Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / reload.c
blob1435945d62cbf806c6698ae0519fcf8b810bee09
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "reload.h"
104 #include "regs.h"
105 #include "addresses.h"
106 #include "hard-reg-set.h"
107 #include "flags.h"
108 #include "real.h"
109 #include "output.h"
110 #include "function.h"
111 #include "toplev.h"
112 #include "params.h"
113 #include "target.h"
114 #include "df.h"
115 #include "ira.h"
117 /* True if X is a constant that can be forced into the constant pool. */
118 #define CONST_POOL_OK_P(X) \
119 (CONSTANT_P (X) \
120 && GET_CODE (X) != HIGH \
121 && !targetm.cannot_force_const_mem (X))
123 /* True if C is a non-empty register class that has too few registers
124 to be safely used as a reload target class. */
125 #define SMALL_REGISTER_CLASS_P(C) \
126 (reg_class_size [(C)] == 1 \
127 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
130 /* All reloads of the current insn are recorded here. See reload.h for
131 comments. */
132 int n_reloads;
133 struct reload rld[MAX_RELOADS];
135 /* All the "earlyclobber" operands of the current insn
136 are recorded here. */
137 int n_earlyclobbers;
138 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
140 int reload_n_operands;
142 /* Replacing reloads.
144 If `replace_reloads' is nonzero, then as each reload is recorded
145 an entry is made for it in the table `replacements'.
146 Then later `subst_reloads' can look through that table and
147 perform all the replacements needed. */
149 /* Nonzero means record the places to replace. */
150 static int replace_reloads;
152 /* Each replacement is recorded with a structure like this. */
153 struct replacement
155 rtx *where; /* Location to store in */
156 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
157 a SUBREG; 0 otherwise. */
158 int what; /* which reload this is for */
159 enum machine_mode mode; /* mode it must have */
162 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
164 /* Number of replacements currently recorded. */
165 static int n_replacements;
167 /* Used to track what is modified by an operand. */
168 struct decomposition
170 int reg_flag; /* Nonzero if referencing a register. */
171 int safe; /* Nonzero if this can't conflict with anything. */
172 rtx base; /* Base address for MEM. */
173 HOST_WIDE_INT start; /* Starting offset or register number. */
174 HOST_WIDE_INT end; /* Ending offset or register number. */
177 #ifdef SECONDARY_MEMORY_NEEDED
179 /* Save MEMs needed to copy from one class of registers to another. One MEM
180 is used per mode, but normally only one or two modes are ever used.
182 We keep two versions, before and after register elimination. The one
183 after register elimination is record separately for each operand. This
184 is done in case the address is not valid to be sure that we separately
185 reload each. */
187 static rtx secondary_memlocs[NUM_MACHINE_MODES];
188 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
189 static int secondary_memlocs_elim_used = 0;
190 #endif
192 /* The instruction we are doing reloads for;
193 so we can test whether a register dies in it. */
194 static rtx this_insn;
196 /* Nonzero if this instruction is a user-specified asm with operands. */
197 static int this_insn_is_asm;
199 /* If hard_regs_live_known is nonzero,
200 we can tell which hard regs are currently live,
201 at least enough to succeed in choosing dummy reloads. */
202 static int hard_regs_live_known;
204 /* Indexed by hard reg number,
205 element is nonnegative if hard reg has been spilled.
206 This vector is passed to `find_reloads' as an argument
207 and is not changed here. */
208 static short *static_reload_reg_p;
210 /* Set to 1 in subst_reg_equivs if it changes anything. */
211 static int subst_reg_equivs_changed;
213 /* On return from push_reload, holds the reload-number for the OUT
214 operand, which can be different for that from the input operand. */
215 static int output_reloadnum;
217 /* Compare two RTX's. */
218 #define MATCHES(x, y) \
219 (x == y || (x != 0 && (REG_P (x) \
220 ? REG_P (y) && REGNO (x) == REGNO (y) \
221 : rtx_equal_p (x, y) && ! side_effects_p (x))))
223 /* Indicates if two reloads purposes are for similar enough things that we
224 can merge their reloads. */
225 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
226 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
227 || ((when1) == (when2) && (op1) == (op2)) \
228 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
229 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
230 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
231 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
232 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
234 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
235 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
236 ((when1) != (when2) \
237 || ! ((op1) == (op2) \
238 || (when1) == RELOAD_FOR_INPUT \
239 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
240 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
242 /* If we are going to reload an address, compute the reload type to
243 use. */
244 #define ADDR_TYPE(type) \
245 ((type) == RELOAD_FOR_INPUT_ADDRESS \
246 ? RELOAD_FOR_INPADDR_ADDRESS \
247 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
248 ? RELOAD_FOR_OUTADDR_ADDRESS \
249 : (type)))
251 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
252 enum machine_mode, enum reload_type,
253 enum insn_code *, secondary_reload_info *);
254 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
255 int, unsigned int);
256 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
257 static void push_replacement (rtx *, int, enum machine_mode);
258 static void dup_replacements (rtx *, rtx *);
259 static void combine_reloads (void);
260 static int find_reusable_reload (rtx *, rtx, enum reg_class,
261 enum reload_type, int, int);
262 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
263 enum machine_mode, enum reg_class, int, int);
264 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
265 static struct decomposition decompose (rtx);
266 static int immune_p (rtx, rtx, struct decomposition);
267 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
268 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
269 int *);
270 static rtx make_memloc (rtx, int);
271 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
272 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
273 int, enum reload_type, int, rtx);
274 static rtx subst_reg_equivs (rtx, rtx);
275 static rtx subst_indexed_address (rtx);
276 static void update_auto_inc_notes (rtx, int, int);
277 static int find_reloads_address_1 (enum machine_mode, rtx, int,
278 enum rtx_code, enum rtx_code, rtx *,
279 int, enum reload_type,int, rtx);
280 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
281 enum machine_mode, int,
282 enum reload_type, int);
283 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
284 int, rtx);
285 static void copy_replacements_1 (rtx *, rtx *, int);
286 static int find_inc_amount (rtx, rtx);
287 static int refers_to_mem_for_reload_p (rtx);
288 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
289 rtx, rtx *);
291 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
292 list yet. */
294 static void
295 push_reg_equiv_alt_mem (int regno, rtx mem)
297 rtx it;
299 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
300 if (rtx_equal_p (XEXP (it, 0), mem))
301 return;
303 reg_equiv_alt_mem_list [regno]
304 = alloc_EXPR_LIST (REG_EQUIV, mem,
305 reg_equiv_alt_mem_list [regno]);
308 /* Determine if any secondary reloads are needed for loading (if IN_P is
309 nonzero) or storing (if IN_P is zero) X to or from a reload register of
310 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
311 are needed, push them.
313 Return the reload number of the secondary reload we made, or -1 if
314 we didn't need one. *PICODE is set to the insn_code to use if we do
315 need a secondary reload. */
317 static int
318 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
319 enum reg_class reload_class,
320 enum machine_mode reload_mode, enum reload_type type,
321 enum insn_code *picode, secondary_reload_info *prev_sri)
323 enum reg_class rclass = NO_REGS;
324 enum reg_class scratch_class;
325 enum machine_mode mode = reload_mode;
326 enum insn_code icode = CODE_FOR_nothing;
327 enum insn_code t_icode = CODE_FOR_nothing;
328 enum reload_type secondary_type;
329 int s_reload, t_reload = -1;
330 const char *scratch_constraint;
331 char letter;
332 secondary_reload_info sri;
334 if (type == RELOAD_FOR_INPUT_ADDRESS
335 || type == RELOAD_FOR_OUTPUT_ADDRESS
336 || type == RELOAD_FOR_INPADDR_ADDRESS
337 || type == RELOAD_FOR_OUTADDR_ADDRESS)
338 secondary_type = type;
339 else
340 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
342 *picode = CODE_FOR_nothing;
344 /* If X is a paradoxical SUBREG, use the inner value to determine both the
345 mode and object being reloaded. */
346 if (GET_CODE (x) == SUBREG
347 && (GET_MODE_SIZE (GET_MODE (x))
348 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
350 x = SUBREG_REG (x);
351 reload_mode = GET_MODE (x);
354 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
355 is still a pseudo-register by now, it *must* have an equivalent MEM
356 but we don't want to assume that), use that equivalent when seeing if
357 a secondary reload is needed since whether or not a reload is needed
358 might be sensitive to the form of the MEM. */
360 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
361 && reg_equiv_mem[REGNO (x)] != 0)
362 x = reg_equiv_mem[REGNO (x)];
364 sri.icode = CODE_FOR_nothing;
365 sri.prev_sri = prev_sri;
366 rclass = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
367 icode = (enum insn_code) sri.icode;
369 /* If we don't need any secondary registers, done. */
370 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
371 return -1;
373 if (rclass != NO_REGS)
374 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
375 reload_mode, type, &t_icode, &sri);
377 /* If we will be using an insn, the secondary reload is for a
378 scratch register. */
380 if (icode != CODE_FOR_nothing)
382 /* If IN_P is nonzero, the reload register will be the output in
383 operand 0. If IN_P is zero, the reload register will be the input
384 in operand 1. Outputs should have an initial "=", which we must
385 skip. */
387 /* ??? It would be useful to be able to handle only two, or more than
388 three, operands, but for now we can only handle the case of having
389 exactly three: output, input and one temp/scratch. */
390 gcc_assert (insn_data[(int) icode].n_operands == 3);
392 /* ??? We currently have no way to represent a reload that needs
393 an icode to reload from an intermediate tertiary reload register.
394 We should probably have a new field in struct reload to tag a
395 chain of scratch operand reloads onto. */
396 gcc_assert (rclass == NO_REGS);
398 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
399 gcc_assert (*scratch_constraint == '=');
400 scratch_constraint++;
401 if (*scratch_constraint == '&')
402 scratch_constraint++;
403 letter = *scratch_constraint;
404 scratch_class = (letter == 'r' ? GENERAL_REGS
405 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
406 scratch_constraint));
408 rclass = scratch_class;
409 mode = insn_data[(int) icode].operand[2].mode;
412 /* This case isn't valid, so fail. Reload is allowed to use the same
413 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
414 in the case of a secondary register, we actually need two different
415 registers for correct code. We fail here to prevent the possibility of
416 silently generating incorrect code later.
418 The convention is that secondary input reloads are valid only if the
419 secondary_class is different from class. If you have such a case, you
420 can not use secondary reloads, you must work around the problem some
421 other way.
423 Allow this when a reload_in/out pattern is being used. I.e. assume
424 that the generated code handles this case. */
426 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
427 || t_icode != CODE_FOR_nothing);
429 /* See if we can reuse an existing secondary reload. */
430 for (s_reload = 0; s_reload < n_reloads; s_reload++)
431 if (rld[s_reload].secondary_p
432 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
433 || reg_class_subset_p (rld[s_reload].rclass, rclass))
434 && ((in_p && rld[s_reload].inmode == mode)
435 || (! in_p && rld[s_reload].outmode == mode))
436 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
437 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
438 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
439 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
440 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
441 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
442 opnum, rld[s_reload].opnum))
444 if (in_p)
445 rld[s_reload].inmode = mode;
446 if (! in_p)
447 rld[s_reload].outmode = mode;
449 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
450 rld[s_reload].rclass = rclass;
452 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
453 rld[s_reload].optional &= optional;
454 rld[s_reload].secondary_p = 1;
455 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
456 opnum, rld[s_reload].opnum))
457 rld[s_reload].when_needed = RELOAD_OTHER;
459 break;
462 if (s_reload == n_reloads)
464 #ifdef SECONDARY_MEMORY_NEEDED
465 /* If we need a memory location to copy between the two reload regs,
466 set it up now. Note that we do the input case before making
467 the reload and the output case after. This is due to the
468 way reloads are output. */
470 if (in_p && icode == CODE_FOR_nothing
471 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
473 get_secondary_mem (x, reload_mode, opnum, type);
475 /* We may have just added new reloads. Make sure we add
476 the new reload at the end. */
477 s_reload = n_reloads;
479 #endif
481 /* We need to make a new secondary reload for this register class. */
482 rld[s_reload].in = rld[s_reload].out = 0;
483 rld[s_reload].rclass = rclass;
485 rld[s_reload].inmode = in_p ? mode : VOIDmode;
486 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
487 rld[s_reload].reg_rtx = 0;
488 rld[s_reload].optional = optional;
489 rld[s_reload].inc = 0;
490 /* Maybe we could combine these, but it seems too tricky. */
491 rld[s_reload].nocombine = 1;
492 rld[s_reload].in_reg = 0;
493 rld[s_reload].out_reg = 0;
494 rld[s_reload].opnum = opnum;
495 rld[s_reload].when_needed = secondary_type;
496 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
497 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
498 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
499 rld[s_reload].secondary_out_icode
500 = ! in_p ? t_icode : CODE_FOR_nothing;
501 rld[s_reload].secondary_p = 1;
503 n_reloads++;
505 #ifdef SECONDARY_MEMORY_NEEDED
506 if (! in_p && icode == CODE_FOR_nothing
507 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
508 get_secondary_mem (x, mode, opnum, type);
509 #endif
512 *picode = icode;
513 return s_reload;
516 /* If a secondary reload is needed, return its class. If both an intermediate
517 register and a scratch register is needed, we return the class of the
518 intermediate register. */
519 enum reg_class
520 secondary_reload_class (bool in_p, enum reg_class rclass,
521 enum machine_mode mode, rtx x)
523 enum insn_code icode;
524 secondary_reload_info sri;
526 sri.icode = CODE_FOR_nothing;
527 sri.prev_sri = NULL;
528 rclass = targetm.secondary_reload (in_p, x, rclass, mode, &sri);
529 icode = (enum insn_code) sri.icode;
531 /* If there are no secondary reloads at all, we return NO_REGS.
532 If an intermediate register is needed, we return its class. */
533 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
534 return rclass;
536 /* No intermediate register is needed, but we have a special reload
537 pattern, which we assume for now needs a scratch register. */
538 return scratch_reload_class (icode);
541 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
542 three operands, verify that operand 2 is an output operand, and return
543 its register class.
544 ??? We'd like to be able to handle any pattern with at least 2 operands,
545 for zero or more scratch registers, but that needs more infrastructure. */
546 enum reg_class
547 scratch_reload_class (enum insn_code icode)
549 const char *scratch_constraint;
550 char scratch_letter;
551 enum reg_class rclass;
553 gcc_assert (insn_data[(int) icode].n_operands == 3);
554 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
555 gcc_assert (*scratch_constraint == '=');
556 scratch_constraint++;
557 if (*scratch_constraint == '&')
558 scratch_constraint++;
559 scratch_letter = *scratch_constraint;
560 if (scratch_letter == 'r')
561 return GENERAL_REGS;
562 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
563 scratch_constraint);
564 gcc_assert (rclass != NO_REGS);
565 return rclass;
568 #ifdef SECONDARY_MEMORY_NEEDED
570 /* Return a memory location that will be used to copy X in mode MODE.
571 If we haven't already made a location for this mode in this insn,
572 call find_reloads_address on the location being returned. */
575 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
576 int opnum, enum reload_type type)
578 rtx loc;
579 int mem_valid;
581 /* By default, if MODE is narrower than a word, widen it to a word.
582 This is required because most machines that require these memory
583 locations do not support short load and stores from all registers
584 (e.g., FP registers). */
586 #ifdef SECONDARY_MEMORY_NEEDED_MODE
587 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
588 #else
589 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
590 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
591 #endif
593 /* If we already have made a MEM for this operand in MODE, return it. */
594 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
595 return secondary_memlocs_elim[(int) mode][opnum];
597 /* If this is the first time we've tried to get a MEM for this mode,
598 allocate a new one. `something_changed' in reload will get set
599 by noticing that the frame size has changed. */
601 if (secondary_memlocs[(int) mode] == 0)
603 #ifdef SECONDARY_MEMORY_NEEDED_RTX
604 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
605 #else
606 secondary_memlocs[(int) mode]
607 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
608 #endif
611 /* Get a version of the address doing any eliminations needed. If that
612 didn't give us a new MEM, make a new one if it isn't valid. */
614 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
615 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
617 if (! mem_valid && loc == secondary_memlocs[(int) mode])
618 loc = copy_rtx (loc);
620 /* The only time the call below will do anything is if the stack
621 offset is too large. In that case IND_LEVELS doesn't matter, so we
622 can just pass a zero. Adjust the type to be the address of the
623 corresponding object. If the address was valid, save the eliminated
624 address. If it wasn't valid, we need to make a reload each time, so
625 don't save it. */
627 if (! mem_valid)
629 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
630 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
631 : RELOAD_OTHER);
633 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
634 opnum, type, 0, 0);
637 secondary_memlocs_elim[(int) mode][opnum] = loc;
638 if (secondary_memlocs_elim_used <= (int)mode)
639 secondary_memlocs_elim_used = (int)mode + 1;
640 return loc;
643 /* Clear any secondary memory locations we've made. */
645 void
646 clear_secondary_mem (void)
648 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
650 #endif /* SECONDARY_MEMORY_NEEDED */
653 /* Find the largest class which has at least one register valid in
654 mode INNER, and which for every such register, that register number
655 plus N is also valid in OUTER (if in range) and is cheap to move
656 into REGNO. Such a class must exist. */
658 static enum reg_class
659 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
660 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
661 unsigned int dest_regno ATTRIBUTE_UNUSED)
663 int best_cost = -1;
664 int rclass;
665 int regno;
666 enum reg_class best_class = NO_REGS;
667 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
668 unsigned int best_size = 0;
669 int cost;
671 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
673 int bad = 0;
674 int good = 0;
675 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
676 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
678 if (HARD_REGNO_MODE_OK (regno, inner))
680 good = 1;
681 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
682 || ! HARD_REGNO_MODE_OK (regno + n, outer))
683 bad = 1;
687 if (bad || !good)
688 continue;
689 cost = REGISTER_MOVE_COST (outer, (enum reg_class) rclass, dest_class);
691 if ((reg_class_size[rclass] > best_size
692 && (best_cost < 0 || best_cost >= cost))
693 || best_cost > cost)
695 best_class = (enum reg_class) rclass;
696 best_size = reg_class_size[rclass];
697 best_cost = REGISTER_MOVE_COST (outer, (enum reg_class) rclass,
698 dest_class);
702 gcc_assert (best_size != 0);
704 return best_class;
707 /* Return the number of a previously made reload that can be combined with
708 a new one, or n_reloads if none of the existing reloads can be used.
709 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
710 push_reload, they determine the kind of the new reload that we try to
711 combine. P_IN points to the corresponding value of IN, which can be
712 modified by this function.
713 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
715 static int
716 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
717 enum reload_type type, int opnum, int dont_share)
719 rtx in = *p_in;
720 int i;
721 /* We can't merge two reloads if the output of either one is
722 earlyclobbered. */
724 if (earlyclobber_operand_p (out))
725 return n_reloads;
727 /* We can use an existing reload if the class is right
728 and at least one of IN and OUT is a match
729 and the other is at worst neutral.
730 (A zero compared against anything is neutral.)
732 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
733 for the same thing since that can cause us to need more reload registers
734 than we otherwise would. */
736 for (i = 0; i < n_reloads; i++)
737 if ((reg_class_subset_p (rclass, rld[i].rclass)
738 || reg_class_subset_p (rld[i].rclass, rclass))
739 /* If the existing reload has a register, it must fit our class. */
740 && (rld[i].reg_rtx == 0
741 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
742 true_regnum (rld[i].reg_rtx)))
743 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
744 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
745 || (out != 0 && MATCHES (rld[i].out, out)
746 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
747 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
748 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
749 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
750 return i;
752 /* Reloading a plain reg for input can match a reload to postincrement
753 that reg, since the postincrement's value is the right value.
754 Likewise, it can match a preincrement reload, since we regard
755 the preincrementation as happening before any ref in this insn
756 to that register. */
757 for (i = 0; i < n_reloads; i++)
758 if ((reg_class_subset_p (rclass, rld[i].rclass)
759 || reg_class_subset_p (rld[i].rclass, rclass))
760 /* If the existing reload has a register, it must fit our
761 class. */
762 && (rld[i].reg_rtx == 0
763 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
764 true_regnum (rld[i].reg_rtx)))
765 && out == 0 && rld[i].out == 0 && rld[i].in != 0
766 && ((REG_P (in)
767 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
768 && MATCHES (XEXP (rld[i].in, 0), in))
769 || (REG_P (rld[i].in)
770 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
771 && MATCHES (XEXP (in, 0), rld[i].in)))
772 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
773 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
774 && MERGABLE_RELOADS (type, rld[i].when_needed,
775 opnum, rld[i].opnum))
777 /* Make sure reload_in ultimately has the increment,
778 not the plain register. */
779 if (REG_P (in))
780 *p_in = rld[i].in;
781 return i;
783 return n_reloads;
786 /* Return nonzero if X is a SUBREG which will require reloading of its
787 SUBREG_REG expression. */
789 static int
790 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
792 rtx inner;
794 /* Only SUBREGs are problematical. */
795 if (GET_CODE (x) != SUBREG)
796 return 0;
798 inner = SUBREG_REG (x);
800 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
801 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
802 return 1;
804 /* If INNER is not a hard register, then INNER will not need to
805 be reloaded. */
806 if (!REG_P (inner)
807 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
808 return 0;
810 /* If INNER is not ok for MODE, then INNER will need reloading. */
811 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
812 return 1;
814 /* If the outer part is a word or smaller, INNER larger than a
815 word and the number of regs for INNER is not the same as the
816 number of words in INNER, then INNER will need reloading. */
817 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
818 && output
819 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
820 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
821 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
824 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
825 requiring an extra reload register. The caller has already found that
826 IN contains some reference to REGNO, so check that we can produce the
827 new value in a single step. E.g. if we have
828 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
829 instruction that adds one to a register, this should succeed.
830 However, if we have something like
831 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
832 needs to be loaded into a register first, we need a separate reload
833 register.
834 Such PLUS reloads are generated by find_reload_address_part.
835 The out-of-range PLUS expressions are usually introduced in the instruction
836 patterns by register elimination and substituting pseudos without a home
837 by their function-invariant equivalences. */
838 static int
839 can_reload_into (rtx in, int regno, enum machine_mode mode)
841 rtx dst, test_insn;
842 int r = 0;
843 struct recog_data save_recog_data;
845 /* For matching constraints, we often get notional input reloads where
846 we want to use the original register as the reload register. I.e.
847 technically this is a non-optional input-output reload, but IN is
848 already a valid register, and has been chosen as the reload register.
849 Speed this up, since it trivially works. */
850 if (REG_P (in))
851 return 1;
853 /* To test MEMs properly, we'd have to take into account all the reloads
854 that are already scheduled, which can become quite complicated.
855 And since we've already handled address reloads for this MEM, it
856 should always succeed anyway. */
857 if (MEM_P (in))
858 return 1;
860 /* If we can make a simple SET insn that does the job, everything should
861 be fine. */
862 dst = gen_rtx_REG (mode, regno);
863 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
864 save_recog_data = recog_data;
865 if (recog_memoized (test_insn) >= 0)
867 extract_insn (test_insn);
868 r = constrain_operands (1);
870 recog_data = save_recog_data;
871 return r;
874 /* Record one reload that needs to be performed.
875 IN is an rtx saying where the data are to be found before this instruction.
876 OUT says where they must be stored after the instruction.
877 (IN is zero for data not read, and OUT is zero for data not written.)
878 INLOC and OUTLOC point to the places in the instructions where
879 IN and OUT were found.
880 If IN and OUT are both nonzero, it means the same register must be used
881 to reload both IN and OUT.
883 RCLASS is a register class required for the reloaded data.
884 INMODE is the machine mode that the instruction requires
885 for the reg that replaces IN and OUTMODE is likewise for OUT.
887 If IN is zero, then OUT's location and mode should be passed as
888 INLOC and INMODE.
890 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
892 OPTIONAL nonzero means this reload does not need to be performed:
893 it can be discarded if that is more convenient.
895 OPNUM and TYPE say what the purpose of this reload is.
897 The return value is the reload-number for this reload.
899 If both IN and OUT are nonzero, in some rare cases we might
900 want to make two separate reloads. (Actually we never do this now.)
901 Therefore, the reload-number for OUT is stored in
902 output_reloadnum when we return; the return value applies to IN.
903 Usually (presently always), when IN and OUT are nonzero,
904 the two reload-numbers are equal, but the caller should be careful to
905 distinguish them. */
908 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
909 enum reg_class rclass, enum machine_mode inmode,
910 enum machine_mode outmode, int strict_low, int optional,
911 int opnum, enum reload_type type)
913 int i;
914 int dont_share = 0;
915 int dont_remove_subreg = 0;
916 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
917 int secondary_in_reload = -1, secondary_out_reload = -1;
918 enum insn_code secondary_in_icode = CODE_FOR_nothing;
919 enum insn_code secondary_out_icode = CODE_FOR_nothing;
921 /* INMODE and/or OUTMODE could be VOIDmode if no mode
922 has been specified for the operand. In that case,
923 use the operand's mode as the mode to reload. */
924 if (inmode == VOIDmode && in != 0)
925 inmode = GET_MODE (in);
926 if (outmode == VOIDmode && out != 0)
927 outmode = GET_MODE (out);
929 /* If find_reloads and friends until now missed to replace a pseudo
930 with a constant of reg_equiv_constant something went wrong
931 beforehand.
932 Note that it can't simply be done here if we missed it earlier
933 since the constant might need to be pushed into the literal pool
934 and the resulting memref would probably need further
935 reloading. */
936 if (in != 0 && REG_P (in))
938 int regno = REGNO (in);
940 gcc_assert (regno < FIRST_PSEUDO_REGISTER
941 || reg_renumber[regno] >= 0
942 || reg_equiv_constant[regno] == NULL_RTX);
945 /* reg_equiv_constant only contains constants which are obviously
946 not appropriate as destination. So if we would need to replace
947 the destination pseudo with a constant we are in real
948 trouble. */
949 if (out != 0 && REG_P (out))
951 int regno = REGNO (out);
953 gcc_assert (regno < FIRST_PSEUDO_REGISTER
954 || reg_renumber[regno] >= 0
955 || reg_equiv_constant[regno] == NULL_RTX);
958 /* If we have a read-write operand with an address side-effect,
959 change either IN or OUT so the side-effect happens only once. */
960 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
961 switch (GET_CODE (XEXP (in, 0)))
963 case POST_INC: case POST_DEC: case POST_MODIFY:
964 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
965 break;
967 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
968 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
969 break;
971 default:
972 break;
975 /* If we are reloading a (SUBREG constant ...), really reload just the
976 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
977 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
978 a pseudo and hence will become a MEM) with M1 wider than M2 and the
979 register is a pseudo, also reload the inside expression.
980 For machines that extend byte loads, do this for any SUBREG of a pseudo
981 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
982 M2 is an integral mode that gets extended when loaded.
983 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
984 either M1 is not valid for R or M2 is wider than a word but we only
985 need one word to store an M2-sized quantity in R.
986 (However, if OUT is nonzero, we need to reload the reg *and*
987 the subreg, so do nothing here, and let following statement handle it.)
989 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
990 we can't handle it here because CONST_INT does not indicate a mode.
992 Similarly, we must reload the inside expression if we have a
993 STRICT_LOW_PART (presumably, in == out in this case).
995 Also reload the inner expression if it does not require a secondary
996 reload but the SUBREG does.
