Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / postreload.c
blobd23ae0b990a249e8871c244fb1f8754190d04cb7
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
49 #include "df.h"
50 #include "dbgcnt.h"
52 static int reload_cse_noop_set_p (rtx);
53 static void reload_cse_simplify (rtx, rtx);
54 static void reload_cse_regs_1 (rtx);
55 static int reload_cse_simplify_set (rtx, rtx);
56 static int reload_cse_simplify_operands (rtx, rtx);
58 static void reload_combine (void);
59 static void reload_combine_note_use (rtx *, rtx);
60 static void reload_combine_note_store (rtx, const_rtx, void *);
62 static void reload_cse_move2add (rtx);
63 static void move2add_note_store (rtx, const_rtx, void *);
65 /* Call cse / combine like post-reload optimization phases.
66 FIRST is the first instruction. */
67 void
68 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
70 reload_cse_regs_1 (first);
71 reload_combine ();
72 reload_cse_move2add (first);
73 if (flag_expensive_optimizations)
74 reload_cse_regs_1 (first);
77 /* See whether a single set SET is a noop. */
78 static int
79 reload_cse_noop_set_p (rtx set)
81 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
82 return 0;
84 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
87 /* Try to simplify INSN. */
88 static void
89 reload_cse_simplify (rtx insn, rtx testreg)
91 rtx body = PATTERN (insn);
93 if (GET_CODE (body) == SET)
95 int count = 0;
97 /* Simplify even if we may think it is a no-op.
98 We may think a memory load of a value smaller than WORD_SIZE
99 is redundant because we haven't taken into account possible
100 implicit extension. reload_cse_simplify_set() will bring
101 this out, so it's safer to simplify before we delete. */
102 count += reload_cse_simplify_set (body, insn);
104 if (!count && reload_cse_noop_set_p (body))
106 rtx value = SET_DEST (body);
107 if (REG_P (value)
108 && ! REG_FUNCTION_VALUE_P (value))
109 value = 0;
110 delete_insn_and_edges (insn);
111 return;
114 if (count > 0)
115 apply_change_group ();
116 else
117 reload_cse_simplify_operands (insn, testreg);
119 else if (GET_CODE (body) == PARALLEL)
121 int i;
122 int count = 0;
123 rtx value = NULL_RTX;
125 /* Registers mentioned in the clobber list for an asm cannot be reused
126 within the body of the asm. Invalidate those registers now so that
127 we don't try to substitute values for them. */
128 if (asm_noperands (body) >= 0)
130 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
132 rtx part = XVECEXP (body, 0, i);
133 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
134 cselib_invalidate_rtx (XEXP (part, 0));
138 /* If every action in a PARALLEL is a noop, we can delete
139 the entire PARALLEL. */
140 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
142 rtx part = XVECEXP (body, 0, i);
143 if (GET_CODE (part) == SET)
145 if (! reload_cse_noop_set_p (part))
146 break;
147 if (REG_P (SET_DEST (part))
148 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
150 if (value)
151 break;
152 value = SET_DEST (part);
155 else if (GET_CODE (part) != CLOBBER)
156 break;
159 if (i < 0)
161 delete_insn_and_edges (insn);
162 /* We're done with this insn. */
163 return;
166 /* It's not a no-op, but we can try to simplify it. */
167 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
168 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
169 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
171 if (count > 0)
172 apply_change_group ();
173 else
174 reload_cse_simplify_operands (insn, testreg);
178 /* Do a very simple CSE pass over the hard registers.
180 This function detects no-op moves where we happened to assign two
181 different pseudo-registers to the same hard register, and then
182 copied one to the other. Reload will generate a useless
183 instruction copying a register to itself.
185 This function also detects cases where we load a value from memory
186 into two different registers, and (if memory is more expensive than
187 registers) changes it to simply copy the first register into the
188 second register.
190 Another optimization is performed that scans the operands of each
191 instruction to see whether the value is already available in a
192 hard register. It then replaces the operand with the hard register
193 if possible, much like an optional reload would. */
195 static void
196 reload_cse_regs_1 (rtx first)
198 rtx insn;
199 rtx testreg = gen_rtx_REG (VOIDmode, -1);
201 cselib_init (true);
202 init_alias_analysis ();
204 for (insn = first; insn; insn = NEXT_INSN (insn))
206 if (INSN_P (insn))
207 reload_cse_simplify (insn, testreg);
209 cselib_process_insn (insn);
212 /* Clean up. */
213 end_alias_analysis ();
214 cselib_finish ();
217 /* Try to simplify a single SET instruction. SET is the set pattern.
