready_try[i] = r;
4189 if (!r)
4190 n++;
4192 expr = find_expr_for_ready (i, true);
4194 if (sched_verbose >= 2)
4196 dump_vinsn (EXPR_VINSN (expr));
4197 sel_print (":%d; ", ready_try[i]);
4201 if (sched_verbose >= 2)
4202 sel_print ("\n");
4203 return n;
4206 /* Calculate the number of privileged insns and return it. */
4207 static int
4208 calculate_privileged_insns (void)
4210 expr_t cur_expr, min_spec_expr = NULL;
4211 insn_t cur_insn, min_spec_insn;
4212 int privileged_n = 0, i;
4214 for (i = 0; i < ready.n_ready; i++)
4216 if (ready_try[i])
4217 continue;
4219 if (! min_spec_expr)
4221 min_spec_insn = ready_element (&ready, i);
4222 min_spec_expr = find_expr_for_ready (i, true);
4225 cur_insn = ready_element (&ready, i);
4226 cur_expr = find_expr_for_ready (i, true);
4228 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4229 break;
4231 ++privileged_n;
4234 if (i == ready.n_ready)
4235 privileged_n = 0;
4237 if (sched_verbose >= 2)
4238 sel_print ("privileged_n: %d insns with SPEC %d\n",
4239 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4240 return privileged_n;
4243 /* Call the rest of the hooks after the choice was made. Return
4244 the number of insns that still can be issued given that the current
4245 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4246 and the insn chosen for scheduling, respectively. */
4247 static int
4248 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4250 gcc_assert (INSN_P (best_insn));
4252 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4253 sel_dfa_new_cycle (best_insn, fence);
4255 if (targetm.sched.variable_issue)
4257 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4258 issue_more =
4259 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4260 issue_more);
4261 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4263 else if (GET_CODE (PATTERN (best_insn)) != USE
4264 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4265 issue_more--;
4267 return issue_more;
4270 /* Estimate the cost of issuing INSN on DFA state STATE. */
4271 static int
4272 estimate_insn_cost (rtx insn, state_t state)
4274 static state_t temp = NULL;
4275 int cost;
4277 if (!temp)
4278 temp = xmalloc (dfa_state_size);
4280 memcpy (temp, state, dfa_state_size);
4281 cost = state_transition (temp, insn);
4283 if (cost < 0)
4284 return 0;
4285 else if (cost == 0)
4286 return 1;
4287 return cost;
4290 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4291 This function properly handles ASMs, USEs etc. */
4292 static int
4293 get_expr_cost (expr_t expr, fence_t fence)
4295 rtx insn = EXPR_INSN_RTX (expr);
4297 if (recog_memoized (insn) < 0)
4299 if (!FENCE_STARTS_CYCLE_P (fence)
4300 /* FIXME: Is this condition necessary? */
4301 && VINSN_UNIQUE_P (EXPR_VINSN (expr))
4302 && INSN_ASM_P (insn))
4303 /* This is asm insn which is tryed to be issued on the
4304 cycle not first. Issue it on the next cycle. */
4305 return 1;
4306 else
4307 /* A USE insn, or something else we don't need to
4308 understand. We can't pass these directly to
4309 state_transition because it will trigger a
4310 fatal error for unrecognizable insns. */
4311 return 0;
4313 else
4314 return estimate_insn_cost (insn, FENCE_STATE (fence));
4317 /* Find the best insn for scheduling, either via max_issue or just take
4318 the most prioritized available. */
4319 static int
4320 choose_best_insn (fence_t fence, int privileged_n, int *index)
4322 int can_issue = 0;
4324 if (dfa_lookahead > 0)
4326 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4327 can_issue = max_issue (&ready, privileged_n,
4328 FENCE_STATE (fence), index);
4329 if (sched_verbose >= 2)
4330 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4331 can_issue, FENCE_ISSUED_INSNS (fence));
4333 else
4335 /* We can't use max_issue; just return the first available element. */
4336 int i;
4338 for (i = 0; i < ready.n_ready; i++)
4340 expr_t expr = find_expr_for_ready (i, true);
4342 if (get_expr_cost (expr, fence) < 1)
4344 can_issue = can_issue_more;
4345 *index = i;
4347 if (sched_verbose >= 2)
4348 sel_print ("using %dth insn from the ready list\n", i + 1);
4350 break;
4354 if (i == ready.n_ready)
4356 can_issue = 0;
4357 *index = -1;
4361 return can_issue;
4364 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4365 BNDS and FENCE are current boundaries and scheduling fence respectively.
4366 Return the expr found and NULL if nothing can be issued atm.
4367 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4368 static expr_t
4369 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4370 int *pneed_stall)
4372 expr_t best;
4374 /* Choose the best insn for scheduling via:
4375 1) sorting the ready list based on priority;
4376 2) calling the reorder hook;
4377 3) calling max_issue. */
4378 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4379 if (best == NULL && ready.n_ready > 0)
4381 int privileged_n, index, avail_n;
4383 can_issue_more = invoke_reorder_hooks (fence);
4384 if (can_issue_more > 0)
4386 /* Try choosing the best insn until we find one that is could be
4387 scheduled due to liveness restrictions on its destination register.
4388 In the future, we'd like to choose once and then just probe insns
4389 in the order of their priority. */
4390 avail_n = invoke_dfa_lookahead_guard ();
4391 privileged_n = calculate_privileged_insns ();
4392 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4393 if (can_issue_more)
4394 best = find_expr_for_ready (index, true);
4396 /* We had some available insns, so if we can't issue them,
4397 we have a stall. */
4398 if (can_issue_more == 0)
4400 best = NULL;
4401 *pneed_stall = 1;
4405 if (best != NULL)
4407 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4408 can_issue_more);
4409 if (can_issue_more == 0)
4410 *pneed_stall = 1;
4413 if (sched_verbose >= 2)
4415 if (best != NULL)
4417 sel_print ("Best expression (vliw form): ");
4418 dump_expr (best);
4419 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4421 else
4422 sel_print ("No best expr found!\n");
4425 return best;
4429 /* Functions that implement the core of the scheduler. */
4432 /* Emit an instruction from EXPR with SEQNO and VINSN after
4433 PLACE_TO_INSERT. */
4434 static insn_t
4435 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4436 insn_t place_to_insert)
4438 /* This assert fails when we have identical instructions
4439 one of which dominates the other. In this case move_op ()
4440 finds the first instruction and doesn't search for second one.
4441 The solution would be to compute av_set after the first found
4442 insn and, if insn present in that set, continue searching.
4443 For now we workaround this issue in move_op. */
4444 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4446 if (EXPR_WAS_RENAMED (expr))
4448 unsigned regno = expr_dest_regno (expr);
4450 if (HARD_REGISTER_NUM_P (regno))
4452 df_set_regs_ever_live (regno, true);
4453 reg_rename_tick[regno] = ++reg_rename_this_tick;
4457 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4458 place_to_insert);
4461 /* Return TRUE if BB can hold bookkeeping code. */
4462 static bool
4463 block_valid_for_bookkeeping_p (basic_block bb)
4465 insn_t bb_end = BB_END (bb);
4467 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4468 return false;
4470 if (INSN_P (bb_end))
4472 if (INSN_SCHED_TIMES (bb_end) > 0)
4473 return false;
4475 else
4476 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4478 return true;
4481 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4482 into E2->dest, except from E1->src (there may be a sequence of empty basic
4483 blocks between E1->src and E2->dest). Return found block, or NULL if new
4484 one must be created. If LAX holds, don't assume there is a simple path
4485 from E1->src to E2->dest. */
4486 static basic_block
4487 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4489 basic_block candidate_block = NULL;
4490 edge e;
4492 /* Loop over edges from E1 to E2, inclusive. */
4493 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4495 if (EDGE_COUNT (e->dest->preds) == 2)
4497 if (candidate_block == NULL)
4498 candidate_block = (EDGE_PRED (e->dest, 0) == e
4499 ? EDGE_PRED (e->dest, 1)->src
4500 : EDGE_PRED (e->dest, 0)->src);
4501 else
4502 /* Found additional edge leading to path from e1 to e2
4503 from aside. */
4504 return NULL;
4506 else if (EDGE_COUNT (e->dest->preds) > 2)
4507 /* Several edges leading to path from e1 to e2 from aside. */
4508 return NULL;
4510 if (e == e2)
4511 return ((!lax || candidate_block)
4512 && block_valid_for_bookkeeping_p (candidate_block)
4513 ? candidate_block
4514 : NULL);
4516 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4517 return NULL;
4520 if (lax)
4521 return NULL;
4523 gcc_unreachable ();
4526 /* Create new basic block for bookkeeping code for path(s) incoming into
4527 E2->dest, except from E1->src. Return created block. */
4528 static basic_block
4529 create_block_for_bookkeeping (edge e1, edge e2)
4531 basic_block new_bb, bb = e2->dest;
4533 /* Check that we don't spoil the loop structure. */
4534 if (current_loop_nest)
4536 basic_block latch = current_loop_nest->latch;
4538 /* We do not split header. */
4539 gcc_assert (e2->dest != current_loop_nest->header);
4541 /* We do not redirect the only edge to the latch block. */
4542 gcc_assert (e1->dest != latch
4543 || !single_pred_p (latch)
4544 || e1 != single_pred_edge (latch));
4547 /* Split BB to insert BOOK_INSN there. */
4548 new_bb = sched_split_block (bb, NULL);
4550 /* Move note_list from the upper bb. */
4551 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4552 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4553 BB_NOTE_LIST (bb) = NULL_RTX;
4555 gcc_assert (e2->dest == bb);
4557 /* Skip block for bookkeeping copy when leaving E1->src. */
4558 if (e1->flags & EDGE_FALLTHRU)
4559 sel_redirect_edge_and_branch_force (e1, new_bb);
4560 else
4561 sel_redirect_edge_and_branch (e1, new_bb);
4563 gcc_assert (e1->dest == new_bb);
4564 gcc_assert (sel_bb_empty_p (bb));
4566 /* To keep basic block numbers in sync between debug and non-debug
4567 compilations, we have to rotate blocks here. Consider that we
4568 started from (a,b)->d, (c,d)->e, and d contained only debug
4569 insns. It would have been removed before if the debug insns
4570 weren't there, so we'd have split e rather than d. So what we do
4571 now is to swap the block numbers of new_bb and
4572 single_succ(new_bb) == e, so that the insns that were in e before
4573 get the new block number. */
4575 if (MAY_HAVE_DEBUG_INSNS)
4577 basic_block succ;
4578 insn_t insn = sel_bb_head (new_bb);
4579 insn_t last;
4581 if (DEBUG_INSN_P (insn)
4582 && single_succ_p (new_bb)
4583 && (succ = single_succ (new_bb))
4584 && succ != EXIT_BLOCK_PTR
4585 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4587 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4588 insn = NEXT_INSN (insn);
4590 if (insn == last)
4592 sel_global_bb_info_def gbi;
4593 sel_region_bb_info_def rbi;
4594 int i;
4596 if (sched_verbose >= 2)
4597 sel_print ("Swapping block ids %i and %i\n",
4598 new_bb->index, succ->index);
4600 i = new_bb->index;
4601 new_bb->index = succ->index;
4602 succ->index = i;
4604 SET_BASIC_BLOCK (new_bb->index, new_bb);
4605 SET_BASIC_BLOCK (succ->index, succ);
4607 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4608 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4609 sizeof (gbi));
4610 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4612 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4613 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4614 sizeof (rbi));
4615 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4617 i = BLOCK_TO_BB (new_bb->index);
4618 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4619 BLOCK_TO_BB (succ->index) = i;
4621 i = CONTAINING_RGN (new_bb->index);
4622 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4623 CONTAINING_RGN (succ->index) = i;
4625 for (i = 0; i < current_nr_blocks; i++)
4626 if (BB_TO_BLOCK (i) == succ->index)
4627 BB_TO_BLOCK (i) = new_bb->index;
4628 else if (BB_TO_BLOCK (i) == new_bb->index)
4629 BB_TO_BLOCK (i) = succ->index;
4631 FOR_BB_INSNS (new_bb, insn)
4632 if (INSN_P (insn))
4633 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4635 FOR_BB_INSNS (succ, insn)
4636 if (INSN_P (insn))
4637 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4639 if (bitmap_bit_p (code_motion_visited_blocks, new_bb->index))
4641 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4642 bitmap_clear_bit (code_motion_visited_blocks, new_bb->index);
4645 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4646 && LABEL_P (BB_HEAD (succ)));
4648 if (sched_verbose >= 4)
4649 sel_print ("Swapping code labels %i and %i\n",
4650 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4651 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4653 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4654 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4655 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4656 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4661 return bb;
4664 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4665 into E2->dest, except from E1->src. */
4666 static insn_t
4667 find_place_for_bookkeeping (edge e1, edge e2)
4669 insn_t place_to_insert;
4670 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4671 create new basic block, but insert bookkeeping there. */
4672 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4674 if (book_block)
4676 place_to_insert = BB_END (book_block);
4678 /* Don't use a block containing only debug insns for
4679 bookkeeping, this causes scheduling differences between debug
4680 and non-debug compilations, for the block would have been
4681 removed already. */
4682 if (DEBUG_INSN_P (place_to_insert))
4684 rtx insn = sel_bb_head (book_block);
4686 while (insn != place_to_insert &&
4687 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4688 insn = NEXT_INSN (insn);
4690 if (insn == place_to_insert)
4691 book_block = NULL;
4695 if (!book_block)
4697 book_block = create_block_for_bookkeeping (e1, e2);
4698 place_to_insert = BB_END (book_block);
4699 if (sched_verbose >= 9)
4700 sel_print ("New block is %i, split from bookkeeping block %i\n",
4701 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4703 else
4705 if (sched_verbose >= 9)
4706 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4709 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4710 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4711 place_to_insert = PREV_INSN (place_to_insert);
4713 return place_to_insert;
4716 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4717 for JOIN_POINT. */
4718 static int
4719 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4721 int seqno;
4722 rtx next;
4724 /* Check if we are about to insert bookkeeping copy before a jump, and use
4725 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4726 next = NEXT_INSN (place_to_insert);
4727 if (INSN_P (next)
4728 && JUMP_P (next)
4729 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4731 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4732 seqno = INSN_SEQNO (next);
4734 else if (INSN_SEQNO (join_point) > 0)
4735 seqno = INSN_SEQNO (join_point);
4736 else
4738 seqno = get_seqno_by_preds (place_to_insert);
4740 /* Sometimes the fences can move in such a way that there will be
4741 no instructions with positive seqno around this bookkeeping.
