Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / optabs.c
blob61d8bcfe2986780953e0124ee3f6b7abbf5318cd
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
55 See expr.h for documentation of these optabs. */
57 #if GCC_VERSION >= 4000 && HAVE_DESIGNATED_INITIALIZERS
58 __extension__ struct optab_d optab_table[OTI_MAX]
59 = { [0 ... OTI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1].insn_code
60 = CODE_FOR_nothing };
61 #else
62 /* init_insn_codes will do runtime initialization otherwise. */
63 struct optab_d optab_table[OTI_MAX];
64 #endif
66 rtx libfunc_table[LTI_MAX];
68 /* Tables of patterns for converting one mode to another. */
69 #if GCC_VERSION >= 4000 && HAVE_DESIGNATED_INITIALIZERS
70 __extension__ struct convert_optab_d convert_optab_table[COI_MAX]
71 = { [0 ... COI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1]
72 [0 ... NUM_MACHINE_MODES - 1].insn_code
73 = CODE_FOR_nothing };
74 #else
75 /* init_convert_optab will do runtime initialization otherwise. */
76 struct convert_optab_d convert_optab_table[COI_MAX];
77 #endif
79 /* Contains the optab used for each rtx code. */
80 optab code_to_optab[NUM_RTX_CODE + 1];
82 #ifdef HAVE_conditional_move
83 /* Indexed by the machine mode, gives the insn code to make a conditional
84 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
85 setcc_gen_code to cut down on the number of named patterns. Consider a day
86 when a lot more rtx codes are conditional (eg: for the ARM). */
88 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
89 #endif
91 /* Indexed by the machine mode, gives the insn code for vector conditional
92 operation. */
94 enum insn_code vcond_gen_code[NUM_MACHINE_MODES];
95 enum insn_code vcondu_gen_code[NUM_MACHINE_MODES];
97 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
98 enum machine_mode *);
99 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
101 /* Debug facility for use in GDB. */
102 void debug_optab_libfuncs (void);
104 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
105 #if ENABLE_DECIMAL_BID_FORMAT
106 #define DECIMAL_PREFIX "bid_"
107 #else
108 #define DECIMAL_PREFIX "dpd_"
109 #endif
112 /* Info about libfunc. We use same hashtable for normal optabs and conversion
113 optab. In the first case mode2 is unused. */
114 struct GTY(()) libfunc_entry {
115 size_t optab;
116 enum machine_mode mode1, mode2;
117 rtx libfunc;
120 /* Hash table used to convert declarations into nodes. */
121 static GTY((param_is (struct libfunc_entry))) htab_t libfunc_hash;
123 /* Used for attribute_hash. */
125 static hashval_t
126 hash_libfunc (const void *p)
128 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
130 return (((int) e->mode1 + (int) e->mode2 * NUM_MACHINE_MODES)
131 ^ e->optab);
134 /* Used for optab_hash. */
136 static int
137 eq_libfunc (const void *p, const void *q)
139 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
140 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
142 return (e1->optab == e2->optab
143 && e1->mode1 == e2->mode1
144 && e1->mode2 == e2->mode2);
147 /* Return libfunc corresponding operation defined by OPTAB converting
148 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
149 if no libfunc is available. */
151 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
152 enum machine_mode mode2)
154 struct libfunc_entry e;
155 struct libfunc_entry **slot;
157 e.optab = (size_t) (optab - &convert_optab_table[0]);
158 e.mode1 = mode1;
159 e.mode2 = mode2;
160 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
161 if (!slot)
163 if (optab->libcall_gen)
165 optab->libcall_gen (optab, optab->libcall_basename, mode1, mode2);
166 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
167 if (slot)
168 return (*slot)->libfunc;
169 else
170 return NULL;
172 return NULL;
174 return (*slot)->libfunc;
177 /* Return libfunc corresponding operation defined by OPTAB in MODE.
178 Trigger lazy initialization if needed, return NULL if no libfunc is
179 available. */
181 optab_libfunc (optab optab, enum machine_mode mode)
183 struct libfunc_entry e;
184 struct libfunc_entry **slot;
186 e.optab = (size_t) (optab - &optab_table[0]);
187 e.mode1 = mode;
188 e.mode2 = VOIDmode;
189 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
190 if (!slot)
192 if (optab->libcall_gen)
194 optab->libcall_gen (optab, optab->libcall_basename,
195 optab->libcall_suffix, mode);
196 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash,
197 &e, NO_INSERT);
198 if (slot)
199 return (*slot)->libfunc;
200 else
201 return NULL;
203 return NULL;
205 return (*slot)->libfunc;
209 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
210 the result of operation CODE applied to OP0 (and OP1 if it is a binary
211 operation).
213 If the last insn does not set TARGET, don't do anything, but return 1.
215 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
216 don't add the REG_EQUAL note but return 0. Our caller can then try
217 again, ensuring that TARGET is not one of the operands. */
219 static int
220 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
222 rtx last_insn, insn, set;
223 rtx note;
225 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
227 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
228 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
229 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
230 && GET_RTX_CLASS (code) != RTX_COMPARE
231 && GET_RTX_CLASS (code) != RTX_UNARY)
232 return 1;
234 if (GET_CODE (target) == ZERO_EXTRACT)
235 return 1;
237 for (last_insn = insns;
238 NEXT_INSN (last_insn) != NULL_RTX;
239 last_insn = NEXT_INSN (last_insn))
242 set = single_set (last_insn);
243 if (set == NULL_RTX)
244 return 1;
246 if (! rtx_equal_p (SET_DEST (set), target)
247 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
248 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
249 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
250 return 1;
252 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
253 besides the last insn. */
254 if (reg_overlap_mentioned_p (target, op0)
255 || (op1 && reg_overlap_mentioned_p (target, op1)))
257 insn = PREV_INSN (last_insn);
258 while (insn != NULL_RTX)
260 if (reg_set_p (target, insn))
261 return 0;
263 insn = PREV_INSN (insn);
267 if (GET_RTX_CLASS (code) == RTX_UNARY)
268 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
269 else
270 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
272 set_unique_reg_note (last_insn, REG_EQUAL, note);
274 return 1;
277 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
278 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
279 not actually do a sign-extend or zero-extend, but can leave the
280 higher-order bits of the result rtx undefined, for example, in the case
281 of logical operations, but not right shifts. */
283 static rtx
284 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
285 int unsignedp, int no_extend)
287 rtx result;
289 /* If we don't have to extend and this is a constant, return it. */
290 if (no_extend && GET_MODE (op) == VOIDmode)
291 return op;
293 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
294 extend since it will be more efficient to do so unless the signedness of
295 a promoted object differs from our extension. */
296 if (! no_extend
297 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
298 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
299 return convert_modes (mode, oldmode, op, unsignedp);
301 /* If MODE is no wider than a single word, we return a paradoxical
302 SUBREG. */
303 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
304 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
306 /* Otherwise, get an object of MODE, clobber it, and set the low-order
307 part to OP. */
309 result = gen_reg_rtx (mode);
310 emit_clobber (result);
311 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
312 return result;
315 /* Return the optab used for computing the operation given by the tree code,
316 CODE and the tree EXP. This function is not always usable (for example, it
317 cannot give complete results for multiplication or division) but probably
318 ought to be relied on more widely throughout the expander. */
319 optab
320 optab_for_tree_code (enum tree_code code, const_tree type,
321 enum optab_subtype subtype)
323 bool trapv;
324 switch (code)
326 case BIT_AND_EXPR:
327 return and_optab;
329 case BIT_IOR_EXPR:
330 return ior_optab;
332 case BIT_NOT_EXPR:
333 return one_cmpl_optab;
335 case BIT_XOR_EXPR:
336 return xor_optab;
338 case TRUNC_MOD_EXPR:
339 case CEIL_MOD_EXPR:
340 case FLOOR_MOD_EXPR:
341 case ROUND_MOD_EXPR:
342 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
344 case RDIV_EXPR:
345 case TRUNC_DIV_EXPR:
346 case CEIL_DIV_EXPR:
347 case FLOOR_DIV_EXPR:
348 case ROUND_DIV_EXPR:
349 case EXACT_DIV_EXPR:
350 if (TYPE_SATURATING(type))
351 return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
352 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
354 case LSHIFT_EXPR:
355 if (VECTOR_MODE_P (TYPE_MODE (type)))
357 if (subtype == optab_vector)
358 return TYPE_SATURATING (type) ? NULL : vashl_optab;
360 gcc_assert (subtype == optab_scalar);
362 if (TYPE_SATURATING(type))
363 return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
364 return ashl_optab;
366 case RSHIFT_EXPR:
367 if (VECTOR_MODE_P (TYPE_MODE (type)))
369 if (subtype == optab_vector)
370 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
372 gcc_assert (subtype == optab_scalar);
374 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
376 case LROTATE_EXPR:
377 if (VECTOR_MODE_P (TYPE_MODE (type)))
379 if (subtype == optab_vector)
380 return vrotl_optab;
382 gcc_assert (subtype == optab_scalar);
384 return rotl_optab;
386 case RROTATE_EXPR:
387 if (VECTOR_MODE_P (TYPE_MODE (type)))
389 if (subtype == optab_vector)
390 return vrotr_optab;
392 gcc_assert (subtype == optab_scalar);
394 return rotr_optab;
396 case MAX_EXPR:
397 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
399 case MIN_EXPR:
400 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
402 case REALIGN_LOAD_EXPR:
403 return vec_realign_load_optab;
405 case WIDEN_SUM_EXPR:
406 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
408 case DOT_PROD_EXPR:
409 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
411 case REDUC_MAX_EXPR:
412 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
414 case REDUC_MIN_EXPR:
415 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
417 case REDUC_PLUS_EXPR:
418 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
420 case VEC_LSHIFT_EXPR:
421 return vec_shl_optab;
423 case VEC_RSHIFT_EXPR:
424 return vec_shr_optab;
426 case VEC_WIDEN_MULT_HI_EXPR:
427 return TYPE_UNSIGNED (type) ?
428 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
430 case VEC_WIDEN_MULT_LO_EXPR:
431 return TYPE_UNSIGNED (type) ?
432 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
434 case VEC_UNPACK_HI_EXPR:
435 return TYPE_UNSIGNED (type) ?
436 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
438 case VEC_UNPACK_LO_EXPR:
439 return TYPE_UNSIGNED (type) ?
440 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
442 case VEC_UNPACK_FLOAT_HI_EXPR:
443 /* The signedness is determined from input operand. */
444 return TYPE_UNSIGNED (type) ?
445 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
447 case VEC_UNPACK_FLOAT_LO_EXPR:
448 /* The signedness is determined from input operand. */
449 return TYPE_UNSIGNED (type) ?
450 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
452 case VEC_PACK_TRUNC_EXPR:
453 return vec_pack_trunc_optab;
455 case VEC_PACK_SAT_EXPR:
456 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
458 case VEC_PACK_FIX_TRUNC_EXPR:
459 /* The signedness is determined from output operand. */
460 return TYPE_UNSIGNED (type) ?
461 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
463 default:
464 break;
467 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
468 switch (code)
470 case POINTER_PLUS_EXPR:
471 case PLUS_EXPR:
472 if (TYPE_SATURATING(type))
473 return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
474 return trapv ? addv_optab : add_optab;
476 case MINUS_EXPR:
477 if (TYPE_SATURATING(type))
478 return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
479 return trapv ? subv_optab : sub_optab;
481 case MULT_EXPR:
482 if (TYPE_SATURATING(type))
483 return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
484 return trapv ? smulv_optab : smul_optab;
486 case NEGATE_EXPR:
487 if (TYPE_SATURATING(type))
488 return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
489 return trapv ? negv_optab : neg_optab;
491 case ABS_EXPR:
492 return trapv ? absv_optab : abs_optab;
494 case VEC_EXTRACT_EVEN_EXPR:
495 return vec_extract_even_optab;
497 case VEC_EXTRACT_ODD_EXPR:
498 return vec_extract_odd_optab;
500 case VEC_INTERLEAVE_HIGH_EXPR:
501 return vec_interleave_high_optab;
503 case VEC_INTERLEAVE_LOW_EXPR:
504 return vec_interleave_low_optab;
506 default:
507 return NULL;
512 /* Expand vector widening operations.
514 There are two different classes of operations handled here:
515 1) Operations whose result is wider than all the arguments to the operation.
516 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
517 In this case OP0 and optionally OP1 would be initialized,
518 but WIDE_OP wouldn't (not relevant for this case).
519 2) Operations whose result is of the same size as the last argument to the
520 operation, but wider than all the other arguments to the operation.
521 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
522 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
524 E.g, when called to expand the following operations, this is how
525 the arguments will be initialized:
526 nops OP0 OP1 WIDE_OP
527 widening-sum 2 oprnd0 - oprnd1
528 widening-dot-product 3 oprnd0 oprnd1 oprnd2
529 widening-mult 2 oprnd0 oprnd1 -
530 type-promotion (vec-unpack) 1 oprnd0 - - */
533 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
534 rtx target, int unsignedp)
536 tree oprnd0, oprnd1, oprnd2;
537 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
538 optab widen_pattern_optab;
539 int icode;
540 enum machine_mode xmode0, xmode1 = VOIDmode, wxmode = VOIDmode;
541 rtx temp;
542 rtx pat;
543 rtx xop0, xop1, wxop;
544 int nops = TREE_CODE_LENGTH (ops->code);
546 oprnd0 = ops->op0;
547 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
548 widen_pattern_optab =
549 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
550 icode = (int) optab_handler (widen_pattern_optab, tmode0)->insn_code;
551 gcc_assert (icode != CODE_FOR_nothing);
552 xmode0 = insn_data[icode].operand[1].mode;
554 if (nops >= 2)
556 oprnd1 = ops->op1;
557 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
558 xmode1 = insn_data[icode].operand[2].mode;
561 /* The last operand is of a wider mode than the rest of the operands. */
562 if (nops == 2)
564 wmode = tmode1;
565 wxmode = xmode1;
567 else if (nops == 3)
569 gcc_assert (tmode1 == tmode0);
570 gcc_assert (op1);
571 oprnd2 = ops->op2;
572 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
573 wxmode = insn_data[icode].operand[3].mode;
576 if (!wide_op)
577 wmode = wxmode = insn_data[icode].operand[0].mode;
579 if (!target
580 || ! (*insn_data[icode].operand[0].predicate) (target, wmode))
581 temp = gen_reg_rtx (wmode);
582 else
583 temp = target;
585 xop0 = op0;
586 xop1 = op1;
587 wxop = wide_op;
589 /* In case the insn wants input operands in modes different from
590 those of the actual operands, convert the operands. It would
591 seem that we don't need to convert CONST_INTs, but we do, so
592 that they're properly zero-extended, sign-extended or truncated
593 for their mode. */
595 if (GET_MODE (op0) != xmode0 && xmode0 != VOIDmode)
596 xop0 = convert_modes (xmode0,
597 GET_MODE (op0) != VOIDmode
598 ? GET_MODE (op0)
599 : tmode0,
600 xop0, unsignedp);
602 if (op1)
603 if (GET_MODE (op1) != xmode1 && xmode1 != VOIDmode)
604 xop1 = convert_modes (xmode1,
605 GET_MODE (op1) != VOIDmode
606 ? GET_MODE (op1)
607 : tmode1,
608 xop1, unsignedp);
610 if (wide_op)
611 if (GET_MODE (wide_op) != wxmode && wxmode != VOIDmode)
612 wxop = convert_modes (wxmode,
613 GET_MODE (wide_op) != VOIDmode
614 ? GET_MODE (wide_op)
615 : wmode,
616 wxop, unsignedp);
618 /* Now, if insn's predicates don't allow our operands, put them into
619 pseudo regs. */
621 if (! (*insn_data[icode].operand[1].predicate) (xop0, xmode0)
622 && xmode0 != VOIDmode)
623 xop0 = copy_to_mode_reg (xmode0, xop0);
625 if (op1)
627 if (! (*insn_data[icode].operand[2].predicate) (xop1, xmode1)
628 && xmode1 != VOIDmode)
629 xop1 = copy_to_mode_reg (xmode1, xop1);
631 if (wide_op)
633 if (! (*insn_data[icode].operand[3].predicate) (wxop, wxmode)
634 && wxmode != VOIDmode)
635 wxop = copy_to_mode_reg (wxmode, wxop);
637 pat = GEN_FCN (icode) (temp, xop0, xop1, wxop);
639 else
640 pat = GEN_FCN (icode) (temp, xop0, xop1);
642 else
644 if (wide_op)
646 if (! (*insn_data[icode].operand[2].predicate) (wxop, wxmode)
647 && wxmode != VOIDmode)
648 wxop = copy_to_mode_reg (wxmode, wxop);
650 pat = GEN_FCN (icode) (temp, xop0, wxop);
652 else
653 pat = GEN_FCN (icode) (temp, xop0);
656 emit_insn (pat);
657 return temp;
660 /* Generate code to perform an operation specified by TERNARY_OPTAB
661 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
663 UNSIGNEDP is for the case where we have to widen the operands
664 to perform the operation. It says to use zero-extension.
666 If TARGET is nonzero, the value
667 is generated there, if it is convenient to do so.
668 In all cases an rtx is returned for the locus of the value;
669 this may or may not be TARGET. */
672 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
673 rtx op1, rtx op2, rtx target, int unsignedp)
675 int icode = (int) optab_handler (ternary_optab, mode)->insn_code;
676 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
677 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
678 enum machine_mode mode2 = insn_data[icode].operand[3].mode;
679 rtx temp;
680 rtx pat;
681 rtx xop0 = op0, xop1 = op1, xop2 = op2;
683 gcc_assert (optab_handler (ternary_optab, mode)->insn_code
684 != CODE_FOR_nothing);
686 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
687 temp = gen_reg_rtx (mode);
688 else
689 temp = target;
691 /* In case the insn wants input operands in modes different from
692 those of the actual operands, convert the operands. It would
693 seem that we don't need to convert CONST_INTs, but we do, so
694 that they're properly zero-extended, sign-extended or truncated
695 for their mode. */
697 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
698 xop0 = convert_modes (mode0,
699 GET_MODE (op0) != VOIDmode
700 ? GET_MODE (op0)
701 : mode,
702 xop0, unsignedp);
704 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
705 xop1 = convert_modes (mode1,
706 GET_MODE (op1) != VOIDmode
707 ? GET_MODE (op1)
708 : mode,
709 xop1, unsignedp);
711 if (GET_MODE (op2) != mode2 && mode2 != VOIDmode)
712 xop2 = convert_modes (mode2,
713 GET_MODE (op2) != VOIDmode
714 ? GET_MODE (op2)
715 : mode,
716 xop2, unsignedp);
718 /* Now, if insn's predicates don't allow our operands, put them into
719 pseudo regs. */
721 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
722 && mode0 != VOIDmode)
723 xop0 = copy_to_mode_reg (mode0, xop0);
725 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
726 && mode1 != VOIDmode)
727 xop1 = copy_to_mode_reg (mode1, xop1);
729 if (!insn_data[icode].operand[3].predicate (xop2, mode2)
730 && mode2 != VOIDmode)
731 xop2 = copy_to_mode_reg (mode2, xop2);
733 pat = GEN_FCN (icode) (temp, xop0, xop1, xop2);
735 emit_insn (pat);
736 return temp;
740 /* Like expand_binop, but return a constant rtx if the result can be
741 calculated at compile time. The arguments and return value are
742 otherwise the same as for expand_binop. */
744 static rtx
745 simplify_expand_binop (enum machine_mode mode, optab binoptab,
746 rtx op0, rtx op1, rtx target, int unsignedp,
747 enum optab_methods methods)
749 if (CONSTANT_P (op0) && CONSTANT_P (op1))
751 rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
753 if (x)
754 return x;
757 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
760 /* Like simplify_expand_binop, but always put the result in TARGET.
761 Return true if the expansion succeeded. */
763 bool
764 force_expand_binop (enum machine_mode mode, optab binoptab,
765 rtx op0, rtx op1, rtx target, int unsignedp,
766 enum optab_methods methods)
768 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
769 target, unsignedp, methods);
770 if (x == 0)
771 return false;
772 if (x != target)
773 emit_move_insn (target, x);
774 return true;
777 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
780 expand_vec_shift_expr (sepops ops, rtx target)
782 enum insn_code icode;
783 rtx rtx_op1, rtx_op2;
784 enum machine_mode mode1;
785 enum machine_mode mode2;
786 enum machine_mode mode = TYPE_MODE (ops->type);
787 tree vec_oprnd = ops->op0;
788 tree shift_oprnd = ops->op1;
789 optab shift_optab;
790 rtx pat;
792 switch (ops->code)
794 case VEC_RSHIFT_EXPR:
795 shift_optab = vec_shr_optab;
796 break;
797 case VEC_LSHIFT_EXPR:
798 shift_optab = vec_shl_optab;
799 break;
800 default:
801 gcc_unreachable ();
804 icode = optab_handler (shift_optab, mode)->insn_code;
805 gcc_assert (icode != CODE_FOR_nothing);
807 mode1 = insn_data[icode].operand[1].mode;
808 mode2 = insn_data[icode].operand[2].mode;
810 rtx_op1 = expand_normal (vec_oprnd);
811 if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode1)
812 && mode1 != VOIDmode)
813 rtx_op1 = force_reg (mode1, rtx_op1);
815 rtx_op2 = expand_normal (shift_oprnd);
816 if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode2)
817 && mode2 != VOIDmode)
818 rtx_op2 = force_reg (mode2, rtx_op2);
820 if (!target
821 || ! (*insn_data[icode].operand[0].predicate) (target, mode))
822 target = gen_reg_rtx (mode);
824 /* Emit instruction */
825 pat = GEN_FCN (icode) (target, rtx_op1, rtx_op2);
826 gcc_assert (pat);
827 emit_insn (pat);
829 return target;
832 /* This subroutine of expand_doubleword_shift handles the cases in which
833 the effective shift value is >= BITS_PER_WORD. The arguments and return
834 value are the same as for the parent routine, except that SUPERWORD_OP1
835 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
836 INTO_TARGET may be null if the caller has decided to calculate it. */
838 static bool
839 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
840 rtx outof_target, rtx into_target,
841 int unsignedp, enum optab_methods methods)
843 if (into_target != 0)
844 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
845 into_target, unsignedp, methods))
846 return false;
848 if (outof_target != 0)
850 /* For a signed right shift, we must fill OUTOF_TARGET with copies
851 of the sign bit, otherwise we must fill it with zeros. */
852 if (binoptab != ashr_optab)
853 emit_move_insn (outof_target, CONST0_RTX (word_mode));
854 else
855 if (!force_expand_binop (word_mode, binoptab,
856 outof_input, GEN_INT (BITS_PER_WORD - 1),
857 outof_target, unsignedp, methods))
858 return false;
860 return true;
863 /* This subroutine of expand_doubleword_shift handles the cases in which
864 the effective shift value is < BITS_PER_WORD. The arguments and return
865 value are the same as for the parent routine. */
867 static bool
868 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
869 rtx outof_input, rtx into_input, rtx op1,
870 rtx outof_target, rtx into_target,
871 int unsignedp, enum optab_methods methods,
872 unsigned HOST_WIDE_INT shift_mask)
874 optab reverse_unsigned_shift, unsigned_shift;
875 rtx tmp, carries;
877 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
878 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
880 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
881 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
882 the opposite direction to BINOPTAB. */
883 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
885 carries = outof_input;
886 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
887 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
888 0, true, methods);
890 else
892 /* We must avoid shifting by BITS_PER_WORD bits since that is either
893 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
894 has unknown behavior. Do a single shift first, then shift by the
895 remainder. It's OK to use ~OP1 as the remainder if shift counts
896 are truncated to the mode size. */
897 carries = expand_binop (word_mode, reverse_unsigned_shift,
898 outof_input, const1_rtx, 0, unsignedp, methods);
899 if (shift_mask == BITS_PER_WORD - 1)
901 tmp = immed_double_const (-1, -1, op1_mode);
902 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
903 0, true, methods);
905 else
907 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
908 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
909 0, true, methods);
912 if (tmp == 0 || carries == 0)
913 return false;
914 carries = expand_binop (word_mode, reverse_unsigned_shift,
915 carries, tmp, 0, unsignedp, methods);
916 if (carries == 0)
917 return false;
919 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
920 so the result can go directly into INTO_TARGET if convenient. */
921 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
922 into_target, unsignedp, methods);
923 if (tmp == 0)
924 return false;
926 /* Now OR in the bits carried over from OUTOF_INPUT. */
927 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
928 into_target, unsignedp, methods))
929 return false;
931 /* Use a standard word_mode shift for the out-of half. */
932 if (outof_target != 0)
933 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
934 outof_target, unsignedp, methods))
935 return false;
937 return true;
941 #ifdef HAVE_conditional_move
942 /* Try implementing expand_doubleword_shift using conditional moves.
943 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
944 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
945 are the shift counts to use in the former and latter case. All other
946 arguments are the same as the parent routine. */
948 static bool
949 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
950 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
951 rtx outof_input, rtx into_input,
952 rtx subword_op1, rtx superword_op1,
953 rtx outof_target, rtx into_target,
954 int unsignedp, enum optab_methods methods,
955 unsigned HOST_WIDE_INT shift_mask)
957 rtx outof_superword, into_superword;
959 /* Put the superword version of the output into OUTOF_SUPERWORD and
960 INTO_SUPERWORD. */
961 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
962 if (outof_target != 0 && subword_op1 == superword_op1)
964 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
965 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
966 into_superword = outof_target;
967 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
968 outof_superword, 0, unsignedp, methods))
969 return false;
971 else
973 into_superword = gen_reg_rtx (word_mode);
974 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
975 outof_superword, into_superword,
976 unsignedp, methods))
977 return false;
980 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
981 if (!expand_subword_shift (op1_mode, binoptab,
982 outof_input, into_input, subword_op1,
983 outof_target, into_target,
984 unsignedp, methods, shift_mask))
985 return false;
987 /* Select between them. Do the INTO half first because INTO_SUPERWORD
988 might be the current value of OUTOF_TARGET. */
989 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
990 into_target, into_superword, word_mode, false))
991 return false;
993 if (outof_target != 0)
994 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
995 outof_target, outof_superword,
996 word_mode, false))
997 return false;
999 return true;
1001 #endif
1003 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
1004 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
1005 input operand; the shift moves bits in the direction OUTOF_INPUT->
1006 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
1007 of the target. OP1 is the shift count and OP1_MODE is its mode.
