Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / reg-stack.c
blobff09ad224d920a9b7aa482889f09324a6805cba6
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "cfglayout.h"
171 #include "varray.h"
172 #include "reload.h"
173 #include "ggc.h"
174 #include "timevar.h"
175 #include "tree-pass.h"
176 #include "target.h"
177 #include "df.h"
178 #include "vecprim.h"
180 #ifdef STACK_REGS
182 /* We use this array to cache info about insns, because otherwise we
183 spend too much time in stack_regs_mentioned_p.
185 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
186 the insn uses stack registers, two indicates the insn does not use
187 stack registers. */
188 static VEC(char,heap) *stack_regs_mentioned_data;
190 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
192 int regstack_completed = 0;
194 /* This is the basic stack record. TOP is an index into REG[] such
195 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
197 If TOP is -2, REG[] is not yet initialized. Stack initialization
198 consists of placing each live reg in array `reg' and setting `top'
199 appropriately.
201 REG_SET indicates which registers are live. */
203 typedef struct stack_def
205 int top; /* index to top stack element */
206 HARD_REG_SET reg_set; /* set of live registers */
207 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
208 } *stack;
210 /* This is used to carry information about basic blocks. It is
211 attached to the AUX field of the standard CFG block. */
213 typedef struct block_info_def
215 struct stack_def stack_in; /* Input stack configuration. */
216 struct stack_def stack_out; /* Output stack configuration. */
217 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
218 int done; /* True if block already converted. */
219 int predecessors; /* Number of predecessors that need
220 to be visited. */
221 } *block_info;
223 #define BLOCK_INFO(B) ((block_info) (B)->aux)
225 /* Passed to change_stack to indicate where to emit insns. */
226 enum emit_where
228 EMIT_AFTER,
229 EMIT_BEFORE
232 /* The block we're currently working on. */
233 static basic_block current_block;
235 /* In the current_block, whether we're processing the first register
236 stack or call instruction, i.e. the regstack is currently the
237 same as BLOCK_INFO(current_block)->stack_in. */
238 static bool starting_stack_p;
240 /* This is the register file for all register after conversion. */
241 static rtx
242 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
244 #define FP_MODE_REG(regno,mode) \
245 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
247 /* Used to initialize uninitialized registers. */
248 static rtx not_a_num;
250 /* Forward declarations */
252 static int stack_regs_mentioned_p (const_rtx pat);
253 static void pop_stack (stack, int);
254 static rtx *get_true_reg (rtx *);
256 static int check_asm_stack_operands (rtx);
257 static int get_asm_operand_n_inputs (rtx);
258 static rtx stack_result (tree);
259 static void replace_reg (rtx *, int);
260 static void remove_regno_note (rtx, enum reg_note, unsigned int);
261 static int get_hard_regnum (stack, rtx);
262 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
263 static void swap_to_top(rtx, stack, rtx, rtx);
264 static bool move_for_stack_reg (rtx, stack, rtx);
265 static bool move_nan_for_stack_reg (rtx, stack, rtx);
266 static int swap_rtx_condition_1 (rtx);
267 static int swap_rtx_condition (rtx);
268 static void compare_for_stack_reg (rtx, stack, rtx);
269 static bool subst_stack_regs_pat (rtx, stack, rtx);
270 static void subst_asm_stack_regs (rtx, stack);
271 static bool subst_stack_regs (rtx, stack);
272 static void change_stack (rtx, stack, stack, enum emit_where);
273 static void print_stack (FILE *, stack);
274 static rtx next_flags_user (rtx);
276 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
278 static int
279 stack_regs_mentioned_p (const_rtx pat)
281 const char *fmt;
282 int i;
284 if (STACK_REG_P (pat))
285 return 1;
287 fmt = GET_RTX_FORMAT (GET_CODE (pat));
288 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
290 if (fmt[i] == 'E')
292 int j;
294 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
295 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
296 return 1;
298 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
299 return 1;
302 return 0;
305 /* Return nonzero if INSN mentions stacked registers, else return zero. */
308 stack_regs_mentioned (const_rtx insn)
310 unsigned int uid, max;
311 int test;
313 if (! INSN_P (insn) || !stack_regs_mentioned_data)
314 return 0;
316 uid = INSN_UID (insn);
317 max = VEC_length (char, stack_regs_mentioned_data);
318 if (uid >= max)
320 /* Allocate some extra size to avoid too many reallocs, but
321 do not grow too quickly. */
322 max = uid + uid / 20 + 1;
323 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
326 test = VEC_index (char, stack_regs_mentioned_data, uid);
327 if (test == 0)
329 /* This insn has yet to be examined. Do so now. */
330 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
331 VEC_replace (char, stack_regs_mentioned_data, uid, test);
334 return test == 1;
337 static rtx ix86_flags_rtx;
339 static rtx
340 next_flags_user (rtx insn)
342 /* Search forward looking for the first use of this value.
343 Stop at block boundaries. */
345 while (insn != BB_END (current_block))
347 insn = NEXT_INSN (insn);
349 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
350 return insn;
352 if (CALL_P (insn))
353 return NULL_RTX;
355 return NULL_RTX;
358 /* Reorganize the stack into ascending numbers, before this insn. */
360 static void
361 straighten_stack (rtx insn, stack regstack)
363 struct stack_def temp_stack;
364 int top;
366 /* If there is only a single register on the stack, then the stack is
367 already in increasing order and no reorganization is needed.
369 Similarly if the stack is empty. */
370 if (regstack->top <= 0)
371 return;
373 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
375 for (top = temp_stack.top = regstack->top; top >= 0; top--)
376 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
378 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
381 /* Pop a register from the stack. */
383 static void
384 pop_stack (stack regstack, int regno)
386 int top = regstack->top;
388 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
389 regstack->top--;
390 /* If regno was not at the top of stack then adjust stack. */
391 if (regstack->reg [top] != regno)
393 int i;
394 for (i = regstack->top; i >= 0; i--)
395 if (regstack->reg [i] == regno)
397 int j;
398 for (j = i; j < top; j++)
399 regstack->reg [j] = regstack->reg [j + 1];
400 break;
405 /* Return a pointer to the REG expression within PAT. If PAT is not a
406 REG, possible enclosed by a conversion rtx, return the inner part of
407 PAT that stopped the search. */
409 static rtx *
410 get_true_reg (rtx *pat)
412 for (;;)
413 switch (GET_CODE (*pat))
415 case SUBREG:
416 /* Eliminate FP subregister accesses in favor of the
417 actual FP register in use. */
419 rtx subreg;
420 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
422 int regno_off = subreg_regno_offset (REGNO (subreg),
423 GET_MODE (subreg),
424 SUBREG_BYTE (*pat),
425 GET_MODE (*pat));
426 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
427 GET_MODE (subreg));
428 return pat;
431 case FLOAT:
432 case FIX:
433 case FLOAT_EXTEND:
434 pat = & XEXP (*pat, 0);
435 break;
437 case UNSPEC:
438 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
439 pat = & XVECEXP (*pat, 0, 0);
440 return pat;
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = & XEXP (*pat, 0);
446 break;
448 default:
449 return pat;
453 /* Set if we find any malformed asms in a block. */
454 static bool any_malformed_asm;
456 /* There are many rules that an asm statement for stack-like regs must
457 follow. Those rules are explained at the top of this file: the rule
458 numbers below refer to that explanation. */
460 static int
461 check_asm_stack_operands (rtx insn)
463 int i;
464 int n_clobbers;
465 int malformed_asm = 0;
466 rtx body = PATTERN (insn);
468 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469 char implicitly_dies[FIRST_PSEUDO_REGISTER];
470 int alt;
472 rtx *clobber_reg = 0;
473 int n_inputs, n_outputs;
475 /* Find out what the constraints require. If no constraint
476 alternative matches, this asm is malformed. */
477 extract_insn (insn);
478 constrain_operands (1);
479 alt = which_alternative;
481 preprocess_constraints ();
483 n_inputs = get_asm_operand_n_inputs (body);
484 n_outputs = recog_data.n_operands - n_inputs;
486 if (alt < 0)
488 malformed_asm = 1;
489 /* Avoid further trouble with this insn. */
490 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
491 return 0;
494 /* Strip SUBREGs here to make the following code simpler. */
495 for (i = 0; i < recog_data.n_operands; i++)
496 if (GET_CODE (recog_data.operand[i]) == SUBREG
497 && REG_P (SUBREG_REG (recog_data.operand[i])))
498 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
500 /* Set up CLOBBER_REG. */
502 n_clobbers = 0;
504 if (GET_CODE (body) == PARALLEL)
506 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
508 for (i = 0; i < XVECLEN (body, 0); i++)
509 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
511 rtx clobber = XVECEXP (body, 0, i);
512 rtx reg = XEXP (clobber, 0);
514 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
515 reg = SUBREG_REG (reg);
517 if (STACK_REG_P (reg))
519 clobber_reg[n_clobbers] = reg;
520 n_clobbers++;
525 /* Enforce rule #4: Output operands must specifically indicate which
526 reg an output appears in after an asm. "=f" is not allowed: the
527 operand constraints must select a class with a single reg.
529 Also enforce rule #5: Output operands must start at the top of
530 the reg-stack: output operands may not "skip" a reg. */
532 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
533 for (i = 0; i < n_outputs; i++)
534 if (STACK_REG_P (recog_data.operand[i]))
536 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
538 error_for_asm (insn, "output constraint %d must specify a single register", i);
539 malformed_asm = 1;
541 else
543 int j;
545 for (j = 0; j < n_clobbers; j++)
546 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
548 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
549 i, reg_names [REGNO (clobber_reg[j])]);
550 malformed_asm = 1;
551 break;
553 if (j == n_clobbers)
554 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
559 /* Search for first non-popped reg. */
560 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
561 if (! reg_used_as_output[i])
562 break;
564 /* If there are any other popped regs, that's an error. */
565 for (; i < LAST_STACK_REG + 1; i++)
566 if (reg_used_as_output[i])
567 break;
569 if (i != LAST_STACK_REG + 1)
571 error_for_asm (insn, "output regs must be grouped at top of stack");
572 malformed_asm = 1;
575 /* Enforce rule #2: All implicitly popped input regs must be closer
576 to the top of the reg-stack than any input that is not implicitly
577 popped. */
579 memset (implicitly_dies, 0, sizeof (implicitly_dies));
580 for (i = n_outputs; i < n_outputs + n_inputs; i++)
581 if (STACK_REG_P (recog_data.operand[i]))
583 /* An input reg is implicitly popped if it is tied to an
584 output, or if there is a CLOBBER for it. */
585 int j;
587 for (j = 0; j < n_clobbers; j++)
588 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
589 break;
591 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
592 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
595 /* Search for first non-popped reg. */
596 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
597 if (! implicitly_dies[i])
598 break;
600 /* If there are any other popped regs, that's an error. */
601 for (; i < LAST_STACK_REG + 1; i++)
602 if (implicitly_dies[i])
603 break;
605 if (i != LAST_STACK_REG + 1)
607 error_for_asm (insn,
608 "implicitly popped regs must be grouped at top of stack");
609 malformed_asm = 1;
612 /* Enforce rule #3: If any input operand uses the "f" constraint, all
613 output constraints must use the "&" earlyclobber.