218 INSN is the instruction it came from.
219 This function only handles one case: if we set a register to a value
220 which is not a register, we try to find that value in some other register
221 and change the set into a register copy. */
223 static int
224 reload_cse_simplify_set (rtx set, rtx insn)
226 int did_change = 0;
227 int dreg;
228 rtx src;
229 enum reg_class dclass;
230 int old_cost;
231 cselib_val *val;
232 struct elt_loc_list *l;
233 #ifdef LOAD_EXTEND_OP
234 enum rtx_code extend_op = UNKNOWN;
235 #endif
236 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
238 dreg = true_regnum (SET_DEST (set));
239 if (dreg < 0)
240 return 0;
242 src = SET_SRC (set);
243 if (side_effects_p (src) || true_regnum (src) >= 0)
244 return 0;
246 dclass = REGNO_REG_CLASS (dreg);
248 #ifdef LOAD_EXTEND_OP
249 /* When replacing a memory with a register, we need to honor assumptions
250 that combine made wrt the contents of sign bits. We'll do this by
251 generating an extend instruction instead of a reg->reg copy. Thus
252 the destination must be a register that we can widen. */
253 if (MEM_P (src)
254 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
255 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
256 && !REG_P (SET_DEST (set)))
257 return 0;
258 #endif
260 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
261 if (! val)
262 return 0;
264 /* If memory loads are cheaper than register copies, don't change them. */
265 if (MEM_P (src))
266 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
267 else if (REG_P (src))
268 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
269 REGNO_REG_CLASS (REGNO (src)), dclass);
270 else
271 old_cost = rtx_cost (src, SET, speed);
273 for (l = val->locs; l; l = l->next)
275 rtx this_rtx = l->loc;
276 int this_cost;
278 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
280 #ifdef LOAD_EXTEND_OP
281 if (extend_op != UNKNOWN)
283 HOST_WIDE_INT this_val;
285 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
286 constants, such as SYMBOL_REF, cannot be extended. */
287 if (!CONST_INT_P (this_rtx))
288 continue;
290 this_val = INTVAL (this_rtx);
291 switch (extend_op)
293 case ZERO_EXTEND:
294 this_val &= GET_MODE_MASK (GET_MODE (src));
295 break;
296 case SIGN_EXTEND:
297 /* ??? In theory we're already extended. */
298 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
299 break;
300 default:
301 gcc_unreachable ();
303 this_rtx = GEN_INT (this_val);
305 #endif
306 this_cost = rtx_cost (this_rtx, SET, speed);
308 else if (REG_P (this_rtx))
310 #ifdef LOAD_EXTEND_OP
311 if (extend_op != UNKNOWN)
313 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
314 this_cost = rtx_cost (this_rtx, SET, speed);
316 else
317 #endif
318 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
319 REGNO_REG_CLASS (REGNO (this_rtx)),
320 dclass);
322 else
323 continue;
325 /* If equal costs, prefer registers over anything else. That
326 tends to lead to smaller instructions on some machines. */
327 if (this_cost < old_cost
328 || (this_cost == old_cost
329 && REG_P (this_rtx)
330 && !REG_P (SET_SRC (set))))
332 #ifdef LOAD_EXTEND_OP
333 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
334 && extend_op != UNKNOWN
335 #ifdef CANNOT_CHANGE_MODE_CLASS
336 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
337 word_mode,
338 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
339 #endif
342 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
343 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
344 validate_change (insn, &SET_DEST (set), wide_dest, 1);
346 #endif
348 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
349 old_cost = this_cost, did_change = 1;
353 return did_change;
356 /* Try to replace operands in INSN with equivalent values that are already
357 in registers. This can be viewed as optional reloading.
359 For each non-register operand in the insn, see if any hard regs are
360 known to be equivalent to that operand. Record the alternatives which
361 can accept these hard registers. Among all alternatives, select the
362 ones which are better or equal to the one currently matching, where
363 "better" is in terms of '?' and '!' constraints. Among the remaining
364 alternatives, select the one which replaces most operands with
365 hard registers. */
367 static int
368 reload_cse_simplify_operands (rtx insn, rtx testreg)
370 int i, j;
372 /* For each operand, all registers that are equivalent to it. */
373 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
375 const char *constraints[MAX_RECOG_OPERANDS];
377 /* Vector recording how bad an alternative is. */
378 int *alternative_reject;
379 /* Vector recording how many registers can be introduced by choosing
380 this alternative. */
381 int *alternative_nregs;
382 /* Array of vectors recording, for each operand and each alternative,
383 which hard register to substitute, or -1 if the operand should be
384 left as it is. */
385 int *op_alt_regno[MAX_RECOG_OPERANDS];
386 /* Array of alternatives, sorted in order of decreasing desirability. */
387 int *alternative_order;
389 extract_insn (insn);
391 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
392 return 0;
394 /* Figure out which alternative currently matches. */
395 if (! constrain_operands (1))
396 fatal_insn_not_found (insn);
398 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
399 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
400 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
401 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
402 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
404 /* For each operand, find out which regs are equivalent. */
405 for (i = 0; i < recog_data.n_operands; i++)
407 cselib_val *v;
408 struct elt_loc_list *l;
409 rtx op;
410 enum machine_mode mode;
412 CLEAR_HARD_REG_SET (equiv_regs[i]);
414 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
415 right, so avoid the problem here. Likewise if we have a constant
416 and the insn pattern doesn't tell us the mode we need. */
417 if (LABEL_P (recog_data.operand[i])
418 || (CONSTANT_P (recog_data.operand[i])
419 && recog_data.operand_mode[i] == VOIDmode))
420 continue;
422 op = recog_data.operand[i];
423 mode = GET_MODE (op);
424 #ifdef LOAD_EXTEND_OP
425 if (MEM_P (op)
426 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
427 && LOAD_EXTEND_OP (mode) != UNKNOWN)
429 rtx set = single_set (insn);
431 /* We might have multiple sets, some of which do implicit
432 extension. Punt on this for now. */
433 if (! set)
434 continue;
435 /* If the destination is also a MEM or a STRICT_LOW_PART, no
436 extension applies.