1008 If OP1 is constant, it will have been truncated as appropriate
1009 and is known to be nonzero.
1011 If SHIFT_MASK is zero, the result of word shifts is undefined when the
1012 shift count is outside the range [0, BITS_PER_WORD). This routine must
1013 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
1015 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
1016 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
1017 fill with zeros or sign bits as appropriate.
1019 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
1020 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
1021 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
1022 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
1023 are undefined.
1025 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
1026 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
1027 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
1028 function wants to calculate it itself.
1030 Return true if the shift could be successfully synthesized. */
1032 static bool
1033 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1034 rtx outof_input, rtx into_input, rtx op1,
1035 rtx outof_target, rtx into_target,
1036 int unsignedp, enum optab_methods methods,
1037 unsigned HOST_WIDE_INT shift_mask)
1039 rtx superword_op1, tmp, cmp1, cmp2;
1040 rtx subword_label, done_label;
1041 enum rtx_code cmp_code;
1043 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1044 fill the result with sign or zero bits as appropriate. If so, the value
1045 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1046 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1047 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1049 This isn't worthwhile for constant shifts since the optimizers will
1050 cope better with in-range shift counts. */
1051 if (shift_mask >= BITS_PER_WORD
1052 && outof_target != 0
1053 && !CONSTANT_P (op1))
1055 if (!expand_doubleword_shift (op1_mode, binoptab,
1056 outof_input, into_input, op1,
1057 0, into_target,
1058 unsignedp, methods, shift_mask))
1059 return false;
1060 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1061 outof_target, unsignedp, methods))
1062 return false;
1063 return true;
1066 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1067 is true when the effective shift value is less than BITS_PER_WORD.
1068 Set SUPERWORD_OP1 to the shift count that should be used to shift
1069 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1070 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1071 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1073 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1074 is a subword shift count. */
1075 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1076 0, true, methods);
1077 cmp2 = CONST0_RTX (op1_mode);
1078 cmp_code = EQ;
1079 superword_op1 = op1;
1081 else
1083 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1084 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1085 0, true, methods);
1086 cmp2 = CONST0_RTX (op1_mode);
1087 cmp_code = LT;
1088 superword_op1 = cmp1;
1090 if (cmp1 == 0)
1091 return false;
1093 /* If we can compute the condition at compile time, pick the
1094 appropriate subroutine. */
1095 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1096 if (tmp != 0 && CONST_INT_P (tmp))
1098 if (tmp == const0_rtx)
1099 return expand_superword_shift (binoptab, outof_input, superword_op1,
1100 outof_target, into_target,
1101 unsignedp, methods);
1102 else
1103 return expand_subword_shift (op1_mode, binoptab,
1104 outof_input, into_input, op1,
1105 outof_target, into_target,
1106 unsignedp, methods, shift_mask);
1109 #ifdef HAVE_conditional_move
1110 /* Try using conditional moves to generate straight-line code. */
1112 rtx start = get_last_insn ();
1113 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1114 cmp_code, cmp1, cmp2,
1115 outof_input, into_input,
1116 op1, superword_op1,
1117 outof_target, into_target,
1118 unsignedp, methods, shift_mask))
1119 return true;
1120 delete_insns_since (start);
1122 #endif
1124 /* As a last resort, use branches to select the correct alternative. */
1125 subword_label = gen_label_rtx ();
1126 done_label = gen_label_rtx ();
1128 NO_DEFER_POP;
1129 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1130 0, 0, subword_label);
1131 OK_DEFER_POP;
1133 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1134 outof_target, into_target,
1135 unsignedp, methods))
1136 return false;
1138 emit_jump_insn (gen_jump (done_label));
1139 emit_barrier ();
1140 emit_label (subword_label);
1142 if (!expand_subword_shift (op1_mode, binoptab,
1143 outof_input, into_input, op1,
1144 outof_target, into_target,
1145 unsignedp, methods, shift_mask))
1146 return false;
1148 emit_label (done_label);
1149 return true;
1152 /* Subroutine of expand_binop. Perform a double word multiplication of
1153 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1154 as the target's word_mode. This function return NULL_RTX if anything
1155 goes wrong, in which case it may have already emitted instructions
1156 which need to be deleted.
1158 If we want to multiply two two-word values and have normal and widening
1159 multiplies of single-word values, we can do this with three smaller
1160 multiplications.
1162 The multiplication proceeds as follows:
1163 _______________________
1164 [__op0_high_|__op0_low__]
1165 _______________________
1166 * [__op1_high_|__op1_low__]
1167 _______________________________________________
1168 _______________________
1169 (1) [__op0_low__*__op1_low__]
1170 _______________________
1171 (2a) [__op0_low__*__op1_high_]
1172 _______________________
1173 (2b) [__op0_high_*__op1_low__]
1174 _______________________
1175 (3) [__op0_high_*__op1_high_]
1178 This gives a 4-word result. Since we are only interested in the
1179 lower 2 words, partial result (3) and the upper words of (2a) and
1180 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1181 calculated using non-widening multiplication.
1183 (1), however, needs to be calculated with an unsigned widening
1184 multiplication. If this operation is not directly supported we
1185 try using a signed widening multiplication and adjust the result.
1186 This adjustment works as follows:
1188 If both operands are positive then no adjustment is needed.
1190 If the operands have different signs, for example op0_low < 0 and
1191 op1_low >= 0, the instruction treats the most significant bit of
1192 op0_low as a sign bit instead of a bit with significance
1193 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1194 with 2**BITS_PER_WORD - op0_low, and two's complements the
1195 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1196 the result.
1198 Similarly, if both operands are negative, we need to add
1199 (op0_low + op1_low) * 2**BITS_PER_WORD.
1201 We use a trick to adjust quickly. We logically shift op0_low right
1202 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1203 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1204 logical shift exists, we do an arithmetic right shift and subtract
1205 the 0 or -1. */
1207 static rtx
1208 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1209 bool umulp, enum optab_methods methods)
1211 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1212 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1213 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1214 rtx product, adjust, product_high, temp;
1216 rtx op0_high = operand_subword_force (op0, high, mode);
1217 rtx op0_low = operand_subword_force (op0, low, mode);
1218 rtx op1_high = operand_subword_force (op1, high, mode);
1219 rtx op1_low = operand_subword_force (op1, low, mode);
1221 /* If we're using an unsigned multiply to directly compute the product
1222 of the low-order words of the operands and perform any required
1223 adjustments of the operands, we begin by trying two more multiplications
1224 and then computing the appropriate sum.
1226 We have checked above that the required addition is provided.
1227 Full-word addition will normally always succeed, especially if
1228 it is provided at all, so we don't worry about its failure. The
1229 multiplication may well fail, however, so we do handle that. */
1231 if (!umulp)
1233 /* ??? This could be done with emit_store_flag where available. */
1234 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1235 NULL_RTX, 1, methods);
1236 if (temp)
1237 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1238 NULL_RTX, 0, OPTAB_DIRECT);
1239 else
1241 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1242 NULL_RTX, 0, methods);
1243 if (!temp)
1244 return NULL_RTX;
1245 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1246 NULL_RTX, 0, OPTAB_DIRECT);
1249 if (!op0_high)
1250 return NULL_RTX;
1253 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1254 NULL_RTX, 0, OPTAB_DIRECT);
1255 if (!adjust)
1256 return NULL_RTX;
1258 /* OP0_HIGH should now be dead. */
1260 if (!umulp)
1262 /* ??? This could be done with emit_store_flag where available. */
1263 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1264 NULL_RTX, 1, methods);
1265 if (temp)
1266 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1267 NULL_RTX, 0, OPTAB_DIRECT);
1268 else
1270 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1271 NULL_RTX, 0, methods);
1272 if (!temp)
1273 return NULL_RTX;
1274 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1275 NULL_RTX, 0, OPTAB_DIRECT);
1278 if (!op1_high)
1279 return NULL_RTX;
1282 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1283 NULL_RTX, 0, OPTAB_DIRECT);
1284 if (!temp)
1285 return NULL_RTX;
1287 /* OP1_HIGH should now be dead. */
1289 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1290 adjust, 0, OPTAB_DIRECT);
1292 if (target && !REG_P (target))
1293 target = NULL_RTX;
1295 if (umulp)
1296 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1297 target, 1, OPTAB_DIRECT);
1298 else
1299 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1300 target, 1, OPTAB_DIRECT);
1302 if (!product)
1303 return NULL_RTX;
1305 product_high = operand_subword (product, high, 1, mode);
1306 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1307 REG_P (product_high) ? product_high : adjust,
1308 0, OPTAB_DIRECT);
1309 emit_move_insn (product_high, adjust);
1310 return product;
1313 /* Wrapper around expand_binop which takes an rtx code to specify
1314 the operation to perform, not an optab pointer. All other
1315 arguments are the same. */
1317 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1318 rtx op1, rtx target, int unsignedp,
1319 enum optab_methods methods)
1321 optab binop = code_to_optab[(int) code];
1322 gcc_assert (binop);
1324 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1327 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1328 binop. Order them according to commutative_operand_precedence and, if
1329 possible, try to put TARGET or a pseudo first. */
1330 static bool
1331 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1333 int op0_prec = commutative_operand_precedence (op0);
1334 int op1_prec = commutative_operand_precedence (op1);
1336 if (op0_prec < op1_prec)
1337 return true;
1339 if (op0_prec > op1_prec)
1340 return false;
1342 /* With equal precedence, both orders are ok, but it is better if the
1343 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1344 if (target == 0 || REG_P (target))
1345 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1346 else
1347 return rtx_equal_p (op1, target);
1350 /* Return true if BINOPTAB implements a shift operation. */
1352 static bool
1353 shift_optab_p (optab binoptab)
1355 switch (binoptab->code)
1357 case ASHIFT:
1358 case SS_ASHIFT:
1359 case US_ASHIFT:
1360 case ASHIFTRT:
1361 case LSHIFTRT:
1362 case ROTATE:
1363 case ROTATERT:
1364 return true;
1366 default:
1367 return false;
1371 /* Return true if BINOPTAB implements a commutative binary operation. */
1373 static bool
1374 commutative_optab_p (optab binoptab)
1376 return (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
1377 || binoptab == smul_widen_optab
1378 || binoptab == umul_widen_optab
1379 || binoptab == smul_highpart_optab
1380 || binoptab == umul_highpart_optab);
1383 /* X is to be used in mode MODE as an operand to BINOPTAB. If we're
1384 optimizing, and if the operand is a constant that costs more than
1385 1 instruction, force the constant into a register and return that
1386 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1388 static rtx
1389 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1390 rtx x, bool unsignedp)
1392 if (mode != VOIDmode
1393 && optimize
1394 && CONSTANT_P (x)
1395 && rtx_cost (x, binoptab->code, optimize_insn_for_speed_p ())
1396 > COSTS_N_INSNS (1))
1398 if (CONST_INT_P (x))
1400 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1401 if (intval != INTVAL (x))
1402 x = GEN_INT (intval);
1404 else
1405 x = convert_modes (mode, VOIDmode, x, unsignedp);
1406 x = force_reg (mode, x);
1408 return x;
1411 /* Helper function for expand_binop: handle the case where there
1412 is an insn that directly implements the indicated operation.
1413 Returns null if this is not possible. */
1414 static rtx
1415 expand_binop_directly (enum machine_mode mode, optab binoptab,
1416 rtx op0, rtx op1,
1417 rtx target, int unsignedp, enum optab_methods methods,
1418 rtx last)
1420 int icode = (int) optab_handler (binoptab, mode)->insn_code;
1421 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1422 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1423 enum machine_mode tmp_mode;
1424 bool commutative_p;
1425 rtx pat;
1426 rtx xop0 = op0, xop1 = op1;
1427 rtx temp;
1428 rtx swap;
1430 if (target)
1431 temp = target;
1432 else
1433 temp = gen_reg_rtx (mode);
1435 /* If it is a commutative operator and the modes would match
1436 if we would swap the operands, we can save the conversions. */
1437 commutative_p = commutative_optab_p (binoptab);
1438 if (commutative_p
1439 && GET_MODE (xop0) != mode0 && GET_MODE (xop1) != mode1
1440 && GET_MODE (xop0) == mode1 && GET_MODE (xop1) == mode1)
1442 swap = xop0;
1443 xop0 = xop1;
1444 xop1 = swap;
1447 /* If we are optimizing, force expensive constants into a register. */
1448 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
1449 if (!shift_optab_p (binoptab))
1450 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
1452 /* In case the insn wants input operands in modes different from
1453 those of the actual operands, convert the operands. It would
1454 seem that we don't need to convert CONST_INTs, but we do, so
1455 that they're properly zero-extended, sign-extended or truncated
1456 for their mode. */
1458 if (GET_MODE (xop0) != mode0 && mode0 != VOIDmode)
1459 xop0 = convert_modes (mode0,
1460 GET_MODE (xop0) != VOIDmode
1461 ? GET_MODE (xop0)
1462 : mode,
1463 xop0, unsignedp);
1465 if (GET_MODE (xop1) != mode1 && mode1 != VOIDmode)
1466 xop1 = convert_modes (mode1,
1467 GET_MODE (xop1) != VOIDmode
1468 ? GET_MODE (xop1)
1469 : mode,
1470 xop1, unsignedp);
1472 /* If operation is commutative,
1473 try to make the first operand a register.
1474 Even better, try to make it the same as the target.
1475 Also try to make the last operand a constant. */
1476 if (commutative_p
1477 && swap_commutative_operands_with_target (target, xop0, xop1))
1479 swap = xop1;
1480 xop1 = xop0;
1481 xop0 = swap;
1484 /* Now, if insn's predicates don't allow our operands, put them into
1485 pseudo regs. */
1487 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
1488 && mode0 != VOIDmode)
1489 xop0 = copy_to_mode_reg (mode0, xop0);
1491 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
1492 && mode1 != VOIDmode)
1493 xop1 = copy_to_mode_reg (mode1, xop1);
1495 if (binoptab == vec_pack_trunc_optab
1496 || binoptab == vec_pack_usat_optab
1497 || binoptab == vec_pack_ssat_optab
1498 || binoptab == vec_pack_ufix_trunc_optab
1499 || binoptab == vec_pack_sfix_trunc_optab)
1501 /* The mode of the result is different then the mode of the
1502 arguments. */
1503 tmp_mode = insn_data[icode].operand[0].mode;
1504 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1505 return 0;
1507 else
1508 tmp_mode = mode;
1510 if (!insn_data[icode].operand[0].predicate (temp, tmp_mode))
1511 temp = gen_reg_rtx (tmp_mode);
1513 pat = GEN_FCN (icode) (temp, xop0, xop1);
1514 if (pat)
1516 /* If PAT is composed of more than one insn, try to add an appropriate
1517 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1518 operand, call expand_binop again, this time without a target. */
1519 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1520 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
1522 delete_insns_since (last);
1523 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1524 unsignedp, methods);
1527 emit_insn (pat);
1528 return temp;
1531 delete_insns_since (last);
1532 return NULL_RTX;
1535 /* Generate code to perform an operation specified by BINOPTAB
1536 on operands OP0 and OP1, with result having machine-mode MODE.
1538 UNSIGNEDP is for the case where we have to widen the operands
1539 to perform the operation. It says to use zero-extension.
1541 If TARGET is nonzero, the value
1542 is generated there, if it is convenient to do so.
1543 In all cases an rtx is returned for the locus of the value;
1544 this may or may not be TARGET. */
1547 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1548 rtx target, int unsignedp, enum optab_methods methods)
1550 enum optab_methods next_methods
1551 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1552 ? OPTAB_WIDEN : methods);
1553 enum mode_class mclass;
1554 enum machine_mode wider_mode;
1555 rtx libfunc;
1556 rtx temp;
1557 rtx entry_last = get_last_insn ();
1558 rtx last;
1560 mclass = GET_MODE_CLASS (mode);
1562 /* If subtracting an integer constant, convert this into an addition of
1563 the negated constant. */
1565 if (binoptab == sub_optab && CONST_INT_P (op1))
1567 op1 = negate_rtx (mode, op1);
1568 binoptab = add_optab;
1571 /* Record where to delete back to if we backtrack. */
1572 last = get_last_insn ();
1574 /* If we can do it with a three-operand insn, do so. */
1576 if (methods != OPTAB_MUST_WIDEN
1577 && optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
1579 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1580 unsignedp, methods, last);
1581 if (temp)
1582 return temp;
1585 /* If we were trying to rotate, and that didn't work, try rotating
1586 the other direction before falling back to shifts and bitwise-or. */
1587 if (((binoptab == rotl_optab
1588 && optab_handler (rotr_optab, mode)->insn_code != CODE_FOR_nothing)
1589 || (binoptab == rotr_optab
1590 && optab_handler (rotl_optab, mode)->insn_code != CODE_FOR_nothing))
1591 && mclass == MODE_INT)
1593 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1594 rtx newop1;
1595 unsigned int bits = GET_MODE_BITSIZE (mode);
1597 if (CONST_INT_P (op1))
1598 newop1 = GEN_INT (bits - INTVAL (op1));
1599 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1600 newop1 = negate_rtx (mode, op1);
1601 else
1602 newop1 = expand_binop (mode, sub_optab,
1603 GEN_INT (bits), op1,
1604 NULL_RTX, unsignedp, OPTAB_DIRECT);
1606 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1607 target, unsignedp, methods, last);
1608 if (temp)
1609 return temp;
1612 /* If this is a multiply, see if we can do a widening operation that
1613 takes operands of this mode and makes a wider mode. */
1615 if (binoptab == smul_optab
1616 && GET_MODE_WIDER_MODE (mode) != VOIDmode
1617 && ((optab_handler ((unsignedp ? umul_widen_optab : smul_widen_optab),
1618 GET_MODE_WIDER_MODE (mode))->insn_code)
1619 != CODE_FOR_nothing))
1621 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
1622 unsignedp ? umul_widen_optab : smul_widen_optab,
1623 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1625 if (temp != 0)
1627 if (GET_MODE_CLASS (mode) == MODE_INT
1628 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1629 GET_MODE_BITSIZE (GET_MODE (temp))))
1630 return gen_lowpart (mode, temp);
1631 else
1632 return convert_to_mode (mode, temp, unsignedp);
1636 /* Look for a wider mode of the same class for which we think we
1637 can open-code the operation. Check for a widening multiply at the
1638 wider mode as well. */
1640 if (CLASS_HAS_WIDER_MODES_P (mclass)
1641 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1642 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1643 wider_mode != VOIDmode;
1644 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1646 if (optab_handler (binoptab, wider_mode)->insn_code != CODE_FOR_nothing
1647 || (binoptab == smul_optab
1648 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1649 && ((optab_handler ((unsignedp ? umul_widen_optab
1650 : smul_widen_optab),
1651 GET_MODE_WIDER_MODE (wider_mode))->insn_code)
1652 != CODE_FOR_nothing)))
1654 rtx xop0 = op0, xop1 = op1;
1655 int no_extend = 0;
1657 /* For certain integer operations, we need not actually extend
1658 the narrow operands, as long as we will truncate
1659 the results to the same narrowness. */
1661 if ((binoptab == ior_optab || binoptab == and_optab
1662 || binoptab == xor_optab
1663 || binoptab == add_optab || binoptab == sub_optab
1664 || binoptab == smul_optab || binoptab == ashl_optab)
1665 && mclass == MODE_INT)
1667 no_extend = 1;
1668 xop0 = avoid_expensive_constant (mode, binoptab,
1669 xop0, unsignedp);
1670 if (binoptab != ashl_optab)
1671 xop1 = avoid_expensive_constant (mode, binoptab,
1672 xop1, unsignedp);
1675 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1677 /* The second operand of a shift must always be extended. */
1678 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1679 no_extend && binoptab != ashl_optab);
1681 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1682 unsignedp, OPTAB_DIRECT);
1683 if (temp)
1685 if (mclass != MODE_INT
1686 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1687 GET_MODE_BITSIZE (wider_mode)))
1689 if (target == 0)
1690 target = gen_reg_rtx (mode);
1691 convert_move (target, temp, 0);
1692 return target;
1694 else
1695 return gen_lowpart (mode, temp);
1697 else
1698 delete_insns_since (last);
1702 /* If operation is commutative,
1703 try to make the first operand a register.
1704 Even better, try to make it the same as the target.
1705 Also try to make the last operand a constant. */
1706 if (commutative_optab_p (binoptab)
1707 && swap_commutative_operands_with_target (target, op0, op1))
1709 temp = op1;
1710 op1 = op0;
1711 op0 = temp;
1714 /* These can be done a word at a time. */
1715 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1716 && mclass == MODE_INT
1717 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1718 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1720 int i;
1721 rtx insns;
1722 rtx equiv_value;
1724 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1725 won't be accurate, so use a new target. */
1726 if (target == 0 || target == op0 || target == op1)
1727 target = gen_reg_rtx (mode);
1729 start_sequence ();
1731 /* Do the actual arithmetic. */
1732 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1734 rtx target_piece = operand_subword (target, i, 1, mode);
1735 rtx x = expand_binop (word_mode, binoptab,
1736 operand_subword_force (op0, i, mode),
1737 operand_subword_force (op1, i, mode),
1738 target_piece, unsignedp, next_methods);
1740 if (x == 0)
1741 break;
1743 if (target_piece != x)
1744 emit_move_insn (target_piece, x);
1747 insns = get_insns ();
1748 end_sequence ();
1750 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1752 if (binoptab->code != UNKNOWN)
1753 equiv_value
1754 = gen_rtx_fmt_ee (binoptab->code, mode,
1755 copy_rtx (op0), copy_rtx (op1));
1756 else
1757 equiv_value = 0;
1759 emit_insn (insns);
1760 return target;
1764 /* Synthesize double word shifts from single word shifts. */
1765 if ((binoptab == lshr_optab || binoptab == ashl_optab
1766 || binoptab == ashr_optab)
1767 && mclass == MODE_INT
1768 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1769 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1770 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing
1771 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1772 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1774 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1775 enum machine_mode op1_mode;
1777 double_shift_mask = targetm.shift_truncation_mask (mode);
1778 shift_mask = targetm.shift_truncation_mask (word_mode);
1779 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1781 /* Apply the truncation to constant shifts. */
1782 if (double_shift_mask > 0 && CONST_INT_P (op1))
1783 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1785 if (op1 == CONST0_RTX (op1_mode))
1786 return op0;
1788 /* Make sure that this is a combination that expand_doubleword_shift
1789 can handle. See the comments there for details. */
1790 if (double_shift_mask == 0
1791 || (shift_mask == BITS_PER_WORD - 1
1792 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1794 rtx insns;
1795 rtx into_target, outof_target;
1796 rtx into_input, outof_input;
1797 int left_shift, outof_word;
1799 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1800 won't be accurate, so use a new target. */
1801 if (target == 0 || target == op0 || target == op1)
1802 target = gen_reg_rtx (mode);
1804 start_sequence ();
1806 /* OUTOF_* is the word we are shifting bits away from, and
1807 INTO_* is the word that we are shifting bits towards, thus
1808 they differ depending on the direction of the shift and
1809 WORDS_BIG_ENDIAN. */
1811 left_shift = binoptab == ashl_optab;
1812 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1814 outof_target = operand_subword (target, outof_word, 1, mode);
1815 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1817 outof_input = operand_subword_force (op0, outof_word, mode);
1818 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1820 if (expand_doubleword_shift (op1_mode, binoptab,
1821 outof_input, into_input, op1,
1822 outof_target, into_target,
1823 unsignedp, next_methods, shift_mask))
1825 insns = get_insns ();
1826 end_sequence ();
1828 emit_insn (insns);
1829 return target;
1831 end_sequence ();
1835 /* Synthesize double word rotates from single word shifts. */
1836 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1837 && mclass == MODE_INT
1838 && CONST_INT_P (op1)
1839 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1840 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1841 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1843 rtx insns;
1844 rtx into_target, outof_target;
1845 rtx into_input, outof_input;
1846 rtx inter;
1847 int shift_count, left_shift, outof_word;
1849 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1850 won't be accurate, so use a new target. Do this also if target is not
1851 a REG, first because having a register instead may open optimization
1852 opportunities, and second because if target and op0 happen to be MEMs
1853 designating the same location, we would risk clobbering it too early
1854 in the code sequence we generate below. */
1855 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1856 target = gen_reg_rtx (mode);
1858 start_sequence ();
1860 shift_count = INTVAL (op1);
1862 /* OUTOF_* is the word we are shifting bits away from, and
1863 INTO_* is the word that we are shifting bits towards, thus
1864 they differ depending on the direction of the shift and
1865 WORDS_BIG_ENDIAN. */
1867 left_shift = (binoptab == rotl_optab);
1868 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1870 outof_target = operand_subword (target, outof_word, 1, mode);
1871 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1873 outof_input = operand_subword_force (op0, outof_word, mode);
1874 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1876 if (shift_count == BITS_PER_WORD)
1878 /* This is just a word swap. */
1879 emit_move_insn (outof_target, into_input);
1880 emit_move_insn (into_target, outof_input);
1881 inter = const0_rtx;
1883 else
1885 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1886 rtx first_shift_count, second_shift_count;
1887 optab reverse_unsigned_shift, unsigned_shift;
1889 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1890 ? lshr_optab : ashl_optab);
1892 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1893 ? ashl_optab : lshr_optab);
1895 if (shift_count > BITS_PER_WORD)
1897 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1898 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1900 else
1902 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1903 second_shift_count = GEN_INT (shift_count);
1906 into_temp1 = expand_binop (word_mode, unsigned_shift,
1907 outof_input, first_shift_count,
1908 NULL_RTX, unsignedp, next_methods);
1909 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1910 into_input, second_shift_count,
1911 NULL_RTX, unsignedp, next_methods);
1913 if (into_temp1 != 0 && into_temp2 != 0)
1914 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1915 into_target, unsignedp, next_methods);
1916 else
1917 inter = 0;
1919 if (inter != 0 && inter != into_target)
1920 emit_move_insn (into_target, inter);
1922 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1923 into_input, first_shift_count,
1924 NULL_RTX, unsignedp, next_methods);
1925 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1926 outof_input, second_shift_count,
1927 NULL_RTX, unsignedp, next_methods);
1929 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1930 inter = expand_binop (word_mode, ior_optab,
1931 outof_temp1, outof_temp2,
1932 outof_target, unsignedp, next_methods);
1934 if (inter != 0 && inter != outof_target)
1935 emit_move_insn (outof_target, inter);
1938 insns = get_insns ();
1939 end_sequence ();
1941 if (inter != 0)
1943 emit_insn (insns);
1944 return target;
1948 /* These can be done a word at a time by propagating carries. */
1949 if ((binoptab == add_optab || binoptab == sub_optab)
1950 && mclass == MODE_INT
1951 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1952 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1954 unsigned int i;
1955 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1956 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1957 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1958 rtx xop0, xop1, xtarget;
1960 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1961 value is one of those, use it. Otherwise, use 1 since it is the
1962 one easiest to get. */
1963 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1964 int normalizep = STORE_FLAG_VALUE;
1965 #else
1966 int normalizep = 1;
1967 #endif
1969 /* Prepare the operands. */
1970 xop0 = force_reg (mode, op0);
1971 xop1 = force_reg (mode, op1);
1973 xtarget = gen_reg_rtx (mode);
1975 if (target == 0 || !REG_P (target))
1976 target = xtarget;
1978 /* Indicate for flow that the entire target reg is being set. */
1979 if (REG_P (target))
1980 emit_clobber (xtarget);
1982 /* Do the actual arithmetic. */
1983 for (i = 0; i < nwords; i++)
1985 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1986 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1987 rtx op0_piece = operand_subword_force (xop0, index, mode);
1988 rtx op1_piece = operand_subword_force (xop1, index, mode);
1989 rtx x;
1991 /* Main add/subtract of the input operands. */
1992 x = expand_binop (word_mode, binoptab,
1993 op0_piece, op1_piece,
1994 target_piece, unsignedp, next_methods);
1995 if (x == 0)
1996 break;
1998 if (i + 1 < nwords)
2000 /* Store carry from main add/subtract. */
2001 carry_out = gen_reg_rtx (word_mode);
2002 carry_out = emit_store_flag_force (carry_out,
2003 (binoptab == add_optab
2004 ? LT : GT),
2005 x, op0_piece,
2006 word_mode, 1, normalizep);
2009 if (i > 0)
2011 rtx newx;
2013 /* Add/subtract previous carry to main result. */
2014 newx = expand_binop (word_mode,
2015 normalizep == 1 ? binoptab : otheroptab,
2016 x, carry_in,
2017 NULL_RTX, 1, next_methods);
2019 if (i + 1 < nwords)
2021 /* Get out carry from adding/subtracting carry in. */
2022 rtx carry_tmp = gen_reg_rtx (word_mode);
2023 carry_tmp = emit_store_flag_force (carry_tmp,
2024 (binoptab == add_optab
2025 ? LT : GT),
2026 newx, x,
2027 word_mode, 1, normalizep);
2029 /* Logical-ior the two poss. carry together. */
2030 carry_out = expand_binop (word_mode, ior_optab,
2031 carry_out, carry_tmp,
2032 carry_out, 0, next_methods);
2033 if (carry_out == 0)
2034 break;
2036 emit_move_insn (target_piece, newx);
2038 else
2040 if (x != target_piece)
2041 emit_move_insn (target_piece, x);
2044 carry_in = carry_out;
2047 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2049 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing
2050 || ! rtx_equal_p (target, xtarget))
2052 rtx temp = emit_move_insn (target, xtarget);
2054 set_unique_reg_note (temp,
2055 REG_EQUAL,
2056 gen_rtx_fmt_ee (binoptab->code, mode,
2057 copy_rtx (xop0),
2058 copy_rtx (xop1)));
2060 else
2061 target = xtarget;
2063 return target;
2066 else
2067 delete_insns_since (last);
2070 /* Attempt to synthesize double word multiplies using a sequence of word
2071 mode multiplications. We first attempt to generate a sequence using a
2072 more efficient unsigned widening multiply, and if that fails we then
2073 try using a signed widening multiply. */
2075 if (binoptab == smul_optab
2076 && mclass == MODE_INT
2077 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2078 && optab_handler (smul_optab, word_mode)->insn_code != CODE_FOR_nothing
2079 && optab_handler (add_optab, word_mode)->insn_code != CODE_FOR_nothing)
2081 rtx product = NULL_RTX;
2083 if (optab_handler (umul_widen_optab, mode)->insn_code
2084 != CODE_FOR_nothing)
2086 product = expand_doubleword_mult (mode, op0, op1, target,
2087 true, methods);
2088 if (!product)
2089 delete_insns_since (last);
2092 if (product == NULL_RTX
2093 && optab_handler (smul_widen_optab, mode)->insn_code
2094 != CODE_FOR_nothing)
2096 product = expand_doubleword_mult (mode, op0, op1, target,
2097 false, methods);
2098 if (!product)
2099 delete_insns_since (last);
2102 if (product != NULL_RTX)
2104 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing)
2106 temp = emit_move_insn (target ? target : product, product);
2107 set_unique_reg_note (temp,
2108 REG_EQUAL,
2109 gen_rtx_fmt_ee (MULT, mode,
2110 copy_rtx (op0),
2111 copy_rtx (op1)));
2113 return product;
2117 /* It can't be open-coded in this mode.