615 ??? Detect this more deterministically by having constrain_asm_operands
616 record any earlyclobber. */
618 for (i = n_outputs; i < n_outputs + n_inputs; i++)
619 if (recog_op_alt[i][alt].matches == -1)
621 int j;
623 for (j = 0; j < n_outputs; j++)
624 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
626 error_for_asm (insn,
627 "output operand %d must use %<&%> constraint", j);
628 malformed_asm = 1;
632 if (malformed_asm)
634 /* Avoid further trouble with this insn. */
635 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
636 any_malformed_asm = true;
637 return 0;
640 return 1;
643 /* Calculate the number of inputs and outputs in BODY, an
644 asm_operands. N_OPERANDS is the total number of operands, and
645 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
646 placed. */
648 static int
649 get_asm_operand_n_inputs (rtx body)
651 switch (GET_CODE (body))
653 case SET:
654 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
655 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
657 case ASM_OPERANDS:
658 return ASM_OPERANDS_INPUT_LENGTH (body);
660 case PARALLEL:
661 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
663 default:
664 gcc_unreachable ();
668 /* If current function returns its result in an fp stack register,
669 return the REG. Otherwise, return 0. */
671 static rtx
672 stack_result (tree decl)
674 rtx result;
676 /* If the value is supposed to be returned in memory, then clearly
677 it is not returned in a stack register. */
678 if (aggregate_value_p (DECL_RESULT (decl), decl))
679 return 0;
681 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
682 if (result != 0)
683 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
684 decl, true);
686 return result != 0 && STACK_REG_P (result) ? result : 0;
691 * This section deals with stack register substitution, and forms the second
692 * pass over the RTL.
695 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
696 the desired hard REGNO. */
698 static void
699 replace_reg (rtx *reg, int regno)
701 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
702 gcc_assert (STACK_REG_P (*reg));
704 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
705 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
707 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
710 /* Remove a note of type NOTE, which must be found, for register
711 number REGNO from INSN. Remove only one such note. */
713 static void
714 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
716 rtx *note_link, this_rtx;
718 note_link = &REG_NOTES (insn);
719 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
720 if (REG_NOTE_KIND (this_rtx) == note
721 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
723 *note_link = XEXP (this_rtx, 1);
724 return;
726 else
727 note_link = &XEXP (this_rtx, 1);
729 gcc_unreachable ();
732 /* Find the hard register number of virtual register REG in REGSTACK.
733 The hard register number is relative to the top of the stack. -1 is
734 returned if the register is not found. */
736 static int
737 get_hard_regnum (stack regstack, rtx reg)
739 int i;
741 gcc_assert (STACK_REG_P (reg));
743 for (i = regstack->top; i >= 0; i--)
744 if (regstack->reg[i] == REGNO (reg))
745 break;
747 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
750 /* Emit an insn to pop virtual register REG before or after INSN.
751 REGSTACK is the stack state after INSN and is updated to reflect this
752 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
753 is represented as a SET whose destination is the register to be popped
754 and source is the top of stack. A death note for the top of stack
755 cases the movdf pattern to pop. */
757 static rtx
758 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
760 rtx pop_insn, pop_rtx;
761 int hard_regno;
763 /* For complex types take care to pop both halves. These may survive in
764 CLOBBER and USE expressions. */
765 if (COMPLEX_MODE_P (GET_MODE (reg)))
767 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
768 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
770 pop_insn = NULL_RTX;
771 if (get_hard_regnum (regstack, reg1) >= 0)
772 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
773 if (get_hard_regnum (regstack, reg2) >= 0)
774 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
775 gcc_assert (pop_insn);
776 return pop_insn;
779 hard_regno = get_hard_regnum (regstack, reg);
781 gcc_assert (hard_regno >= FIRST_STACK_REG);
783 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
784 FP_MODE_REG (FIRST_STACK_REG, DFmode));
786 if (where == EMIT_AFTER)
787 pop_insn = emit_insn_after (pop_rtx, insn);
788 else
789 pop_insn = emit_insn_before (pop_rtx, insn);
791 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
793 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
794 = regstack->reg[regstack->top];
795 regstack->top -= 1;
796 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
798 return pop_insn;
801 /* Emit an insn before or after INSN to swap virtual register REG with
802 the top of stack. REGSTACK is the stack state before the swap, and
803 is updated to reflect the swap. A swap insn is represented as a
804 PARALLEL of two patterns: each pattern moves one reg to the other.
806 If REG is already at the top of the stack, no insn is emitted. */
808 static void
809 emit_swap_insn (rtx insn, stack regstack, rtx reg)
811 int hard_regno;
812 rtx swap_rtx;
813 int tmp, other_reg; /* swap regno temps */
814 rtx i1; /* the stack-reg insn prior to INSN */
815 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
817 hard_regno = get_hard_regnum (regstack, reg);
819 if (hard_regno == FIRST_STACK_REG)
820 return;
821 if (hard_regno == -1)
823 /* Something failed if the register wasn't on the stack. If we had
824 malformed asms, we zapped the instruction itself, but that didn't
825 produce the same pattern of register sets as before. To prevent
826 further failure, adjust REGSTACK to include REG at TOP. */
827 gcc_assert (any_malformed_asm);
828 regstack->reg[++regstack->top] = REGNO (reg);
829 return;
831 gcc_assert (hard_regno >= FIRST_STACK_REG);
833 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
835 tmp = regstack->reg[other_reg];
836 regstack->reg[other_reg] = regstack->reg[regstack->top];
837 regstack->reg[regstack->top] = tmp;
839 /* Find the previous insn involving stack regs, but don't pass a
840 block boundary. */
841 i1 = NULL;
842 if (current_block && insn != BB_HEAD (current_block))
844 rtx tmp = PREV_INSN (insn);
845 rtx limit = PREV_INSN (BB_HEAD (current_block));
846 while (tmp != limit)
848 if (LABEL_P (tmp)
849 || CALL_P (tmp)
850 || NOTE_INSN_BASIC_BLOCK_P (tmp)
851 || (NONJUMP_INSN_P (tmp)
852 && stack_regs_mentioned (tmp)))
854 i1 = tmp;
855 break;
857 tmp = PREV_INSN (tmp);
861 if (i1 != NULL_RTX
862 && (i1set = single_set (i1)) != NULL_RTX)
864 rtx i1src = *get_true_reg (&SET_SRC (i1set));
865 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
867 /* If the previous register stack push was from the reg we are to
868 swap with, omit the swap. */
870 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
871 && REG_P (i1src)
872 && REGNO (i1src) == (unsigned) hard_regno - 1
873 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
874 return;
876 /* If the previous insn wrote to the reg we are to swap with,
877 omit the swap. */
879 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
880 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
881 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
882 return;
885 /* Avoid emitting the swap if this is the first register stack insn
886 of the current_block. Instead update the current_block's stack_in
887 and let compensate edges take care of this for us. */
888 if (current_block && starting_stack_p)
890 BLOCK_INFO (current_block)->stack_in = *regstack;
891 starting_stack_p = false;
892 return;
895 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
896 FP_MODE_REG (FIRST_STACK_REG, XFmode));
898 if (i1)
899 emit_insn_after (swap_rtx, i1);
900 else if (current_block)
901 emit_insn_before (swap_rtx, BB_HEAD (current_block));
902 else
903 emit_insn_before (swap_rtx, insn);
906 /* Emit an insns before INSN to swap virtual register SRC1 with
907 the top of stack and virtual register SRC2 with second stack
908 slot. REGSTACK is the stack state before the swaps, and
909 is updated to reflect the swaps. A swap insn is represented as a
910 PARALLEL of two patterns: each pattern moves one reg to the other.
912 If SRC1 and/or SRC2 are already at the right place, no swap insn
913 is emitted. */
915 static void
916 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
918 struct stack_def temp_stack;
919 int regno, j, k, temp;
921 temp_stack = *regstack;
923 /* Place operand 1 at the top of stack. */
924 regno = get_hard_regnum (&temp_stack, src1);
925 gcc_assert (regno >= 0);
926 if (regno != FIRST_STACK_REG)
928 k = temp_stack.top - (regno - FIRST_STACK_REG);
929 j = temp_stack.top;
931 temp = temp_stack.reg[k];
932 temp_stack.reg[k] = temp_stack.reg[j];
933 temp_stack.reg[j] = temp;
936 /* Place operand 2 next on the stack. */
937 regno = get_hard_regnum (&temp_stack, src2);
938 gcc_assert (regno >= 0);
939 if (regno != FIRST_STACK_REG + 1)
941 k = temp_stack.top - (regno - FIRST_STACK_REG);
942 j = temp_stack.top - 1;
944 temp = temp_stack.reg[k];
945 temp_stack.reg[k] = temp_stack.reg[j];
946 temp_stack.reg[j] = temp;
949 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
952 /* Handle a move to or from a stack register in PAT, which is in INSN.
953 REGSTACK is the current stack. Return whether a control flow insn
954 was deleted in the process. */
956 static bool
957 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
959 rtx *psrc = get_true_reg (&SET_SRC (pat));
960 rtx *pdest = get_true_reg (&SET_DEST (pat));
961 rtx src, dest;
962 rtx note;
963 bool control_flow_insn_deleted = false;
965 src = *psrc; dest = *pdest;
967 if (STACK_REG_P (src) && STACK_REG_P (dest))
969 /* Write from one stack reg to another. If SRC dies here, then
970 just change the register mapping and delete the insn. */
972 note = find_regno_note (insn, REG_DEAD, REGNO (src));
973 if (note)
975 int i;
977 /* If this is a no-op move, there must not be a REG_DEAD note. */
978 gcc_assert (REGNO (src) != REGNO (dest));
980 for (i = regstack->top; i >= 0; i--)
981 if (regstack->reg[i] == REGNO (src))
982 break;
984 /* The destination must be dead, or life analysis is borked. */
985 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
987 /* If the source is not live, this is yet another case of
988 uninitialized variables. Load up a NaN instead. */
989 if (i < 0)
990 return move_nan_for_stack_reg (insn, regstack, dest);
992 /* It is possible that the dest is unused after this insn.