998 Finally, reload the inner expression if it is a register that is in
999 the class whose registers cannot be referenced in a different size
1000 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1001 cannot reload just the inside since we might end up with the wrong
1002 register class. But if it is inside a STRICT_LOW_PART, we have
1003 no choice, so we hope we do get the right register class there. */
1005 if (in != 0 && GET_CODE (in) == SUBREG
1006 && (subreg_lowpart_p (in) || strict_low)
1007 #ifdef CANNOT_CHANGE_MODE_CLASS
1008 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1009 #endif
1010 && (CONSTANT_P (SUBREG_REG (in))
1011 || GET_CODE (SUBREG_REG (in)) == PLUS
1012 || strict_low
1013 || (((REG_P (SUBREG_REG (in))
1014 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1015 || MEM_P (SUBREG_REG (in)))
1016 && ((GET_MODE_SIZE (inmode)
1017 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1018 #ifdef LOAD_EXTEND_OP
1019 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1020 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1021 <= UNITS_PER_WORD)
1022 && (GET_MODE_SIZE (inmode)
1023 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1024 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1025 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1026 #endif
1027 #ifdef WORD_REGISTER_OPERATIONS
1028 || ((GET_MODE_SIZE (inmode)
1029 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1030 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1031 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1032 / UNITS_PER_WORD)))
1033 #endif
1035 || (REG_P (SUBREG_REG (in))
1036 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1037 /* The case where out is nonzero
1038 is handled differently in the following statement. */
1039 && (out == 0 || subreg_lowpart_p (in))
1040 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1041 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1042 > UNITS_PER_WORD)
1043 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1044 / UNITS_PER_WORD)
1045 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1046 [GET_MODE (SUBREG_REG (in))]))
1047 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1048 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1049 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1050 SUBREG_REG (in))
1051 == NO_REGS))
1052 #ifdef CANNOT_CHANGE_MODE_CLASS
1053 || (REG_P (SUBREG_REG (in))
1054 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1055 && REG_CANNOT_CHANGE_MODE_P
1056 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1057 #endif
1060 in_subreg_loc = inloc;
1061 inloc = &SUBREG_REG (in);
1062 in = *inloc;
1063 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1064 if (MEM_P (in))
1065 /* This is supposed to happen only for paradoxical subregs made by
1066 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1067 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1068 #endif
1069 inmode = GET_MODE (in);
1072 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1073 either M1 is not valid for R or M2 is wider than a word but we only
1074 need one word to store an M2-sized quantity in R.
1076 However, we must reload the inner reg *as well as* the subreg in
1077 that case. */
1079 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1080 code above. This can happen if SUBREG_BYTE != 0. */
1082 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1084 enum reg_class in_class = rclass;
1086 if (REG_P (SUBREG_REG (in)))
1087 in_class
1088 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1089 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1090 GET_MODE (SUBREG_REG (in)),
1091 SUBREG_BYTE (in),
1092 GET_MODE (in)),
1093 REGNO (SUBREG_REG (in)));
1095 /* This relies on the fact that emit_reload_insns outputs the
1096 instructions for input reloads of type RELOAD_OTHER in the same
1097 order as the reloads. Thus if the outer reload is also of type
1098 RELOAD_OTHER, we are guaranteed that this inner reload will be
1099 output before the outer reload. */
1100 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1101 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1102 dont_remove_subreg = 1;
1105 /* Similarly for paradoxical and problematical SUBREGs on the output.
1106 Note that there is no reason we need worry about the previous value
1107 of SUBREG_REG (out); even if wider than out,
1108 storing in a subreg is entitled to clobber it all
1109 (except in the case of STRICT_LOW_PART,
1110 and in that case the constraint should label it input-output.) */
1111 if (out != 0 && GET_CODE (out) == SUBREG
1112 && (subreg_lowpart_p (out) || strict_low)
1113 #ifdef CANNOT_CHANGE_MODE_CLASS
1114 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1115 #endif
1116 && (CONSTANT_P (SUBREG_REG (out))
1117 || strict_low
1118 || (((REG_P (SUBREG_REG (out))
1119 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1120 || MEM_P (SUBREG_REG (out)))
1121 && ((GET_MODE_SIZE (outmode)
1122 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1123 #ifdef WORD_REGISTER_OPERATIONS
1124 || ((GET_MODE_SIZE (outmode)
1125 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1126 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1127 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1128 / UNITS_PER_WORD)))
1129 #endif
1131 || (REG_P (SUBREG_REG (out))
1132 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1133 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1134 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1135 > UNITS_PER_WORD)
1136 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1137 / UNITS_PER_WORD)
1138 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1139 [GET_MODE (SUBREG_REG (out))]))
1140 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1141 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1142 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1143 SUBREG_REG (out))
1144 == NO_REGS))
1145 #ifdef CANNOT_CHANGE_MODE_CLASS
1146 || (REG_P (SUBREG_REG (out))
1147 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1148 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1149 GET_MODE (SUBREG_REG (out)),
1150 outmode))
1151 #endif
1154 out_subreg_loc = outloc;
1155 outloc = &SUBREG_REG (out);
1156 out = *outloc;
1157 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1158 gcc_assert (!MEM_P (out)
1159 || GET_MODE_SIZE (GET_MODE (out))
1160 <= GET_MODE_SIZE (outmode));
1161 #endif
1162 outmode = GET_MODE (out);
1165 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1166 either M1 is not valid for R or M2 is wider than a word but we only
1167 need one word to store an M2-sized quantity in R.
1169 However, we must reload the inner reg *as well as* the subreg in
1170 that case. In this case, the inner reg is an in-out reload. */
1172 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1174 /* This relies on the fact that emit_reload_insns outputs the
1175 instructions for output reloads of type RELOAD_OTHER in reverse
1176 order of the reloads. Thus if the outer reload is also of type
1177 RELOAD_OTHER, we are guaranteed that this inner reload will be
1178 output after the outer reload. */
1179 dont_remove_subreg = 1;
1180 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1181 &SUBREG_REG (out),
1182 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1183 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1184 GET_MODE (SUBREG_REG (out)),
1185 SUBREG_BYTE (out),
1186 GET_MODE (out)),
1187 REGNO (SUBREG_REG (out))),
1188 VOIDmode, VOIDmode, 0, 0,
1189 opnum, RELOAD_OTHER);
1192 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1193 if (in != 0 && out != 0 && MEM_P (out)
1194 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1195 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1196 dont_share = 1;
1198 /* If IN is a SUBREG of a hard register, make a new REG. This
1199 simplifies some of the cases below. */
1201 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1202 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1203 && ! dont_remove_subreg)
1204 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1206 /* Similarly for OUT. */
1207 if (out != 0 && GET_CODE (out) == SUBREG
1208 && REG_P (SUBREG_REG (out))
1209 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1210 && ! dont_remove_subreg)
1211 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1213 /* Narrow down the class of register wanted if that is
1214 desirable on this machine for efficiency. */
1216 enum reg_class preferred_class = rclass;
1218 if (in != 0)
1219 preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1221 /* Output reloads may need analogous treatment, different in detail. */
1222 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1223 if (out != 0)
1224 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1225 #endif
1227 /* Discard what the target said if we cannot do it. */
1228 if (preferred_class != NO_REGS
1229 || (optional && type == RELOAD_FOR_OUTPUT))
1230 rclass = preferred_class;
1233 /* Make sure we use a class that can handle the actual pseudo
1234 inside any subreg. For example, on the 386, QImode regs
1235 can appear within SImode subregs. Although GENERAL_REGS
1236 can handle SImode, QImode needs a smaller class. */
1237 #ifdef LIMIT_RELOAD_CLASS
1238 if (in_subreg_loc)
1239 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1240 else if (in != 0 && GET_CODE (in) == SUBREG)
1241 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1243 if (out_subreg_loc)
1244 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1245 if (out != 0 && GET_CODE (out) == SUBREG)
1246 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1247 #endif
1249 /* Verify that this class is at least possible for the mode that
1250 is specified. */
1251 if (this_insn_is_asm)
1253 enum machine_mode mode;
1254 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1255 mode = inmode;
1256 else
1257 mode = outmode;
1258 if (mode == VOIDmode)
1260 error_for_asm (this_insn, "cannot reload integer constant "
1261 "operand in %<asm%>");
1262 mode = word_mode;
1263 if (in != 0)
1264 inmode = word_mode;
1265 if (out != 0)
1266 outmode = word_mode;
1268 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1269 if (HARD_REGNO_MODE_OK (i, mode)
1270 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1271 break;
1272 if (i == FIRST_PSEUDO_REGISTER)
1274 error_for_asm (this_insn, "impossible register constraint "
1275 "in %<asm%>");
1276 /* Avoid further trouble with this insn. */
1277 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1278 /* We used to continue here setting class to ALL_REGS, but it triggers
1279 sanity check on i386 for:
1280 void foo(long double d)
1282 asm("" :: "a" (d));
1284 Returning zero here ought to be safe as we take care in
1285 find_reloads to not process the reloads when instruction was
1286 replaced by USE. */
1288 return 0;
1292 /* Optional output reloads are always OK even if we have no register class,
1293 since the function of these reloads is only to have spill_reg_store etc.
1294 set, so that the storing insn can be deleted later. */
1295 gcc_assert (rclass != NO_REGS
1296 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1298 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1300 if (i == n_reloads)
1302 /* See if we need a secondary reload register to move between CLASS
1303 and IN or CLASS and OUT. Get the icode and push any required reloads
1304 needed for each of them if so. */
1306 if (in != 0)
1307 secondary_in_reload
1308 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1309 &secondary_in_icode, NULL);
1310 if (out != 0 && GET_CODE (out) != SCRATCH)
1311 secondary_out_reload
1312 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1313 type, &secondary_out_icode, NULL);
1315 /* We found no existing reload suitable for re-use.
1316 So add an additional reload. */
1318 #ifdef SECONDARY_MEMORY_NEEDED
1319 /* If a memory location is needed for the copy, make one. */
1320 if (in != 0
1321 && (REG_P (in)
1322 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1323 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1324 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1325 rclass, inmode))
1326 get_secondary_mem (in, inmode, opnum, type);
1327 #endif
1329 i = n_reloads;
1330 rld[i].in = in;
1331 rld[i].out = out;
1332 rld[i].rclass = rclass;
1333 rld[i].inmode = inmode;
1334 rld[i].outmode = outmode;
1335 rld[i].reg_rtx = 0;
1336 rld[i].optional = optional;
1337 rld[i].inc = 0;
1338 rld[i].nocombine = 0;
1339 rld[i].in_reg = inloc ? *inloc : 0;
1340 rld[i].out_reg = outloc ? *outloc : 0;
1341 rld[i].opnum = opnum;
1342 rld[i].when_needed = type;
1343 rld[i].secondary_in_reload = secondary_in_reload;
1344 rld[i].secondary_out_reload = secondary_out_reload;
1345 rld[i].secondary_in_icode = secondary_in_icode;
1346 rld[i].secondary_out_icode = secondary_out_icode;
1347 rld[i].secondary_p = 0;
1349 n_reloads++;
1351 #ifdef SECONDARY_MEMORY_NEEDED
1352 if (out != 0
1353 && (REG_P (out)
1354 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1355 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1356 && SECONDARY_MEMORY_NEEDED (rclass,
1357 REGNO_REG_CLASS (reg_or_subregno (out)),
1358 outmode))
1359 get_secondary_mem (out, outmode, opnum, type);
1360 #endif
1362 else
1364 /* We are reusing an existing reload,
1365 but we may have additional information for it.
1366 For example, we may now have both IN and OUT
1367 while the old one may have just one of them. */
1369 /* The modes can be different. If they are, we want to reload in
1370 the larger mode, so that the value is valid for both modes. */
1371 if (inmode != VOIDmode
1372 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1373 rld[i].inmode = inmode;
1374 if (outmode != VOIDmode
1375 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1376 rld[i].outmode = outmode;
1377 if (in != 0)
1379 rtx in_reg = inloc ? *inloc : 0;
1380 /* If we merge reloads for two distinct rtl expressions that
1381 are identical in content, there might be duplicate address
1382 reloads. Remove the extra set now, so that if we later find
1383 that we can inherit this reload, we can get rid of the
1384 address reloads altogether.
1386 Do not do this if both reloads are optional since the result
1387 would be an optional reload which could potentially leave
1388 unresolved address replacements.
1390 It is not sufficient to call transfer_replacements since
1391 choose_reload_regs will remove the replacements for address
1392 reloads of inherited reloads which results in the same
1393 problem. */
1394 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1395 && ! (rld[i].optional && optional))
1397 /* We must keep the address reload with the lower operand
1398 number alive. */
1399 if (opnum > rld[i].opnum)
1401 remove_address_replacements (in);
1402 in = rld[i].in;
1403 in_reg = rld[i].in_reg;
1405 else
1406 remove_address_replacements (rld[i].in);
1408 /* When emitting reloads we don't necessarily look at the in-
1409 and outmode, but also directly at the operands (in and out).
1410 So we can't simply overwrite them with whatever we have found
1411 for this (to-be-merged) reload, we have to "merge" that too.
1412 Reusing another reload already verified that we deal with the
1413 same operands, just possibly in different modes. So we
1414 overwrite the operands only when the new mode is larger.
1415 See also PR33613. */
1416 if (!rld[i].in
1417 || GET_MODE_SIZE (GET_MODE (in))
1418 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1419 rld[i].in = in;
1420 if (!rld[i].in_reg
1421 || (in_reg
1422 && GET_MODE_SIZE (GET_MODE (in_reg))
1423 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1424 rld[i].in_reg = in_reg;
1426 if (out != 0)
1428 if (!rld[i].out
1429 || (out
1430 && GET_MODE_SIZE (GET_MODE (out))
1431 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1432 rld[i].out = out;
1433 if (outloc
1434 && (!rld[i].out_reg
1435 || GET_MODE_SIZE (GET_MODE (*outloc))
1436 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1437 rld[i].out_reg = *outloc;
1439 if (reg_class_subset_p (rclass, rld[i].rclass))
1440 rld[i].rclass = rclass;
1441 rld[i].optional &= optional;
1442 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1443 opnum, rld[i].opnum))
1444 rld[i].when_needed = RELOAD_OTHER;
1445 rld[i].opnum = MIN (rld[i].opnum, opnum);
1448 /* If the ostensible rtx being reloaded differs from the rtx found
1449 in the location to substitute, this reload is not safe to combine
1450 because we cannot reliably tell whether it appears in the insn. */
1452 if (in != 0 && in != *inloc)
1453 rld[i].nocombine = 1;
1455 #if 0
1456 /* This was replaced by changes in find_reloads_address_1 and the new
1457 function inc_for_reload, which go with a new meaning of reload_inc. */
1459 /* If this is an IN/OUT reload in an insn that sets the CC,
1460 it must be for an autoincrement. It doesn't work to store
1461 the incremented value after the insn because that would clobber the CC.
1462 So we must do the increment of the value reloaded from,
1463 increment it, store it back, then decrement again. */
1464 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1466 out = 0;
1467 rld[i].out = 0;
1468 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1469 /* If we did not find a nonzero amount-to-increment-by,
1470 that contradicts the belief that IN is being incremented
1471 in an address in this insn. */
1472 gcc_assert (rld[i].inc != 0);
1474 #endif
1476 /* If we will replace IN and OUT with the reload-reg,
1477 record where they are located so that substitution need
1478 not do a tree walk. */
1480 if (replace_reloads)
1482 if (inloc != 0)
1484 struct replacement *r = &replacements[n_replacements++];
1485 r->what = i;
1486 r->subreg_loc = in_subreg_loc;
1487 r->where = inloc;
1488 r->mode = inmode;
1490 if (outloc != 0 && outloc != inloc)
1492 struct replacement *r = &replacements[n_replacements++];
1493 r->what = i;
1494 r->where = outloc;
1495 r->subreg_loc = out_subreg_loc;
1496 r->mode = outmode;
1500 /* If this reload is just being introduced and it has both
1501 an incoming quantity and an outgoing quantity that are
1502 supposed to be made to match, see if either one of the two
1503 can serve as the place to reload into.
1505 If one of them is acceptable, set rld[i].reg_rtx
1506 to that one. */
1508 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1510 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1511 inmode, outmode,
1512 rld[i].rclass, i,
1513 earlyclobber_operand_p (out));
1515 /* If the outgoing register already contains the same value
1516 as the incoming one, we can dispense with loading it.
1517 The easiest way to tell the caller that is to give a phony
1518 value for the incoming operand (same as outgoing one). */
1519 if (rld[i].reg_rtx == out
1520 && (REG_P (in) || CONSTANT_P (in))
1521 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1522 static_reload_reg_p, i, inmode))
1523 rld[i].in = out;
1526 /* If this is an input reload and the operand contains a register that
1527 dies in this insn and is used nowhere else, see if it is the right class
1528 to be used for this reload. Use it if so. (This occurs most commonly
1529 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1530 this if it is also an output reload that mentions the register unless
1531 the output is a SUBREG that clobbers an entire register.
1533 Note that the operand might be one of the spill regs, if it is a
1534 pseudo reg and we are in a block where spilling has not taken place.
1535 But if there is no spilling in this block, that is OK.
1536 An explicitly used hard reg cannot be a spill reg. */
1538 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1540 rtx note;
1541 int regno;
1542 enum machine_mode rel_mode = inmode;
1544 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1545 rel_mode = outmode;
1547 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1548 if (REG_NOTE_KIND (note) == REG_DEAD
1549 && REG_P (XEXP (note, 0))
1550 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1551 && reg_mentioned_p (XEXP (note, 0), in)
1552 /* Check that a former pseudo is valid; see find_dummy_reload. */
1553 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1554 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1555 ORIGINAL_REGNO (XEXP (note, 0)))
1556 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1557 && ! refers_to_regno_for_reload_p (regno,
1558 end_hard_regno (rel_mode,
1559 regno),
1560 PATTERN (this_insn), inloc)
1561 /* If this is also an output reload, IN cannot be used as
1562 the reload register if it is set in this insn unless IN
1563 is also OUT. */
1564 && (out == 0 || in == out
1565 || ! hard_reg_set_here_p (regno,
1566 end_hard_regno (rel_mode, regno),
1567 PATTERN (this_insn)))
1568 /* ??? Why is this code so different from the previous?
1569 Is there any simple coherent way to describe the two together?
1570 What's going on here. */
1571 && (in != out
1572 || (GET_CODE (in) == SUBREG
1573 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1574 / UNITS_PER_WORD)
1575 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1576 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1577 /* Make sure the operand fits in the reg that dies. */
1578 && (GET_MODE_SIZE (rel_mode)
1579 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1580 && HARD_REGNO_MODE_OK (regno, inmode)
1581 && HARD_REGNO_MODE_OK (regno, outmode))
1583 unsigned int offs;
1584 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1585 hard_regno_nregs[regno][outmode]);
1587 for (offs = 0; offs < nregs; offs++)
1588 if (fixed_regs[regno + offs]
1589 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1590 regno + offs))
1591 break;
1593 if (offs == nregs
1594 && (! (refers_to_regno_for_reload_p
1595 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1596 || can_reload_into (in, regno, inmode)))
1598 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1599 break;
1604 if (out)
1605 output_reloadnum = i;
1607 return i;
1610 /* Record an additional place we must replace a value
1611 for which we have already recorded a reload.
1612 RELOADNUM is the value returned by push_reload
1613 when the reload was recorded.
1614 This is used in insn patterns that use match_dup. */
1616 static void
1617 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1619 if (replace_reloads)
1621 struct replacement *r = &replacements[n_replacements++];
1622 r->what = reloadnum;
1623 r->where = loc;
1624 r->subreg_loc = 0;
1625 r->mode = mode;
1629 /* Duplicate any replacement we have recorded to apply at
1630 location ORIG_LOC to also be performed at DUP_LOC.
1631 This is used in insn patterns that use match_dup. */
1633 static void
1634 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1636 int i, n = n_replacements;
1638 for (i = 0; i < n; i++)
1640 struct replacement *r = &replacements[i];
1641 if (r->where == orig_loc)
1642 push_replacement (dup_loc, r->what, r->mode);
1646 /* Transfer all replacements that used to be in reload FROM to be in
1647 reload TO. */
1649 void
1650 transfer_replacements (int to, int from)
1652 int i;
1654 for (i = 0; i < n_replacements; i++)
1655 if (replacements[i].what == from)
1656 replacements[i].what = to;
1659 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1660 or a subpart of it. If we have any replacements registered for IN_RTX,
1661 cancel the reloads that were supposed to load them.
1662 Return nonzero if we canceled any reloads. */
1664 remove_address_replacements (rtx in_rtx)
1666 int i, j;
1667 char reload_flags[MAX_RELOADS];
1668 int something_changed = 0;
1670 memset (reload_flags, 0, sizeof reload_flags);
1671 for (i = 0, j = 0; i < n_replacements; i++)
1673 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1674 reload_flags[replacements[i].what] |= 1;
1675 else
1677 replacements[j++] = replacements[i];
1678 reload_flags[replacements[i].what] |= 2;
1681 /* Note that the following store must be done before the recursive calls. */
1682 n_replacements = j;
1684 for (i = n_reloads - 1; i >= 0; i--)
1686 if (reload_flags[i] == 1)
1688 deallocate_reload_reg (i);
1689 remove_address_replacements (rld[i].in);
1690 rld[i].in = 0;
1691 something_changed = 1;
1694 return something_changed;
1697 /* If there is only one output reload, and it is not for an earlyclobber
1698 operand, try to combine it with a (logically unrelated) input reload
1699 to reduce the number of reload registers needed.
1701 This is safe if the input reload does not appear in
1702 the value being output-reloaded, because this implies
1703 it is not needed any more once the original insn completes.
1705 If that doesn't work, see we can use any of the registers that
1706 die in this insn as a reload register. We can if it is of the right
1707 class and does not appear in the value being output-reloaded. */
1709 static void
1710 combine_reloads (void)
1712 int i, regno;
1713 int output_reload = -1;
1714 int secondary_out = -1;
1715 rtx note;
1717 /* Find the output reload; return unless there is exactly one
1718 and that one is mandatory. */
1720 for (i = 0; i < n_reloads; i++)
1721 if (rld[i].out != 0)
1723 if (output_reload >= 0)
1724 return;
1725 output_reload = i;
1728 if (output_reload < 0 || rld[output_reload].optional)
1729 return;
1731 /* An input-output reload isn't combinable. */
1733 if (rld[output_reload].in != 0)
1734 return;
1736 /* If this reload is for an earlyclobber operand, we can't do anything. */
1737 if (earlyclobber_operand_p (rld[output_reload].out))
1738 return;
1740 /* If there is a reload for part of the address of this operand, we would
1741 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1742 its life to the point where doing this combine would not lower the
1743 number of spill registers needed. */
1744 for (i = 0; i < n_reloads; i++)
1745 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1746 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1747 && rld[i].opnum == rld[output_reload].opnum)
1748 return;
1750 /* Check each input reload; can we combine it? */
1752 for (i = 0; i < n_reloads; i++)
1753 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1754 /* Life span of this reload must not extend past main insn. */
1755 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1756 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1757 && rld[i].when_needed != RELOAD_OTHER
1758 && (CLASS_MAX_NREGS (rld[i].rclass, rld[i].inmode)
1759 == CLASS_MAX_NREGS (rld[output_reload].rclass,
1760 rld[output_reload].outmode))
1761 && rld[i].inc == 0
1762 && rld[i].reg_rtx == 0
1763 #ifdef SECONDARY_MEMORY_NEEDED
1764 /* Don't combine two reloads with different secondary
1765 memory locations. */
1766 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1767 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1768 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1769 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1770 #endif
1771 && (SMALL_REGISTER_CLASSES
1772 ? (rld[i].rclass == rld[output_reload].rclass)
1773 : (reg_class_subset_p (rld[i].rclass,
1774 rld[output_reload].rclass)
1775 || reg_class_subset_p (rld[output_reload].rclass,
1776 rld[i].rclass)))
1777 && (MATCHES (rld[i].in, rld[output_reload].out)
1778 /* Args reversed because the first arg seems to be
1779 the one that we imagine being modified
1780 while the second is the one that might be affected. */
1781 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1782 rld[i].in)
1783 /* However, if the input is a register that appears inside
1784 the output, then we also can't share.
1785 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1786 If the same reload reg is used for both reg 69 and the
1787 result to be stored in memory, then that result
1788 will clobber the address of the memory ref. */
1789 && ! (REG_P (rld[i].in)
1790 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1791 rld[output_reload].out))))
1792 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1793 rld[i].when_needed != RELOAD_FOR_INPUT)
1794 && (reg_class_size[(int) rld[i].rclass]
1795 || SMALL_REGISTER_CLASSES)
1796 /* We will allow making things slightly worse by combining an
1797 input and an output, but no worse than that. */
1798 && (rld[i].when_needed == RELOAD_FOR_INPUT
1799 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1801 int j;
1803 /* We have found a reload to combine with! */
1804 rld[i].out = rld[output_reload].out;
1805 rld[i].out_reg = rld[output_reload].out_reg;
1806 rld[i].outmode = rld[output_reload].outmode;
1807 /* Mark the old output reload as inoperative. */
1808 rld[output_reload].out = 0;
1809 /* The combined reload is needed for the entire insn. */
1810 rld[i].when_needed = RELOAD_OTHER;
1811 /* If the output reload had a secondary reload, copy it. */
1812 if (rld[output_reload].secondary_out_reload != -1)
1814 rld[i].secondary_out_reload
1815 = rld[output_reload].secondary_out_reload;
1816 rld[i].secondary_out_icode
1817 = rld[output_reload].secondary_out_icode;
1820 #ifdef SECONDARY_MEMORY_NEEDED
1821 /* Copy any secondary MEM. */
1822 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1823 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1824 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1825 #endif
1826 /* If required, minimize the register class. */
1827 if (reg_class_subset_p (rld[output_reload].rclass,
1828 rld[i].rclass))
1829 rld[i].rclass = rld[output_reload].rclass;
1831 /* Transfer all replacements from the old reload to the combined. */
1832 for (j = 0; j < n_replacements; j++)
1833 if (replacements[j].what == output_reload)
1834 replacements[j].what = i;
1836 return;
1839 /* If this insn has only one operand that is modified or written (assumed
1840 to be the first), it must be the one corresponding to this reload. It
1841 is safe to use anything that dies in this insn for that output provided
1842 that it does not occur in the output (we already know it isn't an
1843 earlyclobber. If this is an asm insn, give up. */
1845 if (INSN_CODE (this_insn) == -1)
1846 return;
1848 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1849 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1850 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1851 return;
1853 /* See if some hard register that dies in this insn and is not used in
1854 the output is the right class. Only works if the register we pick
1855 up can fully hold our output reload. */
1856 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1857 if (REG_NOTE_KIND (note) == REG_DEAD
1858 && REG_P (XEXP (note, 0))
1859 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1860 rld[output_reload].out)
1861 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1862 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1863 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1864 regno)
1865 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1866 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1867 /* Ensure that a secondary or tertiary reload for this output
1868 won't want this register. */
1869 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1870 || (!(TEST_HARD_REG_BIT
1871 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1872 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1873 || !(TEST_HARD_REG_BIT
1874 (reg_class_contents[(int) rld[secondary_out].rclass],
1875 regno)))))
1876 && !fixed_regs[regno]
1877 /* Check that a former pseudo is valid; see find_dummy_reload. */
1878 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1879 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1880 ORIGINAL_REGNO (XEXP (note, 0)))
1881 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1883 rld[output_reload].reg_rtx
1884 = gen_rtx_REG (rld[output_reload].outmode, regno);
1885 return;
1889 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1890 See if one of IN and OUT is a register that may be used;
1891 this is desirable since a spill-register won't be needed.