4742 This means that there will be no way to get to it by a regular
4743 fence movement. Never mind because we pick up such pieces for
4744 rescheduling anyways, so any positive value will do for now. */
4745 if (seqno < 0)
4747 gcc_assert (pipelining_p);
4748 seqno = 1;
4752 gcc_assert (seqno > 0);
4753 return seqno;
4756 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4757 NEW_SEQNO to it. Return created insn. */
4758 static insn_t
4759 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4761 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4763 vinsn_t new_vinsn
4764 = create_vinsn_from_insn_rtx (new_insn_rtx,
4765 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4767 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4768 place_to_insert);
4770 INSN_SCHED_TIMES (new_insn) = 0;
4771 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4773 return new_insn;
4776 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4777 E2->dest, except from E1->src (there may be a sequence of empty blocks
4778 between E1->src and E2->dest). Return block containing the copy.
4779 All scheduler data is initialized for the newly created insn. */
4780 static basic_block
4781 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4783 insn_t join_point, place_to_insert, new_insn;
4784 int new_seqno;
4785 bool need_to_exchange_data_sets;
4787 if (sched_verbose >= 4)
4788 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4789 e2->dest->index);
4791 join_point = sel_bb_head (e2->dest);
4792 place_to_insert = find_place_for_bookkeeping (e1, e2);
4793 if (!place_to_insert)
4794 return NULL;
4795 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4796 need_to_exchange_data_sets
4797 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4799 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4801 /* When inserting bookkeeping insn in new block, av sets should be
4802 following: old basic block (that now holds bookkeeping) data sets are
4803 the same as was before generation of bookkeeping, and new basic block
4804 (that now hold all other insns of old basic block) data sets are
4805 invalid. So exchange data sets for these basic blocks as sel_split_block
4806 mistakenly exchanges them in this case. Cannot do it earlier because
4807 when single instruction is added to new basic block it should hold NULL
4808 lv_set. */
4809 if (need_to_exchange_data_sets)
4810 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4811 BLOCK_FOR_INSN (join_point));
4813 stat_bookkeeping_copies++;
4814 return BLOCK_FOR_INSN (new_insn);
4817 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4818 on FENCE, but we are unable to copy them. */
4819 static void
4820 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4822 expr_t expr;
4823 av_set_iterator i;
4825 /* An expression does not need bookkeeping if it is available on all paths
4826 from current block to original block and current block dominates
4827 original block. We check availability on all paths by examining
4828 EXPR_SPEC; this is not equivalent, because it may be positive even
4829 if expr is available on all paths (but if expr is not available on
4830 any path, EXPR_SPEC will be positive). */
4832 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4834 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4835 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4836 && (EXPR_SPEC (expr)
4837 || !EXPR_ORIG_BB_INDEX (expr)
4838 || !dominated_by_p (CDI_DOMINATORS,
4839 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4840 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4842 if (sched_verbose >= 4)
4843 sel_print ("Expr %d removed because it would need bookkeeping, which "
4844 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4845 av_set_iter_remove (&i);
4850 /* Moving conditional jump through some instructions.
4852 Consider example:
4854 ... <- current scheduling point
4855 NOTE BASIC BLOCK: <- bb header
4856 (p8) add r14=r14+0x9;;
4857 (p8) mov [r14]=r23
4858 (!p8) jump L1;;
4859 NOTE BASIC BLOCK:
4862 We can schedule jump one cycle earlier, than mov, because they cannot be
4863 executed together as their predicates are mutually exclusive.
4865 This is done in this way: first, new fallthrough basic block is created
4866 after jump (it is always can be done, because there already should be a
4867 fallthrough block, where control flow goes in case of predicate being true -
4868 in our example; otherwise there should be a dependence between those
4869 instructions and jump and we cannot schedule jump right now);
4870 next, all instructions between jump and current scheduling point are moved
4871 to this new block. And the result is this:
4873 NOTE BASIC BLOCK:
4874 (!p8) jump L1 <- current scheduling point
4875 NOTE BASIC BLOCK: <- bb header
4876 (p8) add r14=r14+0x9;;
4877 (p8) mov [r14]=r23
4878 NOTE BASIC BLOCK:
4881 static void
4882 move_cond_jump (rtx insn, bnd_t bnd)
4884 edge ft_edge;
4885 basic_block block_from, block_next, block_new;
4886 rtx next, prev, link;
4888 /* BLOCK_FROM holds basic block of the jump. */
4889 block_from = BLOCK_FOR_INSN (insn);
4891 /* Moving of jump should not cross any other jumps or
4892 beginnings of new basic blocks. */
4893 gcc_assert (block_from == BLOCK_FOR_INSN (BND_TO (bnd)));
4895 /* Jump is moved to the boundary. */
4896 prev = BND_TO (bnd);
4897 next = PREV_INSN (insn);
4898 BND_TO (bnd) = insn;
4900 ft_edge = find_fallthru_edge (block_from);
4901 block_next = ft_edge->dest;
4902 /* There must be a fallthrough block (or where should go
4903 control flow in case of false jump predicate otherwise?). */
4904 gcc_assert (block_next);
4906 /* Create new empty basic block after source block. */
4907 block_new = sel_split_edge (ft_edge);
4908 gcc_assert (block_new->next_bb == block_next
4909 && block_from->next_bb == block_new);
4911 gcc_assert (BB_END (block_from) == insn);
4913 /* Move all instructions except INSN from BLOCK_FROM to
4914 BLOCK_NEW. */
4915 for (link = prev; link != insn; link = NEXT_INSN (link))
4917 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4918 df_insn_change_bb (link, block_new);
4921 /* Set correct basic block and instructions properties. */
4922 BB_END (block_new) = PREV_INSN (insn);
4924 NEXT_INSN (PREV_INSN (prev)) = insn;
4925 PREV_INSN (insn) = PREV_INSN (prev);
4927 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4928 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4929 PREV_INSN (prev) = BB_HEAD (block_new);
4930 NEXT_INSN (next) = NEXT_INSN (BB_HEAD (block_new));
4931 NEXT_INSN (BB_HEAD (block_new)) = prev;
4932 PREV_INSN (NEXT_INSN (next)) = next;
4934 gcc_assert (!sel_bb_empty_p (block_from)
4935 && !sel_bb_empty_p (block_new));
4937 /* Update data sets for BLOCK_NEW to represent that INSN and
4938 instructions from the other branch of INSN is no longer
4939 available at BLOCK_NEW. */
4940 BB_AV_LEVEL (block_new) = global_level;
4941 gcc_assert (BB_LV_SET (block_new) == NULL);
4942 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4943 update_data_sets (sel_bb_head (block_new));
4945 /* INSN is a new basic block header - so prepare its data
4946 structures and update availability and liveness sets. */
4947 update_data_sets (insn);
4949 if (sched_verbose >= 4)
4950 sel_print ("Moving jump %d\n", INSN_UID (insn));
4953 /* Remove nops generated during move_op for preventing removal of empty
4954 basic blocks. */
4955 static void
4956 remove_temp_moveop_nops (bool full_tidying)
4958 int i;
4959 insn_t insn;
4961 for (i = 0; VEC_iterate (insn_t, vec_temp_moveop_nops, i, insn); i++)
4963 gcc_assert (INSN_NOP_P (insn));
4964 return_nop_to_pool (insn, full_tidying);
4967 /* Empty the vector. */
4968 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4969 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4970 VEC_length (insn_t, vec_temp_moveop_nops));
4973 /* Records the maximal UID before moving up an instruction. Used for
4974 distinguishing between bookkeeping copies and original insns. */
4975 static int max_uid_before_move_op = 0;
4977 /* Remove from AV_VLIW_P all instructions but next when debug counter
4978 tells us so. Next instruction is fetched from BNDS. */
4979 static void
4980 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
4982 if (! dbg_cnt (sel_sched_insn_cnt))
4983 /* Leave only the next insn in av_vliw. */
4985 av_set_iterator av_it;
4986 expr_t expr;
4987 bnd_t bnd = BLIST_BND (bnds);
4988 insn_t next = BND_TO (bnd);
4990 gcc_assert (BLIST_NEXT (bnds) == NULL);
4992 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
4993 if (EXPR_INSN_RTX (expr) != next)
4994 av_set_iter_remove (&av_it);
4998 /* Compute available instructions on BNDS. FENCE is the current fence. Write
4999 the computed set to *AV_VLIW_P. */
5000 static void
5001 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5003 if (sched_verbose >= 2)
5005 sel_print ("Boundaries: ");
5006 dump_blist (bnds);
5007 sel_print ("\n");
5010 for (; bnds; bnds = BLIST_NEXT (bnds))
5012 bnd_t bnd = BLIST_BND (bnds);
5013 av_set_t av1_copy;
5014 insn_t bnd_to = BND_TO (bnd);
5016 /* Rewind BND->TO to the basic block header in case some bookkeeping
5017 instructions were inserted before BND->TO and it needs to be
5018 adjusted. */
5019 if (sel_bb_head_p (bnd_to))
5020 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5021 else
5022 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5024 bnd_to = PREV_INSN (bnd_to);
5025 if (sel_bb_head_p (bnd_to))
5026 break;
5029 if (BND_TO (bnd) != bnd_to)
5031 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5032 FENCE_INSN (fence) = bnd_to;
5033 BND_TO (bnd) = bnd_to;
5036 av_set_clear (&BND_AV (bnd));
5037 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5039 av_set_clear (&BND_AV1 (bnd));
5040 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5042 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5044 av1_copy = av_set_copy (BND_AV1 (bnd));
5045 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5048 if (sched_verbose >= 2)
5050 sel_print ("Available exprs (vliw form): ");
5051 dump_av_set (*av_vliw_p);
5052 sel_print ("\n");
5056 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5057 expression. When FOR_MOVEOP is true, also replace the register of
5058 expressions found with the register from EXPR_VLIW. */
5059 static av_set_t
5060 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5062 av_set_t expr_seq = NULL;
5063 expr_t expr;
5064 av_set_iterator i;
5066 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5068 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5070 if (for_moveop)
5072 /* The sequential expression has the right form to pass
5073 to move_op except when renaming happened. Put the
5074 correct register in EXPR then. */
5075 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5077 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5079 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5080 stat_renamed_scheduled++;
5082 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5083 This is needed when renaming came up with original
5084 register. */
5085 else if (EXPR_TARGET_AVAILABLE (expr)
5086 != EXPR_TARGET_AVAILABLE (expr_vliw))
5088 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5089 EXPR_TARGET_AVAILABLE (expr) = 1;
5092 if (EXPR_WAS_SUBSTITUTED (expr))
5093 stat_substitutions_total++;
5096 av_set_add (&expr_seq, expr);
5098 /* With substitution inside insn group, it is possible
5099 that more than one expression in expr_seq will correspond
5100 to expr_vliw. In this case, choose one as the attempt to
5101 move both leads to miscompiles. */
5102 break;
5106 if (for_moveop && sched_verbose >= 2)
5108 sel_print ("Best expression(s) (sequential form): ");
5109 dump_av_set (expr_seq);
5110 sel_print ("\n");
5113 return expr_seq;
5117 /* Move nop to previous block. */
5118 static void ATTRIBUTE_UNUSED
5119 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5121 insn_t prev_insn, next_insn, note;
5123 gcc_assert (sel_bb_head_p (nop)
5124 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5125 note = bb_note (BLOCK_FOR_INSN (nop));
5126 prev_insn = sel_bb_end (prev_bb);
5127 next_insn = NEXT_INSN (nop);
5128 gcc_assert (prev_insn != NULL_RTX
5129 && PREV_INSN (note) == prev_insn);
5131 NEXT_INSN (prev_insn) = nop;
5132 PREV_INSN (nop) = prev_insn;
5134 PREV_INSN (note) = nop;
5135 NEXT_INSN (note) = next_insn;
5137 NEXT_INSN (nop) = note;
5138 PREV_INSN (next_insn) = note;
5140 BB_END (prev_bb) = nop;
5141 BLOCK_FOR_INSN (nop) = prev_bb;
5144 /* Prepare a place to insert the chosen expression on BND. */
5145 static insn_t
5146 prepare_place_to_insert (bnd_t bnd)
5148 insn_t place_to_insert;
5150 /* Init place_to_insert before calling move_op, as the later
5151 can possibly remove BND_TO (bnd). */
5152 if (/* If this is not the first insn scheduled. */
5153 BND_PTR (bnd))
5155 /* Add it after last scheduled. */
5156 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5157 if (DEBUG_INSN_P (place_to_insert))
