Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / function.c
blob3257254429867387cd49a93833539e546e9665a1
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
133 /* Forward declarations. */
135 static struct temp_slot *find_temp_slot_from_address (rtx);
136 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
137 static void pad_below (struct args_size *, enum machine_mode, tree);
138 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
139 static int all_blocks (tree, tree *);
140 static tree *get_block_vector (tree, int *);
141 extern tree debug_find_var_in_block_tree (tree, tree);
142 /* We always define `record_insns' even if it's not used so that we
143 can always export `prologue_epilogue_contains'. */
144 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
145 static bool contains (const_rtx, htab_t);
146 #ifdef HAVE_return
147 static void emit_return_into_block (basic_block);
148 #endif
149 static void prepare_function_start (void);
150 static void do_clobber_return_reg (rtx, void *);
151 static void do_use_return_reg (rtx, void *);
152 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
154 /* Stack of nested functions. */
155 /* Keep track of the cfun stack. */
157 typedef struct function *function_p;
159 DEF_VEC_P(function_p);
160 DEF_VEC_ALLOC_P(function_p,heap);
161 static VEC(function_p,heap) *function_context_stack;
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
166 void
167 push_function_context (void)
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
172 VEC_safe_push (function_p, heap, function_context_stack, cfun);
173 set_cfun (NULL);
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
179 void
180 pop_function_context (void)
182 struct function *p = VEC_pop (function_p, function_context_stack);
183 set_cfun (p);
184 current_function_decl = p->decl;
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
195 void
196 free_after_parsing (struct function *f)
198 f->language = 0;
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
205 void
206 free_after_compilation (struct function *f)
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
211 if (crtl->emit.regno_pointer_align)
212 free (crtl->emit.regno_pointer_align);
214 memset (crtl, 0, sizeof (struct rtl_data));
215 f->eh = NULL;
216 f->machine = NULL;
217 f->cfg = NULL;
219 regno_reg_rtx = NULL;
220 insn_locators_free ();
223 /* Return size needed for stack frame based on slots so far allocated.
224 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
225 the caller may have to do that. */
227 HOST_WIDE_INT
228 get_frame_size (void)
230 if (FRAME_GROWS_DOWNWARD)
231 return -frame_offset;
232 else
233 return frame_offset;
236 /* Issue an error message and return TRUE if frame OFFSET overflows in
237 the signed target pointer arithmetics for function FUNC. Otherwise
238 return FALSE. */
240 bool
241 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
243 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
245 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
246 /* Leave room for the fixed part of the frame. */
247 - 64 * UNITS_PER_WORD)
249 error_at (DECL_SOURCE_LOCATION (func),
250 "total size of local objects too large");
251 return TRUE;
254 return FALSE;
257 /* Return stack slot alignment in bits for TYPE and MODE. */
259 static unsigned int
260 get_stack_local_alignment (tree type, enum machine_mode mode)
262 unsigned int alignment;
264 if (mode == BLKmode)
265 alignment = BIGGEST_ALIGNMENT;
266 else
267 alignment = GET_MODE_ALIGNMENT (mode);
269 /* Allow the frond-end to (possibly) increase the alignment of this
270 stack slot. */
271 if (! type)
272 type = lang_hooks.types.type_for_mode (mode, 0);
274 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
277 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
278 with machine mode MODE.
280 ALIGN controls the amount of alignment for the address of the slot:
281 0 means according to MODE,
282 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
283 -2 means use BITS_PER_UNIT,
284 positive specifies alignment boundary in bits.
286 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
288 We do not round to stack_boundary here. */
291 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
292 int align,
293 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
295 rtx x, addr;
296 int bigend_correction = 0;
297 unsigned int alignment, alignment_in_bits;
298 int frame_off, frame_alignment, frame_phase;
300 if (align == 0)
302 alignment = get_stack_local_alignment (NULL, mode);
303 alignment /= BITS_PER_UNIT;
305 else if (align == -1)
307 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
308 size = CEIL_ROUND (size, alignment);
310 else if (align == -2)
311 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
312 else
313 alignment = align / BITS_PER_UNIT;
315 alignment_in_bits = alignment * BITS_PER_UNIT;
317 if (FRAME_GROWS_DOWNWARD)
318 frame_offset -= size;
320 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
321 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
323 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
324 alignment = alignment_in_bits / BITS_PER_UNIT;
327 if (SUPPORTS_STACK_ALIGNMENT)
329 if (crtl->stack_alignment_estimated < alignment_in_bits)
331 if (!crtl->stack_realign_processed)
332 crtl->stack_alignment_estimated = alignment_in_bits;
333 else
335 /* If stack is realigned and stack alignment value
336 hasn't been finalized, it is OK not to increase
337 stack_alignment_estimated. The bigger alignment
338 requirement is recorded in stack_alignment_needed
339 below. */
340 gcc_assert (!crtl->stack_realign_finalized);
341 if (!crtl->stack_realign_needed)
343 /* It is OK to reduce the alignment as long as the
344 requested size is 0 or the estimated stack
345 alignment >= mode alignment. */
346 gcc_assert (reduce_alignment_ok
347 || size == 0
348 || (crtl->stack_alignment_estimated
349 >= GET_MODE_ALIGNMENT (mode)));
350 alignment_in_bits = crtl->stack_alignment_estimated;
351 alignment = alignment_in_bits / BITS_PER_UNIT;
357 if (crtl->stack_alignment_needed < alignment_in_bits)
358 crtl->stack_alignment_needed = alignment_in_bits;
359 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
360 crtl->max_used_stack_slot_alignment = alignment_in_bits;
362 /* Calculate how many bytes the start of local variables is off from
363 stack alignment. */
364 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
365 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
366 frame_phase = frame_off ? frame_alignment - frame_off : 0;
368 /* Round the frame offset to the specified alignment. The default is
369 to always honor requests to align the stack but a port may choose to
370 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
371 if (STACK_ALIGNMENT_NEEDED
372 || mode != BLKmode
373 || size != 0)
375 /* We must be careful here, since FRAME_OFFSET might be negative and
376 division with a negative dividend isn't as well defined as we might
377 like. So we instead assume that ALIGNMENT is a power of two and
378 use logical operations which are unambiguous. */
379 if (FRAME_GROWS_DOWNWARD)
380 frame_offset
381 = (FLOOR_ROUND (frame_offset - frame_phase,
382 (unsigned HOST_WIDE_INT) alignment)
383 + frame_phase);
384 else
385 frame_offset
386 = (CEIL_ROUND (frame_offset - frame_phase,
387 (unsigned HOST_WIDE_INT) alignment)
388 + frame_phase);
391 /* On a big-endian machine, if we are allocating more space than we will use,
392 use the least significant bytes of those that are allocated. */
393 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
394 bigend_correction = size - GET_MODE_SIZE (mode);
396 /* If we have already instantiated virtual registers, return the actual
397 address relative to the frame pointer. */
398 if (virtuals_instantiated)
399 addr = plus_constant (frame_pointer_rtx,
400 trunc_int_for_mode
401 (frame_offset + bigend_correction
402 + STARTING_FRAME_OFFSET, Pmode));
403 else
404 addr = plus_constant (virtual_stack_vars_rtx,
405 trunc_int_for_mode
406 (frame_offset + bigend_correction,
407 Pmode));
409 if (!FRAME_GROWS_DOWNWARD)
410 frame_offset += size;
412 x = gen_rtx_MEM (mode, addr);
413 set_mem_align (x, alignment_in_bits);
414 MEM_NOTRAP_P (x) = 1;
416 stack_slot_list
417 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
419 if (frame_offset_overflow (frame_offset, current_function_decl))
420 frame_offset = 0;
422 return x;
425 /* Wrap up assign_stack_local_1 with last parameter as false. */
428 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
430 return assign_stack_local_1 (mode, size, align, false);
434 /* In order to evaluate some expressions, such as function calls returning
435 structures in memory, we need to temporarily allocate stack locations.
436 We record each allocated temporary in the following structure.
438 Associated with each temporary slot is a nesting level. When we pop up
439 one level, all temporaries associated with the previous level are freed.
440 Normally, all temporaries are freed after the execution of the statement
441 in which they were created. However, if we are inside a ({...}) grouping,
442 the result may be in a temporary and hence must be preserved. If the
443 result could be in a temporary, we preserve it if we can determine which
444 one it is in. If we cannot determine which temporary may contain the
445 result, all temporaries are preserved. A temporary is preserved by
446 pretending it was allocated at the previous nesting level.
448 Automatic variables are also assigned temporary slots, at the nesting
449 level where they are defined. They are marked a "kept" so that
450 free_temp_slots will not free them. */
452 struct GTY(()) temp_slot {
453 /* Points to next temporary slot. */
454 struct temp_slot *next;
455 /* Points to previous temporary slot. */
456 struct temp_slot *prev;
457 /* The rtx to used to reference the slot. */
458 rtx slot;
459 /* The size, in units, of the slot. */
460 HOST_WIDE_INT size;
461 /* The type of the object in the slot, or zero if it doesn't correspond
462 to a type. We use this to determine whether a slot can be reused.
463 It can be reused if objects of the type of the new slot will always
464 conflict with objects of the type of the old slot. */
465 tree type;
466 /* The alignment (in bits) of the slot. */
467 unsigned int align;
468 /* Nonzero if this temporary is currently in use. */
469 char in_use;
470 /* Nonzero if this temporary has its address taken. */
471 char addr_taken;
472 /* Nesting level at which this slot is being used. */
473 int level;
474 /* Nonzero if this should survive a call to free_temp_slots. */
475 int keep;
476 /* The offset of the slot from the frame_pointer, including extra space
477 for alignment. This info is for combine_temp_slots. */
478 HOST_WIDE_INT base_offset;
479 /* The size of the slot, including extra space for alignment. This
480 info is for combine_temp_slots. */
481 HOST_WIDE_INT full_size;
484 /* A table of addresses that represent a stack slot. The table is a mapping
485 from address RTXen to a temp slot. */
486 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
488 /* Entry for the above hash table. */
489 struct GTY(()) temp_slot_address_entry {
490 hashval_t hash;
491 rtx address;
492 struct temp_slot *temp_slot;
495 /* Removes temporary slot TEMP from LIST. */
497 static void
498 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
500 if (temp->next)
501 temp->next->prev = temp->prev;
502 if (temp->prev)
503 temp->prev->next = temp->next;
504 else
505 *list = temp->next;
507 temp->prev = temp->next = NULL;
510 /* Inserts temporary slot TEMP to LIST. */
512 static void
513 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
515 temp->next = *list;
516 if (*list)
517 (*list)->prev = temp;
518 temp->prev = NULL;
519 *list = temp;
522 /* Returns the list of used temp slots at LEVEL. */
524 static struct temp_slot **
525 temp_slots_at_level (int level)
527 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
528 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
530 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
533 /* Returns the maximal temporary slot level. */
535 static int
536 max_slot_level (void)
538 if (!used_temp_slots)
539 return -1;
541 return VEC_length (temp_slot_p, used_temp_slots) - 1;
544 /* Moves temporary slot TEMP to LEVEL. */
546 static void
547 move_slot_to_level (struct temp_slot *temp, int level)
549 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
550 insert_slot_to_list (temp, temp_slots_at_level (level));
551 temp->level = level;
554 /* Make temporary slot TEMP available. */
556 static void
557 make_slot_available (struct temp_slot *temp)
559 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
560 insert_slot_to_list (temp, &avail_temp_slots);
561 temp->in_use = 0;
562 temp->level = -1;
565 /* Compute the hash value for an address -> temp slot mapping.
566 The value is cached on the mapping entry. */
567 static hashval_t
568 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
570 int do_not_record = 0;
571 return hash_rtx (t->address, GET_MODE (t->address),
572 &do_not_record, NULL, false);
575 /* Return the hash value for an address -> temp slot mapping. */
576 static hashval_t
577 temp_slot_address_hash (const void *p)
579 const struct temp_slot_address_entry *t;
580 t = (const struct temp_slot_address_entry *) p;
581 return t->hash;
584 /* Compare two address -> temp slot mapping entries. */
585 static int
586 temp_slot_address_eq (const void *p1, const void *p2)
588 const struct temp_slot_address_entry *t1, *t2;
589 t1 = (const struct temp_slot_address_entry *) p1;
590 t2 = (const struct temp_slot_address_entry *) p2;
591 return exp_equiv_p (t1->address, t2->address, 0, true);
594 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
595 static void
596 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
598 void **slot;
599 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
600 t->address = address;
601 t->temp_slot = temp_slot;
602 t->hash = temp_slot_address_compute_hash (t);
603 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
604 *slot = t;
607 /* Remove an address -> temp slot mapping entry if the temp slot is
608 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
609 static int
610 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
612 const struct temp_slot_address_entry *t;
613 t = (const struct temp_slot_address_entry *) *slot;
614 if (! t->temp_slot->in_use)
615 *slot = NULL;
616 return 1;
619 /* Remove all mappings of addresses to unused temp slots. */
620 static void
621 remove_unused_temp_slot_addresses (void)
623 htab_traverse (temp_slot_address_table,
624 remove_unused_temp_slot_addresses_1,
625 NULL);
628 /* Find the temp slot corresponding to the object at address X. */
630 static struct temp_slot *
631 find_temp_slot_from_address (rtx x)
633 struct temp_slot *p;
634 struct temp_slot_address_entry tmp, *t;
636 /* First try the easy way:
637 See if X exists in the address -> temp slot mapping. */
638 tmp.address = x;
639 tmp.temp_slot = NULL;
640 tmp.hash = temp_slot_address_compute_hash (&tmp);
641 t = (struct temp_slot_address_entry *)
642 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
643 if (t)
644 return t->temp_slot;
646 /* If we have a sum involving a register, see if it points to a temp
647 slot. */
648 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
649 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
650 return p;
651 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
652 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
653 return p;
655 /* Last resort: Address is a virtual stack var address. */
656 if (GET_CODE (x) == PLUS
657 && XEXP (x, 0) == virtual_stack_vars_rtx
658 && CONST_INT_P (XEXP (x, 1)))
660 int i;
661 for (i = max_slot_level (); i >= 0; i--)
662 for (p = *temp_slots_at_level (i); p; p = p->next)
664 if (INTVAL (XEXP (x, 1)) >= p->base_offset
665 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
666 return p;
670 return NULL;
673 /* Allocate a temporary stack slot and record it for possible later
674 reuse.
676 MODE is the machine mode to be given to the returned rtx.
678 SIZE is the size in units of the space required. We do no rounding here
679 since assign_stack_local will do any required rounding.
681 KEEP is 1 if this slot is to be retained after a call to
682 free_temp_slots. Automatic variables for a block are allocated
683 with this flag. KEEP values of 2 or 3 were needed respectively
684 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
685 or for SAVE_EXPRs, but they are now unused.
687 TYPE is the type that will be used for the stack slot. */
690 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
691 int keep, tree type)
693 unsigned int align;
694 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
695 rtx slot;
697 /* If SIZE is -1 it means that somebody tried to allocate a temporary
698 of a variable size. */
699 gcc_assert (size != -1);
701 /* These are now unused. */
702 gcc_assert (keep <= 1);
704 align = get_stack_local_alignment (type, mode);
706 /* Try to find an available, already-allocated temporary of the proper
707 mode which meets the size and alignment requirements. Choose the
708 smallest one with the closest alignment.
710 If assign_stack_temp is called outside of the tree->rtl expansion,
711 we cannot reuse the stack slots (that may still refer to
712 VIRTUAL_STACK_VARS_REGNUM). */
713 if (!virtuals_instantiated)
715 for (p = avail_temp_slots; p; p = p->next)
717 if (p->align >= align && p->size >= size
718 && GET_MODE (p->slot) == mode
719 && objects_must_conflict_p (p->type, type)
720 && (best_p == 0 || best_p->size > p->size
721 || (best_p->size == p->size && best_p->align > p->align)))
723 if (p->align == align && p->size == size)
725 selected = p;
726 cut_slot_from_list (selected, &avail_temp_slots);
727 best_p = 0;
728 break;
730 best_p = p;
735 /* Make our best, if any, the one to use. */
736 if (best_p)
738 selected = best_p;
739 cut_slot_from_list (selected, &avail_temp_slots);
741 /* If there are enough aligned bytes left over, make them into a new
742 temp_slot so that the extra bytes don't get wasted. Do this only
743 for BLKmode slots, so that we can be sure of the alignment. */
744 if (GET_MODE (best_p->slot) == BLKmode)
746 int alignment = best_p->align / BITS_PER_UNIT;
747 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
749 if (best_p->size - rounded_size >= alignment)
751 p = GGC_NEW (struct temp_slot);
752 p->in_use = p->addr_taken = 0;
753 p->size = best_p->size - rounded_size;
754 p->base_offset = best_p->base_offset + rounded_size;
755 p->full_size = best_p->full_size - rounded_size;
756 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
757 p->align = best_p->align;
758 p->type = best_p->type;
759 insert_slot_to_list (p, &avail_temp_slots);
761 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
762 stack_slot_list);
764 best_p->size = rounded_size;
765 best_p->full_size = rounded_size;
770 /* If we still didn't find one, make a new temporary. */
771 if (selected == 0)
773 HOST_WIDE_INT frame_offset_old = frame_offset;
775 p = GGC_NEW (struct temp_slot);
777 /* We are passing an explicit alignment request to assign_stack_local.
778 One side effect of that is assign_stack_local will not round SIZE
779 to ensure the frame offset remains suitably aligned.
781 So for requests which depended on the rounding of SIZE, we go ahead
782 and round it now. We also make sure ALIGNMENT is at least
783 BIGGEST_ALIGNMENT. */
784 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
785 p->slot = assign_stack_local (mode,
786 (mode == BLKmode
787 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
788 : size),
789 align);
791 p->align = align;
793 /* The following slot size computation is necessary because we don't
794 know the actual size of the temporary slot until assign_stack_local
795 has performed all the frame alignment and size rounding for the
796 requested temporary. Note that extra space added for alignment
797 can be either above or below this stack slot depending on which
798 way the frame grows. We include the extra space if and only if it
799 is above this slot. */
800 if (FRAME_GROWS_DOWNWARD)
801 p->size = frame_offset_old - frame_offset;
802 else
803 p->size = size;
805 /* Now define the fields used by combine_temp_slots. */
806 if (FRAME_GROWS_DOWNWARD)
808 p->base_offset = frame_offset;
809 p->full_size = frame_offset_old - frame_offset;
811 else
813 p->base_offset = frame_offset_old;
814 p->full_size = frame_offset - frame_offset_old;
817 selected = p;
820 p = selected;
821 p->in_use = 1;
822 p->addr_taken = 0;
823 p->type = type;
824 p->level = temp_slot_level;
825 p->keep = keep;
827 pp = temp_slots_at_level (p->level);
828 insert_slot_to_list (p, pp);
829 insert_temp_slot_address (XEXP (p->slot, 0), p);
831 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
832 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
833 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
835 /* If we know the alias set for the memory that will be used, use
836 it. If there's no TYPE, then we don't know anything about the
837 alias set for the memory. */
838 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
839 set_mem_align (slot, align);
841 /* If a type is specified, set the relevant flags. */
842 if (type != 0)
844 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
845 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
846 || TREE_CODE (type) == COMPLEX_TYPE));
848 MEM_NOTRAP_P (slot) = 1;
850 return slot;
853 /* Allocate a temporary stack slot and record it for possible later
854 reuse. First three arguments are same as in preceding function. */
857 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
859 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
862 /* Assign a temporary.