2118 Use a library call if one is available and caller says that's ok. */
2120 libfunc = optab_libfunc (binoptab, mode);
2121 if (libfunc
2122 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2124 rtx insns;
2125 rtx op1x = op1;
2126 enum machine_mode op1_mode = mode;
2127 rtx value;
2129 start_sequence ();
2131 if (shift_optab_p (binoptab))
2133 op1_mode = targetm.libgcc_shift_count_mode ();
2134 /* Specify unsigned here,
2135 since negative shift counts are meaningless. */
2136 op1x = convert_to_mode (op1_mode, op1, 1);
2139 if (GET_MODE (op0) != VOIDmode
2140 && GET_MODE (op0) != mode)
2141 op0 = convert_to_mode (mode, op0, unsignedp);
2143 /* Pass 1 for NO_QUEUE so we don't lose any increments
2144 if the libcall is cse'd or moved. */
2145 value = emit_library_call_value (libfunc,
2146 NULL_RTX, LCT_CONST, mode, 2,
2147 op0, mode, op1x, op1_mode);
2149 insns = get_insns ();
2150 end_sequence ();
2152 target = gen_reg_rtx (mode);
2153 emit_libcall_block (insns, target, value,
2154 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
2156 return target;
2159 delete_insns_since (last);
2161 /* It can't be done in this mode. Can we do it in a wider mode? */
2163 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2164 || methods == OPTAB_MUST_WIDEN))
2166 /* Caller says, don't even try. */
2167 delete_insns_since (entry_last);
2168 return 0;
2171 /* Compute the value of METHODS to pass to recursive calls.
2172 Don't allow widening to be tried recursively. */
2174 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2176 /* Look for a wider mode of the same class for which it appears we can do
2177 the operation. */
2179 if (CLASS_HAS_WIDER_MODES_P (mclass))
2181 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2182 wider_mode != VOIDmode;
2183 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2185 if ((optab_handler (binoptab, wider_mode)->insn_code
2186 != CODE_FOR_nothing)
2187 || (methods == OPTAB_LIB
2188 && optab_libfunc (binoptab, wider_mode)))
2190 rtx xop0 = op0, xop1 = op1;
2191 int no_extend = 0;
2193 /* For certain integer operations, we need not actually extend
2194 the narrow operands, as long as we will truncate
2195 the results to the same narrowness. */
2197 if ((binoptab == ior_optab || binoptab == and_optab
2198 || binoptab == xor_optab
2199 || binoptab == add_optab || binoptab == sub_optab
2200 || binoptab == smul_optab || binoptab == ashl_optab)
2201 && mclass == MODE_INT)
2202 no_extend = 1;
2204 xop0 = widen_operand (xop0, wider_mode, mode,
2205 unsignedp, no_extend);
2207 /* The second operand of a shift must always be extended. */
2208 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2209 no_extend && binoptab != ashl_optab);
2211 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2212 unsignedp, methods);
2213 if (temp)
2215 if (mclass != MODE_INT
2216 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
2217 GET_MODE_BITSIZE (wider_mode)))
2219 if (target == 0)
2220 target = gen_reg_rtx (mode);
2221 convert_move (target, temp, 0);
2222 return target;
2224 else
2225 return gen_lowpart (mode, temp);
2227 else
2228 delete_insns_since (last);
2233 delete_insns_since (entry_last);
2234 return 0;
2237 /* Expand a binary operator which has both signed and unsigned forms.
2238 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2239 signed operations.
2241 If we widen unsigned operands, we may use a signed wider operation instead
2242 of an unsigned wider operation, since the result would be the same. */
2245 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2246 rtx op0, rtx op1, rtx target, int unsignedp,
2247 enum optab_methods methods)
2249 rtx temp;
2250 optab direct_optab = unsignedp ? uoptab : soptab;
2251 struct optab_d wide_soptab;
2253 /* Do it without widening, if possible. */
2254 temp = expand_binop (mode, direct_optab, op0, op1, target,
2255 unsignedp, OPTAB_DIRECT);
2256 if (temp || methods == OPTAB_DIRECT)
2257 return temp;
2259 /* Try widening to a signed int. Make a fake signed optab that
2260 hides any signed insn for direct use. */
2261 wide_soptab = *soptab;
2262 optab_handler (&wide_soptab, mode)->insn_code = CODE_FOR_nothing;
2263 /* We don't want to generate new hash table entries from this fake
2264 optab. */
2265 wide_soptab.libcall_gen = NULL;
2267 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2268 unsignedp, OPTAB_WIDEN);
2270 /* For unsigned operands, try widening to an unsigned int. */
2271 if (temp == 0 && unsignedp)
2272 temp = expand_binop (mode, uoptab, op0, op1, target,
2273 unsignedp, OPTAB_WIDEN);
2274 if (temp || methods == OPTAB_WIDEN)
2275 return temp;
2277 /* Use the right width libcall if that exists. */
2278 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2279 if (temp || methods == OPTAB_LIB)
2280 return temp;
2282 /* Must widen and use a libcall, use either signed or unsigned. */
2283 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2284 unsignedp, methods);
2285 if (temp != 0)
2286 return temp;
2287 if (unsignedp)
2288 return expand_binop (mode, uoptab, op0, op1, target,
2289 unsignedp, methods);
2290 return 0;
2293 /* Generate code to perform an operation specified by UNOPPTAB
2294 on operand OP0, with two results to TARG0 and TARG1.
2295 We assume that the order of the operands for the instruction
2296 is TARG0, TARG1, OP0.
2298 Either TARG0 or TARG1 may be zero, but what that means is that
2299 the result is not actually wanted. We will generate it into
2300 a dummy pseudo-reg and discard it. They may not both be zero.
2302 Returns 1 if this operation can be performed; 0 if not. */
2305 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2306 int unsignedp)
2308 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2309 enum mode_class mclass;
2310 enum machine_mode wider_mode;
2311 rtx entry_last = get_last_insn ();
2312 rtx last;
2314 mclass = GET_MODE_CLASS (mode);
2316 if (!targ0)
2317 targ0 = gen_reg_rtx (mode);
2318 if (!targ1)
2319 targ1 = gen_reg_rtx (mode);
2321 /* Record where to go back to if we fail. */
2322 last = get_last_insn ();
2324 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
2326 int icode = (int) optab_handler (unoptab, mode)->insn_code;
2327 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2328 rtx pat;
2329 rtx xop0 = op0;
2331 if (GET_MODE (xop0) != VOIDmode
2332 && GET_MODE (xop0) != mode0)
2333 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2335 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2336 if (!insn_data[icode].operand[2].predicate (xop0, mode0))
2337 xop0 = copy_to_mode_reg (mode0, xop0);
2339 /* We could handle this, but we should always be called with a pseudo
2340 for our targets and all insns should take them as outputs. */
2341 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2342 gcc_assert (insn_data[icode].operand[1].predicate (targ1, mode));
2344 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2345 if (pat)
2347 emit_insn (pat);
2348 return 1;
2350 else
2351 delete_insns_since (last);
2354 /* It can't be done in this mode. Can we do it in a wider mode? */
2356 if (CLASS_HAS_WIDER_MODES_P (mclass))
2358 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2359 wider_mode != VOIDmode;
2360 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2362 if (optab_handler (unoptab, wider_mode)->insn_code
2363 != CODE_FOR_nothing)
2365 rtx t0 = gen_reg_rtx (wider_mode);
2366 rtx t1 = gen_reg_rtx (wider_mode);
2367 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2369 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2371 convert_move (targ0, t0, unsignedp);
2372 convert_move (targ1, t1, unsignedp);
2373 return 1;
2375 else
2376 delete_insns_since (last);
2381 delete_insns_since (entry_last);
2382 return 0;
2385 /* Generate code to perform an operation specified by BINOPTAB
2386 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2387 We assume that the order of the operands for the instruction
2388 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2389 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2391 Either TARG0 or TARG1 may be zero, but what that means is that
2392 the result is not actually wanted. We will generate it into
2393 a dummy pseudo-reg and discard it. They may not both be zero.
2395 Returns 1 if this operation can be performed; 0 if not. */
2398 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2399 int unsignedp)
2401 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2402 enum mode_class mclass;
2403 enum machine_mode wider_mode;
2404 rtx entry_last = get_last_insn ();
2405 rtx last;
2407 mclass = GET_MODE_CLASS (mode);
2409 if (!targ0)
2410 targ0 = gen_reg_rtx (mode);
2411 if (!targ1)
2412 targ1 = gen_reg_rtx (mode);
2414 /* Record where to go back to if we fail. */
2415 last = get_last_insn ();
2417 if (optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
2419 int icode = (int) optab_handler (binoptab, mode)->insn_code;
2420 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2421 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2422 rtx pat;
2423 rtx xop0 = op0, xop1 = op1;
2425 /* If we are optimizing, force expensive constants into a register. */
2426 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
2427 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
2429 /* In case the insn wants input operands in modes different from
2430 those of the actual operands, convert the operands. It would
2431 seem that we don't need to convert CONST_INTs, but we do, so
2432 that they're properly zero-extended, sign-extended or truncated
2433 for their mode. */
2435 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2436 xop0 = convert_modes (mode0,
2437 GET_MODE (op0) != VOIDmode
2438 ? GET_MODE (op0)
2439 : mode,
2440 xop0, unsignedp);
2442 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2443 xop1 = convert_modes (mode1,
2444 GET_MODE (op1) != VOIDmode
2445 ? GET_MODE (op1)
2446 : mode,
2447 xop1, unsignedp);
2449 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2450 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
2451 xop0 = copy_to_mode_reg (mode0, xop0);
2453 if (!insn_data[icode].operand[2].predicate (xop1, mode1))
2454 xop1 = copy_to_mode_reg (mode1, xop1);
2456 /* We could handle this, but we should always be called with a pseudo
2457 for our targets and all insns should take them as outputs. */
2458 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2459 gcc_assert (insn_data[icode].operand[3].predicate (targ1, mode));
2461 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2462 if (pat)
2464 emit_insn (pat);
2465 return 1;
2467 else
2468 delete_insns_since (last);
2471 /* It can't be done in this mode. Can we do it in a wider mode? */
2473 if (CLASS_HAS_WIDER_MODES_P (mclass))
2475 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2476 wider_mode != VOIDmode;
2477 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2479 if (optab_handler (binoptab, wider_mode)->insn_code
2480 != CODE_FOR_nothing)
2482 rtx t0 = gen_reg_rtx (wider_mode);
2483 rtx t1 = gen_reg_rtx (wider_mode);
2484 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2485 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2487 if (expand_twoval_binop (binoptab, cop0, cop1,
2488 t0, t1, unsignedp))
2490 convert_move (targ0, t0, unsignedp);
2491 convert_move (targ1, t1, unsignedp);
2492 return 1;
2494 else
2495 delete_insns_since (last);
2500 delete_insns_since (entry_last);
2501 return 0;
2504 /* Expand the two-valued library call indicated by BINOPTAB, but
2505 preserve only one of the values. If TARG0 is non-NULL, the first
2506 value is placed into TARG0; otherwise the second value is placed
2507 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2508 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2509 This routine assumes that the value returned by the library call is
2510 as if the return value was of an integral mode twice as wide as the
2511 mode of OP0. Returns 1 if the call was successful. */
2513 bool
2514 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2515 rtx targ0, rtx targ1, enum rtx_code code)
2517 enum machine_mode mode;
2518 enum machine_mode libval_mode;
2519 rtx libval;
2520 rtx insns;
2521 rtx libfunc;
2523 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2524 gcc_assert (!targ0 != !targ1);
2526 mode = GET_MODE (op0);
2527 libfunc = optab_libfunc (binoptab, mode);
2528 if (!libfunc)
2529 return false;
2531 /* The value returned by the library function will have twice as
2532 many bits as the nominal MODE. */
2533 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2534 MODE_INT);
2535 start_sequence ();
2536 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2537 libval_mode, 2,
2538 op0, mode,
2539 op1, mode);
2540 /* Get the part of VAL containing the value that we want. */
2541 libval = simplify_gen_subreg (mode, libval, libval_mode,
2542 targ0 ? 0 : GET_MODE_SIZE (mode));
2543 insns = get_insns ();
2544 end_sequence ();
2545 /* Move the into the desired location. */
2546 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2547 gen_rtx_fmt_ee (code, mode, op0, op1));
2549 return true;
2553 /* Wrapper around expand_unop which takes an rtx code to specify
2554 the operation to perform, not an optab pointer. All other
2555 arguments are the same. */
2557 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2558 rtx target, int unsignedp)
2560 optab unop = code_to_optab[(int) code];
2561 gcc_assert (unop);
2563 return expand_unop (mode, unop, op0, target, unsignedp);
2566 /* Try calculating
2567 (clz:narrow x)
2569 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2570 static rtx
2571 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2573 enum mode_class mclass = GET_MODE_CLASS (mode);
2574 if (CLASS_HAS_WIDER_MODES_P (mclass))
2576 enum machine_mode wider_mode;
2577 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2578 wider_mode != VOIDmode;
2579 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2581 if (optab_handler (clz_optab, wider_mode)->insn_code
2582 != CODE_FOR_nothing)
2584 rtx xop0, temp, last;
2586 last = get_last_insn ();
2588 if (target == 0)
2589 target = gen_reg_rtx (mode);
2590 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2591 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2592 if (temp != 0)
2593 temp = expand_binop (wider_mode, sub_optab, temp,
2594 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2595 - GET_MODE_BITSIZE (mode)),
2596 target, true, OPTAB_DIRECT);
2597 if (temp == 0)
2598 delete_insns_since (last);
2600 return temp;
2604 return 0;
2607 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2608 quantities, choosing which based on whether the high word is nonzero. */
2609 static rtx
2610 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2612 rtx xop0 = force_reg (mode, op0);
2613 rtx subhi = gen_highpart (word_mode, xop0);
2614 rtx sublo = gen_lowpart (word_mode, xop0);
2615 rtx hi0_label = gen_label_rtx ();
2616 rtx after_label = gen_label_rtx ();
2617 rtx seq, temp, result;
2619 /* If we were not given a target, use a word_mode register, not a
2620 'mode' register. The result will fit, and nobody is expecting
2621 anything bigger (the return type of __builtin_clz* is int). */
2622 if (!target)
2623 target = gen_reg_rtx (word_mode);
2625 /* In any case, write to a word_mode scratch in both branches of the
2626 conditional, so we can ensure there is a single move insn setting
2627 'target' to tag a REG_EQUAL note on. */
2628 result = gen_reg_rtx (word_mode);
2630 start_sequence ();
2632 /* If the high word is not equal to zero,
2633 then clz of the full value is clz of the high word. */
2634 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2635 word_mode, true, hi0_label);
2637 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2638 if (!temp)
2639 goto fail;
2641 if (temp != result)
2642 convert_move (result, temp, true);
2644 emit_jump_insn (gen_jump (after_label));
2645 emit_barrier ();
2647 /* Else clz of the full value is clz of the low word plus the number
2648 of bits in the high word. */
2649 emit_label (hi0_label);
2651 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2652 if (!temp)
2653 goto fail;
2654 temp = expand_binop (word_mode, add_optab, temp,
2655 GEN_INT (GET_MODE_BITSIZE (word_mode)),
2656 result, true, OPTAB_DIRECT);
2657 if (!temp)
2658 goto fail;
2659 if (temp != result)
2660 convert_move (result, temp, true);
2662 emit_label (after_label);
2663 convert_move (target, result, true);
2665 seq = get_insns ();
2666 end_sequence ();
2668 add_equal_note (seq, target, CLZ, xop0, 0);
2669 emit_insn (seq);
2670 return target;
2672 fail:
2673 end_sequence ();
2674 return 0;
2677 /* Try calculating
2678 (bswap:narrow x)
2680 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2681 static rtx
2682 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2684 enum mode_class mclass = GET_MODE_CLASS (mode);
2685 enum machine_mode wider_mode;
2686 rtx x, last;
2688 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2689 return NULL_RTX;
2691 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2692 wider_mode != VOIDmode;
2693 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2694 if (optab_handler (bswap_optab, wider_mode)->insn_code != CODE_FOR_nothing)
2695 goto found;
2696 return NULL_RTX;
2698 found:
2699 last = get_last_insn ();
2701 x = widen_operand (op0, wider_mode, mode, true, true);
2702 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2704 if (x != 0)
2705 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2706 size_int (GET_MODE_BITSIZE (wider_mode)
2707 - GET_MODE_BITSIZE (mode)),
2708 NULL_RTX, true);
2710 if (x != 0)
2712 if (target == 0)
2713 target = gen_reg_rtx (mode);
2714 emit_move_insn (target, gen_lowpart (mode, x));
2716 else
2717 delete_insns_since (last);
2719 return target;
2722 /* Try calculating bswap as two bswaps of two word-sized operands. */
2724 static rtx
2725 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2727 rtx t0, t1;
2729 t1 = expand_unop (word_mode, bswap_optab,
2730 operand_subword_force (op, 0, mode), NULL_RTX, true);
2731 t0 = expand_unop (word_mode, bswap_optab,
2732 operand_subword_force (op, 1, mode), NULL_RTX, true);
2734 if (target == 0)
2735 target = gen_reg_rtx (mode);
2736 if (REG_P (target))
2737 emit_clobber (target);
2738 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2739 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2741 return target;
2744 /* Try calculating (parity x) as (and (popcount x) 1), where
2745 popcount can also be done in a wider mode. */
2746 static rtx
2747 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2749 enum mode_class mclass = GET_MODE_CLASS (mode);
2750 if (CLASS_HAS_WIDER_MODES_P (mclass))
2752 enum machine_mode wider_mode;
2753 for (wider_mode = mode; wider_mode != VOIDmode;
2754 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2756 if (optab_handler (popcount_optab, wider_mode)->insn_code
2757 != CODE_FOR_nothing)
2759 rtx xop0, temp, last;
2761 last = get_last_insn ();
2763 if (target == 0)
2764 target = gen_reg_rtx (mode);
2765 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2766 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2767 true);
2768 if (temp != 0)
2769 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2770 target, true, OPTAB_DIRECT);
2771 if (temp == 0)
2772 delete_insns_since (last);
2774 return temp;
2778 return 0;
2781 /* Try calculating ctz(x) as K - clz(x & -x) ,
2782 where K is GET_MODE_BITSIZE(mode) - 1.
2784 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2785 don't have to worry about what the hardware does in that case. (If
2786 the clz instruction produces the usual value at 0, which is K, the
2787 result of this code sequence will be -1; expand_ffs, below, relies
2788 on this. It might be nice to have it be K instead, for consistency
2789 with the (very few) processors that provide a ctz with a defined
2790 value, but that would take one more instruction, and it would be
2791 less convenient for expand_ffs anyway. */
2793 static rtx
2794 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2796 rtx seq, temp;
2798 if (optab_handler (clz_optab, mode)->insn_code == CODE_FOR_nothing)
2799 return 0;
2801 start_sequence ();
2803 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2804 if (temp)
2805 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2806 true, OPTAB_DIRECT);
2807 if (temp)
2808 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2809 if (temp)
2810 temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_BITSIZE (mode) - 1),
2811 temp, target,
2812 true, OPTAB_DIRECT);
2813 if (temp == 0)
2815 end_sequence ();
2816 return 0;
2819 seq = get_insns ();
2820 end_sequence ();
2822 add_equal_note (seq, temp, CTZ, op0, 0);
2823 emit_insn (seq);
2824 return temp;
2828 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2829 else with the sequence used by expand_clz.
2831 The ffs builtin promises to return zero for a zero value and ctz/clz
2832 may have an undefined value in that case. If they do not give us a
2833 convenient value, we have to generate a test and branch. */
2834 static rtx
2835 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2837 HOST_WIDE_INT val = 0;
2838 bool defined_at_zero = false;
2839 rtx temp, seq;
2841 if (optab_handler (ctz_optab, mode)->insn_code != CODE_FOR_nothing)
2843 start_sequence ();
2845 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2846 if (!temp)
2847 goto fail;
2849 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2851 else if (optab_handler (clz_optab, mode)->insn_code != CODE_FOR_nothing)
2853 start_sequence ();
2854 temp = expand_ctz (mode, op0, 0);
2855 if (!temp)
2856 goto fail;
2858 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2860 defined_at_zero = true;
2861 val = (GET_MODE_BITSIZE (mode) - 1) - val;
2864 else
2865 return 0;
2867 if (defined_at_zero && val == -1)
2868 /* No correction needed at zero. */;
2869 else
2871 /* We don't try to do anything clever with the situation found
2872 on some processors (eg Alpha) where ctz(0:mode) ==
2873 bitsize(mode). If someone can think of a way to send N to -1
2874 and leave alone all values in the range 0..N-1 (where N is a
2875 power of two), cheaper than this test-and-branch, please add it.
2877 The test-and-branch is done after the operation itself, in case
2878 the operation sets condition codes that can be recycled for this.