5159 ilist_t l = BND_PTR (bnd);
5160 while ((l = ILIST_NEXT (l)) &&
5161 DEBUG_INSN_P (ILIST_INSN (l)))
5163 if (!l)
5164 place_to_insert = NULL;
5167 else
5168 place_to_insert = NULL;
5170 if (!place_to_insert)
5172 /* Add it before BND_TO. The difference is in the
5173 basic block, where INSN will be added. */
5174 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5175 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5176 == BLOCK_FOR_INSN (BND_TO (bnd)));
5179 return place_to_insert;
5182 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5183 Return the expression to emit in C_EXPR. */
5184 static bool
5185 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5186 av_set_t expr_seq, expr_t c_expr)
5188 bool b, should_move;
5189 unsigned book_uid;
5190 bitmap_iterator bi;
5191 int n_bookkeeping_copies_before_moveop;
5193 /* Make a move. This call will remove the original operation,
5194 insert all necessary bookkeeping instructions and update the
5195 data sets. After that all we have to do is add the operation
5196 at before BND_TO (BND). */
5197 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5198 max_uid_before_move_op = get_max_uid ();
5199 bitmap_clear (current_copies);
5200 bitmap_clear (current_originators);
5202 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5203 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5205 /* We should be able to find the expression we've chosen for
5206 scheduling. */
5207 gcc_assert (b);
5209 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5210 stat_insns_needed_bookkeeping++;
5212 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5214 /* We allocate these bitmaps lazily. */
5215 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5216 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5218 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5219 current_originators);
5222 return should_move;
5226 /* Debug a DFA state as an array of bytes. */
5227 static void
5228 debug_state (state_t state)
5230 unsigned char *p;
5231 unsigned int i, size = dfa_state_size;
5233 sel_print ("state (%u):", size);
5234 for (i = 0, p = (unsigned char *) state; i < size; i++)
5235 sel_print (" %d", p[i]);
5236 sel_print ("\n");
5239 /* Advance state on FENCE with INSN. Return true if INSN is
5240 an ASM, and we should advance state once more. */
5241 static bool
5242 advance_state_on_fence (fence_t fence, insn_t insn)
5244 bool asm_p;
5246 if (recog_memoized (insn) >= 0)
5248 int res;
5249 state_t temp_state = alloca (dfa_state_size);
5251 gcc_assert (!INSN_ASM_P (insn));
5252 asm_p = false;
5254 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5255 res = state_transition (FENCE_STATE (fence), insn);
5256 gcc_assert (res < 0);
5258 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5260 FENCE_ISSUED_INSNS (fence)++;
5262 /* We should never issue more than issue_rate insns. */
5263 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5264 gcc_unreachable ();
5267 else
5269 /* This could be an ASM insn which we'd like to schedule
5270 on the next cycle. */
5271 asm_p = INSN_ASM_P (insn);
5272 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5273 advance_one_cycle (fence);
5276 if (sched_verbose >= 2)
5277 debug_state (FENCE_STATE (fence));
5278 if (!DEBUG_INSN_P (insn))
5279 FENCE_STARTS_CYCLE_P (fence) = 0;
5280 return asm_p;
5283 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5284 is nonzero if we need to stall after issuing INSN. */
5285 static void
5286 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5288 bool asm_p;
5290 /* First, reflect that something is scheduled on this fence. */
5291 asm_p = advance_state_on_fence (fence, insn);
5292 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5293 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5294 if (SCHED_GROUP_P (insn))
5296 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5297 SCHED_GROUP_P (insn) = 0;
5299 else
5300 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5301 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5302 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5304 /* Set instruction scheduling info. This will be used in bundling,
5305 pipelining, tick computations etc. */
5306 ++INSN_SCHED_TIMES (insn);
5307 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5308 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5309 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5310 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5312 /* This does not account for adjust_cost hooks, just add the biggest
5313 constant the hook may add to the latency. TODO: make this
5314 a target dependent constant. */
5315 INSN_READY_CYCLE (insn)
5316 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5318 : maximal_insn_latency (insn) + 1);
5320 /* Change these fields last, as they're used above. */
5321 FENCE_AFTER_STALL_P (fence) = 0;
5322 if (asm_p || need_stall)
5323 advance_one_cycle (fence);
5325 /* Indicate that we've scheduled something on this fence. */
5326 FENCE_SCHEDULED_P (fence) = true;
5327 scheduled_something_on_previous_fence = true;
5329 /* Print debug information when insn's fields are updated. */
5330 if (sched_verbose >= 2)
5332 sel_print ("Scheduling insn: ");
5333 dump_insn_1 (insn, 1);
5334 sel_print ("\n");
5338 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5339 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5340 return it. */
5341 static blist_t *
5342 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5343 blist_t *bnds_tailp)
5345 succ_iterator si;
5346 insn_t succ;
5348 advance_deps_context (BND_DC (bnd), insn);
5349 FOR_EACH_SUCC_1 (succ, si, insn,
5350 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5352 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5354 ilist_add (&ptr, insn);
5356 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5357 && is_ineligible_successor (succ, ptr))
5359 ilist_clear (&ptr);
5360 continue;
5363 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5365 if (sched_verbose >= 9)
5366 sel_print ("Updating fence insn from %i to %i\n",
5367 INSN_UID (insn), INSN_UID (succ));
5368 FENCE_INSN (fence) = succ;
5370 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5371 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5374 blist_remove (bndsp);
5375 return bnds_tailp;
5378 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5379 static insn_t
5380 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5382 av_set_t expr_seq;
5383 expr_t c_expr = XALLOCA (expr_def);
5384 insn_t place_to_insert;
5385 insn_t insn;
5386 bool should_move;
5388 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5390 /* In case of scheduling a jump skipping some other instructions,
5391 prepare CFG. After this, jump is at the boundary and can be
5392 scheduled as usual insn by MOVE_OP. */
5393 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5395 insn = EXPR_INSN_RTX (expr_vliw);
5397 /* Speculative jumps are not handled. */
5398 if (insn != BND_TO (bnd)
5399 && !sel_insn_is_speculation_check (insn))
5400 move_cond_jump (insn, bnd);
5403 /* Find a place for C_EXPR to schedule. */
5404 place_to_insert = prepare_place_to_insert (bnd);
5405 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5406 clear_expr (c_expr);
5408 /* Add the instruction. The corner case to care about is when
5409 the expr_seq set has more than one expr, and we chose the one that
5410 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5411 we can't use it. Generate the new vinsn. */
5412 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5414 vinsn_t vinsn_new;
5416 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5417 change_vinsn_in_expr (expr_vliw, vinsn_new);
5418 should_move = false;
5420 if (should_move)
5421 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5422 else
5423 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5424 place_to_insert);
5426 /* Return the nops generated for preserving of data sets back
5427 into pool. */
5428 if (INSN_NOP_P (place_to_insert))
5429 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5430 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5432 av_set_clear (&expr_seq);
5434 /* Save the expression scheduled so to reset target availability if we'll
5435 meet it later on the same fence. */
5436 if (EXPR_WAS_RENAMED (expr_vliw))
5437 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5439 /* Check that the recent movement didn't destroyed loop
5440 structure. */
5441 gcc_assert (!pipelining_p
5442 || current_loop_nest == NULL
5443 || loop_latch_edge (current_loop_nest));
5444 return insn;
5447 /* Stall for N cycles on FENCE. */
5448 static void
5449 stall_for_cycles (fence_t fence, int n)
5451 int could_more;
5453 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5454 while (n--)
5455 advance_one_cycle (fence);
5456 if (could_more)
5457 FENCE_AFTER_STALL_P (fence) = 1;
5460 /* Gather a parallel group of insns at FENCE and assign their seqno
5461 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5462 list for later recalculation of seqnos. */
5463 static void
5464 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5466 blist_t bnds = NULL, *bnds_tailp;
5467 av_set_t av_vliw = NULL;
5468 insn_t insn = FENCE_INSN (fence);
5470 if (sched_verbose >= 2)
5471 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5472 INSN_UID (insn), FENCE_CYCLE (fence));
5474 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5475 bnds_tailp = &BLIST_NEXT (bnds);
5476 set_target_context (FENCE_TC (fence));
5477 target_bb = INSN_BB (insn);
5479 /* Do while we can add any operation to the current group. */
5482 blist_t *bnds_tailp1, *bndsp;
5483 expr_t expr_vliw;
5484 int need_stall;
5485 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
5486 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5487 int max_stall = pipelining_p ? 1 : 3;
5488 bool last_insn_was_debug = false;
5489 bool was_debug_bb_end_p = false;
5491 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5492 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5493 remove_insns_for_debug (bnds, &av_vliw);
5495 /* Return early if we have nothing to schedule. */
5496 if (av_vliw == NULL)
5497 break;
5499 /* Choose the best expression and, if needed, destination register
5500 for it. */
5503 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5504 if (!expr_vliw && need_stall)
5506 /* All expressions required a stall. Do not recompute av sets
5507 as we'll get the same answer (modulo the insns between
5508 the fence and its boundary, which will not be available for
5509 pipelining). */
5510 gcc_assert (! expr_vliw && stall_iterations < 2);
5511 was_stall++;
5512 /* If we are going to stall for too long, break to recompute av
5513 sets and bring more insns for pipelining. */
5514 if (need_stall <= 3)
5515 stall_for_cycles (fence, need_stall);
5516 else
5518 stall_for_cycles (fence, 1);
5519 break;
5523 while (! expr_vliw && need_stall);
5525 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5526 if (!expr_vliw)
5528 av_set_clear (&av_vliw);
5529 break;
5532 bndsp = &bnds;
5533 bnds_tailp1 = bnds_tailp;
5536 /* This code will be executed only once until we'd have several
5537 boundaries per fence. */
5539 bnd_t bnd = BLIST_BND (*bndsp);
5541 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5543 bndsp = &BLIST_NEXT (*bndsp);
5544 continue;
5547 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5548 last_insn_was_debug = DEBUG_INSN_P (insn);
5549 if (last_insn_was_debug)
5550 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5551 update_fence_and_insn (fence, insn, need_stall);
5552 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5554 /* Add insn to the list of scheduled on this cycle instructions. */
5555 ilist_add (*scheduled_insns_tailpp, insn);
5556 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5558 while (*bndsp != *bnds_tailp1);
5560 av_set_clear (&av_vliw);
5561 if (!last_insn_was_debug)
5562 scheduled_insns++;
5564 /* We currently support information about candidate blocks only for
5565 one 'target_bb' block. Hence we can't schedule after jump insn,
5566 as this will bring two boundaries and, hence, necessity to handle
5567 information for two or more blocks concurrently. */
5568 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5569 || (was_stall
5570 && (was_stall >= max_stall
5571 || scheduled_insns >= max_insns)))
5572 break;
5574 while (bnds);
5576 gcc_assert (!FENCE_BNDS (fence));
5578 /* Update boundaries of the FENCE. */
5579 while (bnds)
5581 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5583 if (ptr)
5585 insn = ILIST_INSN (ptr);
5587 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5588 ilist_add (&FENCE_BNDS (fence), insn);
5591 blist_remove (&bnds);
5594 /* Update target context on the fence. */
5595 reset_target_context (FENCE_TC (fence), false);
5598 /* All exprs in ORIG_OPS must have the same destination register or memory.