993 If so, just pop the src. */
995 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
996 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
997 else
999 regstack->reg[i] = REGNO (dest);
1000 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1001 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1004 control_flow_insn_deleted |= control_flow_insn_p (insn);
1005 delete_insn (insn);
1006 return control_flow_insn_deleted;
1009 /* The source reg does not die. */
1011 /* If this appears to be a no-op move, delete it, or else it
1012 will confuse the machine description output patterns. But if
1013 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1014 for REG_UNUSED will not work for deleted insns. */
1016 if (REGNO (src) == REGNO (dest))
1018 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1019 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1021 control_flow_insn_deleted |= control_flow_insn_p (insn);
1022 delete_insn (insn);
1023 return control_flow_insn_deleted;
1026 /* The destination ought to be dead. */
1027 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1029 replace_reg (psrc, get_hard_regnum (regstack, src));
1031 regstack->reg[++regstack->top] = REGNO (dest);
1032 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1033 replace_reg (pdest, FIRST_STACK_REG);
1035 else if (STACK_REG_P (src))
1037 /* Save from a stack reg to MEM, or possibly integer reg. Since
1038 only top of stack may be saved, emit an exchange first if
1039 needs be. */
1041 emit_swap_insn (insn, regstack, src);
1043 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1044 if (note)
1046 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1047 regstack->top--;
1048 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1050 else if ((GET_MODE (src) == XFmode)
1051 && regstack->top < REG_STACK_SIZE - 1)
1053 /* A 387 cannot write an XFmode value to a MEM without
1054 clobbering the source reg. The output code can handle
1055 this by reading back the value from the MEM.
1056 But it is more efficient to use a temp register if one is
1057 available. Push the source value here if the register
1058 stack is not full, and then write the value to memory via
1059 a pop. */
1060 rtx push_rtx;
1061 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1063 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1064 emit_insn_before (push_rtx, insn);
1065 add_reg_note (insn, REG_DEAD, top_stack_reg);
1068 replace_reg (psrc, FIRST_STACK_REG);
1070 else
1072 rtx pat = PATTERN (insn);
1074 gcc_assert (STACK_REG_P (dest));
1076 /* Load from MEM, or possibly integer REG or constant, into the
1077 stack regs. The actual target is always the top of the
1078 stack. The stack mapping is changed to reflect that DEST is
1079 now at top of stack. */
1081 /* The destination ought to be dead. However, there is a
1082 special case with i387 UNSPEC_TAN, where destination is live
1083 (an argument to fptan) but inherent load of 1.0 is modelled
1084 as a load from a constant. */
1085 if (GET_CODE (pat) == PARALLEL
1086 && XVECLEN (pat, 0) == 2
1087 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1088 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1089 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1090 emit_swap_insn (insn, regstack, dest);
1091 else
1092 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1094 gcc_assert (regstack->top < REG_STACK_SIZE);
1096 regstack->reg[++regstack->top] = REGNO (dest);
1097 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1098 replace_reg (pdest, FIRST_STACK_REG);
1101 return control_flow_insn_deleted;
1104 /* A helper function which replaces INSN with a pattern that loads up
1105 a NaN into DEST, then invokes move_for_stack_reg. */
1107 static bool
1108 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1110 rtx pat;
1112 dest = FP_MODE_REG (REGNO (dest), SFmode);
1113 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1114 PATTERN (insn) = pat;
1115 INSN_CODE (insn) = -1;
1117 return move_for_stack_reg (insn, regstack, pat);
1120 /* Swap the condition on a branch, if there is one. Return true if we
1121 found a condition to swap. False if the condition was not used as
1122 such. */
1124 static int
1125 swap_rtx_condition_1 (rtx pat)
1127 const char *fmt;
1128 int i, r = 0;
1130 if (COMPARISON_P (pat))
1132 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1133 r = 1;
1135 else
1137 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1138 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1140 if (fmt[i] == 'E')
1142 int j;
1144 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1145 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1147 else if (fmt[i] == 'e')
1148 r |= swap_rtx_condition_1 (XEXP (pat, i));
1152 return r;
1155 static int
1156 swap_rtx_condition (rtx insn)
1158 rtx pat = PATTERN (insn);
1160 /* We're looking for a single set to cc0 or an HImode temporary. */
1162 if (GET_CODE (pat) == SET
1163 && REG_P (SET_DEST (pat))
1164 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1166 insn = next_flags_user (insn);
1167 if (insn == NULL_RTX)
1168 return 0;
1169 pat = PATTERN (insn);
1172 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1173 with the cc value right now. We may be able to search for one
1174 though. */
1176 if (GET_CODE (pat) == SET
1177 && GET_CODE (SET_SRC (pat)) == UNSPEC
1178 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1180 rtx dest = SET_DEST (pat);
1182 /* Search forward looking for the first use of this value.
1183 Stop at block boundaries. */
1184 while (insn != BB_END (current_block))
1186 insn = NEXT_INSN (insn);
1187 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1188 break;
1189 if (CALL_P (insn))
1190 return 0;
1193 /* We haven't found it. */
1194 if (insn == BB_END (current_block))
1195 return 0;
1197 /* So we've found the insn using this value. If it is anything
1198 other than sahf or the value does not die (meaning we'd have
1199 to search further), then we must give up. */
1200 pat = PATTERN (insn);
1201 if (GET_CODE (pat) != SET
1202 || GET_CODE (SET_SRC (pat)) != UNSPEC
1203 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1204 || ! dead_or_set_p (insn, dest))
1205 return 0;
1207 /* Now we are prepared to handle this as a normal cc0 setter. */
1208 insn = next_flags_user (insn);
1209 if (insn == NULL_RTX)
1210 return 0;
1211 pat = PATTERN (insn);
1214 if (swap_rtx_condition_1 (pat))
1216 int fail = 0;
1217 INSN_CODE (insn) = -1;
1218 if (recog_memoized (insn) == -1)
1219 fail = 1;
1220 /* In case the flags don't die here, recurse to try fix
1221 following user too. */
1222 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1224 insn = next_flags_user (insn);
1225 if (!insn || !swap_rtx_condition (insn))
1226 fail = 1;
1228 if (fail)
1230 swap_rtx_condition_1 (pat);
1231 return 0;
1233 return 1;
1235 return 0;
1238 /* Handle a comparison. Special care needs to be taken to avoid
1239 causing comparisons that a 387 cannot do correctly, such as EQ.
1241 Also, a pop insn may need to be emitted. The 387 does have an
1242 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1243 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1244 set up. */
1246 static void
1247 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1249 rtx *src1, *src2;
1250 rtx src1_note, src2_note;
1252 src1 = get_true_reg (&XEXP (pat_src, 0));
1253 src2 = get_true_reg (&XEXP (pat_src, 1));
1255 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1256 registers that die in this insn - move those to stack top first. */
1257 if ((! STACK_REG_P (*src1)
1258 || (STACK_REG_P (*src2)
1259 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1260 && swap_rtx_condition (insn))
1262 rtx temp;
1263 temp = XEXP (pat_src, 0);
1264 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1265 XEXP (pat_src, 1) = temp;
1267 src1 = get_true_reg (&XEXP (pat_src, 0));
1268 src2 = get_true_reg (&XEXP (pat_src, 1));
1270 INSN_CODE (insn) = -1;
1273 /* We will fix any death note later. */
1275 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1277 if (STACK_REG_P (*src2))
1278 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1279 else
1280 src2_note = NULL_RTX;
1282 emit_swap_insn (insn, regstack, *src1);
1284 replace_reg (src1, FIRST_STACK_REG);
1286 if (STACK_REG_P (*src2))
1287 replace_reg (src2, get_hard_regnum (regstack, *src2));
1289 if (src1_note)
1291 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1292 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1295 /* If the second operand dies, handle that. But if the operands are
1296 the same stack register, don't bother, because only one death is
1297 needed, and it was just handled. */
1299 if (src2_note
1300 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1301 && REGNO (*src1) == REGNO (*src2)))
1303 /* As a special case, two regs may die in this insn if src2 is
1304 next to top of stack and the top of stack also dies. Since
1305 we have already popped src1, "next to top of stack" is really
1306 at top (FIRST_STACK_REG) now. */
1308 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1309 && src1_note)
1311 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1312 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1314 else
1316 /* The 386 can only represent death of the first operand in
1317 the case handled above. In all other cases, emit a separate
1318 pop and remove the death note from here. */
1320 /* link_cc0_insns (insn); */
1322 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1324 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1325 EMIT_AFTER);
1330 /* Substitute new registers in LOC, which is part of a debug insn.
1331 REGSTACK is the current register layout. */
1333 static int
1334 subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1336 rtx *tloc = get_true_reg (loc);
1337 stack regstack = (stack)data;
1338 int hard_regno;
1340 if (!STACK_REG_P (*tloc))
1341 return 0;
1343 if (tloc != loc)
1344 return 0;
1346 hard_regno = get_hard_regnum (regstack, *loc);
1347 gcc_assert (hard_regno >= FIRST_STACK_REG);
1349 replace_reg (loc, hard_regno);
1351 return -1;
1354 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1355 is the current register layout. Return whether a control flow insn
1356 was deleted in the process. */
1358 static bool
1359 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1361 rtx *dest, *src;
1362 bool control_flow_insn_deleted = false;
1364 switch (GET_CODE (pat))
1366 case USE:
1367 /* Deaths in USE insns can happen in non optimizing compilation.
1368 Handle them by popping the dying register. */
1369 src = get_true_reg (&XEXP (pat, 0));
1370 if (STACK_REG_P (*src)
1371 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1373 /* USEs are ignored for liveness information so USEs of dead
1374 register might happen. */
1375 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1376 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1377 return control_flow_insn_deleted;
1379 /* Uninitialized USE might happen for functions returning uninitialized
1380 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1381 so it is safe to ignore the use here. This is consistent with behavior
1382 of dataflow analyzer that ignores USE too. (This also imply that
1383 forcibly initializing the register to NaN here would lead to ICE later,
1384 since the REG_DEAD notes are not issued.) */
1385 break;
1387 case VAR_LOCATION:
1388 gcc_unreachable ();
1390 case CLOBBER:
1392 rtx note;
1394 dest = get_true_reg (&XEXP (pat, 0));
1395 if (STACK_REG_P (*dest))
1397 note = find_reg_note (insn, REG_DEAD, *dest);
1399 if (pat != PATTERN (insn))
1401 /* The fix_truncdi_1 pattern wants to be able to
1402 allocate its own scratch register. It does this by
1403 clobbering an fp reg so that it is assured of an
1404 empty reg-stack register. If the register is live,
1405 kill it now. Remove the DEAD/UNUSED note so we
1406 don't try to kill it later too.