2879 (This is true on i386, for instance.) */
2881 rtx nonzero_label = gen_label_rtx ();
2882 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2883 mode, true, nonzero_label);
2885 convert_move (temp, GEN_INT (-1), false);
2886 emit_label (nonzero_label);
2889 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2890 to produce a value in the range 0..bitsize. */
2891 temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
2892 target, false, OPTAB_DIRECT);
2893 if (!temp)
2894 goto fail;
2896 seq = get_insns ();
2897 end_sequence ();
2899 add_equal_note (seq, temp, FFS, op0, 0);
2900 emit_insn (seq);
2901 return temp;
2903 fail:
2904 end_sequence ();
2905 return 0;
2908 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2909 conditions, VAL may already be a SUBREG against which we cannot generate
2910 a further SUBREG. In this case, we expect forcing the value into a
2911 register will work around the situation. */
2913 static rtx
2914 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2915 enum machine_mode imode)
2917 rtx ret;
2918 ret = lowpart_subreg (omode, val, imode);
2919 if (ret == NULL)
2921 val = force_reg (imode, val);
2922 ret = lowpart_subreg (omode, val, imode);
2923 gcc_assert (ret != NULL);
2925 return ret;
2928 /* Expand a floating point absolute value or negation operation via a
2929 logical operation on the sign bit. */
2931 static rtx
2932 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2933 rtx op0, rtx target)
2935 const struct real_format *fmt;
2936 int bitpos, word, nwords, i;
2937 enum machine_mode imode;
2938 HOST_WIDE_INT hi, lo;
2939 rtx temp, insns;
2941 /* The format has to have a simple sign bit. */
2942 fmt = REAL_MODE_FORMAT (mode);
2943 if (fmt == NULL)
2944 return NULL_RTX;
2946 bitpos = fmt->signbit_rw;
2947 if (bitpos < 0)
2948 return NULL_RTX;
2950 /* Don't create negative zeros if the format doesn't support them. */
2951 if (code == NEG && !fmt->has_signed_zero)
2952 return NULL_RTX;
2954 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2956 imode = int_mode_for_mode (mode);
2957 if (imode == BLKmode)
2958 return NULL_RTX;
2959 word = 0;
2960 nwords = 1;
2962 else
2964 imode = word_mode;
2966 if (FLOAT_WORDS_BIG_ENDIAN)
2967 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2968 else
2969 word = bitpos / BITS_PER_WORD;
2970 bitpos = bitpos % BITS_PER_WORD;
2971 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2974 if (bitpos < HOST_BITS_PER_WIDE_INT)
2976 hi = 0;
2977 lo = (HOST_WIDE_INT) 1 << bitpos;
2979 else
2981 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2982 lo = 0;
2984 if (code == ABS)
2985 lo = ~lo, hi = ~hi;
2987 if (target == 0 || target == op0)
2988 target = gen_reg_rtx (mode);
2990 if (nwords > 1)
2992 start_sequence ();
2994 for (i = 0; i < nwords; ++i)
2996 rtx targ_piece = operand_subword (target, i, 1, mode);
2997 rtx op0_piece = operand_subword_force (op0, i, mode);
2999 if (i == word)
3001 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3002 op0_piece,
3003 immed_double_const (lo, hi, imode),
3004 targ_piece, 1, OPTAB_LIB_WIDEN);
3005 if (temp != targ_piece)
3006 emit_move_insn (targ_piece, temp);
3008 else
3009 emit_move_insn (targ_piece, op0_piece);
3012 insns = get_insns ();
3013 end_sequence ();
3015 emit_insn (insns);
3017 else
3019 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3020 gen_lowpart (imode, op0),
3021 immed_double_const (lo, hi, imode),
3022 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3023 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3025 set_unique_reg_note (get_last_insn (), REG_EQUAL,
3026 gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
3029 return target;
3032 /* As expand_unop, but will fail rather than attempt the operation in a
3033 different mode or with a libcall. */
3034 static rtx
3035 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3036 int unsignedp)
3038 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
3040 int icode = (int) optab_handler (unoptab, mode)->insn_code;
3041 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3042 rtx xop0 = op0;
3043 rtx last = get_last_insn ();
3044 rtx pat, temp;
3046 if (target)
3047 temp = target;
3048 else
3049 temp = gen_reg_rtx (mode);
3051 if (GET_MODE (xop0) != VOIDmode
3052 && GET_MODE (xop0) != mode0)
3053 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3055 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3057 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
3058 xop0 = copy_to_mode_reg (mode0, xop0);
3060 if (!insn_data[icode].operand[0].predicate (temp, mode))
3061 temp = gen_reg_rtx (mode);
3063 pat = GEN_FCN (icode) (temp, xop0);
3064 if (pat)
3066 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3067 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
3069 delete_insns_since (last);
3070 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3073 emit_insn (pat);
3075 return temp;
3077 else
3078 delete_insns_since (last);
3080 return 0;
3083 /* Generate code to perform an operation specified by UNOPTAB
3084 on operand OP0, with result having machine-mode MODE.
3086 UNSIGNEDP is for the case where we have to widen the operands
3087 to perform the operation. It says to use zero-extension.
3089 If TARGET is nonzero, the value
3090 is generated there, if it is convenient to do so.
3091 In all cases an rtx is returned for the locus of the value;
3092 this may or may not be TARGET. */
3095 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3096 int unsignedp)
3098 enum mode_class mclass = GET_MODE_CLASS (mode);
3099 enum machine_mode wider_mode;
3100 rtx temp;
3101 rtx libfunc;
3103 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3104 if (temp)
3105 return temp;
3107 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3109 /* Widening (or narrowing) clz needs special treatment. */
3110 if (unoptab == clz_optab)
3112 temp = widen_clz (mode, op0, target);
3113 if (temp)
3114 return temp;
3116 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3117 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3119 temp = expand_doubleword_clz (mode, op0, target);
3120 if (temp)
3121 return temp;
3124 goto try_libcall;
3127 /* Widening (or narrowing) bswap needs special treatment. */
3128 if (unoptab == bswap_optab)
3130 temp = widen_bswap (mode, op0, target);
3131 if (temp)
3132 return temp;
3134 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3135 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3137 temp = expand_doubleword_bswap (mode, op0, target);
3138 if (temp)
3139 return temp;
3142 goto try_libcall;
3145 if (CLASS_HAS_WIDER_MODES_P (mclass))
3146 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3147 wider_mode != VOIDmode;
3148 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3150 if (optab_handler (unoptab, wider_mode)->insn_code != CODE_FOR_nothing)
3152 rtx xop0 = op0;
3153 rtx last = get_last_insn ();
3155 /* For certain operations, we need not actually extend
3156 the narrow operand, as long as we will truncate the
3157 results to the same narrowness. */
3159 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3160 (unoptab == neg_optab
3161 || unoptab == one_cmpl_optab)
3162 && mclass == MODE_INT);
3164 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3165 unsignedp);
3167 if (temp)
3169 if (mclass != MODE_INT
3170 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3171 GET_MODE_BITSIZE (wider_mode)))
3173 if (target == 0)
3174 target = gen_reg_rtx (mode);
3175 convert_move (target, temp, 0);
3176 return target;
3178 else
3179 return gen_lowpart (mode, temp);
3181 else
3182 delete_insns_since (last);
3186 /* These can be done a word at a time. */
3187 if (unoptab == one_cmpl_optab
3188 && mclass == MODE_INT
3189 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3190 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3192 int i;
3193 rtx insns;
3195 if (target == 0 || target == op0)
3196 target = gen_reg_rtx (mode);
3198 start_sequence ();
3200 /* Do the actual arithmetic. */
3201 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3203 rtx target_piece = operand_subword (target, i, 1, mode);
3204 rtx x = expand_unop (word_mode, unoptab,
3205 operand_subword_force (op0, i, mode),
3206 target_piece, unsignedp);
3208 if (target_piece != x)
3209 emit_move_insn (target_piece, x);
3212 insns = get_insns ();
3213 end_sequence ();
3215 emit_insn (insns);
3216 return target;
3219 if (unoptab->code == NEG)
3221 /* Try negating floating point values by flipping the sign bit. */
3222 if (SCALAR_FLOAT_MODE_P (mode))
3224 temp = expand_absneg_bit (NEG, mode, op0, target);
3225 if (temp)
3226 return temp;
3229 /* If there is no negation pattern, and we have no negative zero,
3230 try subtracting from zero. */
3231 if (!HONOR_SIGNED_ZEROS (mode))
3233 temp = expand_binop (mode, (unoptab == negv_optab
3234 ? subv_optab : sub_optab),
3235 CONST0_RTX (mode), op0, target,
3236 unsignedp, OPTAB_DIRECT);
3237 if (temp)
3238 return temp;
3242 /* Try calculating parity (x) as popcount (x) % 2. */
3243 if (unoptab == parity_optab)
3245 temp = expand_parity (mode, op0, target);
3246 if (temp)
3247 return temp;
3250 /* Try implementing ffs (x) in terms of clz (x). */
3251 if (unoptab == ffs_optab)
3253 temp = expand_ffs (mode, op0, target);
3254 if (temp)
3255 return temp;
3258 /* Try implementing ctz (x) in terms of clz (x). */
3259 if (unoptab == ctz_optab)
3261 temp = expand_ctz (mode, op0, target);
3262 if (temp)
3263 return temp;
3266 try_libcall:
3267 /* Now try a library call in this mode. */
3268 libfunc = optab_libfunc (unoptab, mode);
3269 if (libfunc)
3271 rtx insns;
3272 rtx value;
3273 rtx eq_value;
3274 enum machine_mode outmode = mode;
3276 /* All of these functions return small values. Thus we choose to
3277 have them return something that isn't a double-word. */
3278 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3279 || unoptab == popcount_optab || unoptab == parity_optab)
3280 outmode
3281 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3282 optab_libfunc (unoptab, mode)));
3284 start_sequence ();
3286 /* Pass 1 for NO_QUEUE so we don't lose any increments
3287 if the libcall is cse'd or moved. */
3288 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3289 1, op0, mode);
3290 insns = get_insns ();
3291 end_sequence ();
3293 target = gen_reg_rtx (outmode);
3294 eq_value = gen_rtx_fmt_e (unoptab->code, mode, op0);
3295 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3296 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3297 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3298 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3299 emit_libcall_block (insns, target, value, eq_value);
3301 return target;
3304 /* It can't be done in this mode. Can we do it in a wider mode? */
3306 if (CLASS_HAS_WIDER_MODES_P (mclass))
3308 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3309 wider_mode != VOIDmode;
3310 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3312 if ((optab_handler (unoptab, wider_mode)->insn_code
3313 != CODE_FOR_nothing)
3314 || optab_libfunc (unoptab, wider_mode))
3316 rtx xop0 = op0;
3317 rtx last = get_last_insn ();
3319 /* For certain operations, we need not actually extend
3320 the narrow operand, as long as we will truncate the
3321 results to the same narrowness. */
3323 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3324 (unoptab == neg_optab
3325 || unoptab == one_cmpl_optab)
3326 && mclass == MODE_INT);
3328 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3329 unsignedp);
3331 /* If we are generating clz using wider mode, adjust the
3332 result. */
3333 if (unoptab == clz_optab && temp != 0)
3334 temp = expand_binop (wider_mode, sub_optab, temp,
3335 GEN_INT (GET_MODE_BITSIZE (wider_mode)
3336 - GET_MODE_BITSIZE (mode)),
3337 target, true, OPTAB_DIRECT);
3339 if (temp)
3341 if (mclass != MODE_INT)
3343 if (target == 0)
3344 target = gen_reg_rtx (mode);
3345 convert_move (target, temp, 0);
3346 return target;
3348 else
3349 return gen_lowpart (mode, temp);
3351 else
3352 delete_insns_since (last);
3357 /* One final attempt at implementing negation via subtraction,
3358 this time allowing widening of the operand. */
3359 if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
3361 rtx temp;
3362 temp = expand_binop (mode,
3363 unoptab == negv_optab ? subv_optab : sub_optab,
3364 CONST0_RTX (mode), op0,
3365 target, unsignedp, OPTAB_LIB_WIDEN);
3366 if (temp)
3367 return temp;
3370 return 0;
3373 /* Emit code to compute the absolute value of OP0, with result to
3374 TARGET if convenient. (TARGET may be 0.) The return value says
3375 where the result actually is to be found.
3377 MODE is the mode of the operand; the mode of the result is
3378 different but can be deduced from MODE.
3383 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3384 int result_unsignedp)
3386 rtx temp;
3388 if (! flag_trapv)
3389 result_unsignedp = 1;
3391 /* First try to do it with a special abs instruction. */
3392 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3393 op0, target, 0);
3394 if (temp != 0)
3395 return temp;
3397 /* For floating point modes, try clearing the sign bit. */
3398 if (SCALAR_FLOAT_MODE_P (mode))
3400 temp = expand_absneg_bit (ABS, mode, op0, target);
3401 if (temp)
3402 return temp;
3405 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3406 if (optab_handler (smax_optab, mode)->insn_code != CODE_FOR_nothing
3407 && !HONOR_SIGNED_ZEROS (mode))
3409 rtx last = get_last_insn ();
3411 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3412 if (temp != 0)
3413 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3414 OPTAB_WIDEN);
3416 if (temp != 0)
3417 return temp;
3419 delete_insns_since (last);
3422 /* If this machine has expensive jumps, we can do integer absolute
3423 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3424 where W is the width of MODE. */
3426 if (GET_MODE_CLASS (mode) == MODE_INT
3427 && BRANCH_COST (optimize_insn_for_speed_p (),
3428 false) >= 2)
3430 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3431 size_int (GET_MODE_BITSIZE (mode) - 1),
3432 NULL_RTX, 0);
3434 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3435 OPTAB_LIB_WIDEN);
3436 if (temp != 0)
3437 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3438 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3440 if (temp != 0)
3441 return temp;
3444 return NULL_RTX;
3448 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3449 int result_unsignedp, int safe)
3451 rtx temp, op1;
3453 if (! flag_trapv)
3454 result_unsignedp = 1;
3456 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3457 if (temp != 0)
3458 return temp;
3460 /* If that does not win, use conditional jump and negate. */
3462 /* It is safe to use the target if it is the same
3463 as the source if this is also a pseudo register */
3464 if (op0 == target && REG_P (op0)
3465 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3466 safe = 1;
3468 op1 = gen_label_rtx ();
3469 if (target == 0 || ! safe
3470 || GET_MODE (target) != mode
3471 || (MEM_P (target) && MEM_VOLATILE_P (target))
3472 || (REG_P (target)
3473 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3474 target = gen_reg_rtx (mode);
3476 emit_move_insn (target, op0);
3477 NO_DEFER_POP;
3479 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3480 NULL_RTX, NULL_RTX, op1);
3482 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3483 target, target, 0);
3484 if (op0 != target)
3485 emit_move_insn (target, op0);
3486 emit_label (op1);
3487 OK_DEFER_POP;
3488 return target;
3491 /* A subroutine of expand_copysign, perform the copysign operation using the
3492 abs and neg primitives advertised to exist on the target. The assumption
3493 is that we have a split register file, and leaving op0 in fp registers,
3494 and not playing with subregs so much, will help the register allocator. */
3496 static rtx
3497 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3498 int bitpos, bool op0_is_abs)
3500 enum machine_mode imode;
3501 int icode;
3502 rtx sign, label;
3504 if (target == op1)
3505 target = NULL_RTX;
3507 /* Check if the back end provides an insn that handles signbit for the
3508 argument's mode. */
3509 icode = (int) signbit_optab->handlers [(int) mode].insn_code;
3510 if (icode != CODE_FOR_nothing)
3512 imode = insn_data[icode].operand[0].mode;
3513 sign = gen_reg_rtx (imode);
3514 emit_unop_insn (icode, sign, op1, UNKNOWN);
3516 else
3518 HOST_WIDE_INT hi, lo;
3520 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3522 imode = int_mode_for_mode (mode);
3523 if (imode == BLKmode)
3524 return NULL_RTX;
3525 op1 = gen_lowpart (imode, op1);
3527 else
3529 int word;
3531 imode = word_mode;
3532 if (FLOAT_WORDS_BIG_ENDIAN)
3533 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3534 else
3535 word = bitpos / BITS_PER_WORD;
3536 bitpos = bitpos % BITS_PER_WORD;
3537 op1 = operand_subword_force (op1, word, mode);
3540 if (bitpos < HOST_BITS_PER_WIDE_INT)
3542 hi = 0;
3543 lo = (HOST_WIDE_INT) 1 << bitpos;
3545 else
3547 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3548 lo = 0;
3551 sign = gen_reg_rtx (imode);
3552 sign = expand_binop (imode, and_optab, op1,
3553 immed_double_const (lo, hi, imode),
3554 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3557 if (!op0_is_abs)
3559 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3560 if (op0 == NULL)
3561 return NULL_RTX;
3562 target = op0;
3564 else
3566 if (target == NULL_RTX)
3567 target = copy_to_reg (op0);
3568 else
3569 emit_move_insn (target, op0);
3572 label = gen_label_rtx ();
3573 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3575 if (GET_CODE (op0) == CONST_DOUBLE)
3576 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3577 else
3578 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3579 if (op0 != target)
3580 emit_move_insn (target, op0);
3582 emit_label (label);
3584 return target;
3588 /* A subroutine of expand_copysign, perform the entire copysign operation
3589 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3590 is true if op0 is known to have its sign bit clear. */
3592 static rtx
3593 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3594 int bitpos, bool op0_is_abs)
3596 enum machine_mode imode;
3597 HOST_WIDE_INT hi, lo;
3598 int word, nwords, i;
3599 rtx temp, insns;
3601 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3603 imode = int_mode_for_mode (mode);
3604 if (imode == BLKmode)
3605 return NULL_RTX;
3606 word = 0;
3607 nwords = 1;
3609 else
3611 imode = word_mode;
3613 if (FLOAT_WORDS_BIG_ENDIAN)
3614 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3615 else
3616 word = bitpos / BITS_PER_WORD;
3617 bitpos = bitpos % BITS_PER_WORD;
3618 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3621 if (bitpos < HOST_BITS_PER_WIDE_INT)
3623 hi = 0;
3624 lo = (HOST_WIDE_INT) 1 << bitpos;
3626 else
3628 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3629 lo = 0;
3632 if (target == 0 || target == op0 || target == op1)
3633 target = gen_reg_rtx (mode);
3635 if (nwords > 1)
3637 start_sequence ();
3639 for (i = 0; i < nwords; ++i)
3641 rtx targ_piece = operand_subword (target, i, 1, mode);
3642 rtx op0_piece = operand_subword_force (op0, i, mode);
3644 if (i == word)
3646 if (!op0_is_abs)
3647 op0_piece = expand_binop (imode, and_optab, op0_piece,
3648 immed_double_const (~lo, ~hi, imode),
3649 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3651 op1 = expand_binop (imode, and_optab,
3652 operand_subword_force (op1, i, mode),
3653 immed_double_const (lo, hi, imode),
3654 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3656 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3657 targ_piece, 1, OPTAB_LIB_WIDEN);
3658 if (temp != targ_piece)
3659 emit_move_insn (targ_piece, temp);
3661 else
3662 emit_move_insn (targ_piece, op0_piece);
3665 insns = get_insns ();
3666 end_sequence ();
3668 emit_insn (insns);
3670 else
3672 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3673 immed_double_const (lo, hi, imode),
3674 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3676 op0 = gen_lowpart (imode, op0);
3677 if (!op0_is_abs)
3678 op0 = expand_binop (imode, and_optab, op0,
3679 immed_double_const (~lo, ~hi, imode),
3680 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3682 temp = expand_binop (imode, ior_optab, op0, op1,
3683 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3684 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3687 return target;
3690 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3691 scalar floating point mode. Return NULL if we do not know how to
3692 expand the operation inline. */
3695 expand_copysign (rtx op0, rtx op1, rtx target)
3697 enum machine_mode mode = GET_MODE (op0);
3698 const struct real_format *fmt;
3699 bool op0_is_abs;
3700 rtx temp;
3702 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3703 gcc_assert (GET_MODE (op1) == mode);
3705 /* First try to do it with a special instruction. */
3706 temp = expand_binop (mode, copysign_optab, op0, op1,
3707 target, 0, OPTAB_DIRECT);
3708 if (temp)
3709 return temp;
3711 fmt = REAL_MODE_FORMAT (mode);
3712 if (fmt == NULL || !fmt->has_signed_zero)
3713 return NULL_RTX;
3715 op0_is_abs = false;
3716 if (GET_CODE (op0) == CONST_DOUBLE)
3718 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3719 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3720 op0_is_abs = true;
3723 if (fmt->signbit_ro >= 0
3724 && (GET_CODE (op0) == CONST_DOUBLE
3725 || (optab_handler (neg_optab, mode)->insn_code != CODE_FOR_nothing
3726 && optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)))
3728 temp = expand_copysign_absneg (mode, op0, op1, target,
3729 fmt->signbit_ro, op0_is_abs);
3730 if (temp)
3731 return temp;
3734 if (fmt->signbit_rw < 0)
3735 return NULL_RTX;
3736 return expand_copysign_bit (mode, op0, op1, target,
3737 fmt->signbit_rw, op0_is_abs);
3740 /* Generate an instruction whose insn-code is INSN_CODE,
3741 with two operands: an output TARGET and an input OP0.
3742 TARGET *must* be nonzero, and the output is always stored there.
3743 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3744 the value that is stored into TARGET.
3746 Return false if expansion failed. */
3748 bool
3749 maybe_emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3751 rtx temp;
3752 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3753 rtx pat;
3754 rtx last = get_last_insn ();
3756 temp = target;
3758 /* Now, if insn does not accept our operands, put them into pseudos. */
3760 if (!insn_data[icode].operand[1].predicate (op0, mode0))
3761 op0 = copy_to_mode_reg (mode0, op0);
3763 if (!insn_data[icode].operand[0].predicate (temp, GET_MODE (temp)))
3764 temp = gen_reg_rtx (GET_MODE (temp));
3766 pat = GEN_FCN (icode) (temp, op0);
3767 if (!pat)
3769 delete_insns_since (last);
3770 return false;
3773 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3774 add_equal_note (pat, temp, code, op0, NULL_RTX);
3776 emit_insn (pat);
3778 if (temp != target)
3779 emit_move_insn (target, temp);
3780 return true;
3782 /* Generate an instruction whose insn-code is INSN_CODE,
3783 with two operands: an output TARGET and an input OP0.
3784 TARGET *must* be nonzero, and the output is always stored there.
3785 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3786 the value that is stored into TARGET. */
3788 void
3789 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3791 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3792 gcc_assert (ok);
3795 struct no_conflict_data
3797 rtx target, first, insn;
3798 bool must_stay;
3801 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3802 the currently examined clobber / store has to stay in the list of
3803 insns that constitute the actual libcall block. */
3804 static void
3805 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3807 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3809 /* If this inns directly contributes to setting the target, it must stay. */
3810 if (reg_overlap_mentioned_p (p->target, dest))
3811 p->must_stay = true;
3812 /* If we haven't committed to keeping any other insns in the list yet,
3813 there is nothing more to check. */
3814 else if (p->insn == p->first)
3815 return;
3816 /* If this insn sets / clobbers a register that feeds one of the insns
3817 already in the list, this insn has to stay too. */
3818 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3819 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3820 || reg_used_between_p (dest, p->first, p->insn)
3821 /* Likewise if this insn depends on a register set by a previous
3822 insn in the list, or if it sets a result (presumably a hard
3823 register) that is set or clobbered by a previous insn.
3824 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3825 SET_DEST perform the former check on the address, and the latter
3826 check on the MEM. */
3827 || (GET_CODE (set) == SET
3828 && (modified_in_p (SET_SRC (set), p->first)
3829 || modified_in_p (SET_DEST (set), p->first)
3830 || modified_between_p (SET_SRC (set), p->first, p->insn)
3831 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3832 p->must_stay = true;
3836 /* Emit code to make a call to a constant function or a library call.
3838 INSNS is a list containing all insns emitted in the call.
3839 These insns leave the result in RESULT. Our block is to copy RESULT
3840 to TARGET, which is logically equivalent to EQUIV.
3842 We first emit any insns that set a pseudo on the assumption that these are
3843 loading constants into registers; doing so allows them to be safely cse'ed
3844 between blocks. Then we emit all the other insns in the block, followed by
3845 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3846 note with an operand of EQUIV. */
3848 void
3849 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3851 rtx final_dest = target;
3852 rtx prev, next, last, insn;
3854 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3855 into a MEM later. Protect the libcall block from this change. */
3856 if (! REG_P (target) || REG_USERVAR_P (target))
3857 target = gen_reg_rtx (GET_MODE (target));
3859 /* If we're using non-call exceptions, a libcall corresponding to an
3860 operation that may trap may also trap. */
3861 if (flag_non_call_exceptions && may_trap_p (equiv))
3863 for (insn = insns; insn; insn = NEXT_INSN (insn))
3864 if (CALL_P (insn))
3866 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3868 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3869 remove_note (insn, note);
3872 else
3873 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3874 reg note to indicate that this call cannot throw or execute a nonlocal
3875 goto (unless there is already a REG_EH_REGION note, in which case
3876 we update it). */
3877 for (insn = insns; insn; insn = NEXT_INSN (insn))
3878 if (CALL_P (insn))
3880 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3882 if (note != 0)
3883 XEXP (note, 0) = constm1_rtx;
3884 else
3885 add_reg_note (insn, REG_EH_REGION, constm1_rtx);
3888 /* First emit all insns that set pseudos. Remove them from the list as
3889 we go. Avoid insns that set pseudos which were referenced in previous
3890 insns. These can be generated by move_by_pieces, for example,
3891 to update an address. Similarly, avoid insns that reference things
3892 set in previous insns. */
3894 for (insn = insns; insn; insn = next)
3896 rtx set = single_set (insn);
3898 next = NEXT_INSN (insn);
3900 if (set != 0 && REG_P (SET_DEST (set))
3901 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3903 struct no_conflict_data data;
3905 data.target = const0_rtx;
3906 data.first = insns;
3907 data.insn = insn;
3908 data.must_stay = 0;
3909 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3910 if (! data.must_stay)
3912 if (PREV_INSN (insn))
3913 NEXT_INSN (PREV_INSN (insn)) = next;
3914 else
3915 insns = next;
3917 if (next)
3918 PREV_INSN (next) = PREV_INSN (insn);
3920 add_insn (insn);
3924 /* Some ports use a loop to copy large arguments onto the stack.
3925 Don't move anything outside such a loop. */
3926 if (LABEL_P (insn))
3927 break;
3930 prev = get_last_insn ();
3932 /* Write the remaining insns followed by the final copy. */
3934 for (insn = insns; insn; insn = next)
3936 next = NEXT_INSN (insn);
3938 add_insn (insn);
3941 last = emit_move_insn (target, result);
3942 if (optab_handler (mov_optab, GET_MODE (target))->insn_code
3943 != CODE_FOR_nothing)
3944 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3946 if (final_dest != target)
3947 emit_move_insn (final_dest, target);
3950 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3951 PURPOSE describes how this comparison will be used. CODE is the rtx
3952 comparison code we will be using.