5599 Return that destination. */
5600 static rtx
5601 get_dest_from_orig_ops (av_set_t orig_ops)
5603 rtx dest = NULL_RTX;
5604 av_set_iterator av_it;
5605 expr_t expr;
5606 bool first_p = true;
5608 FOR_EACH_EXPR (expr, av_it, orig_ops)
5610 rtx x = EXPR_LHS (expr);
5612 if (first_p)
5614 first_p = false;
5615 dest = x;
5617 else
5618 gcc_assert (dest == x
5619 || (dest != NULL_RTX && x != NULL_RTX
5620 && rtx_equal_p (dest, x)));
5623 return dest;
5626 /* Update data sets for the bookkeeping block and record those expressions
5627 which become no longer available after inserting this bookkeeping. */
5628 static void
5629 update_and_record_unavailable_insns (basic_block book_block)
5631 av_set_iterator i;
5632 av_set_t old_av_set = NULL;
5633 expr_t cur_expr;
5634 rtx bb_end = sel_bb_end (book_block);
5636 /* First, get correct liveness in the bookkeeping block. The problem is
5637 the range between the bookeeping insn and the end of block. */
5638 update_liveness_on_insn (bb_end);
5639 if (control_flow_insn_p (bb_end))
5640 update_liveness_on_insn (PREV_INSN (bb_end));
5642 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5643 fence above, where we may choose to schedule an insn which is
5644 actually blocked from moving up with the bookkeeping we create here. */
5645 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5647 old_av_set = av_set_copy (BB_AV_SET (book_block));
5648 update_data_sets (sel_bb_head (book_block));
5650 /* Traverse all the expressions in the old av_set and check whether
5651 CUR_EXPR is in new AV_SET. */
5652 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5654 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5655 EXPR_VINSN (cur_expr));
5657 if (! new_expr
5658 /* In this case, we can just turn off the E_T_A bit, but we can't
5659 represent this information with the current vector. */
5660 || EXPR_TARGET_AVAILABLE (new_expr)
5661 != EXPR_TARGET_AVAILABLE (cur_expr))
5662 /* Unfortunately, the below code could be also fired up on
5663 separable insns.
5664 FIXME: add an example of how this could happen. */
5665 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5668 av_set_clear (&old_av_set);
5672 /* The main effect of this function is that sparams->c_expr is merged
5673 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5674 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5675 lparams->c_expr_merged is copied back to sparams->c_expr after all
5676 successors has been traversed. lparams->c_expr_local is an expr allocated
5677 on stack in the caller function, and is used if there is more than one
5678 successor.
5680 SUCC is one of the SUCCS_NORMAL successors of INSN,
5681 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5682 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5683 static void
5684 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5685 insn_t succ ATTRIBUTE_UNUSED,
5686 int moveop_drv_call_res,
5687 cmpd_local_params_p lparams, void *static_params)
5689 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5691 /* Nothing to do, if original expr wasn't found below. */
5692 if (moveop_drv_call_res != 1)
5693 return;
5695 /* If this is a first successor. */
5696 if (!lparams->c_expr_merged)
5698 lparams->c_expr_merged = sparams->c_expr;
5699 sparams->c_expr = lparams->c_expr_local;
5701 else
5703 /* We must merge all found expressions to get reasonable
5704 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5705 do so then we can first find the expr with epsilon
5706 speculation success probability and only then with the
5707 good probability. As a result the insn will get epsilon
5708 probability and will never be scheduled because of
5709 weakness_cutoff in find_best_expr.
5711 We call merge_expr_data here instead of merge_expr
5712 because due to speculation C_EXPR and X may have the
5713 same insns with different speculation types. And as of
5714 now such insns are considered non-equal.
5716 However, EXPR_SCHED_TIMES is different -- we must get
5717 SCHED_TIMES from a real insn, not a bookkeeping copy.
5718 We force this here. Instead, we may consider merging
5719 SCHED_TIMES to the maximum instead of minimum in the
5720 below function. */
5721 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5723 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5724 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5725 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5727 clear_expr (sparams->c_expr);
5731 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5733 SUCC is one of the SUCCS_NORMAL successors of INSN,
5734 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5735 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5736 STATIC_PARAMS contain USED_REGS set. */
5737 static void
5738 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5739 int moveop_drv_call_res,
5740 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5741 void *static_params)
5743 regset succ_live;
5744 fur_static_params_p sparams = (fur_static_params_p) static_params;
5746 /* Here we compute live regsets only for branches that do not lie
5747 on the code motion paths. These branches correspond to value
5748 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5749 for such branches code_motion_path_driver is not called. */
5750 if (moveop_drv_call_res != 0)
5751 return;
5753 /* Mark all registers that do not meet the following condition:
5754 (3) not live on the other path of any conditional branch
5755 that is passed by the operation, in case original
5756 operations are not present on both paths of the
5757 conditional branch. */
5758 succ_live = compute_live (succ);
5759 IOR_REG_SET (sparams->used_regs, succ_live);
5762 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5763 into SP->CEXPR. */
5764 static void
5765 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5767 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5769 sp->c_expr = lp->c_expr_merged;
5772 /* Track bookkeeping copies created, insns scheduled, and blocks for
5773 rescheduling when INSN is found by move_op. */
5774 static void
5775 track_scheduled_insns_and_blocks (rtx insn)
5777 /* Even if this insn can be a copy that will be removed during current move_op,
5778 we still need to count it as an originator. */
5779 bitmap_set_bit (current_originators, INSN_UID (insn));
5781 if (!bitmap_bit_p (current_copies, INSN_UID (insn)))
5783 /* Note that original block needs to be rescheduled, as we pulled an
5784 instruction out of it. */
5785 if (INSN_SCHED_TIMES (insn) > 0)
5786 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5787 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5788 num_insns_scheduled++;
5790 else
5791 bitmap_clear_bit (current_copies, INSN_UID (insn));
5793 /* For instructions we must immediately remove insn from the
5794 stream, so subsequent update_data_sets () won't include this
5795 insn into av_set.
5796 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5797 if (INSN_UID (insn) > max_uid_before_move_op)
5798 stat_bookkeeping_copies--;
5801 /* Emit a register-register copy for INSN if needed. Return true if
5802 emitted one. PARAMS is the move_op static parameters. */
5803 static bool
5804 maybe_emit_renaming_copy (rtx insn,
5805 moveop_static_params_p params)
5807 bool insn_emitted = false;
5808 rtx cur_reg = expr_dest_reg (params->c_expr);
5810 gcc_assert (!cur_reg || (params->dest && REG_P (params->dest)));
5812 /* If original operation has expr and the register chosen for
5813 that expr is not original operation's dest reg, substitute
5814 operation's right hand side with the register chosen. */
5815 if (cur_reg != NULL_RTX && REGNO (params->dest) != REGNO (cur_reg))
5817 insn_t reg_move_insn, reg_move_insn_rtx;
5819 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5820 params->dest);
5821 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5822 INSN_EXPR (insn),
5823 INSN_SEQNO (insn),
5824 insn);
5825 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5826 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5828 insn_emitted = true;
5829 params->was_renamed = true;
5832 return insn_emitted;
5835 /* Emit a speculative check for INSN speculated as EXPR if needed.
5836 Return true if we've emitted one. PARAMS is the move_op static
5837 parameters. */
5838 static bool
5839 maybe_emit_speculative_check (rtx insn, expr_t expr,
5840 moveop_static_params_p params)
5842 bool insn_emitted = false;
5843 insn_t x;
5844 ds_t check_ds;
5846 check_ds = get_spec_check_type_for_insn (insn, expr);
5847 if (check_ds != 0)
5849 /* A speculation check should be inserted. */
5850 x = create_speculation_check (params->c_expr, check_ds, insn);
5851 insn_emitted = true;
5853 else
5855 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5856 x = insn;
5859 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5860 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5861 return insn_emitted;
5864 /* Handle transformations that leave an insn in place of original
5865 insn such as renaming/speculation. Return true if one of such
5866 transformations actually happened, and we have emitted this insn. */
5867 static bool
5868 handle_emitting_transformations (rtx insn, expr_t expr,
5869 moveop_static_params_p params)
5871 bool insn_emitted = false;
5873 insn_emitted = maybe_emit_renaming_copy (insn, params);
5874 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5876 return insn_emitted;
5879 /* If INSN is the only insn in the basic block (not counting JUMP,
5880 which may be a jump to next insn, and DEBUG_INSNs), we want to
5881 leave a NOP there till the return to fill_insns. */
5883 static bool
5884 need_nop_to_preserve_insn_bb (rtx insn)
5886 insn_t bb_head, bb_end, bb_next, in_next;
5887 basic_block bb = BLOCK_FOR_INSN (insn);
5889 bb_head = sel_bb_head (bb);
5890 bb_end = sel_bb_end (bb);
5892 if (bb_head == bb_end)
5893 return true;
5895 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5896 bb_head = NEXT_INSN (bb_head);
5898 if (bb_head == bb_end)
5899 return true;
5901 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5902 bb_end = PREV_INSN (bb_end);
5904 if (bb_head == bb_end)
5905 return true;
5907 bb_next = NEXT_INSN (bb_head);
5908 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5909 bb_next = NEXT_INSN (bb_next);
5911 if (bb_next == bb_end && JUMP_P (bb_end))
5912 return true;
5914 in_next = NEXT_INSN (insn);
5915 while (DEBUG_INSN_P (in_next))
5916 in_next = NEXT_INSN (in_next);
5918 if (IN_CURRENT_FENCE_P (in_next))
5919 return true;
5921 return false;
5924 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5925 is not removed but reused when INSN is re-emitted. */
5926 static void
5927 remove_insn_from_stream (rtx insn, bool only_disconnect)
5929 /* If there's only one insn in the BB, make sure that a nop is
5930 inserted into it, so the basic block won't disappear when we'll
5931 delete INSN below with sel_remove_insn. It should also survive
5932 till the return to fill_insns. */
5933 if (need_nop_to_preserve_insn_bb (insn))
5935 insn_t nop = get_nop_from_pool (insn);
5936 gcc_assert (INSN_NOP_P (nop));
5937 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5940 sel_remove_insn (insn, only_disconnect, false);
5943 /* This function is called when original expr is found.