1408 In reality the UNUSED note can be absent in some
1409 complicated cases when the register is reused for
1410 partially set variable. */
1412 if (note)
1413 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1414 else
1415 note = find_reg_note (insn, REG_UNUSED, *dest);
1416 if (note)
1417 remove_note (insn, note);
1418 replace_reg (dest, FIRST_STACK_REG + 1);
1420 else
1422 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1423 indicates an uninitialized value. Because reload removed
1424 all other clobbers, this must be due to a function
1425 returning without a value. Load up a NaN. */
1427 if (!note)
1429 rtx t = *dest;
1430 if (COMPLEX_MODE_P (GET_MODE (t)))
1432 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1433 if (get_hard_regnum (regstack, u) == -1)
1435 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1436 rtx insn2 = emit_insn_before (pat2, insn);
1437 control_flow_insn_deleted
1438 |= move_nan_for_stack_reg (insn2, regstack, u);
1441 if (get_hard_regnum (regstack, t) == -1)
1442 control_flow_insn_deleted
1443 |= move_nan_for_stack_reg (insn, regstack, t);
1447 break;
1450 case SET:
1452 rtx *src1 = (rtx *) 0, *src2;
1453 rtx src1_note, src2_note;
1454 rtx pat_src;
1456 dest = get_true_reg (&SET_DEST (pat));
1457 src = get_true_reg (&SET_SRC (pat));
1458 pat_src = SET_SRC (pat);
1460 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1461 if (STACK_REG_P (*src)
1462 || (STACK_REG_P (*dest)
1463 && (REG_P (*src) || MEM_P (*src)
1464 || GET_CODE (*src) == CONST_DOUBLE)))
1466 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1467 break;
1470 switch (GET_CODE (pat_src))
1472 case COMPARE:
1473 compare_for_stack_reg (insn, regstack, pat_src);
1474 break;
1476 case CALL:
1478 int count;
1479 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1480 --count >= 0;)
1482 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1483 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1486 replace_reg (dest, FIRST_STACK_REG);
1487 break;
1489 case REG:
1490 /* This is a `tstM2' case. */
1491 gcc_assert (*dest == cc0_rtx);
1492 src1 = src;
1494 /* Fall through. */
1496 case FLOAT_TRUNCATE:
1497 case SQRT:
1498 case ABS:
1499 case NEG:
1500 /* These insns only operate on the top of the stack. DEST might
1501 be cc0_rtx if we're processing a tstM pattern. Also, it's
1502 possible that the tstM case results in a REG_DEAD note on the
1503 source. */
1505 if (src1 == 0)
1506 src1 = get_true_reg (&XEXP (pat_src, 0));
1508 emit_swap_insn (insn, regstack, *src1);
1510 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1512 if (STACK_REG_P (*dest))
1513 replace_reg (dest, FIRST_STACK_REG);
1515 if (src1_note)
1517 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1518 regstack->top--;
1519 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1522 replace_reg (src1, FIRST_STACK_REG);
1523 break;
1525 case MINUS:
1526 case DIV:
1527 /* On i386, reversed forms of subM3 and divM3 exist for
1528 MODE_FLOAT, so the same code that works for addM3 and mulM3
1529 can be used. */
1530 case MULT:
1531 case PLUS:
1532 /* These insns can accept the top of stack as a destination
1533 from a stack reg or mem, or can use the top of stack as a
1534 source and some other stack register (possibly top of stack)
1535 as a destination. */
1537 src1 = get_true_reg (&XEXP (pat_src, 0));
1538 src2 = get_true_reg (&XEXP (pat_src, 1));
1540 /* We will fix any death note later. */
1542 if (STACK_REG_P (*src1))
1543 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1544 else
1545 src1_note = NULL_RTX;
1546 if (STACK_REG_P (*src2))
1547 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1548 else
1549 src2_note = NULL_RTX;
1551 /* If either operand is not a stack register, then the dest
1552 must be top of stack. */
1554 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1555 emit_swap_insn (insn, regstack, *dest);
1556 else
1558 /* Both operands are REG. If neither operand is already
1559 at the top of stack, choose to make the one that is the
1560 dest the new top of stack. */
1562 int src1_hard_regnum, src2_hard_regnum;
1564 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1565 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1567 /* If the source is not live, this is yet another case of
1568 uninitialized variables. Load up a NaN instead. */
1569 if (src1_hard_regnum == -1)
1571 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1572 rtx insn2 = emit_insn_before (pat2, insn);
1573 control_flow_insn_deleted
1574 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1576 if (src2_hard_regnum == -1)
1578 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1579 rtx insn2 = emit_insn_before (pat2, insn);
1580 control_flow_insn_deleted
1581 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1584 if (src1_hard_regnum != FIRST_STACK_REG
1585 && src2_hard_regnum != FIRST_STACK_REG)
1586 emit_swap_insn (insn, regstack, *dest);
1589 if (STACK_REG_P (*src1))
1590 replace_reg (src1, get_hard_regnum (regstack, *src1));
1591 if (STACK_REG_P (*src2))
1592 replace_reg (src2, get_hard_regnum (regstack, *src2));
1594 if (src1_note)
1596 rtx src1_reg = XEXP (src1_note, 0);
1598 /* If the register that dies is at the top of stack, then
1599 the destination is somewhere else - merely substitute it.
1600 But if the reg that dies is not at top of stack, then
1601 move the top of stack to the dead reg, as though we had
1602 done the insn and then a store-with-pop. */
1604 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1606 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1607 replace_reg (dest, get_hard_regnum (regstack, *dest));
1609 else
1611 int regno = get_hard_regnum (regstack, src1_reg);
1613 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1614 replace_reg (dest, regno);
1616 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1617 = regstack->reg[regstack->top];
1620 CLEAR_HARD_REG_BIT (regstack->reg_set,
1621 REGNO (XEXP (src1_note, 0)));
1622 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1623 regstack->top--;
1625 else if (src2_note)
1627 rtx src2_reg = XEXP (src2_note, 0);
1628 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1630 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1631 replace_reg (dest, get_hard_regnum (regstack, *dest));
1633 else
1635 int regno = get_hard_regnum (regstack, src2_reg);
1637 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1638 replace_reg (dest, regno);
1640 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1641 = regstack->reg[regstack->top];
1644 CLEAR_HARD_REG_BIT (regstack->reg_set,
1645 REGNO (XEXP (src2_note, 0)));
1646 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1647 regstack->top--;
1649 else
1651 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1652 replace_reg (dest, get_hard_regnum (regstack, *dest));
1655 /* Keep operand 1 matching with destination. */
1656 if (COMMUTATIVE_ARITH_P (pat_src)
1657 && REG_P (*src1) && REG_P (*src2)
1658 && REGNO (*src1) != REGNO (*dest))
1660 int tmp = REGNO (*src1);
1661 replace_reg (src1, REGNO (*src2));
1662 replace_reg (src2, tmp);
1664 break;
1666 case UNSPEC:
1667 switch (XINT (pat_src, 1))
1669 case UNSPEC_FIST:
1671 case UNSPEC_FIST_FLOOR:
1672 case UNSPEC_FIST_CEIL:
1674 /* These insns only operate on the top of the stack. */
1676 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1677 emit_swap_insn (insn, regstack, *src1);
1679 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1681 if (STACK_REG_P (*dest))
1682 replace_reg (dest, FIRST_STACK_REG);
1684 if (src1_note)
1686 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1687 regstack->top--;
1688 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1691 replace_reg (src1, FIRST_STACK_REG);
1692 break;
1694 case UNSPEC_FXAM:
1696 /* This insn only operate on the top of the stack. */
1698 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1699 emit_swap_insn (insn, regstack, *src1);
1701 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1703 replace_reg (src1, FIRST_STACK_REG);
1705 if (src1_note)
1707 remove_regno_note (insn, REG_DEAD,
1708 REGNO (XEXP (src1_note, 0)));
1709 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1710 EMIT_AFTER);
1713 break;
1715 case UNSPEC_SIN:
1716 case UNSPEC_COS:
1717 case UNSPEC_FRNDINT:
1718 case UNSPEC_F2XM1:
1720 case UNSPEC_FRNDINT_FLOOR:
1721 case UNSPEC_FRNDINT_CEIL:
1722 case UNSPEC_FRNDINT_TRUNC:
1723 case UNSPEC_FRNDINT_MASK_PM:
1725 /* Above insns operate on the top of the stack. */
1727 case UNSPEC_SINCOS_COS:
1728 case UNSPEC_XTRACT_FRACT:
1730 /* Above insns operate on the top two stack slots,
1731 first part of one input, double output insn. */
1733 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1735 emit_swap_insn (insn, regstack, *src1);
1737 /* Input should never die, it is replaced with output. */
1738 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1739 gcc_assert (!src1_note);
1741 if (STACK_REG_P (*dest))
1742 replace_reg (dest, FIRST_STACK_REG);
1744 replace_reg (src1, FIRST_STACK_REG);
1745 break;
1747 case UNSPEC_SINCOS_SIN:
1748 case UNSPEC_XTRACT_EXP:
1750 /* These insns operate on the top two stack slots,
1751 second part of one input, double output insn. */
1753 regstack->top++;
1754 /* FALLTHRU */
1756 case UNSPEC_TAN:
1758 /* For UNSPEC_TAN, regstack->top is already increased
1759 by inherent load of constant 1.0. */
1761 /* Output value is generated in the second stack slot.