437 Also, if there is an explicit extension, we don't have to
438 worry about an implicit one. */
439 else if (MEM_P (SET_DEST (set))
440 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
441 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
442 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
443 ; /* Continue ordinary processing. */
444 #ifdef CANNOT_CHANGE_MODE_CLASS
445 /* If the register cannot change mode to word_mode, it follows that
446 it cannot have been used in word_mode. */
447 else if (REG_P (SET_DEST (set))
448 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
449 word_mode,
450 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
451 ; /* Continue ordinary processing. */
452 #endif
453 /* If this is a straight load, make the extension explicit. */
454 else if (REG_P (SET_DEST (set))
455 && recog_data.n_operands == 2
456 && SET_SRC (set) == op
457 && SET_DEST (set) == recog_data.operand[1-i])
459 validate_change (insn, recog_data.operand_loc[i],
460 gen_rtx_fmt_e (LOAD_EXTEND_OP (mode),
461 word_mode, op),
463 validate_change (insn, recog_data.operand_loc[1-i],
464 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
466 if (! apply_change_group ())
467 return 0;
468 return reload_cse_simplify_operands (insn, testreg);
470 else
471 /* ??? There might be arithmetic operations with memory that are
472 safe to optimize, but is it worth the trouble? */
473 continue;
475 #endif /* LOAD_EXTEND_OP */
476 v = cselib_lookup (op, recog_data.operand_mode[i], 0);
477 if (! v)
478 continue;
480 for (l = v->locs; l; l = l->next)
481 if (REG_P (l->loc))
482 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
485 for (i = 0; i < recog_data.n_operands; i++)
487 enum machine_mode mode;
488 int regno;
489 const char *p;
491 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
492 for (j = 0; j < recog_data.n_alternatives; j++)
493 op_alt_regno[i][j] = -1;
495 p = constraints[i] = recog_data.constraints[i];
496 mode = recog_data.operand_mode[i];
498 /* Add the reject values for each alternative given by the constraints
499 for this operand. */
500 j = 0;
501 while (*p != '\0')
503 char c = *p++;
504 if (c == ',')
505 j++;
506 else if (c == '?')
507 alternative_reject[j] += 3;
508 else if (c == '!')
509 alternative_reject[j] += 300;
512 /* We won't change operands which are already registers. We
513 also don't want to modify output operands. */
514 regno = true_regnum (recog_data.operand[i]);
515 if (regno >= 0
516 || constraints[i][0] == '='
517 || constraints[i][0] == '+')
518 continue;
520 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
522 enum reg_class rclass = NO_REGS;
524 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
525 continue;
527 SET_REGNO (testreg, regno);
528 PUT_MODE (testreg, mode);
530 /* We found a register equal to this operand. Now look for all
531 alternatives that can accept this register and have not been
532 assigned a register they can use yet. */
533 j = 0;
534 p = constraints[i];
535 for (;;)
537 char c = *p;
539 switch (c)
541 case '=': case '+': case '?':
542 case '#': case '&': case '!':
543 case '*': case '%':
544 case '0': case '1': case '2': case '3': case '4':
545 case '5': case '6': case '7': case '8': case '9':
546 case '<': case '>': case 'V': case 'o':
547 case 'E': case 'F': case 'G': case 'H':
548 case 's': case 'i': case 'n':
549 case 'I': case 'J': case 'K': case 'L':
550 case 'M': case 'N': case 'O': case 'P':
551 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
552 /* These don't say anything we care about. */
553 break;
555 case 'g': case 'r':
556 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
557 break;
559 default:
560 rclass
561 = (reg_class_subunion
562 [(int) rclass]
563 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
564 break;
566 case ',': case '\0':
567 /* See if REGNO fits this alternative, and set it up as the
568 replacement register if we don't have one for this
569 alternative yet and the operand being replaced is not
570 a cheap CONST_INT. */
571 if (op_alt_regno[i][j] == -1
572 && reg_fits_class_p (testreg, rclass, 0, mode)
573 && (!CONST_INT_P (recog_data.operand[i])
574 || (rtx_cost (recog_data.operand[i], SET,
575 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
576 > rtx_cost (testreg, SET,
577 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn))))))
579 alternative_nregs[j]++;
580 op_alt_regno[i][j] = regno;
582 j++;
583 rclass = NO_REGS;
584 break;
586 p += CONSTRAINT_LEN (c, p);
588 if (c == '\0')
589 break;
594 /* Record all alternatives which are better or equal to the currently
595 matching one in the alternative_order array. */
596 for (i = j = 0; i < recog_data.n_alternatives; i++)
597 if (alternative_reject[i] <= alternative_reject[which_alternative])
598 alternative_order[j++] = i;
599 recog_data.n_alternatives = j;
601 /* Sort it. Given a small number of alternatives, a dumb algorithm
602 won't hurt too much. */
603 for (i = 0; i < recog_data.n_alternatives - 1; i++)
605 int best = i;
606 int best_reject = alternative_reject[alternative_order[i]];
607 int best_nregs = alternative_nregs[alternative_order[i]];
608 int tmp;
610 for (j = i + 1; j < recog_data.n_alternatives; j++)
612 int this_reject = alternative_reject[alternative_order[j]];
613 int this_nregs = alternative_nregs[alternative_order[j]];
615 if (this_reject < best_reject
616 || (this_reject == best_reject && this_nregs > best_nregs))
618 best = j;
619 best_reject = this_reject;
620 best_nregs = this_nregs;
624 tmp = alternative_order[best];
625 alternative_order[best] = alternative_order[i];
626 alternative_order[i] = tmp;
629 /* Substitute the operands as determined by op_alt_regno for the best
630 alternative. */
631 j = alternative_order[0];
633 for (i = 0; i < recog_data.n_operands; i++)
635 enum machine_mode mode = recog_data.operand_mode[i];
636 if (op_alt_regno[i][j] == -1)
637 continue;
639 validate_change (insn, recog_data.operand_loc[i],
640 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
643 for (i = recog_data.n_dups - 1; i >= 0; i--)
645 int op = recog_data.dup_num[i];
646 enum machine_mode mode = recog_data.operand_mode[op];
648 if (op_alt_regno[op][j] == -1)
649 continue;
651 validate_change (insn, recog_data.dup_loc[i],
652 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
655 return apply_change_group ();
658 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
659 addressing now.