863 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
864 and so that should be used in error messages. In either case, we
865 allocate of the given type.
866 KEEP is as for assign_stack_temp.
867 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
868 it is 0 if a register is OK.
869 DONT_PROMOTE is 1 if we should not promote values in register
870 to wider modes. */
873 assign_temp (tree type_or_decl, int keep, int memory_required,
874 int dont_promote ATTRIBUTE_UNUSED)
876 tree type, decl;
877 enum machine_mode mode;
878 #ifdef PROMOTE_MODE
879 int unsignedp;
880 #endif
882 if (DECL_P (type_or_decl))
883 decl = type_or_decl, type = TREE_TYPE (decl);
884 else
885 decl = NULL, type = type_or_decl;
887 mode = TYPE_MODE (type);
888 #ifdef PROMOTE_MODE
889 unsignedp = TYPE_UNSIGNED (type);
890 #endif
892 if (mode == BLKmode || memory_required)
894 HOST_WIDE_INT size = int_size_in_bytes (type);
895 rtx tmp;
897 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
898 problems with allocating the stack space. */
899 if (size == 0)
900 size = 1;
902 /* Unfortunately, we don't yet know how to allocate variable-sized
903 temporaries. However, sometimes we can find a fixed upper limit on
904 the size, so try that instead. */
905 else if (size == -1)
906 size = max_int_size_in_bytes (type);
908 /* The size of the temporary may be too large to fit into an integer. */
909 /* ??? Not sure this should happen except for user silliness, so limit
910 this to things that aren't compiler-generated temporaries. The
911 rest of the time we'll die in assign_stack_temp_for_type. */
912 if (decl && size == -1
913 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
915 error ("size of variable %q+D is too large", decl);
916 size = 1;
919 tmp = assign_stack_temp_for_type (mode, size, keep, type);
920 return tmp;
923 #ifdef PROMOTE_MODE
924 if (! dont_promote)
925 mode = promote_mode (type, mode, &unsignedp);
926 #endif
928 return gen_reg_rtx (mode);
931 /* Combine temporary stack slots which are adjacent on the stack.
933 This allows for better use of already allocated stack space. This is only
934 done for BLKmode slots because we can be sure that we won't have alignment
935 problems in this case. */
937 static void
938 combine_temp_slots (void)
940 struct temp_slot *p, *q, *next, *next_q;
941 int num_slots;
943 /* We can't combine slots, because the information about which slot
944 is in which alias set will be lost. */
945 if (flag_strict_aliasing)
946 return;
948 /* If there are a lot of temp slots, don't do anything unless
949 high levels of optimization. */
950 if (! flag_expensive_optimizations)
951 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
952 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
953 return;
955 for (p = avail_temp_slots; p; p = next)
957 int delete_p = 0;
959 next = p->next;
961 if (GET_MODE (p->slot) != BLKmode)
962 continue;
964 for (q = p->next; q; q = next_q)
966 int delete_q = 0;
968 next_q = q->next;
970 if (GET_MODE (q->slot) != BLKmode)
971 continue;
973 if (p->base_offset + p->full_size == q->base_offset)
975 /* Q comes after P; combine Q into P. */
976 p->size += q->size;
977 p->full_size += q->full_size;
978 delete_q = 1;
980 else if (q->base_offset + q->full_size == p->base_offset)
982 /* P comes after Q; combine P into Q. */
983 q->size += p->size;
984 q->full_size += p->full_size;
985 delete_p = 1;
986 break;
988 if (delete_q)
989 cut_slot_from_list (q, &avail_temp_slots);
992 /* Either delete P or advance past it. */
993 if (delete_p)
994 cut_slot_from_list (p, &avail_temp_slots);
998 /* Indicate that NEW_RTX is an alternate way of referring to the temp
999 slot that previously was known by OLD_RTX. */
1001 void
1002 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1004 struct temp_slot *p;
1006 if (rtx_equal_p (old_rtx, new_rtx))
1007 return;
1009 p = find_temp_slot_from_address (old_rtx);
1011 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1012 NEW_RTX is a register, see if one operand of the PLUS is a
1013 temporary location. If so, NEW_RTX points into it. Otherwise,
1014 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1015 in common between them. If so, try a recursive call on those
1016 values. */
1017 if (p == 0)
1019 if (GET_CODE (old_rtx) != PLUS)
1020 return;
1022 if (REG_P (new_rtx))
1024 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1025 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1026 return;
1028 else if (GET_CODE (new_rtx) != PLUS)
1029 return;
1031 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1032 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1033 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1034 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1035 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1036 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1037 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1038 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1040 return;
1043 /* Otherwise add an alias for the temp's address. */
1044 insert_temp_slot_address (new_rtx, p);
1047 /* If X could be a reference to a temporary slot, mark the fact that its
1048 address was taken. */
1050 void
1051 mark_temp_addr_taken (rtx x)
1053 struct temp_slot *p;
1055 if (x == 0)
1056 return;
1058 /* If X is not in memory or is at a constant address, it cannot be in
1059 a temporary slot. */
1060 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1061 return;
1063 p = find_temp_slot_from_address (XEXP (x, 0));
1064 if (p != 0)
1065 p->addr_taken = 1;
1068 /* If X could be a reference to a temporary slot, mark that slot as
1069 belonging to the to one level higher than the current level. If X
1070 matched one of our slots, just mark that one. Otherwise, we can't
1071 easily predict which it is, so upgrade all of them. Kept slots
1072 need not be touched.
1074 This is called when an ({...}) construct occurs and a statement
1075 returns a value in memory. */
1077 void
1078 preserve_temp_slots (rtx x)
1080 struct temp_slot *p = 0, *next;
1082 /* If there is no result, we still might have some objects whose address
1083 were taken, so we need to make sure they stay around. */
1084 if (x == 0)
1086 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1088 next = p->next;
1090 if (p->addr_taken)
1091 move_slot_to_level (p, temp_slot_level - 1);
1094 return;
1097 /* If X is a register that is being used as a pointer, see if we have
1098 a temporary slot we know it points to. To be consistent with
1099 the code below, we really should preserve all non-kept slots
1100 if we can't find a match, but that seems to be much too costly. */
1101 if (REG_P (x) && REG_POINTER (x))
1102 p = find_temp_slot_from_address (x);
1104 /* If X is not in memory or is at a constant address, it cannot be in
1105 a temporary slot, but it can contain something whose address was
1106 taken. */
1107 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1109 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1111 next = p->next;
1113 if (p->addr_taken)
1114 move_slot_to_level (p, temp_slot_level - 1);
1117 return;
1120 /* First see if we can find a match. */
1121 if (p == 0)
1122 p = find_temp_slot_from_address (XEXP (x, 0));
1124 if (p != 0)
1126 /* Move everything at our level whose address was taken to our new
1127 level in case we used its address. */
1128 struct temp_slot *q;
1130 if (p->level == temp_slot_level)
1132 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1134 next = q->next;
1136 if (p != q && q->addr_taken)
1137 move_slot_to_level (q, temp_slot_level - 1);
1140 move_slot_to_level (p, temp_slot_level - 1);
1141 p->addr_taken = 0;
1143 return;
1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1149 next = p->next;
1151 if (!p->keep)
1152 move_slot_to_level (p, temp_slot_level - 1);
1156 /* Free all temporaries used so far. This is normally called at the
1157 end of generating code for a statement. */
1159 void
1160 free_temp_slots (void)
1162 struct temp_slot *p, *next;
1164 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1166 next = p->next;
1168 if (!p->keep)
1169 make_slot_available (p);
1172 remove_unused_temp_slot_addresses ();
1173 combine_temp_slots ();
1176 /* Push deeper into the nesting level for stack temporaries. */
1178 void
1179 push_temp_slots (void)
1181 temp_slot_level++;
1184 /* Pop a temporary nesting level. All slots in use in the current level
1185 are freed. */
1187 void
1188 pop_temp_slots (void)
1190 struct temp_slot *p, *next;
1192 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1194 next = p->next;
1195 make_slot_available (p);
1198 remove_unused_temp_slot_addresses ();
1199 combine_temp_slots ();
1201 temp_slot_level--;
1204 /* Initialize temporary slots. */
1206 void
1207 init_temp_slots (void)
1209 /* We have not allocated any temporaries yet. */
1210 avail_temp_slots = 0;
1211 used_temp_slots = 0;
1212 temp_slot_level = 0;
1214 /* Set up the table to map addresses to temp slots. */
1215 if (! temp_slot_address_table)
1216 temp_slot_address_table = htab_create_ggc (32,
1217 temp_slot_address_hash,
1218 temp_slot_address_eq,
1219 NULL);
1220 else
1221 htab_empty (temp_slot_address_table);
1224 /* These routines are responsible for converting virtual register references
1225 to the actual hard register references once RTL generation is complete.
1227 The following four variables are used for communication between the
1228 routines. They contain the offsets of the virtual registers from their
1229 respective hard registers. */
1231 static int in_arg_offset;
1232 static int var_offset;
1233 static int dynamic_offset;
1234 static int out_arg_offset;
1235 static int cfa_offset;
1237 /* In most machines, the stack pointer register is equivalent to the bottom
1238 of the stack. */
1240 #ifndef STACK_POINTER_OFFSET
1241 #define STACK_POINTER_OFFSET 0
1242 #endif
1244 /* If not defined, pick an appropriate default for the offset of dynamically
1245 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1246 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1248 #ifndef STACK_DYNAMIC_OFFSET
1250 /* The bottom of the stack points to the actual arguments. If
1251 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1252 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1253 stack space for register parameters is not pushed by the caller, but
1254 rather part of the fixed stack areas and hence not included in
1255 `crtl->outgoing_args_size'. Nevertheless, we must allow
1256 for it when allocating stack dynamic objects. */
1258 #if defined(REG_PARM_STACK_SPACE)
1259 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1260 ((ACCUMULATE_OUTGOING_ARGS \
1261 ? (crtl->outgoing_args_size \
1262 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1263 : REG_PARM_STACK_SPACE (FNDECL))) \
1264 : 0) + (STACK_POINTER_OFFSET))
1265 #else
1266 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1267 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1268 + (STACK_POINTER_OFFSET))
1269 #endif
1270 #endif
1273 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1274 is a virtual register, return the equivalent hard register and set the
1275 offset indirectly through the pointer. Otherwise, return 0. */
1277 static rtx
1278 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1280 rtx new_rtx;
1281 HOST_WIDE_INT offset;
1283 if (x == virtual_incoming_args_rtx)
1285 if (stack_realign_drap)
1287 /* Replace virtual_incoming_args_rtx with internal arg
1288 pointer if DRAP is used to realign stack. */
1289 new_rtx = crtl->args.internal_arg_pointer;
1290 offset = 0;
1292 else
1293 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1295 else if (x == virtual_stack_vars_rtx)
1296 new_rtx = frame_pointer_rtx, offset = var_offset;
1297 else if (x == virtual_stack_dynamic_rtx)
1298 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1299 else if (x == virtual_outgoing_args_rtx)
1300 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1301 else if (x == virtual_cfa_rtx)
1303 #ifdef FRAME_POINTER_CFA_OFFSET
1304 new_rtx = frame_pointer_rtx;
1305 #else
1306 new_rtx = arg_pointer_rtx;
1307 #endif
1308 offset = cfa_offset;
1310 else
1311 return NULL_RTX;
1313 *poffset = offset;
1314 return new_rtx;
1317 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1318 Instantiate any virtual registers present inside of *LOC. The expression
1319 is simplified, as much as possible, but is not to be considered "valid"
1320 in any sense implied by the target. If any change is made, set CHANGED
1321 to true. */
1323 static int
1324 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1326 HOST_WIDE_INT offset;
1327 bool *changed = (bool *) data;
1328 rtx x, new_rtx;
1330 x = *loc;
1331 if (x == 0)
1332 return 0;
1334 switch (GET_CODE (x))
1336 case REG:
1337 new_rtx = instantiate_new_reg (x, &offset);
1338 if (new_rtx)
1340 *loc = plus_constant (new_rtx, offset);
1341 if (changed)
1342 *changed = true;
1344 return -1;
1346 case PLUS:
1347 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1348 if (new_rtx)
1350 new_rtx = plus_constant (new_rtx, offset);
1351 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1352 if (changed)
1353 *changed = true;
1354 return -1;
1357 /* FIXME -- from old code */
1358 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1359 we can commute the PLUS and SUBREG because pointers into the
1360 frame are well-behaved. */
1361 break;
1363 default:
1364 break;
1367 return 0;
1370 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1371 matches the predicate for insn CODE operand OPERAND. */
1373 static int
1374 safe_insn_predicate (int code, int operand, rtx x)
1376 const struct insn_operand_data *op_data;
1378 if (code < 0)
1379 return true;
1381 op_data = &insn_data[code].operand[operand];
1382 if (op_data->predicate == NULL)
1383 return true;
1385 return op_data->predicate (x, op_data->mode);
1388 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1389 registers present inside of insn. The result will be a valid insn. */
1391 static void
1392 instantiate_virtual_regs_in_insn (rtx insn)
1394 HOST_WIDE_INT offset;
1395 int insn_code, i;
1396 bool any_change = false;
1397 rtx set, new_rtx, x, seq;
1399 /* There are some special cases to be handled first. */
1400 set = single_set (insn);
1401 if (set)
1403 /* We're allowed to assign to a virtual register. This is interpreted
1404 to mean that the underlying register gets assigned the inverse
1405 transformation. This is used, for example, in the handling of
1406 non-local gotos. */
1407 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1408 if (new_rtx)
1410 start_sequence ();
1412 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1413 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1414 GEN_INT (-offset));
1415 x = force_operand (x, new_rtx);
1416 if (x != new_rtx)
1417 emit_move_insn (new_rtx, x);
1419 seq = get_insns ();
1420 end_sequence ();
1422 emit_insn_before (seq, insn);
1423 delete_insn (insn);
1424 return;
1427 /* Handle a straight copy from a virtual register by generating a
1428 new add insn. The difference between this and falling through
1429 to the generic case is avoiding a new pseudo and eliminating a
1430 move insn in the initial rtl stream. */
1431 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1432 if (new_rtx && offset != 0
1433 && REG_P (SET_DEST (set))
1434 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1436 start_sequence ();
1438 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1439 new_rtx, GEN_INT (offset), SET_DEST (set),
1440 1, OPTAB_LIB_WIDEN);
1441 if (x != SET_DEST (set))
1442 emit_move_insn (SET_DEST (set), x);
1444 seq = get_insns ();
1445 end_sequence ();
1447 emit_insn_before (seq, insn);
1448 delete_insn (insn);
1449 return;
1452 extract_insn (insn);
1453 insn_code = INSN_CODE (insn);
1455 /* Handle a plus involving a virtual register by determining if the
1456 operands remain valid if they're modified in place. */
1457 if (GET_CODE (SET_SRC (set)) == PLUS
1458 && recog_data.n_operands >= 3
1459 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1460 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1461 && CONST_INT_P (recog_data.operand[2])
1462 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1464 offset += INTVAL (recog_data.operand[2]);
1466 /* If the sum is zero, then replace with a plain move. */
1467 if (offset == 0
1468 && REG_P (SET_DEST (set))
1469 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1471 start_sequence ();
1472 emit_move_insn (SET_DEST (set), new_rtx);
1473 seq = get_insns ();
1474 end_sequence ();
1476 emit_insn_before (seq, insn);
1477 delete_insn (insn);
1478 return;
1481 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1483 /* Using validate_change and apply_change_group here leaves
1484 recog_data in an invalid state. Since we know exactly what
1485 we want to check, do those two by hand. */
1486 if (safe_insn_predicate (insn_code, 1, new_rtx)
1487 && safe_insn_predicate (insn_code, 2, x))
1489 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1490 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1491 any_change = true;
1493 /* Fall through into the regular operand fixup loop in
1494 order to take care of operands other than 1 and 2. */
1498 else
1500 extract_insn (insn);
1501 insn_code = INSN_CODE (insn);
1504 /* In the general case, we expect virtual registers to appear only in
1505 operands, and then only as either bare registers or inside memories. */
1506 for (i = 0; i < recog_data.n_operands; ++i)
1508 x = recog_data.operand[i];
1509 switch (GET_CODE (x))
1511 case MEM:
1513 rtx addr = XEXP (x, 0);
1514 bool changed = false;
1516 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1517 if (!changed)
1518 continue;
1520 start_sequence ();
1521 x = replace_equiv_address (x, addr);
1522 /* It may happen that the address with the virtual reg
1523 was valid (e.g. based on the virtual stack reg, which might
1524 be acceptable to the predicates with all offsets), whereas
1525 the address now isn't anymore, for instance when the address
1526 is still offsetted, but the base reg isn't virtual-stack-reg
1527 anymore. Below we would do a force_reg on the whole operand,
1528 but this insn might actually only accept memory. Hence,
1529 before doing that last resort, try to reload the address into
1530 a register, so this operand stays a MEM. */
1531 if (!safe_insn_predicate (insn_code, i, x))
1533 addr = force_reg (GET_MODE (addr), addr);
1534 x = replace_equiv_address (x, addr);
1536 seq = get_insns ();
1537 end_sequence ();
1538 if (seq)
1539 emit_insn_before (seq, insn);
1541 break;
1543 case REG:
1544 new_rtx = instantiate_new_reg (x, &offset);
1545 if (new_rtx == NULL)
1546 continue;
1547 if (offset == 0)
1548 x = new_rtx;
1549 else
1551 start_sequence ();
1553 /* Careful, special mode predicates may have stuff in
1554 insn_data[insn_code].operand[i].mode that isn't useful
1555 to us for computing a new value. */
1556 /* ??? Recognize address_operand and/or "p" constraints
1557 to see if (plus new offset) is a valid before we put
1558 this through expand_simple_binop. */
1559 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1560 GEN_INT (offset), NULL_RTX,
1561 1, OPTAB_LIB_WIDEN);
1562 seq = get_insns ();
1563 end_sequence ();
1564 emit_insn_before (seq, insn);
1566 break;
1568 case SUBREG:
1569 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1570 if (new_rtx == NULL)
1571 continue;
1572 if (offset != 0)
1574 start_sequence ();
1575 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1576 GEN_INT (offset), NULL_RTX,
1577 1, OPTAB_LIB_WIDEN);
1578 seq = get_insns ();
1579 end_sequence ();
1580 emit_insn_before (seq, insn);
1582 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1583 GET_MODE (new_rtx), SUBREG_BYTE (x));
1584 gcc_assert (x);
1585 break;
1587 default:
1588 continue;
1591 /* At this point, X contains the new value for the operand.