1762 Move current value from second slot to the top. */
1763 regstack->reg[regstack->top]
1764 = regstack->reg[regstack->top - 1];
1766 gcc_assert (STACK_REG_P (*dest));
1768 regstack->reg[regstack->top - 1] = REGNO (*dest);
1769 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1770 replace_reg (dest, FIRST_STACK_REG + 1);
1772 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1774 replace_reg (src1, FIRST_STACK_REG);
1775 break;
1777 case UNSPEC_FPATAN:
1778 case UNSPEC_FYL2X:
1779 case UNSPEC_FYL2XP1:
1780 /* These insns operate on the top two stack slots. */
1782 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1783 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1785 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1786 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1788 swap_to_top (insn, regstack, *src1, *src2);
1790 replace_reg (src1, FIRST_STACK_REG);
1791 replace_reg (src2, FIRST_STACK_REG + 1);
1793 if (src1_note)
1794 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1795 if (src2_note)
1796 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1798 /* Pop both input operands from the stack. */
1799 CLEAR_HARD_REG_BIT (regstack->reg_set,
1800 regstack->reg[regstack->top]);
1801 CLEAR_HARD_REG_BIT (regstack->reg_set,
1802 regstack->reg[regstack->top - 1]);
1803 regstack->top -= 2;
1805 /* Push the result back onto the stack. */
1806 regstack->reg[++regstack->top] = REGNO (*dest);
1807 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1808 replace_reg (dest, FIRST_STACK_REG);
1809 break;
1811 case UNSPEC_FSCALE_FRACT:
1812 case UNSPEC_FPREM_F:
1813 case UNSPEC_FPREM1_F:
1814 /* These insns operate on the top two stack slots,
1815 first part of double input, double output insn. */
1817 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1818 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1820 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1821 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1823 /* Inputs should never die, they are
1824 replaced with outputs. */
1825 gcc_assert (!src1_note);
1826 gcc_assert (!src2_note);
1828 swap_to_top (insn, regstack, *src1, *src2);
1830 /* Push the result back onto stack. Empty stack slot
1831 will be filled in second part of insn. */
1832 if (STACK_REG_P (*dest))
1834 regstack->reg[regstack->top] = REGNO (*dest);
1835 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1836 replace_reg (dest, FIRST_STACK_REG);
1839 replace_reg (src1, FIRST_STACK_REG);
1840 replace_reg (src2, FIRST_STACK_REG + 1);
1841 break;
1843 case UNSPEC_FSCALE_EXP:
1844 case UNSPEC_FPREM_U:
1845 case UNSPEC_FPREM1_U:
1846 /* These insns operate on the top two stack slots,
1847 second part of double input, double output insn. */
1849 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1850 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1852 /* Push the result back onto stack. Fill empty slot from
1853 first part of insn and fix top of stack pointer. */
1854 if (STACK_REG_P (*dest))
1856 regstack->reg[regstack->top - 1] = REGNO (*dest);
1857 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1858 replace_reg (dest, FIRST_STACK_REG + 1);
1861 replace_reg (src1, FIRST_STACK_REG);
1862 replace_reg (src2, FIRST_STACK_REG + 1);
1863 break;
1865 case UNSPEC_C2_FLAG:
1866 /* This insn operates on the top two stack slots,
1867 third part of C2 setting double input insn. */
1869 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1870 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1872 replace_reg (src1, FIRST_STACK_REG);
1873 replace_reg (src2, FIRST_STACK_REG + 1);
1874 break;
1876 case UNSPEC_SAHF:
1877 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1878 The combination matches the PPRO fcomi instruction. */
1880 pat_src = XVECEXP (pat_src, 0, 0);
1881 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1882 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1883 /* Fall through. */
1885 case UNSPEC_FNSTSW:
1886 /* Combined fcomp+fnstsw generated for doing well with
1887 CSE. When optimizing this would have been broken
1888 up before now. */
1890 pat_src = XVECEXP (pat_src, 0, 0);
1891 gcc_assert (GET_CODE (pat_src) == COMPARE);
1893 compare_for_stack_reg (insn, regstack, pat_src);
1894 break;
1896 default:
1897 gcc_unreachable ();
1899 break;
1901 case IF_THEN_ELSE:
1902 /* This insn requires the top of stack to be the destination. */
1904 src1 = get_true_reg (&XEXP (pat_src, 1));
1905 src2 = get_true_reg (&XEXP (pat_src, 2));
1907 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1908 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1910 /* If the comparison operator is an FP comparison operator,
1911 it is handled correctly by compare_for_stack_reg () who
1912 will move the destination to the top of stack. But if the
1913 comparison operator is not an FP comparison operator, we
1914 have to handle it here. */
1915 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1916 && REGNO (*dest) != regstack->reg[regstack->top])
1918 /* In case one of operands is the top of stack and the operands
1919 dies, it is safe to make it the destination operand by
1920 reversing the direction of cmove and avoid fxch. */
1921 if ((REGNO (*src1) == regstack->reg[regstack->top]
1922 && src1_note)
1923 || (REGNO (*src2) == regstack->reg[regstack->top]
1924 && src2_note))
1926 int idx1 = (get_hard_regnum (regstack, *src1)
1927 - FIRST_STACK_REG);
1928 int idx2 = (get_hard_regnum (regstack, *src2)
1929 - FIRST_STACK_REG);
1931 /* Make reg-stack believe that the operands are already
1932 swapped on the stack */
1933 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1934 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1936 /* Reverse condition to compensate the operand swap.
1937 i386 do have comparison always reversible. */
1938 PUT_CODE (XEXP (pat_src, 0),
1939 reversed_comparison_code (XEXP (pat_src, 0), insn));
1941 else
1942 emit_swap_insn (insn, regstack, *dest);
1946 rtx src_note [3];
1947 int i;
1949 src_note[0] = 0;
1950 src_note[1] = src1_note;
1951 src_note[2] = src2_note;
1953 if (STACK_REG_P (*src1))
1954 replace_reg (src1, get_hard_regnum (regstack, *src1));
1955 if (STACK_REG_P (*src2))
1956 replace_reg (src2, get_hard_regnum (regstack, *src2));
1958 for (i = 1; i <= 2; i++)
1959 if (src_note [i])
1961 int regno = REGNO (XEXP (src_note[i], 0));
1963 /* If the register that dies is not at the top of
1964 stack, then move the top of stack to the dead reg.
1965 Top of stack should never die, as it is the
1966 destination. */
1967 gcc_assert (regno != regstack->reg[regstack->top]);
1968 remove_regno_note (insn, REG_DEAD, regno);
1969 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1970 EMIT_AFTER);
1974 /* Make dest the top of stack. Add dest to regstack if
1975 not present. */
1976 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1977 regstack->reg[++regstack->top] = REGNO (*dest);
1978 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1979 replace_reg (dest, FIRST_STACK_REG);
1980 break;
1982 default:
1983 gcc_unreachable ();
1985 break;
1988 default:
1989 break;
1992 return control_flow_insn_deleted;
1995 /* Substitute hard regnums for any stack regs in INSN, which has
1996 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1997 before the insn, and is updated with changes made here.
1999 There are several requirements and assumptions about the use of
2000 stack-like regs in asm statements. These rules are enforced by
2001 record_asm_stack_regs; see comments there for details. Any
2002 asm_operands left in the RTL at this point may be assume to meet the
2003 requirements, since record_asm_stack_regs removes any problem asm. */
2005 static void
2006 subst_asm_stack_regs (rtx insn, stack regstack)
2008 rtx body = PATTERN (insn);
2009 int alt;
2011 rtx *note_reg; /* Array of note contents */
2012 rtx **note_loc; /* Address of REG field of each note */
2013 enum reg_note *note_kind; /* The type of each note */
2015 rtx *clobber_reg = 0;
2016 rtx **clobber_loc = 0;
2018 struct stack_def temp_stack;
2019 int n_notes;
2020 int n_clobbers;
2021 rtx note;
2022 int i;
2023 int n_inputs, n_outputs;
2025 if (! check_asm_stack_operands (insn))
2026 return;
2028 /* Find out what the constraints required. If no constraint
2029 alternative matches, that is a compiler bug: we should have caught
2030 such an insn in check_asm_stack_operands. */
2031 extract_insn (insn);
2032 constrain_operands (1);
2033 alt = which_alternative;
2035 preprocess_constraints ();
2037 n_inputs = get_asm_operand_n_inputs (body);
2038 n_outputs = recog_data.n_operands - n_inputs;
2040 gcc_assert (alt >= 0);
2042 /* Strip SUBREGs here to make the following code simpler. */
2043 for (i = 0; i < recog_data.n_operands; i++)
2044 if (GET_CODE (recog_data.operand[i]) == SUBREG
2045 && REG_P (SUBREG_REG (recog_data.operand[i])))
2047 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2048 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2051 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2053 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2054 i++;
2056 note_reg = XALLOCAVEC (rtx, i);
2057 note_loc = XALLOCAVEC (rtx *, i);
2058 note_kind = XALLOCAVEC (enum reg_note, i);
2060 n_notes = 0;
2061 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2063 rtx reg = XEXP (note, 0);
2064 rtx *loc = & XEXP (note, 0);
2066 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2068 loc = & SUBREG_REG (reg);
2069 reg = SUBREG_REG (reg);
2072 if (STACK_REG_P (reg)
2073 && (REG_NOTE_KIND (note) == REG_DEAD
2074 || REG_NOTE_KIND (note) == REG_UNUSED))
2076 note_reg[n_notes] = reg;
2077 note_loc[n_notes] = loc;
2078 note_kind[n_notes] = REG_NOTE_KIND (note);
2079 n_notes++;
2083 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2085 n_clobbers = 0;
2087 if (GET_CODE (body) == PARALLEL)
2089 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2090 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2092 for (i = 0; i < XVECLEN (body, 0); i++)
2093 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2095 rtx clobber = XVECEXP (body, 0, i);
2096 rtx reg = XEXP (clobber, 0);
2097 rtx *loc = & XEXP (clobber, 0);
2099 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2101 loc = & SUBREG_REG (reg);
2102 reg = SUBREG_REG (reg);
2105 if (STACK_REG_P (reg))
2107 clobber_reg[n_clobbers] = reg;
2108 clobber_loc[n_clobbers] = loc;
2109 n_clobbers++;
2114 temp_stack = *regstack;
2116 /* Put the input regs into the desired place in TEMP_STACK. */
2118 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2119 if (STACK_REG_P (recog_data.operand[i])
2120 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2121 FLOAT_REGS)
2122 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2124 /* If an operand needs to be in a particular reg in
2125 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2126 these constraints are for single register classes, and
2127 reload guaranteed that operand[i] is already in that class,
2128 we can just use REGNO (recog_data.operand[i]) to know which
2129 actual reg this operand needs to be in. */
2131 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2133 gcc_assert (regno >= 0);
2135 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2137 /* recog_data.operand[i] is not in the right place. Find
2138 it and swap it with whatever is already in I's place.