660 This code might also be useful when reload gave up on reg+reg addressing
661 because of clashes between the return register and INDEX_REG_CLASS. */
663 /* The maximum number of uses of a register we can keep track of to
664 replace them with reg+reg addressing. */
665 #define RELOAD_COMBINE_MAX_USES 6
667 /* INSN is the insn where a register has been used, and USEP points to the
668 location of the register within the rtl. */
669 struct reg_use { rtx insn, *usep; };
671 /* If the register is used in some unknown fashion, USE_INDEX is negative.
672 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
673 indicates where it becomes live again.
674 Otherwise, USE_INDEX is the index of the last encountered use of the
675 register (which is first among these we have seen since we scan backwards),
676 OFFSET contains the constant offset that is added to the register in
677 all encountered uses, and USE_RUID indicates the first encountered, i.e.
678 last, of these uses.
679 STORE_RUID is always meaningful if we only want to use a value in a
680 register in a different place: it denotes the next insn in the insn
681 stream (i.e. the last encountered) that sets or clobbers the register. */
682 static struct
684 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
685 int use_index;
686 rtx offset;
687 int store_ruid;
688 int use_ruid;
689 } reg_state[FIRST_PSEUDO_REGISTER];
691 /* Reverse linear uid. This is increased in reload_combine while scanning
692 the instructions from last to first. It is used to set last_label_ruid
693 and the store_ruid / use_ruid fields in reg_state. */
694 static int reload_combine_ruid;
696 #define LABEL_LIVE(LABEL) \
697 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
699 static void
700 reload_combine (void)
702 rtx insn, set;
703 int first_index_reg = -1;
704 int last_index_reg = 0;
705 int i;
706 basic_block bb;
707 unsigned int r;
708 int last_label_ruid;
709 int min_labelno, n_labels;
710 HARD_REG_SET ever_live_at_start, *label_live;
712 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
713 reload has already used it where appropriate, so there is no use in
714 trying to generate it now. */
715 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
716 return;
718 /* To avoid wasting too much time later searching for an index register,
719 determine the minimum and maximum index register numbers. */
720 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
721 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
723 if (first_index_reg == -1)
724 first_index_reg = r;
726 last_index_reg = r;
729 /* If no index register is available, we can quit now. */
730 if (first_index_reg == -1)
731 return;
733 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
734 information is a bit fuzzy immediately after reload, but it's
735 still good enough to determine which registers are live at a jump
736 destination. */
737 min_labelno = get_first_label_num ();
738 n_labels = max_label_num () - min_labelno;
739 label_live = XNEWVEC (HARD_REG_SET, n_labels);
740 CLEAR_HARD_REG_SET (ever_live_at_start);
742 FOR_EACH_BB_REVERSE (bb)
744 insn = BB_HEAD (bb);
745 if (LABEL_P (insn))
747 HARD_REG_SET live;
748 bitmap live_in = df_get_live_in (bb);
750 REG_SET_TO_HARD_REG_SET (live, live_in);
751 compute_use_by_pseudos (&live, live_in);
752 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
753 IOR_HARD_REG_SET (ever_live_at_start, live);
757 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
758 last_label_ruid = reload_combine_ruid = 0;
759 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
761 reg_state[r].store_ruid = reload_combine_ruid;
762 if (fixed_regs[r])
763 reg_state[r].use_index = -1;
764 else
765 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
768 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
770 rtx note;
772 /* We cannot do our optimization across labels. Invalidating all the use
773 information we have would be costly, so we just note where the label
774 is and then later disable any optimization that would cross it. */
775 if (LABEL_P (insn))
776 last_label_ruid = reload_combine_ruid;
777 else if (BARRIER_P (insn))
778 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
779 if (! fixed_regs[r])
780 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
782 if (! INSN_P (insn))
783 continue;
785 reload_combine_ruid++;
787 /* Look for (set (REGX) (CONST_INT))
788 (set (REGX) (PLUS (REGX) (REGY)))
790 ... (MEM (REGX)) ...
791 and convert it to
792 (set (REGZ) (CONST_INT))
794 ... (MEM (PLUS (REGZ) (REGY)))... .
796 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
797 and that we know all uses of REGX before it dies.