1592 Validate the new value vs the insn predicate. Note that
1593 asm insns will have insn_code -1 here. */
1594 if (!safe_insn_predicate (insn_code, i, x))
1596 start_sequence ();
1597 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1598 seq = get_insns ();
1599 end_sequence ();
1600 if (seq)
1601 emit_insn_before (seq, insn);
1604 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1605 any_change = true;
1608 if (any_change)
1610 /* Propagate operand changes into the duplicates. */
1611 for (i = 0; i < recog_data.n_dups; ++i)
1612 *recog_data.dup_loc[i]
1613 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1615 /* Force re-recognition of the instruction for validation. */
1616 INSN_CODE (insn) = -1;
1619 if (asm_noperands (PATTERN (insn)) >= 0)
1621 if (!check_asm_operands (PATTERN (insn)))
1623 error_for_asm (insn, "impossible constraint in %<asm%>");
1624 delete_insn (insn);
1627 else
1629 if (recog_memoized (insn) < 0)
1630 fatal_insn_not_found (insn);
1634 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1635 do any instantiation required. */
1637 void
1638 instantiate_decl_rtl (rtx x)
1640 rtx addr;
1642 if (x == 0)
1643 return;
1645 /* If this is a CONCAT, recurse for the pieces. */
1646 if (GET_CODE (x) == CONCAT)
1648 instantiate_decl_rtl (XEXP (x, 0));
1649 instantiate_decl_rtl (XEXP (x, 1));
1650 return;
1653 /* If this is not a MEM, no need to do anything. Similarly if the
1654 address is a constant or a register that is not a virtual register. */
1655 if (!MEM_P (x))
1656 return;
1658 addr = XEXP (x, 0);
1659 if (CONSTANT_P (addr)
1660 || (REG_P (addr)
1661 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1662 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1663 return;
1665 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1668 /* Helper for instantiate_decls called via walk_tree: Process all decls
1669 in the given DECL_VALUE_EXPR. */
1671 static tree
1672 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1674 tree t = *tp;
1675 if (! EXPR_P (t))
1677 *walk_subtrees = 0;
1678 if (DECL_P (t) && DECL_RTL_SET_P (t))
1679 instantiate_decl_rtl (DECL_RTL (t));
1681 return NULL;
1684 /* Subroutine of instantiate_decls: Process all decls in the given
1685 BLOCK node and all its subblocks. */
1687 static void
1688 instantiate_decls_1 (tree let)
1690 tree t;
1692 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1694 if (DECL_RTL_SET_P (t))
1695 instantiate_decl_rtl (DECL_RTL (t));
1696 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1698 tree v = DECL_VALUE_EXPR (t);
1699 walk_tree (&v, instantiate_expr, NULL, NULL);
1703 /* Process all subblocks. */
1704 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1705 instantiate_decls_1 (t);
1708 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1709 all virtual registers in their DECL_RTL's. */
1711 static void
1712 instantiate_decls (tree fndecl)
1714 tree decl, t, next;
1716 /* Process all parameters of the function. */
1717 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1719 instantiate_decl_rtl (DECL_RTL (decl));
1720 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1721 if (DECL_HAS_VALUE_EXPR_P (decl))
1723 tree v = DECL_VALUE_EXPR (decl);
1724 walk_tree (&v, instantiate_expr, NULL, NULL);
1728 /* Now process all variables defined in the function or its subblocks. */
1729 instantiate_decls_1 (DECL_INITIAL (fndecl));
1731 t = cfun->local_decls;
1732 cfun->local_decls = NULL_TREE;
1733 for (; t; t = next)
1735 next = TREE_CHAIN (t);
1736 decl = TREE_VALUE (t);
1737 if (DECL_RTL_SET_P (decl))
1738 instantiate_decl_rtl (DECL_RTL (decl));
1739 ggc_free (t);
1743 /* Pass through the INSNS of function FNDECL and convert virtual register
1744 references to hard register references. */
1746 static unsigned int
1747 instantiate_virtual_regs (void)
1749 rtx insn;
1751 /* Compute the offsets to use for this function. */
1752 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1753 var_offset = STARTING_FRAME_OFFSET;
1754 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1755 out_arg_offset = STACK_POINTER_OFFSET;
1756 #ifdef FRAME_POINTER_CFA_OFFSET
1757 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1758 #else
1759 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1760 #endif
1762 /* Initialize recognition, indicating that volatile is OK. */
1763 init_recog ();
1765 /* Scan through all the insns, instantiating every virtual register still
1766 present. */
1767 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1768 if (INSN_P (insn))
1770 /* These patterns in the instruction stream can never be recognized.
1771 Fortunately, they shouldn't contain virtual registers either. */
1772 if (GET_CODE (PATTERN (insn)) == USE
1773 || GET_CODE (PATTERN (insn)) == CLOBBER
1774 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1775 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1776 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1777 continue;
1778 else if (DEBUG_INSN_P (insn))
1779 for_each_rtx (&INSN_VAR_LOCATION (insn),
1780 instantiate_virtual_regs_in_rtx, NULL);
1781 else
1782 instantiate_virtual_regs_in_insn (insn);
1784 if (INSN_DELETED_P (insn))
1785 continue;
1787 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1789 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1790 if (CALL_P (insn))
1791 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1792 instantiate_virtual_regs_in_rtx, NULL);
1795 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1796 instantiate_decls (current_function_decl);
1798 targetm.instantiate_decls ();
1800 /* Indicate that, from now on, assign_stack_local should use
1801 frame_pointer_rtx. */
1802 virtuals_instantiated = 1;
1803 return 0;
1806 struct rtl_opt_pass pass_instantiate_virtual_regs =
1809 RTL_PASS,
1810 "vregs", /* name */
1811 NULL, /* gate */
1812 instantiate_virtual_regs, /* execute */
1813 NULL, /* sub */
1814 NULL, /* next */
1815 0, /* static_pass_number */
1816 TV_NONE, /* tv_id */
1817 0, /* properties_required */
1818 0, /* properties_provided */
1819 0, /* properties_destroyed */
1820 0, /* todo_flags_start */
1821 TODO_dump_func /* todo_flags_finish */
1826 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1827 This means a type for which function calls must pass an address to the
1828 function or get an address back from the function.
1829 EXP may be a type node or an expression (whose type is tested). */
1832 aggregate_value_p (const_tree exp, const_tree fntype)
1834 int i, regno, nregs;
1835 rtx reg;
1837 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1839 /* DECL node associated with FNTYPE when relevant, which we might need to
1840 check for by-invisible-reference returns, typically for CALL_EXPR input
1841 EXPressions. */
1842 const_tree fndecl = NULL_TREE;
1844 if (fntype)
1845 switch (TREE_CODE (fntype))
1847 case CALL_EXPR:
1848 fndecl = get_callee_fndecl (fntype);
1849 fntype = (fndecl
1850 ? TREE_TYPE (fndecl)
1851 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1852 break;
1853 case FUNCTION_DECL:
1854 fndecl = fntype;
1855 fntype = TREE_TYPE (fndecl);
1856 break;
1857 case FUNCTION_TYPE:
1858 case METHOD_TYPE:
1859 break;
1860 case IDENTIFIER_NODE:
1861 fntype = 0;
1862 break;
1863 default:
1864 /* We don't expect other rtl types here. */
1865 gcc_unreachable ();
1868 if (TREE_CODE (type) == VOID_TYPE)
1869 return 0;
1871 /* If the front end has decided that this needs to be passed by
1872 reference, do so. */
1873 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1874 && DECL_BY_REFERENCE (exp))
1875 return 1;
1877 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1878 called function RESULT_DECL, meaning the function returns in memory by
1879 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1880 on the function type, which used to be the way to request such a return
1881 mechanism but might now be causing troubles at gimplification time if
1882 temporaries with the function type need to be created. */
1883 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1884 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1885 return 1;
1887 if (targetm.calls.return_in_memory (type, fntype))
1888 return 1;
1889 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1890 and thus can't be returned in registers. */
1891 if (TREE_ADDRESSABLE (type))
1892 return 1;
1893 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1894 return 1;
1895 /* Make sure we have suitable call-clobbered regs to return
1896 the value in; if not, we must return it in memory. */
1897 reg = hard_function_value (type, 0, fntype, 0);
1899 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1900 it is OK. */
1901 if (!REG_P (reg))
1902 return 0;
1904 regno = REGNO (reg);
1905 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1906 for (i = 0; i < nregs; i++)
1907 if (! call_used_regs[regno + i])
1908 return 1;
1909 return 0;
1912 /* Return true if we should assign DECL a pseudo register; false if it
1913 should live on the local stack. */
1915 bool
1916 use_register_for_decl (const_tree decl)
1918 if (!targetm.calls.allocate_stack_slots_for_args())
1919 return true;
1921 /* Honor volatile. */
1922 if (TREE_SIDE_EFFECTS (decl))
1923 return false;
1925 /* Honor addressability. */
1926 if (TREE_ADDRESSABLE (decl))
1927 return false;
1929 /* Only register-like things go in registers. */
1930 if (DECL_MODE (decl) == BLKmode)
1931 return false;
1933 /* If -ffloat-store specified, don't put explicit float variables
1934 into registers. */
1935 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1936 propagates values across these stores, and it probably shouldn't. */
1937 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1938 return false;
1940 /* If we're not interested in tracking debugging information for
1941 this decl, then we can certainly put it in a register. */
1942 if (DECL_IGNORED_P (decl))
1943 return true;
1945 if (optimize)
1946 return true;
1948 if (!DECL_REGISTER (decl))
1949 return false;
1951 switch (TREE_CODE (TREE_TYPE (decl)))
1953 case RECORD_TYPE:
1954 case UNION_TYPE:
1955 case QUAL_UNION_TYPE:
1956 /* When not optimizing, disregard register keyword for variables with
1957 types containing methods, otherwise the methods won't be callable
1958 from the debugger. */
1959 if (TYPE_METHODS (TREE_TYPE (decl)))
1960 return false;
1961 break;
1962 default:
1963 break;
1966 return true;
1969 /* Return true if TYPE should be passed by invisible reference. */
1971 bool
1972 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1973 tree type, bool named_arg)
1975 if (type)
1977 /* If this type contains non-trivial constructors, then it is
1978 forbidden for the middle-end to create any new copies. */
1979 if (TREE_ADDRESSABLE (type))
1980 return true;
1982 /* GCC post 3.4 passes *all* variable sized types by reference. */
1983 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1984 return true;
1987 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1990 /* Return true if TYPE, which is passed by reference, should be callee
1991 copied instead of caller copied. */
1993 bool
1994 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1995 tree type, bool named_arg)
1997 if (type && TREE_ADDRESSABLE (type))
1998 return false;
1999 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2002 /* Structures to communicate between the subroutines of assign_parms.
2003 The first holds data persistent across all parameters, the second
2004 is cleared out for each parameter. */
2006 struct assign_parm_data_all
2008 CUMULATIVE_ARGS args_so_far;
2009 struct args_size stack_args_size;
2010 tree function_result_decl;
2011 tree orig_fnargs;
2012 rtx first_conversion_insn;
2013 rtx last_conversion_insn;
2014 HOST_WIDE_INT pretend_args_size;
2015 HOST_WIDE_INT extra_pretend_bytes;
2016 int reg_parm_stack_space;
2019 struct assign_parm_data_one
2021 tree nominal_type;
2022 tree passed_type;
2023 rtx entry_parm;
2024 rtx stack_parm;
2025 enum machine_mode nominal_mode;
2026 enum machine_mode passed_mode;
2027 enum machine_mode promoted_mode;
2028 struct locate_and_pad_arg_data locate;
2029 int partial;
2030 BOOL_BITFIELD named_arg : 1;
2031 BOOL_BITFIELD passed_pointer : 1;
2032 BOOL_BITFIELD on_stack : 1;
2033 BOOL_BITFIELD loaded_in_reg : 1;
2036 /* A subroutine of assign_parms. Initialize ALL. */
2038 static void
2039 assign_parms_initialize_all (struct assign_parm_data_all *all)
2041 tree fntype;
2043 memset (all, 0, sizeof (*all));
2045 fntype = TREE_TYPE (current_function_decl);
2047 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2048 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2049 #else
2050 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2051 current_function_decl, -1);
2052 #endif
2054 #ifdef REG_PARM_STACK_SPACE
2055 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2056 #endif
2059 /* If ARGS contains entries with complex types, split the entry into two
2060 entries of the component type. Return a new list of substitutions are
2061 needed, else the old list. */
2063 static tree
2064 split_complex_args (tree args)
2066 tree p;
2068 /* Before allocating memory, check for the common case of no complex. */
2069 for (p = args; p; p = TREE_CHAIN (p))
2071 tree type = TREE_TYPE (p);
2072 if (TREE_CODE (type) == COMPLEX_TYPE
2073 && targetm.calls.split_complex_arg (type))
2074 goto found;
2076 return args;
2078 found:
2079 args = copy_list (args);
2081 for (p = args; p; p = TREE_CHAIN (p))
2083 tree type = TREE_TYPE (p);
2084 if (TREE_CODE (type) == COMPLEX_TYPE
2085 && targetm.calls.split_complex_arg (type))
2087 tree decl;
2088 tree subtype = TREE_TYPE (type);
2089 bool addressable = TREE_ADDRESSABLE (p);
2091 /* Rewrite the PARM_DECL's type with its component. */
2092 TREE_TYPE (p) = subtype;
2093 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2094 DECL_MODE (p) = VOIDmode;
2095 DECL_SIZE (p) = NULL;
2096 DECL_SIZE_UNIT (p) = NULL;
2097 /* If this arg must go in memory, put it in a pseudo here.
2098 We can't allow it to go in memory as per normal parms,
2099 because the usual place might not have the imag part
2100 adjacent to the real part. */
2101 DECL_ARTIFICIAL (p) = addressable;
2102 DECL_IGNORED_P (p) = addressable;
2103 TREE_ADDRESSABLE (p) = 0;
2104 layout_decl (p, 0);
2106 /* Build a second synthetic decl. */
2107 decl = build_decl (EXPR_LOCATION (p),
2108 PARM_DECL, NULL_TREE, subtype);
2109 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2110 DECL_ARTIFICIAL (decl) = addressable;
2111 DECL_IGNORED_P (decl) = addressable;
2112 layout_decl (decl, 0);
2114 /* Splice it in; skip the new decl. */
2115 TREE_CHAIN (decl) = TREE_CHAIN (p);
2116 TREE_CHAIN (p) = decl;
2117 p = decl;
2121 return args;
2124 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2125 the hidden struct return argument, and (abi willing) complex args.
2126 Return the new parameter list. */
2128 static tree
2129 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2131 tree fndecl = current_function_decl;
2132 tree fntype = TREE_TYPE (fndecl);
2133 tree fnargs = DECL_ARGUMENTS (fndecl);
2135 /* If struct value address is treated as the first argument, make it so. */
2136 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2137 && ! cfun->returns_pcc_struct
2138 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2140 tree type = build_pointer_type (TREE_TYPE (fntype));
2141 tree decl;
2143 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2144 PARM_DECL, NULL_TREE, type);
2145 DECL_ARG_TYPE (decl) = type;
2146 DECL_ARTIFICIAL (decl) = 1;
2147 DECL_IGNORED_P (decl) = 1;
2149 TREE_CHAIN (decl) = fnargs;
2150 fnargs = decl;
2151 all->function_result_decl = decl;
2154 all->orig_fnargs = fnargs;
2156 /* If the target wants to split complex arguments into scalars, do so. */
2157 if (targetm.calls.split_complex_arg)
2158 fnargs = split_complex_args (fnargs);
2160 return fnargs;
2163 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2164 data for the parameter. Incorporate ABI specifics such as pass-by-
2165 reference and type promotion. */
2167 static void
2168 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2169 struct assign_parm_data_one *data)
2171 tree nominal_type, passed_type;
2172 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2173 int unsignedp;
2175 memset (data, 0, sizeof (*data));
2177 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2178 if (!cfun->stdarg)
2179 data->named_arg = 1; /* No variadic parms. */
2180 else if (TREE_CHAIN (parm))
2181 data->named_arg = 1; /* Not the last non-variadic parm. */
2182 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2183 data->named_arg = 1; /* Only variadic ones are unnamed. */
2184 else
2185 data->named_arg = 0; /* Treat as variadic. */
2187 nominal_type = TREE_TYPE (parm);
2188 passed_type = DECL_ARG_TYPE (parm);
2190 /* Look out for errors propagating this far. Also, if the parameter's
2191 type is void then its value doesn't matter. */
2192 if (TREE_TYPE (parm) == error_mark_node
2193 /* This can happen after weird syntax errors
2194 or if an enum type is defined among the parms. */
2195 || TREE_CODE (parm) != PARM_DECL
2196 || passed_type == NULL
2197 || VOID_TYPE_P (nominal_type))
2199 nominal_type = passed_type = void_type_node;
2200 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2201 goto egress;
2204 /* Find mode of arg as it is passed, and mode of arg as it should be
2205 during execution of this function. */
2206 passed_mode = TYPE_MODE (passed_type);
2207 nominal_mode = TYPE_MODE (nominal_type);
2209 /* If the parm is to be passed as a transparent union, use the type of
2210 the first field for the tests below. We have already verified that
2211 the modes are the same. */
2212 if (TREE_CODE (passed_type) == UNION_TYPE
2213 && TYPE_TRANSPARENT_UNION (passed_type))
2214 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2216 /* See if this arg was passed by invisible reference. */
2217 if (pass_by_reference (&all->args_so_far, passed_mode,
2218 passed_type, data->named_arg))
2220 passed_type = nominal_type = build_pointer_type (passed_type);
2221 data->passed_pointer = true;
2222 passed_mode = nominal_mode = Pmode;
2225 /* Find mode as it is passed by the ABI. */
2226 unsignedp = TYPE_UNSIGNED (passed_type);
2227 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2228 TREE_TYPE (current_function_decl), 0);
2230 egress:
2231 data->nominal_type = nominal_type;
2232 data->passed_type = passed_type;
2233 data->nominal_mode = nominal_mode;
2234 data->passed_mode = passed_mode;
2235 data->promoted_mode = promoted_mode;
2238 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2240 static void
2241 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2242 struct assign_parm_data_one *data, bool no_rtl)
2244 int varargs_pretend_bytes = 0;
2246 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2247 data->promoted_mode,
2248 data->passed_type,
2249 &varargs_pretend_bytes, no_rtl);
2251 /* If the back-end has requested extra stack space, record how much is
2252 needed. Do not change pretend_args_size otherwise since it may be
2253 nonzero from an earlier partial argument. */
2254 if (varargs_pretend_bytes > 0)
2255 all->pretend_args_size = varargs_pretend_bytes;
2258 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2259 the incoming location of the current parameter. */
2261 static void
2262 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2263 struct assign_parm_data_one *data)
2265 HOST_WIDE_INT pretend_bytes = 0;
2266 rtx entry_parm;
2267 bool in_regs;
2269 if (data->promoted_mode == VOIDmode)
2271 data->entry_parm = data->stack_parm = const0_rtx;
2272 return;
2275 #ifdef FUNCTION_INCOMING_ARG
2276 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2277 data->passed_type, data->named_arg);
2278 #else
2279 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2280 data->passed_type, data->named_arg);
2281 #endif
2283 if (entry_parm == 0)
2284 data->promoted_mode = data->passed_mode;
2286 /* Determine parm's home in the stack, in case it arrives in the stack
2287 or we should pretend it did. Compute the stack position and rtx where
2288 the argument arrives and its size.