1892 If so, return the register rtx that proves acceptable.
1894 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1895 RCLASS is the register class required for the reload.
1897 If FOR_REAL is >= 0, it is the number of the reload,
1898 and in some cases when it can be discovered that OUT doesn't need
1899 to be computed, clear out rld[FOR_REAL].out.
1901 If FOR_REAL is -1, this should not be done, because this call
1902 is just to see if a register can be found, not to find and install it.
1904 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1905 puts an additional constraint on being able to use IN for OUT since
1906 IN must not appear elsewhere in the insn (it is assumed that IN itself
1907 is safe from the earlyclobber). */
1909 static rtx
1910 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1911 enum machine_mode inmode, enum machine_mode outmode,
1912 enum reg_class rclass, int for_real, int earlyclobber)
1914 rtx in = real_in;
1915 rtx out = real_out;
1916 int in_offset = 0;
1917 int out_offset = 0;
1918 rtx value = 0;
1920 /* If operands exceed a word, we can't use either of them
1921 unless they have the same size. */
1922 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1923 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1924 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1925 return 0;
1927 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1928 respectively refers to a hard register. */
1930 /* Find the inside of any subregs. */
1931 while (GET_CODE (out) == SUBREG)
1933 if (REG_P (SUBREG_REG (out))
1934 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1935 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1936 GET_MODE (SUBREG_REG (out)),
1937 SUBREG_BYTE (out),
1938 GET_MODE (out));
1939 out = SUBREG_REG (out);
1941 while (GET_CODE (in) == SUBREG)
1943 if (REG_P (SUBREG_REG (in))
1944 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1945 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1946 GET_MODE (SUBREG_REG (in)),
1947 SUBREG_BYTE (in),
1948 GET_MODE (in));
1949 in = SUBREG_REG (in);
1952 /* Narrow down the reg class, the same way push_reload will;
1953 otherwise we might find a dummy now, but push_reload won't. */
1955 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1956 if (preferred_class != NO_REGS)
1957 rclass = preferred_class;
1960 /* See if OUT will do. */
1961 if (REG_P (out)
1962 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1964 unsigned int regno = REGNO (out) + out_offset;
1965 unsigned int nwords = hard_regno_nregs[regno][outmode];
1966 rtx saved_rtx;
1968 /* When we consider whether the insn uses OUT,
1969 ignore references within IN. They don't prevent us
1970 from copying IN into OUT, because those refs would
1971 move into the insn that reloads IN.
1973 However, we only ignore IN in its role as this reload.
1974 If the insn uses IN elsewhere and it contains OUT,
1975 that counts. We can't be sure it's the "same" operand
1976 so it might not go through this reload. */
1977 saved_rtx = *inloc;
1978 *inloc = const0_rtx;
1980 if (regno < FIRST_PSEUDO_REGISTER
1981 && HARD_REGNO_MODE_OK (regno, outmode)
1982 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1983 PATTERN (this_insn), outloc))
1985 unsigned int i;
1987 for (i = 0; i < nwords; i++)
1988 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1989 regno + i))
1990 break;
1992 if (i == nwords)
1994 if (REG_P (real_out))
1995 value = real_out;
1996 else
1997 value = gen_rtx_REG (outmode, regno);
2001 *inloc = saved_rtx;
2004 /* Consider using IN if OUT was not acceptable
2005 or if OUT dies in this insn (like the quotient in a divmod insn).
2006 We can't use IN unless it is dies in this insn,
2007 which means we must know accurately which hard regs are live.
2008 Also, the result can't go in IN if IN is used within OUT,
2009 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2010 if (hard_regs_live_known
2011 && REG_P (in)
2012 && REGNO (in) < FIRST_PSEUDO_REGISTER
2013 && (value == 0
2014 || find_reg_note (this_insn, REG_UNUSED, real_out))
2015 && find_reg_note (this_insn, REG_DEAD, real_in)
2016 && !fixed_regs[REGNO (in)]
2017 && HARD_REGNO_MODE_OK (REGNO (in),
2018 /* The only case where out and real_out might
2019 have different modes is where real_out
2020 is a subreg, and in that case, out
2021 has a real mode. */
2022 (GET_MODE (out) != VOIDmode
2023 ? GET_MODE (out) : outmode))
2024 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2025 /* However only do this if we can be sure that this input
2026 operand doesn't correspond with an uninitialized pseudo.
2027 global can assign some hardreg to it that is the same as
2028 the one assigned to a different, also live pseudo (as it
2029 can ignore the conflict). We must never introduce writes
2030 to such hardregs, as they would clobber the other live
2031 pseudo. See PR 20973. */
2032 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
2033 ORIGINAL_REGNO (in))
2034 /* Similarly, only do this if we can be sure that the death
2035 note is still valid. global can assign some hardreg to
2036 the pseudo referenced in the note and simultaneously a
2037 subword of this hardreg to a different, also live pseudo,
2038 because only another subword of the hardreg is actually
2039 used in the insn. This cannot happen if the pseudo has
2040 been assigned exactly one hardreg. See PR 33732. */
2041 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2043 unsigned int regno = REGNO (in) + in_offset;
2044 unsigned int nwords = hard_regno_nregs[regno][inmode];
2046 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2047 && ! hard_reg_set_here_p (regno, regno + nwords,
2048 PATTERN (this_insn))
2049 && (! earlyclobber
2050 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2051 PATTERN (this_insn), inloc)))
2053 unsigned int i;
2055 for (i = 0; i < nwords; i++)
2056 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2057 regno + i))
2058 break;
2060 if (i == nwords)
2062 /* If we were going to use OUT as the reload reg
2063 and changed our mind, it means OUT is a dummy that
2064 dies here. So don't bother copying value to it. */
2065 if (for_real >= 0 && value == real_out)
2066 rld[for_real].out = 0;
2067 if (REG_P (real_in))
2068 value = real_in;
2069 else
2070 value = gen_rtx_REG (inmode, regno);
2075 return value;
2078 /* This page contains subroutines used mainly for determining
2079 whether the IN or an OUT of a reload can serve as the
2080 reload register. */
2082 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2085 earlyclobber_operand_p (rtx x)
2087 int i;
2089 for (i = 0; i < n_earlyclobbers; i++)
2090 if (reload_earlyclobbers[i] == x)
2091 return 1;
2093 return 0;
2096 /* Return 1 if expression X alters a hard reg in the range
2097 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2098 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2099 X should be the body of an instruction. */
2101 static int
2102 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2104 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2106 rtx op0 = SET_DEST (x);
2108 while (GET_CODE (op0) == SUBREG)
2109 op0 = SUBREG_REG (op0);
2110 if (REG_P (op0))
2112 unsigned int r = REGNO (op0);
2114 /* See if this reg overlaps range under consideration. */
2115 if (r < end_regno
2116 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2117 return 1;
2120 else if (GET_CODE (x) == PARALLEL)
2122 int i = XVECLEN (x, 0) - 1;
2124 for (; i >= 0; i--)
2125 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2126 return 1;
2129 return 0;
2132 /* Return 1 if ADDR is a valid memory address for mode MODE,
2133 and check that each pseudo reg has the proper kind of
2134 hard reg. */
2137 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2139 #ifdef GO_IF_LEGITIMATE_ADDRESS
2140 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2141 return 0;
2143 win:
2144 return 1;
2145 #else
2146 return targetm.legitimate_address_p (mode, addr, 1);
2147 #endif
2150 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2151 if they are the same hard reg, and has special hacks for
2152 autoincrement and autodecrement.
2153 This is specifically intended for find_reloads to use
2154 in determining whether two operands match.
2155 X is the operand whose number is the lower of the two.
2157 The value is 2 if Y contains a pre-increment that matches
2158 a non-incrementing address in X. */
2160 /* ??? To be completely correct, we should arrange to pass
2161 for X the output operand and for Y the input operand.
2162 For now, we assume that the output operand has the lower number
2163 because that is natural in (SET output (... input ...)). */
2166 operands_match_p (rtx x, rtx y)
2168 int i;
2169 RTX_CODE code = GET_CODE (x);
2170 const char *fmt;
2171 int success_2;
2173 if (x == y)
2174 return 1;
2175 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2176 && (REG_P (y) || (GET_CODE (y) == SUBREG
2177 && REG_P (SUBREG_REG (y)))))
2179 int j;
2181 if (code == SUBREG)
2183 i = REGNO (SUBREG_REG (x));
2184 if (i >= FIRST_PSEUDO_REGISTER)
2185 goto slow;
2186 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2187 GET_MODE (SUBREG_REG (x)),
2188 SUBREG_BYTE (x),
2189 GET_MODE (x));
2191 else
2192 i = REGNO (x);
2194 if (GET_CODE (y) == SUBREG)
2196 j = REGNO (SUBREG_REG (y));
2197 if (j >= FIRST_PSEUDO_REGISTER)
2198 goto slow;
2199 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2200 GET_MODE (SUBREG_REG (y)),
2201 SUBREG_BYTE (y),
2202 GET_MODE (y));
2204 else
2205 j = REGNO (y);
2207 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2208 multiple hard register group of scalar integer registers, so that
2209 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2210 register. */
2211 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2212 && SCALAR_INT_MODE_P (GET_MODE (x))
2213 && i < FIRST_PSEUDO_REGISTER)
2214 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2215 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2216 && SCALAR_INT_MODE_P (GET_MODE (y))
2217 && j < FIRST_PSEUDO_REGISTER)
2218 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2220 return i == j;
2222 /* If two operands must match, because they are really a single
2223 operand of an assembler insn, then two postincrements are invalid
2224 because the assembler insn would increment only once.
2225 On the other hand, a postincrement matches ordinary indexing
2226 if the postincrement is the output operand. */
2227 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2228 return operands_match_p (XEXP (x, 0), y);
2229 /* Two preincrements are invalid
2230 because the assembler insn would increment only once.
2231 On the other hand, a preincrement matches ordinary indexing
2232 if the preincrement is the input operand.
2233 In this case, return 2, since some callers need to do special
2234 things when this happens. */
2235 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2236 || GET_CODE (y) == PRE_MODIFY)
2237 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2239 slow:
2241 /* Now we have disposed of all the cases in which different rtx codes
2242 can match. */
2243 if (code != GET_CODE (y))
2244 return 0;
2246 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2247 if (GET_MODE (x) != GET_MODE (y))
2248 return 0;
2250 switch (code)
2252 case CONST_INT:
2253 case CONST_DOUBLE:
2254 case CONST_FIXED:
2255 return 0;
2257 case LABEL_REF:
2258 return XEXP (x, 0) == XEXP (y, 0);
2259 case SYMBOL_REF:
2260 return XSTR (x, 0) == XSTR (y, 0);
2262 default:
2263 break;
2266 /* Compare the elements. If any pair of corresponding elements
2267 fail to match, return 0 for the whole things. */
2269 success_2 = 0;
2270 fmt = GET_RTX_FORMAT (code);
2271 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2273 int val, j;
2274 switch (fmt[i])
2276 case 'w':
2277 if (XWINT (x, i) != XWINT (y, i))
2278 return 0;
2279 break;
2281 case 'i':
2282 if (XINT (x, i) != XINT (y, i))
2283 return 0;
2284 break;
2286 case 'e':
2287 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2288 if (val == 0)
2289 return 0;
2290 /* If any subexpression returns 2,
2291 we should return 2 if we are successful. */
2292 if (val == 2)
2293 success_2 = 1;
2294 break;
2296 case '0':
2297 break;
2299 case 'E':
2300 if (XVECLEN (x, i) != XVECLEN (y, i))
2301 return 0;
2302 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2304 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2305 if (val == 0)
2306 return 0;
2307 if (val == 2)
2308 success_2 = 1;
2310 break;
2312 /* It is believed that rtx's at this level will never
2313 contain anything but integers and other rtx's,
2314 except for within LABEL_REFs and SYMBOL_REFs. */
2315 default:
2316 gcc_unreachable ();
2319 return 1 + success_2;
2322 /* Describe the range of registers or memory referenced by X.
2323 If X is a register, set REG_FLAG and put the first register
2324 number into START and the last plus one into END.
2325 If X is a memory reference, put a base address into BASE
2326 and a range of integer offsets into START and END.
2327 If X is pushing on the stack, we can assume it causes no trouble,
2328 so we set the SAFE field. */
2330 static struct decomposition
2331 decompose (rtx x)
2333 struct decomposition val;
2334 int all_const = 0;
2336 memset (&val, 0, sizeof (val));
2338 switch (GET_CODE (x))
2340 case MEM:
2342 rtx base = NULL_RTX, offset = 0;
2343 rtx addr = XEXP (x, 0);
2345 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2346 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2348 val.base = XEXP (addr, 0);
2349 val.start = -GET_MODE_SIZE (GET_MODE (x));
2350 val.end = GET_MODE_SIZE (GET_MODE (x));
2351 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2352 return val;
2355 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2357 if (GET_CODE (XEXP (addr, 1)) == PLUS
2358 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2359 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2361 val.base = XEXP (addr, 0);
2362 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2363 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2364 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2365 return val;
2369 if (GET_CODE (addr) == CONST)
2371 addr = XEXP (addr, 0);
2372 all_const = 1;
2374 if (GET_CODE (addr) == PLUS)
2376 if (CONSTANT_P (XEXP (addr, 0)))
2378 base = XEXP (addr, 1);
2379 offset = XEXP (addr, 0);
2381 else if (CONSTANT_P (XEXP (addr, 1)))
2383 base = XEXP (addr, 0);
2384 offset = XEXP (addr, 1);
2388 if (offset == 0)
2390 base = addr;
2391 offset = const0_rtx;
2393 if (GET_CODE (offset) == CONST)
2394 offset = XEXP (offset, 0);
2395 if (GET_CODE (offset) == PLUS)
2397 if (CONST_INT_P (XEXP (offset, 0)))
2399 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2400 offset = XEXP (offset, 0);
2402 else if (CONST_INT_P (XEXP (offset, 1)))
2404 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2405 offset = XEXP (offset, 1);
2407 else
2409 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2410 offset = const0_rtx;
2413 else if (!CONST_INT_P (offset))
2415 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2416 offset = const0_rtx;
2419 if (all_const && GET_CODE (base) == PLUS)
2420 base = gen_rtx_CONST (GET_MODE (base), base);
2422 gcc_assert (CONST_INT_P (offset));
2424 val.start = INTVAL (offset);
2425 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2426 val.base = base;
2428 break;
2430 case REG:
2431 val.reg_flag = 1;
2432 val.start = true_regnum (x);
2433 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2435 /* A pseudo with no hard reg. */
2436 val.start = REGNO (x);
2437 val.end = val.start + 1;
2439 else
2440 /* A hard reg. */
2441 val.end = end_hard_regno (GET_MODE (x), val.start);
2442 break;
2444 case SUBREG:
2445 if (!REG_P (SUBREG_REG (x)))
2446 /* This could be more precise, but it's good enough. */
2447 return decompose (SUBREG_REG (x));
2448 val.reg_flag = 1;
2449 val.start = true_regnum (x);
2450 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2451 return decompose (SUBREG_REG (x));
2452 else
2453 /* A hard reg. */
2454 val.end = val.start + subreg_nregs (x);
2455 break;
2457 case SCRATCH:
2458 /* This hasn't been assigned yet, so it can't conflict yet. */
2459 val.safe = 1;
2460 break;
2462 default:
2463 gcc_assert (CONSTANT_P (x));
2464 val.safe = 1;
2465 break;
2467 return val;
2470 /* Return 1 if altering Y will not modify the value of X.
2471 Y is also described by YDATA, which should be decompose (Y). */
2473 static int
2474 immune_p (rtx x, rtx y, struct decomposition ydata)
2476 struct decomposition xdata;
2478 if (ydata.reg_flag)
2479 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2480 if (ydata.safe)
2481 return 1;
2483 gcc_assert (MEM_P (y));
2484 /* If Y is memory and X is not, Y can't affect X. */
2485 if (!MEM_P (x))
2486 return 1;
2488 xdata = decompose (x);
2490 if (! rtx_equal_p (xdata.base, ydata.base))
2492 /* If bases are distinct symbolic constants, there is no overlap. */
2493 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2494 return 1;
2495 /* Constants and stack slots never overlap. */
2496 if (CONSTANT_P (xdata.base)
2497 && (ydata.base == frame_pointer_rtx
2498 || ydata.base == hard_frame_pointer_rtx
2499 || ydata.base == stack_pointer_rtx))
2500 return 1;
2501 if (CONSTANT_P (ydata.base)
2502 && (xdata.base == frame_pointer_rtx
2503 || xdata.base == hard_frame_pointer_rtx
2504 || xdata.base == stack_pointer_rtx))
2505 return 1;
2506 /* If either base is variable, we don't know anything. */
2507 return 0;
2510 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2513 /* Similar, but calls decompose. */
2516 safe_from_earlyclobber (rtx op, rtx clobber)
2518 struct decomposition early_data;
2520 early_data = decompose (clobber);
2521 return immune_p (op, clobber, early_data);
2524 /* Main entry point of this file: search the body of INSN
2525 for values that need reloading and record them with push_reload.
2526 REPLACE nonzero means record also where the values occur
2527 so that subst_reloads can be used.
2529 IND_LEVELS says how many levels of indirection are supported by this
2530 machine; a value of zero means that a memory reference is not a valid
2531 memory address.
2533 LIVE_KNOWN says we have valid information about which hard
2534 regs are live at each point in the program; this is true when
2535 we are called from global_alloc but false when stupid register
2536 allocation has been done.
2538 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2539 which is nonnegative if the reg has been commandeered for reloading into.
2540 It is copied into STATIC_RELOAD_REG_P and referenced from there
2541 by various subroutines.
2543 Return TRUE if some operands need to be changed, because of swapping
2544 commutative operands, reg_equiv_address substitution, or whatever. */
2547 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2548 short *reload_reg_p)
2550 int insn_code_number;
2551 int i, j;
2552 int noperands;
2553 /* These start out as the constraints for the insn
2554 and they are chewed up as we consider alternatives. */
2555 const char *constraints[MAX_RECOG_OPERANDS];
2556 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2557 a register. */
2558 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2559 char pref_or_nothing[MAX_RECOG_OPERANDS];
2560 /* Nonzero for a MEM operand whose entire address needs a reload.
2561 May be -1 to indicate the entire address may or may not need a reload. */
2562 int address_reloaded[MAX_RECOG_OPERANDS];
2563 /* Nonzero for an address operand that needs to be completely reloaded.
2564 May be -1 to indicate the entire operand may or may not need a reload. */
2565 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2566 /* Value of enum reload_type to use for operand. */
2567 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2568 /* Value of enum reload_type to use within address of operand. */
2569 enum reload_type address_type[MAX_RECOG_OPERANDS];
2570 /* Save the usage of each operand. */
2571 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2572 int no_input_reloads = 0, no_output_reloads = 0;
2573 int n_alternatives;
2574 enum reg_class this_alternative[MAX_RECOG_OPERANDS];
2575 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2576 char this_alternative_win[MAX_RECOG_OPERANDS];
2577 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2578 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2579 int this_alternative_matches[MAX_RECOG_OPERANDS];
2580 int swapped;
2581 int goal_alternative[MAX_RECOG_OPERANDS];
2582 int this_alternative_number;
2583 int goal_alternative_number = 0;
2584 int operand_reloadnum[MAX_RECOG_OPERANDS];
2585 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2586 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2587 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2588 char goal_alternative_win[MAX_RECOG_OPERANDS];
2589 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2590 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2591 int goal_alternative_swapped;
2592 int best;
2593 int best_small_class_operands_num;
2594 int commutative;
2595 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2596 rtx substed_operand[MAX_RECOG_OPERANDS];
2597 rtx body = PATTERN (insn);
2598 rtx set = single_set (insn);
2599 int goal_earlyclobber = 0, this_earlyclobber;
2600 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2601 int retval = 0;
2603 this_insn = insn;
2604 n_reloads = 0;
2605 n_replacements = 0;
2606 n_earlyclobbers = 0;
2607 replace_reloads = replace;
2608 hard_regs_live_known = live_known;
2609 static_reload_reg_p = reload_reg_p;
2611 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2612 neither are insns that SET cc0. Insns that use CC0 are not allowed
2613 to have any input reloads. */
2614 if (JUMP_P (insn) || CALL_P (insn))
2615 no_output_reloads = 1;
2617 #ifdef HAVE_cc0
2618 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2619 no_input_reloads = 1;
2620 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2621 no_output_reloads = 1;
2622 #endif
2624 #ifdef SECONDARY_MEMORY_NEEDED
2625 /* The eliminated forms of any secondary memory locations are per-insn, so
2626 clear them out here. */
2628 if (secondary_memlocs_elim_used)
2630 memset (secondary_memlocs_elim, 0,
2631 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2632 secondary_memlocs_elim_used = 0;
2634 #endif
2636 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2637 is cheap to move between them. If it is not, there may not be an insn
2638 to do the copy, so we may need a reload. */
2639 if (GET_CODE (body) == SET
2640 && REG_P (SET_DEST (body))
2641 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2642 && REG_P (SET_SRC (body))
2643 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2644 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2645 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2646 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2647 return 0;
2649 extract_insn (insn);
2651 noperands = reload_n_operands = recog_data.n_operands;
2652 n_alternatives = recog_data.n_alternatives;
2654 /* Just return "no reloads" if insn has no operands with constraints. */
2655 if (noperands == 0 || n_alternatives == 0)
2656 return 0;
2658 insn_code_number = INSN_CODE (insn);
2659 this_insn_is_asm = insn_code_number < 0;
2661 memcpy (operand_mode, recog_data.operand_mode,
2662 noperands * sizeof (enum machine_mode));
2663 memcpy (constraints, recog_data.constraints,
2664 noperands * sizeof (const char *));
2666 commutative = -1;
2668 /* If we will need to know, later, whether some pair of operands
2669 are the same, we must compare them now and save the result.
2670 Reloading the base and index registers will clobber them
2671 and afterward they will fail to match. */
2673 for (i = 0; i < noperands; i++)
2675 const char *p;
2676 int c;
2677 char *end;
2679 substed_operand[i] = recog_data.operand[i];
2680 p = constraints[i];
2682 modified[i] = RELOAD_READ;
2684 /* Scan this operand's constraint to see if it is an output operand,
2685 an in-out operand, is commutative, or should match another. */
2687 while ((c = *p))
2689 p += CONSTRAINT_LEN (c, p);
2690 switch (c)
2692 case '=':
2693 modified[i] = RELOAD_WRITE;
2694 break;
2695 case '+':
2696 modified[i] = RELOAD_READ_WRITE;
2697 break;
2698 case '%':
2700 /* The last operand should not be marked commutative. */
2701 gcc_assert (i != noperands - 1);
2703 /* We currently only support one commutative pair of
2704 operands. Some existing asm code currently uses more
2705 than one pair. Previously, that would usually work,
2706 but sometimes it would crash the compiler. We
2707 continue supporting that case as well as we can by
2708 silently ignoring all but the first pair. In the
2709 future we may handle it correctly. */
2710 if (commutative < 0)
2711 commutative = i;
2712 else
2713 gcc_assert (this_insn_is_asm);
2715 break;
2716 /* Use of ISDIGIT is tempting here, but it may get expensive because
2717 of locale support we don't want. */
2718 case '0': case '1': case '2': case '3': case '4':
2719 case '5': case '6': case '7': case '8': case '9':
2721 c = strtoul (p - 1, &end, 10);
2722 p = end;
2724 operands_match[c][i]
2725 = operands_match_p (recog_data.operand[c],
2726 recog_data.operand[i]);
2728 /* An operand may not match itself. */
2729 gcc_assert (c != i);
2731 /* If C can be commuted with C+1, and C might need to match I,
2732 then C+1 might also need to match I. */
2733 if (commutative >= 0)
2735 if (c == commutative || c == commutative + 1)
2737 int other = c + (c == commutative ? 1 : -1);
2738 operands_match[other][i]
2739 = operands_match_p (recog_data.operand[other],
2740 recog_data.operand[i]);
2742 if (i == commutative || i == commutative + 1)
2744 int other = i + (i == commutative ? 1 : -1);
2745 operands_match[c][other]
2746 = operands_match_p (recog_data.operand[c],
2747 recog_data.operand[other]);
2749 /* Note that C is supposed to be less than I.
2750 No need to consider altering both C and I because in
2751 that case we would alter one into the other. */
2758 /* Examine each operand that is a memory reference or memory address
2759 and reload parts of the addresses into index registers.
2760 Also here any references to pseudo regs that didn't get hard regs
2761 but are equivalent to constants get replaced in the insn itself
2762 with those constants. Nobody will ever see them again.
2764 Finally, set up the preferred classes of each operand. */
2766 for (i = 0; i < noperands; i++)
2768 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2770 address_reloaded[i] = 0;
2771 address_operand_reloaded[i] = 0;
2772 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2773 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2774 : RELOAD_OTHER);
2775 address_type[i]
2776 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2777 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2778 : RELOAD_OTHER);
2780 if (*constraints[i] == 0)
2781 /* Ignore things like match_operator operands. */
2783 else if (constraints[i][0] == 'p'
2784 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2786 address_operand_reloaded[i]
2787 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2788 recog_data.operand[i],
2789 recog_data.operand_loc[i],
2790 i, operand_type[i], ind_levels, insn);
2792 /* If we now have a simple operand where we used to have a
2793 PLUS or MULT, re-recognize and try again. */
2794 if ((OBJECT_P (*recog_data.operand_loc[i])
2795 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2796 && (GET_CODE (recog_data.operand[i]) == MULT
2797 || GET_CODE (recog_data.operand[i]) == PLUS))
2799 INSN_CODE (insn) = -1;
2800 retval = find_reloads (insn, replace, ind_levels, live_known,
2801 reload_reg_p);
2802 return retval;
2805 recog_data.operand[i] = *recog_data.operand_loc[i];
2806 substed_operand[i] = recog_data.operand[i];
2808 /* Address operands are reloaded in their existing mode,
2809 no matter what is specified in the machine description. */
2810 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2812 else if (code == MEM)
2814 address_reloaded[i]
2815 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2816 recog_data.operand_loc[i],
2817 XEXP (recog_data.operand[i], 0),
2818 &XEXP (recog_data.operand[i], 0),
2819 i, address_type[i], ind_levels, insn);
2820 recog_data.operand[i] = *recog_data.operand_loc[i];
2821 substed_operand[i] = recog_data.operand[i];
2823 else if (code == SUBREG)
2825 rtx reg = SUBREG_REG (recog_data.operand[i]);
2826 rtx op
2827 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2828 ind_levels,
2829 set != 0
2830 && &SET_DEST (set) == recog_data.operand_loc[i],
2831 insn,
2832 &address_reloaded[i]);
2834 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2835 that didn't get a hard register, emit a USE with a REG_EQUAL
2836 note in front so that we might inherit a previous, possibly
2837 wider reload. */
2839 if (replace
2840 && MEM_P (op)
2841 && REG_P (reg)
2842 && (GET_MODE_SIZE (GET_MODE (reg))
2843 >= GET_MODE_SIZE (GET_MODE (op)))
2844 && reg_equiv_constant[REGNO (reg)] == 0)
2845 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2846 insn),
2847 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2849 substed_operand[i] = recog_data.operand[i] = op;
2851 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2852 /* We can get a PLUS as an "operand" as a result of register
2853 elimination. See eliminate_regs and gen_reload. We handle
2854 a unary operator by reloading the operand. */
2855 substed_operand[i] = recog_data.operand[i]
2856 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2857 ind_levels, 0, insn,
2858 &address_reloaded[i]);
2859 else if (code == REG)
2861 /* This is equivalent to calling find_reloads_toplev.