798 Also, explicitly check that REGX != REGY; our life information
799 does not yet show whether REGY changes in this insn. */
800 set = single_set (insn);
801 if (set != NULL_RTX
802 && REG_P (SET_DEST (set))
803 && (hard_regno_nregs[REGNO (SET_DEST (set))]
804 [GET_MODE (SET_DEST (set))]
805 == 1)
806 && GET_CODE (SET_SRC (set)) == PLUS
807 && REG_P (XEXP (SET_SRC (set), 1))
808 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
809 && !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set))
810 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
812 rtx reg = SET_DEST (set);
813 rtx plus = SET_SRC (set);
814 rtx base = XEXP (plus, 1);
815 rtx prev = prev_nonnote_insn (insn);
816 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
817 unsigned int regno = REGNO (reg);
818 rtx index_reg = NULL_RTX;
819 rtx reg_sum = NULL_RTX;
821 /* Now we need to set INDEX_REG to an index register (denoted as
822 REGZ in the illustration above) and REG_SUM to the expression
823 register+register that we want to use to substitute uses of REG
824 (typically in MEMs) with. First check REG and BASE for being
825 index registers; we can use them even if they are not dead. */
826 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
827 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
828 REGNO (base)))
830 index_reg = reg;
831 reg_sum = plus;
833 else
835 /* Otherwise, look for a free index register. Since we have
836 checked above that neither REG nor BASE are index registers,
837 if we find anything at all, it will be different from these
838 two registers. */
839 for (i = first_index_reg; i <= last_index_reg; i++)
841 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
843 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
844 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
845 && hard_regno_nregs[i][GET_MODE (reg)] == 1)
847 index_reg = gen_rtx_REG (GET_MODE (reg), i);
848 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
849 break;
854 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
855 (REGY), i.e. BASE, is not clobbered before the last use we'll
856 create. */
857 if (reg_sum
858 && prev_set
859 && CONST_INT_P (SET_SRC (prev_set))
860 && rtx_equal_p (SET_DEST (prev_set), reg)
861 && reg_state[regno].use_index >= 0
862 && (reg_state[REGNO (base)].store_ruid
863 <= reg_state[regno].use_ruid))
865 int i;
867 /* Change destination register and, if necessary, the constant
868 value in PREV, the constant loading instruction. */
869 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
870 if (reg_state[regno].offset != const0_rtx)
871 validate_change (prev,
872 &SET_SRC (prev_set),
873 GEN_INT (INTVAL (SET_SRC (prev_set))
874 + INTVAL (reg_state[regno].offset)),
877 /* Now for every use of REG that we have recorded, replace REG
878 with REG_SUM. */
879 for (i = reg_state[regno].use_index;
880 i < RELOAD_COMBINE_MAX_USES; i++)
881 validate_unshare_change (reg_state[regno].reg_use[i].insn,
882 reg_state[regno].reg_use[i].usep,
883 /* Each change must have its own
884 replacement. */
885 reg_sum, 1);
887 if (apply_change_group ())
889 /* For every new use of REG_SUM, we have to record the use
890 of BASE therein, i.e. operand 1. */
891 for (i = reg_state[regno].use_index;
892 i < RELOAD_COMBINE_MAX_USES; i++)
893 reload_combine_note_use
894 (&XEXP (*reg_state[regno].reg_use[i].usep, 1),
895 reg_state[regno].reg_use[i].insn);
897 if (reg_state[REGNO (base)].use_ruid
898 > reg_state[regno].use_ruid)
899 reg_state[REGNO (base)].use_ruid
900 = reg_state[regno].use_ruid;
902 /* Delete the reg-reg addition. */
903 delete_insn (insn);
905 if (reg_state[regno].offset != const0_rtx)
906 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
907 are now invalid. */
908 remove_reg_equal_equiv_notes (prev);
910 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
911 reg_state[REGNO (index_reg)].store_ruid
912 = reload_combine_ruid;
913 continue;
918 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
920 if (CALL_P (insn))
922 rtx link;
924 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
925 if (call_used_regs[r])
927 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
928 reg_state[r].store_ruid = reload_combine_ruid;
931 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
932 link = XEXP (link, 1))
934 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
935 if (REG_P (usage_rtx))
937 unsigned int i;
938 unsigned int start_reg = REGNO (usage_rtx);
939 unsigned int num_regs =
940 hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
941 unsigned int end_reg = start_reg + num_regs - 1;
942 for (i = start_reg; i <= end_reg; i++)
943 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
945 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
946 reg_state[i].store_ruid = reload_combine_ruid;
948 else
949 reg_state[i].use_index = -1;
954 else if (JUMP_P (insn)
955 && GET_CODE (PATTERN (insn)) != RETURN)
957 /* Non-spill registers might be used at the call destination in
958 some unknown fashion, so we have to mark the unknown use. */
959 HARD_REG_SET *live;
961 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
962 && JUMP_LABEL (insn))
963 live = &LABEL_LIVE (JUMP_LABEL (insn));
964 else
965 live = &ever_live_at_start;
967 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
968 if (TEST_HARD_REG_BIT (*live, i))
969 reg_state[i].use_index = -1;
972 reload_combine_note_use (&PATTERN (insn), insn);
973 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
975 if (REG_NOTE_KIND (note) == REG_INC
976 && REG_P (XEXP (note, 0)))
978 int regno = REGNO (XEXP (note, 0));
980 reg_state[regno].store_ruid = reload_combine_ruid;
981 reg_state[regno].use_index = -1;
986 free (label_live);
989 /* Check if DST is a register or a subreg of a register; if it is,
990 update reg_state[regno].store_ruid and reg_state[regno].use_index
991 accordingly. Called via note_stores from reload_combine. */
993 static void
994 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
996 int regno = 0;
997 int i;
998 enum machine_mode mode = GET_MODE (dst);
1000 if (GET_CODE (dst) == SUBREG)
1002 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1003 GET_MODE (SUBREG_REG (dst)),
1004 SUBREG_BYTE (dst),
1005 GET_MODE (dst));
1006 dst = SUBREG_REG (dst);
1008 if (!REG_P (dst))
1009 return;
1010 regno += REGNO (dst);
1012 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1013 careful with registers / register parts that are not full words.
1014 Similarly for ZERO_EXTRACT. */
1015 if (GET_CODE (set) != SET
1016 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1017 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1019 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1021 reg_state[i].use_index = -1;
1022 reg_state[i].store_ruid = reload_combine_ruid;
1025 else
1027 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1029 reg_state[i].store_ruid = reload_combine_ruid;
1030 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1035 /* XP points to a piece of rtl that has to be checked for any uses of
1036 registers.
1037 *XP is the pattern of INSN, or a part of it.