5944 INSN - current insn traversed, EXPR - the corresponding expr found.
5945 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5946 is static parameters of move_op. */
5947 static void
5948 move_op_orig_expr_found (insn_t insn, expr_t expr,
5949 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5950 void *static_params)
5952 bool only_disconnect, insn_emitted;
5953 moveop_static_params_p params = (moveop_static_params_p) static_params;
5955 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5956 track_scheduled_insns_and_blocks (insn);
5957 insn_emitted = handle_emitting_transformations (insn, expr, params);
5958 only_disconnect = (params->uid == INSN_UID (insn)
5959 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5961 /* Mark that we've disconnected an insn. */
5962 if (only_disconnect)
5963 params->uid = -1;
5964 remove_insn_from_stream (insn, only_disconnect);
5967 /* The function is called when original expr is found.
5968 INSN - current insn traversed, EXPR - the corresponding expr found,
5969 crosses_call and original_insns in STATIC_PARAMS are updated. */
5970 static void
5971 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
5972 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5973 void *static_params)
5975 fur_static_params_p params = (fur_static_params_p) static_params;
5976 regset tmp;
5978 if (CALL_P (insn))
5979 params->crosses_call = true;
5981 def_list_add (params->original_insns, insn, params->crosses_call);
5983 /* Mark the registers that do not meet the following condition:
5984 (2) not among the live registers of the point
5985 immediately following the first original operation on
5986 a given downward path, except for the original target
5987 register of the operation. */
5988 tmp = get_clear_regset_from_pool ();
5989 compute_live_below_insn (insn, tmp);
5990 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
5991 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
5992 IOR_REG_SET (params->used_regs, tmp);
5993 return_regset_to_pool (tmp);
5995 /* (*1) We need to add to USED_REGS registers that are read by
5996 INSN's lhs. This may lead to choosing wrong src register.
5997 E.g. (scheduling const expr enabled):
5999 429: ax=0x0 <- Can't use AX for this expr (0x0)
6000 433: dx=[bp-0x18]
6001 427: [ax+dx+0x1]=ax
6002 REG_DEAD: ax
6003 168: di=dx
6004 REG_DEAD: dx
6006 /* FIXME: see comment above and enable MEM_P
6007 in vinsn_separable_p. */
6008 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6009 || !MEM_P (INSN_LHS (insn)));
6012 /* This function is called on the ascending pass, before returning from
6013 current basic block. */
6014 static void
6015 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6016 void *static_params)
6018 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6019 basic_block book_block = NULL;
6021 /* When we have removed the boundary insn for scheduling, which also
6022 happened to be the end insn in its bb, we don't need to update sets. */
6023 if (!lparams->removed_last_insn
6024 && lparams->e1
6025 && sel_bb_head_p (insn))
6027 /* We should generate bookkeeping code only if we are not at the
6028 top level of the move_op. */
6029 if (sel_num_cfg_preds_gt_1 (insn))
6030 book_block = generate_bookkeeping_insn (sparams->c_expr,
6031 lparams->e1, lparams->e2);
6032 /* Update data sets for the current insn. */
6033 update_data_sets (insn);
6036 /* If bookkeeping code was inserted, we need to update av sets of basic
6037 block that received bookkeeping. After generation of bookkeeping insn,
6038 bookkeeping block does not contain valid av set because we are not following
6039 the original algorithm in every detail with regards to e.g. renaming
6040 simple reg-reg copies. Consider example:
6042 bookkeeping block scheduling fence
6044 \ join /
6045 ----------
6047 ----------
6050 r1 := r2 r1 := r3
6052 We try to schedule insn "r1 := r3" on the current
6053 scheduling fence. Also, note that av set of bookkeeping block
6054 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6055 been scheduled, the CFG is as follows:
6057 r1 := r3 r1 := r3
6058 bookkeeping block scheduling fence
6060 \ join /
6061 ----------
6063 ----------
6066 r1 := r2
6068 Here, insn "r1 := r3" was scheduled at the current scheduling point
6069 and bookkeeping code was generated at the bookeeping block. This
6070 way insn "r1 := r2" is no longer available as a whole instruction
6071 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6072 This situation is handled by calling update_data_sets.
6074 Since update_data_sets is called only on the bookkeeping block, and
6075 it also may have predecessors with av_sets, containing instructions that
6076 are no longer available, we save all such expressions that become
6077 unavailable during data sets update on the bookkeeping block in
6078 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6079 expressions for scheduling. This allows us to avoid recomputation of
6080 av_sets outside the code motion path. */
6082 if (book_block)
6083 update_and_record_unavailable_insns (book_block);
6085 /* If INSN was previously marked for deletion, it's time to do it. */
6086 if (lparams->removed_last_insn)
6087 insn = PREV_INSN (insn);
6089 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6090 kill a block with a single nop in which the insn should be emitted. */
6091 if (lparams->e1)
6092 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6095 /* This function is called on the ascending pass, before returning from the
6096 current basic block. */
6097 static void
6098 fur_at_first_insn (insn_t insn,
6099 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6100 void *static_params ATTRIBUTE_UNUSED)
6102 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6103 || AV_LEVEL (insn) == -1);
6106 /* Called on the backward stage of recursion to call moveup_expr for insn
6107 and sparams->c_expr. */
6108 static void
6109 move_op_ascend (insn_t insn, void *static_params)
6111 enum MOVEUP_EXPR_CODE res;
6112 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6114 if (! INSN_NOP_P (insn))
6116 res = moveup_expr_cached (sparams->c_expr, insn, false);
6117 gcc_assert (res != MOVEUP_EXPR_NULL);
6120 /* Update liveness for this insn as it was invalidated. */
6121 update_liveness_on_insn (insn);
6124 /* This function is called on enter to the basic block.
6125 Returns TRUE if this block already have been visited and
6126 code_motion_path_driver should return 1, FALSE otherwise. */
6127 static int
6128 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6129 void *static_params, bool visited_p)
6131 fur_static_params_p sparams = (fur_static_params_p) static_params;
6133 if (visited_p)
6135 /* If we have found something below this block, there should be at
6136 least one insn in ORIGINAL_INSNS. */
6137 gcc_assert (*sparams->original_insns);
6139 /* Adjust CROSSES_CALL, since we may have come to this block along
6140 different path. */
6141 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6142 |= sparams->crosses_call;
6144 else
6145 local_params->old_original_insns = *sparams->original_insns;
6147 return 1;
6150 /* Same as above but for move_op. */
6151 static int
6152 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6153 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6154 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6156 if (visited_p)
6157 return -1;
6158 return 1;
6161 /* This function is called while descending current basic block if current
6162 insn is not the original EXPR we're searching for.
6164 Return value: FALSE, if code_motion_path_driver should perform a local
6165 cleanup and return 0 itself;
6166 TRUE, if code_motion_path_driver should continue. */
6167 static bool
6168 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6169 void *static_params)
6171 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6173 #ifdef ENABLE_CHECKING
6174 sparams->failed_insn = insn;
6175 #endif
6177 /* If we're scheduling separate expr, in order to generate correct code
6178 we need to stop the search at bookkeeping code generated with the
6179 same destination register or memory. */
6180 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6181 return false;
6182 return true;
6185 /* This function is called while descending current basic block if current
6186 insn is not the original EXPR we're searching for.
6188 Return value: TRUE (code_motion_path_driver should continue). */
6189 static bool
6190 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6192 bool mutexed;
6193 expr_t r;
6194 av_set_iterator avi;
6195 fur_static_params_p sparams = (fur_static_params_p) static_params;
6197 if (CALL_P (insn))
6198 sparams->crosses_call = true;
6199 else if (DEBUG_INSN_P (insn))
6200 return true;
6202 /* If current insn we are looking at cannot be executed together
6203 with original insn, then we can skip it safely.
6205 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6206 INSN = (!p6) r14 = r14 + 1;
6208 Here we can schedule ORIG_OP with lhs = r14, though only
6209 looking at the set of used and set registers of INSN we must
6210 forbid it. So, add set/used in INSN registers to the
6211 untouchable set only if there is an insn in ORIG_OPS that can
6212 affect INSN. */
6213 mutexed = true;
6214 FOR_EACH_EXPR (r, avi, orig_ops)
6215 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6217 mutexed = false;
6218 break;
6221 /* Mark all registers that do not meet the following condition:
6222 (1) Not set or read on any path from xi to an instance of the
6223 original operation. */
6224 if (!mutexed)
6226 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6227 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6228 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6231 return true;
6234 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6235 struct code_motion_path_driver_info_def move_op_hooks = {
6236 move_op_on_enter,
6237 move_op_orig_expr_found,
6238 move_op_orig_expr_not_found,
6239 move_op_merge_succs,
6240 move_op_after_merge_succs,
6241 move_op_ascend,
6242 move_op_at_first_insn,
6243 SUCCS_NORMAL,
6244 "move_op"
6247 /* Hooks and data to perform find_used_regs operations
6248 with code_motion_path_driver. */
6249 struct code_motion_path_driver_info_def fur_hooks = {
6250 fur_on_enter,
6251 fur_orig_expr_found,
6252 fur_orig_expr_not_found,
6253 fur_merge_succs,
6254 NULL, /* fur_after_merge_succs */
6255 NULL, /* fur_ascend */
6256 fur_at_first_insn,
6257 SUCCS_ALL,
6258 "find_used_regs"
6261 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6262 code_motion_path_driver is called recursively. Original operation
6263 was found at least on one path that is starting with one of INSN's
6264 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6265 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6266 of either move_op or find_used_regs depending on the caller.
6268 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6269 know for sure at this point. */
6270 static int
6271 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6272 ilist_t path, void *static_params)
6274 int res = 0;
6275 succ_iterator succ_i;
6276 rtx succ;
6277 basic_block bb;
6278 int old_index;
6279 unsigned old_succs;
6281 struct cmpd_local_params lparams;
6282 expr_def _x;
6284 lparams.c_expr_local = &_x;
6285 lparams.c_expr_merged = NULL;
6287 /* We need to process only NORMAL succs for move_op, and collect live
6288 registers from ALL branches (including those leading out of the
6289 region) for find_used_regs.
6291 In move_op, there can be a case when insn's bb number has changed
6292 due to created bookkeeping. This happens very rare, as we need to
6293 move expression from the beginning to the end of the same block.