3954 ??? Actually, CODE is slightly weaker than that. A target is still
3955 required to implement all of the normal bcc operations, but not
3956 required to implement all (or any) of the unordered bcc operations. */
3959 can_compare_p (enum rtx_code code, enum machine_mode mode,
3960 enum can_compare_purpose purpose)
3962 rtx test;
3963 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3966 int icode;
3968 if (purpose == ccp_jump
3969 && (icode = optab_handler (cbranch_optab, mode)->insn_code) != CODE_FOR_nothing
3970 && insn_data[icode].operand[0].predicate (test, mode))
3971 return 1;
3972 if (purpose == ccp_store_flag
3973 && (icode = optab_handler (cstore_optab, mode)->insn_code) != CODE_FOR_nothing
3974 && insn_data[icode].operand[1].predicate (test, mode))
3975 return 1;
3976 if (purpose == ccp_cmov
3977 && optab_handler (cmov_optab, mode)->insn_code != CODE_FOR_nothing)
3978 return 1;
3980 mode = GET_MODE_WIDER_MODE (mode);
3981 PUT_MODE (test, mode);
3983 while (mode != VOIDmode);
3985 return 0;
3988 /* This function is called when we are going to emit a compare instruction that
3989 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3991 *PMODE is the mode of the inputs (in case they are const_int).
3992 *PUNSIGNEDP nonzero says that the operands are unsigned;
3993 this matters if they need to be widened (as given by METHODS).
3995 If they have mode BLKmode, then SIZE specifies the size of both operands.
3997 This function performs all the setup necessary so that the caller only has
3998 to emit a single comparison insn. This setup can involve doing a BLKmode
3999 comparison or emitting a library call to perform the comparison if no insn
4000 is available to handle it.
4001 The values which are passed in through pointers can be modified; the caller
4002 should perform the comparison on the modified values. Constant
4003 comparisons must have already been folded. */
4005 static void
4006 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4007 int unsignedp, enum optab_methods methods,
4008 rtx *ptest, enum machine_mode *pmode)
4010 enum machine_mode mode = *pmode;
4011 rtx libfunc, test;
4012 enum machine_mode cmp_mode;
4013 enum mode_class mclass;
4015 /* The other methods are not needed. */
4016 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4017 || methods == OPTAB_LIB_WIDEN);
4019 /* If we are optimizing, force expensive constants into a register. */
4020 if (CONSTANT_P (x) && optimize
4021 && (rtx_cost (x, COMPARE, optimize_insn_for_speed_p ())
4022 > COSTS_N_INSNS (1)))
4023 x = force_reg (mode, x);
4025 if (CONSTANT_P (y) && optimize
4026 && (rtx_cost (y, COMPARE, optimize_insn_for_speed_p ())
4027 > COSTS_N_INSNS (1)))
4028 y = force_reg (mode, y);
4030 #ifdef HAVE_cc0
4031 /* Make sure if we have a canonical comparison. The RTL
4032 documentation states that canonical comparisons are required only
4033 for targets which have cc0. */
4034 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4035 #endif
4037 /* Don't let both operands fail to indicate the mode. */
4038 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4039 x = force_reg (mode, x);
4040 if (mode == VOIDmode)
4041 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4043 /* Handle all BLKmode compares. */
4045 if (mode == BLKmode)
4047 enum machine_mode result_mode;
4048 enum insn_code cmp_code;
4049 tree length_type;
4050 rtx libfunc;
4051 rtx result;
4052 rtx opalign
4053 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4055 gcc_assert (size);
4057 /* Try to use a memory block compare insn - either cmpstr
4058 or cmpmem will do. */
4059 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4060 cmp_mode != VOIDmode;
4061 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4063 cmp_code = cmpmem_optab[cmp_mode];
4064 if (cmp_code == CODE_FOR_nothing)
4065 cmp_code = cmpstr_optab[cmp_mode];
4066 if (cmp_code == CODE_FOR_nothing)
4067 cmp_code = cmpstrn_optab[cmp_mode];
4068 if (cmp_code == CODE_FOR_nothing)
4069 continue;
4071 /* Must make sure the size fits the insn's mode. */
4072 if ((CONST_INT_P (size)
4073 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4074 || (GET_MODE_BITSIZE (GET_MODE (size))
4075 > GET_MODE_BITSIZE (cmp_mode)))
4076 continue;
4078 result_mode = insn_data[cmp_code].operand[0].mode;
4079 result = gen_reg_rtx (result_mode);
4080 size = convert_to_mode (cmp_mode, size, 1);
4081 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4083 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4084 *pmode = result_mode;
4085 return;
4088 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4089 goto fail;
4091 /* Otherwise call a library function, memcmp. */
4092 libfunc = memcmp_libfunc;
4093 length_type = sizetype;
4094 result_mode = TYPE_MODE (integer_type_node);
4095 cmp_mode = TYPE_MODE (length_type);
4096 size = convert_to_mode (TYPE_MODE (length_type), size,
4097 TYPE_UNSIGNED (length_type));
4099 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4100 result_mode, 3,
4101 XEXP (x, 0), Pmode,
4102 XEXP (y, 0), Pmode,
4103 size, cmp_mode);
4105 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4106 *pmode = result_mode;
4107 return;
4110 /* Don't allow operands to the compare to trap, as that can put the
4111 compare and branch in different basic blocks. */
4112 if (flag_non_call_exceptions)
4114 if (may_trap_p (x))
4115 x = force_reg (mode, x);
4116 if (may_trap_p (y))
4117 y = force_reg (mode, y);
4120 if (GET_MODE_CLASS (mode) == MODE_CC)
4122 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4123 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4124 return;
4127 mclass = GET_MODE_CLASS (mode);
4128 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4129 cmp_mode = mode;
4132 enum insn_code icode;
4133 icode = optab_handler (cbranch_optab, cmp_mode)->insn_code;
4134 if (icode != CODE_FOR_nothing
4135 && insn_data[icode].operand[0].predicate (test, VOIDmode))
4137 rtx last = get_last_insn ();
4138 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4139 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4140 if (op0 && op1
4141 && insn_data[icode].operand[1].predicate
4142 (op0, insn_data[icode].operand[1].mode)
4143 && insn_data[icode].operand[2].predicate
4144 (op1, insn_data[icode].operand[2].mode))
4146 XEXP (test, 0) = op0;
4147 XEXP (test, 1) = op1;
4148 *ptest = test;
4149 *pmode = cmp_mode;
4150 return;
4152 delete_insns_since (last);
4155 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4156 break;
4157 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4159 while (cmp_mode != VOIDmode);
4161 if (methods != OPTAB_LIB_WIDEN)
4162 goto fail;
4164 if (!SCALAR_FLOAT_MODE_P (mode))
4166 rtx result;
4168 /* Handle a libcall just for the mode we are using. */
4169 libfunc = optab_libfunc (cmp_optab, mode);
4170 gcc_assert (libfunc);
4172 /* If we want unsigned, and this mode has a distinct unsigned
4173 comparison routine, use that. */
4174 if (unsignedp)
4176 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4177 if (ulibfunc)
4178 libfunc = ulibfunc;
4181 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4182 targetm.libgcc_cmp_return_mode (),
4183 2, x, mode, y, mode);
4185 /* There are two kinds of comparison routines. Biased routines
4186 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4187 of gcc expect that the comparison operation is equivalent
4188 to the modified comparison. For signed comparisons compare the
4189 result against 1 in the biased case, and zero in the unbiased
4190 case. For unsigned comparisons always compare against 1 after
4191 biasing the unbiased result by adding 1. This gives us a way to
4192 represent LTU. */
4193 x = result;
4194 y = const1_rtx;
4196 if (!TARGET_LIB_INT_CMP_BIASED)
4198 if (unsignedp)
4199 x = plus_constant (result, 1);
4200 else
4201 y = const0_rtx;
4204 *pmode = word_mode;
4205 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4206 ptest, pmode);
4208 else
4209 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4211 return;
4213 fail:
4214 *ptest = NULL_RTX;
4217 /* Before emitting an insn with code ICODE, make sure that X, which is going
4218 to be used for operand OPNUM of the insn, is converted from mode MODE to
4219 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4220 that it is accepted by the operand predicate. Return the new value. */
4223 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
4224 enum machine_mode wider_mode, int unsignedp)
4226 if (mode != wider_mode)
4227 x = convert_modes (wider_mode, mode, x, unsignedp);
4229 if (!insn_data[icode].operand[opnum].predicate
4230 (x, insn_data[icode].operand[opnum].mode))
4232 if (reload_completed)
4233 return NULL_RTX;
4234 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
4237 return x;
4240 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4241 we can do the branch. */
4243 static void
4244 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label)
4246 enum machine_mode optab_mode;
4247 enum mode_class mclass;
4248 enum insn_code icode;
4250 mclass = GET_MODE_CLASS (mode);
4251 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4252 icode = optab_handler (cbranch_optab, optab_mode)->insn_code;
4254 gcc_assert (icode != CODE_FOR_nothing);
4255 gcc_assert (insn_data[icode].operand[0].predicate (test, VOIDmode));
4256 emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0), XEXP (test, 1), label));
4259 /* Generate code to compare X with Y so that the condition codes are
4260 set and to jump to LABEL if the condition is true. If X is a
4261 constant and Y is not a constant, then the comparison is swapped to
4262 ensure that the comparison RTL has the canonical form.
4264 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4265 need to be widened. UNSIGNEDP is also used to select the proper
4266 branch condition code.
4268 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4270 MODE is the mode of the inputs (in case they are const_int).
4272 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4273 It will be potentially converted into an unsigned variant based on
4274 UNSIGNEDP to select a proper jump instruction. */
4276 void
4277 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4278 enum machine_mode mode, int unsignedp, rtx label)
4280 rtx op0 = x, op1 = y;
4281 rtx test;
4283 /* Swap operands and condition to ensure canonical RTL. */
4284 if (swap_commutative_operands_p (x, y)
4285 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4287 op0 = y, op1 = x;
4288 comparison = swap_condition (comparison);
4291 /* If OP0 is still a constant, then both X and Y must be constants
4292 or the opposite comparison is not supported. Force X into a register
4293 to create canonical RTL. */
4294 if (CONSTANT_P (op0))
4295 op0 = force_reg (mode, op0);
4297 if (unsignedp)
4298 comparison = unsigned_condition (comparison);
4300 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4301 &test, &mode);
4302 emit_cmp_and_jump_insn_1 (test, mode, label);
4306 /* Emit a library call comparison between floating point X and Y.
4307 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4309 static void
4310 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4311 rtx *ptest, enum machine_mode *pmode)
4313 enum rtx_code swapped = swap_condition (comparison);
4314 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4315 enum machine_mode orig_mode = GET_MODE (x);
4316 enum machine_mode mode, cmp_mode;
4317 rtx value, target, insns, equiv;
4318 rtx libfunc = 0;
4319 bool reversed_p = false;
4320 cmp_mode = targetm.libgcc_cmp_return_mode ();
4322 for (mode = orig_mode;
4323 mode != VOIDmode;
4324 mode = GET_MODE_WIDER_MODE (mode))
4326 if (code_to_optab[comparison]
4327 && (libfunc = optab_libfunc (code_to_optab[comparison], mode)))
4328 break;
4330 if (code_to_optab[swapped]
4331 && (libfunc = optab_libfunc (code_to_optab[swapped], mode)))
4333 rtx tmp;
4334 tmp = x; x = y; y = tmp;
4335 comparison = swapped;
4336 break;
4339 if (code_to_optab[reversed]
4340 && (libfunc = optab_libfunc (code_to_optab[reversed], mode))
4341 && FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
4343 comparison = reversed;
4344 reversed_p = true;
4345 break;
4349 gcc_assert (mode != VOIDmode);
4351 if (mode != orig_mode)
4353 x = convert_to_mode (mode, x, 0);
4354 y = convert_to_mode (mode, y, 0);
4357 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4358 the RTL. The allows the RTL optimizers to delete the libcall if the
4359 condition can be determined at compile-time. */
4360 if (comparison == UNORDERED)
4362 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4363 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4364 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4365 temp, const_true_rtx, equiv);
4367 else
4369 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4370 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4372 rtx true_rtx, false_rtx;
4374 switch (comparison)
4376 case EQ:
4377 true_rtx = const0_rtx;
4378 false_rtx = const_true_rtx;
4379 break;
4381 case NE:
4382 true_rtx = const_true_rtx;
4383 false_rtx = const0_rtx;
4384 break;
4386 case GT:
4387 true_rtx = const1_rtx;
4388 false_rtx = const0_rtx;
4389 break;
4391 case GE:
4392 true_rtx = const0_rtx;
4393 false_rtx = constm1_rtx;
4394 break;
4396 case LT:
4397 true_rtx = constm1_rtx;
4398 false_rtx = const0_rtx;
4399 break;
4401 case LE:
4402 true_rtx = const0_rtx;
4403 false_rtx = const1_rtx;
4404 break;
4406 default:
4407 gcc_unreachable ();
4409 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4410 equiv, true_rtx, false_rtx);
4414 start_sequence ();
4415 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4416 cmp_mode, 2, x, mode, y, mode);
4417 insns = get_insns ();
4418 end_sequence ();
4420 target = gen_reg_rtx (cmp_mode);
4421 emit_libcall_block (insns, target, value, equiv);
4423 if (comparison == UNORDERED
4424 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4425 comparison = reversed_p ? EQ : NE;
4427 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4428 *pmode = cmp_mode;
4431 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4433 void
4434 emit_indirect_jump (rtx loc)
4436 if (!insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate
4437 (loc, Pmode))
4438 loc = copy_to_mode_reg (Pmode, loc);
4440 emit_jump_insn (gen_indirect_jump (loc));
4441 emit_barrier ();
4444 #ifdef HAVE_conditional_move
4446 /* Emit a conditional move instruction if the machine supports one for that
4447 condition and machine mode.
4449 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4450 the mode to use should they be constants. If it is VOIDmode, they cannot
4451 both be constants.
4453 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4454 should be stored there. MODE is the mode to use should they be constants.
4455 If it is VOIDmode, they cannot both be constants.
4457 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4458 is not supported. */
4461 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4462 enum machine_mode cmode, rtx op2, rtx op3,
4463 enum machine_mode mode, int unsignedp)
4465 rtx tem, subtarget, comparison, insn;
4466 enum insn_code icode;
4467 enum rtx_code reversed;
4469 /* If one operand is constant, make it the second one. Only do this
4470 if the other operand is not constant as well. */
4472 if (swap_commutative_operands_p (op0, op1))
4474 tem = op0;
4475 op0 = op1;
4476 op1 = tem;
4477 code = swap_condition (code);
4480 /* get_condition will prefer to generate LT and GT even if the old
4481 comparison was against zero, so undo that canonicalization here since
4482 comparisons against zero are cheaper. */
4483 if (code == LT && op1 == const1_rtx)
4484 code = LE, op1 = const0_rtx;
4485 else if (code == GT && op1 == constm1_rtx)
4486 code = GE, op1 = const0_rtx;
4488 if (cmode == VOIDmode)
4489 cmode = GET_MODE (op0);
4491 if (swap_commutative_operands_p (op2, op3)
4492 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4493 != UNKNOWN))
4495 tem = op2;
4496 op2 = op3;
4497 op3 = tem;
4498 code = reversed;
4501 if (mode == VOIDmode)
4502 mode = GET_MODE (op2);
4504 icode = movcc_gen_code[mode];
4506 if (icode == CODE_FOR_nothing)
4507 return 0;
4509 if (!target)
4510 target = gen_reg_rtx (mode);
4512 subtarget = target;
4514 /* If the insn doesn't accept these operands, put them in pseudos. */
4516 if (!insn_data[icode].operand[0].predicate
4517 (subtarget, insn_data[icode].operand[0].mode))
4518 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4520 if (!insn_data[icode].operand[2].predicate
4521 (op2, insn_data[icode].operand[2].mode))
4522 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4524 if (!insn_data[icode].operand[3].predicate
4525 (op3, insn_data[icode].operand[3].mode))
4526 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4528 /* Everything should now be in the suitable form. */
4530 code = unsignedp ? unsigned_condition (code) : code;
4531 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4533 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4534 return NULL and let the caller figure out how best to deal with this
4535 situation. */
4536 if (!COMPARISON_P (comparison))
4537 return NULL_RTX;
4539 do_pending_stack_adjust ();
4540 start_sequence ();
4541 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4542 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4543 &comparison, &cmode);
4544 if (!comparison)
4545 insn = NULL_RTX;
4546 else
4547 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4549 /* If that failed, then give up. */
4550 if (insn == 0)
4552 end_sequence ();
4553 return 0;
4556 emit_insn (insn);
4557 insn = get_insns ();
4558 end_sequence ();
4559 emit_insn (insn);
4560 if (subtarget != target)
4561 convert_move (target, subtarget, 0);
4563 return target;
4566 /* Return nonzero if a conditional move of mode MODE is supported.
4568 This function is for combine so it can tell whether an insn that looks
4569 like a conditional move is actually supported by the hardware. If we
4570 guess wrong we lose a bit on optimization, but that's it. */
4571 /* ??? sparc64 supports conditionally moving integers values based on fp
4572 comparisons, and vice versa. How do we handle them? */
4575 can_conditionally_move_p (enum machine_mode mode)
4577 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4578 return 1;
4580 return 0;
4583 #endif /* HAVE_conditional_move */
4585 /* Emit a conditional addition instruction if the machine supports one for that
4586 condition and machine mode.
4588 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4589 the mode to use should they be constants. If it is VOIDmode, they cannot
4590 both be constants.
4592 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4593 should be stored there. MODE is the mode to use should they be constants.
4594 If it is VOIDmode, they cannot both be constants.
4596 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4597 is not supported. */
4600 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4601 enum machine_mode cmode, rtx op2, rtx op3,
4602 enum machine_mode mode, int unsignedp)
4604 rtx tem, subtarget, comparison, insn;
4605 enum insn_code icode;
4606 enum rtx_code reversed;
4608 /* If one operand is constant, make it the second one. Only do this
4609 if the other operand is not constant as well. */
4611 if (swap_commutative_operands_p (op0, op1))
4613 tem = op0;
4614 op0 = op1;
4615 op1 = tem;
4616 code = swap_condition (code);
4619 /* get_condition will prefer to generate LT and GT even if the old
4620 comparison was against zero, so undo that canonicalization here since
4621 comparisons against zero are cheaper. */
4622 if (code == LT && op1 == const1_rtx)
4623 code = LE, op1 = const0_rtx;
4624 else if (code == GT && op1 == constm1_rtx)
4625 code = GE, op1 = const0_rtx;
4627 if (cmode == VOIDmode)
4628 cmode = GET_MODE (op0);
4630 if (swap_commutative_operands_p (op2, op3)
4631 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4632 != UNKNOWN))
4634 tem = op2;
4635 op2 = op3;
4636 op3 = tem;
4637 code = reversed;
4640 if (mode == VOIDmode)
4641 mode = GET_MODE (op2);
4643 icode = optab_handler (addcc_optab, mode)->insn_code;
4645 if (icode == CODE_FOR_nothing)
4646 return 0;
4648 if (!target)
4649 target = gen_reg_rtx (mode);
4651 /* If the insn doesn't accept these operands, put them in pseudos. */
4653 if (!insn_data[icode].operand[0].predicate
4654 (target, insn_data[icode].operand[0].mode))
4655 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4656 else
4657 subtarget = target;
4659 if (!insn_data[icode].operand[2].predicate
4660 (op2, insn_data[icode].operand[2].mode))
4661 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4663 if (!insn_data[icode].operand[3].predicate
4664 (op3, insn_data[icode].operand[3].mode))
4665 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4667 /* Everything should now be in the suitable form. */
4669 code = unsignedp ? unsigned_condition (code) : code;
4670 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4672 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4673 return NULL and let the caller figure out how best to deal with this
4674 situation. */
4675 if (!COMPARISON_P (comparison))
4676 return NULL_RTX;
4678 do_pending_stack_adjust ();
4679 start_sequence ();
4680 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4681 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4682 &comparison, &cmode);
4683 if (!comparison)
4684 insn = NULL_RTX;
4685 else
4686 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4688 /* If that failed, then give up. */
4689 if (insn == 0)
4691 end_sequence ();
4692 return 0;
4695 emit_insn (insn);
4696 insn = get_insns ();
4697 end_sequence ();
4698 emit_insn (insn);
4699 if (subtarget != target)
4700 convert_move (target, subtarget, 0);
4702 return target;
4705 /* These functions attempt to generate an insn body, rather than
4706 emitting the insn, but if the gen function already emits them, we
4707 make no attempt to turn them back into naked patterns. */
4709 /* Generate and return an insn body to add Y to X. */
4712 gen_add2_insn (rtx x, rtx y)
4714 int icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4716 gcc_assert (insn_data[icode].operand[0].predicate
4717 (x, insn_data[icode].operand[0].mode));
4718 gcc_assert (insn_data[icode].operand[1].predicate
4719 (x, insn_data[icode].operand[1].mode));
4720 gcc_assert (insn_data[icode].operand[2].predicate
4721 (y, insn_data[icode].operand[2].mode));
4723 return GEN_FCN (icode) (x, x, y);
4726 /* Generate and return an insn body to add r1 and c,
4727 storing the result in r0. */
4730 gen_add3_insn (rtx r0, rtx r1, rtx c)
4732 int icode = (int) optab_handler (add_optab, GET_MODE (r0))->insn_code;
4734 if (icode == CODE_FOR_nothing
4735 || !(insn_data[icode].operand[0].predicate
4736 (r0, insn_data[icode].operand[0].mode))
4737 || !(insn_data[icode].operand[1].predicate
4738 (r1, insn_data[icode].operand[1].mode))
4739 || !(insn_data[icode].operand[2].predicate
4740 (c, insn_data[icode].operand[2].mode)))
4741 return NULL_RTX;
4743 return GEN_FCN (icode) (r0, r1, c);
4747 have_add2_insn (rtx x, rtx y)
4749 int icode;
4751 gcc_assert (GET_MODE (x) != VOIDmode);
4753 icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4755 if (icode == CODE_FOR_nothing)
4756 return 0;
4758 if (!(insn_data[icode].operand[0].predicate
4759 (x, insn_data[icode].operand[0].mode))
4760 || !(insn_data[icode].operand[1].predicate
4761 (x, insn_data[icode].operand[1].mode))
4762 || !(insn_data[icode].operand[2].predicate
4763 (y, insn_data[icode].operand[2].mode)))
4764 return 0;
4766 return 1;
4769 /* Generate and return an insn body to subtract Y from X. */
4772 gen_sub2_insn (rtx x, rtx y)
4774 int icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4776 gcc_assert (insn_data[icode].operand[0].predicate
4777 (x, insn_data[icode].operand[0].mode));
4778 gcc_assert (insn_data[icode].operand[1].predicate
4779 (x, insn_data[icode].operand[1].mode));
4780 gcc_assert (insn_data[icode].operand[2].predicate
4781 (y, insn_data[icode].operand[2].mode));
4783 return GEN_FCN (icode) (x, x, y);
4786 /* Generate and return an insn body to subtract r1 and c,
4787 storing the result in r0. */
4790 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4792 int icode = (int) optab_handler (sub_optab, GET_MODE (r0))->insn_code;
4794 if (icode == CODE_FOR_nothing
4795 || !(insn_data[icode].operand[0].predicate
4796 (r0, insn_data[icode].operand[0].mode))
4797 || !(insn_data[icode].operand[1].predicate
4798 (r1, insn_data[icode].operand[1].mode))
4799 || !(insn_data[icode].operand[2].predicate
4800 (c, insn_data[icode].operand[2].mode)))
4801 return NULL_RTX;
4803 return GEN_FCN (icode) (r0, r1, c);
4807 have_sub2_insn (rtx x, rtx y)
4809 int icode;
4811 gcc_assert (GET_MODE (x) != VOIDmode);
4813 icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4815 if (icode == CODE_FOR_nothing)
4816 return 0;
4818 if (!(insn_data[icode].operand[0].predicate
4819 (x, insn_data[icode].operand[0].mode))
4820 || !(insn_data[icode].operand[1].predicate
4821 (x, insn_data[icode].operand[1].mode))
4822 || !(insn_data[icode].operand[2].predicate
4823 (y, insn_data[icode].operand[2].mode)))
4824 return 0;
4826 return 1;
4829 /* Generate the body of an instruction to copy Y into X.
4830 It may be a list of insns, if one insn isn't enough. */
4833 gen_move_insn (rtx x, rtx y)
4835 rtx seq;
4837 start_sequence ();
4838 emit_move_insn_1 (x, y);
4839 seq = get_insns ();
4840 end_sequence ();
4841 return seq;
4844 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4845 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4846 no such operation exists, CODE_FOR_nothing will be returned. */
4848 enum insn_code
4849 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4850 int unsignedp)
4852 convert_optab tab;
4853 #ifdef HAVE_ptr_extend
4854 if (unsignedp < 0)
4855 return CODE_FOR_ptr_extend;
4856 #endif
4858 tab = unsignedp ? zext_optab : sext_optab;
4859 return convert_optab_handler (tab, to_mode, from_mode)->insn_code;
4862 /* Generate the body of an insn to extend Y (with mode MFROM)
4863 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4866 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4867 enum machine_mode mfrom, int unsignedp)
4869 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4870 return GEN_FCN (icode) (x, y);
4873 /* can_fix_p and can_float_p say whether the target machine
4874 can directly convert a given fixed point type to
4875 a given floating point type, or vice versa.
4876 The returned value is the CODE_FOR_... value to use,
4877 or CODE_FOR_nothing if these modes cannot be directly converted.