2862 The code is duplicated for speed.
2863 When we find a pseudo always equivalent to a constant,
2864 we replace it by the constant. We must be sure, however,
2865 that we don't try to replace it in the insn in which it
2866 is being set. */
2867 int regno = REGNO (recog_data.operand[i]);
2868 if (reg_equiv_constant[regno] != 0
2869 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2871 /* Record the existing mode so that the check if constants are
2872 allowed will work when operand_mode isn't specified. */
2874 if (operand_mode[i] == VOIDmode)
2875 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2877 substed_operand[i] = recog_data.operand[i]
2878 = reg_equiv_constant[regno];
2880 if (reg_equiv_memory_loc[regno] != 0
2881 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2882 /* We need not give a valid is_set_dest argument since the case
2883 of a constant equivalence was checked above. */
2884 substed_operand[i] = recog_data.operand[i]
2885 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2886 ind_levels, 0, insn,
2887 &address_reloaded[i]);
2889 /* If the operand is still a register (we didn't replace it with an
2890 equivalent), get the preferred class to reload it into. */
2891 code = GET_CODE (recog_data.operand[i]);
2892 preferred_class[i]
2893 = ((code == REG && REGNO (recog_data.operand[i])
2894 >= FIRST_PSEUDO_REGISTER)
2895 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2896 : NO_REGS);
2897 pref_or_nothing[i]
2898 = (code == REG
2899 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2900 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2903 /* If this is simply a copy from operand 1 to operand 0, merge the
2904 preferred classes for the operands. */
2905 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2906 && recog_data.operand[1] == SET_SRC (set))
2908 preferred_class[0] = preferred_class[1]
2909 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2910 pref_or_nothing[0] |= pref_or_nothing[1];
2911 pref_or_nothing[1] |= pref_or_nothing[0];
2914 /* Now see what we need for pseudo-regs that didn't get hard regs
2915 or got the wrong kind of hard reg. For this, we must consider
2916 all the operands together against the register constraints. */
2918 best = MAX_RECOG_OPERANDS * 2 + 600;
2919 best_small_class_operands_num = 0;
2921 swapped = 0;
2922 goal_alternative_swapped = 0;
2923 try_swapped:
2925 /* The constraints are made of several alternatives.
2926 Each operand's constraint looks like foo,bar,... with commas
2927 separating the alternatives. The first alternatives for all
2928 operands go together, the second alternatives go together, etc.
2930 First loop over alternatives. */
2932 for (this_alternative_number = 0;
2933 this_alternative_number < n_alternatives;
2934 this_alternative_number++)
2936 /* Loop over operands for one constraint alternative. */
2937 /* LOSERS counts those that don't fit this alternative
2938 and would require loading. */
2939 int losers = 0;
2940 /* BAD is set to 1 if it some operand can't fit this alternative
2941 even after reloading. */
2942 int bad = 0;
2943 /* REJECT is a count of how undesirable this alternative says it is
2944 if any reloading is required. If the alternative matches exactly
2945 then REJECT is ignored, but otherwise it gets this much
2946 counted against it in addition to the reloading needed. Each
2947 ? counts three times here since we want the disparaging caused by
2948 a bad register class to only count 1/3 as much. */
2949 int reject = 0;
2951 if (!recog_data.alternative_enabled_p[this_alternative_number])
2953 int i;
2955 for (i = 0; i < recog_data.n_operands; i++)
2956 constraints[i] = skip_alternative (constraints[i]);
2958 continue;
2961 this_earlyclobber = 0;
2963 for (i = 0; i < noperands; i++)
2965 const char *p = constraints[i];
2966 char *end;
2967 int len;
2968 int win = 0;
2969 int did_match = 0;
2970 /* 0 => this operand can be reloaded somehow for this alternative. */
2971 int badop = 1;
2972 /* 0 => this operand can be reloaded if the alternative allows regs. */
2973 int winreg = 0;
2974 int c;
2975 int m;
2976 rtx operand = recog_data.operand[i];
2977 int offset = 0;
2978 /* Nonzero means this is a MEM that must be reloaded into a reg
2979 regardless of what the constraint says. */
2980 int force_reload = 0;
2981 int offmemok = 0;
2982 /* Nonzero if a constant forced into memory would be OK for this
2983 operand. */
2984 int constmemok = 0;
2985 int earlyclobber = 0;
2987 /* If the predicate accepts a unary operator, it means that
2988 we need to reload the operand, but do not do this for
2989 match_operator and friends. */
2990 if (UNARY_P (operand) && *p != 0)
2991 operand = XEXP (operand, 0);
2993 /* If the operand is a SUBREG, extract
2994 the REG or MEM (or maybe even a constant) within.
2995 (Constants can occur as a result of reg_equiv_constant.) */
2997 while (GET_CODE (operand) == SUBREG)
2999 /* Offset only matters when operand is a REG and
3000 it is a hard reg. This is because it is passed
3001 to reg_fits_class_p if it is a REG and all pseudos
3002 return 0 from that function. */
3003 if (REG_P (SUBREG_REG (operand))
3004 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3006 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3007 GET_MODE (SUBREG_REG (operand)),
3008 SUBREG_BYTE (operand),
3009 GET_MODE (operand)) < 0)
3010 force_reload = 1;
3011 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3012 GET_MODE (SUBREG_REG (operand)),
3013 SUBREG_BYTE (operand),
3014 GET_MODE (operand));
3016 operand = SUBREG_REG (operand);
3017 /* Force reload if this is a constant or PLUS or if there may
3018 be a problem accessing OPERAND in the outer mode. */
3019 if (CONSTANT_P (operand)
3020 || GET_CODE (operand) == PLUS
3021 /* We must force a reload of paradoxical SUBREGs
3022 of a MEM because the alignment of the inner value
3023 may not be enough to do the outer reference. On
3024 big-endian machines, it may also reference outside
3025 the object.
3027 On machines that extend byte operations and we have a
3028 SUBREG where both the inner and outer modes are no wider
3029 than a word and the inner mode is narrower, is integral,
3030 and gets extended when loaded from memory, combine.c has
3031 made assumptions about the behavior of the machine in such
3032 register access. If the data is, in fact, in memory we
3033 must always load using the size assumed to be in the
3034 register and let the insn do the different-sized
3035 accesses.
3037 This is doubly true if WORD_REGISTER_OPERATIONS. In
3038 this case eliminate_regs has left non-paradoxical
3039 subregs for push_reload to see. Make sure it does
3040 by forcing the reload.
3042 ??? When is it right at this stage to have a subreg
3043 of a mem that is _not_ to be handled specially? IMO
3044 those should have been reduced to just a mem. */
3045 || ((MEM_P (operand)
3046 || (REG_P (operand)
3047 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3048 #ifndef WORD_REGISTER_OPERATIONS
3049 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3050 < BIGGEST_ALIGNMENT)
3051 && (GET_MODE_SIZE (operand_mode[i])
3052 > GET_MODE_SIZE (GET_MODE (operand))))
3053 || BYTES_BIG_ENDIAN
3054 #ifdef LOAD_EXTEND_OP
3055 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3056 && (GET_MODE_SIZE (GET_MODE (operand))
3057 <= UNITS_PER_WORD)
3058 && (GET_MODE_SIZE (operand_mode[i])
3059 > GET_MODE_SIZE (GET_MODE (operand)))
3060 && INTEGRAL_MODE_P (GET_MODE (operand))
3061 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3062 #endif
3064 #endif
3067 force_reload = 1;
3070 this_alternative[i] = NO_REGS;
3071 this_alternative_win[i] = 0;
3072 this_alternative_match_win[i] = 0;
3073 this_alternative_offmemok[i] = 0;
3074 this_alternative_earlyclobber[i] = 0;
3075 this_alternative_matches[i] = -1;
3077 /* An empty constraint or empty alternative
3078 allows anything which matched the pattern. */
3079 if (*p == 0 || *p == ',')
3080 win = 1, badop = 0;
3082 /* Scan this alternative's specs for this operand;
3083 set WIN if the operand fits any letter in this alternative.
3084 Otherwise, clear BADOP if this operand could
3085 fit some letter after reloads,
3086 or set WINREG if this operand could fit after reloads
3087 provided the constraint allows some registers. */
3090 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3092 case '\0':
3093 len = 0;
3094 break;
3095 case ',':
3096 c = '\0';
3097 break;
3099 case '=': case '+': case '*':
3100 break;
3102 case '%':
3103 /* We only support one commutative marker, the first
3104 one. We already set commutative above. */
3105 break;
3107 case '?':
3108 reject += 6;
3109 break;
3111 case '!':
3112 reject = 600;
3113 break;
3115 case '#':
3116 /* Ignore rest of this alternative as far as
3117 reloading is concerned. */
3119 p++;
3120 while (*p && *p != ',');
3121 len = 0;
3122 break;
3124 case '0': case '1': case '2': case '3': case '4':
3125 case '5': case '6': case '7': case '8': case '9':
3126 m = strtoul (p, &end, 10);
3127 p = end;
3128 len = 0;
3130 this_alternative_matches[i] = m;
3131 /* We are supposed to match a previous operand.
3132 If we do, we win if that one did.
3133 If we do not, count both of the operands as losers.
3134 (This is too conservative, since most of the time
3135 only a single reload insn will be needed to make
3136 the two operands win. As a result, this alternative
3137 may be rejected when it is actually desirable.) */
3138 if ((swapped && (m != commutative || i != commutative + 1))
3139 /* If we are matching as if two operands were swapped,
3140 also pretend that operands_match had been computed
3141 with swapped.
3142 But if I is the second of those and C is the first,
3143 don't exchange them, because operands_match is valid
3144 only on one side of its diagonal. */
3145 ? (operands_match
3146 [(m == commutative || m == commutative + 1)
3147 ? 2 * commutative + 1 - m : m]
3148 [(i == commutative || i == commutative + 1)
3149 ? 2 * commutative + 1 - i : i])
3150 : operands_match[m][i])
3152 /* If we are matching a non-offsettable address where an
3153 offsettable address was expected, then we must reject
3154 this combination, because we can't reload it. */
3155 if (this_alternative_offmemok[m]
3156 && MEM_P (recog_data.operand[m])
3157 && this_alternative[m] == NO_REGS
3158 && ! this_alternative_win[m])
3159 bad = 1;
3161 did_match = this_alternative_win[m];
3163 else
3165 /* Operands don't match. */
3166 rtx value;
3167 int loc1, loc2;
3168 /* Retroactively mark the operand we had to match
3169 as a loser, if it wasn't already. */
3170 if (this_alternative_win[m])
3171 losers++;
3172 this_alternative_win[m] = 0;
3173 if (this_alternative[m] == NO_REGS)
3174 bad = 1;
3175 /* But count the pair only once in the total badness of
3176 this alternative, if the pair can be a dummy reload.
3177 The pointers in operand_loc are not swapped; swap
3178 them by hand if necessary. */
3179 if (swapped && i == commutative)
3180 loc1 = commutative + 1;
3181 else if (swapped && i == commutative + 1)
3182 loc1 = commutative;
3183 else
3184 loc1 = i;
3185 if (swapped && m == commutative)
3186 loc2 = commutative + 1;
3187 else if (swapped && m == commutative + 1)
3188 loc2 = commutative;
3189 else
3190 loc2 = m;
3191 value
3192 = find_dummy_reload (recog_data.operand[i],
3193 recog_data.operand[m],
3194 recog_data.operand_loc[loc1],
3195 recog_data.operand_loc[loc2],
3196 operand_mode[i], operand_mode[m],
3197 this_alternative[m], -1,
3198 this_alternative_earlyclobber[m]);
3200 if (value != 0)
3201 losers--;
3203 /* This can be fixed with reloads if the operand
3204 we are supposed to match can be fixed with reloads. */
3205 badop = 0;
3206 this_alternative[i] = this_alternative[m];
3208 /* If we have to reload this operand and some previous
3209 operand also had to match the same thing as this
3210 operand, we don't know how to do that. So reject this
3211 alternative. */
3212 if (! did_match || force_reload)
3213 for (j = 0; j < i; j++)
3214 if (this_alternative_matches[j]
3215 == this_alternative_matches[i])
3216 badop = 1;
3217 break;
3219 case 'p':
3220 /* All necessary reloads for an address_operand
3221 were handled in find_reloads_address. */
3222 this_alternative[i] = base_reg_class (VOIDmode, ADDRESS,
3223 SCRATCH);
3224 win = 1;
3225 badop = 0;
3226 break;
3228 case TARGET_MEM_CONSTRAINT:
3229 if (force_reload)
3230 break;
3231 if (MEM_P (operand)
3232 || (REG_P (operand)
3233 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3234 && reg_renumber[REGNO (operand)] < 0))
3235 win = 1;
3236 if (CONST_POOL_OK_P (operand))
3237 badop = 0;
3238 constmemok = 1;
3239 break;
3241 case '<':
3242 if (MEM_P (operand)
3243 && ! address_reloaded[i]
3244 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3245 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3246 win = 1;
3247 break;
3249 case '>':
3250 if (MEM_P (operand)
3251 && ! address_reloaded[i]
3252 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3253 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3254 win = 1;
3255 break;
3257 /* Memory operand whose address is not offsettable. */
3258 case 'V':
3259 if (force_reload)
3260 break;
3261 if (MEM_P (operand)
3262 && ! (ind_levels ? offsettable_memref_p (operand)
3263 : offsettable_nonstrict_memref_p (operand))
3264 /* Certain mem addresses will become offsettable
3265 after they themselves are reloaded. This is important;
3266 we don't want our own handling of unoffsettables
3267 to override the handling of reg_equiv_address. */
3268 && !(REG_P (XEXP (operand, 0))
3269 && (ind_levels == 0
3270 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3271 win = 1;
3272 break;
3274 /* Memory operand whose address is offsettable. */
3275 case 'o':
3276 if (force_reload)
3277 break;
3278 if ((MEM_P (operand)
3279 /* If IND_LEVELS, find_reloads_address won't reload a
3280 pseudo that didn't get a hard reg, so we have to
3281 reject that case. */
3282 && ((ind_levels ? offsettable_memref_p (operand)
3283 : offsettable_nonstrict_memref_p (operand))
3284 /* A reloaded address is offsettable because it is now
3285 just a simple register indirect. */
3286 || address_reloaded[i] == 1))
3287 || (REG_P (operand)
3288 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3289 && reg_renumber[REGNO (operand)] < 0
3290 /* If reg_equiv_address is nonzero, we will be
3291 loading it into a register; hence it will be
3292 offsettable, but we cannot say that reg_equiv_mem
3293 is offsettable without checking. */
3294 && ((reg_equiv_mem[REGNO (operand)] != 0
3295 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3296 || (reg_equiv_address[REGNO (operand)] != 0))))
3297 win = 1;
3298 if (CONST_POOL_OK_P (operand)
3299 || MEM_P (operand))
3300 badop = 0;
3301 constmemok = 1;
3302 offmemok = 1;
3303 break;
3305 case '&':
3306 /* Output operand that is stored before the need for the
3307 input operands (and their index registers) is over. */
3308 earlyclobber = 1, this_earlyclobber = 1;
3309 break;
3311 case 'E':
3312 case 'F':
3313 if (GET_CODE (operand) == CONST_DOUBLE
3314 || (GET_CODE (operand) == CONST_VECTOR
3315 && (GET_MODE_CLASS (GET_MODE (operand))
3316 == MODE_VECTOR_FLOAT)))
3317 win = 1;
3318 break;
3320 case 'G':
3321 case 'H':
3322 if (GET_CODE (operand) == CONST_DOUBLE
3323 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3324 win = 1;
3325 break;
3327 case 's':
3328 if (CONST_INT_P (operand)
3329 || (GET_CODE (operand) == CONST_DOUBLE
3330 && GET_MODE (operand) == VOIDmode))
3331 break;
3332 case 'i':
3333 if (CONSTANT_P (operand)
3334 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3335 win = 1;
3336 break;
3338 case 'n':
3339 if (CONST_INT_P (operand)
3340 || (GET_CODE (operand) == CONST_DOUBLE
3341 && GET_MODE (operand) == VOIDmode))
3342 win = 1;
3343 break;
3345 case 'I':
3346 case 'J':
3347 case 'K':
3348 case 'L':
3349 case 'M':
3350 case 'N':
3351 case 'O':
3352 case 'P':
3353 if (CONST_INT_P (operand)
3354 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3355 win = 1;
3356 break;
3358 case 'X':
3359 force_reload = 0;
3360 win = 1;
3361 break;
3363 case 'g':
3364 if (! force_reload
3365 /* A PLUS is never a valid operand, but reload can make
3366 it from a register when eliminating registers. */
3367 && GET_CODE (operand) != PLUS
3368 /* A SCRATCH is not a valid operand. */
3369 && GET_CODE (operand) != SCRATCH
3370 && (! CONSTANT_P (operand)
3371 || ! flag_pic
3372 || LEGITIMATE_PIC_OPERAND_P (operand))
3373 && (GENERAL_REGS == ALL_REGS
3374 || !REG_P (operand)
3375 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3376 && reg_renumber[REGNO (operand)] < 0)))
3377 win = 1;
3378 /* Drop through into 'r' case. */
3380 case 'r':
3381 this_alternative[i]
3382 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3383 goto reg;
3385 default:
3386 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3388 #ifdef EXTRA_CONSTRAINT_STR
3389 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3391 if (force_reload)
3392 break;
3393 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3394 win = 1;
3395 /* If the address was already reloaded,
3396 we win as well. */
3397 else if (MEM_P (operand)
3398 && address_reloaded[i] == 1)
3399 win = 1;
3400 /* Likewise if the address will be reloaded because
3401 reg_equiv_address is nonzero. For reg_equiv_mem
3402 we have to check. */
3403 else if (REG_P (operand)
3404 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3405 && reg_renumber[REGNO (operand)] < 0
3406 && ((reg_equiv_mem[REGNO (operand)] != 0
3407 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3408 || (reg_equiv_address[REGNO (operand)] != 0)))
3409 win = 1;
3411 /* If we didn't already win, we can reload
3412 constants via force_const_mem, and other
3413 MEMs by reloading the address like for 'o'. */
3414 if (CONST_POOL_OK_P (operand)
3415 || MEM_P (operand))
3416 badop = 0;
3417 constmemok = 1;
3418 offmemok = 1;
3419 break;
3421 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3423 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3424 win = 1;
3426 /* If we didn't already win, we can reload
3427 the address into a base register. */
3428 this_alternative[i] = base_reg_class (VOIDmode,
3429 ADDRESS,
3430 SCRATCH);
3431 badop = 0;
3432 break;
3435 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3436 win = 1;
3437 #endif
3438 break;
3441 this_alternative[i]
3442 = (reg_class_subunion
3443 [this_alternative[i]]
3444 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3445 reg:
3446 if (GET_MODE (operand) == BLKmode)
3447 break;
3448 winreg = 1;
3449 if (REG_P (operand)
3450 && reg_fits_class_p (operand, this_alternative[i],
3451 offset, GET_MODE (recog_data.operand[i])))
3452 win = 1;
3453 break;
3455 while ((p += len), c);
3457 constraints[i] = p;
3459 /* If this operand could be handled with a reg,
3460 and some reg is allowed, then this operand can be handled. */
3461 if (winreg && this_alternative[i] != NO_REGS)
3462 badop = 0;
3464 /* Record which operands fit this alternative. */
3465 this_alternative_earlyclobber[i] = earlyclobber;
3466 if (win && ! force_reload)
3467 this_alternative_win[i] = 1;
3468 else if (did_match && ! force_reload)
3469 this_alternative_match_win[i] = 1;
3470 else
3472 int const_to_mem = 0;
3474 this_alternative_offmemok[i] = offmemok;
3475 losers++;
3476 if (badop)
3477 bad = 1;
3478 /* Alternative loses if it has no regs for a reg operand. */
3479 if (REG_P (operand)
3480 && this_alternative[i] == NO_REGS
3481 && this_alternative_matches[i] < 0)
3482 bad = 1;
3484 /* If this is a constant that is reloaded into the desired
3485 class by copying it to memory first, count that as another
3486 reload. This is consistent with other code and is
3487 required to avoid choosing another alternative when
3488 the constant is moved into memory by this function on
3489 an early reload pass. Note that the test here is
3490 precisely the same as in the code below that calls
3491 force_const_mem. */
3492 if (CONST_POOL_OK_P (operand)
3493 && ((PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
3494 == NO_REGS)
3495 || no_input_reloads)
3496 && operand_mode[i] != VOIDmode)
3498 const_to_mem = 1;
3499 if (this_alternative[i] != NO_REGS)
3500 losers++;
3503 /* Alternative loses if it requires a type of reload not
3504 permitted for this insn. We can always reload SCRATCH
3505 and objects with a REG_UNUSED note. */
3506 if (GET_CODE (operand) != SCRATCH
3507 && modified[i] != RELOAD_READ && no_output_reloads
3508 && ! find_reg_note (insn, REG_UNUSED, operand))
3509 bad = 1;
3510 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3511 && ! const_to_mem)
3512 bad = 1;
3514 /* If we can't reload this value at all, reject this
3515 alternative. Note that we could also lose due to
3516 LIMIT_RELOAD_CLASS, but we don't check that
3517 here. */
3519 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3521 if (PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
3522 == NO_REGS)
3523 reject = 600;
3525 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3526 if (operand_type[i] == RELOAD_FOR_OUTPUT
3527 && (PREFERRED_OUTPUT_RELOAD_CLASS (operand,
3528 this_alternative[i])
3529 == NO_REGS))
3530 reject = 600;
3531 #endif
3534 /* We prefer to reload pseudos over reloading other things,
3535 since such reloads may be able to be eliminated later.
3536 If we are reloading a SCRATCH, we won't be generating any
3537 insns, just using a register, so it is also preferred.
3538 So bump REJECT in other cases. Don't do this in the
3539 case where we are forcing a constant into memory and
3540 it will then win since we don't want to have a different
3541 alternative match then. */
3542 if (! (REG_P (operand)
3543 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3544 && GET_CODE (operand) != SCRATCH
3545 && ! (const_to_mem && constmemok))
3546 reject += 2;
3548 /* Input reloads can be inherited more often than output
3549 reloads can be removed, so penalize output reloads. */
3550 if (operand_type[i] != RELOAD_FOR_INPUT
3551 && GET_CODE (operand) != SCRATCH)
3552 reject++;
3555 /* If this operand is a pseudo register that didn't get a hard
3556 reg and this alternative accepts some register, see if the
3557 class that we want is a subset of the preferred class for this
3558 register. If not, but it intersects that class, use the
3559 preferred class instead. If it does not intersect the preferred
3560 class, show that usage of this alternative should be discouraged;
3561 it will be discouraged more still if the register is `preferred
3562 or nothing'. We do this because it increases the chance of
3563 reusing our spill register in a later insn and avoiding a pair
3564 of memory stores and loads.
3566 Don't bother with this if this alternative will accept this
3567 operand.
3569 Don't do this for a multiword operand, since it is only a
3570 small win and has the risk of requiring more spill registers,
3571 which could cause a large loss.
3573 Don't do this if the preferred class has only one register
3574 because we might otherwise exhaust the class. */
3576 if (! win && ! did_match
3577 && this_alternative[i] != NO_REGS
3578 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3579 && reg_class_size [(int) preferred_class[i]] > 0
3580 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3582 if (! reg_class_subset_p (this_alternative[i],
3583 preferred_class[i]))
3585 /* Since we don't have a way of forming the intersection,
3586 we just do something special if the preferred class
3587 is a subset of the class we have; that's the most
3588 common case anyway. */
3589 if (reg_class_subset_p (preferred_class[i],
3590 this_alternative[i]))
3591 this_alternative[i] = preferred_class[i];
3592 else
3593 reject += (2 + 2 * pref_or_nothing[i]);
3598 /* Now see if any output operands that are marked "earlyclobber"
3599 in this alternative conflict with any input operands
3600 or any memory addresses. */
3602 for (i = 0; i < noperands; i++)
3603 if (this_alternative_earlyclobber[i]
3604 && (this_alternative_win[i] || this_alternative_match_win[i]))
3606 struct decomposition early_data;
3608 early_data = decompose (recog_data.operand[i]);
3610 gcc_assert (modified[i] != RELOAD_READ);
3612 if (this_alternative[i] == NO_REGS)
3614 this_alternative_earlyclobber[i] = 0;
3615 gcc_assert (this_insn_is_asm);
3616 error_for_asm (this_insn,
3617 "%<&%> constraint used with no register class");
3620 for (j = 0; j < noperands; j++)
3621 /* Is this an input operand or a memory ref? */
3622 if ((MEM_P (recog_data.operand[j])
3623 || modified[j] != RELOAD_WRITE)
3624 && j != i
3625 /* Ignore things like match_operator operands. */
3626 && *recog_data.constraints[j] != 0
3627 /* Don't count an input operand that is constrained to match
3628 the early clobber operand. */
3629 && ! (this_alternative_matches[j] == i
3630 && rtx_equal_p (recog_data.operand[i],
3631 recog_data.operand[j]))
3632 /* Is it altered by storing the earlyclobber operand? */
3633 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3634 early_data))
3636 /* If the output is in a non-empty few-regs class,
3637 it's costly to reload it, so reload the input instead. */
3638 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3639 && (REG_P (recog_data.operand[j])
3640 || GET_CODE (recog_data.operand[j]) == SUBREG))
3642 losers++;
3643 this_alternative_win[j] = 0;
3644 this_alternative_match_win[j] = 0;
3646 else
3647 break;
3649 /* If an earlyclobber operand conflicts with something,
3650 it must be reloaded, so request this and count the cost. */
3651 if (j != noperands)
3653 losers++;
3654 this_alternative_win[i] = 0;
3655 this_alternative_match_win[j] = 0;
3656 for (j = 0; j < noperands; j++)
3657 if (this_alternative_matches[j] == i
3658 && this_alternative_match_win[j])
3660 this_alternative_win[j] = 0;
3661 this_alternative_match_win[j] = 0;
3662 losers++;
3667 /* If one alternative accepts all the operands, no reload required,
3668 choose that alternative; don't consider the remaining ones. */
3669 if (losers == 0)
3671 /* Unswap these so that they are never swapped at `finish'. */
3672 if (commutative >= 0)
3674 recog_data.operand[commutative] = substed_operand[commutative];
3675 recog_data.operand[commutative + 1]
3676 = substed_operand[commutative + 1];
3678 for (i = 0; i < noperands; i++)
3680 goal_alternative_win[i] = this_alternative_win[i];
3681 goal_alternative_match_win[i] = this_alternative_match_win[i];
3682 goal_alternative[i] = this_alternative[i];
3683 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3684 goal_alternative_matches[i] = this_alternative_matches[i];
3685 goal_alternative_earlyclobber[i]
3686 = this_alternative_earlyclobber[i];
3688 goal_alternative_number = this_alternative_number;
3689 goal_alternative_swapped = swapped;
3690 goal_earlyclobber = this_earlyclobber;
3691 goto finish;
3694 /* REJECT, set by the ! and ? constraint characters and when a register
3695 would be reloaded into a non-preferred class, discourages the use of
3696 this alternative for a reload goal. REJECT is incremented by six
3697 for each ? and two for each non-preferred class. */
3698 losers = losers * 6 + reject;
3700 /* If this alternative can be made to work by reloading,
3701 and it needs less reloading than the others checked so far,
3702 record it as the chosen goal for reloading. */
3703 if (! bad)
3705 bool change_p = false;
3706 int small_class_operands_num = 0;
3708 if (best >= losers)
3710 for (i = 0; i < noperands; i++)
3711 small_class_operands_num
3712 += SMALL_REGISTER_CLASS_P (this_alternative[i]) ? 1 : 0;
3713 if (best > losers
3714 || (best == losers
3715 /* If the cost of the reloads is the same,
3716 prefer alternative which requires minimal
3717 number of small register classes for the
3718 operands. This improves chances of reloads
3719 for insn requiring small register
3720 classes. */
3721 && (small_class_operands_num
3722 < best_small_class_operands_num)))
3723 change_p = true;
3725 if (change_p)
3727 for (i = 0; i < noperands; i++)
3729 goal_alternative[i] = this_alternative[i];
3730 goal_alternative_win[i] = this_alternative_win[i];
3731 goal_alternative_match_win[i]
3732 = this_alternative_match_win[i];
3733 goal_alternative_offmemok[i]
3734 = this_alternative_offmemok[i];
3735 goal_alternative_matches[i] = this_alternative_matches[i];
3736 goal_alternative_earlyclobber[i]
3737 = this_alternative_earlyclobber[i];
3739 goal_alternative_swapped = swapped;
3740 best = losers;
3741 best_small_class_operands_num = small_class_operands_num;
3742 goal_alternative_number = this_alternative_number;
3743 goal_earlyclobber = this_earlyclobber;
3748 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3749 then we need to try each alternative twice,
3750 the second time matching those two operands
3751 as if we had exchanged them.