6294 Rescan successors in this case. */
6296 rescan:
6297 bb = BLOCK_FOR_INSN (insn);
6298 old_index = bb->index;
6299 old_succs = EDGE_COUNT (bb->succs);
6301 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6303 int b;
6305 lparams.e1 = succ_i.e1;
6306 lparams.e2 = succ_i.e2;
6308 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6309 current region). */
6310 if (succ_i.current_flags == SUCCS_NORMAL)
6311 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6312 static_params);
6313 else
6314 b = 0;
6316 /* Merge c_expres found or unify live register sets from different
6317 successors. */
6318 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6319 static_params);
6320 if (b == 1)
6321 res = b;
6322 else if (b == -1 && res != 1)
6323 res = b;
6325 /* We have simplified the control flow below this point. In this case,
6326 the iterator becomes invalid. We need to try again. */
6327 if (BLOCK_FOR_INSN (insn)->index != old_index
6328 || EDGE_COUNT (bb->succs) != old_succs)
6329 goto rescan;
6332 #ifdef ENABLE_CHECKING
6333 /* Here, RES==1 if original expr was found at least for one of the
6334 successors. After the loop, RES may happen to have zero value
6335 only if at some point the expr searched is present in av_set, but is
6336 not found below. In most cases, this situation is an error.
6337 The exception is when the original operation is blocked by
6338 bookkeeping generated for another fence or for another path in current
6339 move_op. */
6340 gcc_assert (res == 1
6341 || (res == 0
6342 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6343 static_params))
6344 || res == -1);
6345 #endif
6347 /* Merge data, clean up, etc. */
6348 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6349 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6351 return res;
6355 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6356 is the pointer to the av set with expressions we were looking for,
6357 PATH_P is the pointer to the traversed path. */
6358 static inline void
6359 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6361 ilist_remove (path_p);
6362 av_set_clear (orig_ops_p);
6365 /* The driver function that implements move_op or find_used_regs
6366 functionality dependent whether code_motion_path_driver_INFO is set to
6367 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6368 of code (CFG traversal etc) that are shared among both functions. INSN
6369 is the insn we're starting the search from, ORIG_OPS are the expressions
6370 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6371 parameters of the driver, and STATIC_PARAMS are static parameters of
6372 the caller.
6374 Returns whether original instructions were found. Note that top-level
6375 code_motion_path_driver always returns true. */
6376 static int
6377 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6378 cmpd_local_params_p local_params_in,
6379 void *static_params)
6381 expr_t expr = NULL;
6382 basic_block bb = BLOCK_FOR_INSN (insn);
6383 insn_t first_insn, bb_tail, before_first;
6384 bool removed_last_insn = false;
6386 if (sched_verbose >= 6)
6388 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6389 dump_insn (insn);
6390 sel_print (",");
6391 dump_av_set (orig_ops);
6392 sel_print (")\n");
6395 gcc_assert (orig_ops);
6397 /* If no original operations exist below this insn, return immediately. */
6398 if (is_ineligible_successor (insn, path))
6400 if (sched_verbose >= 6)
6401 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6402 return false;
6405 /* The block can have invalid av set, in which case it was created earlier
6406 during move_op. Return immediately. */
6407 if (sel_bb_head_p (insn))
6409 if (! AV_SET_VALID_P (insn))
6411 if (sched_verbose >= 6)
6412 sel_print ("Returned from block %d as it had invalid av set\n",
6413 bb->index);
6414 return false;
6417 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6419 /* We have already found an original operation on this branch, do not
6420 go any further and just return TRUE here. If we don't stop here,
6421 function can have exponential behaviour even on the small code
6422 with many different paths (e.g. with data speculation and
6423 recovery blocks). */
6424 if (sched_verbose >= 6)
6425 sel_print ("Block %d already visited in this traversal\n", bb->index);
6426 if (code_motion_path_driver_info->on_enter)
6427 return code_motion_path_driver_info->on_enter (insn,
6428 local_params_in,
6429 static_params,
6430 true);
6434 if (code_motion_path_driver_info->on_enter)
6435 code_motion_path_driver_info->on_enter (insn, local_params_in,
6436 static_params, false);
6437 orig_ops = av_set_copy (orig_ops);
6439 /* Filter the orig_ops set. */
6440 if (AV_SET_VALID_P (insn))
6441 av_set_intersect (&orig_ops, AV_SET (insn));
6443 /* If no more original ops, return immediately. */
6444 if (!orig_ops)
6446 if (sched_verbose >= 6)
6447 sel_print ("No intersection with av set of block %d\n", bb->index);
6448 return false;
6451 /* For non-speculative insns we have to leave only one form of the
6452 original operation, because if we don't, we may end up with
6453 different C_EXPRes and, consequently, with bookkeepings for different
6454 expression forms along the same code motion path. That may lead to
6455 generation of incorrect code. So for each code motion we stick to
6456 the single form of the instruction, except for speculative insns
6457 which we need to keep in different forms with all speculation
6458 types. */
6459 av_set_leave_one_nonspec (&orig_ops);
6461 /* It is not possible that all ORIG_OPS are filtered out. */
6462 gcc_assert (orig_ops);
6464 /* It is enough to place only heads and tails of visited basic blocks into
6465 the PATH. */
6466 ilist_add (&path, insn);
6467 first_insn = insn;
6468 bb_tail = sel_bb_end (bb);
6470 /* Descend the basic block in search of the original expr; this part
6471 corresponds to the part of the original move_op procedure executed
6472 before the recursive call. */
6473 for (;;)
6475 /* Look at the insn and decide if it could be an ancestor of currently
6476 scheduling operation. If it is so, then the insn "dest = op" could
6477 either be replaced with "dest = reg", because REG now holds the result
6478 of OP, or just removed, if we've scheduled the insn as a whole.
6480 If this insn doesn't contain currently scheduling OP, then proceed
6481 with searching and look at its successors. Operations we're searching
6482 for could have changed when moving up through this insn via
6483 substituting. In this case, perform unsubstitution on them first.
6485 When traversing the DAG below this insn is finished, insert
6486 bookkeeping code, if the insn is a joint point, and remove
6487 leftovers. */
6489 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6490 if (expr)
6492 insn_t last_insn = PREV_INSN (insn);
6494 /* We have found the original operation. */
6495 if (sched_verbose >= 6)
6496 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6498 code_motion_path_driver_info->orig_expr_found
6499 (insn, expr, local_params_in, static_params);
6501 /* Step back, so on the way back we'll start traversing from the
6502 previous insn (or we'll see that it's bb_note and skip that
6503 loop). */
6504 if (insn == first_insn)
6506 first_insn = NEXT_INSN (last_insn);
6507 removed_last_insn = sel_bb_end_p (last_insn);
6509 insn = last_insn;
6510 break;
6512 else
6514 /* We haven't found the original expr, continue descending the basic
6515 block. */
6516 if (code_motion_path_driver_info->orig_expr_not_found
6517 (insn, orig_ops, static_params))
6519 /* Av set ops could have been changed when moving through this
6520 insn. To find them below it, we have to un-substitute them. */
6521 undo_transformations (&orig_ops, insn);
6523 else
6525 /* Clean up and return, if the hook tells us to do so. It may
6526 happen if we've encountered the previously created
6527 bookkeeping. */
6528 code_motion_path_driver_cleanup (&orig_ops, &path);
6529 return -1;
6532 gcc_assert (orig_ops);
6535 /* Stop at insn if we got to the end of BB. */
6536 if (insn == bb_tail)
6537 break;
6539 insn = NEXT_INSN (insn);
6542 /* Here INSN either points to the insn before the original insn (may be
6543 bb_note, if original insn was a bb_head) or to the bb_end. */
6544 if (!expr)
6546 int res;
6548 gcc_assert (insn == sel_bb_end (bb));
6550 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6551 it's already in PATH then). */
6552 if (insn != first_insn)
6553 ilist_add (&path, insn);
6555 /* Process_successors should be able to find at least one
6556 successor for which code_motion_path_driver returns TRUE. */
6557 res = code_motion_process_successors (insn, orig_ops,
6558 path, static_params);
6560 /* Remove bb tail from path. */
6561 if (insn != first_insn)
6562 ilist_remove (&path);
6564 if (res != 1)
6566 /* This is the case when one of the original expr is no longer available
6567 due to bookkeeping created on this branch with the same register.
6568 In the original algorithm, which doesn't have update_data_sets call
6569 on a bookkeeping block, it would simply result in returning
6570 FALSE when we've encountered a previously generated bookkeeping
6571 insn in moveop_orig_expr_not_found. */
6572 code_motion_path_driver_cleanup (&orig_ops, &path);
6573 return res;
6577 /* Don't need it any more. */
6578 av_set_clear (&orig_ops);
6580 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6581 the beginning of the basic block. */
6582 before_first = PREV_INSN (first_insn);
6583 while (insn != before_first)
6585 if (code_motion_path_driver_info->ascend)
6586 code_motion_path_driver_info->ascend (insn, static_params);
6588 insn = PREV_INSN (insn);
6591 /* Now we're at the bb head. */
6592 insn = first_insn;
6593 ilist_remove (&path);
6594 local_params_in->removed_last_insn = removed_last_insn;
6595 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6597 /* This should be the very last operation as at bb head we could change
6598 the numbering by creating bookkeeping blocks. */
6599 if (removed_last_insn)
6600 insn = PREV_INSN (insn);
6601 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6602 return true;
6605 /* Move up the operations from ORIG_OPS set traversing the dag starting
6606 from INSN. PATH represents the edges traversed so far.
6607 DEST is the register chosen for scheduling the current expr. Insert
6608 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6609 C_EXPR is how it looks like at the given cfg point.
6610 Set *SHOULD_MOVE to indicate whether we have only disconnected
6611 one of the insns found.
6613 Returns whether original instructions were found, which is asserted
6614 to be true in the caller. */
6615 static bool
6616 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6617 rtx dest, expr_t c_expr, bool *should_move)
6619 struct moveop_static_params sparams;
6620 struct cmpd_local_params lparams;
6621 bool res;
6623 /* Init params for code_motion_path_driver. */
6624 sparams.dest = dest;
6625 sparams.c_expr = c_expr;
6626 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6627 #ifdef ENABLE_CHECKING
6628 sparams.failed_insn = NULL;
6629 #endif
6630 sparams.was_renamed = false;
6631 lparams.e1 = NULL;
6633 /* We haven't visited any blocks yet. */
6634 bitmap_clear (code_motion_visited_blocks);
6636 /* Set appropriate hooks and data. */
6637 code_motion_path_driver_info = &move_op_hooks;
6638 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6640 if (sparams.was_renamed)
6641 EXPR_WAS_RENAMED (expr_vliw) = true;
6643 *should_move = (sparams.uid == -1);
6645 return res;
6649 /* Functions that work with regions. */
6651 /* Current number of seqno used in init_seqno and init_seqno_1. */
6652 static int cur_seqno;
6654 /* A helper for init_seqno. Traverse the region starting from BB and
6655 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6656 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6657 static void
6658 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6660 int bbi = BLOCK_TO_BB (bb->index);
6661 insn_t insn, note = bb_note (bb);
6662 insn_t succ_insn;
6663 succ_iterator si;
6665 SET_BIT (visited_bbs, bbi);
6666 if (blocks_to_reschedule)
6667 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6669 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6670 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6672 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6673 int succ_bbi = BLOCK_TO_BB (succ->index);
6675 gcc_assert (in_current_region_p (succ));
6677 if (!TEST_BIT (visited_bbs, succ_bbi))
6679 gcc_assert (succ_bbi > bbi);
6681 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6685 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6686 INSN_SEQNO (insn) = cur_seqno--;
6689 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6690 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6691 which we're rescheduling when pipelining, FROM is the block where
6692 traversing region begins (it may not be the head of the region when
6693 pipelining, but the head of the loop instead).