4879 *TRUNCP_PTR is set to 1 if it is necessary to output
4880 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4882 static enum insn_code
4883 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4884 int unsignedp, int *truncp_ptr)
4886 convert_optab tab;
4887 enum insn_code icode;
4889 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4890 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4891 if (icode != CODE_FOR_nothing)
4893 *truncp_ptr = 0;
4894 return icode;
4897 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4898 for this to work. We need to rework the fix* and ftrunc* patterns
4899 and documentation. */
4900 tab = unsignedp ? ufix_optab : sfix_optab;
4901 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4902 if (icode != CODE_FOR_nothing
4903 && optab_handler (ftrunc_optab, fltmode)->insn_code != CODE_FOR_nothing)
4905 *truncp_ptr = 1;
4906 return icode;
4909 *truncp_ptr = 0;
4910 return CODE_FOR_nothing;
4913 static enum insn_code
4914 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4915 int unsignedp)
4917 convert_optab tab;
4919 tab = unsignedp ? ufloat_optab : sfloat_optab;
4920 return convert_optab_handler (tab, fltmode, fixmode)->insn_code;
4923 /* Generate code to convert FROM to floating point
4924 and store in TO. FROM must be fixed point and not VOIDmode.
4925 UNSIGNEDP nonzero means regard FROM as unsigned.
4926 Normally this is done by correcting the final value
4927 if it is negative. */
4929 void
4930 expand_float (rtx to, rtx from, int unsignedp)
4932 enum insn_code icode;
4933 rtx target = to;
4934 enum machine_mode fmode, imode;
4935 bool can_do_signed = false;
4937 /* Crash now, because we won't be able to decide which mode to use. */
4938 gcc_assert (GET_MODE (from) != VOIDmode);
4940 /* Look for an insn to do the conversion. Do it in the specified
4941 modes if possible; otherwise convert either input, output or both to
4942 wider mode. If the integer mode is wider than the mode of FROM,
4943 we can do the conversion signed even if the input is unsigned. */
4945 for (fmode = GET_MODE (to); fmode != VOIDmode;
4946 fmode = GET_MODE_WIDER_MODE (fmode))
4947 for (imode = GET_MODE (from); imode != VOIDmode;
4948 imode = GET_MODE_WIDER_MODE (imode))
4950 int doing_unsigned = unsignedp;
4952 if (fmode != GET_MODE (to)
4953 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4954 continue;
4956 icode = can_float_p (fmode, imode, unsignedp);
4957 if (icode == CODE_FOR_nothing && unsignedp)
4959 enum insn_code scode = can_float_p (fmode, imode, 0);
4960 if (scode != CODE_FOR_nothing)
4961 can_do_signed = true;
4962 if (imode != GET_MODE (from))
4963 icode = scode, doing_unsigned = 0;
4966 if (icode != CODE_FOR_nothing)
4968 if (imode != GET_MODE (from))
4969 from = convert_to_mode (imode, from, unsignedp);
4971 if (fmode != GET_MODE (to))
4972 target = gen_reg_rtx (fmode);
4974 emit_unop_insn (icode, target, from,
4975 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4977 if (target != to)
4978 convert_move (to, target, 0);
4979 return;
4983 /* Unsigned integer, and no way to convert directly. Convert as signed,
4984 then unconditionally adjust the result. */
4985 if (unsignedp && can_do_signed)
4987 rtx label = gen_label_rtx ();
4988 rtx temp;
4989 REAL_VALUE_TYPE offset;
4991 /* Look for a usable floating mode FMODE wider than the source and at
4992 least as wide as the target. Using FMODE will avoid rounding woes
4993 with unsigned values greater than the signed maximum value. */
4995 for (fmode = GET_MODE (to); fmode != VOIDmode;
4996 fmode = GET_MODE_WIDER_MODE (fmode))
4997 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4998 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4999 break;
5001 if (fmode == VOIDmode)
5003 /* There is no such mode. Pretend the target is wide enough. */
5004 fmode = GET_MODE (to);
5006 /* Avoid double-rounding when TO is narrower than FROM. */
5007 if ((significand_size (fmode) + 1)
5008 < GET_MODE_BITSIZE (GET_MODE (from)))
5010 rtx temp1;
5011 rtx neglabel = gen_label_rtx ();
5013 /* Don't use TARGET if it isn't a register, is a hard register,
5014 or is the wrong mode. */
5015 if (!REG_P (target)
5016 || REGNO (target) < FIRST_PSEUDO_REGISTER
5017 || GET_MODE (target) != fmode)
5018 target = gen_reg_rtx (fmode);
5020 imode = GET_MODE (from);
5021 do_pending_stack_adjust ();
5023 /* Test whether the sign bit is set. */
5024 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5025 0, neglabel);
5027 /* The sign bit is not set. Convert as signed. */
5028 expand_float (target, from, 0);
5029 emit_jump_insn (gen_jump (label));
5030 emit_barrier ();
5032 /* The sign bit is set.
5033 Convert to a usable (positive signed) value by shifting right
5034 one bit, while remembering if a nonzero bit was shifted
5035 out; i.e., compute (from & 1) | (from >> 1). */
5037 emit_label (neglabel);
5038 temp = expand_binop (imode, and_optab, from, const1_rtx,
5039 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5040 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
5041 NULL_RTX, 1);
5042 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5043 OPTAB_LIB_WIDEN);
5044 expand_float (target, temp, 0);
5046 /* Multiply by 2 to undo the shift above. */
5047 temp = expand_binop (fmode, add_optab, target, target,
5048 target, 0, OPTAB_LIB_WIDEN);
5049 if (temp != target)
5050 emit_move_insn (target, temp);
5052 do_pending_stack_adjust ();
5053 emit_label (label);
5054 goto done;
5058 /* If we are about to do some arithmetic to correct for an
5059 unsigned operand, do it in a pseudo-register. */
5061 if (GET_MODE (to) != fmode
5062 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5063 target = gen_reg_rtx (fmode);
5065 /* Convert as signed integer to floating. */
5066 expand_float (target, from, 0);
5068 /* If FROM is negative (and therefore TO is negative),
5069 correct its value by 2**bitwidth. */
5071 do_pending_stack_adjust ();
5072 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5073 0, label);
5076 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)), fmode);
5077 temp = expand_binop (fmode, add_optab, target,
5078 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5079 target, 0, OPTAB_LIB_WIDEN);
5080 if (temp != target)
5081 emit_move_insn (target, temp);
5083 do_pending_stack_adjust ();
5084 emit_label (label);
5085 goto done;
5088 /* No hardware instruction available; call a library routine. */
5090 rtx libfunc;
5091 rtx insns;
5092 rtx value;
5093 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5095 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5096 from = convert_to_mode (SImode, from, unsignedp);
5098 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5099 gcc_assert (libfunc);
5101 start_sequence ();
5103 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5104 GET_MODE (to), 1, from,
5105 GET_MODE (from));
5106 insns = get_insns ();
5107 end_sequence ();
5109 emit_libcall_block (insns, target, value,
5110 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5111 GET_MODE (to), from));
5114 done:
5116 /* Copy result to requested destination
5117 if we have been computing in a temp location. */
5119 if (target != to)
5121 if (GET_MODE (target) == GET_MODE (to))
5122 emit_move_insn (to, target);
5123 else
5124 convert_move (to, target, 0);
5128 /* Generate code to convert FROM to fixed point and store in TO. FROM
5129 must be floating point. */
5131 void
5132 expand_fix (rtx to, rtx from, int unsignedp)
5134 enum insn_code icode;
5135 rtx target = to;
5136 enum machine_mode fmode, imode;
5137 int must_trunc = 0;
5139 /* We first try to find a pair of modes, one real and one integer, at
5140 least as wide as FROM and TO, respectively, in which we can open-code
5141 this conversion. If the integer mode is wider than the mode of TO,
5142 we can do the conversion either signed or unsigned. */
5144 for (fmode = GET_MODE (from); fmode != VOIDmode;
5145 fmode = GET_MODE_WIDER_MODE (fmode))
5146 for (imode = GET_MODE (to); imode != VOIDmode;
5147 imode = GET_MODE_WIDER_MODE (imode))
5149 int doing_unsigned = unsignedp;
5151 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5152 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5153 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5155 if (icode != CODE_FOR_nothing)
5157 rtx last = get_last_insn ();
5158 if (fmode != GET_MODE (from))
5159 from = convert_to_mode (fmode, from, 0);
5161 if (must_trunc)
5163 rtx temp = gen_reg_rtx (GET_MODE (from));
5164 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5165 temp, 0);
5168 if (imode != GET_MODE (to))
5169 target = gen_reg_rtx (imode);
5171 if (maybe_emit_unop_insn (icode, target, from,
5172 doing_unsigned ? UNSIGNED_FIX : FIX))
5174 if (target != to)
5175 convert_move (to, target, unsignedp);
5176 return;
5178 delete_insns_since (last);
5182 /* For an unsigned conversion, there is one more way to do it.
5183 If we have a signed conversion, we generate code that compares
5184 the real value to the largest representable positive number. If if
5185 is smaller, the conversion is done normally. Otherwise, subtract
5186 one plus the highest signed number, convert, and add it back.
5188 We only need to check all real modes, since we know we didn't find
5189 anything with a wider integer mode.
5191 This code used to extend FP value into mode wider than the destination.
5192 This is needed for decimal float modes which cannot accurately
5193 represent one plus the highest signed number of the same size, but
5194 not for binary modes. Consider, for instance conversion from SFmode
5195 into DImode.
5197 The hot path through the code is dealing with inputs smaller than 2^63
5198 and doing just the conversion, so there is no bits to lose.
5200 In the other path we know the value is positive in the range 2^63..2^64-1
5201 inclusive. (as for other input overflow happens and result is undefined)
5202 So we know that the most important bit set in mantissa corresponds to
5203 2^63. The subtraction of 2^63 should not generate any rounding as it
5204 simply clears out that bit. The rest is trivial. */
5206 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5207 for (fmode = GET_MODE (from); fmode != VOIDmode;
5208 fmode = GET_MODE_WIDER_MODE (fmode))
5209 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5210 && (!DECIMAL_FLOAT_MODE_P (fmode)
5211 || GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))))
5213 int bitsize;
5214 REAL_VALUE_TYPE offset;
5215 rtx limit, lab1, lab2, insn;
5217 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
5218 real_2expN (&offset, bitsize - 1, fmode);
5219 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5220 lab1 = gen_label_rtx ();
5221 lab2 = gen_label_rtx ();
5223 if (fmode != GET_MODE (from))
5224 from = convert_to_mode (fmode, from, 0);
5226 /* See if we need to do the subtraction. */
5227 do_pending_stack_adjust ();
5228 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5229 0, lab1);
5231 /* If not, do the signed "fix" and branch around fixup code. */
5232 expand_fix (to, from, 0);
5233 emit_jump_insn (gen_jump (lab2));
5234 emit_barrier ();
5236 /* Otherwise, subtract 2**(N-1), convert to signed number,
5237 then add 2**(N-1). Do the addition using XOR since this
5238 will often generate better code. */
5239 emit_label (lab1);
5240 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5241 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5242 expand_fix (to, target, 0);
5243 target = expand_binop (GET_MODE (to), xor_optab, to,
5244 gen_int_mode
5245 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5246 GET_MODE (to)),
5247 to, 1, OPTAB_LIB_WIDEN);
5249 if (target != to)
5250 emit_move_insn (to, target);
5252 emit_label (lab2);
5254 if (optab_handler (mov_optab, GET_MODE (to))->insn_code
5255 != CODE_FOR_nothing)
5257 /* Make a place for a REG_NOTE and add it. */
5258 insn = emit_move_insn (to, to);
5259 set_unique_reg_note (insn,
5260 REG_EQUAL,
5261 gen_rtx_fmt_e (UNSIGNED_FIX,
5262 GET_MODE (to),
5263 copy_rtx (from)));
5266 return;
5269 /* We can't do it with an insn, so use a library call. But first ensure
5270 that the mode of TO is at least as wide as SImode, since those are the
5271 only library calls we know about. */
5273 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5275 target = gen_reg_rtx (SImode);
5277 expand_fix (target, from, unsignedp);
5279 else
5281 rtx insns;
5282 rtx value;
5283 rtx libfunc;
5285 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5286 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5287 gcc_assert (libfunc);
5289 start_sequence ();
5291 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5292 GET_MODE (to), 1, from,
5293 GET_MODE (from));
5294 insns = get_insns ();
5295 end_sequence ();
5297 emit_libcall_block (insns, target, value,
5298 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5299 GET_MODE (to), from));
5302 if (target != to)
5304 if (GET_MODE (to) == GET_MODE (target))
5305 emit_move_insn (to, target);
5306 else
5307 convert_move (to, target, 0);
5311 /* Generate code to convert FROM or TO a fixed-point.
5312 If UINTP is true, either TO or FROM is an unsigned integer.
5313 If SATP is true, we need to saturate the result. */
5315 void
5316 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5318 enum machine_mode to_mode = GET_MODE (to);
5319 enum machine_mode from_mode = GET_MODE (from);
5320 convert_optab tab;
5321 enum rtx_code this_code;
5322 enum insn_code code;
5323 rtx insns, value;
5324 rtx libfunc;
5326 if (to_mode == from_mode)
5328 emit_move_insn (to, from);
5329 return;
5332 if (uintp)
5334 tab = satp ? satfractuns_optab : fractuns_optab;
5335 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5337 else
5339 tab = satp ? satfract_optab : fract_optab;
5340 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5342 code = tab->handlers[to_mode][from_mode].insn_code;
5343 if (code != CODE_FOR_nothing)
5345 emit_unop_insn (code, to, from, this_code);
5346 return;
5349 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5350 gcc_assert (libfunc);
5352 start_sequence ();
5353 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5354 1, from, from_mode);
5355 insns = get_insns ();
5356 end_sequence ();
5358 emit_libcall_block (insns, to, value,
5359 gen_rtx_fmt_e (tab->code, to_mode, from));
5362 /* Generate code to convert FROM to fixed point and store in TO. FROM
5363 must be floating point, TO must be signed. Use the conversion optab
5364 TAB to do the conversion. */
5366 bool
5367 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5369 enum insn_code icode;
5370 rtx target = to;
5371 enum machine_mode fmode, imode;
5373 /* We first try to find a pair of modes, one real and one integer, at
5374 least as wide as FROM and TO, respectively, in which we can open-code
5375 this conversion. If the integer mode is wider than the mode of TO,
5376 we can do the conversion either signed or unsigned. */
5378 for (fmode = GET_MODE (from); fmode != VOIDmode;
5379 fmode = GET_MODE_WIDER_MODE (fmode))
5380 for (imode = GET_MODE (to); imode != VOIDmode;
5381 imode = GET_MODE_WIDER_MODE (imode))
5383 icode = convert_optab_handler (tab, imode, fmode)->insn_code;
5384 if (icode != CODE_FOR_nothing)
5386 rtx last = get_last_insn ();
5387 if (fmode != GET_MODE (from))
5388 from = convert_to_mode (fmode, from, 0);
5390 if (imode != GET_MODE (to))
5391 target = gen_reg_rtx (imode);
5393 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5395 delete_insns_since (last);
5396 continue;
5398 if (target != to)
5399 convert_move (to, target, 0);
5400 return true;
5404 return false;
5407 /* Report whether we have an instruction to perform the operation
5408 specified by CODE on operands of mode MODE. */
5410 have_insn_for (enum rtx_code code, enum machine_mode mode)
5412 return (code_to_optab[(int) code] != 0
5413 && (optab_handler (code_to_optab[(int) code], mode)->insn_code
5414 != CODE_FOR_nothing));
5417 /* Set all insn_code fields to CODE_FOR_nothing. */
5419 static void
5420 init_insn_codes (void)
5422 unsigned int i;
5424 for (i = 0; i < (unsigned int) OTI_MAX; i++)
5426 unsigned int j;
5427 optab op;
5429 op = &optab_table[i];
5430 for (j = 0; j < NUM_MACHINE_MODES; j++)
5431 optab_handler (op, j)->insn_code = CODE_FOR_nothing;
5433 for (i = 0; i < (unsigned int) COI_MAX; i++)
5435 unsigned int j, k;
5436 convert_optab op;
5438 op = &convert_optab_table[i];
5439 for (j = 0; j < NUM_MACHINE_MODES; j++)
5440 for (k = 0; k < NUM_MACHINE_MODES; k++)
5441 convert_optab_handler (op, j, k)->insn_code = CODE_FOR_nothing;
5445 /* Initialize OP's code to CODE, and write it into the code_to_optab table. */
5446 static inline void
5447 init_optab (optab op, enum rtx_code code)
5449 op->code = code;
5450 code_to_optab[(int) code] = op;
5453 /* Same, but fill in its code as CODE, and do _not_ write it into
5454 the code_to_optab table. */
5455 static inline void
5456 init_optabv (optab op, enum rtx_code code)
5458 op->code = code;
5461 /* Conversion optabs never go in the code_to_optab table. */
5462 static void
5463 init_convert_optab (convert_optab op, enum rtx_code code)
5465 op->code = code;
5468 /* Initialize the libfunc fields of an entire group of entries in some
5469 optab. Each entry is set equal to a string consisting of a leading
5470 pair of underscores followed by a generic operation name followed by
5471 a mode name (downshifted to lowercase) followed by a single character
5472 representing the number of operands for the given operation (which is
5473 usually one of the characters '2', '3', or '4').
5475 OPTABLE is the table in which libfunc fields are to be initialized.
5476 OPNAME is the generic (string) name of the operation.
5477 SUFFIX is the character which specifies the number of operands for
5478 the given generic operation.
5479 MODE is the mode to generate for.
5482 static void
5483 gen_libfunc (optab optable, const char *opname, int suffix, enum machine_mode mode)
5485 unsigned opname_len = strlen (opname);
5486 const char *mname = GET_MODE_NAME (mode);
5487 unsigned mname_len = strlen (mname);
5488 char *libfunc_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5489 char *p;
5490 const char *q;
5492 p = libfunc_name;
5493 *p++ = '_';
5494 *p++ = '_';
5495 for (q = opname; *q; )
5496 *p++ = *q++;
5497 for (q = mname; *q; q++)
5498 *p++ = TOLOWER (*q);
5499 *p++ = suffix;
5500 *p = '\0';
5502 set_optab_libfunc (optable, mode,
5503 ggc_alloc_string (libfunc_name, p - libfunc_name));
5506 /* Like gen_libfunc, but verify that integer operation is involved. */
5508 static void
5509 gen_int_libfunc (optab optable, const char *opname, char suffix,
5510 enum machine_mode mode)
5512 int maxsize = 2 * BITS_PER_WORD;
5514 if (GET_MODE_CLASS (mode) != MODE_INT)
5515 return;
5516 if (maxsize < LONG_LONG_TYPE_SIZE)
5517 maxsize = LONG_LONG_TYPE_SIZE;
5518 if (GET_MODE_CLASS (mode) != MODE_INT
5519 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5520 return;
5521 gen_libfunc (optable, opname, suffix, mode);
5524 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5526 static void
5527 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5528 enum machine_mode mode)
5530 char *dec_opname;
5532 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5533 gen_libfunc (optable, opname, suffix, mode);
5534 if (DECIMAL_FLOAT_MODE_P (mode))
5536 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5537 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5538 depending on the low level floating format used. */
5539 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5540 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5541 gen_libfunc (optable, dec_opname, suffix, mode);
5545 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5547 static void
5548 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5549 enum machine_mode mode)
5551 if (!ALL_FIXED_POINT_MODE_P (mode))
5552 return;
5553 gen_libfunc (optable, opname, suffix, mode);
5556 /* Like gen_libfunc, but verify that signed fixed-point operation is
5557 involved. */
5559 static void
5560 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5561 enum machine_mode mode)
5563 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5564 return;
5565 gen_libfunc (optable, opname, suffix, mode);
5568 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5569 involved. */
5571 static void
5572 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5573 enum machine_mode mode)
5575 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5576 return;
5577 gen_libfunc (optable, opname, suffix, mode);
5580 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5582 static void
5583 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5584 enum machine_mode mode)
5586 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5587 gen_fp_libfunc (optable, name, suffix, mode);
5588 if (INTEGRAL_MODE_P (mode))
5589 gen_int_libfunc (optable, name, suffix, mode);
5592 /* Like gen_libfunc, but verify that FP or INT operation is involved
5593 and add 'v' suffix for integer operation. */
5595 static void
5596 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5597 enum machine_mode mode)
5599 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5600 gen_fp_libfunc (optable, name, suffix, mode);
5601 if (GET_MODE_CLASS (mode) == MODE_INT)
5603 int len = strlen (name);
5604 char *v_name = XALLOCAVEC (char, len + 2);
5605 strcpy (v_name, name);
5606 v_name[len] = 'v';
5607 v_name[len + 1] = 0;
5608 gen_int_libfunc (optable, v_name, suffix, mode);
5612 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5613 involved. */
5615 static void
5616 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5617 enum machine_mode mode)
5619 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5620 gen_fp_libfunc (optable, name, suffix, mode);
5621 if (INTEGRAL_MODE_P (mode))
5622 gen_int_libfunc (optable, name, suffix, mode);
5623 if (ALL_FIXED_POINT_MODE_P (mode))
5624 gen_fixed_libfunc (optable, name, suffix, mode);
5627 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5628 involved. */
5630 static void
5631 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5632 enum machine_mode mode)
5634 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5635 gen_fp_libfunc (optable, name, suffix, mode);
5636 if (INTEGRAL_MODE_P (mode))
5637 gen_int_libfunc (optable, name, suffix, mode);
5638 if (SIGNED_FIXED_POINT_MODE_P (mode))
5639 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5642 /* Like gen_libfunc, but verify that INT or FIXED operation is
5643 involved. */
5645 static void
5646 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5647 enum machine_mode mode)
5649 if (INTEGRAL_MODE_P (mode))
5650 gen_int_libfunc (optable, name, suffix, mode);
5651 if (ALL_FIXED_POINT_MODE_P (mode))
5652 gen_fixed_libfunc (optable, name, suffix, mode);
5655 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5656 involved. */
5658 static void
5659 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5660 enum machine_mode mode)
5662 if (INTEGRAL_MODE_P (mode))
5663 gen_int_libfunc (optable, name, suffix, mode);
5664 if (SIGNED_FIXED_POINT_MODE_P (mode))
5665 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5668 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5669 involved. */
5671 static void
5672 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5673 enum machine_mode mode)
5675 if (INTEGRAL_MODE_P (mode))
5676 gen_int_libfunc (optable, name, suffix, mode);
5677 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5678 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5681 /* Initialize the libfunc fields of an entire group of entries of an
5682 inter-mode-class conversion optab. The string formation rules are
5683 similar to the ones for init_libfuncs, above, but instead of having
5684 a mode name and an operand count these functions have two mode names
5685 and no operand count. */
5687 static void
5688 gen_interclass_conv_libfunc (convert_optab tab,
5689 const char *opname,
5690 enum machine_mode tmode,
5691 enum machine_mode fmode)
5693 size_t opname_len = strlen (opname);
5694 size_t mname_len = 0;
5696 const char *fname, *tname;
5697 const char *q;
5698 char *libfunc_name, *suffix;
5699 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5700 char *p;
5702 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5703 depends on which underlying decimal floating point format is used. */
5704 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5706 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5708 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5709 nondec_name[0] = '_';
5710 nondec_name[1] = '_';
5711 memcpy (&nondec_name[2], opname, opname_len);
5712 nondec_suffix = nondec_name + opname_len + 2;
5714 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5715 dec_name[0] = '_';
5716 dec_name[1] = '_';
5717 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5718 memcpy (&dec_name[2+dec_len], opname, opname_len);
5719 dec_suffix = dec_name + dec_len + opname_len + 2;
5721 fname = GET_MODE_NAME (fmode);
5722 tname = GET_MODE_NAME (tmode);
5724 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5726 libfunc_name = dec_name;
5727 suffix = dec_suffix;
5729 else
5731 libfunc_name = nondec_name;
5732 suffix = nondec_suffix;
5735 p = suffix;
5736 for (q = fname; *q; p++, q++)
5737 *p = TOLOWER (*q);
5738 for (q = tname; *q; p++, q++)
5739 *p = TOLOWER (*q);
5741 *p = '\0';
5743 set_conv_libfunc (tab, tmode, fmode,
5744 ggc_alloc_string (libfunc_name, p - libfunc_name));
5747 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5748 int->fp conversion. */
5750 static void
5751 gen_int_to_fp_conv_libfunc (convert_optab tab,
5752 const char *opname,
5753 enum machine_mode tmode,
5754 enum machine_mode fmode)
5756 if (GET_MODE_CLASS (fmode) != MODE_INT)
5757 return;
5758 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5759 return;
5760 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5763 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5764 naming scheme. */
5766 static void
5767 gen_ufloat_conv_libfunc (convert_optab tab,
5768 const char *opname ATTRIBUTE_UNUSED,
5769 enum machine_mode tmode,
5770 enum machine_mode fmode)
5772 if (DECIMAL_FLOAT_MODE_P (tmode))
5773 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5774 else
5775 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5778 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5779 fp->int conversion. */
5781 static void
5782 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5783 const char *opname,
5784 enum machine_mode tmode,
5785 enum machine_mode fmode)
5787 if (GET_MODE_CLASS (fmode) != MODE_INT)
5788 return;
5789 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5790 return;
5791 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5794 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5795 fp->int conversion with no decimal floating point involved. */
5797 static void
5798 gen_fp_to_int_conv_libfunc (convert_optab tab,
5799 const char *opname,
5800 enum machine_mode tmode,
5801 enum machine_mode fmode)
5803 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5804 return;
5805 if (GET_MODE_CLASS (tmode) != MODE_INT)
5806 return;
5807 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5810 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5811 The string formation rules are
5812 similar to the ones for init_libfunc, above. */
5814 static void
5815 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5816 enum machine_mode tmode, enum machine_mode fmode)
5818 size_t opname_len = strlen (opname);
5819 size_t mname_len = 0;
5821 const char *fname, *tname;
5822 const char *q;
5823 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5824 char *libfunc_name, *suffix;
5825 char *p;
5827 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5828 depends on which underlying decimal floating point format is used. */
5829 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5831 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5833 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5834 nondec_name[0] = '_';