2139 K is where recog_data.operand[i] is now. J is where it
2140 should be. */
2141 int j, k, temp;
2143 k = temp_stack.top - (regno - FIRST_STACK_REG);
2144 j = (temp_stack.top
2145 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2147 temp = temp_stack.reg[k];
2148 temp_stack.reg[k] = temp_stack.reg[j];
2149 temp_stack.reg[j] = temp;
2153 /* Emit insns before INSN to make sure the reg-stack is in the right
2154 order. */
2156 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2158 /* Make the needed input register substitutions. Do death notes and
2159 clobbers too, because these are for inputs, not outputs. */
2161 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2162 if (STACK_REG_P (recog_data.operand[i]))
2164 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2166 gcc_assert (regnum >= 0);
2168 replace_reg (recog_data.operand_loc[i], regnum);
2171 for (i = 0; i < n_notes; i++)
2172 if (note_kind[i] == REG_DEAD)
2174 int regnum = get_hard_regnum (regstack, note_reg[i]);
2176 gcc_assert (regnum >= 0);
2178 replace_reg (note_loc[i], regnum);
2181 for (i = 0; i < n_clobbers; i++)
2183 /* It's OK for a CLOBBER to reference a reg that is not live.
2184 Don't try to replace it in that case. */
2185 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2187 if (regnum >= 0)
2189 /* Sigh - clobbers always have QImode. But replace_reg knows
2190 that these regs can't be MODE_INT and will assert. Just put
2191 the right reg there without calling replace_reg. */
2193 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2197 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2199 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2200 if (STACK_REG_P (recog_data.operand[i]))
2202 /* An input reg is implicitly popped if it is tied to an
2203 output, or if there is a CLOBBER for it. */
2204 int j;
2206 for (j = 0; j < n_clobbers; j++)
2207 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2208 break;
2210 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2212 /* recog_data.operand[i] might not be at the top of stack.
2213 But that's OK, because all we need to do is pop the
2214 right number of regs off of the top of the reg-stack.
2215 record_asm_stack_regs guaranteed that all implicitly
2216 popped regs were grouped at the top of the reg-stack. */
2218 CLEAR_HARD_REG_BIT (regstack->reg_set,
2219 regstack->reg[regstack->top]);
2220 regstack->top--;
2224 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2225 Note that there isn't any need to substitute register numbers.
2226 ??? Explain why this is true. */
2228 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2230 /* See if there is an output for this hard reg. */
2231 int j;
2233 for (j = 0; j < n_outputs; j++)
2234 if (STACK_REG_P (recog_data.operand[j])
2235 && REGNO (recog_data.operand[j]) == (unsigned) i)
2237 regstack->reg[++regstack->top] = i;
2238 SET_HARD_REG_BIT (regstack->reg_set, i);
2239 break;
2243 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2244 input that the asm didn't implicitly pop. If the asm didn't
2245 implicitly pop an input reg, that reg will still be live.
2247 Note that we can't use find_regno_note here: the register numbers
2248 in the death notes have already been substituted. */
2250 for (i = 0; i < n_outputs; i++)
2251 if (STACK_REG_P (recog_data.operand[i]))
2253 int j;
2255 for (j = 0; j < n_notes; j++)
2256 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2257 && note_kind[j] == REG_UNUSED)
2259 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2260 EMIT_AFTER);
2261 break;
2265 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2266 if (STACK_REG_P (recog_data.operand[i]))
2268 int j;
2270 for (j = 0; j < n_notes; j++)
2271 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2272 && note_kind[j] == REG_DEAD
2273 && TEST_HARD_REG_BIT (regstack->reg_set,
2274 REGNO (recog_data.operand[i])))
2276 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2277 EMIT_AFTER);
2278 break;
2283 /* Substitute stack hard reg numbers for stack virtual registers in
2284 INSN. Non-stack register numbers are not changed. REGSTACK is the
2285 current stack content. Insns may be emitted as needed to arrange the
2286 stack for the 387 based on the contents of the insn. Return whether
2287 a control flow insn was deleted in the process. */
2289 static bool
2290 subst_stack_regs (rtx insn, stack regstack)
2292 rtx *note_link, note;
2293 bool control_flow_insn_deleted = false;
2294 int i;
2296 if (CALL_P (insn))
2298 int top = regstack->top;
2300 /* If there are any floating point parameters to be passed in
2301 registers for this call, make sure they are in the right
2302 order. */
2304 if (top >= 0)
2306 straighten_stack (insn, regstack);
2308 /* Now mark the arguments as dead after the call. */
2310 while (regstack->top >= 0)
2312 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2313 regstack->top--;
2318 /* Do the actual substitution if any stack regs are mentioned.
2319 Since we only record whether entire insn mentions stack regs, and
2320 subst_stack_regs_pat only works for patterns that contain stack regs,
2321 we must check each pattern in a parallel here. A call_value_pop could
2322 fail otherwise. */
2324 if (stack_regs_mentioned (insn))
2326 int n_operands = asm_noperands (PATTERN (insn));
2327 if (n_operands >= 0)
2329 /* This insn is an `asm' with operands. Decode the operands,
2330 decide how many are inputs, and do register substitution.
2331 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2333 subst_asm_stack_regs (insn, regstack);
2334 return control_flow_insn_deleted;
2337 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2338 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2340 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2342 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2343 XVECEXP (PATTERN (insn), 0, i)
2344 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2345 control_flow_insn_deleted
2346 |= subst_stack_regs_pat (insn, regstack,
2347 XVECEXP (PATTERN (insn), 0, i));
2350 else
2351 control_flow_insn_deleted
2352 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2355 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2356 REG_UNUSED will already have been dealt with, so just return. */
2358 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2359 return control_flow_insn_deleted;
2361 /* If this a noreturn call, we can't insert pop insns after it.
2362 Instead, reset the stack state to empty. */
2363 if (CALL_P (insn)
2364 && find_reg_note (insn, REG_NORETURN, NULL))
2366 regstack->top = -1;
2367 CLEAR_HARD_REG_SET (regstack->reg_set);
2368 return control_flow_insn_deleted;
2371 /* If there is a REG_UNUSED note on a stack register on this insn,
2372 the indicated reg must be popped. The REG_UNUSED note is removed,
2373 since the form of the newly emitted pop insn references the reg,
2374 making it no longer `unset'. */
2376 note_link = &REG_NOTES (insn);
2377 for (note = *note_link; note; note = XEXP (note, 1))
2378 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2380 *note_link = XEXP (note, 1);
2381 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2383 else
2384 note_link = &XEXP (note, 1);
2386 return control_flow_insn_deleted;
2389 /* Change the organization of the stack so that it fits a new basic
2390 block. Some registers might have to be popped, but there can never be
2391 a register live in the new block that is not now live.
2393 Insert any needed insns before or after INSN, as indicated by
2394 WHERE. OLD is the original stack layout, and NEW is the desired
2395 form. OLD is updated to reflect the code emitted, i.e., it will be
2396 the same as NEW upon return.
2398 This function will not preserve block_end[]. But that information
2399 is no longer needed once this has executed. */
2401 static void
2402 change_stack (rtx insn, stack old, stack new_stack, enum emit_where where)
2404 int reg;
2405 int update_end = 0;
2406 int i;
2408 /* Stack adjustments for the first insn in a block update the
2409 current_block's stack_in instead of inserting insns directly.
2410 compensate_edges will add the necessary code later. */
2411 if (current_block
2412 && starting_stack_p
2413 && where == EMIT_BEFORE)
2415 BLOCK_INFO (current_block)->stack_in = *new_stack;
2416 starting_stack_p = false;
2417 *old = *new_stack;
2418 return;
2421 /* We will be inserting new insns "backwards". If we are to insert
2422 after INSN, find the next insn, and insert before it. */
2424 if (where == EMIT_AFTER)
2426 if (current_block && BB_END (current_block) == insn)
2427 update_end = 1;
2428 insn = NEXT_INSN (insn);
2431 /* Initialize partially dead variables. */
2432 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2433 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2434 && !TEST_HARD_REG_BIT (old->reg_set, i))
2436 old->reg[++old->top] = i;
2437 SET_HARD_REG_BIT (old->reg_set, i);
2438 emit_insn_before (gen_rtx_SET (VOIDmode,
2439 FP_MODE_REG (i, SFmode), not_a_num), insn);
2442 /* Pop any registers that are not needed in the new block. */
2444 /* If the destination block's stack already has a specified layout
2445 and contains two or more registers, use a more intelligent algorithm
2446 to pop registers that minimizes the number number of fxchs below. */
2447 if (new_stack->top > 0)
2449 bool slots[REG_STACK_SIZE];
2450 int pops[REG_STACK_SIZE];
2451 int next, dest, topsrc;
2453 /* First pass to determine the free slots. */
2454 for (reg = 0; reg <= new_stack->top; reg++)
2455 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2457 /* Second pass to allocate preferred slots. */
2458 topsrc = -1;
2459 for (reg = old->top; reg > new_stack->top; reg--)
2460 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2462 dest = -1;
2463 for (next = 0; next <= new_stack->top; next++)
2464 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2466 /* If this is a preference for the new top of stack, record
2467 the fact by remembering it's old->reg in topsrc. */
2468 if (next == new_stack->top)
2469 topsrc = reg;
2470 slots[next] = true;
2471 dest = next;
2472 break;
2474 pops[reg] = dest;
2476 else
2477 pops[reg] = reg;
2479 /* Intentionally, avoid placing the top of stack in it's correct
2480 location, if we still need to permute the stack below and we
2481 can usefully place it somewhere else. This is the case if any
2482 slot is still unallocated, in which case we should place the
2483 top of stack there. */
2484 if (topsrc != -1)
2485 for (reg = 0; reg < new_stack->top; reg++)
2486 if (!slots[reg])
2488 pops[topsrc] = reg;
2489 slots[new_stack->top] = false;
2490 slots[reg] = true;
2491 break;
2494 /* Third pass allocates remaining slots and emits pop insns. */
2495 next = new_stack->top;
2496 for (reg = old->top; reg > new_stack->top; reg--)
2498 dest = pops[reg];
2499 if (dest == -1)
2501 /* Find next free slot. */
2502 while (slots[next])
2503 next--;
2504 dest = next--;
2506 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2507 EMIT_BEFORE);
2510 else
2512 /* The following loop attempts to maximize the number of times we
2513 pop the top of the stack, as this permits the use of the faster
2514 ffreep instruction on platforms that support it. */
2515 int live, next;
2517 live = 0;
2518 for (reg = 0; reg <= old->top; reg++)
2519 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2520 live++;
2522 next = live;
2523 while (old->top >= live)
2524 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2526 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2527 next--;
2528 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2529 EMIT_BEFORE);
2531 else
2532 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2533 EMIT_BEFORE);
2536 if (new_stack->top == -2)
2538 /* If the new block has never been processed, then it can inherit
2539 the old stack order. */
2541 new_stack->top = old->top;
2542 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2544 else
2546 /* This block has been entered before, and we must match the
2547 previously selected stack order. */
2549 /* By now, the only difference should be the order of the stack,
2550 not their depth or liveliness. */
2552 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2553 gcc_assert (old->top == new_stack->top);
2555 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2556 swaps until the stack is correct.