6695 Returns the maximal seqno found. */
6696 static int
6697 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6699 sbitmap visited_bbs;
6700 bitmap_iterator bi;
6701 unsigned bbi;
6703 visited_bbs = sbitmap_alloc (current_nr_blocks);
6705 if (blocks_to_reschedule)
6707 sbitmap_ones (visited_bbs);
6708 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6710 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6711 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6714 else
6716 sbitmap_zero (visited_bbs);
6717 from = EBB_FIRST_BB (0);
6720 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6721 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6722 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6724 sbitmap_free (visited_bbs);
6725 return sched_max_luid - 1;
6728 /* Initialize scheduling parameters for current region. */
6729 static void
6730 sel_setup_region_sched_flags (void)
6732 enable_schedule_as_rhs_p = 1;
6733 bookkeeping_p = 1;
6734 pipelining_p = (bookkeeping_p
6735 && (flag_sel_sched_pipelining != 0)
6736 && current_loop_nest != NULL);
6737 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6738 max_ws = MAX_WS;
6741 /* Return true if all basic blocks of current region are empty. */
6742 static bool
6743 current_region_empty_p (void)
6745 int i;
6746 for (i = 0; i < current_nr_blocks; i++)
6747 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6748 return false;
6750 return true;
6753 /* Prepare and verify loop nest for pipelining. */
6754 static void
6755 setup_current_loop_nest (int rgn)
6757 current_loop_nest = get_loop_nest_for_rgn (rgn);
6759 if (!current_loop_nest)
6760 return;
6762 /* If this loop has any saved loop preheaders from nested loops,
6763 add these basic blocks to the current region. */
6764 sel_add_loop_preheaders ();
6766 /* Check that we're starting with a valid information. */
6767 gcc_assert (loop_latch_edge (current_loop_nest));
6768 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6771 /* Purge meaningless empty blocks in the middle of a region. */
6772 static void
6773 purge_empty_blocks (void)
6775 /* Do not attempt to delete preheader. */
6776 int i = sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) ? 1 : 0;
6778 while (i < current_nr_blocks)
6780 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
6782 if (maybe_tidy_empty_bb (b))
6783 continue;
6785 i++;
6789 /* Compute instruction priorities for current region. */
6790 static void
6791 sel_compute_priorities (int rgn)
6793 sched_rgn_compute_dependencies (rgn);
6795 /* Compute insn priorities in haifa style. Then free haifa style
6796 dependencies that we've calculated for this. */
6797 compute_priorities ();
6799 if (sched_verbose >= 5)
6800 debug_rgn_dependencies (0);
6802 free_rgn_deps ();
6805 /* Init scheduling data for RGN. Returns true when this region should not
6806 be scheduled. */
6807 static bool
6808 sel_region_init (int rgn)
6810 int i;
6811 bb_vec_t bbs;
6813 rgn_setup_region (rgn);
6815 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6816 do region initialization here so the region can be bundled correctly,
6817 but we'll skip the scheduling in sel_sched_region (). */
6818 if (current_region_empty_p ())
6819 return true;
6821 if (flag_sel_sched_pipelining)
6822 setup_current_loop_nest (rgn);
6824 sel_setup_region_sched_flags ();
6826 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6828 for (i = 0; i < current_nr_blocks; i++)
6829 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6831 sel_init_bbs (bbs, NULL);
6833 /* Initialize luids and dependence analysis which both sel-sched and haifa
6834 need. */
6835 sched_init_luids (bbs, NULL, NULL, NULL);
6836 sched_deps_init (false);
6838 /* Initialize haifa data. */
6839 rgn_setup_sched_infos ();
6840 sel_set_sched_flags ();
6841 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6843 sel_compute_priorities (rgn);
6844 init_deps_global ();
6846 /* Main initialization. */
6847 sel_setup_sched_infos ();
6848 sel_init_global_and_expr (bbs);
6850 VEC_free (basic_block, heap, bbs);
6852 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6854 /* Init correct liveness sets on each instruction of a single-block loop.
6855 This is the only situation when we can't update liveness when calling
6856 compute_live for the first insn of the loop. */
6857 if (current_loop_nest)
6859 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6861 : 0);
6863 if (current_nr_blocks == header + 1)
6864 update_liveness_on_insn
6865 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6868 /* Set hooks so that no newly generated insn will go out unnoticed. */
6869 sel_register_cfg_hooks ();
6871 /* !!! We call target.sched.md_init () for the whole region, but we invoke
6872 targetm.sched.md_finish () for every ebb. */
6873 if (targetm.sched.md_init)
6874 /* None of the arguments are actually used in any target. */
6875 targetm.sched.md_init (sched_dump, sched_verbose, -1);
6877 first_emitted_uid = get_max_uid () + 1;
6878 preheader_removed = false;
6880 /* Reset register allocation ticks array. */
6881 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6882 reg_rename_this_tick = 0;
6884 bitmap_initialize (forced_ebb_heads, 0);
6885 bitmap_clear (forced_ebb_heads);
6887 setup_nop_vinsn ();
6888 current_copies = BITMAP_ALLOC (NULL);
6889 current_originators = BITMAP_ALLOC (NULL);
6890 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6892 return false;
6895 /* Simplify insns after the scheduling. */
6896 static void
6897 simplify_changed_insns (void)
6899 int i;
6901 for (i = 0; i < current_nr_blocks; i++)
6903 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6904 rtx insn;
6906 FOR_BB_INSNS (bb, insn)
6907 if (INSN_P (insn))
6909 expr_t expr = INSN_EXPR (insn);
6911 if (EXPR_WAS_SUBSTITUTED (expr))
6912 validate_simplify_insn (insn);
6917 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6918 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6919 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6920 static void
6921 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6923 insn_t head, tail;
6924 basic_block bb1 = bb;
6925 if (sched_verbose >= 2)
6926 sel_print ("Finishing schedule in bbs: ");
6930 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6932 if (sched_verbose >= 2)
6933 sel_print ("%d; ", bb1->index);
6935 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6937 if (sched_verbose >= 2)
6938 sel_print ("\n");
6940 get_ebb_head_tail (bb, bb1, &head, &tail);
6942 current_sched_info->head = head;
6943 current_sched_info->tail = tail;
6944 current_sched_info->prev_head = PREV_INSN (head);
6945 current_sched_info->next_tail = NEXT_INSN (tail);
6948 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6949 static void
6950 reset_sched_cycles_in_current_ebb (void)
6952 int last_clock = 0;
6953 int haifa_last_clock = -1;
6954 int haifa_clock = 0;
6955 insn_t insn;
6957 if (targetm.sched.md_init)
6959 /* None of the arguments are actually used in any target.
6960 NB: We should have md_reset () hook for cases like this. */
6961 targetm.sched.md_init (sched_dump, sched_verbose, -1);
6964 state_reset (curr_state);
6965 advance_state (curr_state);
6967 for (insn = current_sched_info->head;
6968 insn != current_sched_info->next_tail;
6969 insn = NEXT_INSN (insn))
6971 int cost, haifa_cost;
6972 int sort_p;
6973 bool asm_p, real_insn, after_stall;
6974 int clock;
6976 if (!INSN_P (insn))
6977 continue;
6979 asm_p = false;
6980 real_insn = recog_memoized (insn) >= 0;
6981 clock = INSN_SCHED_CYCLE (insn);
6983 cost = clock - last_clock;
6985 /* Initialize HAIFA_COST. */
6986 if (! real_insn)
6988 asm_p = INSN_ASM_P (insn);
6990 if (asm_p)
6991 /* This is asm insn which *had* to be scheduled first
6992 on the cycle. */
6993 haifa_cost = 1;
6994 else
6995 /* This is a use/clobber insn. It should not change
6996 cost. */
6997 haifa_cost = 0;
6999 else
7000 haifa_cost = estimate_insn_cost (insn, curr_state);
7002 /* Stall for whatever cycles we've stalled before. */
7003 after_stall = 0;
7004 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7006 haifa_cost = cost;
7007 after_stall = 1;
7010 if (haifa_cost > 0)
7012 int i = 0;
7014 while (haifa_cost--)
7016 advance_state (curr_state);
7017 i++;
7019 if (sched_verbose >= 2)
7021 sel_print ("advance_state (state_transition)\n");
7022 debug_state (curr_state);
7025 /* The DFA may report that e.g. insn requires 2 cycles to be
7026 issued, but on the next cycle it says that insn is ready
7027 to go. Check this here. */
7028 if (!after_stall
7029 && real_insn
7030 && haifa_cost > 0
7031 && estimate_insn_cost (insn, curr_state) == 0)
7032 break;
7035 haifa_clock += i;
7037 else
7038 gcc_assert (haifa_cost == 0);
7040 if (sched_verbose >= 2)
7041 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7043 if (targetm.sched.dfa_new_cycle)
7044 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7045 haifa_last_clock, haifa_clock,
7046 &sort_p))
7048 advance_state (curr_state);
7049 haifa_clock++;
7050 if (sched_verbose >= 2)
7052 sel_print ("advance_state (dfa_new_cycle)\n");
7053 debug_state (curr_state);
7057 if (real_insn)
7059 cost = state_transition (curr_state, insn);
7061 if (sched_verbose >= 2)
7062 debug_state (curr_state);
7064 gcc_assert (cost < 0);
7067 if (targetm.sched.variable_issue)
7068 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7070 INSN_SCHED_CYCLE (insn) = haifa_clock;
7072 last_clock = clock;
7073 haifa_last_clock = haifa_clock;
7077 /* Put TImode markers on insns starting a new issue group. */
7078 static void
7079 put_TImodes (void)
7081 int last_clock = -1;
7082 insn_t insn;
7084 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7085 insn = NEXT_INSN (insn))
7087 int cost, clock;
7089 if (!INSN_P (insn))
7090 continue;
7092 clock = INSN_SCHED_CYCLE (insn);
7093 cost = (last_clock == -1) ? 1 : clock - last_clock;
7095 gcc_assert (cost >= 0);
7097 if (issue_rate > 1
7098 && GET_CODE (PATTERN (insn)) != USE
7099 && GET_CODE (PATTERN (insn)) != CLOBBER)
7101 if (reload_completed && cost > 0)
7102 PUT_MODE (insn, TImode);
7104 last_clock = clock;
7107 if (sched_verbose >= 2)
7108 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7112 /* Perform MD_FINISH on EBBs comprising current region. When
7113 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7114 to produce correct sched cycles on insns. */
7115 static void
7116 sel_region_target_finish (bool reset_sched_cycles_p)
7118 int i;
7119 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7121 for (i = 0; i < current_nr_blocks; i++)
7123 if (bitmap_bit_p (scheduled_blocks, i))
7124 continue;
7126 /* While pipelining outer loops, skip bundling for loop
7127 preheaders. Those will be rescheduled in the outer loop. */
7128 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7129 continue;
7131 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7133 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7134 continue;
7136 if (reset_sched_cycles_p)
7137 reset_sched_cycles_in_current_ebb ();
7139 if (targetm.sched.md_init)
7140 targetm.sched.md_init (sched_dump, sched_verbose, -1);
7142 put_TImodes ();
7144 if (targetm.sched.md_finish)
7146 targetm.sched.md_finish (sched_dump, sched_verbose);
7148 /* Extend luids so that insns generated by the target will
7149 get zero luid. */
7150 sched_init_luids (NULL, NULL, NULL, NULL);
7154 BITMAP_FREE (scheduled_blocks);
7157 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7158 is true, make an additional pass emulating scheduler to get correct insn
7159 cycles for md_finish calls. */
7160 static void
7161 sel_region_finish (bool reset_sched_cycles_p)
7163 simplify_changed_insns ();
7164 sched_finish_ready_list ();
7165 free_nop_pool ();
7167 /* Free the vectors. */
7168 if (vec_av_set)
7169 VEC_free (expr_t, heap, vec_av_set);
7170 BITMAP_FREE (current_copies);
7171 BITMAP_FREE (current_originators);
7172 BITMAP_FREE (code_motion_visited_blocks);
7173 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7174 vinsn_vec_free (&vec_target_unavailable_vinsns);
7176 /* If LV_SET of the region head should be updated, do it now because
7177 there will be no other chance. */
7179 succ_iterator si;
7180 insn_t insn;
7182 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7183 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7185 basic_block bb = BLOCK_FOR_INSN (insn);
7187 if (!BB_LV_SET_VALID_P (bb))
7188 compute_live (insn);
7192 /* Emulate the Haifa scheduler for bundling. */
7193 if (reload_completed)
7194 sel_region_target_finish (reset_sched_cycles_p);
7196 sel_finish_global_and_expr ();
7198 bitmap_clear (forced_ebb_heads);
7200 free_nop_vinsn ();
7202 finish_deps_global ();
7203 sched_finish_luids ();
7205 sel_finish_bbs ();
7206 BITMAP_FREE (blocks_to_reschedule);
7208 sel_unregister_cfg_hooks ();
7210 max_issue_size = 0;
7214 /* Functions that implement the scheduler driver. */
7216 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7217 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7218 of insns scheduled -- these would be postprocessed later. */
7219 static void
7220 schedule_on_fences (flist_t fences, int max_seqno,
7221 ilist_t **scheduled_insns_tailpp)
7223 flist_t old_fences = fences;
7225 if (sched_verbose >= 1)
7227 sel_print ("\nScheduling on fences: ");
7228 dump_flist (fences);
7229 sel_print ("\n");
7232 scheduled_something_on_previous_fence = false;
7233 for (; fences; fences = FLIST_NEXT (fences))
7235 fence_t fence = NULL;
7236 int seqno = 0;
7237 flist_t fences2;
7238 bool first_p = true;
7240 /* Choose the next fence group to schedule.