3752 To do this, really exchange them in operands.
3754 If we have just tried the alternatives the second time,
3755 return operands to normal and drop through. */
3757 if (commutative >= 0)
3759 swapped = !swapped;
3760 if (swapped)
3762 enum reg_class tclass;
3763 int t;
3765 recog_data.operand[commutative] = substed_operand[commutative + 1];
3766 recog_data.operand[commutative + 1] = substed_operand[commutative];
3767 /* Swap the duplicates too. */
3768 for (i = 0; i < recog_data.n_dups; i++)
3769 if (recog_data.dup_num[i] == commutative
3770 || recog_data.dup_num[i] == commutative + 1)
3771 *recog_data.dup_loc[i]
3772 = recog_data.operand[(int) recog_data.dup_num[i]];
3774 tclass = preferred_class[commutative];
3775 preferred_class[commutative] = preferred_class[commutative + 1];
3776 preferred_class[commutative + 1] = tclass;
3778 t = pref_or_nothing[commutative];
3779 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3780 pref_or_nothing[commutative + 1] = t;
3782 t = address_reloaded[commutative];
3783 address_reloaded[commutative] = address_reloaded[commutative + 1];
3784 address_reloaded[commutative + 1] = t;
3786 memcpy (constraints, recog_data.constraints,
3787 noperands * sizeof (const char *));
3788 goto try_swapped;
3790 else
3792 recog_data.operand[commutative] = substed_operand[commutative];
3793 recog_data.operand[commutative + 1]
3794 = substed_operand[commutative + 1];
3795 /* Unswap the duplicates too. */
3796 for (i = 0; i < recog_data.n_dups; i++)
3797 if (recog_data.dup_num[i] == commutative
3798 || recog_data.dup_num[i] == commutative + 1)
3799 *recog_data.dup_loc[i]
3800 = recog_data.operand[(int) recog_data.dup_num[i]];
3804 /* The operands don't meet the constraints.
3805 goal_alternative describes the alternative
3806 that we could reach by reloading the fewest operands.
3807 Reload so as to fit it. */
3809 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3811 /* No alternative works with reloads?? */
3812 if (insn_code_number >= 0)
3813 fatal_insn ("unable to generate reloads for:", insn);
3814 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3815 /* Avoid further trouble with this insn. */
3816 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3817 n_reloads = 0;
3818 return 0;
3821 /* Jump to `finish' from above if all operands are valid already.
3822 In that case, goal_alternative_win is all 1. */
3823 finish:
3825 /* Right now, for any pair of operands I and J that are required to match,
3826 with I < J,
3827 goal_alternative_matches[J] is I.
3828 Set up goal_alternative_matched as the inverse function:
3829 goal_alternative_matched[I] = J. */
3831 for (i = 0; i < noperands; i++)
3832 goal_alternative_matched[i] = -1;
3834 for (i = 0; i < noperands; i++)
3835 if (! goal_alternative_win[i]
3836 && goal_alternative_matches[i] >= 0)
3837 goal_alternative_matched[goal_alternative_matches[i]] = i;
3839 for (i = 0; i < noperands; i++)
3840 goal_alternative_win[i] |= goal_alternative_match_win[i];
3842 /* If the best alternative is with operands 1 and 2 swapped,
3843 consider them swapped before reporting the reloads. Update the
3844 operand numbers of any reloads already pushed. */
3846 if (goal_alternative_swapped)
3848 rtx tem;
3850 tem = substed_operand[commutative];
3851 substed_operand[commutative] = substed_operand[commutative + 1];
3852 substed_operand[commutative + 1] = tem;
3853 tem = recog_data.operand[commutative];
3854 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3855 recog_data.operand[commutative + 1] = tem;
3856 tem = *recog_data.operand_loc[commutative];
3857 *recog_data.operand_loc[commutative]
3858 = *recog_data.operand_loc[commutative + 1];
3859 *recog_data.operand_loc[commutative + 1] = tem;
3861 for (i = 0; i < n_reloads; i++)
3863 if (rld[i].opnum == commutative)
3864 rld[i].opnum = commutative + 1;
3865 else if (rld[i].opnum == commutative + 1)
3866 rld[i].opnum = commutative;
3870 for (i = 0; i < noperands; i++)
3872 operand_reloadnum[i] = -1;
3874 /* If this is an earlyclobber operand, we need to widen the scope.
3875 The reload must remain valid from the start of the insn being
3876 reloaded until after the operand is stored into its destination.
3877 We approximate this with RELOAD_OTHER even though we know that we
3878 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3880 One special case that is worth checking is when we have an
3881 output that is earlyclobber but isn't used past the insn (typically
3882 a SCRATCH). In this case, we only need have the reload live
3883 through the insn itself, but not for any of our input or output
3884 reloads.
3885 But we must not accidentally narrow the scope of an existing
3886 RELOAD_OTHER reload - leave these alone.
3888 In any case, anything needed to address this operand can remain
3889 however they were previously categorized. */
3891 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3892 operand_type[i]
3893 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3894 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3897 /* Any constants that aren't allowed and can't be reloaded
3898 into registers are here changed into memory references. */
3899 for (i = 0; i < noperands; i++)
3900 if (! goal_alternative_win[i])
3902 rtx op = recog_data.operand[i];
3903 rtx subreg = NULL_RTX;
3904 rtx plus = NULL_RTX;
3905 enum machine_mode mode = operand_mode[i];
3907 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3908 push_reload so we have to let them pass here. */
3909 if (GET_CODE (op) == SUBREG)
3911 subreg = op;
3912 op = SUBREG_REG (op);
3913 mode = GET_MODE (op);
3916 if (GET_CODE (op) == PLUS)
3918 plus = op;
3919 op = XEXP (op, 1);
3922 if (CONST_POOL_OK_P (op)
3923 && ((PREFERRED_RELOAD_CLASS (op,
3924 (enum reg_class) goal_alternative[i])
3925 == NO_REGS)
3926 || no_input_reloads)
3927 && mode != VOIDmode)
3929 int this_address_reloaded;
3930 rtx tem = force_const_mem (mode, op);
3932 /* If we stripped a SUBREG or a PLUS above add it back. */
3933 if (plus != NULL_RTX)
3934 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3936 if (subreg != NULL_RTX)
3937 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3939 this_address_reloaded = 0;
3940 substed_operand[i] = recog_data.operand[i]
3941 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3942 0, insn, &this_address_reloaded);
3944 /* If the alternative accepts constant pool refs directly
3945 there will be no reload needed at all. */
3946 if (plus == NULL_RTX
3947 && subreg == NULL_RTX
3948 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3949 ? substed_operand[i]
3950 : NULL,
3951 recog_data.constraints[i],
3952 goal_alternative_number))
3953 goal_alternative_win[i] = 1;
3957 /* Record the values of the earlyclobber operands for the caller. */
3958 if (goal_earlyclobber)
3959 for (i = 0; i < noperands; i++)
3960 if (goal_alternative_earlyclobber[i])
3961 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3963 /* Now record reloads for all the operands that need them. */
3964 for (i = 0; i < noperands; i++)
3965 if (! goal_alternative_win[i])
3967 /* Operands that match previous ones have already been handled. */
3968 if (goal_alternative_matches[i] >= 0)
3970 /* Handle an operand with a nonoffsettable address
3971 appearing where an offsettable address will do
3972 by reloading the address into a base register.
3974 ??? We can also do this when the operand is a register and
3975 reg_equiv_mem is not offsettable, but this is a bit tricky,
3976 so we don't bother with it. It may not be worth doing. */
3977 else if (goal_alternative_matched[i] == -1
3978 && goal_alternative_offmemok[i]
3979 && MEM_P (recog_data.operand[i]))
3981 /* If the address to be reloaded is a VOIDmode constant,
3982 use Pmode as mode of the reload register, as would have
3983 been done by find_reloads_address. */
3984 enum machine_mode address_mode;
3985 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3986 if (address_mode == VOIDmode)
3987 address_mode = Pmode;
3989 operand_reloadnum[i]
3990 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3991 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3992 base_reg_class (VOIDmode, MEM, SCRATCH),
3993 address_mode,
3994 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3995 rld[operand_reloadnum[i]].inc
3996 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3998 /* If this operand is an output, we will have made any
3999 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4000 now we are treating part of the operand as an input, so
4001 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4003 if (modified[i] == RELOAD_WRITE)
4005 for (j = 0; j < n_reloads; j++)
4007 if (rld[j].opnum == i)
4009 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4010 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4011 else if (rld[j].when_needed
4012 == RELOAD_FOR_OUTADDR_ADDRESS)
4013 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4018 else if (goal_alternative_matched[i] == -1)
4020 operand_reloadnum[i]
4021 = push_reload ((modified[i] != RELOAD_WRITE
4022 ? recog_data.operand[i] : 0),
4023 (modified[i] != RELOAD_READ
4024 ? recog_data.operand[i] : 0),
4025 (modified[i] != RELOAD_WRITE
4026 ? recog_data.operand_loc[i] : 0),
4027 (modified[i] != RELOAD_READ
4028 ? recog_data.operand_loc[i] : 0),
4029 (enum reg_class) goal_alternative[i],
4030 (modified[i] == RELOAD_WRITE
4031 ? VOIDmode : operand_mode[i]),
4032 (modified[i] == RELOAD_READ
4033 ? VOIDmode : operand_mode[i]),
4034 (insn_code_number < 0 ? 0
4035 : insn_data[insn_code_number].operand[i].strict_low),
4036 0, i, operand_type[i]);
4038 /* In a matching pair of operands, one must be input only
4039 and the other must be output only.
4040 Pass the input operand as IN and the other as OUT. */
4041 else if (modified[i] == RELOAD_READ
4042 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4044 operand_reloadnum[i]
4045 = push_reload (recog_data.operand[i],
4046 recog_data.operand[goal_alternative_matched[i]],
4047 recog_data.operand_loc[i],
4048 recog_data.operand_loc[goal_alternative_matched[i]],
4049 (enum reg_class) goal_alternative[i],
4050 operand_mode[i],
4051 operand_mode[goal_alternative_matched[i]],
4052 0, 0, i, RELOAD_OTHER);
4053 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4055 else if (modified[i] == RELOAD_WRITE
4056 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4058 operand_reloadnum[goal_alternative_matched[i]]
4059 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4060 recog_data.operand[i],
4061 recog_data.operand_loc[goal_alternative_matched[i]],
4062 recog_data.operand_loc[i],
4063 (enum reg_class) goal_alternative[i],
4064 operand_mode[goal_alternative_matched[i]],
4065 operand_mode[i],
4066 0, 0, i, RELOAD_OTHER);
4067 operand_reloadnum[i] = output_reloadnum;
4069 else
4071 gcc_assert (insn_code_number < 0);
4072 error_for_asm (insn, "inconsistent operand constraints "
4073 "in an %<asm%>");
4074 /* Avoid further trouble with this insn. */
4075 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4076 n_reloads = 0;
4077 return 0;
4080 else if (goal_alternative_matched[i] < 0
4081 && goal_alternative_matches[i] < 0
4082 && address_operand_reloaded[i] != 1
4083 && optimize)
4085 /* For each non-matching operand that's a MEM or a pseudo-register
4086 that didn't get a hard register, make an optional reload.
4087 This may get done even if the insn needs no reloads otherwise. */
4089 rtx operand = recog_data.operand[i];
4091 while (GET_CODE (operand) == SUBREG)
4092 operand = SUBREG_REG (operand);
4093 if ((MEM_P (operand)
4094 || (REG_P (operand)
4095 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4096 /* If this is only for an output, the optional reload would not
4097 actually cause us to use a register now, just note that
4098 something is stored here. */
4099 && ((enum reg_class) goal_alternative[i] != NO_REGS
4100 || modified[i] == RELOAD_WRITE)
4101 && ! no_input_reloads
4102 /* An optional output reload might allow to delete INSN later.
4103 We mustn't make in-out reloads on insns that are not permitted
4104 output reloads.
4105 If this is an asm, we can't delete it; we must not even call
4106 push_reload for an optional output reload in this case,
4107 because we can't be sure that the constraint allows a register,
4108 and push_reload verifies the constraints for asms. */
4109 && (modified[i] == RELOAD_READ
4110 || (! no_output_reloads && ! this_insn_is_asm)))
4111 operand_reloadnum[i]
4112 = push_reload ((modified[i] != RELOAD_WRITE
4113 ? recog_data.operand[i] : 0),
4114 (modified[i] != RELOAD_READ
4115 ? recog_data.operand[i] : 0),
4116 (modified[i] != RELOAD_WRITE
4117 ? recog_data.operand_loc[i] : 0),
4118 (modified[i] != RELOAD_READ
4119 ? recog_data.operand_loc[i] : 0),
4120 (enum reg_class) goal_alternative[i],
4121 (modified[i] == RELOAD_WRITE
4122 ? VOIDmode : operand_mode[i]),
4123 (modified[i] == RELOAD_READ
4124 ? VOIDmode : operand_mode[i]),
4125 (insn_code_number < 0 ? 0
4126 : insn_data[insn_code_number].operand[i].strict_low),
4127 1, i, operand_type[i]);
4128 /* If a memory reference remains (either as a MEM or a pseudo that
4129 did not get a hard register), yet we can't make an optional
4130 reload, check if this is actually a pseudo register reference;
4131 we then need to emit a USE and/or a CLOBBER so that reload
4132 inheritance will do the right thing. */
4133 else if (replace
4134 && (MEM_P (operand)
4135 || (REG_P (operand)
4136 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4137 && reg_renumber [REGNO (operand)] < 0)))
4139 operand = *recog_data.operand_loc[i];
4141 while (GET_CODE (operand) == SUBREG)
4142 operand = SUBREG_REG (operand);
4143 if (REG_P (operand))
4145 if (modified[i] != RELOAD_WRITE)
4146 /* We mark the USE with QImode so that we recognize
4147 it as one that can be safely deleted at the end
4148 of reload. */
4149 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4150 insn), QImode);
4151 if (modified[i] != RELOAD_READ)
4152 emit_insn_after (gen_clobber (operand), insn);
4156 else if (goal_alternative_matches[i] >= 0
4157 && goal_alternative_win[goal_alternative_matches[i]]
4158 && modified[i] == RELOAD_READ
4159 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4160 && ! no_input_reloads && ! no_output_reloads
4161 && optimize)
4163 /* Similarly, make an optional reload for a pair of matching
4164 objects that are in MEM or a pseudo that didn't get a hard reg. */
4166 rtx operand = recog_data.operand[i];
4168 while (GET_CODE (operand) == SUBREG)
4169 operand = SUBREG_REG (operand);
4170 if ((MEM_P (operand)
4171 || (REG_P (operand)
4172 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4173 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4174 != NO_REGS))
4175 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4176 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4177 recog_data.operand[i],
4178 recog_data.operand_loc[goal_alternative_matches[i]],
4179 recog_data.operand_loc[i],
4180 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4181 operand_mode[goal_alternative_matches[i]],
4182 operand_mode[i],
4183 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4186 /* Perform whatever substitutions on the operands we are supposed
4187 to make due to commutativity or replacement of registers
4188 with equivalent constants or memory slots. */
4190 for (i = 0; i < noperands; i++)
4192 /* We only do this on the last pass through reload, because it is
4193 possible for some data (like reg_equiv_address) to be changed during
4194 later passes. Moreover, we lose the opportunity to get a useful
4195 reload_{in,out}_reg when we do these replacements. */
4197 if (replace)
4199 rtx substitution = substed_operand[i];
4201 *recog_data.operand_loc[i] = substitution;
4203 /* If we're replacing an operand with a LABEL_REF, we need to
4204 make sure that there's a REG_LABEL_OPERAND note attached to
4205 this instruction. */
4206 if (GET_CODE (substitution) == LABEL_REF
4207 && !find_reg_note (insn, REG_LABEL_OPERAND,
4208 XEXP (substitution, 0))
4209 /* For a JUMP_P, if it was a branch target it must have
4210 already been recorded as such. */
4211 && (!JUMP_P (insn)
4212 || !label_is_jump_target_p (XEXP (substitution, 0),
4213 insn)))
4214 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4216 else
4217 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4220 /* If this insn pattern contains any MATCH_DUP's, make sure that
4221 they will be substituted if the operands they match are substituted.
4222 Also do now any substitutions we already did on the operands.
4224 Don't do this if we aren't making replacements because we might be
4225 propagating things allocated by frame pointer elimination into places
4226 it doesn't expect. */
4228 if (insn_code_number >= 0 && replace)
4229 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4231 int opno = recog_data.dup_num[i];
4232 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4233 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4236 #if 0
4237 /* This loses because reloading of prior insns can invalidate the equivalence
4238 (or at least find_equiv_reg isn't smart enough to find it any more),
4239 causing this insn to need more reload regs than it needed before.
4240 It may be too late to make the reload regs available.
4241 Now this optimization is done safely in choose_reload_regs. */
4243 /* For each reload of a reg into some other class of reg,
4244 search for an existing equivalent reg (same value now) in the right class.
4245 We can use it as long as we don't need to change its contents. */
4246 for (i = 0; i < n_reloads; i++)
4247 if (rld[i].reg_rtx == 0
4248 && rld[i].in != 0
4249 && REG_P (rld[i].in)
4250 && rld[i].out == 0)
4252 rld[i].reg_rtx
4253 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4254 static_reload_reg_p, 0, rld[i].inmode);
4255 /* Prevent generation of insn to load the value
4256 because the one we found already has the value. */
4257 if (rld[i].reg_rtx)
4258 rld[i].in = rld[i].reg_rtx;
4260 #endif
4262 /* If we detected error and replaced asm instruction by USE, forget about the
4263 reloads. */
4264 if (GET_CODE (PATTERN (insn)) == USE
4265 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4266 n_reloads = 0;
4268 /* Perhaps an output reload can be combined with another
4269 to reduce needs by one. */
4270 if (!goal_earlyclobber)
4271 combine_reloads ();
4273 /* If we have a pair of reloads for parts of an address, they are reloading
4274 the same object, the operands themselves were not reloaded, and they
4275 are for two operands that are supposed to match, merge the reloads and
4276 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4278 for (i = 0; i < n_reloads; i++)
4280 int k;
4282 for (j = i + 1; j < n_reloads; j++)
4283 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4284 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4285 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4286 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4287 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4288 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4289 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4290 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4291 && rtx_equal_p (rld[i].in, rld[j].in)
4292 && (operand_reloadnum[rld[i].opnum] < 0
4293 || rld[operand_reloadnum[rld[i].opnum]].optional)
4294 && (operand_reloadnum[rld[j].opnum] < 0
4295 || rld[operand_reloadnum[rld[j].opnum]].optional)
4296 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4297 || (goal_alternative_matches[rld[j].opnum]
4298 == rld[i].opnum)))
4300 for (k = 0; k < n_replacements; k++)
4301 if (replacements[k].what == j)
4302 replacements[k].what = i;
4304 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4305 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4306 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4307 else
4308 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4309 rld[j].in = 0;
4313 /* Scan all the reloads and update their type.
4314 If a reload is for the address of an operand and we didn't reload
4315 that operand, change the type. Similarly, change the operand number
4316 of a reload when two operands match. If a reload is optional, treat it
4317 as though the operand isn't reloaded.
4319 ??? This latter case is somewhat odd because if we do the optional
4320 reload, it means the object is hanging around. Thus we need only
4321 do the address reload if the optional reload was NOT done.
4323 Change secondary reloads to be the address type of their operand, not
4324 the normal type.
4326 If an operand's reload is now RELOAD_OTHER, change any
4327 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4328 RELOAD_FOR_OTHER_ADDRESS. */
4330 for (i = 0; i < n_reloads; i++)
4332 if (rld[i].secondary_p
4333 && rld[i].when_needed == operand_type[rld[i].opnum])
4334 rld[i].when_needed = address_type[rld[i].opnum];
4336 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4337 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4338 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4339 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4340 && (operand_reloadnum[rld[i].opnum] < 0
4341 || rld[operand_reloadnum[rld[i].opnum]].optional))
4343 /* If we have a secondary reload to go along with this reload,
4344 change its type to RELOAD_FOR_OPADDR_ADDR. */
4346 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4347 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4348 && rld[i].secondary_in_reload != -1)
4350 int secondary_in_reload = rld[i].secondary_in_reload;
4352 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4354 /* If there's a tertiary reload we have to change it also. */
4355 if (secondary_in_reload > 0
4356 && rld[secondary_in_reload].secondary_in_reload != -1)
4357 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4358 = RELOAD_FOR_OPADDR_ADDR;
4361 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4362 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4363 && rld[i].secondary_out_reload != -1)
4365 int secondary_out_reload = rld[i].secondary_out_reload;
4367 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4369 /* If there's a tertiary reload we have to change it also. */
4370 if (secondary_out_reload
4371 && rld[secondary_out_reload].secondary_out_reload != -1)
4372 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4373 = RELOAD_FOR_OPADDR_ADDR;
4376 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4377 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4378 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4379 else
4380 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4383 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4384 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4385 && operand_reloadnum[rld[i].opnum] >= 0
4386 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4387 == RELOAD_OTHER))
4388 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4390 if (goal_alternative_matches[rld[i].opnum] >= 0)
4391 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4394 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4395 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4396 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4398 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4399 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4400 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4401 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4402 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4403 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4404 This is complicated by the fact that a single operand can have more
4405 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4406 choose_reload_regs without affecting code quality, and cases that
4407 actually fail are extremely rare, so it turns out to be better to fix
4408 the problem here by not generating cases that choose_reload_regs will
4409 fail for. */
4410 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4411 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4412 a single operand.
4413 We can reduce the register pressure by exploiting that a
4414 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4415 does not conflict with any of them, if it is only used for the first of
4416 the RELOAD_FOR_X_ADDRESS reloads. */
4418 int first_op_addr_num = -2;
4419 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4420 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4421 int need_change = 0;
4422 /* We use last_op_addr_reload and the contents of the above arrays
4423 first as flags - -2 means no instance encountered, -1 means exactly
4424 one instance encountered.
4425 If more than one instance has been encountered, we store the reload
4426 number of the first reload of the kind in question; reload numbers
4427 are known to be non-negative. */
4428 for (i = 0; i < noperands; i++)
4429 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4430 for (i = n_reloads - 1; i >= 0; i--)
4432 switch (rld[i].when_needed)
4434 case RELOAD_FOR_OPERAND_ADDRESS:
4435 if (++first_op_addr_num >= 0)
4437 first_op_addr_num = i;
4438 need_change = 1;
4440 break;
4441 case RELOAD_FOR_INPUT_ADDRESS:
4442 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4444 first_inpaddr_num[rld[i].opnum] = i;
4445 need_change = 1;
4447 break;
4448 case RELOAD_FOR_OUTPUT_ADDRESS:
4449 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4451 first_outpaddr_num[rld[i].opnum] = i;
4452 need_change = 1;
4454 break;
4455 default:
4456 break;
4460 if (need_change)
4462 for (i = 0; i < n_reloads; i++)
4464 int first_num;
4465 enum reload_type type;
4467 switch (rld[i].when_needed)
4469 case RELOAD_FOR_OPADDR_ADDR:
4470 first_num = first_op_addr_num;
4471 type = RELOAD_FOR_OPERAND_ADDRESS;
4472 break;
4473 case RELOAD_FOR_INPADDR_ADDRESS:
4474 first_num = first_inpaddr_num[rld[i].opnum];
4475 type = RELOAD_FOR_INPUT_ADDRESS;
4476 break;
4477 case RELOAD_FOR_OUTADDR_ADDRESS:
4478 first_num = first_outpaddr_num[rld[i].opnum];
4479 type = RELOAD_FOR_OUTPUT_ADDRESS;
4480 break;
4481 default:
4482 continue;
4484 if (first_num < 0)
4485 continue;
4486 else if (i > first_num)
4487 rld[i].when_needed = type;
4488 else
4490 /* Check if the only TYPE reload that uses reload I is
4491 reload FIRST_NUM. */
4492 for (j = n_reloads - 1; j > first_num; j--)
4494 if (rld[j].when_needed == type
4495 && (rld[i].secondary_p
4496 ? rld[j].secondary_in_reload == i
4497 : reg_mentioned_p (rld[i].in, rld[j].in)))
4499 rld[i].when_needed = type;
4500 break;
4508 /* See if we have any reloads that are now allowed to be merged
4509 because we've changed when the reload is needed to
4510 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4511 check for the most common cases. */
4513 for (i = 0; i < n_reloads; i++)
4514 if (rld[i].in != 0 && rld[i].out == 0
4515 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4516 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4517 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4518 for (j = 0; j < n_reloads; j++)
4519 if (i != j && rld[j].in != 0 && rld[j].out == 0
4520 && rld[j].when_needed == rld[i].when_needed
4521 && MATCHES (rld[i].in, rld[j].in)
4522 && rld[i].rclass == rld[j].rclass
4523 && !rld[i].nocombine && !rld[j].nocombine
4524 && rld[i].reg_rtx == rld[j].reg_rtx)
4526 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4527 transfer_replacements (i, j);
4528 rld[j].in = 0;
4531 #ifdef HAVE_cc0
4532 /* If we made any reloads for addresses, see if they violate a
4533 "no input reloads" requirement for this insn. But loads that we
4534 do after the insn (such as for output addresses) are fine. */
4535 if (no_input_reloads)
4536 for (i = 0; i < n_reloads; i++)
4537 gcc_assert (rld[i].in == 0
4538 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4539 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4540 #endif
4542 /* Compute reload_mode and reload_nregs. */
4543 for (i = 0; i < n_reloads; i++)
4545 rld[i].mode
4546 = (rld[i].inmode == VOIDmode
4547 || (GET_MODE_SIZE (rld[i].outmode)
4548 > GET_MODE_SIZE (rld[i].inmode)))
4549 ? rld[i].outmode : rld[i].inmode;
4551 rld[i].nregs = CLASS_MAX_NREGS (rld[i].rclass, rld[i].mode);
4554 /* Special case a simple move with an input reload and a
4555 destination of a hard reg, if the hard reg is ok, use it. */
4556 for (i = 0; i < n_reloads; i++)
4557 if (rld[i].when_needed == RELOAD_FOR_INPUT
4558 && GET_CODE (PATTERN (insn)) == SET
4559 && REG_P (SET_DEST (PATTERN (insn)))
4560 && (SET_SRC (PATTERN (insn)) == rld[i].in
4561 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4562 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4564 rtx dest = SET_DEST (PATTERN (insn));
4565 unsigned int regno = REGNO (dest);
4567 if (regno < FIRST_PSEUDO_REGISTER
4568 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4569 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4571 int nr = hard_regno_nregs[regno][rld[i].mode];
4572 int ok = 1, nri;
4574 for (nri = 1; nri < nr; nri ++)
4575 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4576 ok = 0;
4578 if (ok)
4579 rld[i].reg_rtx = dest;
4583 return retval;
4586 /* Return true if alternative number ALTNUM in constraint-string
4587 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4588 MEM gives the reference if it didn't need any reloads, otherwise it
4589 is null. */
4591 static bool
4592 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4593 const char *constraint, int altnum)
4595 int c;
4597 /* Skip alternatives before the one requested. */
4598 while (altnum > 0)
4600 while (*constraint++ != ',');
4601 altnum--;
4603 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4604 If one of them is present, this alternative accepts the result of
4605 passing a constant-pool reference through find_reloads_toplev.