2290 There is one complexity here: If this was a parameter that would
2291 have been passed in registers, but wasn't only because it is
2292 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2293 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2294 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2295 as it was the previous time. */
2296 in_regs = entry_parm != 0;
2297 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2298 in_regs = true;
2299 #endif
2300 if (!in_regs && !data->named_arg)
2302 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2304 rtx tem;
2305 #ifdef FUNCTION_INCOMING_ARG
2306 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2307 data->passed_type, true);
2308 #else
2309 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2310 data->passed_type, true);
2311 #endif
2312 in_regs = tem != NULL;
2316 /* If this parameter was passed both in registers and in the stack, use
2317 the copy on the stack. */
2318 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2319 data->passed_type))
2320 entry_parm = 0;
2322 if (entry_parm)
2324 int partial;
2326 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2327 data->promoted_mode,
2328 data->passed_type,
2329 data->named_arg);
2330 data->partial = partial;
2332 /* The caller might already have allocated stack space for the
2333 register parameters. */
2334 if (partial != 0 && all->reg_parm_stack_space == 0)
2336 /* Part of this argument is passed in registers and part
2337 is passed on the stack. Ask the prologue code to extend
2338 the stack part so that we can recreate the full value.
2340 PRETEND_BYTES is the size of the registers we need to store.
2341 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2342 stack space that the prologue should allocate.
2344 Internally, gcc assumes that the argument pointer is aligned
2345 to STACK_BOUNDARY bits. This is used both for alignment
2346 optimizations (see init_emit) and to locate arguments that are
2347 aligned to more than PARM_BOUNDARY bits. We must preserve this
2348 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2349 a stack boundary. */
2351 /* We assume at most one partial arg, and it must be the first
2352 argument on the stack. */
2353 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2355 pretend_bytes = partial;
2356 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2358 /* We want to align relative to the actual stack pointer, so
2359 don't include this in the stack size until later. */
2360 all->extra_pretend_bytes = all->pretend_args_size;
2364 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2365 entry_parm ? data->partial : 0, current_function_decl,
2366 &all->stack_args_size, &data->locate);
2368 /* Update parm_stack_boundary if this parameter is passed in the
2369 stack. */
2370 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2371 crtl->parm_stack_boundary = data->locate.boundary;
2373 /* Adjust offsets to include the pretend args. */
2374 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2375 data->locate.slot_offset.constant += pretend_bytes;
2376 data->locate.offset.constant += pretend_bytes;
2378 data->entry_parm = entry_parm;
2381 /* A subroutine of assign_parms. If there is actually space on the stack
2382 for this parm, count it in stack_args_size and return true. */
2384 static bool
2385 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2386 struct assign_parm_data_one *data)
2388 /* Trivially true if we've no incoming register. */
2389 if (data->entry_parm == NULL)
2391 /* Also true if we're partially in registers and partially not,
2392 since we've arranged to drop the entire argument on the stack. */
2393 else if (data->partial != 0)
2395 /* Also true if the target says that it's passed in both registers
2396 and on the stack. */
2397 else if (GET_CODE (data->entry_parm) == PARALLEL
2398 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2400 /* Also true if the target says that there's stack allocated for
2401 all register parameters. */
2402 else if (all->reg_parm_stack_space > 0)
2404 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2405 else
2406 return false;
2408 all->stack_args_size.constant += data->locate.size.constant;
2409 if (data->locate.size.var)
2410 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2412 return true;
2415 /* A subroutine of assign_parms. Given that this parameter is allocated
2416 stack space by the ABI, find it. */
2418 static void
2419 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2421 rtx offset_rtx, stack_parm;
2422 unsigned int align, boundary;
2424 /* If we're passing this arg using a reg, make its stack home the
2425 aligned stack slot. */
2426 if (data->entry_parm)
2427 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2428 else
2429 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2431 stack_parm = crtl->args.internal_arg_pointer;
2432 if (offset_rtx != const0_rtx)
2433 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2434 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2436 set_mem_attributes (stack_parm, parm, 1);
2437 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2438 while promoted mode's size is needed. */
2439 if (data->promoted_mode != BLKmode
2440 && data->promoted_mode != DECL_MODE (parm))
2442 set_mem_size (stack_parm, GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2443 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2445 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2446 data->promoted_mode);
2447 if (offset)
2448 set_mem_offset (stack_parm,
2449 plus_constant (MEM_OFFSET (stack_parm), -offset));
2453 boundary = data->locate.boundary;
2454 align = BITS_PER_UNIT;
2456 /* If we're padding upward, we know that the alignment of the slot
2457 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2458 intentionally forcing upward padding. Otherwise we have to come
2459 up with a guess at the alignment based on OFFSET_RTX. */
2460 if (data->locate.where_pad != downward || data->entry_parm)
2461 align = boundary;
2462 else if (CONST_INT_P (offset_rtx))
2464 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2465 align = align & -align;
2467 set_mem_align (stack_parm, align);
2469 if (data->entry_parm)
2470 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2472 data->stack_parm = stack_parm;
2475 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2476 always valid and contiguous. */
2478 static void
2479 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2481 rtx entry_parm = data->entry_parm;
2482 rtx stack_parm = data->stack_parm;
2484 /* If this parm was passed part in regs and part in memory, pretend it
2485 arrived entirely in memory by pushing the register-part onto the stack.
2486 In the special case of a DImode or DFmode that is split, we could put
2487 it together in a pseudoreg directly, but for now that's not worth
2488 bothering with. */
2489 if (data->partial != 0)
2491 /* Handle calls that pass values in multiple non-contiguous
2492 locations. The Irix 6 ABI has examples of this. */
2493 if (GET_CODE (entry_parm) == PARALLEL)
2494 emit_group_store (validize_mem (stack_parm), entry_parm,
2495 data->passed_type,
2496 int_size_in_bytes (data->passed_type));
2497 else
2499 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2500 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2501 data->partial / UNITS_PER_WORD);
2504 entry_parm = stack_parm;
2507 /* If we didn't decide this parm came in a register, by default it came
2508 on the stack. */
2509 else if (entry_parm == NULL)
2510 entry_parm = stack_parm;
2512 /* When an argument is passed in multiple locations, we can't make use
2513 of this information, but we can save some copying if the whole argument
2514 is passed in a single register. */
2515 else if (GET_CODE (entry_parm) == PARALLEL
2516 && data->nominal_mode != BLKmode
2517 && data->passed_mode != BLKmode)
2519 size_t i, len = XVECLEN (entry_parm, 0);
2521 for (i = 0; i < len; i++)
2522 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2523 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2524 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2525 == data->passed_mode)
2526 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2528 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2529 break;
2533 data->entry_parm = entry_parm;
2536 /* A subroutine of assign_parms. Reconstitute any values which were
2537 passed in multiple registers and would fit in a single register. */
2539 static void
2540 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2542 rtx entry_parm = data->entry_parm;
2544 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2545 This can be done with register operations rather than on the
2546 stack, even if we will store the reconstituted parameter on the
2547 stack later. */
2548 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2550 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2551 emit_group_store (parmreg, entry_parm, data->passed_type,
2552 GET_MODE_SIZE (GET_MODE (entry_parm)));
2553 entry_parm = parmreg;
2556 data->entry_parm = entry_parm;
2559 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2560 always valid and properly aligned. */
2562 static void
2563 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2565 rtx stack_parm = data->stack_parm;
2567 /* If we can't trust the parm stack slot to be aligned enough for its
2568 ultimate type, don't use that slot after entry. We'll make another
2569 stack slot, if we need one. */
2570 if (stack_parm
2571 && ((STRICT_ALIGNMENT
2572 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2573 || (data->nominal_type
2574 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2575 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2576 stack_parm = NULL;
2578 /* If parm was passed in memory, and we need to convert it on entry,
2579 don't store it back in that same slot. */
2580 else if (data->entry_parm == stack_parm
2581 && data->nominal_mode != BLKmode
2582 && data->nominal_mode != data->passed_mode)
2583 stack_parm = NULL;
2585 /* If stack protection is in effect for this function, don't leave any
2586 pointers in their passed stack slots. */
2587 else if (crtl->stack_protect_guard
2588 && (flag_stack_protect == 2
2589 || data->passed_pointer
2590 || POINTER_TYPE_P (data->nominal_type)))
2591 stack_parm = NULL;
2593 data->stack_parm = stack_parm;
2596 /* A subroutine of assign_parms. Return true if the current parameter
2597 should be stored as a BLKmode in the current frame. */
2599 static bool
2600 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2602 if (data->nominal_mode == BLKmode)
2603 return true;
2604 if (GET_MODE (data->entry_parm) == BLKmode)
2605 return true;
2607 #ifdef BLOCK_REG_PADDING
2608 /* Only assign_parm_setup_block knows how to deal with register arguments
2609 that are padded at the least significant end. */
2610 if (REG_P (data->entry_parm)
2611 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2612 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2613 == (BYTES_BIG_ENDIAN ? upward : downward)))
2614 return true;
2615 #endif
2617 return false;
2620 /* A subroutine of assign_parms. Arrange for the parameter to be
2621 present and valid in DATA->STACK_RTL. */
2623 static void
2624 assign_parm_setup_block (struct assign_parm_data_all *all,
2625 tree parm, struct assign_parm_data_one *data)
2627 rtx entry_parm = data->entry_parm;
2628 rtx stack_parm = data->stack_parm;
2629 HOST_WIDE_INT size;
2630 HOST_WIDE_INT size_stored;
2632 if (GET_CODE (entry_parm) == PARALLEL)
2633 entry_parm = emit_group_move_into_temps (entry_parm);
2635 size = int_size_in_bytes (data->passed_type);
2636 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2637 if (stack_parm == 0)
2639 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2640 stack_parm = assign_stack_local (BLKmode, size_stored,
2641 DECL_ALIGN (parm));
2642 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2643 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2644 set_mem_attributes (stack_parm, parm, 1);
2647 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2648 calls that pass values in multiple non-contiguous locations. */
2649 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2651 rtx mem;
2653 /* Note that we will be storing an integral number of words.
2654 So we have to be careful to ensure that we allocate an
2655 integral number of words. We do this above when we call
2656 assign_stack_local if space was not allocated in the argument
2657 list. If it was, this will not work if PARM_BOUNDARY is not
2658 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2659 if it becomes a problem. Exception is when BLKmode arrives
2660 with arguments not conforming to word_mode. */
2662 if (data->stack_parm == 0)
2664 else if (GET_CODE (entry_parm) == PARALLEL)
2666 else
2667 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2669 mem = validize_mem (stack_parm);
2671 /* Handle values in multiple non-contiguous locations. */
2672 if (GET_CODE (entry_parm) == PARALLEL)
2674 push_to_sequence2 (all->first_conversion_insn,
2675 all->last_conversion_insn);
2676 emit_group_store (mem, entry_parm, data->passed_type, size);
2677 all->first_conversion_insn = get_insns ();
2678 all->last_conversion_insn = get_last_insn ();
2679 end_sequence ();
2682 else if (size == 0)
2685 /* If SIZE is that of a mode no bigger than a word, just use
2686 that mode's store operation. */
2687 else if (size <= UNITS_PER_WORD)
2689 enum machine_mode mode
2690 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2692 if (mode != BLKmode
2693 #ifdef BLOCK_REG_PADDING
2694 && (size == UNITS_PER_WORD
2695 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2696 != (BYTES_BIG_ENDIAN ? upward : downward)))
2697 #endif
2700 rtx reg;
2702 /* We are really truncating a word_mode value containing
2703 SIZE bytes into a value of mode MODE. If such an
2704 operation requires no actual instructions, we can refer
2705 to the value directly in mode MODE, otherwise we must
2706 start with the register in word_mode and explicitly
2707 convert it. */
2708 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2709 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2710 else
2712 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2713 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2715 emit_move_insn (change_address (mem, mode, 0), reg);
2718 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2719 machine must be aligned to the left before storing
2720 to memory. Note that the previous test doesn't
2721 handle all cases (e.g. SIZE == 3). */
2722 else if (size != UNITS_PER_WORD
2723 #ifdef BLOCK_REG_PADDING
2724 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2725 == downward)
2726 #else
2727 && BYTES_BIG_ENDIAN
2728 #endif
2731 rtx tem, x;
2732 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2733 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2735 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2736 build_int_cst (NULL_TREE, by),
2737 NULL_RTX, 1);
2738 tem = change_address (mem, word_mode, 0);
2739 emit_move_insn (tem, x);
2741 else
2742 move_block_from_reg (REGNO (entry_parm), mem,
2743 size_stored / UNITS_PER_WORD);
2745 else
2746 move_block_from_reg (REGNO (entry_parm), mem,
2747 size_stored / UNITS_PER_WORD);
2749 else if (data->stack_parm == 0)
2751 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2752 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2753 BLOCK_OP_NORMAL);
2754 all->first_conversion_insn = get_insns ();
2755 all->last_conversion_insn = get_last_insn ();
2756 end_sequence ();
2759 data->stack_parm = stack_parm;
2760 SET_DECL_RTL (parm, stack_parm);
2763 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2764 parameter. Get it there. Perform all ABI specified conversions. */
2766 static void
2767 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2768 struct assign_parm_data_one *data)
2770 rtx parmreg;
2771 enum machine_mode promoted_nominal_mode;
2772 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2773 bool did_conversion = false;
2775 /* Store the parm in a pseudoregister during the function, but we may
2776 need to do it in a wider mode. Using 2 here makes the result
2777 consistent with promote_decl_mode and thus expand_expr_real_1. */
2778 promoted_nominal_mode
2779 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2780 TREE_TYPE (current_function_decl), 2);
2782 parmreg = gen_reg_rtx (promoted_nominal_mode);
2784 if (!DECL_ARTIFICIAL (parm))
2785 mark_user_reg (parmreg);
2787 /* If this was an item that we received a pointer to,
2788 set DECL_RTL appropriately. */
2789 if (data->passed_pointer)
2791 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2792 set_mem_attributes (x, parm, 1);
2793 SET_DECL_RTL (parm, x);
2795 else
2796 SET_DECL_RTL (parm, parmreg);
2798 assign_parm_remove_parallels (data);
2800 /* Copy the value into the register, thus bridging between
2801 assign_parm_find_data_types and expand_expr_real_1. */
2802 if (data->nominal_mode != data->passed_mode
2803 || promoted_nominal_mode != data->promoted_mode)
2805 int save_tree_used;
2807 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2808 mode, by the caller. We now have to convert it to
2809 NOMINAL_MODE, if different. However, PARMREG may be in
2810 a different mode than NOMINAL_MODE if it is being stored
2811 promoted.
2813 If ENTRY_PARM is a hard register, it might be in a register
2814 not valid for operating in its mode (e.g., an odd-numbered
2815 register for a DFmode). In that case, moves are the only
2816 thing valid, so we can't do a convert from there. This
2817 occurs when the calling sequence allow such misaligned
2818 usages.