1038 Called from reload_combine, and recursively by itself. */
1039 static void
1040 reload_combine_note_use (rtx *xp, rtx insn)
1042 rtx x = *xp;
1043 enum rtx_code code = x->code;
1044 const char *fmt;
1045 int i, j;
1046 rtx offset = const0_rtx; /* For the REG case below. */
1048 switch (code)
1050 case SET:
1051 if (REG_P (SET_DEST (x)))
1053 reload_combine_note_use (&SET_SRC (x), insn);
1054 return;
1056 break;
1058 case USE:
1059 /* If this is the USE of a return value, we can't change it. */
1060 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1062 /* Mark the return register as used in an unknown fashion. */
1063 rtx reg = XEXP (x, 0);
1064 int regno = REGNO (reg);
1065 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1067 while (--nregs >= 0)
1068 reg_state[regno + nregs].use_index = -1;
1069 return;
1071 break;
1073 case CLOBBER:
1074 if (REG_P (SET_DEST (x)))
1076 /* No spurious CLOBBERs of pseudo registers may remain. */
1077 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1078 return;
1080 break;
1082 case PLUS:
1083 /* We are interested in (plus (reg) (const_int)) . */
1084 if (!REG_P (XEXP (x, 0))
1085 || !CONST_INT_P (XEXP (x, 1)))
1086 break;
1087 offset = XEXP (x, 1);
1088 x = XEXP (x, 0);
1089 /* Fall through. */
1090 case REG:
1092 int regno = REGNO (x);
1093 int use_index;
1094 int nregs;
1096 /* No spurious USEs of pseudo registers may remain. */
1097 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1099 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1101 /* We can't substitute into multi-hard-reg uses. */
1102 if (nregs > 1)
1104 while (--nregs >= 0)
1105 reg_state[regno + nregs].use_index = -1;
1106 return;
1109 /* If this register is already used in some unknown fashion, we
1110 can't do anything.
1111 If we decrement the index from zero to -1, we can't store more
1112 uses, so this register becomes used in an unknown fashion. */
1113 use_index = --reg_state[regno].use_index;
1114 if (use_index < 0)
1115 return;
1117 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
1119 /* We have found another use for a register that is already
1120 used later. Check if the offsets match; if not, mark the
1121 register as used in an unknown fashion. */
1122 if (! rtx_equal_p (offset, reg_state[regno].offset))
1124 reg_state[regno].use_index = -1;
1125 return;
1128 else
1130 /* This is the first use of this register we have seen since we
1131 marked it as dead. */
1132 reg_state[regno].offset = offset;
1133 reg_state[regno].use_ruid = reload_combine_ruid;
1135 reg_state[regno].reg_use[use_index].insn = insn;
1136 reg_state[regno].reg_use[use_index].usep = xp;
1137 return;
1140 default:
1141 break;
1144 /* Recursively process the components of X. */
1145 fmt = GET_RTX_FORMAT (code);
1146 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1148 if (fmt[i] == 'e')
1149 reload_combine_note_use (&XEXP (x, i), insn);
1150 else if (fmt[i] == 'E')
1152 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1153 reload_combine_note_use (&XVECEXP (x, i, j), insn);
1158 /* See if we can reduce the cost of a constant by replacing a move
1159 with an add. We track situations in which a register is set to a
1160 constant or to a register plus a constant. */
1161 /* We cannot do our optimization across labels. Invalidating all the
1162 information about register contents we have would be costly, so we
1163 use move2add_last_label_luid to note where the label is and then
1164 later disable any optimization that would cross it.
1165 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
1166 reg_set_luid[n] is greater than move2add_last_label_luid. */
1167 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1169 /* If reg_base_reg[n] is negative, register n has been set to
1170 reg_offset[n] in mode reg_mode[n] .
1171 If reg_base_reg[n] is non-negative, register n has been set to the
1172 sum of reg_offset[n] and the value of register reg_base_reg[n]
1173 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1174 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1175 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1176 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1178 /* move2add_luid is linearly increased while scanning the instructions
1179 from first to last. It is used to set reg_set_luid in
1180 reload_cse_move2add and move2add_note_store. */
1181 static int move2add_luid;
1183 /* move2add_last_label_luid is set whenever a label is found. Labels
1184 invalidate all previously collected reg_offset data. */
1185 static int move2add_last_label_luid;
1187 /* ??? We don't know how zero / sign extension is handled, hence we
1188 can't go from a narrower to a wider mode. */
1189 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1190 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1191 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1192 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1193 GET_MODE_BITSIZE (INMODE))))
1195 static void
1196 reload_cse_move2add (rtx first)
1198 int i;
1199 rtx insn;
1201 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1202 reg_set_luid[i] = 0;
1204 move2add_last_label_luid = 0;
1205 move2add_luid = 2;
1206 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1208 rtx pat, note;
1210 if (LABEL_P (insn))
1212 move2add_last_label_luid = move2add_luid;
1213 /* We're going to increment move2add_luid twice after a
1214 label, so that we can use move2add_last_label_luid + 1 as
1215 the luid for constants. */
1216 move2add_luid++;
1217 continue;
1219 if (! INSN_P (insn))
1220 continue;
1221 pat = PATTERN (insn);
1222 /* For simplicity, we only perform this optimization on
1223 straightforward SETs. */
1224 if (GET_CODE (pat) == SET
1225 && REG_P (SET_DEST (pat)))
1227 rtx reg = SET_DEST (pat);
1228 int regno = REGNO (reg);
1229 rtx src = SET_SRC (pat);
1231 /* Check if we have valid information on the contents of this
1232 register in the mode of REG. */
1233 if (reg_set_luid[regno] > move2add_last_label_luid
1234 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1235 && dbg_cnt (cse2_move2add))
1237 /* Try to transform (set (REGX) (CONST_INT A))
1239 (set (REGX) (CONST_INT B))
1241 (set (REGX) (CONST_INT A))
1243 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1245 (set (REGX) (CONST_INT A))
1247 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1250 if (CONST_INT_P (src) && reg_base_reg[regno] < 0)
1252 rtx new_src = gen_int_mode (INTVAL (src) - reg_offset[regno],
1253 GET_MODE (reg));
1254 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1256 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1257 use (set (reg) (reg)) instead.