4607 The same is true of extra memory constraints if the address
4608 was reloaded into a register. However, the target may elect
4609 to disallow the original constant address, forcing it to be
4610 reloaded into a register instead. */
4611 for (; (c = *constraint) && c != ',' && c != '#';
4612 constraint += CONSTRAINT_LEN (c, constraint))
4614 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4615 return true;
4616 #ifdef EXTRA_CONSTRAINT_STR
4617 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4618 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4619 return true;
4620 #endif
4622 return false;
4625 /* Scan X for memory references and scan the addresses for reloading.
4626 Also checks for references to "constant" regs that we want to eliminate
4627 and replaces them with the values they stand for.
4628 We may alter X destructively if it contains a reference to such.
4629 If X is just a constant reg, we return the equivalent value
4630 instead of X.
4632 IND_LEVELS says how many levels of indirect addressing this machine
4633 supports.
4635 OPNUM and TYPE identify the purpose of the reload.
4637 IS_SET_DEST is true if X is the destination of a SET, which is not
4638 appropriate to be replaced by a constant.
4640 INSN, if nonzero, is the insn in which we do the reload. It is used
4641 to determine if we may generate output reloads, and where to put USEs
4642 for pseudos that we have to replace with stack slots.
4644 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4645 result of find_reloads_address. */
4647 static rtx
4648 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4649 int ind_levels, int is_set_dest, rtx insn,
4650 int *address_reloaded)
4652 RTX_CODE code = GET_CODE (x);
4654 const char *fmt = GET_RTX_FORMAT (code);
4655 int i;
4656 int copied;
4658 if (code == REG)
4660 /* This code is duplicated for speed in find_reloads. */
4661 int regno = REGNO (x);
4662 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4663 x = reg_equiv_constant[regno];
4664 #if 0
4665 /* This creates (subreg (mem...)) which would cause an unnecessary
4666 reload of the mem. */
4667 else if (reg_equiv_mem[regno] != 0)
4668 x = reg_equiv_mem[regno];
4669 #endif
4670 else if (reg_equiv_memory_loc[regno]
4671 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4673 rtx mem = make_memloc (x, regno);
4674 if (reg_equiv_address[regno]
4675 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4677 /* If this is not a toplevel operand, find_reloads doesn't see
4678 this substitution. We have to emit a USE of the pseudo so
4679 that delete_output_reload can see it. */
4680 if (replace_reloads && recog_data.operand[opnum] != x)
4681 /* We mark the USE with QImode so that we recognize it
4682 as one that can be safely deleted at the end of
4683 reload. */
4684 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4685 QImode);
4686 x = mem;
4687 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4688 opnum, type, ind_levels, insn);
4689 if (!rtx_equal_p (x, mem))
4690 push_reg_equiv_alt_mem (regno, x);
4691 if (address_reloaded)
4692 *address_reloaded = i;
4695 return x;
4697 if (code == MEM)
4699 rtx tem = x;
4701 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4702 opnum, type, ind_levels, insn);
4703 if (address_reloaded)
4704 *address_reloaded = i;
4706 return tem;
4709 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4711 /* Check for SUBREG containing a REG that's equivalent to a
4712 constant. If the constant has a known value, truncate it
4713 right now. Similarly if we are extracting a single-word of a
4714 multi-word constant. If the constant is symbolic, allow it
4715 to be substituted normally. push_reload will strip the
4716 subreg later. The constant must not be VOIDmode, because we
4717 will lose the mode of the register (this should never happen
4718 because one of the cases above should handle it). */
4720 int regno = REGNO (SUBREG_REG (x));
4721 rtx tem;
4723 if (regno >= FIRST_PSEUDO_REGISTER
4724 && reg_renumber[regno] < 0
4725 && reg_equiv_constant[regno] != 0)
4727 tem =
4728 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4729 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4730 gcc_assert (tem);
4731 if (CONSTANT_P (tem) && !LEGITIMATE_CONSTANT_P (tem))
4733 tem = force_const_mem (GET_MODE (x), tem);
4734 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4735 &XEXP (tem, 0), opnum, type,
4736 ind_levels, insn);
4737 if (address_reloaded)
4738 *address_reloaded = i;
4740 return tem;
4743 /* If the subreg contains a reg that will be converted to a mem,
4744 convert the subreg to a narrower memref now.
4745 Otherwise, we would get (subreg (mem ...) ...),
4746 which would force reload of the mem.
4748 We also need to do this if there is an equivalent MEM that is
4749 not offsettable. In that case, alter_subreg would produce an
4750 invalid address on big-endian machines.
4752 For machines that extend byte loads, we must not reload using
4753 a wider mode if we have a paradoxical SUBREG. find_reloads will
4754 force a reload in that case. So we should not do anything here. */
4756 if (regno >= FIRST_PSEUDO_REGISTER
4757 #ifdef LOAD_EXTEND_OP
4758 && (GET_MODE_SIZE (GET_MODE (x))
4759 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4760 #endif
4761 && (reg_equiv_address[regno] != 0
4762 || (reg_equiv_mem[regno] != 0
4763 && (! strict_memory_address_p (GET_MODE (x),
4764 XEXP (reg_equiv_mem[regno], 0))
4765 || ! offsettable_memref_p (reg_equiv_mem[regno])
4766 || num_not_at_initial_offset))))
4767 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4768 insn);
4771 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4773 if (fmt[i] == 'e')
4775 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4776 ind_levels, is_set_dest, insn,
4777 address_reloaded);
4778 /* If we have replaced a reg with it's equivalent memory loc -
4779 that can still be handled here e.g. if it's in a paradoxical
4780 subreg - we must make the change in a copy, rather than using
4781 a destructive change. This way, find_reloads can still elect
4782 not to do the change. */
4783 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4785 x = shallow_copy_rtx (x);
4786 copied = 1;
4788 XEXP (x, i) = new_part;
4791 return x;
4794 /* Return a mem ref for the memory equivalent of reg REGNO.
4795 This mem ref is not shared with anything. */
4797 static rtx
4798 make_memloc (rtx ad, int regno)
4800 /* We must rerun eliminate_regs, in case the elimination
4801 offsets have changed. */
4802 rtx tem
4803 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], VOIDmode, NULL_RTX),
4806 /* If TEM might contain a pseudo, we must copy it to avoid
4807 modifying it when we do the substitution for the reload. */
4808 if (rtx_varies_p (tem, 0))
4809 tem = copy_rtx (tem);
4811 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4812 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4814 /* Copy the result if it's still the same as the equivalence, to avoid
4815 modifying it when we do the substitution for the reload. */
4816 if (tem == reg_equiv_memory_loc[regno])
4817 tem = copy_rtx (tem);
4818 return tem;
4821 /* Returns true if AD could be turned into a valid memory reference
4822 to mode MODE by reloading the part pointed to by PART into a
4823 register. */
4825 static int
4826 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4828 int retv;
4829 rtx tem = *part;
4830 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4832 *part = reg;
4833 retv = memory_address_p (mode, ad);
4834 *part = tem;
4836 return retv;
4839 /* Record all reloads needed for handling memory address AD
4840 which appears in *LOC in a memory reference to mode MODE
4841 which itself is found in location *MEMREFLOC.
4842 Note that we take shortcuts assuming that no multi-reg machine mode
4843 occurs as part of an address.
4845 OPNUM and TYPE specify the purpose of this reload.
4847 IND_LEVELS says how many levels of indirect addressing this machine
4848 supports.
4850 INSN, if nonzero, is the insn in which we do the reload. It is used
4851 to determine if we may generate output reloads, and where to put USEs
4852 for pseudos that we have to replace with stack slots.
4854 Value is one if this address is reloaded or replaced as a whole; it is
4855 zero if the top level of this address was not reloaded or replaced, and
4856 it is -1 if it may or may not have been reloaded or replaced.
4858 Note that there is no verification that the address will be valid after
4859 this routine does its work. Instead, we rely on the fact that the address
4860 was valid when reload started. So we need only undo things that reload
4861 could have broken. These are wrong register types, pseudos not allocated
4862 to a hard register, and frame pointer elimination. */
4864 static int
4865 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4866 rtx *loc, int opnum, enum reload_type type,
4867 int ind_levels, rtx insn)
4869 int regno;
4870 int removed_and = 0;
4871 int op_index;
4872 rtx tem;
4874 /* If the address is a register, see if it is a legitimate address and
4875 reload if not. We first handle the cases where we need not reload
4876 or where we must reload in a non-standard way. */
4878 if (REG_P (ad))
4880 regno = REGNO (ad);
4882 if (reg_equiv_constant[regno] != 0)
4884 find_reloads_address_part (reg_equiv_constant[regno], loc,
4885 base_reg_class (mode, MEM, SCRATCH),
4886 GET_MODE (ad), opnum, type, ind_levels);
4887 return 1;
4890 tem = reg_equiv_memory_loc[regno];
4891 if (tem != 0)
4893 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4895 tem = make_memloc (ad, regno);
4896 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4898 rtx orig = tem;
4900 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4901 &XEXP (tem, 0), opnum,
4902 ADDR_TYPE (type), ind_levels, insn);
4903 if (!rtx_equal_p (tem, orig))
4904 push_reg_equiv_alt_mem (regno, tem);
4906 /* We can avoid a reload if the register's equivalent memory
4907 expression is valid as an indirect memory address.
4908 But not all addresses are valid in a mem used as an indirect
4909 address: only reg or reg+constant. */
4911 if (ind_levels > 0
4912 && strict_memory_address_p (mode, tem)
4913 && (REG_P (XEXP (tem, 0))
4914 || (GET_CODE (XEXP (tem, 0)) == PLUS
4915 && REG_P (XEXP (XEXP (tem, 0), 0))
4916 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4918 /* TEM is not the same as what we'll be replacing the
4919 pseudo with after reload, put a USE in front of INSN
4920 in the final reload pass. */
4921 if (replace_reloads
4922 && num_not_at_initial_offset
4923 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4925 *loc = tem;
4926 /* We mark the USE with QImode so that we
4927 recognize it as one that can be safely
4928 deleted at the end of reload. */
4929 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4930 insn), QImode);
4932 /* This doesn't really count as replacing the address
4933 as a whole, since it is still a memory access. */
4935 return 0;
4937 ad = tem;
4941 /* The only remaining case where we can avoid a reload is if this is a
4942 hard register that is valid as a base register and which is not the
4943 subject of a CLOBBER in this insn. */
4945 else if (regno < FIRST_PSEUDO_REGISTER
4946 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4947 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4948 return 0;
4950 /* If we do not have one of the cases above, we must do the reload. */
4951 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4952 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4953 return 1;
4956 if (strict_memory_address_p (mode, ad))
4958 /* The address appears valid, so reloads are not needed.
4959 But the address may contain an eliminable register.
4960 This can happen because a machine with indirect addressing
4961 may consider a pseudo register by itself a valid address even when
4962 it has failed to get a hard reg.
4963 So do a tree-walk to find and eliminate all such regs. */
4965 /* But first quickly dispose of a common case. */
4966 if (GET_CODE (ad) == PLUS
4967 && CONST_INT_P (XEXP (ad, 1))
4968 && REG_P (XEXP (ad, 0))
4969 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4970 return 0;
4972 subst_reg_equivs_changed = 0;
4973 *loc = subst_reg_equivs (ad, insn);
4975 if (! subst_reg_equivs_changed)
4976 return 0;
4978 /* Check result for validity after substitution. */
4979 if (strict_memory_address_p (mode, ad))
4980 return 0;
4983 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4986 if (memrefloc)
4988 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4989 ind_levels, win);
4991 break;
4992 win:
4993 *memrefloc = copy_rtx (*memrefloc);
4994 XEXP (*memrefloc, 0) = ad;
4995 move_replacements (&ad, &XEXP (*memrefloc, 0));
4996 return -1;
4998 while (0);
4999 #endif
5001 /* The address is not valid. We have to figure out why. First see if
5002 we have an outer AND and remove it if so. Then analyze what's inside. */
5004 if (GET_CODE (ad) == AND)
5006 removed_and = 1;
5007 loc = &XEXP (ad, 0);
5008 ad = *loc;
5011 /* One possibility for why the address is invalid is that it is itself
5012 a MEM. This can happen when the frame pointer is being eliminated, a
5013 pseudo is not allocated to a hard register, and the offset between the
5014 frame and stack pointers is not its initial value. In that case the
5015 pseudo will have been replaced by a MEM referring to the
5016 stack pointer. */
5017 if (MEM_P (ad))
5019 /* First ensure that the address in this MEM is valid. Then, unless
5020 indirect addresses are valid, reload the MEM into a register. */
5021 tem = ad;
5022 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5023 opnum, ADDR_TYPE (type),
5024 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5026 /* If tem was changed, then we must create a new memory reference to
5027 hold it and store it back into memrefloc. */
5028 if (tem != ad && memrefloc)
5030 *memrefloc = copy_rtx (*memrefloc);
5031 copy_replacements (tem, XEXP (*memrefloc, 0));
5032 loc = &XEXP (*memrefloc, 0);
5033 if (removed_and)
5034 loc = &XEXP (*loc, 0);
5037 /* Check similar cases as for indirect addresses as above except
5038 that we can allow pseudos and a MEM since they should have been
5039 taken care of above. */
5041 if (ind_levels == 0
5042 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5043 || MEM_P (XEXP (tem, 0))
5044 || ! (REG_P (XEXP (tem, 0))
5045 || (GET_CODE (XEXP (tem, 0)) == PLUS
5046 && REG_P (XEXP (XEXP (tem, 0), 0))
5047 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5049 /* Must use TEM here, not AD, since it is the one that will
5050 have any subexpressions reloaded, if needed. */
5051 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5052 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
5053 VOIDmode, 0,
5054 0, opnum, type);
5055 return ! removed_and;
5057 else
5058 return 0;
5061 /* If we have address of a stack slot but it's not valid because the
5062 displacement is too large, compute the sum in a register.
5063 Handle all base registers here, not just fp/ap/sp, because on some
5064 targets (namely SH) we can also get too large displacements from
5065 big-endian corrections. */
5066 else if (GET_CODE (ad) == PLUS
5067 && REG_P (XEXP (ad, 0))
5068 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5069 && CONST_INT_P (XEXP (ad, 1))
5070 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
5071 CONST_INT))
5074 /* Unshare the MEM rtx so we can safely alter it. */
5075 if (memrefloc)
5077 *memrefloc = copy_rtx (*memrefloc);
5078 loc = &XEXP (*memrefloc, 0);
5079 if (removed_and)
5080 loc = &XEXP (*loc, 0);
5083 if (double_reg_address_ok)
5085 /* Unshare the sum as well. */
5086 *loc = ad = copy_rtx (ad);
5088 /* Reload the displacement into an index reg.
5089 We assume the frame pointer or arg pointer is a base reg. */
5090 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5091 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5092 type, ind_levels);
5093 return 0;
5095 else
5097 /* If the sum of two regs is not necessarily valid,
5098 reload the sum into a base reg.
5099 That will at least work. */
5100 find_reloads_address_part (ad, loc,
5101 base_reg_class (mode, MEM, SCRATCH),
5102 Pmode, opnum, type, ind_levels);
5104 return ! removed_and;
5107 /* If we have an indexed stack slot, there are three possible reasons why
5108 it might be invalid: The index might need to be reloaded, the address
5109 might have been made by frame pointer elimination and hence have a
5110 constant out of range, or both reasons might apply.
5112 We can easily check for an index needing reload, but even if that is the
5113 case, we might also have an invalid constant. To avoid making the
5114 conservative assumption and requiring two reloads, we see if this address
5115 is valid when not interpreted strictly. If it is, the only problem is
5116 that the index needs a reload and find_reloads_address_1 will take care
5117 of it.
5119 Handle all base registers here, not just fp/ap/sp, because on some
5120 targets (namely SPARC) we can also get invalid addresses from preventive
5121 subreg big-endian corrections made by find_reloads_toplev. We
5122 can also get expressions involving LO_SUM (rather than PLUS) from
5123 find_reloads_subreg_address.
5125 If we decide to do something, it must be that `double_reg_address_ok'
5126 is true. We generate a reload of the base register + constant and
5127 rework the sum so that the reload register will be added to the index.
5128 This is safe because we know the address isn't shared.
5130 We check for the base register as both the first and second operand of
5131 the innermost PLUS and/or LO_SUM. */
5133 for (op_index = 0; op_index < 2; ++op_index)
5135 rtx operand, addend;
5136 enum rtx_code inner_code;
5138 if (GET_CODE (ad) != PLUS)
5139 continue;
5141 inner_code = GET_CODE (XEXP (ad, 0));
5142 if (!(GET_CODE (ad) == PLUS
5143 && CONST_INT_P (XEXP (ad, 1))
5144 && (inner_code == PLUS || inner_code == LO_SUM)))
5145 continue;
5147 operand = XEXP (XEXP (ad, 0), op_index);
5148 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5149 continue;
5151 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5153 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5154 GET_CODE (addend))
5155 || operand == frame_pointer_rtx
5156 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5157 || operand == hard_frame_pointer_rtx
5158 #endif
5159 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5160 || operand == arg_pointer_rtx
5161 #endif
5162 || operand == stack_pointer_rtx)
5163 && ! maybe_memory_address_p (mode, ad,
5164 &XEXP (XEXP (ad, 0), 1 - op_index)))
5166 rtx offset_reg;
5167 enum reg_class cls;
5169 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5171 /* Form the adjusted address. */
5172 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5173 ad = gen_rtx_PLUS (GET_MODE (ad),
5174 op_index == 0 ? offset_reg : addend,
5175 op_index == 0 ? addend : offset_reg);
5176 else
5177 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5178 op_index == 0 ? offset_reg : addend,
5179 op_index == 0 ? addend : offset_reg);
5180 *loc = ad;
5182 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5183 find_reloads_address_part (XEXP (ad, op_index),
5184 &XEXP (ad, op_index), cls,
5185 GET_MODE (ad), opnum, type, ind_levels);
5186 find_reloads_address_1 (mode,
5187 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5188 GET_CODE (XEXP (ad, op_index)),
5189 &XEXP (ad, 1 - op_index), opnum,
5190 type, 0, insn);
5192 return 0;
5196 /* See if address becomes valid when an eliminable register
5197 in a sum is replaced. */
5199 tem = ad;
5200 if (GET_CODE (ad) == PLUS)
5201 tem = subst_indexed_address (ad);
5202 if (tem != ad && strict_memory_address_p (mode, tem))
5204 /* Ok, we win that way. Replace any additional eliminable
5205 registers. */
5207 subst_reg_equivs_changed = 0;
5208 tem = subst_reg_equivs (tem, insn);
5210 /* Make sure that didn't make the address invalid again. */
5212 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5214 *loc = tem;
5215 return 0;
5219 /* If constants aren't valid addresses, reload the constant address
5220 into a register. */
5221 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5223 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5224 Unshare it so we can safely alter it. */
5225 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5226 && CONSTANT_POOL_ADDRESS_P (ad))
5228 *memrefloc = copy_rtx (*memrefloc);
5229 loc = &XEXP (*memrefloc, 0);
5230 if (removed_and)
5231 loc = &XEXP (*loc, 0);
5234 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5235 Pmode, opnum, type, ind_levels);
5236 return ! removed_and;
5239 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5240 ind_levels, insn);
5243 /* Find all pseudo regs appearing in AD
5244 that are eliminable in favor of equivalent values
5245 and do not have hard regs; replace them by their equivalents.
5246 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5247 front of it for pseudos that we have to replace with stack slots. */
5249 static rtx
5250 subst_reg_equivs (rtx ad, rtx insn)
5252 RTX_CODE code = GET_CODE (ad);
5253 int i;
5254 const char *fmt;
5256 switch (code)
5258 case HIGH:
5259 case CONST_INT:
5260 case CONST:
5261 case CONST_DOUBLE:
5262 case CONST_FIXED:
5263 case CONST_VECTOR:
5264 case SYMBOL_REF:
5265 case LABEL_REF:
5266 case PC:
5267 case CC0:
5268 return ad;
5270 case REG:
5272 int regno = REGNO (ad);
5274 if (reg_equiv_constant[regno] != 0)
5276 subst_reg_equivs_changed = 1;
5277 return reg_equiv_constant[regno];
5279 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5281 rtx mem = make_memloc (ad, regno);
5282 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5284 subst_reg_equivs_changed = 1;
5285 /* We mark the USE with QImode so that we recognize it
5286 as one that can be safely deleted at the end of
5287 reload. */
5288 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5289 QImode);
5290 return mem;
5294 return ad;
5296 case PLUS:
5297 /* Quickly dispose of a common case. */
5298 if (XEXP (ad, 0) == frame_pointer_rtx
5299 && CONST_INT_P (XEXP (ad, 1)))
5300 return ad;
5301 break;
5303 default:
5304 break;
5307 fmt = GET_RTX_FORMAT (code);
5308 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5309 if (fmt[i] == 'e')
5310 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5311 return ad;
5314 /* Compute the sum of X and Y, making canonicalizations assumed in an
5315 address, namely: sum constant integers, surround the sum of two
5316 constants with a CONST, put the constant as the second operand, and
5317 group the constant on the outermost sum.
5319 This routine assumes both inputs are already in canonical form. */
5322 form_sum (rtx x, rtx y)
5324 rtx tem;
5325 enum machine_mode mode = GET_MODE (x);
5327 if (mode == VOIDmode)
5328 mode = GET_MODE (y);
5330 if (mode == VOIDmode)
5331 mode = Pmode;
5333 if (CONST_INT_P (x))
5334 return plus_constant (y, INTVAL (x));
5335 else if (CONST_INT_P (y))
5336 return plus_constant (x, INTVAL (y));
5337 else if (CONSTANT_P (x))
5338 tem = x, x = y, y = tem;
5340 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5341 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5343 /* Note that if the operands of Y are specified in the opposite
5344 order in the recursive calls below, infinite recursion will occur. */
5345 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5346 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5348 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5349 constant will have been placed second. */
5350 if (CONSTANT_P (x) && CONSTANT_P (y))
5352 if (GET_CODE (x) == CONST)
5353 x = XEXP (x, 0);
5354 if (GET_CODE (y) == CONST)
5355 y = XEXP (y, 0);
5357 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5360 return gen_rtx_PLUS (mode, x, y);
5363 /* If ADDR is a sum containing a pseudo register that should be
5364 replaced with a constant (from reg_equiv_constant),
5365 return the result of doing so, and also apply the associative
5366 law so that the result is more likely to be a valid address.
5367 (But it is not guaranteed to be one.)
5369 Note that at most one register is replaced, even if more are
5370 replaceable. Also, we try to put the result into a canonical form
5371 so it is more likely to be a valid address.
5373 In all other cases, return ADDR. */
5375 static rtx
5376 subst_indexed_address (rtx addr)
5378 rtx op0 = 0, op1 = 0, op2 = 0;
5379 rtx tem;
5380 int regno;
5382 if (GET_CODE (addr) == PLUS)
5384 /* Try to find a register to replace. */
5385 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5386 if (REG_P (op0)
5387 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5388 && reg_renumber[regno] < 0
5389 && reg_equiv_constant[regno] != 0)
5390 op0 = reg_equiv_constant[regno];
5391 else if (REG_P (op1)
5392 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5393 && reg_renumber[regno] < 0
5394 && reg_equiv_constant[regno] != 0)
5395 op1 = reg_equiv_constant[regno];
5396 else if (GET_CODE (op0) == PLUS
5397 && (tem = subst_indexed_address (op0)) != op0)
5398 op0 = tem;
5399 else if (GET_CODE (op1) == PLUS
5400 && (tem = subst_indexed_address (op1)) != op1)
5401 op1 = tem;
5402 else
5403 return addr;
5405 /* Pick out up to three things to add. */
5406 if (GET_CODE (op1) == PLUS)
5407 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5408 else if (GET_CODE (op0) == PLUS)
5409 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5411 /* Compute the sum. */
5412 if (op2 != 0)
5413 op1 = form_sum (op1, op2);
5414 if (op1 != 0)
5415 op0 = form_sum (op0, op1);
5417 return op0;
5419 return addr;
5422 /* Update the REG_INC notes for an insn. It updates all REG_INC
5423 notes for the instruction which refer to REGNO the to refer
5424 to the reload number.
5426 INSN is the insn for which any REG_INC notes need updating.
5428 REGNO is the register number which has been reloaded.
5430 RELOADNUM is the reload number. */
5432 static void
5433 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5434 int reloadnum ATTRIBUTE_UNUSED)
5436 #ifdef AUTO_INC_DEC
5437 rtx link;
5439 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5440 if (REG_NOTE_KIND (link) == REG_INC
5441 && (int) REGNO (XEXP (link, 0)) == regno)
5442 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5443 #endif
5446 /* Record the pseudo registers we must reload into hard registers in a
5447 subexpression of a would-be memory address, X referring to a value
5448 in mode MODE. (This function is not called if the address we find
5449 is strictly valid.)
5451 CONTEXT = 1 means we are considering regs as index regs,
5452 = 0 means we are considering them as base regs.
5453 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5454 or an autoinc code.
5455 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5456 is the code of the index part of the address. Otherwise, pass SCRATCH
5457 for this argument.