2820 In addition, the conversion may involve a call, which could
2821 clobber parameters which haven't been copied to pseudo
2822 registers yet. Therefore, we must first copy the parm to
2823 a pseudo reg here, and save the conversion until after all
2824 parameters have been moved. */
2826 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2828 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2830 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2831 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2833 if (GET_CODE (tempreg) == SUBREG
2834 && GET_MODE (tempreg) == data->nominal_mode
2835 && REG_P (SUBREG_REG (tempreg))
2836 && data->nominal_mode == data->passed_mode
2837 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2838 && GET_MODE_SIZE (GET_MODE (tempreg))
2839 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2841 /* The argument is already sign/zero extended, so note it
2842 into the subreg. */
2843 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2844 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2847 /* TREE_USED gets set erroneously during expand_assignment. */
2848 save_tree_used = TREE_USED (parm);
2849 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2850 TREE_USED (parm) = save_tree_used;
2851 all->first_conversion_insn = get_insns ();
2852 all->last_conversion_insn = get_last_insn ();
2853 end_sequence ();
2855 did_conversion = true;
2857 else
2858 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2860 /* If we were passed a pointer but the actual value can safely live
2861 in a register, put it in one. */
2862 if (data->passed_pointer
2863 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2864 /* If by-reference argument was promoted, demote it. */
2865 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2866 || use_register_for_decl (parm)))
2868 /* We can't use nominal_mode, because it will have been set to
2869 Pmode above. We must use the actual mode of the parm. */
2870 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2871 mark_user_reg (parmreg);
2873 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2875 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2876 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2878 push_to_sequence2 (all->first_conversion_insn,
2879 all->last_conversion_insn);
2880 emit_move_insn (tempreg, DECL_RTL (parm));
2881 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2882 emit_move_insn (parmreg, tempreg);
2883 all->first_conversion_insn = get_insns ();
2884 all->last_conversion_insn = get_last_insn ();
2885 end_sequence ();
2887 did_conversion = true;
2889 else
2890 emit_move_insn (parmreg, DECL_RTL (parm));
2892 SET_DECL_RTL (parm, parmreg);
2894 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2895 now the parm. */
2896 data->stack_parm = NULL;
2899 /* Mark the register as eliminable if we did no conversion and it was
2900 copied from memory at a fixed offset, and the arg pointer was not
2901 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2902 offset formed an invalid address, such memory-equivalences as we
2903 make here would screw up life analysis for it. */
2904 if (data->nominal_mode == data->passed_mode
2905 && !did_conversion
2906 && data->stack_parm != 0
2907 && MEM_P (data->stack_parm)
2908 && data->locate.offset.var == 0
2909 && reg_mentioned_p (virtual_incoming_args_rtx,
2910 XEXP (data->stack_parm, 0)))
2912 rtx linsn = get_last_insn ();
2913 rtx sinsn, set;
2915 /* Mark complex types separately. */
2916 if (GET_CODE (parmreg) == CONCAT)
2918 enum machine_mode submode
2919 = GET_MODE_INNER (GET_MODE (parmreg));
2920 int regnor = REGNO (XEXP (parmreg, 0));
2921 int regnoi = REGNO (XEXP (parmreg, 1));
2922 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2923 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2924 GET_MODE_SIZE (submode));
2926 /* Scan backwards for the set of the real and
2927 imaginary parts. */
2928 for (sinsn = linsn; sinsn != 0;
2929 sinsn = prev_nonnote_insn (sinsn))
2931 set = single_set (sinsn);
2932 if (set == 0)
2933 continue;
2935 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2936 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2937 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2938 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2941 else if ((set = single_set (linsn)) != 0
2942 && SET_DEST (set) == parmreg)
2943 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2946 /* For pointer data type, suggest pointer register. */
2947 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2948 mark_reg_pointer (parmreg,
2949 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2952 /* A subroutine of assign_parms. Allocate stack space to hold the current
2953 parameter. Get it there. Perform all ABI specified conversions. */
2955 static void
2956 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2957 struct assign_parm_data_one *data)
2959 /* Value must be stored in the stack slot STACK_PARM during function
2960 execution. */
2961 bool to_conversion = false;
2963 assign_parm_remove_parallels (data);
2965 if (data->promoted_mode != data->nominal_mode)
2967 /* Conversion is required. */
2968 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2970 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2972 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2973 to_conversion = true;
2975 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2976 TYPE_UNSIGNED (TREE_TYPE (parm)));
2978 if (data->stack_parm)
2980 int offset = subreg_lowpart_offset (data->nominal_mode,
2981 GET_MODE (data->stack_parm));
2982 /* ??? This may need a big-endian conversion on sparc64. */
2983 data->stack_parm
2984 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2985 if (offset && MEM_OFFSET (data->stack_parm))
2986 set_mem_offset (data->stack_parm,
2987 plus_constant (MEM_OFFSET (data->stack_parm),
2988 offset));
2992 if (data->entry_parm != data->stack_parm)
2994 rtx src, dest;
2996 if (data->stack_parm == 0)
2998 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
2999 GET_MODE (data->entry_parm),
3000 TYPE_ALIGN (data->passed_type));
3001 data->stack_parm
3002 = assign_stack_local (GET_MODE (data->entry_parm),
3003 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3004 align);
3005 set_mem_attributes (data->stack_parm, parm, 1);
3008 dest = validize_mem (data->stack_parm);
3009 src = validize_mem (data->entry_parm);
3011 if (MEM_P (src))
3013 /* Use a block move to handle potentially misaligned entry_parm. */
3014 if (!to_conversion)
3015 push_to_sequence2 (all->first_conversion_insn,
3016 all->last_conversion_insn);
3017 to_conversion = true;
3019 emit_block_move (dest, src,
3020 GEN_INT (int_size_in_bytes (data->passed_type)),
3021 BLOCK_OP_NORMAL);
3023 else
3024 emit_move_insn (dest, src);
3027 if (to_conversion)
3029 all->first_conversion_insn = get_insns ();
3030 all->last_conversion_insn = get_last_insn ();
3031 end_sequence ();
3034 SET_DECL_RTL (parm, data->stack_parm);
3037 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3038 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3040 static void
3041 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
3043 tree parm;
3044 tree orig_fnargs = all->orig_fnargs;
3046 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3048 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3049 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3051 rtx tmp, real, imag;
3052 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3054 real = DECL_RTL (fnargs);
3055 imag = DECL_RTL (TREE_CHAIN (fnargs));
3056 if (inner != GET_MODE (real))
3058 real = gen_lowpart_SUBREG (inner, real);
3059 imag = gen_lowpart_SUBREG (inner, imag);
3062 if (TREE_ADDRESSABLE (parm))
3064 rtx rmem, imem;
3065 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3066 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3067 DECL_MODE (parm),
3068 TYPE_ALIGN (TREE_TYPE (parm)));
3070 /* split_complex_arg put the real and imag parts in
3071 pseudos. Move them to memory. */
3072 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3073 set_mem_attributes (tmp, parm, 1);
3074 rmem = adjust_address_nv (tmp, inner, 0);
3075 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3076 push_to_sequence2 (all->first_conversion_insn,
3077 all->last_conversion_insn);
3078 emit_move_insn (rmem, real);
3079 emit_move_insn (imem, imag);
3080 all->first_conversion_insn = get_insns ();
3081 all->last_conversion_insn = get_last_insn ();
3082 end_sequence ();
3084 else
3085 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3086 SET_DECL_RTL (parm, tmp);
3088 real = DECL_INCOMING_RTL (fnargs);
3089 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3090 if (inner != GET_MODE (real))
3092 real = gen_lowpart_SUBREG (inner, real);
3093 imag = gen_lowpart_SUBREG (inner, imag);
3095 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3096 set_decl_incoming_rtl (parm, tmp, false);
3097 fnargs = TREE_CHAIN (fnargs);
3099 else
3101 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3102 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3104 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3105 instead of the copy of decl, i.e. FNARGS. */
3106 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3107 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3110 fnargs = TREE_CHAIN (fnargs);
3114 /* Assign RTL expressions to the function's parameters. This may involve
3115 copying them into registers and using those registers as the DECL_RTL. */
3117 static void
3118 assign_parms (tree fndecl)
3120 struct assign_parm_data_all all;
3121 tree fnargs, parm;
3123 crtl->args.internal_arg_pointer
3124 = targetm.calls.internal_arg_pointer ();
3126 assign_parms_initialize_all (&all);
3127 fnargs = assign_parms_augmented_arg_list (&all);
3129 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3131 struct assign_parm_data_one data;
3133 /* Extract the type of PARM; adjust it according to ABI. */
3134 assign_parm_find_data_types (&all, parm, &data);
3136 /* Early out for errors and void parameters. */
3137 if (data.passed_mode == VOIDmode)
3139 SET_DECL_RTL (parm, const0_rtx);
3140 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3141 continue;
3144 /* Estimate stack alignment from parameter alignment. */
3145 if (SUPPORTS_STACK_ALIGNMENT)
3147 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3148 data.passed_type);
3149 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3150 align);
3151 if (TYPE_ALIGN (data.nominal_type) > align)
3152 align = MINIMUM_ALIGNMENT (data.nominal_type,
3153 TYPE_MODE (data.nominal_type),
3154 TYPE_ALIGN (data.nominal_type));
3155 if (crtl->stack_alignment_estimated < align)
3157 gcc_assert (!crtl->stack_realign_processed);
3158 crtl->stack_alignment_estimated = align;
3162 if (cfun->stdarg && !TREE_CHAIN (parm))
3163 assign_parms_setup_varargs (&all, &data, false);
3165 /* Find out where the parameter arrives in this function. */
3166 assign_parm_find_entry_rtl (&all, &data);
3168 /* Find out where stack space for this parameter might be. */
3169 if (assign_parm_is_stack_parm (&all, &data))
3171 assign_parm_find_stack_rtl (parm, &data);
3172 assign_parm_adjust_entry_rtl (&data);
3175 /* Record permanently how this parm was passed. */
3176 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3178 /* Update info on where next arg arrives in registers. */
3179 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3180 data.passed_type, data.named_arg);
3182 assign_parm_adjust_stack_rtl (&data);
3184 if (assign_parm_setup_block_p (&data))
3185 assign_parm_setup_block (&all, parm, &data);
3186 else if (data.passed_pointer || use_register_for_decl (parm))
3187 assign_parm_setup_reg (&all, parm, &data);
3188 else
3189 assign_parm_setup_stack (&all, parm, &data);
3192 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3193 assign_parms_unsplit_complex (&all, fnargs);
3195 /* Output all parameter conversion instructions (possibly including calls)
3196 now that all parameters have been copied out of hard registers. */
3197 emit_insn (all.first_conversion_insn);
3199 /* Estimate reload stack alignment from scalar return mode. */
3200 if (SUPPORTS_STACK_ALIGNMENT)
3202 if (DECL_RESULT (fndecl))
3204 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3205 enum machine_mode mode = TYPE_MODE (type);
3207 if (mode != BLKmode
3208 && mode != VOIDmode
3209 && !AGGREGATE_TYPE_P (type))
3211 unsigned int align = GET_MODE_ALIGNMENT (mode);
3212 if (crtl->stack_alignment_estimated < align)
3214 gcc_assert (!crtl->stack_realign_processed);
3215 crtl->stack_alignment_estimated = align;
3221 /* If we are receiving a struct value address as the first argument, set up
3222 the RTL for the function result. As this might require code to convert
3223 the transmitted address to Pmode, we do this here to ensure that possible
3224 preliminary conversions of the address have been emitted already. */
3225 if (all.function_result_decl)
3227 tree result = DECL_RESULT (current_function_decl);
3228 rtx addr = DECL_RTL (all.function_result_decl);
3229 rtx x;
3231 if (DECL_BY_REFERENCE (result))
3232 x = addr;
3233 else
3235 addr = convert_memory_address (Pmode, addr);
3236 x = gen_rtx_MEM (DECL_MODE (result), addr);
3237 set_mem_attributes (x, result, 1);
3239 SET_DECL_RTL (result, x);
3242 /* We have aligned all the args, so add space for the pretend args. */
3243 crtl->args.pretend_args_size = all.pretend_args_size;
3244 all.stack_args_size.constant += all.extra_pretend_bytes;
3245 crtl->args.size = all.stack_args_size.constant;
3247 /* Adjust function incoming argument size for alignment and
3248 minimum length. */
3250 #ifdef REG_PARM_STACK_SPACE
3251 crtl->args.size = MAX (crtl->args.size,
3252 REG_PARM_STACK_SPACE (fndecl));
3253 #endif
3255 crtl->args.size = CEIL_ROUND (crtl->args.size,
3256 PARM_BOUNDARY / BITS_PER_UNIT);
3258 #ifdef ARGS_GROW_DOWNWARD
3259 crtl->args.arg_offset_rtx
3260 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3261 : expand_expr (size_diffop (all.stack_args_size.var,
3262 size_int (-all.stack_args_size.constant)),
3263 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3264 #else
3265 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3266 #endif
3268 /* See how many bytes, if any, of its args a function should try to pop
3269 on return. */
3271 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3272 crtl->args.size);
3274 /* For stdarg.h function, save info about
3275 regs and stack space used by the named args. */
3277 crtl->args.info = all.args_so_far;
3279 /* Set the rtx used for the function return value. Put this in its
3280 own variable so any optimizers that need this information don't have
3281 to include tree.h. Do this here so it gets done when an inlined
3282 function gets output. */
3284 crtl->return_rtx
3285 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3286 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3288 /* If scalar return value was computed in a pseudo-reg, or was a named
3289 return value that got dumped to the stack, copy that to the hard
3290 return register. */
3291 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3293 tree decl_result = DECL_RESULT (fndecl);
3294 rtx decl_rtl = DECL_RTL (decl_result);
3296 if (REG_P (decl_rtl)
3297 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3298 : DECL_REGISTER (decl_result))
3300 rtx real_decl_rtl;
3302 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3303 fndecl, true);
3304 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3305 /* The delay slot scheduler assumes that crtl->return_rtx
3306 holds the hard register containing the return value, not a
3307 temporary pseudo. */
3308 crtl->return_rtx = real_decl_rtl;
3313 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3314 For all seen types, gimplify their sizes. */
3316 static tree
3317 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3319 tree t = *tp;
3321 *walk_subtrees = 0;
3322 if (TYPE_P (t))
3324 if (POINTER_TYPE_P (t))
3325 *walk_subtrees = 1;
3326 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3327 && !TYPE_SIZES_GIMPLIFIED (t))
3329 gimplify_type_sizes (t, (gimple_seq *) data);
3330 *walk_subtrees = 1;
3334 return NULL;
3337 /* Gimplify the parameter list for current_function_decl. This involves
3338 evaluating SAVE_EXPRs of variable sized parameters and generating code
3339 to implement callee-copies reference parameters. Returns a sequence of
3340 statements to add to the beginning of the function. */
3342 gimple_seq
3343 gimplify_parameters (void)
3345 struct assign_parm_data_all all;
3346 tree fnargs, parm;
3347 gimple_seq stmts = NULL;
3349 assign_parms_initialize_all (&all);
3350 fnargs = assign_parms_augmented_arg_list (&all);
3352 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3354 struct assign_parm_data_one data;
3356 /* Extract the type of PARM; adjust it according to ABI. */
3357 assign_parm_find_data_types (&all, parm, &data);
3359 /* Early out for errors and void parameters. */
3360 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3361 continue;
3363 /* Update info on where next arg arrives in registers. */
3364 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3365 data.passed_type, data.named_arg);
3367 /* ??? Once upon a time variable_size stuffed parameter list
3368 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3369 turned out to be less than manageable in the gimple world.
3370 Now we have to hunt them down ourselves. */
3371 walk_tree_without_duplicates (&data.passed_type,
3372 gimplify_parm_type, &stmts);
3374 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3376 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3377 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3380 if (data.passed_pointer)
3382 tree type = TREE_TYPE (data.passed_type);
3383 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3384 type, data.named_arg))
3386 tree local, t;
3388 /* For constant-sized objects, this is trivial; for
3389 variable-sized objects, we have to play games. */
3390 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3391 && !(flag_stack_check == GENERIC_STACK_CHECK
3392 && compare_tree_int (DECL_SIZE_UNIT (parm),
3393 STACK_CHECK_MAX_VAR_SIZE) > 0))
3395 local = create_tmp_var (type, get_name (parm));
3396 DECL_IGNORED_P (local) = 0;
3397 /* If PARM was addressable, move that flag over
3398 to the local copy, as its address will be taken,
3399 not the PARMs. */
3400 if (TREE_ADDRESSABLE (parm))
3402 TREE_ADDRESSABLE (parm) = 0;
3403 TREE_ADDRESSABLE (local) = 1;
3406 else
3408 tree ptr_type, addr;
3410 ptr_type = build_pointer_type (type);
3411 addr = create_tmp_var (ptr_type, get_name (parm));
3412 DECL_IGNORED_P (addr) = 0;
3413 local = build_fold_indirect_ref (addr);
3415 t = built_in_decls[BUILT_IN_ALLOCA];
3416 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3417 t = fold_convert (ptr_type, t);
3418 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3419 gimplify_and_add (t, &stmts);
3422 gimplify_assign (local, parm, &stmts);
3424 SET_DECL_VALUE_EXPR (parm, local);
3425 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3430 return stmts;
3433 /* Compute the size and offset from the start of the stacked arguments for a
3434 parm passed in mode PASSED_MODE and with type TYPE.
3436 INITIAL_OFFSET_PTR points to the current offset into the stacked
3437 arguments.
3439 The starting offset and size for this parm are returned in
3440 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3441 nonzero, the offset is that of stack slot, which is returned in
3442 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3443 padding required from the initial offset ptr to the stack slot.
3445 IN_REGS is nonzero if the argument will be passed in registers. It will
3446 never be set if REG_PARM_STACK_SPACE is not defined.
3448 FNDECL is the function in which the argument was defined.
3450 There are two types of rounding that are done. The first, controlled by
3451 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3452 list to be aligned to the specific boundary (in bits). This rounding
3453 affects the initial and starting offsets, but not the argument size.