7241 The fact that insn can be scheduled only once
7242 on the cycle is guaranteed by two properties:
7243 1. seqnos of parallel groups decrease with each iteration.
7244 2. If is_ineligible_successor () sees the larger seqno, it
7245 checks if candidate insn is_in_current_fence_p (). */
7246 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7248 fence_t f = FLIST_FENCE (fences2);
7250 if (!FENCE_PROCESSED_P (f))
7252 int i = INSN_SEQNO (FENCE_INSN (f));
7254 if (first_p || i > seqno)
7256 seqno = i;
7257 fence = f;
7258 first_p = false;
7260 else
7261 /* ??? Seqnos of different groups should be different. */
7262 gcc_assert (1 || i != seqno);
7266 gcc_assert (fence);
7268 /* As FENCE is nonnull, SEQNO is initialized. */
7269 seqno -= max_seqno + 1;
7270 fill_insns (fence, seqno, scheduled_insns_tailpp);
7271 FENCE_PROCESSED_P (fence) = true;
7274 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7275 don't need to keep bookkeeping-invalidated and target-unavailable
7276 vinsns any more. */
7277 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7278 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7281 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7282 static void
7283 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7285 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7287 /* The first element is already processed. */
7288 while ((fences = FLIST_NEXT (fences)))
7290 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7292 if (*min_seqno > seqno)
7293 *min_seqno = seqno;
7294 else if (*max_seqno < seqno)
7295 *max_seqno = seqno;
7299 /* Calculate new fences from FENCES. */
7300 static flist_t
7301 calculate_new_fences (flist_t fences, int orig_max_seqno)
7303 flist_t old_fences = fences;
7304 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7306 flist_tail_init (new_fences);
7307 for (; fences; fences = FLIST_NEXT (fences))
7309 fence_t fence = FLIST_FENCE (fences);
7310 insn_t insn;
7312 if (!FENCE_BNDS (fence))
7314 /* This fence doesn't have any successors. */
7315 if (!FENCE_SCHEDULED_P (fence))
7317 /* Nothing was scheduled on this fence. */
7318 int seqno;
7320 insn = FENCE_INSN (fence);
7321 seqno = INSN_SEQNO (insn);
7322 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7324 if (sched_verbose >= 1)
7325 sel_print ("Fence %d[%d] has not changed\n",
7326 INSN_UID (insn),
7327 BLOCK_NUM (insn));
7328 move_fence_to_fences (fences, new_fences);
7331 else
7332 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7335 flist_clear (&old_fences);
7336 return FLIST_TAIL_HEAD (new_fences);
7339 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7340 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7341 the highest seqno used in a region. Return the updated highest seqno. */
7342 static int
7343 update_seqnos_and_stage (int min_seqno, int max_seqno,
7344 int highest_seqno_in_use,
7345 ilist_t *pscheduled_insns)
7347 int new_hs;
7348 ilist_iterator ii;
7349 insn_t insn;
7351 /* Actually, new_hs is the seqno of the instruction, that was
7352 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7353 if (*pscheduled_insns)
7355 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7356 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7357 gcc_assert (new_hs > highest_seqno_in_use);
7359 else
7360 new_hs = highest_seqno_in_use;
7362 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7364 gcc_assert (INSN_SEQNO (insn) < 0);
7365 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7366 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7369 ilist_clear (pscheduled_insns);
7370 global_level++;
7372 return new_hs;
7375 /* The main driver for scheduling a region. This function is responsible
7376 for correct propagation of fences (i.e. scheduling points) and creating
7377 a group of parallel insns at each of them. It also supports
7378 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7379 of scheduling. */
7380 static void
7381 sel_sched_region_2 (int orig_max_seqno)
7383 int highest_seqno_in_use = orig_max_seqno;
7385 stat_bookkeeping_copies = 0;
7386 stat_insns_needed_bookkeeping = 0;
7387 stat_renamed_scheduled = 0;
7388 stat_substitutions_total = 0;
7389 num_insns_scheduled = 0;
7391 while (fences)
7393 int min_seqno, max_seqno;
7394 ilist_t scheduled_insns = NULL;
7395 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7397 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7398 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7399 fences = calculate_new_fences (fences, orig_max_seqno);
7400 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7401 highest_seqno_in_use,
7402 &scheduled_insns);
7405 if (sched_verbose >= 1)
7406 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7407 "bookkeeping, %d insns renamed, %d insns substituted\n",
7408 stat_bookkeeping_copies,
7409 stat_insns_needed_bookkeeping,
7410 stat_renamed_scheduled,
7411 stat_substitutions_total);
7414 /* Schedule a region. When pipelining, search for possibly never scheduled
7415 bookkeeping code and schedule it. Reschedule pipelined code without
7416 pipelining after. */
7417 static void
7418 sel_sched_region_1 (void)
7420 int number_of_insns;
7421 int orig_max_seqno;
7423 /* Remove empty blocks that might be in the region from the beginning.
7424 We need to do save sched_max_luid before that, as it actually shows
7425 the number of insns in the region, and purge_empty_blocks can
7426 alter it. */
7427 number_of_insns = sched_max_luid - 1;
7428 purge_empty_blocks ();
7430 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7431 gcc_assert (orig_max_seqno >= 1);
7433 /* When pipelining outer loops, create fences on the loop header,
7434 not preheader. */
7435 fences = NULL;
7436 if (current_loop_nest)
7437 init_fences (BB_END (EBB_FIRST_BB (0)));
7438 else
7439 init_fences (bb_note (EBB_FIRST_BB (0)));
7440 global_level = 1;
7442 sel_sched_region_2 (orig_max_seqno);
7444 gcc_assert (fences == NULL);
7446 if (pipelining_p)
7448 int i;
7449 basic_block bb;
7450 struct flist_tail_def _new_fences;
7451 flist_tail_t new_fences = &_new_fences;
7452 bool do_p = true;
7454 pipelining_p = false;
7455 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7456 bookkeeping_p = false;
7457 enable_schedule_as_rhs_p = false;
7459 /* Schedule newly created code, that has not been scheduled yet. */
7460 do_p = true;
7462 while (do_p)
7464 do_p = false;
7466 for (i = 0; i < current_nr_blocks; i++)
7468 basic_block bb = EBB_FIRST_BB (i);
7470 if (sel_bb_empty_p (bb))
7472 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7473 continue;
7476 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7478 clear_outdated_rtx_info (bb);
7479 if (sel_insn_is_speculation_check (BB_END (bb))
7480 && JUMP_P (BB_END (bb)))
7481 bitmap_set_bit (blocks_to_reschedule,
7482 BRANCH_EDGE (bb)->dest->index);
7484 else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7485 bitmap_set_bit (blocks_to_reschedule, bb->index);
7488 for (i = 0; i < current_nr_blocks; i++)
7490 bb = EBB_FIRST_BB (i);
7492 /* While pipelining outer loops, skip bundling for loop
7493 preheaders. Those will be rescheduled in the outer
7494 loop. */
7495 if (sel_is_loop_preheader_p (bb))
7497 clear_outdated_rtx_info (bb);
7498 continue;
7501 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7503 flist_tail_init (new_fences);
7505 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7507 /* Mark BB as head of the new ebb. */
7508 bitmap_set_bit (forced_ebb_heads, bb->index);
7510 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7512 gcc_assert (fences == NULL);
7514 init_fences (bb_note (bb));
7516 sel_sched_region_2 (orig_max_seqno);
7518 do_p = true;
7519 break;
7526 /* Schedule the RGN region. */
7527 void
7528 sel_sched_region (int rgn)
7530 bool schedule_p;
7531 bool reset_sched_cycles_p;
7533 if (sel_region_init (rgn))
7534 return;
7536 if (sched_verbose >= 1)
7537 sel_print ("Scheduling region %d\n", rgn);
7539 schedule_p = (!sched_is_disabled_for_current_region_p ()
7540 && dbg_cnt (sel_sched_region_cnt));
7541 reset_sched_cycles_p = pipelining_p;
7542 if (schedule_p)
7543 sel_sched_region_1 ();
7544 else
7545 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7546 reset_sched_cycles_p = true;
7548 sel_region_finish (reset_sched_cycles_p);
7551 /* Perform global init for the scheduler. */
7552 static void
7553 sel_global_init (void)
7555 calculate_dominance_info (CDI_DOMINATORS);
7556 alloc_sched_pools ();
7558 /* Setup the infos for sched_init. */
7559 sel_setup_sched_infos ();
7560 setup_sched_dump ();
7562 sched_rgn_init (false);
7563 sched_init ();
7565 sched_init_bbs ();
7566 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7567 after_recovery = 0;
7568 can_issue_more = issue_rate;
7570 sched_extend_target ();
7571 sched_deps_init (true);
7572 setup_nop_and_exit_insns ();
7573 sel_extend_global_bb_info ();
7574 init_lv_sets ();
7575 init_hard_regs_data ();
7578 /* Free the global data of the scheduler. */
7579 static void
7580 sel_global_finish (void)
7582 free_bb_note_pool ();
7583 free_lv_sets ();
7584 sel_finish_global_bb_info ();
7586 free_regset_pool ();
7587 free_nop_and_exit_insns ();
7589 sched_rgn_finish ();
7590 sched_deps_finish ();
7591 sched_finish ();
7593 if (current_loops)
7594 sel_finish_pipelining ();
7596 free_sched_pools ();
7597 free_dominance_info (CDI_DOMINATORS);
7600 /* Return true when we need to skip selective scheduling. Used for debugging. */
7601 bool
7602 maybe_skip_selective_scheduling (void)
7604 return ! dbg_cnt (sel_sched_cnt);
7607 /* The entry point. */
7608 void
7609 run_selective_scheduling (void)
7611 int rgn;
7613 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7614 return;
7616 sel_global_init ();
7618 for (rgn = 0; rgn < nr_regions; rgn++)
7619 sel_sched_region (rgn);
7621 sel_global_finish ();
7624 #endif