5458 OPNUM and TYPE specify the purpose of any reloads made.
5460 IND_LEVELS says how many levels of indirect addressing are
5461 supported at this point in the address.
5463 INSN, if nonzero, is the insn in which we do the reload. It is used
5464 to determine if we may generate output reloads.
5466 We return nonzero if X, as a whole, is reloaded or replaced. */
5468 /* Note that we take shortcuts assuming that no multi-reg machine mode
5469 occurs as part of an address.
5470 Also, this is not fully machine-customizable; it works for machines
5471 such as VAXen and 68000's and 32000's, but other possible machines
5472 could have addressing modes that this does not handle right.
5473 If you add push_reload calls here, you need to make sure gen_reload
5474 handles those cases gracefully. */
5476 static int
5477 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5478 enum rtx_code outer_code, enum rtx_code index_code,
5479 rtx *loc, int opnum, enum reload_type type,
5480 int ind_levels, rtx insn)
5482 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5483 ((CONTEXT) == 0 \
5484 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5485 : REGNO_OK_FOR_INDEX_P (REGNO))
5487 enum reg_class context_reg_class;
5488 RTX_CODE code = GET_CODE (x);
5490 if (context == 1)
5491 context_reg_class = INDEX_REG_CLASS;
5492 else
5493 context_reg_class = base_reg_class (mode, outer_code, index_code);
5495 switch (code)
5497 case PLUS:
5499 rtx orig_op0 = XEXP (x, 0);
5500 rtx orig_op1 = XEXP (x, 1);
5501 RTX_CODE code0 = GET_CODE (orig_op0);
5502 RTX_CODE code1 = GET_CODE (orig_op1);
5503 rtx op0 = orig_op0;
5504 rtx op1 = orig_op1;
5506 if (GET_CODE (op0) == SUBREG)
5508 op0 = SUBREG_REG (op0);
5509 code0 = GET_CODE (op0);
5510 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5511 op0 = gen_rtx_REG (word_mode,
5512 (REGNO (op0) +
5513 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5514 GET_MODE (SUBREG_REG (orig_op0)),
5515 SUBREG_BYTE (orig_op0),
5516 GET_MODE (orig_op0))));
5519 if (GET_CODE (op1) == SUBREG)
5521 op1 = SUBREG_REG (op1);
5522 code1 = GET_CODE (op1);
5523 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5524 /* ??? Why is this given op1's mode and above for
5525 ??? op0 SUBREGs we use word_mode? */
5526 op1 = gen_rtx_REG (GET_MODE (op1),
5527 (REGNO (op1) +
5528 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5529 GET_MODE (SUBREG_REG (orig_op1)),
5530 SUBREG_BYTE (orig_op1),
5531 GET_MODE (orig_op1))));
5533 /* Plus in the index register may be created only as a result of
5534 register rematerialization for expression like &localvar*4. Reload it.
5535 It may be possible to combine the displacement on the outer level,
5536 but it is probably not worthwhile to do so. */
5537 if (context == 1)
5539 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5540 opnum, ADDR_TYPE (type), ind_levels, insn);
5541 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5542 context_reg_class,
5543 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5544 return 1;
5547 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5548 || code0 == ZERO_EXTEND || code1 == MEM)
5550 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5551 &XEXP (x, 0), opnum, type, ind_levels,
5552 insn);
5553 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5554 &XEXP (x, 1), opnum, type, ind_levels,
5555 insn);
5558 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5559 || code1 == ZERO_EXTEND || code0 == MEM)
5561 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5562 &XEXP (x, 0), opnum, type, ind_levels,
5563 insn);
5564 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5565 &XEXP (x, 1), opnum, type, ind_levels,
5566 insn);
5569 else if (code0 == CONST_INT || code0 == CONST
5570 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5571 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5572 &XEXP (x, 1), opnum, type, ind_levels,
5573 insn);
5575 else if (code1 == CONST_INT || code1 == CONST
5576 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5577 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5578 &XEXP (x, 0), opnum, type, ind_levels,
5579 insn);
5581 else if (code0 == REG && code1 == REG)
5583 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5584 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5585 return 0;
5586 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5587 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5588 return 0;
5589 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5590 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5591 &XEXP (x, 1), opnum, type, ind_levels,
5592 insn);
5593 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5594 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5595 &XEXP (x, 0), opnum, type, ind_levels,
5596 insn);
5597 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5598 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5599 &XEXP (x, 0), opnum, type, ind_levels,
5600 insn);
5601 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5602 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5603 &XEXP (x, 1), opnum, type, ind_levels,
5604 insn);
5605 else
5607 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5608 &XEXP (x, 0), opnum, type, ind_levels,
5609 insn);
5610 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5611 &XEXP (x, 1), opnum, type, ind_levels,
5612 insn);
5616 else if (code0 == REG)
5618 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5619 &XEXP (x, 0), opnum, type, ind_levels,
5620 insn);
5621 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5622 &XEXP (x, 1), opnum, type, ind_levels,
5623 insn);
5626 else if (code1 == REG)
5628 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5629 &XEXP (x, 1), opnum, type, ind_levels,
5630 insn);
5631 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5632 &XEXP (x, 0), opnum, type, ind_levels,
5633 insn);
5637 return 0;
5639 case POST_MODIFY:
5640 case PRE_MODIFY:
5642 rtx op0 = XEXP (x, 0);
5643 rtx op1 = XEXP (x, 1);
5644 enum rtx_code index_code;
5645 int regno;
5646 int reloadnum;
5648 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5649 return 0;
5651 /* Currently, we only support {PRE,POST}_MODIFY constructs
5652 where a base register is {inc,dec}remented by the contents
5653 of another register or by a constant value. Thus, these
5654 operands must match. */
5655 gcc_assert (op0 == XEXP (op1, 0));
5657 /* Require index register (or constant). Let's just handle the
5658 register case in the meantime... If the target allows
5659 auto-modify by a constant then we could try replacing a pseudo
5660 register with its equivalent constant where applicable.
5662 We also handle the case where the register was eliminated
5663 resulting in a PLUS subexpression.
5665 If we later decide to reload the whole PRE_MODIFY or
5666 POST_MODIFY, inc_for_reload might clobber the reload register
5667 before reading the index. The index register might therefore
5668 need to live longer than a TYPE reload normally would, so be
5669 conservative and class it as RELOAD_OTHER. */
5670 if ((REG_P (XEXP (op1, 1))
5671 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5672 || GET_CODE (XEXP (op1, 1)) == PLUS)
5673 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5674 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5675 ind_levels, insn);
5677 gcc_assert (REG_P (XEXP (op1, 0)));
5679 regno = REGNO (XEXP (op1, 0));
5680 index_code = GET_CODE (XEXP (op1, 1));
5682 /* A register that is incremented cannot be constant! */
5683 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5684 || reg_equiv_constant[regno] == 0);
5686 /* Handle a register that is equivalent to a memory location
5687 which cannot be addressed directly. */
5688 if (reg_equiv_memory_loc[regno] != 0
5689 && (reg_equiv_address[regno] != 0
5690 || num_not_at_initial_offset))
5692 rtx tem = make_memloc (XEXP (x, 0), regno);
5694 if (reg_equiv_address[regno]
5695 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5697 rtx orig = tem;
5699 /* First reload the memory location's address.
5700 We can't use ADDR_TYPE (type) here, because we need to
5701 write back the value after reading it, hence we actually
5702 need two registers. */
5703 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5704 &XEXP (tem, 0), opnum,
5705 RELOAD_OTHER,
5706 ind_levels, insn);
5708 if (!rtx_equal_p (tem, orig))
5709 push_reg_equiv_alt_mem (regno, tem);
5711 /* Then reload the memory location into a base
5712 register. */
5713 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5714 &XEXP (op1, 0),
5715 base_reg_class (mode, code,
5716 index_code),
5717 GET_MODE (x), GET_MODE (x), 0,
5718 0, opnum, RELOAD_OTHER);
5720 update_auto_inc_notes (this_insn, regno, reloadnum);
5721 return 0;
5725 if (reg_renumber[regno] >= 0)
5726 regno = reg_renumber[regno];
5728 /* We require a base register here... */
5729 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5731 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5732 &XEXP (op1, 0), &XEXP (x, 0),
5733 base_reg_class (mode, code, index_code),
5734 GET_MODE (x), GET_MODE (x), 0, 0,
5735 opnum, RELOAD_OTHER);
5737 update_auto_inc_notes (this_insn, regno, reloadnum);
5738 return 0;
5741 return 0;
5743 case POST_INC:
5744 case POST_DEC:
5745 case PRE_INC:
5746 case PRE_DEC:
5747 if (REG_P (XEXP (x, 0)))
5749 int regno = REGNO (XEXP (x, 0));
5750 int value = 0;
5751 rtx x_orig = x;
5753 /* A register that is incremented cannot be constant! */
5754 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5755 || reg_equiv_constant[regno] == 0);
5757 /* Handle a register that is equivalent to a memory location
5758 which cannot be addressed directly. */
5759 if (reg_equiv_memory_loc[regno] != 0
5760 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5762 rtx tem = make_memloc (XEXP (x, 0), regno);
5763 if (reg_equiv_address[regno]
5764 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5766 rtx orig = tem;
5768 /* First reload the memory location's address.
5769 We can't use ADDR_TYPE (type) here, because we need to
5770 write back the value after reading it, hence we actually
5771 need two registers. */
5772 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5773 &XEXP (tem, 0), opnum, type,
5774 ind_levels, insn);
5775 if (!rtx_equal_p (tem, orig))
5776 push_reg_equiv_alt_mem (regno, tem);
5777 /* Put this inside a new increment-expression. */
5778 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5779 /* Proceed to reload that, as if it contained a register. */
5783 /* If we have a hard register that is ok in this incdec context,
5784 don't make a reload. If the register isn't nice enough for
5785 autoincdec, we can reload it. But, if an autoincrement of a
5786 register that we here verified as playing nice, still outside
5787 isn't "valid", it must be that no autoincrement is "valid".
5788 If that is true and something made an autoincrement anyway,
5789 this must be a special context where one is allowed.
5790 (For example, a "push" instruction.)
5791 We can't improve this address, so leave it alone. */
5793 /* Otherwise, reload the autoincrement into a suitable hard reg
5794 and record how much to increment by. */
5796 if (reg_renumber[regno] >= 0)
5797 regno = reg_renumber[regno];
5798 if (regno >= FIRST_PSEUDO_REGISTER
5799 || !REG_OK_FOR_CONTEXT (context, regno, mode, code,
5800 index_code))
5802 int reloadnum;
5804 /* If we can output the register afterwards, do so, this
5805 saves the extra update.
5806 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5807 CALL_INSN - and it does not set CC0.
5808 But don't do this if we cannot directly address the
5809 memory location, since this will make it harder to
5810 reuse address reloads, and increases register pressure.
5811 Also don't do this if we can probably update x directly. */
5812 rtx equiv = (MEM_P (XEXP (x, 0))
5813 ? XEXP (x, 0)
5814 : reg_equiv_mem[regno]);
5815 int icode = (int) optab_handler (add_optab, Pmode)->insn_code;
5816 if (insn && NONJUMP_INSN_P (insn) && equiv
5817 && memory_operand (equiv, GET_MODE (equiv))
5818 #ifdef HAVE_cc0
5819 && ! sets_cc0_p (PATTERN (insn))
5820 #endif
5821 && ! (icode != CODE_FOR_nothing
5822 && ((*insn_data[icode].operand[0].predicate)
5823 (equiv, Pmode))
5824 && ((*insn_data[icode].operand[1].predicate)
5825 (equiv, Pmode))))
5827 /* We use the original pseudo for loc, so that
5828 emit_reload_insns() knows which pseudo this
5829 reload refers to and updates the pseudo rtx, not
5830 its equivalent memory location, as well as the
5831 corresponding entry in reg_last_reload_reg. */
5832 loc = &XEXP (x_orig, 0);
5833 x = XEXP (x, 0);
5834 reloadnum
5835 = push_reload (x, x, loc, loc,
5836 context_reg_class,
5837 GET_MODE (x), GET_MODE (x), 0, 0,
5838 opnum, RELOAD_OTHER);
5840 else
5842 reloadnum
5843 = push_reload (x, x, loc, (rtx*) 0,
5844 context_reg_class,
5845 GET_MODE (x), GET_MODE (x), 0, 0,
5846 opnum, type);
5847 rld[reloadnum].inc
5848 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5850 value = 1;
5853 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5854 reloadnum);
5856 return value;
5858 return 0;
5860 case TRUNCATE:
5861 case SIGN_EXTEND:
5862 case ZERO_EXTEND:
5863 /* Look for parts to reload in the inner expression and reload them
5864 too, in addition to this operation. Reloading all inner parts in
5865 addition to this one shouldn't be necessary, but at this point,
5866 we don't know if we can possibly omit any part that *can* be
5867 reloaded. Targets that are better off reloading just either part
5868 (or perhaps even a different part of an outer expression), should
5869 define LEGITIMIZE_RELOAD_ADDRESS. */
5870 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5871 context, code, SCRATCH, &XEXP (x, 0), opnum,
5872 type, ind_levels, insn);
5873 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5874 context_reg_class,
5875 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5876 return 1;
5878 case MEM:
5879 /* This is probably the result of a substitution, by eliminate_regs, of
5880 an equivalent address for a pseudo that was not allocated to a hard
5881 register. Verify that the specified address is valid and reload it
5882 into a register.
5884 Since we know we are going to reload this item, don't decrement for
5885 the indirection level.
5887 Note that this is actually conservative: it would be slightly more
5888 efficient to use the value of SPILL_INDIRECT_LEVELS from
5889 reload1.c here. */
5891 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5892 opnum, ADDR_TYPE (type), ind_levels, insn);
5893 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5894 context_reg_class,
5895 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5896 return 1;
5898 case REG:
5900 int regno = REGNO (x);
5902 if (reg_equiv_constant[regno] != 0)
5904 find_reloads_address_part (reg_equiv_constant[regno], loc,
5905 context_reg_class,
5906 GET_MODE (x), opnum, type, ind_levels);
5907 return 1;
5910 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5911 that feeds this insn. */
5912 if (reg_equiv_mem[regno] != 0)
5914 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5915 context_reg_class,
5916 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5917 return 1;
5919 #endif
5921 if (reg_equiv_memory_loc[regno]
5922 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5924 rtx tem = make_memloc (x, regno);
5925 if (reg_equiv_address[regno] != 0
5926 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5928 x = tem;
5929 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5930 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5931 ind_levels, insn);
5932 if (!rtx_equal_p (x, tem))
5933 push_reg_equiv_alt_mem (regno, x);
5937 if (reg_renumber[regno] >= 0)
5938 regno = reg_renumber[regno];
5940 if (regno >= FIRST_PSEUDO_REGISTER
5941 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5942 index_code))
5944 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5945 context_reg_class,
5946 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5947 return 1;
5950 /* If a register appearing in an address is the subject of a CLOBBER
5951 in this insn, reload it into some other register to be safe.
5952 The CLOBBER is supposed to make the register unavailable
5953 from before this insn to after it. */
5954 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5956 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5957 context_reg_class,
5958 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5959 return 1;
5962 return 0;
5964 case SUBREG:
5965 if (REG_P (SUBREG_REG (x)))
5967 /* If this is a SUBREG of a hard register and the resulting register
5968 is of the wrong class, reload the whole SUBREG. This avoids
5969 needless copies if SUBREG_REG is multi-word. */
5970 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5972 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5974 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5975 index_code))
5977 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5978 context_reg_class,
5979 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5980 return 1;
5983 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5984 is larger than the class size, then reload the whole SUBREG. */
5985 else
5987 enum reg_class rclass = context_reg_class;
5988 if ((unsigned) CLASS_MAX_NREGS (rclass, GET_MODE (SUBREG_REG (x)))
5989 > reg_class_size[rclass])
5991 x = find_reloads_subreg_address (x, 0, opnum,
5992 ADDR_TYPE (type),
5993 ind_levels, insn);
5994 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
5995 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5996 return 1;
6000 break;
6002 default:
6003 break;
6007 const char *fmt = GET_RTX_FORMAT (code);
6008 int i;
6010 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6012 if (fmt[i] == 'e')
6013 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6014 we get here. */
6015 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
6016 &XEXP (x, i), opnum, type, ind_levels, insn);
6020 #undef REG_OK_FOR_CONTEXT
6021 return 0;
6024 /* X, which is found at *LOC, is a part of an address that needs to be
6025 reloaded into a register of class RCLASS. If X is a constant, or if
6026 X is a PLUS that contains a constant, check that the constant is a
6027 legitimate operand and that we are supposed to be able to load
6028 it into the register.
6030 If not, force the constant into memory and reload the MEM instead.
6032 MODE is the mode to use, in case X is an integer constant.
6034 OPNUM and TYPE describe the purpose of any reloads made.
6036 IND_LEVELS says how many levels of indirect addressing this machine
6037 supports. */
6039 static void
6040 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6041 enum machine_mode mode, int opnum,
6042 enum reload_type type, int ind_levels)
6044 if (CONSTANT_P (x)
6045 && (! LEGITIMATE_CONSTANT_P (x)
6046 || PREFERRED_RELOAD_CLASS (x, rclass) == NO_REGS))
6048 x = force_const_mem (mode, x);
6049 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6050 opnum, type, ind_levels, 0);
6053 else if (GET_CODE (x) == PLUS
6054 && CONSTANT_P (XEXP (x, 1))
6055 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
6056 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), rclass) == NO_REGS))
6058 rtx tem;
6060 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6061 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6062 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6063 opnum, type, ind_levels, 0);
6066 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6067 mode, VOIDmode, 0, 0, opnum, type);
6070 /* X, a subreg of a pseudo, is a part of an address that needs to be
6071 reloaded.
6073 If the pseudo is equivalent to a memory location that cannot be directly
6074 addressed, make the necessary address reloads.
6076 If address reloads have been necessary, or if the address is changed
6077 by register elimination, return the rtx of the memory location;
6078 otherwise, return X.
6080 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6081 memory location.
6083 OPNUM and TYPE identify the purpose of the reload.
6085 IND_LEVELS says how many levels of indirect addressing are
6086 supported at this point in the address.
6088 INSN, if nonzero, is the insn in which we do the reload. It is used
6089 to determine where to put USEs for pseudos that we have to replace with
6090 stack slots. */
6092 static rtx
6093 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6094 enum reload_type type, int ind_levels, rtx insn)
6096 int regno = REGNO (SUBREG_REG (x));
6098 if (reg_equiv_memory_loc[regno])
6100 /* If the address is not directly addressable, or if the address is not
6101 offsettable, then it must be replaced. */
6102 if (! force_replace
6103 && (reg_equiv_address[regno]
6104 || ! offsettable_memref_p (reg_equiv_mem[regno])))
6105 force_replace = 1;
6107 if (force_replace || num_not_at_initial_offset)
6109 rtx tem = make_memloc (SUBREG_REG (x), regno);
6111 /* If the address changes because of register elimination, then
6112 it must be replaced. */
6113 if (force_replace
6114 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6116 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6117 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6118 int offset;
6119 rtx orig = tem;
6120 int reloaded;
6122 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6123 hold the correct (negative) byte offset. */
6124 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6125 offset = inner_size - outer_size;
6126 else
6127 offset = SUBREG_BYTE (x);
6129 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6130 PUT_MODE (tem, GET_MODE (x));
6131 if (MEM_OFFSET (tem))
6132 set_mem_offset (tem, plus_constant (MEM_OFFSET (tem), offset));
6134 /* If this was a paradoxical subreg that we replaced, the
6135 resulting memory must be sufficiently aligned to allow
6136 us to widen the mode of the memory. */
6137 if (outer_size > inner_size)
6139 rtx base;
6141 base = XEXP (tem, 0);
6142 if (GET_CODE (base) == PLUS)
6144 if (CONST_INT_P (XEXP (base, 1))
6145 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6146 return x;
6147 base = XEXP (base, 0);
6149 if (!REG_P (base)
6150 || (REGNO_POINTER_ALIGN (REGNO (base))
6151 < outer_size * BITS_PER_UNIT))
6152 return x;
6155 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6156 XEXP (tem, 0), &XEXP (tem, 0),
6157 opnum, type, ind_levels, insn);
6158 /* ??? Do we need to handle nonzero offsets somehow? */
6159 if (!offset && !rtx_equal_p (tem, orig))
6160 push_reg_equiv_alt_mem (regno, tem);
6162 /* For some processors an address may be valid in the
6163 original mode but not in a smaller mode. For
6164 example, ARM accepts a scaled index register in
6165 SImode but not in HImode. Note that this is only
6166 a problem if the address in reg_equiv_mem is already
6167 invalid in the new mode; other cases would be fixed
6168 by find_reloads_address as usual.
6170 ??? We attempt to handle such cases here by doing an
6171 additional reload of the full address after the
6172 usual processing by find_reloads_address. Note that
6173 this may not work in the general case, but it seems
6174 to cover the cases where this situation currently
6175 occurs. A more general fix might be to reload the
6176 *value* instead of the address, but this would not
6177 be expected by the callers of this routine as-is.
6179 If find_reloads_address already completed replaced
6180 the address, there is nothing further to do. */
6181 if (reloaded == 0
6182 && reg_equiv_mem[regno] != 0
6183 && !strict_memory_address_p (GET_MODE (x),
6184 XEXP (reg_equiv_mem[regno], 0)))
6185 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6186 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6187 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6188 opnum, type);
6190 /* If this is not a toplevel operand, find_reloads doesn't see
6191 this substitution. We have to emit a USE of the pseudo so
6192 that delete_output_reload can see it. */
6193 if (replace_reloads && recog_data.operand[opnum] != x)
6194 /* We mark the USE with QImode so that we recognize it
6195 as one that can be safely deleted at the end of
6196 reload. */
6197 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6198 SUBREG_REG (x)),
6199 insn), QImode);
6200 x = tem;
6204 return x;
6207 /* Substitute into the current INSN the registers into which we have reloaded
6208 the things that need reloading. The array `replacements'
6209 contains the locations of all pointers that must be changed
6210 and says what to replace them with.
6212 Return the rtx that X translates into; usually X, but modified. */
6214 void
6215 subst_reloads (rtx insn)
6217 int i;
6219 for (i = 0; i < n_replacements; i++)
6221 struct replacement *r = &replacements[i];
6222 rtx reloadreg = rld[r->what].reg_rtx;
6223 if (reloadreg)
6225 #ifdef DEBUG_RELOAD
6226 /* This checking takes a very long time on some platforms
6227 causing the gcc.c-torture/compile/limits-fnargs.c test
6228 to time out during testing. See PR 31850.
6230 Internal consistency test. Check that we don't modify
6231 anything in the equivalence arrays. Whenever something from
6232 those arrays needs to be reloaded, it must be unshared before
6233 being substituted into; the equivalence must not be modified.
6234 Otherwise, if the equivalence is used after that, it will
6235 have been modified, and the thing substituted (probably a
6236 register) is likely overwritten and not a usable equivalence. */
6237 int check_regno;
6239 for (check_regno = 0; check_regno < max_regno; check_regno++)
6241 #define CHECK_MODF(ARRAY) \
6242 gcc_assert (!ARRAY[check_regno] \
6243 || !loc_mentioned_in_p (r->where, \
6244 ARRAY[check_regno]))
6246 CHECK_MODF (reg_equiv_constant);
6247 CHECK_MODF (reg_equiv_memory_loc);
6248 CHECK_MODF (reg_equiv_address);
6249 CHECK_MODF (reg_equiv_mem);
6250 #undef CHECK_MODF
6252 #endif /* DEBUG_RELOAD */
6254 /* If we're replacing a LABEL_REF with a register, there must
6255 already be an indication (to e.g. flow) which label this
6256 register refers to. */
6257 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6258 || !JUMP_P (insn)
6259 || find_reg_note (insn,
6260 REG_LABEL_OPERAND,
6261 XEXP (*r->where, 0))
6262 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6264 /* Encapsulate RELOADREG so its machine mode matches what
6265 used to be there. Note that gen_lowpart_common will
6266 do the wrong thing if RELOADREG is multi-word. RELOADREG
6267 will always be a REG here. */
6268 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6269 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6271 /* If we are putting this into a SUBREG and RELOADREG is a
6272 SUBREG, we would be making nested SUBREGs, so we have to fix
6273 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6275 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6277 if (GET_MODE (*r->subreg_loc)
6278 == GET_MODE (SUBREG_REG (reloadreg)))
6279 *r->subreg_loc = SUBREG_REG (reloadreg);
6280 else
6282 int final_offset =
6283 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6285 /* When working with SUBREGs the rule is that the byte
6286 offset must be a multiple of the SUBREG's mode. */
6287 final_offset = (final_offset /
6288 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6289 final_offset = (final_offset *
6290 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6292 *r->where = SUBREG_REG (reloadreg);
6293 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6296 else
6297 *r->where = reloadreg;
6299 /* If reload got no reg and isn't optional, something's wrong. */
6300 else
6301 gcc_assert (rld[r->what].optional);
6305 /* Make a copy of any replacements being done into X and move those
6306 copies to locations in Y, a copy of X. */
6308 void
6309 copy_replacements (rtx x, rtx y)
6311 /* We can't support X being a SUBREG because we might then need to know its
6312 location if something inside it was replaced. */
6313 gcc_assert (GET_CODE (x) != SUBREG);
6315 copy_replacements_1 (&x, &y, n_replacements);
6318 static void
6319 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6321 int i, j;
6322 rtx x, y;
6323 struct replacement *r;
6324 enum rtx_code code;
6325 const char *fmt;
6327 for (j = 0; j < orig_replacements; j++)
6329 if (replacements[j].subreg_loc == px)
6331 r = &replacements[n_replacements++];
6332 r->where = replacements[j].where;
6333 r->subreg_loc = py;
6334 r->what = replacements[j].what;
6335 r->mode = replacements[j].mode;
6337 else if (replacements[j].where == px)
6339 r = &replacements[n_replacements++];
6340 r->where = py;
6341 r->subreg_loc = 0;
6342 r->what = replacements[j].what;
6343 r->mode = replacements[j].mode;
6347 x = *px;
6348 y = *py;
6349 code = GET_CODE (x);
6350 fmt = GET_RTX_FORMAT (code);
6352 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6354 if (fmt[i] == 'e')
6355 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6356 else if (fmt[i] == 'E')
6357 for (j = XVECLEN (x, i); --j >= 0; )
6358 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6359 orig_replacements);
6363 /* Change any replacements being done to *X to be done to *Y. */
6365 void
6366 move_replacements (rtx *x, rtx *y)
6368 int i;
6370 for (i = 0; i < n_replacements; i++)
6371 if (replacements[i].subreg_loc == x)
6372 replacements[i].subreg_loc = y;
6373 else if (replacements[i].where == x)
6375 replacements[i].where = y;
6376 replacements[i].subreg_loc = 0;
6380 /* If LOC was scheduled to be replaced by something, return the replacement.
6381 Otherwise, return *LOC. */
6384 find_replacement (rtx *loc)
6386 struct replacement *r;
6388 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6390 rtx reloadreg = rld[r->what].reg_rtx;
6392 if (reloadreg && r->where == loc)
6394 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6395 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6397 return reloadreg;
6399 else if (reloadreg && r->subreg_loc == loc)
6401 /* RELOADREG must be either a REG or a SUBREG.