3455 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3456 optionally rounds the size of the parm to PARM_BOUNDARY. The
3457 initial offset is not affected by this rounding, while the size always
3458 is and the starting offset may be. */
3460 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3461 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3462 callers pass in the total size of args so far as
3463 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3465 void
3466 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3467 int partial, tree fndecl ATTRIBUTE_UNUSED,
3468 struct args_size *initial_offset_ptr,
3469 struct locate_and_pad_arg_data *locate)
3471 tree sizetree;
3472 enum direction where_pad;
3473 unsigned int boundary;
3474 int reg_parm_stack_space = 0;
3475 int part_size_in_regs;
3477 #ifdef REG_PARM_STACK_SPACE
3478 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3480 /* If we have found a stack parm before we reach the end of the
3481 area reserved for registers, skip that area. */
3482 if (! in_regs)
3484 if (reg_parm_stack_space > 0)
3486 if (initial_offset_ptr->var)
3488 initial_offset_ptr->var
3489 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3490 ssize_int (reg_parm_stack_space));
3491 initial_offset_ptr->constant = 0;
3493 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3494 initial_offset_ptr->constant = reg_parm_stack_space;
3497 #endif /* REG_PARM_STACK_SPACE */
3499 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3501 sizetree
3502 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3503 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3504 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3505 locate->where_pad = where_pad;
3507 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3508 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3509 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3511 locate->boundary = boundary;
3513 if (SUPPORTS_STACK_ALIGNMENT)
3515 /* stack_alignment_estimated can't change after stack has been
3516 realigned. */
3517 if (crtl->stack_alignment_estimated < boundary)
3519 if (!crtl->stack_realign_processed)
3520 crtl->stack_alignment_estimated = boundary;
3521 else
3523 /* If stack is realigned and stack alignment value
3524 hasn't been finalized, it is OK not to increase
3525 stack_alignment_estimated. The bigger alignment
3526 requirement is recorded in stack_alignment_needed
3527 below. */
3528 gcc_assert (!crtl->stack_realign_finalized
3529 && crtl->stack_realign_needed);
3534 /* Remember if the outgoing parameter requires extra alignment on the
3535 calling function side. */
3536 if (crtl->stack_alignment_needed < boundary)
3537 crtl->stack_alignment_needed = boundary;
3538 if (crtl->preferred_stack_boundary < boundary)
3539 crtl->preferred_stack_boundary = boundary;
3541 #ifdef ARGS_GROW_DOWNWARD
3542 locate->slot_offset.constant = -initial_offset_ptr->constant;
3543 if (initial_offset_ptr->var)
3544 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3545 initial_offset_ptr->var);
3548 tree s2 = sizetree;
3549 if (where_pad != none
3550 && (!host_integerp (sizetree, 1)
3551 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3552 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3553 SUB_PARM_SIZE (locate->slot_offset, s2);
3556 locate->slot_offset.constant += part_size_in_regs;
3558 if (!in_regs
3559 #ifdef REG_PARM_STACK_SPACE
3560 || REG_PARM_STACK_SPACE (fndecl) > 0
3561 #endif
3563 pad_to_arg_alignment (&locate->slot_offset, boundary,
3564 &locate->alignment_pad);
3566 locate->size.constant = (-initial_offset_ptr->constant
3567 - locate->slot_offset.constant);
3568 if (initial_offset_ptr->var)
3569 locate->size.var = size_binop (MINUS_EXPR,
3570 size_binop (MINUS_EXPR,
3571 ssize_int (0),
3572 initial_offset_ptr->var),
3573 locate->slot_offset.var);
3575 /* Pad_below needs the pre-rounded size to know how much to pad
3576 below. */
3577 locate->offset = locate->slot_offset;
3578 if (where_pad == downward)
3579 pad_below (&locate->offset, passed_mode, sizetree);
3581 #else /* !ARGS_GROW_DOWNWARD */
3582 if (!in_regs
3583 #ifdef REG_PARM_STACK_SPACE
3584 || REG_PARM_STACK_SPACE (fndecl) > 0
3585 #endif
3587 pad_to_arg_alignment (initial_offset_ptr, boundary,
3588 &locate->alignment_pad);
3589 locate->slot_offset = *initial_offset_ptr;
3591 #ifdef PUSH_ROUNDING
3592 if (passed_mode != BLKmode)
3593 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3594 #endif
3596 /* Pad_below needs the pre-rounded size to know how much to pad below
3597 so this must be done before rounding up. */
3598 locate->offset = locate->slot_offset;
3599 if (where_pad == downward)
3600 pad_below (&locate->offset, passed_mode, sizetree);
3602 if (where_pad != none
3603 && (!host_integerp (sizetree, 1)
3604 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3605 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3607 ADD_PARM_SIZE (locate->size, sizetree);
3609 locate->size.constant -= part_size_in_regs;
3610 #endif /* ARGS_GROW_DOWNWARD */
3612 #ifdef FUNCTION_ARG_OFFSET
3613 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3614 #endif
3617 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3618 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3620 static void
3621 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3622 struct args_size *alignment_pad)
3624 tree save_var = NULL_TREE;
3625 HOST_WIDE_INT save_constant = 0;
3626 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3627 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3629 #ifdef SPARC_STACK_BOUNDARY_HACK
3630 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3631 the real alignment of %sp. However, when it does this, the
3632 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3633 if (SPARC_STACK_BOUNDARY_HACK)
3634 sp_offset = 0;
3635 #endif
3637 if (boundary > PARM_BOUNDARY)
3639 save_var = offset_ptr->var;
3640 save_constant = offset_ptr->constant;
3643 alignment_pad->var = NULL_TREE;
3644 alignment_pad->constant = 0;
3646 if (boundary > BITS_PER_UNIT)
3648 if (offset_ptr->var)
3650 tree sp_offset_tree = ssize_int (sp_offset);
3651 tree offset = size_binop (PLUS_EXPR,
3652 ARGS_SIZE_TREE (*offset_ptr),
3653 sp_offset_tree);
3654 #ifdef ARGS_GROW_DOWNWARD
3655 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3656 #else
3657 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3658 #endif
3660 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3661 /* ARGS_SIZE_TREE includes constant term. */
3662 offset_ptr->constant = 0;
3663 if (boundary > PARM_BOUNDARY)
3664 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3665 save_var);
3667 else
3669 offset_ptr->constant = -sp_offset +
3670 #ifdef ARGS_GROW_DOWNWARD
3671 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3672 #else
3673 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3674 #endif
3675 if (boundary > PARM_BOUNDARY)
3676 alignment_pad->constant = offset_ptr->constant - save_constant;
3681 static void
3682 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3684 if (passed_mode != BLKmode)
3686 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3687 offset_ptr->constant
3688 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3689 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3690 - GET_MODE_SIZE (passed_mode));
3692 else
3694 if (TREE_CODE (sizetree) != INTEGER_CST
3695 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3697 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3698 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3699 /* Add it in. */
3700 ADD_PARM_SIZE (*offset_ptr, s2);
3701 SUB_PARM_SIZE (*offset_ptr, sizetree);
3707 /* True if register REGNO was alive at a place where `setjmp' was
3708 called and was set more than once or is an argument. Such regs may
3709 be clobbered by `longjmp'. */
3711 static bool
3712 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3714 /* There appear to be cases where some local vars never reach the
3715 backend but have bogus regnos. */
3716 if (regno >= max_reg_num ())
3717 return false;
3719 return ((REG_N_SETS (regno) > 1
3720 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3721 && REGNO_REG_SET_P (setjmp_crosses, regno));
3724 /* Walk the tree of blocks describing the binding levels within a
3725 function and warn about variables the might be killed by setjmp or
3726 vfork. This is done after calling flow_analysis before register
3727 allocation since that will clobber the pseudo-regs to hard
3728 regs. */
3730 static void
3731 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3733 tree decl, sub;
3735 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3737 if (TREE_CODE (decl) == VAR_DECL
3738 && DECL_RTL_SET_P (decl)
3739 && REG_P (DECL_RTL (decl))
3740 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3741 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3742 " %<longjmp%> or %<vfork%>", decl);
3745 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3746 setjmp_vars_warning (setjmp_crosses, sub);
3749 /* Do the appropriate part of setjmp_vars_warning
3750 but for arguments instead of local variables. */
3752 static void
3753 setjmp_args_warning (bitmap setjmp_crosses)
3755 tree decl;
3756 for (decl = DECL_ARGUMENTS (current_function_decl);
3757 decl; decl = TREE_CHAIN (decl))
3758 if (DECL_RTL (decl) != 0
3759 && REG_P (DECL_RTL (decl))
3760 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3761 warning (OPT_Wclobbered,
3762 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3763 decl);
3766 /* Generate warning messages for variables live across setjmp. */
3768 void
3769 generate_setjmp_warnings (void)
3771 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3773 if (n_basic_blocks == NUM_FIXED_BLOCKS
3774 || bitmap_empty_p (setjmp_crosses))
3775 return;
3777 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3778 setjmp_args_warning (setjmp_crosses);
3782 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3783 and create duplicate blocks. */
3784 /* ??? Need an option to either create block fragments or to create
3785 abstract origin duplicates of a source block. It really depends
3786 on what optimization has been performed. */
3788 void
3789 reorder_blocks (void)
3791 tree block = DECL_INITIAL (current_function_decl);
3792 VEC(tree,heap) *block_stack;
3794 if (block == NULL_TREE)
3795 return;
3797 block_stack = VEC_alloc (tree, heap, 10);
3799 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3800 clear_block_marks (block);
3802 /* Prune the old trees away, so that they don't get in the way. */
3803 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3804 BLOCK_CHAIN (block) = NULL_TREE;
3806 /* Recreate the block tree from the note nesting. */
3807 reorder_blocks_1 (get_insns (), block, &block_stack);
3808 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3810 VEC_free (tree, heap, block_stack);
3813 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3815 void
3816 clear_block_marks (tree block)
3818 while (block)
3820 TREE_ASM_WRITTEN (block) = 0;
3821 clear_block_marks (BLOCK_SUBBLOCKS (block));
3822 block = BLOCK_CHAIN (block);
3826 static void
3827 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3829 rtx insn;
3831 for (insn = insns; insn; insn = NEXT_INSN (insn))
3833 if (NOTE_P (insn))
3835 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3837 tree block = NOTE_BLOCK (insn);
3838 tree origin;
3840 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3841 ? BLOCK_FRAGMENT_ORIGIN (block)
3842 : block);
3844 /* If we have seen this block before, that means it now
3845 spans multiple address regions. Create a new fragment. */
3846 if (TREE_ASM_WRITTEN (block))
3848 tree new_block = copy_node (block);
3850 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3851 BLOCK_FRAGMENT_CHAIN (new_block)
3852 = BLOCK_FRAGMENT_CHAIN (origin);
3853 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3855 NOTE_BLOCK (insn) = new_block;
3856 block = new_block;
3859 BLOCK_SUBBLOCKS (block) = 0;
3860 TREE_ASM_WRITTEN (block) = 1;
3861 /* When there's only one block for the entire function,
3862 current_block == block and we mustn't do this, it
3863 will cause infinite recursion. */
3864 if (block != current_block)
3866 if (block != origin)
3867 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3869 BLOCK_SUPERCONTEXT (block) = current_block;
3870 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3871 BLOCK_SUBBLOCKS (current_block) = block;
3872 current_block = origin;
3874 VEC_safe_push (tree, heap, *p_block_stack, block);
3876 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3878 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3879 BLOCK_SUBBLOCKS (current_block)
3880 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3881 current_block = BLOCK_SUPERCONTEXT (current_block);
3887 /* Reverse the order of elements in the chain T of blocks,
3888 and return the new head of the chain (old last element). */
3890 tree
3891 blocks_nreverse (tree t)
3893 tree prev = 0, decl, next;
3894 for (decl = t; decl; decl = next)
3896 next = BLOCK_CHAIN (decl);
3897 BLOCK_CHAIN (decl) = prev;
3898 prev = decl;
3900 return prev;
3903 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3904 non-NULL, list them all into VECTOR, in a depth-first preorder
3905 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3906 blocks. */
3908 static int
3909 all_blocks (tree block, tree *vector)
3911 int n_blocks = 0;
3913 while (block)
3915 TREE_ASM_WRITTEN (block) = 0;
3917 /* Record this block. */
3918 if (vector)
3919 vector[n_blocks] = block;
3921 ++n_blocks;
3923 /* Record the subblocks, and their subblocks... */
3924 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3925 vector ? vector + n_blocks : 0);
3926 block = BLOCK_CHAIN (block);
3929 return n_blocks;
3932 /* Return a vector containing all the blocks rooted at BLOCK. The
3933 number of elements in the vector is stored in N_BLOCKS_P. The
3934 vector is dynamically allocated; it is the caller's responsibility
3935 to call `free' on the pointer returned. */
3937 static tree *
3938 get_block_vector (tree block, int *n_blocks_p)
3940 tree *block_vector;
3942 *n_blocks_p = all_blocks (block, NULL);
3943 block_vector = XNEWVEC (tree, *n_blocks_p);
3944 all_blocks (block, block_vector);
3946 return block_vector;
3949 static GTY(()) int next_block_index = 2;
3951 /* Set BLOCK_NUMBER for all the blocks in FN. */
3953 void
3954 number_blocks (tree fn)
3956 int i;
3957 int n_blocks;
3958 tree *block_vector;
3960 /* For SDB and XCOFF debugging output, we start numbering the blocks
3961 from 1 within each function, rather than keeping a running
3962 count. */
3963 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3964 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3965 next_block_index = 1;
3966 #endif
3968 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3970 /* The top-level BLOCK isn't numbered at all. */
3971 for (i = 1; i < n_blocks; ++i)
3972 /* We number the blocks from two. */
3973 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3975 free (block_vector);
3977 return;
3980 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3982 tree
3983 debug_find_var_in_block_tree (tree var, tree block)
3985 tree t;
3987 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3988 if (t == var)
3989 return block;
3991 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3993 tree ret = debug_find_var_in_block_tree (var, t);
3994 if (ret)
3995 return ret;
3998 return NULL_TREE;
4001 /* Keep track of whether we're in a dummy function context. If we are,
4002 we don't want to invoke the set_current_function hook, because we'll
4003 get into trouble if the hook calls target_reinit () recursively or
4004 when the initial initialization is not yet complete. */
4006 static bool in_dummy_function;
4008 /* Invoke the target hook when setting cfun. Update the optimization options
4009 if the function uses different options than the default. */
4011 static void
4012 invoke_set_current_function_hook (tree fndecl)
4014 if (!in_dummy_function)
4016 tree opts = ((fndecl)
4017 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4018 : optimization_default_node);
4020 if (!opts)
4021 opts = optimization_default_node;
4023 /* Change optimization options if needed. */
4024 if (optimization_current_node != opts)
4026 optimization_current_node = opts;
4027 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4030 targetm.set_current_function (fndecl);
4034 /* cfun should never be set directly; use this function. */
4036 void
4037 set_cfun (struct function *new_cfun)
4039 if (cfun != new_cfun)
4041 cfun = new_cfun;
4042 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4046 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4048 static VEC(function_p,heap) *cfun_stack;
4050 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4052 void
4053 push_cfun (struct function *new_cfun)
4055 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4056 set_cfun (new_cfun);
4059 /* Pop cfun from the stack. */
4061 void
4062 pop_cfun (void)
4064 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4065 set_cfun (new_cfun);
4068 /* Return value of funcdef and increase it. */
4070 get_next_funcdef_no (void)
4072 return funcdef_no++;
4075 /* Allocate a function structure for FNDECL and set its contents
4076 to the defaults. Set cfun to the newly-allocated object.
4077 Some of the helper functions invoked during initialization assume
4078 that cfun has already been set. Therefore, assign the new object
4079 directly into cfun and invoke the back end hook explicitly at the
4080 very end, rather than initializing a temporary and calling set_cfun
4081 on it.
4083 ABSTRACT_P is true if this is a function that will never be seen by
4084 the middle-end. Such functions are front-end concepts (like C++
4085 function templates) that do not correspond directly to functions
4086 placed in object files. */
4088 void
4089 allocate_struct_function (tree fndecl, bool abstract_p)
4091 tree result;
4092 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4094 cfun = GGC_CNEW (struct function);
4096 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4098 init_eh_for_function ();
4100 if (init_machine_status)
4101 cfun->machine = (*init_machine_status) ();
4103 #ifdef OVERRIDE_ABI_FORMAT
4104 OVERRIDE_ABI_FORMAT (fndecl);
4105 #endif
4107 invoke_set_current_function_hook (fndecl);
4109 if (fndecl != NULL_TREE)
4111 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4112 cfun->decl = fndecl;
4113 current_function_funcdef_no = get_next_funcdef_no ();
4115 result = DECL_RESULT (fndecl);
4116 if (!abstract_p && aggregate_value_p (result, fndecl))
4118 #ifdef PCC_STATIC_STRUCT_RETURN
4119 cfun->returns_pcc_struct = 1;
4120 #endif
4121 cfun->returns_struct = 1;
4124 cfun->stdarg
4125 = (fntype
4126 && TYPE_ARG_TYPES (fntype) != 0
4127 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4128 != void_type_node));
4130 /* Assume all registers in stdarg functions need to be saved. */
4131 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4132 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4136 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4137 instead of just setting it. */
4139 void
4140 push_struct_function (tree fndecl)
4142 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4143 allocate_struct_function (fndecl, false);
4146 /* Reset cfun, and other non-struct-function variables to defaults as
4147 appropriate for emitting rtl at the start of a function. */
4149 static void
4150 prepare_function_start (void)
4152 gcc_assert (!crtl->emit.x_last_insn);
4153 init_temp_slots ();
4154 init_emit ();
4155 init_varasm_status ();
4156 init_expr ();
4157 default_rtl_profile ();
4159 cse_not_expected = ! optimize;
4161 /* Caller save not needed yet. */
4162 caller_save_needed = 0;
4164 /* We haven't done register allocation yet. */
4165 reg_renumber = 0;
4167 /* Indicate that we have not instantiated virtual registers yet. */
4168 virtuals_instantiated = 0;
4170 /* Indicate that we want CONCATs now. */
4171 generating_concat_p = 1;
4173 /* Indicate we have no need of a frame pointer yet. */
4174 frame_pointer_needed = 0;
4177 /* Initialize the rtl expansion mechanism so that we can do simple things
4178 like generate sequences. This is used to provide a context during global
4179 initialization of some passes. You must call expand_dummy_function_end
4180 to exit this context. */
4182 void
4183 init_dummy_function_start (void)
4185 gcc_assert (!in_dummy_function);
4186 in_dummy_function = true;
4187 push_struct_function (NULL_TREE);
4188 prepare_function_start ();
4191 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4192 and initialize static variables for generating RTL for the statements
4193 of the function. */
4195 void
4196 init_function_start (tree subr)
4198 if (subr && DECL_STRUCT_FUNCTION (subr))
4199 set_cfun (DECL_STRUCT_FUNCTION (subr));
4200 else
4201 allocate_struct_function (subr, false);
4202 prepare_function_start ();
4204 /* Warn if this value is an aggregate type,
4205 regardless of which calling convention we are using for it. */
4206 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4207 warning (OPT_Waggregate_return, "function returns an aggregate");
4210 /* Make sure all values used by the optimization passes have sane defaults. */
4211 unsigned int
4212 init_function_for_compilation (void)
4214 reg_renumber = 0;
4215 return 0;
4218 struct rtl_opt_pass pass_init_function =
4221 RTL_PASS,
4222 NULL, /* name */
4223 NULL, /* gate */
4224 init_function_for_compilation, /* execute */
4225 NULL, /* sub */
4226 NULL, /* next */
4227 0, /* static_pass_number */
4228 TV_NONE, /* tv_id */
4229 0, /* properties_required */
4230 0, /* properties_provided */
4231 0, /* properties_destroyed */
4232 0, /* todo_flags_start */
4233 0 /* todo_flags_finish */
4238 void
4239 expand_main_function (void)
4241 #if (defined(INVOKE__main) \
4242 || (!defined(HAS_INIT_SECTION) \
4243 && !defined(INIT_SECTION_ASM_OP) \
4244 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4245 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4246 #endif
4249 /* Expand code to initialize the stack_protect_guard. This is invoked at
4250 the beginning of a function to be protected. */
4252 #ifndef HAVE_stack_protect_set
4253 # define HAVE_stack_protect_set 0
4254 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4255 #endif
4257 void
4258 stack_protect_prologue (void)
4260 tree guard_decl = targetm.stack_protect_guard ();
4261 rtx x, y;
4263 /* Avoid expand_expr here, because we don't want guard_decl pulled
4264 into registers unless absolutely necessary. And we know that
4265 crtl->stack_protect_guard is a local stack slot, so this skips
4266 all the fluff. */
4267 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4268 y = validize_mem (DECL_RTL (guard_decl));
4270 /* Allow the target to copy from Y to X without leaking Y into a
4271 register. */
4272 if (HAVE_stack_protect_set)
4274 rtx insn = gen_stack_protect_set (x, y);
4275 if (insn)
4277 emit_insn (insn);
4278 return;
4282 /* Otherwise do a straight move. */
4283 emit_move_insn (x, y);
4286 /* Expand code to verify the stack_protect_guard. This is invoked at
4287 the end of a function to be protected. */
4289 #ifndef HAVE_stack_protect_test
4290 # define HAVE_stack_protect_test 0
4291 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4292 #endif
4294 void
4295 stack_protect_epilogue (void)
4297 tree guard_decl = targetm.stack_protect_guard ();
4298 rtx label = gen_label_rtx ();
4299 rtx x, y, tmp;
4301 /* Avoid expand_expr here, because we don't want guard_decl pulled
4302 into registers unless absolutely necessary. And we know that
4303 crtl->stack_protect_guard is a local stack slot, so this skips
4304 all the fluff. */
4305 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4306 y = validize_mem (DECL_RTL (guard_decl));
4308 /* Allow the target to compare Y with X without leaking either into
4309 a register. */
4310 switch (HAVE_stack_protect_test != 0)
4312 case 1:
4313 tmp = gen_stack_protect_test (x, y, label);
4314 if (tmp)
4316 emit_insn (tmp);
4317 break;
4319 /* FALLTHRU */
4321 default:
4322 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4323 break;
4326 /* The noreturn predictor has been moved to the tree level. The rtl-level
4327 predictors estimate this branch about 20%, which isn't enough to get
4328 things moved out of line. Since this is the only extant case of adding
4329 a noreturn function at the rtl level, it doesn't seem worth doing ought
4330 except adding the prediction by hand. */
4331 tmp = get_last_insn ();
4332 if (JUMP_P (tmp))
4333 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4335 expand_expr_stmt (targetm.stack_protect_fail ());
4336 emit_label (label);
4339 /* Start the RTL for a new function, and set variables used for
4340 emitting RTL.