2558 The worst case number of swaps emitted is N + 2, where N is the
2559 depth of the stack. In some cases, the reg at the top of
2560 stack may be correct, but swapped anyway in order to fix
2561 other regs. But since we never swap any other reg away from
2562 its correct slot, this algorithm will converge. */
2564 if (new_stack->top != -1)
2567 /* Swap the reg at top of stack into the position it is
2568 supposed to be in, until the correct top of stack appears. */
2570 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2572 for (reg = new_stack->top; reg >= 0; reg--)
2573 if (new_stack->reg[reg] == old->reg[old->top])
2574 break;
2576 gcc_assert (reg != -1);
2578 emit_swap_insn (insn, old,
2579 FP_MODE_REG (old->reg[reg], DFmode));
2582 /* See if any regs remain incorrect. If so, bring an
2583 incorrect reg to the top of stack, and let the while loop
2584 above fix it. */
2586 for (reg = new_stack->top; reg >= 0; reg--)
2587 if (new_stack->reg[reg] != old->reg[reg])
2589 emit_swap_insn (insn, old,
2590 FP_MODE_REG (old->reg[reg], DFmode));
2591 break;
2593 } while (reg >= 0);
2595 /* At this point there must be no differences. */
2597 for (reg = old->top; reg >= 0; reg--)
2598 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2601 if (update_end)
2602 BB_END (current_block) = PREV_INSN (insn);
2605 /* Print stack configuration. */
2607 static void
2608 print_stack (FILE *file, stack s)
2610 if (! file)
2611 return;
2613 if (s->top == -2)
2614 fprintf (file, "uninitialized\n");
2615 else if (s->top == -1)
2616 fprintf (file, "empty\n");
2617 else
2619 int i;
2620 fputs ("[ ", file);
2621 for (i = 0; i <= s->top; ++i)
2622 fprintf (file, "%d ", s->reg[i]);
2623 fputs ("]\n", file);
2627 /* This function was doing life analysis. We now let the regular live
2628 code do it's job, so we only need to check some extra invariants
2629 that reg-stack expects. Primary among these being that all registers
2630 are initialized before use.
2632 The function returns true when code was emitted to CFG edges and
2633 commit_edge_insertions needs to be called. */
2635 static int
2636 convert_regs_entry (void)
2638 int inserted = 0;
2639 edge e;
2640 edge_iterator ei;
2642 /* Load something into each stack register live at function entry.
2643 Such live registers can be caused by uninitialized variables or
2644 functions not returning values on all paths. In order to keep
2645 the push/pop code happy, and to not scrog the register stack, we
2646 must put something in these registers. Use a QNaN.
2648 Note that we are inserting converted code here. This code is
2649 never seen by the convert_regs pass. */
2651 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2653 basic_block block = e->dest;
2654 block_info bi = BLOCK_INFO (block);
2655 int reg, top = -1;
2657 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2658 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2660 rtx init;
2662 bi->stack_in.reg[++top] = reg;
2664 init = gen_rtx_SET (VOIDmode,
2665 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2666 not_a_num);
2667 insert_insn_on_edge (init, e);
2668 inserted = 1;
2671 bi->stack_in.top = top;
2674 return inserted;
2677 /* Construct the desired stack for function exit. This will either
2678 be `empty', or the function return value at top-of-stack. */
2680 static void
2681 convert_regs_exit (void)
2683 int value_reg_low, value_reg_high;
2684 stack output_stack;
2685 rtx retvalue;
2687 retvalue = stack_result (current_function_decl);
2688 value_reg_low = value_reg_high = -1;
2689 if (retvalue)
2691 value_reg_low = REGNO (retvalue);
2692 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2695 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2696 if (value_reg_low == -1)
2697 output_stack->top = -1;
2698 else
2700 int reg;
2702 output_stack->top = value_reg_high - value_reg_low;
2703 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2705 output_stack->reg[value_reg_high - reg] = reg;
2706 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2711 /* Copy the stack info from the end of edge E's source block to the
2712 start of E's destination block. */
2714 static void
2715 propagate_stack (edge e)
2717 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2718 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2719 int reg;
2721 /* Preserve the order of the original stack, but check whether
2722 any pops are needed. */
2723 dest_stack->top = -1;
2724 for (reg = 0; reg <= src_stack->top; ++reg)
2725 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2726 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2728 /* Push in any partially dead values. */
2729 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2730 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2731 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2732 dest_stack->reg[++dest_stack->top] = reg;
2736 /* Adjust the stack of edge E's source block on exit to match the stack
2737 of it's target block upon input. The stack layouts of both blocks
2738 should have been defined by now. */
2740 static bool
2741 compensate_edge (edge e)
2743 basic_block source = e->src, target = e->dest;
2744 stack target_stack = &BLOCK_INFO (target)->stack_in;
2745 stack source_stack = &BLOCK_INFO (source)->stack_out;
2746 struct stack_def regstack;
2747 int reg;
2749 if (dump_file)
2750 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2752 gcc_assert (target_stack->top != -2);
2754 /* Check whether stacks are identical. */
2755 if (target_stack->top == source_stack->top)
2757 for (reg = target_stack->top; reg >= 0; --reg)
2758 if (target_stack->reg[reg] != source_stack->reg[reg])
2759 break;
2761 if (reg == -1)
2763 if (dump_file)
2764 fprintf (dump_file, "no changes needed\n");
2765 return false;
2769 if (dump_file)
2771 fprintf (dump_file, "correcting stack to ");
2772 print_stack (dump_file, target_stack);
2775 /* Abnormal calls may appear to have values live in st(0), but the
2776 abnormal return path will not have actually loaded the values. */
2777 if (e->flags & EDGE_ABNORMAL_CALL)
2779 /* Assert that the lifetimes are as we expect -- one value
2780 live at st(0) on the end of the source block, and no
2781 values live at the beginning of the destination block.
2782 For complex return values, we may have st(1) live as well. */
2783 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2784 gcc_assert (target_stack->top == -1);
2785 return false;
2788 /* Handle non-call EH edges specially. The normal return path have
2789 values in registers. These will be popped en masse by the unwind
2790 library. */
2791 if (e->flags & EDGE_EH)
2793 gcc_assert (target_stack->top == -1);
2794 return false;
2797 /* We don't support abnormal edges. Global takes care to
2798 avoid any live register across them, so we should never
2799 have to insert instructions on such edges. */
2800 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2802 /* Make a copy of source_stack as change_stack is destructive. */
2803 regstack = *source_stack;
2805 /* It is better to output directly to the end of the block
2806 instead of to the edge, because emit_swap can do minimal
2807 insn scheduling. We can do this when there is only one
2808 edge out, and it is not abnormal. */
2809 if (EDGE_COUNT (source->succs) == 1)
2811 current_block = source;
2812 change_stack (BB_END (source), &regstack, target_stack,
2813 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2815 else
2817 rtx seq, after;
2819 current_block = NULL;
2820 start_sequence ();
2822 /* ??? change_stack needs some point to emit insns after. */
2823 after = emit_note (NOTE_INSN_DELETED);
2825 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2827 seq = get_insns ();
2828 end_sequence ();
2830 insert_insn_on_edge (seq, e);
2831 return true;
2833 return false;
2836 /* Traverse all non-entry edges in the CFG, and emit the necessary
2837 edge compensation code to change the stack from stack_out of the
2838 source block to the stack_in of the destination block. */
2840 static bool
2841 compensate_edges (void)
2843 bool inserted = false;
2844 basic_block bb;
2846 starting_stack_p = false;
2848 FOR_EACH_BB (bb)
2849 if (bb != ENTRY_BLOCK_PTR)
2851 edge e;
2852 edge_iterator ei;
2854 FOR_EACH_EDGE (e, ei, bb->succs)
2855 inserted |= compensate_edge (e);
2857 return inserted;
2860 /* Select the better of two edges E1 and E2 to use to determine the
2861 stack layout for their shared destination basic block. This is
2862 typically the more frequently executed. The edge E1 may be NULL
2863 (in which case E2 is returned), but E2 is always non-NULL. */
2865 static edge
2866 better_edge (edge e1, edge e2)
2868 if (!e1)
2869 return e2;
2871 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2872 return e1;
2873 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2874 return e2;
2876 if (e1->count > e2->count)
2877 return e1;
2878 if (e1->count < e2->count)
2879 return e2;
2881 /* Prefer critical edges to minimize inserting compensation code on
2882 critical edges. */
2884 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2885 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2887 /* Avoid non-deterministic behavior. */
2888 return (e1->src->index < e2->src->index) ? e1 : e2;
2891 /* Convert stack register references in one block. */
2893 static void
2894 convert_regs_1 (basic_block block)
2896 struct stack_def regstack;
2897 block_info bi = BLOCK_INFO (block);
2898 int reg;
2899 rtx insn, next;
2900 bool control_flow_insn_deleted = false;
2901 int debug_insns_with_starting_stack = 0;
2903 any_malformed_asm = false;
2905 /* Choose an initial stack layout, if one hasn't already been chosen. */
2906 if (bi->stack_in.top == -2)
2908 edge e, beste = NULL;
2909 edge_iterator ei;
2911 /* Select the best incoming edge (typically the most frequent) to
2912 use as a template for this basic block. */
2913 FOR_EACH_EDGE (e, ei, block->preds)
2914 if (BLOCK_INFO (e->src)->done)
2915 beste = better_edge (beste, e);
2917 if (beste)
2918 propagate_stack (beste);
2919 else
2921 /* No predecessors. Create an arbitrary input stack. */
2922 bi->stack_in.top = -1;
2923 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2924 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2925 bi->stack_in.reg[++bi->stack_in.top] = reg;
2929 if (dump_file)
2931 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2932 print_stack (dump_file, &bi->stack_in);
2935 /* Process all insns in this block. Keep track of NEXT so that we
2936 don't process insns emitted while substituting in INSN. */
2937 current_block = block;
2938 next = BB_HEAD (block);
2939 regstack = bi->stack_in;
2940 starting_stack_p = true;
2944 insn = next;
2945 next = NEXT_INSN (insn);
2947 /* Ensure we have not missed a block boundary. */
2948 gcc_assert (next);
2949 if (insn == BB_END (block))
2950 next = NULL;
2952 /* Don't bother processing unless there is a stack reg
2953 mentioned or if it's a CALL_INSN. */
2954 if (DEBUG_INSN_P (insn))
2956 if (starting_stack_p)
2957 debug_insns_with_starting_stack++;
2958 else
2960 for_each_rtx (&PATTERN (insn), subst_stack_regs_in_debug_insn,
2961 &regstack);
2963 /* Nothing must ever die at a debug insn. If something
2964 is referenced in it that becomes dead, it should have
2965 died before and the reference in the debug insn
2966 should have been removed so as to avoid changing code
2967 generation. */
2968 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2971 else if (stack_regs_mentioned (insn)
2972 || CALL_P (insn))
2974 if (dump_file)
2976 fprintf (dump_file, " insn %d input stack: ",
2977 INSN_UID (insn));
2978 print_stack (dump_file, &regstack);
2980 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2981 starting_stack_p = false;
2984 while (next);
2986 if (debug_insns_with_starting_stack)
2988 /* Since it's the first non-debug instruction that determines
2989 the stack requirements of the current basic block, we refrain
2990 from updating debug insns before it in the loop above, and
2991 fix them up here. */
2992 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2993 insn = NEXT_INSN (insn))
2995 if (!DEBUG_INSN_P (insn))
2996 continue;
2998 debug_insns_with_starting_stack--;
2999 for_each_rtx (&PATTERN (insn), subst_stack_regs_in_debug_insn,
3000 &bi->stack_in);
3004 if (dump_file)
3006 fprintf (dump_file, "Expected live registers [");
3007 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3008 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3009 fprintf (dump_file, " %d", reg);
3010 fprintf (dump_file, " ]\nOutput stack: ");
3011 print_stack (dump_file, &regstack);
3014 insn = BB_END (block);
3015 if (JUMP_P (insn))
3016 insn = PREV_INSN (insn);
3018 /* If the function is declared to return a value, but it returns one
3019 in only some cases, some registers might come live here. Emit
3020 necessary moves for them. */
3022 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3024 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3025 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3027 rtx set;
3029 if (dump_file)
3030 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3032 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3033 insn = emit_insn_after (set, insn);
3034 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3038 /* Amongst the insns possibly deleted during the substitution process above,
3039 might have been the only trapping insn in the block. We purge the now
3040 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3041 called at the end of convert_regs. The order in which we process the
3042 blocks ensures that we never delete an already processed edge.