1258 We don't delete this insn, nor do we convert it into a
1259 note, to avoid losing register notes or the return
1260 value flag. jump2 already knows how to get rid of
1261 no-op moves. */
1262 if (new_src == const0_rtx)
1264 /* If the constants are different, this is a
1265 truncation, that, if turned into (set (reg)
1266 (reg)), would be discarded. Maybe we should
1267 try a truncMN pattern? */
1268 if (INTVAL (src) == reg_offset [regno])
1269 validate_change (insn, &SET_SRC (pat), reg, 0);
1271 else if (rtx_cost (new_src, PLUS, speed) < rtx_cost (src, SET, speed)
1272 && have_add2_insn (reg, new_src))
1274 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1275 validate_change (insn, &SET_SRC (pat), tem, 0);
1277 else if (GET_MODE (reg) != BImode)
1279 enum machine_mode narrow_mode;
1280 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1281 narrow_mode != VOIDmode
1282 && narrow_mode != GET_MODE (reg);
1283 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1285 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1286 && ((reg_offset[regno]
1287 & ~GET_MODE_MASK (narrow_mode))
1288 == (INTVAL (src)
1289 & ~GET_MODE_MASK (narrow_mode))))
1291 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1292 REGNO (reg));
1293 rtx narrow_src = gen_int_mode (INTVAL (src),
1294 narrow_mode);
1295 rtx new_set =
1296 gen_rtx_SET (VOIDmode,
1297 gen_rtx_STRICT_LOW_PART (VOIDmode,
1298 narrow_reg),
1299 narrow_src);
1300 if (validate_change (insn, &PATTERN (insn),
1301 new_set, 0))
1302 break;
1306 reg_set_luid[regno] = move2add_luid;
1307 reg_mode[regno] = GET_MODE (reg);
1308 reg_offset[regno] = INTVAL (src);
1309 continue;
1312 /* Try to transform (set (REGX) (REGY))
1313 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1315 (set (REGX) (REGY))
1316 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1318 (set (REGX) (REGY))
1319 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1321 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1322 else if (REG_P (src)
1323 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1324 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1325 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1326 reg_mode[REGNO (src)]))
1328 rtx next = next_nonnote_insn (insn);
1329 rtx set = NULL_RTX;
1330 if (next)
1331 set = single_set (next);
1332 if (set
1333 && SET_DEST (set) == reg
1334 && GET_CODE (SET_SRC (set)) == PLUS
1335 && XEXP (SET_SRC (set), 0) == reg
1336 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1338 rtx src3 = XEXP (SET_SRC (set), 1);
1339 HOST_WIDE_INT added_offset = INTVAL (src3);
1340 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1341 HOST_WIDE_INT regno_offset = reg_offset[regno];
1342 rtx new_src =
1343 gen_int_mode (added_offset
1344 + base_offset
1345 - regno_offset,
1346 GET_MODE (reg));
1347 bool success = false;
1348 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1350 if (new_src == const0_rtx)
1351 /* See above why we create (set (reg) (reg)) here. */
1352 success
1353 = validate_change (next, &SET_SRC (set), reg, 0);
1354 else if ((rtx_cost (new_src, PLUS, speed)
1355 < COSTS_N_INSNS (1) + rtx_cost (src3, SET, speed))
1356 && have_add2_insn (reg, new_src))
1358 rtx newpat = gen_rtx_SET (VOIDmode,
1359 reg,
1360 gen_rtx_PLUS (GET_MODE (reg),
1361 reg,
1362 new_src));
1363 success
1364 = validate_change (next, &PATTERN (next),
1365 newpat, 0);
1367 if (success)
1368 delete_insn (insn);
1369 insn = next;
1370 reg_mode[regno] = GET_MODE (reg);
1371 reg_offset[regno] =
1372 trunc_int_for_mode (added_offset + base_offset,
1373 GET_MODE (reg));
1374 continue;
1380 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1382 if (REG_NOTE_KIND (note) == REG_INC
1383 && REG_P (XEXP (note, 0)))
1385 /* Reset the information about this register. */
1386 int regno = REGNO (XEXP (note, 0));
1387 if (regno < FIRST_PSEUDO_REGISTER)
1388 reg_set_luid[regno] = 0;
1391 note_stores (PATTERN (insn), move2add_note_store, NULL);
1393 /* If INSN is a conditional branch, we try to extract an
1394 implicit set out of it. */
1395 if (any_condjump_p (insn))
1397 rtx cnd = fis_get_condition (insn);
1399 if (cnd != NULL_RTX
1400 && GET_CODE (cnd) == NE
1401 && REG_P (XEXP (cnd, 0))
1402 && !reg_set_p (XEXP (cnd, 0), insn)
1403 /* The following two checks, which are also in
1404 move2add_note_store, are intended to reduce the
1405 number of calls to gen_rtx_SET to avoid memory
1406 allocation if possible. */
1407 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
1408 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
1409 && CONST_INT_P (XEXP (cnd, 1)))
1411 rtx implicit_set =
1412 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
1413 move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
1417 /* If this is a CALL_INSN, all call used registers are stored with
1418 unknown values. */
1419 if (CALL_P (insn))
1421 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1423 if (call_used_regs[i])
1424 /* Reset the information about this register. */
1425 reg_set_luid[i] = 0;
1431 /* SET is a SET or CLOBBER that sets DST.