6403 ??? Is it actually still ever a SUBREG? If so, why? */
6405 if (REG_P (reloadreg))
6406 return gen_rtx_REG (GET_MODE (*loc),
6407 (REGNO (reloadreg) +
6408 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6409 GET_MODE (SUBREG_REG (*loc)),
6410 SUBREG_BYTE (*loc),
6411 GET_MODE (*loc))));
6412 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6413 return reloadreg;
6414 else
6416 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6418 /* When working with SUBREGs the rule is that the byte
6419 offset must be a multiple of the SUBREG's mode. */
6420 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6421 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6422 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6423 final_offset);
6428 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6429 what's inside and make a new rtl if so. */
6430 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6431 || GET_CODE (*loc) == MULT)
6433 rtx x = find_replacement (&XEXP (*loc, 0));
6434 rtx y = find_replacement (&XEXP (*loc, 1));
6436 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6437 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6440 return *loc;
6443 /* Return nonzero if register in range [REGNO, ENDREGNO)
6444 appears either explicitly or implicitly in X
6445 other than being stored into (except for earlyclobber operands).
6447 References contained within the substructure at LOC do not count.
6448 LOC may be zero, meaning don't ignore anything.
6450 This is similar to refers_to_regno_p in rtlanal.c except that we
6451 look at equivalences for pseudos that didn't get hard registers. */
6453 static int
6454 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6455 rtx x, rtx *loc)
6457 int i;
6458 unsigned int r;
6459 RTX_CODE code;
6460 const char *fmt;
6462 if (x == 0)
6463 return 0;
6465 repeat:
6466 code = GET_CODE (x);
6468 switch (code)
6470 case REG:
6471 r = REGNO (x);
6473 /* If this is a pseudo, a hard register must not have been allocated.
6474 X must therefore either be a constant or be in memory. */
6475 if (r >= FIRST_PSEUDO_REGISTER)
6477 if (reg_equiv_memory_loc[r])
6478 return refers_to_regno_for_reload_p (regno, endregno,
6479 reg_equiv_memory_loc[r],
6480 (rtx*) 0);
6482 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6483 return 0;
6486 return (endregno > r
6487 && regno < r + (r < FIRST_PSEUDO_REGISTER
6488 ? hard_regno_nregs[r][GET_MODE (x)]
6489 : 1));
6491 case SUBREG:
6492 /* If this is a SUBREG of a hard reg, we can see exactly which
6493 registers are being modified. Otherwise, handle normally. */
6494 if (REG_P (SUBREG_REG (x))
6495 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6497 unsigned int inner_regno = subreg_regno (x);
6498 unsigned int inner_endregno
6499 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6500 ? subreg_nregs (x) : 1);
6502 return endregno > inner_regno && regno < inner_endregno;
6504 break;
6506 case CLOBBER:
6507 case SET:
6508 if (&SET_DEST (x) != loc
6509 /* Note setting a SUBREG counts as referring to the REG it is in for
6510 a pseudo but not for hard registers since we can
6511 treat each word individually. */
6512 && ((GET_CODE (SET_DEST (x)) == SUBREG
6513 && loc != &SUBREG_REG (SET_DEST (x))
6514 && REG_P (SUBREG_REG (SET_DEST (x)))
6515 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6516 && refers_to_regno_for_reload_p (regno, endregno,
6517 SUBREG_REG (SET_DEST (x)),
6518 loc))
6519 /* If the output is an earlyclobber operand, this is
6520 a conflict. */
6521 || ((!REG_P (SET_DEST (x))
6522 || earlyclobber_operand_p (SET_DEST (x)))
6523 && refers_to_regno_for_reload_p (regno, endregno,
6524 SET_DEST (x), loc))))
6525 return 1;
6527 if (code == CLOBBER || loc == &SET_SRC (x))
6528 return 0;
6529 x = SET_SRC (x);
6530 goto repeat;
6532 default:
6533 break;
6536 /* X does not match, so try its subexpressions. */
6538 fmt = GET_RTX_FORMAT (code);
6539 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6541 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6543 if (i == 0)
6545 x = XEXP (x, 0);
6546 goto repeat;
6548 else
6549 if (refers_to_regno_for_reload_p (regno, endregno,
6550 XEXP (x, i), loc))
6551 return 1;
6553 else if (fmt[i] == 'E')
6555 int j;
6556 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6557 if (loc != &XVECEXP (x, i, j)
6558 && refers_to_regno_for_reload_p (regno, endregno,
6559 XVECEXP (x, i, j), loc))
6560 return 1;
6563 return 0;
6566 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6567 we check if any register number in X conflicts with the relevant register
6568 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6569 contains a MEM (we don't bother checking for memory addresses that can't
6570 conflict because we expect this to be a rare case.
6572 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6573 that we look at equivalences for pseudos that didn't get hard registers. */
6576 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6578 int regno, endregno;
6580 /* Overly conservative. */
6581 if (GET_CODE (x) == STRICT_LOW_PART
6582 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6583 x = XEXP (x, 0);
6585 /* If either argument is a constant, then modifying X can not affect IN. */
6586 if (CONSTANT_P (x) || CONSTANT_P (in))
6587 return 0;
6588 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6589 return refers_to_mem_for_reload_p (in);
6590 else if (GET_CODE (x) == SUBREG)
6592 regno = REGNO (SUBREG_REG (x));
6593 if (regno < FIRST_PSEUDO_REGISTER)
6594 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6595 GET_MODE (SUBREG_REG (x)),
6596 SUBREG_BYTE (x),
6597 GET_MODE (x));
6598 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6599 ? subreg_nregs (x) : 1);
6601 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6603 else if (REG_P (x))
6605 regno = REGNO (x);
6607 /* If this is a pseudo, it must not have been assigned a hard register.
6608 Therefore, it must either be in memory or be a constant. */
6610 if (regno >= FIRST_PSEUDO_REGISTER)
6612 if (reg_equiv_memory_loc[regno])
6613 return refers_to_mem_for_reload_p (in);
6614 gcc_assert (reg_equiv_constant[regno]);
6615 return 0;
6618 endregno = END_HARD_REGNO (x);
6620 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6622 else if (MEM_P (x))
6623 return refers_to_mem_for_reload_p (in);
6624 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6625 || GET_CODE (x) == CC0)
6626 return reg_mentioned_p (x, in);
6627 else
6629 gcc_assert (GET_CODE (x) == PLUS);
6631 /* We actually want to know if X is mentioned somewhere inside IN.
6632 We must not say that (plus (sp) (const_int 124)) is in
6633 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6634 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6635 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6636 while (MEM_P (in))
6637 in = XEXP (in, 0);
6638 if (REG_P (in))
6639 return 0;
6640 else if (GET_CODE (in) == PLUS)
6641 return (rtx_equal_p (x, in)
6642 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6643 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6644 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6645 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6648 gcc_unreachable ();
6651 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6652 registers. */
6654 static int
6655 refers_to_mem_for_reload_p (rtx x)
6657 const char *fmt;
6658 int i;
6660 if (MEM_P (x))
6661 return 1;
6663 if (REG_P (x))
6664 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6665 && reg_equiv_memory_loc[REGNO (x)]);
6667 fmt = GET_RTX_FORMAT (GET_CODE (x));
6668 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6669 if (fmt[i] == 'e'
6670 && (MEM_P (XEXP (x, i))
6671 || refers_to_mem_for_reload_p (XEXP (x, i))))
6672 return 1;
6674 return 0;
6677 /* Check the insns before INSN to see if there is a suitable register
6678 containing the same value as GOAL.
6679 If OTHER is -1, look for a register in class RCLASS.
6680 Otherwise, just see if register number OTHER shares GOAL's value.
6682 Return an rtx for the register found, or zero if none is found.
6684 If RELOAD_REG_P is (short *)1,
6685 we reject any hard reg that appears in reload_reg_rtx
6686 because such a hard reg is also needed coming into this insn.
6688 If RELOAD_REG_P is any other nonzero value,
6689 it is a vector indexed by hard reg number
6690 and we reject any hard reg whose element in the vector is nonnegative
6691 as well as any that appears in reload_reg_rtx.
6693 If GOAL is zero, then GOALREG is a register number; we look
6694 for an equivalent for that register.
6696 MODE is the machine mode of the value we want an equivalence for.
6697 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6699 This function is used by jump.c as well as in the reload pass.
6701 If GOAL is the sum of the stack pointer and a constant, we treat it
6702 as if it were a constant except that sp is required to be unchanging. */
6705 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6706 short *reload_reg_p, int goalreg, enum machine_mode mode)
6708 rtx p = insn;
6709 rtx goaltry, valtry, value, where;
6710 rtx pat;
6711 int regno = -1;
6712 int valueno;
6713 int goal_mem = 0;
6714 int goal_const = 0;
6715 int goal_mem_addr_varies = 0;
6716 int need_stable_sp = 0;
6717 int nregs;
6718 int valuenregs;
6719 int num = 0;
6721 if (goal == 0)
6722 regno = goalreg;
6723 else if (REG_P (goal))
6724 regno = REGNO (goal);
6725 else if (MEM_P (goal))
6727 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6728 if (MEM_VOLATILE_P (goal))
6729 return 0;
6730 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6731 return 0;
6732 /* An address with side effects must be reexecuted. */
6733 switch (code)
6735 case POST_INC:
6736 case PRE_INC:
6737 case POST_DEC:
6738 case PRE_DEC:
6739 case POST_MODIFY:
6740 case PRE_MODIFY:
6741 return 0;
6742 default:
6743 break;
6745 goal_mem = 1;
6747 else if (CONSTANT_P (goal))
6748 goal_const = 1;
6749 else if (GET_CODE (goal) == PLUS
6750 && XEXP (goal, 0) == stack_pointer_rtx
6751 && CONSTANT_P (XEXP (goal, 1)))
6752 goal_const = need_stable_sp = 1;
6753 else if (GET_CODE (goal) == PLUS
6754 && XEXP (goal, 0) == frame_pointer_rtx
6755 && CONSTANT_P (XEXP (goal, 1)))
6756 goal_const = 1;
6757 else
6758 return 0;
6760 num = 0;
6761 /* Scan insns back from INSN, looking for one that copies
6762 a value into or out of GOAL.
6763 Stop and give up if we reach a label. */
6765 while (1)
6767 p = PREV_INSN (p);
6768 if (p && DEBUG_INSN_P (p))
6769 continue;
6770 num++;
6771 if (p == 0 || LABEL_P (p)
6772 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6773 return 0;
6775 if (NONJUMP_INSN_P (p)
6776 /* If we don't want spill regs ... */
6777 && (! (reload_reg_p != 0
6778 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6779 /* ... then ignore insns introduced by reload; they aren't
6780 useful and can cause results in reload_as_needed to be
6781 different from what they were when calculating the need for
6782 spills. If we notice an input-reload insn here, we will
6783 reject it below, but it might hide a usable equivalent.
6784 That makes bad code. It may even fail: perhaps no reg was
6785 spilled for this insn because it was assumed we would find
6786 that equivalent. */
6787 || INSN_UID (p) < reload_first_uid))
6789 rtx tem;
6790 pat = single_set (p);
6792 /* First check for something that sets some reg equal to GOAL. */
6793 if (pat != 0
6794 && ((regno >= 0
6795 && true_regnum (SET_SRC (pat)) == regno
6796 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6798 (regno >= 0
6799 && true_regnum (SET_DEST (pat)) == regno
6800 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6802 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6803 /* When looking for stack pointer + const,
6804 make sure we don't use a stack adjust. */
6805 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6806 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6807 || (goal_mem
6808 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6809 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6810 || (goal_mem
6811 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6812 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6813 /* If we are looking for a constant,
6814 and something equivalent to that constant was copied
6815 into a reg, we can use that reg. */
6816 || (goal_const && REG_NOTES (p) != 0
6817 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6818 && ((rtx_equal_p (XEXP (tem, 0), goal)
6819 && (valueno
6820 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6821 || (REG_P (SET_DEST (pat))
6822 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6823 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6824 && CONST_INT_P (goal)
6825 && 0 != (goaltry
6826 = operand_subword (XEXP (tem, 0), 0, 0,
6827 VOIDmode))
6828 && rtx_equal_p (goal, goaltry)
6829 && (valtry
6830 = operand_subword (SET_DEST (pat), 0, 0,
6831 VOIDmode))
6832 && (valueno = true_regnum (valtry)) >= 0)))
6833 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6834 NULL_RTX))
6835 && REG_P (SET_DEST (pat))
6836 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6837 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6838 && CONST_INT_P (goal)
6839 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6840 VOIDmode))
6841 && rtx_equal_p (goal, goaltry)
6842 && (valtry
6843 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6844 && (valueno = true_regnum (valtry)) >= 0)))
6846 if (other >= 0)
6848 if (valueno != other)
6849 continue;
6851 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6852 continue;
6853 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6854 mode, valueno))
6855 continue;
6856 value = valtry;
6857 where = p;
6858 break;
6863 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6864 (or copying VALUE into GOAL, if GOAL is also a register).
6865 Now verify that VALUE is really valid. */
6867 /* VALUENO is the register number of VALUE; a hard register. */
6869 /* Don't try to re-use something that is killed in this insn. We want
6870 to be able to trust REG_UNUSED notes. */
6871 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6872 return 0;
6874 /* If we propose to get the value from the stack pointer or if GOAL is
6875 a MEM based on the stack pointer, we need a stable SP. */
6876 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6877 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6878 goal)))
6879 need_stable_sp = 1;
6881 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6882 if (GET_MODE (value) != mode)
6883 return 0;
6885 /* Reject VALUE if it was loaded from GOAL
6886 and is also a register that appears in the address of GOAL. */
6888 if (goal_mem && value == SET_DEST (single_set (where))
6889 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6890 goal, (rtx*) 0))
6891 return 0;
6893 /* Reject registers that overlap GOAL. */
6895 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6896 nregs = hard_regno_nregs[regno][mode];
6897 else
6898 nregs = 1;
6899 valuenregs = hard_regno_nregs[valueno][mode];
6901 if (!goal_mem && !goal_const
6902 && regno + nregs > valueno && regno < valueno + valuenregs)
6903 return 0;
6905 /* Reject VALUE if it is one of the regs reserved for reloads.
6906 Reload1 knows how to reuse them anyway, and it would get
6907 confused if we allocated one without its knowledge.
6908 (Now that insns introduced by reload are ignored above,
6909 this case shouldn't happen, but I'm not positive.) */
6911 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6913 int i;
6914 for (i = 0; i < valuenregs; ++i)
6915 if (reload_reg_p[valueno + i] >= 0)
6916 return 0;
6919 /* Reject VALUE if it is a register being used for an input reload
6920 even if it is not one of those reserved. */
6922 if (reload_reg_p != 0)
6924 int i;
6925 for (i = 0; i < n_reloads; i++)
6926 if (rld[i].reg_rtx != 0 && rld[i].in)
6928 int regno1 = REGNO (rld[i].reg_rtx);
6929 int nregs1 = hard_regno_nregs[regno1]
6930 [GET_MODE (rld[i].reg_rtx)];
6931 if (regno1 < valueno + valuenregs
6932 && regno1 + nregs1 > valueno)
6933 return 0;
6937 if (goal_mem)
6938 /* We must treat frame pointer as varying here,
6939 since it can vary--in a nonlocal goto as generated by expand_goto. */
6940 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6942 /* Now verify that the values of GOAL and VALUE remain unaltered
6943 until INSN is reached. */
6945 p = insn;
6946 while (1)
6948 p = PREV_INSN (p);
6949 if (p == where)
6950 return value;
6952 /* Don't trust the conversion past a function call
6953 if either of the two is in a call-clobbered register, or memory. */
6954 if (CALL_P (p))
6956 int i;
6958 if (goal_mem || need_stable_sp)
6959 return 0;
6961 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6962 for (i = 0; i < nregs; ++i)
6963 if (call_used_regs[regno + i]
6964 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6965 return 0;
6967 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6968 for (i = 0; i < valuenregs; ++i)
6969 if (call_used_regs[valueno + i]
6970 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6971 return 0;
6974 if (INSN_P (p))
6976 pat = PATTERN (p);
6978 /* Watch out for unspec_volatile, and volatile asms. */
6979 if (volatile_insn_p (pat))
6980 return 0;
6982 /* If this insn P stores in either GOAL or VALUE, return 0.
6983 If GOAL is a memory ref and this insn writes memory, return 0.
6984 If GOAL is a memory ref and its address is not constant,
6985 and this insn P changes a register used in GOAL, return 0. */
6987 if (GET_CODE (pat) == COND_EXEC)
6988 pat = COND_EXEC_CODE (pat);
6989 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6991 rtx dest = SET_DEST (pat);
6992 while (GET_CODE (dest) == SUBREG
6993 || GET_CODE (dest) == ZERO_EXTRACT
6994 || GET_CODE (dest) == STRICT_LOW_PART)
6995 dest = XEXP (dest, 0);
6996 if (REG_P (dest))
6998 int xregno = REGNO (dest);
6999 int xnregs;
7000 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7001 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7002 else
7003 xnregs = 1;
7004 if (xregno < regno + nregs && xregno + xnregs > regno)
7005 return 0;
7006 if (xregno < valueno + valuenregs
7007 && xregno + xnregs > valueno)
7008 return 0;
7009 if (goal_mem_addr_varies
7010 && reg_overlap_mentioned_for_reload_p (dest, goal))
7011 return 0;
7012 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7013 return 0;
7015 else if (goal_mem && MEM_P (dest)
7016 && ! push_operand (dest, GET_MODE (dest)))
7017 return 0;
7018 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7019 && reg_equiv_memory_loc[regno] != 0)
7020 return 0;
7021 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7022 return 0;
7024 else if (GET_CODE (pat) == PARALLEL)
7026 int i;
7027 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7029 rtx v1 = XVECEXP (pat, 0, i);
7030 if (GET_CODE (v1) == COND_EXEC)
7031 v1 = COND_EXEC_CODE (v1);
7032 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7034 rtx dest = SET_DEST (v1);
7035 while (GET_CODE (dest) == SUBREG
7036 || GET_CODE (dest) == ZERO_EXTRACT
7037 || GET_CODE (dest) == STRICT_LOW_PART)
7038 dest = XEXP (dest, 0);
7039 if (REG_P (dest))
7041 int xregno = REGNO (dest);
7042 int xnregs;
7043 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7044 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7045 else
7046 xnregs = 1;
7047 if (xregno < regno + nregs
7048 && xregno + xnregs > regno)
7049 return 0;
7050 if (xregno < valueno + valuenregs
7051 && xregno + xnregs > valueno)
7052 return 0;
7053 if (goal_mem_addr_varies
7054 && reg_overlap_mentioned_for_reload_p (dest,
7055 goal))
7056 return 0;
7057 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7058 return 0;
7060 else if (goal_mem && MEM_P (dest)
7061 && ! push_operand (dest, GET_MODE (dest)))
7062 return 0;
7063 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7064 && reg_equiv_memory_loc[regno] != 0)
7065 return 0;
7066 else if (need_stable_sp
7067 && push_operand (dest, GET_MODE (dest)))
7068 return 0;
7073 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7075 rtx link;
7077 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7078 link = XEXP (link, 1))
7080 pat = XEXP (link, 0);
7081 if (GET_CODE (pat) == CLOBBER)
7083 rtx dest = SET_DEST (pat);
7085 if (REG_P (dest))
7087 int xregno = REGNO (dest);
7088 int xnregs
7089 = hard_regno_nregs[xregno][GET_MODE (dest)];
7091 if (xregno < regno + nregs
7092 && xregno + xnregs > regno)
7093 return 0;
7094 else if (xregno < valueno + valuenregs
7095 && xregno + xnregs > valueno)
7096 return 0;
7097 else if (goal_mem_addr_varies
7098 && reg_overlap_mentioned_for_reload_p (dest,
7099 goal))
7100 return 0;
7103 else if (goal_mem && MEM_P (dest)
7104 && ! push_operand (dest, GET_MODE (dest)))
7105 return 0;
7106 else if (need_stable_sp
7107 && push_operand (dest, GET_MODE (dest)))
7108 return 0;
7113 #ifdef AUTO_INC_DEC
7114 /* If this insn auto-increments or auto-decrements
7115 either regno or valueno, return 0 now.
7116 If GOAL is a memory ref and its address is not constant,
7117 and this insn P increments a register used in GOAL, return 0. */
7119 rtx link;
7121 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7122 if (REG_NOTE_KIND (link) == REG_INC
7123 && REG_P (XEXP (link, 0)))
7125 int incno = REGNO (XEXP (link, 0));
7126 if (incno < regno + nregs && incno >= regno)
7127 return 0;
7128 if (incno < valueno + valuenregs && incno >= valueno)
7129 return 0;
7130 if (goal_mem_addr_varies
7131 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7132 goal))
7133 return 0;
7136 #endif
7141 /* Find a place where INCED appears in an increment or decrement operator
7142 within X, and return the amount INCED is incremented or decremented by.
7143 The value is always positive. */
7145 static int
7146 find_inc_amount (rtx x, rtx inced)
7148 enum rtx_code code = GET_CODE (x);
7149 const char *fmt;
7150 int i;
7152 if (code == MEM)
7154 rtx addr = XEXP (x, 0);
7155 if ((GET_CODE (addr) == PRE_DEC
7156 || GET_CODE (addr) == POST_DEC
7157 || GET_CODE (addr) == PRE_INC
7158 || GET_CODE (addr) == POST_INC)
7159 && XEXP (addr, 0) == inced)
7160 return GET_MODE_SIZE (GET_MODE (x));
7161 else if ((GET_CODE (addr) == PRE_MODIFY
7162 || GET_CODE (addr) == POST_MODIFY)
7163 && GET_CODE (XEXP (addr, 1)) == PLUS
7164 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7165 && XEXP (addr, 0) == inced
7166 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7168 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7169 return i < 0 ? -i : i;
7173 fmt = GET_RTX_FORMAT (code);
7174 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7176 if (fmt[i] == 'e')
7178 int tem = find_inc_amount (XEXP (x, i), inced);
7179 if (tem != 0)
7180 return tem;
7182 if (fmt[i] == 'E')
7184 int j;
7185 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7187 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7188 if (tem != 0)
7189 return tem;
7194 return 0;
7197 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7198 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7200 #ifdef AUTO_INC_DEC
7201 static int
7202 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7203 rtx insn)
7205 rtx link;
7207 gcc_assert (insn);
7209 if (! INSN_P (insn))
7210 return 0;
7212 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7213 if (REG_NOTE_KIND (link) == REG_INC)
7215 unsigned int test = (int) REGNO (XEXP (link, 0));
7216 if (test >= regno && test < endregno)
7217 return 1;
7219 return 0;
7221 #else
7223 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7225 #endif
7227 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7228 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7229 REG_INC. REGNO must refer to a hard register. */
7232 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7233 int sets)
7235 unsigned int nregs, endregno;
7237 /* regno must be a hard register. */
7238 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7240 nregs = hard_regno_nregs[regno][mode];
7241 endregno = regno + nregs;
7243 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7244 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7245 && REG_P (XEXP (PATTERN (insn), 0)))
7247 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7249 return test >= regno && test < endregno;
7252 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7253 return 1;
7255 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7257 int i = XVECLEN (PATTERN (insn), 0) - 1;
7259 for (; i >= 0; i--)
7261 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7262 if ((GET_CODE (elt) == CLOBBER
7263 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7264 && REG_P (XEXP (elt, 0)))
7266 unsigned int test = REGNO (XEXP (elt, 0));
7268 if (test >= regno && test < endregno)
7269 return 1;
7271 if (sets == 2
7272 && reg_inc_found_and_valid_p (regno, endregno, elt))
7273 return 1;
7277 return 0;
7280 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7282 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7284 int regno;
7286 if (GET_MODE (reloadreg) == mode)
7287 return reloadreg;
7289 regno = REGNO (reloadreg);
7291 if (WORDS_BIG_ENDIAN)
7292 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7293 - (int) hard_regno_nregs[regno][mode];
7295 return gen_rtx_REG (mode, regno);
7298 static const char *const reload_when_needed_name[] =
7300 "RELOAD_FOR_INPUT",
7301 "RELOAD_FOR_OUTPUT",
7302 "RELOAD_FOR_INSN",
7303 "RELOAD_FOR_INPUT_ADDRESS",
7304 "RELOAD_FOR_INPADDR_ADDRESS",
7305 "RELOAD_FOR_OUTPUT_ADDRESS",
7306 "RELOAD_FOR_OUTADDR_ADDRESS",
7307 "RELOAD_FOR_OPERAND_ADDRESS",
7308 "RELOAD_FOR_OPADDR_ADDR",
7309 "RELOAD_OTHER",
7310 "RELOAD_FOR_OTHER_ADDRESS"
7313 /* These functions are used to print the variables set by 'find_reloads' */
7315 void
7316 debug_reload_to_stream (FILE *f)
7318 int r;
7319 const char *prefix;
7321 if (! f)
7322 f = stderr;
7323 for (r = 0; r < n_reloads; r++)
7325 fprintf (f, "Reload %d: ", r);
7327 if (rld[r].in != 0)
7329 fprintf (f, "reload_in (%s) = ",
7330 GET_MODE_NAME (rld[r].inmode));
7331 print_inline_rtx (f, rld[r].in, 24);
7332 fprintf (f, "\n\t");
7335 if (rld[r].out != 0)
7337 fprintf (f, "reload_out (%s) = ",
7338 GET_MODE_NAME (rld[r].outmode));
7339 print_inline_rtx (f, rld[r].out, 24);
7340 fprintf (f, "\n\t");
7343 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7345 fprintf (f, "%s (opnum = %d)",
7346 reload_when_needed_name[(int) rld[r].when_needed],
7347 rld[r].opnum);
7349 if (rld[r].optional)
7350 fprintf (f, ", optional");
7352 if (rld[r].nongroup)
7353 fprintf (f, ", nongroup");
7355 if (rld[r].inc != 0)
7356 fprintf (f, ", inc by %d", rld[r].inc);
7358 if (rld[r].nocombine)
7359 fprintf (f, ", can't combine");
7361 if (rld[r].secondary_p)
7362 fprintf (f, ", secondary_reload_p");
7364 if (rld[r].in_reg != 0)
7366 fprintf (f, "\n\treload_in_reg: ");
7367 print_inline_rtx (f, rld[r].in_reg, 24);
7370 if (rld[r].out_reg != 0)
7372 fprintf (f, "\n\treload_out_reg: ");
7373 print_inline_rtx (f, rld[r].out_reg, 24);
7376 if (rld[r].reg_rtx != 0)
7378 fprintf (f, "\n\treload_reg_rtx: ");
7379 print_inline_rtx (f, rld[r].reg_rtx, 24);
7382 prefix = "\n\t";
7383 if (rld[r].secondary_in_reload != -1)
7385 fprintf (f, "%ssecondary_in_reload = %d",
7386 prefix, rld[r].secondary_in_reload);
7387 prefix = ", ";
7390 if (rld[r].secondary_out_reload != -1)
7391 fprintf (f, "%ssecondary_out_reload = %d\n",
7392 prefix, rld[r].secondary_out_reload);
7394 prefix = "\n\t";
7395 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7397 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7398 insn_data[rld[r].secondary_in_icode].name);
7399 prefix = ", ";
7402 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7403 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7404 insn_data[rld[r].secondary_out_icode].name);
7406 fprintf (f, "\n");
7410 void
7411 debug_reload (void)
7413 debug_reload_to_stream (stderr);