3044 Note that, at this point, the CFG may have been damaged by the emission
3045 of instructions after an abnormal call, which moves the basic block end
3046 (and is the reason why we call fixup_abnormal_edges later). So we must
3047 be sure that the trapping insn has been deleted before trying to purge
3048 dead edges, otherwise we risk purging valid edges.
3050 ??? We are normally supposed not to delete trapping insns, so we pretend
3051 that the insns deleted above don't actually trap. It would have been
3052 better to detect this earlier and avoid creating the EH edge in the first
3053 place, still, but we don't have enough information at that time. */
3055 if (control_flow_insn_deleted)
3056 purge_dead_edges (block);
3058 /* Something failed if the stack lives don't match. If we had malformed
3059 asms, we zapped the instruction itself, but that didn't produce the
3060 same pattern of register kills as before. */
3062 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3063 || any_malformed_asm);
3064 bi->stack_out = regstack;
3065 bi->done = true;
3068 /* Convert registers in all blocks reachable from BLOCK. */
3070 static void
3071 convert_regs_2 (basic_block block)
3073 basic_block *stack, *sp;
3075 /* We process the blocks in a top-down manner, in a way such that one block
3076 is only processed after all its predecessors. The number of predecessors
3077 of every block has already been computed. */
3079 stack = XNEWVEC (basic_block, n_basic_blocks);
3080 sp = stack;
3082 *sp++ = block;
3086 edge e;
3087 edge_iterator ei;
3089 block = *--sp;
3091 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3092 some dead EH outgoing edge after the deletion of the trapping
3093 insn inside the block. Since the number of predecessors of
3094 BLOCK's successors was computed based on the initial edge set,
3095 we check the necessity to process some of these successors
3096 before such an edge deletion may happen. However, there is
3097 a pitfall: if BLOCK is the only predecessor of a successor and
3098 the edge between them happens to be deleted, the successor
3099 becomes unreachable and should not be processed. The problem
3100 is that there is no way to preventively detect this case so we
3101 stack the successor in all cases and hand over the task of
3102 fixing up the discrepancy to convert_regs_1. */
3104 FOR_EACH_EDGE (e, ei, block->succs)
3105 if (! (e->flags & EDGE_DFS_BACK))
3107 BLOCK_INFO (e->dest)->predecessors--;
3108 if (!BLOCK_INFO (e->dest)->predecessors)
3109 *sp++ = e->dest;
3112 convert_regs_1 (block);
3114 while (sp != stack);
3116 free (stack);
3119 /* Traverse all basic blocks in a function, converting the register
3120 references in each insn from the "flat" register file that gcc uses,
3121 to the stack-like registers the 387 uses. */
3123 static void
3124 convert_regs (void)
3126 int inserted;
3127 basic_block b;
3128 edge e;
3129 edge_iterator ei;
3131 /* Initialize uninitialized registers on function entry. */
3132 inserted = convert_regs_entry ();
3134 /* Construct the desired stack for function exit. */
3135 convert_regs_exit ();
3136 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3138 /* ??? Future: process inner loops first, and give them arbitrary
3139 initial stacks which emit_swap_insn can modify. This ought to
3140 prevent double fxch that often appears at the head of a loop. */
3142 /* Process all blocks reachable from all entry points. */
3143 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3144 convert_regs_2 (e->dest);
3146 /* ??? Process all unreachable blocks. Though there's no excuse
3147 for keeping these even when not optimizing. */
3148 FOR_EACH_BB (b)
3150 block_info bi = BLOCK_INFO (b);
3152 if (! bi->done)
3153 convert_regs_2 (b);
3156 inserted |= compensate_edges ();
3158 clear_aux_for_blocks ();
3160 fixup_abnormal_edges ();
3161 if (inserted)
3162 commit_edge_insertions ();
3164 if (dump_file)
3165 fputc ('\n', dump_file);
3168 /* Convert register usage from "flat" register file usage to a "stack
3169 register file. FILE is the dump file, if used.
3171 Construct a CFG and run life analysis. Then convert each insn one
3172 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3173 code duplication created when the converter inserts pop insns on
3174 the edges. */
3176 static bool
3177 reg_to_stack (void)
3179 basic_block bb;
3180 int i;
3181 int max_uid;
3183 /* Clean up previous run. */
3184 if (stack_regs_mentioned_data != NULL)
3185 VEC_free (char, heap, stack_regs_mentioned_data);
3187 /* See if there is something to do. Flow analysis is quite
3188 expensive so we might save some compilation time. */
3189 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3190 if (df_regs_ever_live_p (i))
3191 break;
3192 if (i > LAST_STACK_REG)
3193 return false;
3195 df_note_add_problem ();
3196 df_analyze ();
3198 mark_dfs_back_edges ();
3200 /* Set up block info for each basic block. */
3201 alloc_aux_for_blocks (sizeof (struct block_info_def));
3202 FOR_EACH_BB (bb)
3204 block_info bi = BLOCK_INFO (bb);
3205 edge_iterator ei;
3206 edge e;
3207 int reg;
3209 FOR_EACH_EDGE (e, ei, bb->preds)
3210 if (!(e->flags & EDGE_DFS_BACK)
3211 && e->src != ENTRY_BLOCK_PTR)
3212 bi->predecessors++;
3214 /* Set current register status at last instruction `uninitialized'. */
3215 bi->stack_in.top = -2;
3217 /* Copy live_at_end and live_at_start into temporaries. */
3218 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3220 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3221 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3222 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3223 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3227 /* Create the replacement registers up front. */
3228 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3230 enum machine_mode mode;
3231 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3232 mode != VOIDmode;
3233 mode = GET_MODE_WIDER_MODE (mode))
3234 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3235 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3236 mode != VOIDmode;
3237 mode = GET_MODE_WIDER_MODE (mode))
3238 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3241 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3243 /* A QNaN for initializing uninitialized variables.
3245 ??? We can't load from constant memory in PIC mode, because
3246 we're inserting these instructions before the prologue and
3247 the PIC register hasn't been set up. In that case, fall back
3248 on zero, which we can get from `fldz'. */
3250 if ((flag_pic && !TARGET_64BIT)
3251 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3252 not_a_num = CONST0_RTX (SFmode);
3253 else
3255 REAL_VALUE_TYPE r;
3257 real_nan (&r, "", 1, SFmode);
3258 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3259 not_a_num = force_const_mem (SFmode, not_a_num);
3262 /* Allocate a cache for stack_regs_mentioned. */
3263 max_uid = get_max_uid ();
3264 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3265 memset (VEC_address (char, stack_regs_mentioned_data),
3266 0, sizeof (char) * (max_uid + 1));
3268 convert_regs ();
3270 free_aux_for_blocks ();
3271 return true;
3273 #endif /* STACK_REGS */
3275 static bool
3276 gate_handle_stack_regs (void)
3278 #ifdef STACK_REGS
3279 return 1;
3280 #else
3281 return 0;
3282 #endif
3285 struct rtl_opt_pass pass_stack_regs =
3288 RTL_PASS,
3289 NULL, /* name */
3290 gate_handle_stack_regs, /* gate */
3291 NULL, /* execute */
3292 NULL, /* sub */
3293 NULL, /* next */
3294 0, /* static_pass_number */
3295 TV_REG_STACK, /* tv_id */
3296 0, /* properties_required */
3297 0, /* properties_provided */
3298 0, /* properties_destroyed */
3299 0, /* todo_flags_start */
3300 0 /* todo_flags_finish */
3304 /* Convert register usage from flat register file usage to a stack
3305 register file. */
3306 static unsigned int
3307 rest_of_handle_stack_regs (void)
3309 #ifdef STACK_REGS
3310 reg_to_stack ();
3311 regstack_completed = 1;
3312 #endif
3313 return 0;
3316 struct rtl_opt_pass pass_stack_regs_run =
3319 RTL_PASS,
3320 "stack", /* name */
3321 NULL, /* gate */
3322 rest_of_handle_stack_regs, /* execute */
3323 NULL, /* sub */
3324 NULL, /* next */
3325 0, /* static_pass_number */
3326 TV_REG_STACK, /* tv_id */
3327 0, /* properties_required */
3328 0, /* properties_provided */
3329 0, /* properties_destroyed */
3330 0, /* todo_flags_start */
3331 TODO_df_finish | TODO_verify_rtl_sharing |
3332 TODO_dump_func |
3333 TODO_ggc_collect /* todo_flags_finish */