1432 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
1433 Called from reload_cse_move2add via note_stores. */
1435 static void
1436 move2add_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1438 unsigned int regno = 0;
1439 unsigned int nregs = 0;
1440 unsigned int i;
1441 enum machine_mode mode = GET_MODE (dst);
1443 if (GET_CODE (dst) == SUBREG)
1445 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1446 GET_MODE (SUBREG_REG (dst)),
1447 SUBREG_BYTE (dst),
1448 GET_MODE (dst));
1449 nregs = subreg_nregs (dst);
1450 dst = SUBREG_REG (dst);
1453 /* Some targets do argument pushes without adding REG_INC notes. */
1455 if (MEM_P (dst))
1457 dst = XEXP (dst, 0);
1458 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1459 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
1460 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
1461 return;
1463 if (!REG_P (dst))
1464 return;
1466 regno += REGNO (dst);
1467 if (!nregs)
1468 nregs = hard_regno_nregs[regno][mode];
1470 if (SCALAR_INT_MODE_P (GET_MODE (dst))
1471 && nregs == 1 && GET_CODE (set) == SET
1472 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1473 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
1475 rtx src = SET_SRC (set);
1476 rtx base_reg;
1477 HOST_WIDE_INT offset;
1478 int base_regno;
1479 /* This may be different from mode, if SET_DEST (set) is a
1480 SUBREG. */
1481 enum machine_mode dst_mode = GET_MODE (dst);
1483 switch (GET_CODE (src))
1485 case PLUS:
1486 if (REG_P (XEXP (src, 0)))
1488 base_reg = XEXP (src, 0);
1490 if (CONST_INT_P (XEXP (src, 1)))
1491 offset = INTVAL (XEXP (src, 1));
1492 else if (REG_P (XEXP (src, 1))
1493 && (reg_set_luid[REGNO (XEXP (src, 1))]
1494 > move2add_last_label_luid)
1495 && (MODES_OK_FOR_MOVE2ADD
1496 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
1498 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
1499 offset = reg_offset[REGNO (XEXP (src, 1))];
1500 /* Maybe the first register is known to be a
1501 constant. */
1502 else if (reg_set_luid[REGNO (base_reg)]
1503 > move2add_last_label_luid
1504 && (MODES_OK_FOR_MOVE2ADD
1505 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
1506 && reg_base_reg[REGNO (base_reg)] < 0)
1508 offset = reg_offset[REGNO (base_reg)];
1509 base_reg = XEXP (src, 1);
1511 else
1512 goto invalidate;
1514 else
1515 goto invalidate;
1517 break;
1520 goto invalidate;
1522 case REG:
1523 base_reg = src;
1524 offset = 0;
1525 break;
1527 case CONST_INT:
1528 /* Start tracking the register as a constant. */
1529 reg_base_reg[regno] = -1;
1530 reg_offset[regno] = INTVAL (SET_SRC (set));
1531 /* We assign the same luid to all registers set to constants. */
1532 reg_set_luid[regno] = move2add_last_label_luid + 1;
1533 reg_mode[regno] = mode;
1534 return;
1536 default:
1537 invalidate:
1538 /* Invalidate the contents of the register. */
1539 reg_set_luid[regno] = 0;
1540 return;
1543 base_regno = REGNO (base_reg);
1544 /* If information about the base register is not valid, set it
1545 up as a new base register, pretending its value is known
1546 starting from the current insn. */
1547 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
1549 reg_base_reg[base_regno] = base_regno;
1550 reg_offset[base_regno] = 0;
1551 reg_set_luid[base_regno] = move2add_luid;
1552 reg_mode[base_regno] = mode;
1554 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
1555 reg_mode[base_regno]))
1556 goto invalidate;
1558 reg_mode[regno] = mode;
1560 /* Copy base information from our base register. */
1561 reg_set_luid[regno] = reg_set_luid[base_regno];
1562 reg_base_reg[regno] = reg_base_reg[base_regno];
1564 /* Compute the sum of the offsets or constants. */
1565 reg_offset[regno] = trunc_int_for_mode (offset
1566 + reg_offset[base_regno],
1567 dst_mode);
1569 else
1571 unsigned int endregno = regno + nregs;
1573 for (i = regno; i < endregno; i++)
1574 /* Reset the information about this register. */
1575 reg_set_luid[i] = 0;
1579 static bool
1580 gate_handle_postreload (void)
1582 return (optimize > 0 && reload_completed);
1586 static unsigned int
1587 rest_of_handle_postreload (void)
1589 if (!dbg_cnt (postreload_cse))
1590 return 0;
1592 /* Do a very simple CSE pass over just the hard registers. */
1593 reload_cse_regs (get_insns ());
1594 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
1595 Remove any EH edges associated with them. */
1596 if (flag_non_call_exceptions)
1597 purge_all_dead_edges ();
1599 return 0;
1602 struct rtl_opt_pass pass_postreload_cse =
1605 RTL_PASS,
1606 "postreload", /* name */
1607 gate_handle_postreload, /* gate */
1608 rest_of_handle_postreload, /* execute */
1609 NULL, /* sub */
1610 NULL, /* next */
1611 0, /* static_pass_number */
1612 TV_RELOAD_CSE_REGS, /* tv_id */
1613 0, /* properties_required */
1614 0, /* properties_provided */
1615 0, /* properties_destroyed */
1616 0, /* todo_flags_start */
1617 TODO_df_finish | TODO_verify_rtl_sharing |
1618 TODO_dump_func /* todo_flags_finish */