4341 SUBR is the FUNCTION_DECL node.
4342 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4343 the function's parameters, which must be run at any return statement. */
4345 void
4346 expand_function_start (tree subr)
4348 /* Make sure volatile mem refs aren't considered
4349 valid operands of arithmetic insns. */
4350 init_recog_no_volatile ();
4352 crtl->profile
4353 = (profile_flag
4354 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4356 crtl->limit_stack
4357 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4359 /* Make the label for return statements to jump to. Do not special
4360 case machines with special return instructions -- they will be
4361 handled later during jump, ifcvt, or epilogue creation. */
4362 return_label = gen_label_rtx ();
4364 /* Initialize rtx used to return the value. */
4365 /* Do this before assign_parms so that we copy the struct value address
4366 before any library calls that assign parms might generate. */
4368 /* Decide whether to return the value in memory or in a register. */
4369 if (aggregate_value_p (DECL_RESULT (subr), subr))
4371 /* Returning something that won't go in a register. */
4372 rtx value_address = 0;
4374 #ifdef PCC_STATIC_STRUCT_RETURN
4375 if (cfun->returns_pcc_struct)
4377 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4378 value_address = assemble_static_space (size);
4380 else
4381 #endif
4383 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4384 /* Expect to be passed the address of a place to store the value.
4385 If it is passed as an argument, assign_parms will take care of
4386 it. */
4387 if (sv)
4389 value_address = gen_reg_rtx (Pmode);
4390 emit_move_insn (value_address, sv);
4393 if (value_address)
4395 rtx x = value_address;
4396 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4398 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4399 set_mem_attributes (x, DECL_RESULT (subr), 1);
4401 SET_DECL_RTL (DECL_RESULT (subr), x);
4404 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4405 /* If return mode is void, this decl rtl should not be used. */
4406 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4407 else
4409 /* Compute the return values into a pseudo reg, which we will copy
4410 into the true return register after the cleanups are done. */
4411 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4412 if (TYPE_MODE (return_type) != BLKmode
4413 && targetm.calls.return_in_msb (return_type))
4414 /* expand_function_end will insert the appropriate padding in
4415 this case. Use the return value's natural (unpadded) mode
4416 within the function proper. */
4417 SET_DECL_RTL (DECL_RESULT (subr),
4418 gen_reg_rtx (TYPE_MODE (return_type)));
4419 else
4421 /* In order to figure out what mode to use for the pseudo, we
4422 figure out what the mode of the eventual return register will
4423 actually be, and use that. */
4424 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4426 /* Structures that are returned in registers are not
4427 aggregate_value_p, so we may see a PARALLEL or a REG. */
4428 if (REG_P (hard_reg))
4429 SET_DECL_RTL (DECL_RESULT (subr),
4430 gen_reg_rtx (GET_MODE (hard_reg)));
4431 else
4433 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4434 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4438 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4439 result to the real return register(s). */
4440 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4443 /* Initialize rtx for parameters and local variables.
4444 In some cases this requires emitting insns. */
4445 assign_parms (subr);
4447 /* If function gets a static chain arg, store it. */
4448 if (cfun->static_chain_decl)
4450 tree parm = cfun->static_chain_decl;
4451 rtx local = gen_reg_rtx (Pmode);
4453 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4454 SET_DECL_RTL (parm, local);
4455 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4457 emit_move_insn (local, static_chain_incoming_rtx);
4460 /* If the function receives a non-local goto, then store the
4461 bits we need to restore the frame pointer. */
4462 if (cfun->nonlocal_goto_save_area)
4464 tree t_save;
4465 rtx r_save;
4467 /* ??? We need to do this save early. Unfortunately here is
4468 before the frame variable gets declared. Help out... */
4469 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4470 if (!DECL_RTL_SET_P (var))
4471 expand_decl (var);
4473 t_save = build4 (ARRAY_REF, ptr_type_node,
4474 cfun->nonlocal_goto_save_area,
4475 integer_zero_node, NULL_TREE, NULL_TREE);
4476 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4477 r_save = convert_memory_address (Pmode, r_save);
4479 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4480 update_nonlocal_goto_save_area ();
4483 /* The following was moved from init_function_start.
4484 The move is supposed to make sdb output more accurate. */
4485 /* Indicate the beginning of the function body,
4486 as opposed to parm setup. */
4487 emit_note (NOTE_INSN_FUNCTION_BEG);
4489 gcc_assert (NOTE_P (get_last_insn ()));
4491 parm_birth_insn = get_last_insn ();
4493 if (crtl->profile)
4495 #ifdef PROFILE_HOOK
4496 PROFILE_HOOK (current_function_funcdef_no);
4497 #endif
4500 /* After the display initializations is where the stack checking
4501 probe should go. */
4502 if(flag_stack_check)
4503 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4505 /* Make sure there is a line number after the function entry setup code. */
4506 force_next_line_note ();
4509 /* Undo the effects of init_dummy_function_start. */
4510 void
4511 expand_dummy_function_end (void)
4513 gcc_assert (in_dummy_function);
4515 /* End any sequences that failed to be closed due to syntax errors. */
4516 while (in_sequence_p ())
4517 end_sequence ();
4519 /* Outside function body, can't compute type's actual size
4520 until next function's body starts. */
4522 free_after_parsing (cfun);
4523 free_after_compilation (cfun);
4524 pop_cfun ();
4525 in_dummy_function = false;
4528 /* Call DOIT for each hard register used as a return value from
4529 the current function. */
4531 void
4532 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4534 rtx outgoing = crtl->return_rtx;
4536 if (! outgoing)
4537 return;
4539 if (REG_P (outgoing))
4540 (*doit) (outgoing, arg);
4541 else if (GET_CODE (outgoing) == PARALLEL)
4543 int i;
4545 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4547 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4549 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4550 (*doit) (x, arg);
4555 static void
4556 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4558 emit_clobber (reg);
4561 void
4562 clobber_return_register (void)
4564 diddle_return_value (do_clobber_return_reg, NULL);
4566 /* In case we do use pseudo to return value, clobber it too. */
4567 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4569 tree decl_result = DECL_RESULT (current_function_decl);
4570 rtx decl_rtl = DECL_RTL (decl_result);
4571 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4573 do_clobber_return_reg (decl_rtl, NULL);
4578 static void
4579 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4581 emit_use (reg);
4584 static void
4585 use_return_register (void)
4587 diddle_return_value (do_use_return_reg, NULL);
4590 /* Possibly warn about unused parameters. */
4591 void
4592 do_warn_unused_parameter (tree fn)
4594 tree decl;
4596 for (decl = DECL_ARGUMENTS (fn);
4597 decl; decl = TREE_CHAIN (decl))
4598 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4599 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4600 && !TREE_NO_WARNING (decl))
4601 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4604 static GTY(()) rtx initial_trampoline;
4606 /* Generate RTL for the end of the current function. */
4608 void
4609 expand_function_end (void)
4611 rtx clobber_after;
4613 /* If arg_pointer_save_area was referenced only from a nested
4614 function, we will not have initialized it yet. Do that now. */
4615 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4616 get_arg_pointer_save_area ();
4618 /* If we are doing generic stack checking and this function makes calls,
4619 do a stack probe at the start of the function to ensure we have enough
4620 space for another stack frame. */
4621 if (flag_stack_check == GENERIC_STACK_CHECK)
4623 rtx insn, seq;
4625 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4626 if (CALL_P (insn))
4628 start_sequence ();
4629 probe_stack_range (STACK_OLD_CHECK_PROTECT,
4630 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4631 seq = get_insns ();
4632 end_sequence ();
4633 emit_insn_before (seq, stack_check_probe_note);
4634 break;
4638 /* End any sequences that failed to be closed due to syntax errors. */
4639 while (in_sequence_p ())
4640 end_sequence ();
4642 clear_pending_stack_adjust ();
4643 do_pending_stack_adjust ();
4645 /* Output a linenumber for the end of the function.
4646 SDB depends on this. */
4647 force_next_line_note ();
4648 set_curr_insn_source_location (input_location);
4650 /* Before the return label (if any), clobber the return
4651 registers so that they are not propagated live to the rest of
4652 the function. This can only happen with functions that drop
4653 through; if there had been a return statement, there would
4654 have either been a return rtx, or a jump to the return label.
4656 We delay actual code generation after the current_function_value_rtx
4657 is computed. */
4658 clobber_after = get_last_insn ();
4660 /* Output the label for the actual return from the function. */
4661 emit_label (return_label);
4663 if (USING_SJLJ_EXCEPTIONS)
4665 /* Let except.c know where it should emit the call to unregister
4666 the function context for sjlj exceptions. */
4667 if (flag_exceptions)
4668 sjlj_emit_function_exit_after (get_last_insn ());
4670 else
4672 /* We want to ensure that instructions that may trap are not
4673 moved into the epilogue by scheduling, because we don't
4674 always emit unwind information for the epilogue. */
4675 if (flag_non_call_exceptions)
4676 emit_insn (gen_blockage ());
4679 /* If this is an implementation of throw, do what's necessary to
4680 communicate between __builtin_eh_return and the epilogue. */
4681 expand_eh_return ();
4683 /* If scalar return value was computed in a pseudo-reg, or was a named
4684 return value that got dumped to the stack, copy that to the hard
4685 return register. */
4686 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4688 tree decl_result = DECL_RESULT (current_function_decl);
4689 rtx decl_rtl = DECL_RTL (decl_result);
4691 if (REG_P (decl_rtl)
4692 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4693 : DECL_REGISTER (decl_result))
4695 rtx real_decl_rtl = crtl->return_rtx;
4697 /* This should be set in assign_parms. */
4698 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4700 /* If this is a BLKmode structure being returned in registers,
4701 then use the mode computed in expand_return. Note that if
4702 decl_rtl is memory, then its mode may have been changed,
4703 but that crtl->return_rtx has not. */
4704 if (GET_MODE (real_decl_rtl) == BLKmode)
4705 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4707 /* If a non-BLKmode return value should be padded at the least
4708 significant end of the register, shift it left by the appropriate
4709 amount. BLKmode results are handled using the group load/store
4710 machinery. */
4711 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4712 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4714 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4715 REGNO (real_decl_rtl)),
4716 decl_rtl);
4717 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4719 /* If a named return value dumped decl_return to memory, then
4720 we may need to re-do the PROMOTE_MODE signed/unsigned
4721 extension. */
4722 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4724 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4725 promote_function_mode (TREE_TYPE (decl_result),
4726 GET_MODE (decl_rtl), &unsignedp,
4727 TREE_TYPE (current_function_decl), 1);
4729 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4731 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4733 /* If expand_function_start has created a PARALLEL for decl_rtl,
4734 move the result to the real return registers. Otherwise, do
4735 a group load from decl_rtl for a named return. */
4736 if (GET_CODE (decl_rtl) == PARALLEL)
4737 emit_group_move (real_decl_rtl, decl_rtl);
4738 else
4739 emit_group_load (real_decl_rtl, decl_rtl,
4740 TREE_TYPE (decl_result),
4741 int_size_in_bytes (TREE_TYPE (decl_result)));
4743 /* In the case of complex integer modes smaller than a word, we'll
4744 need to generate some non-trivial bitfield insertions. Do that
4745 on a pseudo and not the hard register. */
4746 else if (GET_CODE (decl_rtl) == CONCAT
4747 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4748 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4750 int old_generating_concat_p;
4751 rtx tmp;
4753 old_generating_concat_p = generating_concat_p;
4754 generating_concat_p = 0;
4755 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4756 generating_concat_p = old_generating_concat_p;
4758 emit_move_insn (tmp, decl_rtl);
4759 emit_move_insn (real_decl_rtl, tmp);
4761 else
4762 emit_move_insn (real_decl_rtl, decl_rtl);
4766 /* If returning a structure, arrange to return the address of the value
4767 in a place where debuggers expect to find it.
4769 If returning a structure PCC style,
4770 the caller also depends on this value.
4771 And cfun->returns_pcc_struct is not necessarily set. */
4772 if (cfun->returns_struct
4773 || cfun->returns_pcc_struct)
4775 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4776 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4777 rtx outgoing;
4779 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4780 type = TREE_TYPE (type);
4781 else
4782 value_address = XEXP (value_address, 0);
4784 outgoing = targetm.calls.function_value (build_pointer_type (type),
4785 current_function_decl, true);
4787 /* Mark this as a function return value so integrate will delete the
4788 assignment and USE below when inlining this function. */
4789 REG_FUNCTION_VALUE_P (outgoing) = 1;
4791 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4792 value_address = convert_memory_address (GET_MODE (outgoing),
4793 value_address);
4795 emit_move_insn (outgoing, value_address);
4797 /* Show return register used to hold result (in this case the address
4798 of the result. */
4799 crtl->return_rtx = outgoing;
4802 /* Emit the actual code to clobber return register. */
4804 rtx seq;
4806 start_sequence ();
4807 clobber_return_register ();
4808 seq = get_insns ();
4809 end_sequence ();
4811 emit_insn_after (seq, clobber_after);
4814 /* Output the label for the naked return from the function. */
4815 if (naked_return_label)
4816 emit_label (naked_return_label);
4818 /* @@@ This is a kludge. We want to ensure that instructions that
4819 may trap are not moved into the epilogue by scheduling, because
4820 we don't always emit unwind information for the epilogue. */
4821 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4822 emit_insn (gen_blockage ());
4824 /* If stack protection is enabled for this function, check the guard. */
4825 if (crtl->stack_protect_guard)
4826 stack_protect_epilogue ();
4828 /* If we had calls to alloca, and this machine needs
4829 an accurate stack pointer to exit the function,
4830 insert some code to save and restore the stack pointer. */
4831 if (! EXIT_IGNORE_STACK
4832 && cfun->calls_alloca)
4834 rtx tem = 0;
4836 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4837 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4840 /* ??? This should no longer be necessary since stupid is no longer with
4841 us, but there are some parts of the compiler (eg reload_combine, and
4842 sh mach_dep_reorg) that still try and compute their own lifetime info
4843 instead of using the general framework. */
4844 use_return_register ();
4848 get_arg_pointer_save_area (void)
4850 rtx ret = arg_pointer_save_area;
4852 if (! ret)
4854 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4855 arg_pointer_save_area = ret;
4858 if (! crtl->arg_pointer_save_area_init)
4860 rtx seq;
4862 /* Save the arg pointer at the beginning of the function. The
4863 generated stack slot may not be a valid memory address, so we
4864 have to check it and fix it if necessary. */
4865 start_sequence ();
4866 emit_move_insn (validize_mem (ret),
4867 crtl->args.internal_arg_pointer);
4868 seq = get_insns ();
4869 end_sequence ();
4871 push_topmost_sequence ();
4872 emit_insn_after (seq, entry_of_function ());
4873 pop_topmost_sequence ();
4876 return ret;
4879 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4880 for the first time. */
4882 static void
4883 record_insns (rtx insns, rtx end, htab_t *hashp)
4885 rtx tmp;
4886 htab_t hash = *hashp;
4888 if (hash == NULL)
4889 *hashp = hash
4890 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4892 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4894 void **slot = htab_find_slot (hash, tmp, INSERT);
4895 gcc_assert (*slot == NULL);
4896 *slot = tmp;
4900 /* INSN has been duplicated as COPY, as part of duping a basic block.