5835 nondec_name[1] = '_';
5836 memcpy (&nondec_name[2], opname, opname_len);
5837 nondec_suffix = nondec_name + opname_len + 2;
5839 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5840 dec_name[0] = '_';
5841 dec_name[1] = '_';
5842 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5843 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5844 dec_suffix = dec_name + dec_len + opname_len + 2;
5846 fname = GET_MODE_NAME (fmode);
5847 tname = GET_MODE_NAME (tmode);
5849 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5851 libfunc_name = dec_name;
5852 suffix = dec_suffix;
5854 else
5856 libfunc_name = nondec_name;
5857 suffix = nondec_suffix;
5860 p = suffix;
5861 for (q = fname; *q; p++, q++)
5862 *p = TOLOWER (*q);
5863 for (q = tname; *q; p++, q++)
5864 *p = TOLOWER (*q);
5866 *p++ = '2';
5867 *p = '\0';
5869 set_conv_libfunc (tab, tmode, fmode,
5870 ggc_alloc_string (libfunc_name, p - libfunc_name));
5873 /* Pick proper libcall for trunc_optab. We need to chose if we do
5874 truncation or extension and interclass or intraclass. */
5876 static void
5877 gen_trunc_conv_libfunc (convert_optab tab,
5878 const char *opname,
5879 enum machine_mode tmode,
5880 enum machine_mode fmode)
5882 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5883 return;
5884 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5885 return;
5886 if (tmode == fmode)
5887 return;
5889 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5890 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5891 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5893 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5894 return;
5896 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5897 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5898 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5899 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5902 /* Pick proper libcall for extend_optab. We need to chose if we do
5903 truncation or extension and interclass or intraclass. */
5905 static void
5906 gen_extend_conv_libfunc (convert_optab tab,
5907 const char *opname ATTRIBUTE_UNUSED,
5908 enum machine_mode tmode,
5909 enum machine_mode fmode)
5911 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5912 return;
5913 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5914 return;
5915 if (tmode == fmode)
5916 return;
5918 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5919 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5920 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5922 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5923 return;
5925 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5926 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5927 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5928 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5931 /* Pick proper libcall for fract_optab. We need to chose if we do
5932 interclass or intraclass. */
5934 static void
5935 gen_fract_conv_libfunc (convert_optab tab,
5936 const char *opname,
5937 enum machine_mode tmode,
5938 enum machine_mode fmode)
5940 if (tmode == fmode)
5941 return;
5942 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5943 return;
5945 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5946 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5947 else
5948 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5951 /* Pick proper libcall for fractuns_optab. */
5953 static void
5954 gen_fractuns_conv_libfunc (convert_optab tab,
5955 const char *opname,
5956 enum machine_mode tmode,
5957 enum machine_mode fmode)
5959 if (tmode == fmode)
5960 return;
5961 /* One mode must be a fixed-point mode, and the other must be an integer
5962 mode. */
5963 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5964 || (ALL_FIXED_POINT_MODE_P (fmode)
5965 && GET_MODE_CLASS (tmode) == MODE_INT)))
5966 return;
5968 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5971 /* Pick proper libcall for satfract_optab. We need to chose if we do
5972 interclass or intraclass. */
5974 static void
5975 gen_satfract_conv_libfunc (convert_optab tab,
5976 const char *opname,
5977 enum machine_mode tmode,
5978 enum machine_mode fmode)
5980 if (tmode == fmode)
5981 return;
5982 /* TMODE must be a fixed-point mode. */
5983 if (!ALL_FIXED_POINT_MODE_P (tmode))
5984 return;
5986 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5987 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5988 else
5989 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5992 /* Pick proper libcall for satfractuns_optab. */
5994 static void
5995 gen_satfractuns_conv_libfunc (convert_optab tab,
5996 const char *opname,
5997 enum machine_mode tmode,
5998 enum machine_mode fmode)
6000 if (tmode == fmode)
6001 return;
6002 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6003 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6004 return;
6006 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6009 /* A table of previously-created libfuncs, hashed by name. */
6010 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6012 /* Hashtable callbacks for libfunc_decls. */
6014 static hashval_t
6015 libfunc_decl_hash (const void *entry)
6017 return htab_hash_string (IDENTIFIER_POINTER (DECL_NAME ((const_tree) entry)));
6020 static int
6021 libfunc_decl_eq (const void *entry1, const void *entry2)
6023 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6027 init_one_libfunc (const char *name)
6029 tree id, decl;
6030 void **slot;
6031 hashval_t hash;
6033 if (libfunc_decls == NULL)
6034 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6035 libfunc_decl_eq, NULL);
6037 /* See if we have already created a libfunc decl for this function. */
6038 id = get_identifier (name);
6039 hash = htab_hash_string (name);
6040 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6041 decl = (tree) *slot;
6042 if (decl == NULL)
6044 /* Create a new decl, so that it can be passed to
6045 targetm.encode_section_info. */
6046 /* ??? We don't have any type information except for this is
6047 a function. Pretend this is "int foo()". */
6048 decl = build_decl (UNKNOWN_LOCATION,
6049 FUNCTION_DECL, get_identifier (name),
6050 build_function_type (integer_type_node, NULL_TREE));
6051 DECL_ARTIFICIAL (decl) = 1;
6052 DECL_EXTERNAL (decl) = 1;
6053 TREE_PUBLIC (decl) = 1;
6055 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6056 are the flags assigned by targetm.encode_section_info. */
6057 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6059 *slot = decl;
6061 return XEXP (DECL_RTL (decl), 0);
6064 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6067 set_user_assembler_libfunc (const char *name, const char *asmspec)
6069 tree id, decl;
6070 void **slot;
6071 hashval_t hash;
6073 id = get_identifier (name);
6074 hash = htab_hash_string (name);
6075 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6076 gcc_assert (slot);
6077 decl = (tree) *slot;
6078 set_user_assembler_name (decl, asmspec);
6079 return XEXP (DECL_RTL (decl), 0);
6082 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6083 MODE to NAME, which should be either 0 or a string constant. */
6084 void
6085 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
6087 rtx val;
6088 struct libfunc_entry e;
6089 struct libfunc_entry **slot;
6090 e.optab = (size_t) (optable - &optab_table[0]);
6091 e.mode1 = mode;
6092 e.mode2 = VOIDmode;
6094 if (name)
6095 val = init_one_libfunc (name);
6096 else
6097 val = 0;
6098 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6099 if (*slot == NULL)
6100 *slot = GGC_NEW (struct libfunc_entry);
6101 (*slot)->optab = (size_t) (optable - &optab_table[0]);
6102 (*slot)->mode1 = mode;
6103 (*slot)->mode2 = VOIDmode;
6104 (*slot)->libfunc = val;
6107 /* Call this to reset the function entry for one conversion optab
6108 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6109 either 0 or a string constant. */
6110 void
6111 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
6112 enum machine_mode fmode, const char *name)
6114 rtx val;
6115 struct libfunc_entry e;
6116 struct libfunc_entry **slot;
6117 e.optab = (size_t) (optable - &convert_optab_table[0]);
6118 e.mode1 = tmode;
6119 e.mode2 = fmode;
6121 if (name)
6122 val = init_one_libfunc (name);
6123 else
6124 val = 0;
6125 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6126 if (*slot == NULL)
6127 *slot = GGC_NEW (struct libfunc_entry);
6128 (*slot)->optab = (size_t) (optable - &convert_optab_table[0]);
6129 (*slot)->mode1 = tmode;
6130 (*slot)->mode2 = fmode;
6131 (*slot)->libfunc = val;
6134 /* Call this to initialize the contents of the optabs
6135 appropriately for the current target machine. */
6137 void
6138 init_optabs (void)
6140 unsigned int i;
6141 enum machine_mode int_mode;
6142 static bool reinit;
6144 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6145 /* Start by initializing all tables to contain CODE_FOR_nothing. */
6147 #ifdef HAVE_conditional_move
6148 for (i = 0; i < NUM_MACHINE_MODES; i++)
6149 movcc_gen_code[i] = CODE_FOR_nothing;
6150 #endif
6152 for (i = 0; i < NUM_MACHINE_MODES; i++)
6154 vcond_gen_code[i] = CODE_FOR_nothing;
6155 vcondu_gen_code[i] = CODE_FOR_nothing;
6158 #if GCC_VERSION >= 4000 && HAVE_DESIGNATED_INITIALIZERS
6159 /* We statically initialize the insn_codes with CODE_FOR_nothing. */
6160 if (reinit)
6161 init_insn_codes ();
6162 #else
6163 init_insn_codes ();
6164 #endif
6166 init_optab (add_optab, PLUS);
6167 init_optabv (addv_optab, PLUS);
6168 init_optab (sub_optab, MINUS);
6169 init_optabv (subv_optab, MINUS);
6170 init_optab (ssadd_optab, SS_PLUS);
6171 init_optab (usadd_optab, US_PLUS);
6172 init_optab (sssub_optab, SS_MINUS);
6173 init_optab (ussub_optab, US_MINUS);
6174 init_optab (smul_optab, MULT);
6175 init_optab (ssmul_optab, SS_MULT);
6176 init_optab (usmul_optab, US_MULT);
6177 init_optabv (smulv_optab, MULT);
6178 init_optab (smul_highpart_optab, UNKNOWN);
6179 init_optab (umul_highpart_optab, UNKNOWN);
6180 init_optab (smul_widen_optab, UNKNOWN);
6181 init_optab (umul_widen_optab, UNKNOWN);
6182 init_optab (usmul_widen_optab, UNKNOWN);
6183 init_optab (smadd_widen_optab, UNKNOWN);
6184 init_optab (umadd_widen_optab, UNKNOWN);
6185 init_optab (ssmadd_widen_optab, UNKNOWN);
6186 init_optab (usmadd_widen_optab, UNKNOWN);
6187 init_optab (smsub_widen_optab, UNKNOWN);
6188 init_optab (umsub_widen_optab, UNKNOWN);
6189 init_optab (ssmsub_widen_optab, UNKNOWN);
6190 init_optab (usmsub_widen_optab, UNKNOWN);
6191 init_optab (sdiv_optab, DIV);
6192 init_optab (ssdiv_optab, SS_DIV);
6193 init_optab (usdiv_optab, US_DIV);
6194 init_optabv (sdivv_optab, DIV);
6195 init_optab (sdivmod_optab, UNKNOWN);
6196 init_optab (udiv_optab, UDIV);
6197 init_optab (udivmod_optab, UNKNOWN);
6198 init_optab (smod_optab, MOD);
6199 init_optab (umod_optab, UMOD);
6200 init_optab (fmod_optab, UNKNOWN);
6201 init_optab (remainder_optab, UNKNOWN);
6202 init_optab (ftrunc_optab, UNKNOWN);
6203 init_optab (and_optab, AND);
6204 init_optab (ior_optab, IOR);
6205 init_optab (xor_optab, XOR);
6206 init_optab (ashl_optab, ASHIFT);
6207 init_optab (ssashl_optab, SS_ASHIFT);
6208 init_optab (usashl_optab, US_ASHIFT);
6209 init_optab (ashr_optab, ASHIFTRT);
6210 init_optab (lshr_optab, LSHIFTRT);
6211 init_optab (rotl_optab, ROTATE);
6212 init_optab (rotr_optab, ROTATERT);
6213 init_optab (smin_optab, SMIN);
6214 init_optab (smax_optab, SMAX);
6215 init_optab (umin_optab, UMIN);
6216 init_optab (umax_optab, UMAX);
6217 init_optab (pow_optab, UNKNOWN);
6218 init_optab (atan2_optab, UNKNOWN);
6220 /* These three have codes assigned exclusively for the sake of
6221 have_insn_for. */
6222 init_optab (mov_optab, SET);
6223 init_optab (movstrict_optab, STRICT_LOW_PART);
6224 init_optab (cbranch_optab, COMPARE);
6226 init_optab (cmov_optab, UNKNOWN);
6227 init_optab (cstore_optab, UNKNOWN);
6228 init_optab (ctrap_optab, UNKNOWN);
6230 init_optab (storent_optab, UNKNOWN);
6232 init_optab (cmp_optab, UNKNOWN);
6233 init_optab (ucmp_optab, UNKNOWN);
6235 init_optab (eq_optab, EQ);
6236 init_optab (ne_optab, NE);
6237 init_optab (gt_optab, GT);
6238 init_optab (ge_optab, GE);
6239 init_optab (lt_optab, LT);
6240 init_optab (le_optab, LE);
6241 init_optab (unord_optab, UNORDERED);
6243 init_optab (neg_optab, NEG);
6244 init_optab (ssneg_optab, SS_NEG);
6245 init_optab (usneg_optab, US_NEG);
6246 init_optabv (negv_optab, NEG);
6247 init_optab (abs_optab, ABS);
6248 init_optabv (absv_optab, ABS);
6249 init_optab (addcc_optab, UNKNOWN);
6250 init_optab (one_cmpl_optab, NOT);
6251 init_optab (bswap_optab, BSWAP);
6252 init_optab (ffs_optab, FFS);
6253 init_optab (clz_optab, CLZ);
6254 init_optab (ctz_optab, CTZ);
6255 init_optab (popcount_optab, POPCOUNT);
6256 init_optab (parity_optab, PARITY);
6257 init_optab (sqrt_optab, SQRT);
6258 init_optab (floor_optab, UNKNOWN);
6259 init_optab (ceil_optab, UNKNOWN);
6260 init_optab (round_optab, UNKNOWN);
6261 init_optab (btrunc_optab, UNKNOWN);
6262 init_optab (nearbyint_optab, UNKNOWN);
6263 init_optab (rint_optab, UNKNOWN);
6264 init_optab (sincos_optab, UNKNOWN);
6265 init_optab (sin_optab, UNKNOWN);
6266 init_optab (asin_optab, UNKNOWN);
6267 init_optab (cos_optab, UNKNOWN);
6268 init_optab (acos_optab, UNKNOWN);
6269 init_optab (exp_optab, UNKNOWN);
6270 init_optab (exp10_optab, UNKNOWN);
6271 init_optab (exp2_optab, UNKNOWN);
6272 init_optab (expm1_optab, UNKNOWN);
6273 init_optab (ldexp_optab, UNKNOWN);
6274 init_optab (scalb_optab, UNKNOWN);
6275 init_optab (significand_optab, UNKNOWN);
6276 init_optab (logb_optab, UNKNOWN);
6277 init_optab (ilogb_optab, UNKNOWN);
6278 init_optab (log_optab, UNKNOWN);
6279 init_optab (log10_optab, UNKNOWN);
6280 init_optab (log2_optab, UNKNOWN);
6281 init_optab (log1p_optab, UNKNOWN);
6282 init_optab (tan_optab, UNKNOWN);
6283 init_optab (atan_optab, UNKNOWN);
6284 init_optab (copysign_optab, UNKNOWN);
6285 init_optab (signbit_optab, UNKNOWN);
6287 init_optab (isinf_optab, UNKNOWN);
6289 init_optab (strlen_optab, UNKNOWN);
6290 init_optab (push_optab, UNKNOWN);
6292 init_optab (reduc_smax_optab, UNKNOWN);
6293 init_optab (reduc_umax_optab, UNKNOWN);
6294 init_optab (reduc_smin_optab, UNKNOWN);
6295 init_optab (reduc_umin_optab, UNKNOWN);
6296 init_optab (reduc_splus_optab, UNKNOWN);
6297 init_optab (reduc_uplus_optab, UNKNOWN);
6299 init_optab (ssum_widen_optab, UNKNOWN);
6300 init_optab (usum_widen_optab, UNKNOWN);
6301 init_optab (sdot_prod_optab, UNKNOWN);
6302 init_optab (udot_prod_optab, UNKNOWN);
6304 init_optab (vec_extract_optab, UNKNOWN);
6305 init_optab (vec_extract_even_optab, UNKNOWN);
6306 init_optab (vec_extract_odd_optab, UNKNOWN);
6307 init_optab (vec_interleave_high_optab, UNKNOWN);
6308 init_optab (vec_interleave_low_optab, UNKNOWN);
6309 init_optab (vec_set_optab, UNKNOWN);
6310 init_optab (vec_init_optab, UNKNOWN);
6311 init_optab (vec_shl_optab, UNKNOWN);
6312 init_optab (vec_shr_optab, UNKNOWN);
6313 init_optab (vec_realign_load_optab, UNKNOWN);
6314 init_optab (movmisalign_optab, UNKNOWN);
6315 init_optab (vec_widen_umult_hi_optab, UNKNOWN);
6316 init_optab (vec_widen_umult_lo_optab, UNKNOWN);
6317 init_optab (vec_widen_smult_hi_optab, UNKNOWN);
6318 init_optab (vec_widen_smult_lo_optab, UNKNOWN);
6319 init_optab (vec_unpacks_hi_optab, UNKNOWN);
6320 init_optab (vec_unpacks_lo_optab, UNKNOWN);
6321 init_optab (vec_unpacku_hi_optab, UNKNOWN);
6322 init_optab (vec_unpacku_lo_optab, UNKNOWN);
6323 init_optab (vec_unpacks_float_hi_optab, UNKNOWN);
6324 init_optab (vec_unpacks_float_lo_optab, UNKNOWN);
6325 init_optab (vec_unpacku_float_hi_optab, UNKNOWN);
6326 init_optab (vec_unpacku_float_lo_optab, UNKNOWN);
6327 init_optab (vec_pack_trunc_optab, UNKNOWN);
6328 init_optab (vec_pack_usat_optab, UNKNOWN);
6329 init_optab (vec_pack_ssat_optab, UNKNOWN);
6330 init_optab (vec_pack_ufix_trunc_optab, UNKNOWN);
6331 init_optab (vec_pack_sfix_trunc_optab, UNKNOWN);
6333 init_optab (powi_optab, UNKNOWN);
6335 /* Conversions. */
6336 init_convert_optab (sext_optab, SIGN_EXTEND);
6337 init_convert_optab (zext_optab, ZERO_EXTEND);
6338 init_convert_optab (trunc_optab, TRUNCATE);
6339 init_convert_optab (sfix_optab, FIX);
6340 init_convert_optab (ufix_optab, UNSIGNED_FIX);
6341 init_convert_optab (sfixtrunc_optab, UNKNOWN);
6342 init_convert_optab (ufixtrunc_optab, UNKNOWN);
6343 init_convert_optab (sfloat_optab, FLOAT);
6344 init_convert_optab (ufloat_optab, UNSIGNED_FLOAT);
6345 init_convert_optab (lrint_optab, UNKNOWN);
6346 init_convert_optab (lround_optab, UNKNOWN);
6347 init_convert_optab (lfloor_optab, UNKNOWN);
6348 init_convert_optab (lceil_optab, UNKNOWN);
6350 init_convert_optab (fract_optab, FRACT_CONVERT);
6351 init_convert_optab (fractuns_optab, UNSIGNED_FRACT_CONVERT);
6352 init_convert_optab (satfract_optab, SAT_FRACT);
6353 init_convert_optab (satfractuns_optab, UNSIGNED_SAT_FRACT);
6355 for (i = 0; i < NUM_MACHINE_MODES; i++)
6357 movmem_optab[i] = CODE_FOR_nothing;
6358 cmpstr_optab[i] = CODE_FOR_nothing;
6359 cmpstrn_optab[i] = CODE_FOR_nothing;
6360 cmpmem_optab[i] = CODE_FOR_nothing;
6361 setmem_optab[i] = CODE_FOR_nothing;
6363 sync_add_optab[i] = CODE_FOR_nothing;
6364 sync_sub_optab[i] = CODE_FOR_nothing;
6365 sync_ior_optab[i] = CODE_FOR_nothing;
6366 sync_and_optab[i] = CODE_FOR_nothing;
6367 sync_xor_optab[i] = CODE_FOR_nothing;
6368 sync_nand_optab[i] = CODE_FOR_nothing;
6369 sync_old_add_optab[i] = CODE_FOR_nothing;
6370 sync_old_sub_optab[i] = CODE_FOR_nothing;
6371 sync_old_ior_optab[i] = CODE_FOR_nothing;
6372 sync_old_and_optab[i] = CODE_FOR_nothing;
6373 sync_old_xor_optab[i] = CODE_FOR_nothing;
6374 sync_old_nand_optab[i] = CODE_FOR_nothing;
6375 sync_new_add_optab[i] = CODE_FOR_nothing;
6376 sync_new_sub_optab[i] = CODE_FOR_nothing;
6377 sync_new_ior_optab[i] = CODE_FOR_nothing;
6378 sync_new_and_optab[i] = CODE_FOR_nothing;
6379 sync_new_xor_optab[i] = CODE_FOR_nothing;
6380 sync_new_nand_optab[i] = CODE_FOR_nothing;
6381 sync_compare_and_swap[i] = CODE_FOR_nothing;
6382 sync_lock_test_and_set[i] = CODE_FOR_nothing;
6383 sync_lock_release[i] = CODE_FOR_nothing;
6385 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
6388 /* Fill in the optabs with the insns we support. */
6389 init_all_optabs ();
6391 /* Initialize the optabs with the names of the library functions. */
6392 add_optab->libcall_basename = "add";
6393 add_optab->libcall_suffix = '3';
6394 add_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6395 addv_optab->libcall_basename = "add";
6396 addv_optab->libcall_suffix = '3';
6397 addv_optab->libcall_gen = gen_intv_fp_libfunc;
6398 ssadd_optab->libcall_basename = "ssadd";
6399 ssadd_optab->libcall_suffix = '3';
6400 ssadd_optab->libcall_gen = gen_signed_fixed_libfunc;
6401 usadd_optab->libcall_basename = "usadd";
6402 usadd_optab->libcall_suffix = '3';
6403 usadd_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6404 sub_optab->libcall_basename = "sub";
6405 sub_optab->libcall_suffix = '3';
6406 sub_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6407 subv_optab->libcall_basename = "sub";
6408 subv_optab->libcall_suffix = '3';
6409 subv_optab->libcall_gen = gen_intv_fp_libfunc;
6410 sssub_optab->libcall_basename = "sssub";
6411 sssub_optab->libcall_suffix = '3';
6412 sssub_optab->libcall_gen = gen_signed_fixed_libfunc;
6413 ussub_optab->libcall_basename = "ussub";
6414 ussub_optab->libcall_suffix = '3';
6415 ussub_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6416 smul_optab->libcall_basename = "mul";
6417 smul_optab->libcall_suffix = '3';
6418 smul_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6419 smulv_optab->libcall_basename = "mul";
6420 smulv_optab->libcall_suffix = '3';
6421 smulv_optab->libcall_gen = gen_intv_fp_libfunc;
6422 ssmul_optab->libcall_basename = "ssmul";
6423 ssmul_optab->libcall_suffix = '3';
6424 ssmul_optab->libcall_gen = gen_signed_fixed_libfunc;
6425 usmul_optab->libcall_basename = "usmul";
6426 usmul_optab->libcall_suffix = '3';
6427 usmul_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6428 sdiv_optab->libcall_basename = "div";
6429 sdiv_optab->libcall_suffix = '3';
6430 sdiv_optab->libcall_gen = gen_int_fp_signed_fixed_libfunc;
6431 sdivv_optab->libcall_basename = "divv";
6432 sdivv_optab->libcall_suffix = '3';
6433 sdivv_optab->libcall_gen = gen_int_libfunc;
6434 ssdiv_optab->libcall_basename = "ssdiv";
6435 ssdiv_optab->libcall_suffix = '3';
6436 ssdiv_optab->libcall_gen = gen_signed_fixed_libfunc;
6437 udiv_optab->libcall_basename = "udiv";
6438 udiv_optab->libcall_suffix = '3';
6439 udiv_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6440 usdiv_optab->libcall_basename = "usdiv";
6441 usdiv_optab->libcall_suffix = '3';
6442 usdiv_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6443 sdivmod_optab->libcall_basename = "divmod";
6444 sdivmod_optab->libcall_suffix = '4';
6445 sdivmod_optab->libcall_gen = gen_int_libfunc;
6446 udivmod_optab->libcall_basename = "udivmod";
6447 udivmod_optab->libcall_suffix = '4';
6448 udivmod_optab->libcall_gen = gen_int_libfunc;
6449 smod_optab->libcall_basename = "mod";
6450 smod_optab->libcall_suffix = '3';
6451 smod_optab->libcall_gen = gen_int_libfunc;
6452 umod_optab->libcall_basename = "umod";
6453 umod_optab->libcall_suffix = '3';
6454 umod_optab->libcall_gen = gen_int_libfunc;
6455 ftrunc_optab->libcall_basename = "ftrunc";
6456 ftrunc_optab->libcall_suffix = '2';
6457 ftrunc_optab->libcall_gen = gen_fp_libfunc;
6458 and_optab->libcall_basename = "and";
6459 and_optab->libcall_suffix = '3';
6460 and_optab->libcall_gen = gen_int_libfunc;
6461 ior_optab->libcall_basename = "ior";
6462 ior_optab->libcall_suffix = '3';
6463 ior_optab->libcall_gen = gen_int_libfunc;
6464 xor_optab->libcall_basename = "xor";
6465 xor_optab->libcall_suffix = '3';
6466 xor_optab->libcall_gen = gen_int_libfunc;
6467 ashl_optab->libcall_basename = "ashl";
6468 ashl_optab->libcall_suffix = '3';
6469 ashl_optab->libcall_gen = gen_int_fixed_libfunc;
6470 ssashl_optab->libcall_basename = "ssashl";
6471 ssashl_optab->libcall_suffix = '3';
6472 ssashl_optab->libcall_gen = gen_signed_fixed_libfunc;
6473 usashl_optab->libcall_basename = "usashl";
6474 usashl_optab->libcall_suffix = '3';
6475 usashl_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6476 ashr_optab->libcall_basename = "ashr";
6477 ashr_optab->libcall_suffix = '3';
6478 ashr_optab->libcall_gen = gen_int_signed_fixed_libfunc;
6479 lshr_optab->libcall_basename = "lshr";
6480 lshr_optab->libcall_suffix = '3';
6481 lshr_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6482 smin_optab->libcall_basename = "min";
6483 smin_optab->libcall_suffix = '3';
6484 smin_optab->libcall_gen = gen_int_fp_libfunc;
6485 smax_optab->libcall_basename = "max";
6486 smax_optab->libcall_suffix = '3';
6487 smax_optab->libcall_gen = gen_int_fp_libfunc;
6488 umin_optab->libcall_basename = "umin";
6489 umin_optab->libcall_suffix = '3';
6490 umin_optab->libcall_gen = gen_int_libfunc;
6491 umax_optab->libcall_basename = "umax";
6492 umax_optab->libcall_suffix = '3';
6493 umax_optab->libcall_gen = gen_int_libfunc;
6494 neg_optab->libcall_basename = "neg";
6495 neg_optab->libcall_suffix = '2';
6496 neg_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6497 ssneg_optab->libcall_basename = "ssneg";
6498 ssneg_optab->libcall_suffix = '2';
6499 ssneg_optab->libcall_gen = gen_signed_fixed_libfunc;
6500 usneg_optab->libcall_basename = "usneg";
6501 usneg_optab->libcall_suffix = '2';
6502 usneg_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6503 negv_optab->libcall_basename = "neg";
6504 negv_optab->libcall_suffix = '2';
6505 negv_optab->libcall_gen = gen_intv_fp_libfunc;
6506 one_cmpl_optab->libcall_basename = "one_cmpl";
6507 one_cmpl_optab->libcall_suffix = '2';
6508 one_cmpl_optab->libcall_gen = gen_int_libfunc;
6509 ffs_optab->libcall_basename = "ffs";
6510 ffs_optab->libcall_suffix = '2';
6511 ffs_optab->libcall_gen = gen_int_libfunc;
6512 clz_optab->libcall_basename = "clz";
6513 clz_optab->libcall_suffix = '2';
6514 clz_optab->libcall_gen = gen_int_libfunc;
6515 ctz_optab->libcall_basename = "ctz";
6516 ctz_optab->libcall_suffix = '2';
6517 ctz_optab->libcall_gen = gen_int_libfunc;
6518 popcount_optab->libcall_basename = "popcount";
6519 popcount_optab->libcall_suffix = '2';
6520 popcount_optab->libcall_gen = gen_int_libfunc;
6521 parity_optab->libcall_basename = "parity";
6522 parity_optab->libcall_suffix = '2';
6523 parity_optab->libcall_gen = gen_int_libfunc;
6525 /* Comparison libcalls for integers MUST come in pairs,
6526 signed/unsigned. */
6527 cmp_optab->libcall_basename = "cmp";
6528 cmp_optab->libcall_suffix = '2';
6529 cmp_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6530 ucmp_optab->libcall_basename = "ucmp";
6531 ucmp_optab->libcall_suffix = '2';
6532 ucmp_optab->libcall_gen = gen_int_libfunc;
6534 /* EQ etc are floating point only. */
6535 eq_optab->libcall_basename = "eq";
6536 eq_optab->libcall_suffix = '2';
6537 eq_optab->libcall_gen = gen_fp_libfunc;
6538 ne_optab->libcall_basename = "ne";
6539 ne_optab->libcall_suffix = '2';
6540 ne_optab->libcall_gen = gen_fp_libfunc;
6541 gt_optab->libcall_basename = "gt";
6542 gt_optab->libcall_suffix = '2';
6543 gt_optab->libcall_gen = gen_fp_libfunc;
6544 ge_optab->libcall_basename = "ge";
6545 ge_optab->libcall_suffix = '2';
6546 ge_optab->libcall_gen = gen_fp_libfunc;
6547 lt_optab->libcall_basename = "lt";
6548 lt_optab->libcall_suffix = '2';
6549 lt_optab->libcall_gen = gen_fp_libfunc;
6550 le_optab->libcall_basename = "le";
6551 le_optab->libcall_suffix = '2';
6552 le_optab->libcall_gen = gen_fp_libfunc;
6553 unord_optab->libcall_basename = "unord";
6554 unord_optab->libcall_suffix = '2';
6555 unord_optab->libcall_gen = gen_fp_libfunc;
6557 powi_optab->libcall_basename = "powi";
6558 powi_optab->libcall_suffix = '2';
6559 powi_optab->libcall_gen = gen_fp_libfunc;
6561 /* Conversions. */
6562 sfloat_optab->libcall_basename = "float";
6563 sfloat_optab->libcall_gen = gen_int_to_fp_conv_libfunc;
6564 ufloat_optab->libcall_gen = gen_ufloat_conv_libfunc;
6565 sfix_optab->libcall_basename = "fix";
6566 sfix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6567 ufix_optab->libcall_basename = "fixuns";
6568 ufix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6569 lrint_optab->libcall_basename = "lrint";
6570 lrint_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6571 lround_optab->libcall_basename = "lround";
6572 lround_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6573 lfloor_optab->libcall_basename = "lfloor";
6574 lfloor_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6575 lceil_optab->libcall_basename = "lceil";
6576 lceil_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6578 /* trunc_optab is also used for FLOAT_EXTEND. */
6579 sext_optab->libcall_basename = "extend";
6580 sext_optab->libcall_gen = gen_extend_conv_libfunc;
6581 trunc_optab->libcall_basename = "trunc";
6582 trunc_optab->libcall_gen = gen_trunc_conv_libfunc;
6584 /* Conversions for fixed-point modes and other modes. */
6585 fract_optab->libcall_basename = "fract";
6586 fract_optab->libcall_gen = gen_fract_conv_libfunc;
6587 satfract_optab->libcall_basename = "satfract";
6588 satfract_optab->libcall_gen = gen_satfract_conv_libfunc;
6589 fractuns_optab->libcall_basename = "fractuns";
6590 fractuns_optab->libcall_gen = gen_fractuns_conv_libfunc;
6591 satfractuns_optab->libcall_basename = "satfractuns";
6592 satfractuns_optab->libcall_gen = gen_satfractuns_conv_libfunc;
6594 /* The ffs function operates on `int'. Fall back on it if we do not
6595 have a libgcc2 function for that width. */
6596 if (INT_TYPE_SIZE < BITS_PER_WORD)
6598 int_mode = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0);
6599 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6600 "ffs");
6603 /* Explicitly initialize the bswap libfuncs since we need them to be
6604 valid for things other than word_mode. */
6605 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6606 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6608 /* Use cabs for double complex abs, since systems generally have cabs.
6609 Don't define any libcall for float complex, so that cabs will be used. */
6610 if (complex_double_type_node)
6611 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node), "cabs");
6613 abort_libfunc = init_one_libfunc ("abort");
6614 memcpy_libfunc = init_one_libfunc ("memcpy");
6615 memmove_libfunc = init_one_libfunc ("memmove");
6616 memcmp_libfunc = init_one_libfunc ("memcmp");
6617 memset_libfunc = init_one_libfunc ("memset");
6618 setbits_libfunc = init_one_libfunc ("__setbits");
6620 #ifndef DONT_USE_BUILTIN_SETJMP
6621 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6622 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6623 #else
6624 setjmp_libfunc = init_one_libfunc ("setjmp");
6625 longjmp_libfunc = init_one_libfunc ("longjmp");
6626 #endif
6627 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6628 unwind_sjlj_unregister_libfunc
6629 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6631 /* For function entry/exit instrumentation. */
6632 profile_function_entry_libfunc
6633 = init_one_libfunc ("__cyg_profile_func_enter");
6634 profile_function_exit_libfunc
6635 = init_one_libfunc ("__cyg_profile_func_exit");
6637 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6639 /* Allow the target to add more libcalls or rename some, etc. */
6640 targetm.init_libfuncs ();
6642 reinit = true;
6645 /* Print information about the current contents of the optabs on
6646 STDERR. */
6648 void
6649 debug_optab_libfuncs (void)
6651 int i;
6652 int j;
6653 int k;
6655 /* Dump the arithmetic optabs. */
6656 for (i = 0; i != (int) OTI_MAX; i++)
6657 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6659 optab o;
6660 rtx l;
6662 o = &optab_table[i];
6663 l = optab_libfunc (o, (enum machine_mode) j);
6664 if (l)
6666 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6667 fprintf (stderr, "%s\t%s:\t%s\n",
6668 GET_RTX_NAME (o->code),
6669 GET_MODE_NAME (j),
6670 XSTR (l, 0));
6674 /* Dump the conversion optabs. */
6675 for (i = 0; i < (int) COI_MAX; ++i)
6676 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6677 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6679 convert_optab o;
6680 rtx l;
6682 o = &convert_optab_table[i];
6683 l = convert_optab_libfunc (o, (enum machine_mode) j,
6684 (enum machine_mode) k);
6685 if (l)
6687 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6688 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6689 GET_RTX_NAME (o->code),
6690 GET_MODE_NAME (j),
6691 GET_MODE_NAME (k),
6692 XSTR (l, 0));
6698 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6699 CODE. Return 0 on failure. */
6702 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6704 enum machine_mode mode = GET_MODE (op1);
6705 enum insn_code icode;
6706 rtx insn;
6707 rtx trap_rtx;
6709 if (mode == VOIDmode)
6710 return 0;
6712 icode = optab_handler (ctrap_optab, mode)->insn_code;
6713 if (icode == CODE_FOR_nothing)
6714 return 0;
6716 /* Some targets only accept a zero trap code. */
6717 if (insn_data[icode].operand[3].predicate
6718 && !insn_data[icode].operand[3].predicate (tcode, VOIDmode))
6719 return 0;
6721 do_pending_stack_adjust ();
6722 start_sequence ();
6723 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6724 &trap_rtx, &mode);
6725 if (!trap_rtx)
6726 insn = NULL_RTX;
6727 else
6728 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6729 tcode);
6731 /* If that failed, then give up. */
6732 if (insn == 0)
6734 end_sequence ();
6735 return 0;
6738 emit_insn (insn);
6739 insn = get_insns ();
6740 end_sequence ();
6741 return insn;
6744 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6745 or unsigned operation code. */
6747 static enum rtx_code
6748 get_rtx_code (enum tree_code tcode, bool unsignedp)
6750 enum rtx_code code;
6751 switch (tcode)
6753 case EQ_EXPR:
6754 code = EQ;
6755 break;
6756 case NE_EXPR:
6757 code = NE;
6758 break;
6759 case LT_EXPR:
6760 code = unsignedp ? LTU : LT;
6761 break;
6762 case LE_EXPR:
6763 code = unsignedp ? LEU : LE;
6764 break;
6765 case GT_EXPR:
6766 code = unsignedp ? GTU : GT;
6767 break;
6768 case GE_EXPR:
6769 code = unsignedp ? GEU : GE;
6770 break;
6772 case UNORDERED_EXPR:
6773 code = UNORDERED;
6774 break;
6775 case ORDERED_EXPR:
6776 code = ORDERED;
6777 break;
6778 case UNLT_EXPR:
6779 code = UNLT;
6780 break;
6781 case UNLE_EXPR:
6782 code = UNLE;
6783 break;
6784 case UNGT_EXPR:
6785 code = UNGT;
6786 break;
6787 case UNGE_EXPR:
6788 code = UNGE;
6789 break;
6790 case UNEQ_EXPR:
6791 code = UNEQ;
6792 break;
6793 case LTGT_EXPR:
6794 code = LTGT;
6795 break;
6797 default:
6798 gcc_unreachable ();
6800 return code;
6803 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6804 unsigned operators. Do not generate compare instruction. */
6806 static rtx
6807 vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
6809 enum rtx_code rcode;
6810 tree t_op0, t_op1;
6811 rtx rtx_op0, rtx_op1;
6813 /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
6814 ensures that condition is a relational operation. */
6815 gcc_assert (COMPARISON_CLASS_P (cond));
6817 rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
6818 t_op0 = TREE_OPERAND (cond, 0);
6819 t_op1 = TREE_OPERAND (cond, 1);
6821 /* Expand operands. */
6822 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6823 EXPAND_STACK_PARM);
6824 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6825 EXPAND_STACK_PARM);
6827 if (!insn_data[icode].operand[4].predicate (rtx_op0, GET_MODE (rtx_op0))
6828 && GET_MODE (rtx_op0) != VOIDmode)
6829 rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0);
6831 if (!insn_data[icode].operand[5].predicate (rtx_op1, GET_MODE (rtx_op1))
6832 && GET_MODE (rtx_op1) != VOIDmode)
6833 rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
6835 return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1);
6838 /* Return insn code for TYPE, the type of a VEC_COND_EXPR. */
6840 static inline enum insn_code
6841 get_vcond_icode (tree type, enum machine_mode mode)
6843 enum insn_code icode = CODE_FOR_nothing;
6845 if (TYPE_UNSIGNED (type))
6846 icode = vcondu_gen_code[mode];
6847 else
6848 icode = vcond_gen_code[mode];
6849 return icode;
6852 /* Return TRUE iff, appropriate vector insns are available
6853 for vector cond expr with type TYPE in VMODE mode. */
6855 bool
6856 expand_vec_cond_expr_p (tree type, enum machine_mode vmode)
6858 if (get_vcond_icode (type, vmode) == CODE_FOR_nothing)
6859 return false;
6860 return true;
6863 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6864 three operands. */
6867 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6868 rtx target)
6870 enum insn_code icode;
6871 rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1;
6872 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6873 bool unsignedp = TYPE_UNSIGNED (vec_cond_type);
6875 icode = get_vcond_icode (vec_cond_type, mode);
6876 if (icode == CODE_FOR_nothing)
6877 return 0;
6879 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6880 target = gen_reg_rtx (mode);
6882 /* Get comparison rtx. First expand both cond expr operands. */
6883 comparison = vector_compare_rtx (op0,
6884 unsignedp, icode);
6885 cc_op0 = XEXP (comparison, 0);
6886 cc_op1 = XEXP (comparison, 1);
6887 /* Expand both operands and force them in reg, if required. */
6888 rtx_op1 = expand_normal (op1);
6889 if (!insn_data[icode].operand[1].predicate (rtx_op1, mode)
6890 && mode != VOIDmode)
6891 rtx_op1 = force_reg (mode, rtx_op1);
6893 rtx_op2 = expand_normal (op2);
6894 if (!insn_data[icode].operand[2].predicate (rtx_op2, mode)
6895 && mode != VOIDmode)
6896 rtx_op2 = force_reg (mode, rtx_op2);
6898 /* Emit instruction! */
6899 emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2,
6900 comparison, cc_op0, cc_op1));
6902 return target;
6906 /* This is an internal subroutine of the other compare_and_swap expanders.
6907 MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
6908 operation. TARGET is an optional place to store the value result of
6909 the operation. ICODE is the particular instruction to expand. Return
6910 the result of the operation. */
6912 static rtx
6913 expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
6914 rtx target, enum insn_code icode)
6916 enum machine_mode mode = GET_MODE (mem);
6917 rtx insn;
6919 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6920 target = gen_reg_rtx (mode);
6922 if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode)
6923 old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1);
6924 if (!insn_data[icode].operand[2].predicate (old_val, mode))
6925 old_val = force_reg (mode, old_val);
6927 if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode)
6928 new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1);
6929 if (!insn_data[icode].operand[3].predicate (new_val, mode))
6930 new_val = force_reg (mode, new_val);
6932 insn = GEN_FCN (icode) (target, mem, old_val, new_val);
6933 if (insn == NULL_RTX)
6934 return NULL_RTX;
6935 emit_insn (insn);
6937 return target;
6940 /* Expand a compare-and-swap operation and return its value. */
6943 expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6945 enum machine_mode mode = GET_MODE (mem);
6946 enum insn_code icode = sync_compare_and_swap[mode];
6948 if (icode == CODE_FOR_nothing)
6949 return NULL_RTX;
6951 return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
6954 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6955 pattern. */
6957 static void
6958 find_cc_set (rtx x, const_rtx pat, void *data)
6960 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6961 && GET_CODE (pat) == SET)
6963 rtx *p_cc_reg = (rtx *) data;
6964 gcc_assert (!*p_cc_reg);
6965 *p_cc_reg = x;
6969 /* Expand a compare-and-swap operation and store true into the result if
6970 the operation was successful and false otherwise. Return the result.
6971 Unlike other routines, TARGET is not optional. */
6974 expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6976 enum machine_mode mode = GET_MODE (mem);
6977 enum insn_code icode;
6978 rtx subtarget, seq, cc_reg;
6980 /* If the target supports a compare-and-swap pattern that simultaneously
6981 sets some flag for success, then use it. Otherwise use the regular
6982 compare-and-swap and follow that immediately with a compare insn. */
6983 icode = sync_compare_and_swap[mode];
6984 if (icode == CODE_FOR_nothing)
6985 return NULL_RTX;
6989 start_sequence ();
6990 subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
6991 NULL_RTX, icode);
6992 cc_reg = NULL_RTX;
6993 if (subtarget == NULL_RTX)
6995 end_sequence ();
6996 return NULL_RTX;
6999 if (have_insn_for (COMPARE, CCmode))
7000 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7001 seq = get_insns ();
7002 end_sequence ();
7004 /* We might be comparing against an old value. Try again. :-( */
7005 if (!cc_reg && MEM_P (old_val))
7007 seq = NULL_RTX;
7008 old_val = force_reg (mode, old_val);
7011 while (!seq);
7013 emit_insn (seq);
7014 if (cc_reg)
7015 return emit_store_flag_force (target, EQ, cc_reg, const0_rtx, VOIDmode, 0, 1);
7016 else
7017 return emit_store_flag_force (target, EQ, subtarget, old_val, VOIDmode, 1, 1);
7020 /* This is a helper function for the other atomic operations. This function
7021 emits a loop that contains SEQ that iterates until a compare-and-swap
7022 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7023 a set of instructions that takes a value from OLD_REG as an input and
7024 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7025 set to the current contents of MEM. After SEQ, a compare-and-swap will
7026 attempt to update MEM with NEW_REG. The function returns true when the
7027 loop was generated successfully. */
7029 static bool
7030 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7032 enum machine_mode mode = GET_MODE (mem);
7033 enum insn_code icode;
7034 rtx label, cmp_reg, subtarget, cc_reg;
7036 /* The loop we want to generate looks like
7038 cmp_reg = mem;
7039 label:
7040 old_reg = cmp_reg;
7041 seq;
7042 cmp_reg = compare-and-swap(mem, old_reg, new_reg)
7043 if (cmp_reg != old_reg)
7044 goto label;
7046 Note that we only do the plain load from memory once. Subsequent
7047 iterations use the value loaded by the compare-and-swap pattern. */
7049 label = gen_label_rtx ();
7050 cmp_reg = gen_reg_rtx (mode);
7052 emit_move_insn (cmp_reg, mem);
7053 emit_label (label);
7054 emit_move_insn (old_reg, cmp_reg);
7055 if (seq)
7056 emit_insn (seq);
7058 /* If the target supports a compare-and-swap pattern that simultaneously
7059 sets some flag for success, then use it. Otherwise use the regular
7060 compare-and-swap and follow that immediately with a compare insn. */
7061 icode = sync_compare_and_swap[mode];
7062 if (icode == CODE_FOR_nothing)
7063 return false;
7065 subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
7066 cmp_reg, icode);
7067 if (subtarget == NULL_RTX)
7068 return false;
7070 cc_reg = NULL_RTX;
7071 if (have_insn_for (COMPARE, CCmode))
7072 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7073 if (cc_reg)
7075 cmp_reg = cc_reg;
7076 old_reg = const0_rtx;
7078 else
7080 if (subtarget != cmp_reg)
7081 emit_move_insn (cmp_reg, subtarget);
7084 /* ??? Mark this jump predicted not taken? */
7085 emit_cmp_and_jump_insns (cmp_reg, old_reg, NE, const0_rtx, GET_MODE (cmp_reg), 1,
7086 label);
7087 return true;
7090 /* This function generates the atomic operation MEM CODE= VAL. In this
7091 case, we do not care about any resulting value. Returns NULL if we
7092 cannot generate the operation. */
7095 expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
7097 enum machine_mode mode = GET_MODE (mem);
7098 enum insn_code icode;
7099 rtx insn;
7101 /* Look to see if the target supports the operation directly. */
7102 switch (code)
7104 case PLUS:
7105 icode = sync_add_optab[mode];
7106 break;
7107 case IOR:
7108 icode = sync_ior_optab[mode];
7109 break;
7110 case XOR:
7111 icode = sync_xor_optab[mode];
7112 break;
7113 case AND:
7114 icode = sync_and_optab[mode];
7115 break;
7116 case NOT:
7117 icode = sync_nand_optab[mode];
7118 break;
7120 case MINUS:
7121 icode = sync_sub_optab[mode];
7122 if (icode == CODE_FOR_nothing || CONST_INT_P (val))
7124 icode = sync_add_optab[mode];
7125 if (icode != CODE_FOR_nothing)
7127 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7128 code = PLUS;
7131 break;
7133 default:
7134 gcc_unreachable ();
7137 /* Generate the direct operation, if present. */
7138 if (icode != CODE_FOR_nothing)
7140 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7141 val = convert_modes (mode, GET_MODE (val), val, 1);
7142 if (!insn_data[icode].operand[1].predicate (val, mode))
7143 val = force_reg (mode, val);
7145 insn = GEN_FCN (icode) (mem, val);
7146 if (insn)
7148 emit_insn (insn);
7149 return const0_rtx;
7153 /* Failing that, generate a compare-and-swap loop in which we perform the
7154 operation with normal arithmetic instructions. */
7155 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7157 rtx t0 = gen_reg_rtx (mode), t1;
7159 start_sequence ();
7161 t1 = t0;
7162 if (code == NOT)
7164 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7165 true, OPTAB_LIB_WIDEN);
7166 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7168 else
7169 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7170 true, OPTAB_LIB_WIDEN);
7171 insn = get_insns ();
7172 end_sequence ();
7174 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7175 return const0_rtx;
7178 return NULL_RTX;
7181 /* This function generates the atomic operation MEM CODE= VAL. In this
7182 case, we do care about the resulting value: if AFTER is true then
7183 return the value MEM holds after the operation, if AFTER is false
7184 then return the value MEM holds before the operation. TARGET is an
7185 optional place for the result value to be stored. */
7188 expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
7189 bool after, rtx target)
7191 enum machine_mode mode = GET_MODE (mem);
7192 enum insn_code old_code, new_code, icode;
7193 bool compensate;
7194 rtx insn;
7196 /* Look to see if the target supports the operation directly. */
7197 switch (code)
7199 case PLUS:
7200 old_code = sync_old_add_optab[mode];
7201 new_code = sync_new_add_optab[mode];
7202 break;
7203 case IOR:
7204 old_code = sync_old_ior_optab[mode];
7205 new_code = sync_new_ior_optab[mode];
7206 break;
7207 case XOR:
7208 old_code = sync_old_xor_optab[mode];
7209 new_code = sync_new_xor_optab[mode];
7210 break;
7211 case AND:
7212 old_code = sync_old_and_optab[mode];
7213 new_code = sync_new_and_optab[mode];
7214 break;
7215 case NOT:
7216 old_code = sync_old_nand_optab[mode];
7217 new_code = sync_new_nand_optab[mode];
7218 break;
7220 case MINUS:
7221 old_code = sync_old_sub_optab[mode];
7222 new_code = sync_new_sub_optab[mode];
7223 if ((old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
7224 || CONST_INT_P (val))
7226 old_code = sync_old_add_optab[mode];
7227 new_code = sync_new_add_optab[mode];
7228 if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
7230 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7231 code = PLUS;
7234 break;
7236 default:
7237 gcc_unreachable ();
7240 /* If the target does supports the proper new/old operation, great. But
7241 if we only support the opposite old/new operation, check to see if we
7242 can compensate. In the case in which the old value is supported, then
7243 we can always perform the operation again with normal arithmetic. In
7244 the case in which the new value is supported, then we can only handle
7245 this in the case the operation is reversible. */
7246 compensate = false;
7247 if (after)
7249 icode = new_code;
7250 if (icode == CODE_FOR_nothing)
7252 icode = old_code;
7253 if (icode != CODE_FOR_nothing)
7254 compensate = true;
7257 else
7259 icode = old_code;
7260 if (icode == CODE_FOR_nothing
7261 && (code == PLUS || code == MINUS || code == XOR))
7263 icode = new_code;
7264 if (icode != CODE_FOR_nothing)
7265 compensate = true;
7269 /* If we found something supported, great. */
7270 if (icode != CODE_FOR_nothing)
7272 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7273 target = gen_reg_rtx (mode);
7275 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7276 val = convert_modes (mode, GET_MODE (val), val, 1);
7277 if (!insn_data[icode].operand[2].predicate (val, mode))
7278 val = force_reg (mode, val);
7280 insn = GEN_FCN (icode) (target, mem, val);
7281 if (insn)
7283 emit_insn (insn);
7285 /* If we need to compensate for using an operation with the
7286 wrong return value, do so now. */
7287 if (compensate)
7289 if (!after)
7291 if (code == PLUS)
7292 code = MINUS;
7293 else if (code == MINUS)
7294 code = PLUS;
7297 if (code == NOT)
7299 target = expand_simple_binop (mode, AND, target, val,
7300 NULL_RTX, true,
7301 OPTAB_LIB_WIDEN);
7302 target = expand_simple_unop (mode, code, target,
7303 NULL_RTX, true);
7305 else
7306 target = expand_simple_binop (mode, code, target, val,
7307 NULL_RTX, true,
7308 OPTAB_LIB_WIDEN);
7311 return target;
7315 /* Failing that, generate a compare-and-swap loop in which we perform the
7316 operation with normal arithmetic instructions. */
7317 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7319 rtx t0 = gen_reg_rtx (mode), t1;
7321 if (!target || !register_operand (target, mode))
7322 target = gen_reg_rtx (mode);
7324 start_sequence ();
7326 if (!after)
7327 emit_move_insn (target, t0);
7328 t1 = t0;
7329 if (code == NOT)
7331 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7332 true, OPTAB_LIB_WIDEN);
7333 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7335 else
7336 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7337 true, OPTAB_LIB_WIDEN);
7338 if (after)
7339 emit_move_insn (target, t1);
7341 insn = get_insns ();
7342 end_sequence ();
7344 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7345 return target;
7348 return NULL_RTX;
7351 /* This function expands a test-and-set operation. Ideally we atomically
7352 store VAL in MEM and return the previous value in MEM. Some targets
7353 may not support this operation and only support VAL with the constant 1;
7354 in this case while the return value will be 0/1, but the exact value
7355 stored in MEM is target defined. TARGET is an option place to stick
7356 the return value. */
7359 expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
7361 enum machine_mode mode = GET_MODE (mem);
7362 enum insn_code icode;
7363 rtx insn;
7365 /* If the target supports the test-and-set directly, great. */
7366 icode = sync_lock_test_and_set[mode];
7367 if (icode != CODE_FOR_nothing)
7369 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7370 target = gen_reg_rtx (mode);
7372 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7373 val = convert_modes (mode, GET_MODE (val), val, 1);
7374 if (!insn_data[icode].operand[2].predicate (val, mode))
7375 val = force_reg (mode, val);
7377 insn = GEN_FCN (icode) (target, mem, val);
7378 if (insn)
7380 emit_insn (insn);
7381 return target;
7385 /* Otherwise, use a compare-and-swap loop for the exchange. */
7386 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7388 if (!target || !register_operand (target, mode))
7389 target = gen_reg_rtx (mode);
7390 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7391 val = convert_modes (mode, GET_MODE (val), val, 1);
7392 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7393 return target;
7396 return NULL_RTX;
7399 #include "gt-optabs.h"