4901 If INSN is an epilogue insn, then record COPY as epilogue as well. */
4903 void
4904 maybe_copy_epilogue_insn (rtx insn, rtx copy)
4906 void **slot;
4908 if (epilogue_insn_hash == NULL
4909 || htab_find (epilogue_insn_hash, insn) == NULL)
4910 return;
4912 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
4913 gcc_assert (*slot == NULL);
4914 *slot = copy;
4917 /* Set the locator of the insn chain starting at INSN to LOC. */
4918 static void
4919 set_insn_locators (rtx insn, int loc)
4921 while (insn != NULL_RTX)
4923 if (INSN_P (insn))
4924 INSN_LOCATOR (insn) = loc;
4925 insn = NEXT_INSN (insn);
4929 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
4930 we can be running after reorg, SEQUENCE rtl is possible. */
4932 static bool
4933 contains (const_rtx insn, htab_t hash)
4935 if (hash == NULL)
4936 return false;
4938 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4940 int i;
4941 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4942 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
4943 return true;
4944 return false;
4947 return htab_find (hash, insn) != NULL;
4951 prologue_epilogue_contains (const_rtx insn)
4953 if (contains (insn, prologue_insn_hash))
4954 return 1;
4955 if (contains (insn, epilogue_insn_hash))
4956 return 1;
4957 return 0;
4960 #ifdef HAVE_return
4961 /* Insert gen_return at the end of block BB. This also means updating
4962 block_for_insn appropriately. */
4964 static void
4965 emit_return_into_block (basic_block bb)
4967 emit_jump_insn_after (gen_return (), BB_END (bb));
4969 #endif /* HAVE_return */
4971 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4972 this into place with notes indicating where the prologue ends and where
4973 the epilogue begins. Update the basic block information when possible. */
4975 static void
4976 thread_prologue_and_epilogue_insns (void)
4978 int inserted = 0;
4979 edge e;
4980 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4981 rtx seq;
4982 #endif
4983 #if defined (HAVE_epilogue) || defined(HAVE_return)
4984 rtx epilogue_end = NULL_RTX;
4985 #endif
4986 edge_iterator ei;
4988 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
4989 #ifdef HAVE_prologue
4990 if (HAVE_prologue)
4992 start_sequence ();
4993 seq = gen_prologue ();
4994 emit_insn (seq);
4996 /* Insert an explicit USE for the frame pointer
4997 if the profiling is on and the frame pointer is required. */
4998 if (crtl->profile && frame_pointer_needed)
4999 emit_use (hard_frame_pointer_rtx);
5001 /* Retain a map of the prologue insns. */
5002 record_insns (seq, NULL, &prologue_insn_hash);
5003 emit_note (NOTE_INSN_PROLOGUE_END);
5005 #ifndef PROFILE_BEFORE_PROLOGUE
5006 /* Ensure that instructions are not moved into the prologue when
5007 profiling is on. The call to the profiling routine can be
5008 emitted within the live range of a call-clobbered register. */
5009 if (crtl->profile)
5010 emit_insn (gen_blockage ());
5011 #endif
5013 seq = get_insns ();
5014 end_sequence ();
5015 set_insn_locators (seq, prologue_locator);
5017 /* Can't deal with multiple successors of the entry block
5018 at the moment. Function should always have at least one
5019 entry point. */
5020 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5022 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5023 inserted = 1;
5025 #endif
5027 /* If the exit block has no non-fake predecessors, we don't need
5028 an epilogue. */
5029 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5030 if ((e->flags & EDGE_FAKE) == 0)
5031 break;
5032 if (e == NULL)
5033 goto epilogue_done;
5035 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5036 #ifdef HAVE_return
5037 if (optimize && HAVE_return)
5039 /* If we're allowed to generate a simple return instruction,
5040 then by definition we don't need a full epilogue. Examine
5041 the block that falls through to EXIT. If it does not
5042 contain any code, examine its predecessors and try to
5043 emit (conditional) return instructions. */
5045 basic_block last;
5046 rtx label;
5048 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5049 if (e->flags & EDGE_FALLTHRU)
5050 break;
5051 if (e == NULL)
5052 goto epilogue_done;
5053 last = e->src;
5055 /* Verify that there are no active instructions in the last block. */
5056 label = BB_END (last);
5057 while (label && !LABEL_P (label))
5059 if (active_insn_p (label))
5060 break;
5061 label = PREV_INSN (label);
5064 if (BB_HEAD (last) == label && LABEL_P (label))
5066 edge_iterator ei2;
5068 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5070 basic_block bb = e->src;
5071 rtx jump;
5073 if (bb == ENTRY_BLOCK_PTR)
5075 ei_next (&ei2);
5076 continue;
5079 jump = BB_END (bb);
5080 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5082 ei_next (&ei2);
5083 continue;
5086 /* If we have an unconditional jump, we can replace that
5087 with a simple return instruction. */
5088 if (simplejump_p (jump))
5090 emit_return_into_block (bb);
5091 delete_insn (jump);
5094 /* If we have a conditional jump, we can try to replace
5095 that with a conditional return instruction. */
5096 else if (condjump_p (jump))
5098 if (! redirect_jump (jump, 0, 0))
5100 ei_next (&ei2);
5101 continue;
5104 /* If this block has only one successor, it both jumps
5105 and falls through to the fallthru block, so we can't
5106 delete the edge. */
5107 if (single_succ_p (bb))
5109 ei_next (&ei2);
5110 continue;
5113 else
5115 ei_next (&ei2);
5116 continue;
5119 /* Fix up the CFG for the successful change we just made. */
5120 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5123 /* Emit a return insn for the exit fallthru block. Whether
5124 this is still reachable will be determined later. */
5126 emit_barrier_after (BB_END (last));
5127 emit_return_into_block (last);
5128 epilogue_end = BB_END (last);
5129 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5130 goto epilogue_done;
5133 #endif
5135 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5136 this marker for the splits of EH_RETURN patterns, and nothing else
5137 uses the flag in the meantime. */
5138 epilogue_completed = 1;
5140 #ifdef HAVE_eh_return
5141 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5142 some targets, these get split to a special version of the epilogue
5143 code. In order to be able to properly annotate these with unwind
5144 info, try to split them now. If we get a valid split, drop an
5145 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5146 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5148 rtx prev, last, trial;
5150 if (e->flags & EDGE_FALLTHRU)
5151 continue;
5152 last = BB_END (e->src);
5153 if (!eh_returnjump_p (last))
5154 continue;
5156 prev = PREV_INSN (last);
5157 trial = try_split (PATTERN (last), last, 1);
5158 if (trial == last)
5159 continue;
5161 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5162 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5164 #endif
5166 /* Find the edge that falls through to EXIT. Other edges may exist
5167 due to RETURN instructions, but those don't need epilogues.
5168 There really shouldn't be a mixture -- either all should have
5169 been converted or none, however... */
5171 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5172 if (e->flags & EDGE_FALLTHRU)
5173 break;
5174 if (e == NULL)
5175 goto epilogue_done;
5177 #ifdef HAVE_epilogue
5178 if (HAVE_epilogue)
5180 start_sequence ();
5181 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5182 seq = gen_epilogue ();
5183 emit_jump_insn (seq);
5185 /* Retain a map of the epilogue insns. */
5186 record_insns (seq, NULL, &epilogue_insn_hash);
5187 set_insn_locators (seq, epilogue_locator);
5189 seq = get_insns ();
5190 end_sequence ();
5192 insert_insn_on_edge (seq, e);
5193 inserted = 1;
5195 else
5196 #endif
5198 basic_block cur_bb;
5200 if (! next_active_insn (BB_END (e->src)))
5201 goto epilogue_done;
5202 /* We have a fall-through edge to the exit block, the source is not
5203 at the end of the function, and there will be an assembler epilogue
5204 at the end of the function.
5205 We can't use force_nonfallthru here, because that would try to
5206 use return. Inserting a jump 'by hand' is extremely messy, so
5207 we take advantage of cfg_layout_finalize using
5208 fixup_fallthru_exit_predecessor. */
5209 cfg_layout_initialize (0);
5210 FOR_EACH_BB (cur_bb)
5211 if (cur_bb->index >= NUM_FIXED_BLOCKS
5212 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5213 cur_bb->aux = cur_bb->next_bb;
5214 cfg_layout_finalize ();
5216 epilogue_done:
5217 default_rtl_profile ();
5219 if (inserted)
5221 commit_edge_insertions ();
5223 /* The epilogue insns we inserted may cause the exit edge to no longer
5224 be fallthru. */
5225 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5227 if (((e->flags & EDGE_FALLTHRU) != 0)
5228 && returnjump_p (BB_END (e->src)))
5229 e->flags &= ~EDGE_FALLTHRU;
5233 #ifdef HAVE_sibcall_epilogue
5234 /* Emit sibling epilogues before any sibling call sites. */
5235 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5237 basic_block bb = e->src;
5238 rtx insn = BB_END (bb);
5240 if (!CALL_P (insn)
5241 || ! SIBLING_CALL_P (insn))
5243 ei_next (&ei);
5244 continue;
5247 start_sequence ();
5248 emit_note (NOTE_INSN_EPILOGUE_BEG);
5249 emit_insn (gen_sibcall_epilogue ());
5250 seq = get_insns ();
5251 end_sequence ();
5253 /* Retain a map of the epilogue insns. Used in life analysis to
5254 avoid getting rid of sibcall epilogue insns. Do this before we
5255 actually emit the sequence. */
5256 record_insns (seq, NULL, &epilogue_insn_hash);
5257 set_insn_locators (seq, epilogue_locator);
5259 emit_insn_before (seq, insn);
5260 ei_next (&ei);
5262 #endif
5264 #ifdef HAVE_epilogue
5265 if (epilogue_end)
5267 rtx insn, next;
5269 /* Similarly, move any line notes that appear after the epilogue.
5270 There is no need, however, to be quite so anal about the existence
5271 of such a note. Also possibly move
5272 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5273 info generation. */
5274 for (insn = epilogue_end; insn; insn = next)
5276 next = NEXT_INSN (insn);
5277 if (NOTE_P (insn)
5278 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5279 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5282 #endif
5284 /* Threading the prologue and epilogue changes the artificial refs
5285 in the entry and exit blocks. */
5286 epilogue_completed = 1;
5287 df_update_entry_exit_and_calls ();
5290 /* Reposition the prologue-end and epilogue-begin notes after
5291 instruction scheduling. */
5293 void
5294 reposition_prologue_and_epilogue_notes (void)
5296 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5297 || defined (HAVE_sibcall_epilogue)
5298 /* Since the hash table is created on demand, the fact that it is
5299 non-null is a signal that it is non-empty. */
5300 if (prologue_insn_hash != NULL)
5302 size_t len = htab_elements (prologue_insn_hash);
5303 rtx insn, last = NULL, note = NULL;
5305 /* Scan from the beginning until we reach the last prologue insn. */
5306 /* ??? While we do have the CFG intact, there are two problems:
5307 (1) The prologue can contain loops (typically probing the stack),
5308 which means that the end of the prologue isn't in the first bb.
5309 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5310 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5312 if (NOTE_P (insn))
5314 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5315 note = insn;
5317 else if (contains (insn, prologue_insn_hash))
5319 last = insn;
5320 if (--len == 0)
5321 break;
5325 if (last)
5327 if (note == NULL)
5329 /* Scan forward looking for the PROLOGUE_END note. It should
5330 be right at the beginning of the block, possibly with other
5331 insn notes that got moved there. */
5332 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5334 if (NOTE_P (note)
5335 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5336 break;
5340 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5341 if (LABEL_P (last))
5342 last = NEXT_INSN (last);
5343 reorder_insns (note, note, last);
5347 if (epilogue_insn_hash != NULL)
5349 edge_iterator ei;
5350 edge e;
5352 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5354 rtx insn, first = NULL, note = NULL;
5355 basic_block bb = e->src;
5357 /* Scan from the beginning until we reach the first epilogue insn. */
5358 FOR_BB_INSNS (bb, insn)
5360 if (NOTE_P (insn))
5362 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5364 note = insn;
5365 if (first != NULL)
5366 break;
5369 else if (first == NULL && contains (insn, epilogue_insn_hash))
5371 first = insn;
5372 if (note != NULL)
5373 break;
5377 if (note)
5379 /* If the function has a single basic block, and no real
5380 epilogue insns (e.g. sibcall with no cleanup), the
5381 epilogue note can get scheduled before the prologue
5382 note. If we have frame related prologue insns, having
5383 them scanned during the epilogue will result in a crash.
5384 In this case re-order the epilogue note to just before
5385 the last insn in the block. */
5386 if (first == NULL)
5387 first = BB_END (bb);
5389 if (PREV_INSN (first) != note)
5390 reorder_insns (note, note, PREV_INSN (first));
5394 #endif /* HAVE_prologue or HAVE_epilogue */
5397 /* Returns the name of the current function. */
5398 const char *
5399 current_function_name (void)
5401 return lang_hooks.decl_printable_name (cfun->decl, 2);
5405 static unsigned int
5406 rest_of_handle_check_leaf_regs (void)
5408 #ifdef LEAF_REGISTERS
5409 current_function_uses_only_leaf_regs
5410 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5411 #endif
5412 return 0;
5415 /* Insert a TYPE into the used types hash table of CFUN. */
5416 static void
5417 used_types_insert_helper (tree type, struct function *func)
5419 if (type != NULL && func != NULL)
5421 void **slot;
5423 if (func->used_types_hash == NULL)
5424 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5425 htab_eq_pointer, NULL);
5426 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5427 if (*slot == NULL)
5428 *slot = type;
5432 /* Given a type, insert it into the used hash table in cfun. */
5433 void
5434 used_types_insert (tree t)
5436 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5437 t = TREE_TYPE (t);
5438 t = TYPE_MAIN_VARIANT (t);
5439 if (debug_info_level > DINFO_LEVEL_NONE)
5440 used_types_insert_helper (t, cfun);
5443 struct rtl_opt_pass pass_leaf_regs =
5446 RTL_PASS,
5447 NULL, /* name */
5448 NULL, /* gate */
5449 rest_of_handle_check_leaf_regs, /* execute */
5450 NULL, /* sub */
5451 NULL, /* next */
5452 0, /* static_pass_number */
5453 TV_NONE, /* tv_id */
5454 0, /* properties_required */
5455 0, /* properties_provided */
5456 0, /* properties_destroyed */
5457 0, /* todo_flags_start */
5458 0 /* todo_flags_finish */
5462 static unsigned int
5463 rest_of_handle_thread_prologue_and_epilogue (void)
5465 if (optimize)
5466 cleanup_cfg (CLEANUP_EXPENSIVE);
5467 /* On some machines, the prologue and epilogue code, or parts thereof,
5468 can be represented as RTL. Doing so lets us schedule insns between
5469 it and the rest of the code and also allows delayed branch
5470 scheduling to operate in the epilogue. */
5472 thread_prologue_and_epilogue_insns ();
5473 return 0;
5476 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5479 RTL_PASS,
5480 "pro_and_epilogue", /* name */
5481 NULL, /* gate */
5482 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5483 NULL, /* sub */
5484 NULL, /* next */
5485 0, /* static_pass_number */
5486 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5487 0, /* properties_required */
5488 0, /* properties_provided */
5489 0, /* properties_destroyed */
5490 TODO_verify_flow, /* todo_flags_start */
5491 TODO_dump_func |
5492 TODO_df_verify |
5493 TODO_df_finish | TODO_verify_rtl_sharing |
5494 TODO_ggc_collect /* todo_flags_finish */
5499 /* This mini-pass fixes fall-out from SSA in asm statements that have
5500 in-out constraints. Say you start with
5502 orig = inout;
5503 asm ("": "+mr" (inout));
5504 use (orig);
5506 which is transformed very early to use explicit output and match operands:
5508 orig = inout;
5509 asm ("": "=mr" (inout) : "0" (inout));
5510 use (orig);
5512 Or, after SSA and copyprop,
5514 asm ("": "=mr" (inout_2) : "0" (inout_1));
5515 use (inout_1);
5517 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5518 they represent two separate values, so they will get different pseudo
5519 registers during expansion. Then, since the two operands need to match
5520 per the constraints, but use different pseudo registers, reload can
5521 only register a reload for these operands. But reloads can only be
5522 satisfied by hardregs, not by memory, so we need a register for this
5523 reload, just because we are presented with non-matching operands.
5524 So, even though we allow memory for this operand, no memory can be
5525 used for it, just because the two operands don't match. This can
5526 cause reload failures on register-starved targets.
5528 So it's a symptom of reload not being able to use memory for reloads
5529 or, alternatively it's also a symptom of both operands not coming into
5530 reload as matching (in which case the pseudo could go to memory just
5531 fine, as the alternative allows it, and no reload would be necessary).
5532 We fix the latter problem here, by transforming
5534 asm ("": "=mr" (inout_2) : "0" (inout_1));
5536 back to
5538 inout_2 = inout_1;
5539 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5541 static void
5542 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5544 int i;
5545 bool changed = false;
5546 rtx op = SET_SRC (p_sets[0]);
5547 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5548 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5549 bool *output_matched = XALLOCAVEC (bool, noutputs);
5551 memset (output_matched, 0, noutputs * sizeof (bool));
5552 for (i = 0; i < ninputs; i++)
5554 rtx input, output, insns;
5555 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5556 char *end;
5557 int match, j;
5559 if (*constraint == '%')
5560 constraint++;
5562 match = strtoul (constraint, &end, 10);
5563 if (end == constraint)
5564 continue;
5566 gcc_assert (match < noutputs);
5567 output = SET_DEST (p_sets[match]);
5568 input = RTVEC_ELT (inputs, i);
5569 /* Only do the transformation for pseudos. */
5570 if (! REG_P (output)
5571 || rtx_equal_p (output, input)
5572 || (GET_MODE (input) != VOIDmode
5573 && GET_MODE (input) != GET_MODE (output)))
5574 continue;
5576 /* We can't do anything if the output is also used as input,
5577 as we're going to overwrite it. */
5578 for (j = 0; j < ninputs; j++)
5579 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5580 break;
5581 if (j != ninputs)
5582 continue;
5584 /* Avoid changing the same input several times. For
5585 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5586 only change in once (to out1), rather than changing it
5587 first to out1 and afterwards to out2. */
5588 if (i > 0)
5590 for (j = 0; j < noutputs; j++)
5591 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5592 break;
5593 if (j != noutputs)
5594 continue;
5596 output_matched[match] = true;
5598 start_sequence ();
5599 emit_move_insn (output, input);
5600 insns = get_insns ();
5601 end_sequence ();
5602 emit_insn_before (insns, insn);
5604 /* Now replace all mentions of the input with output. We can't
5605 just replace the occurrence in inputs[i], as the register might
5606 also be used in some other input (or even in an address of an
5607 output), which would mean possibly increasing the number of
5608 inputs by one (namely 'output' in addition), which might pose
5609 a too complicated problem for reload to solve. E.g. this situation:
5611 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5613 Here 'input' is used in two occurrences as input (once for the
5614 input operand, once for the address in the second output operand).
5615 If we would replace only the occurrence of the input operand (to
5616 make the matching) we would be left with this:
5618 output = input
5619 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5621 Now we suddenly have two different input values (containing the same
5622 value, but different pseudos) where we formerly had only one.
5623 With more complicated asms this might lead to reload failures
5624 which wouldn't have happen without this pass. So, iterate over
5625 all operands and replace all occurrences of the register used. */
5626 for (j = 0; j < noutputs; j++)
5627 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5628 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5629 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5630 input, output);
5631 for (j = 0; j < ninputs; j++)
5632 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5633 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5634 input, output);
5636 changed = true;
5639 if (changed)
5640 df_insn_rescan (insn);
5643 static unsigned
5644 rest_of_match_asm_constraints (void)
5646 basic_block bb;
5647 rtx insn, pat, *p_sets;
5648 int noutputs;
5650 if (!crtl->has_asm_statement)
5651 return 0;
5653 df_set_flags (DF_DEFER_INSN_RESCAN);
5654 FOR_EACH_BB (bb)
5656 FOR_BB_INSNS (bb, insn)
5658 if (!INSN_P (insn))
5659 continue;
5661 pat = PATTERN (insn);
5662 if (GET_CODE (pat) == PARALLEL)
5663 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5664 else if (GET_CODE (pat) == SET)
5665 p_sets = &PATTERN (insn), noutputs = 1;
5666 else
5667 continue;
5669 if (GET_CODE (*p_sets) == SET
5670 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5671 match_asm_constraints_1 (insn, p_sets, noutputs);
5675 return TODO_df_finish;
5678 struct rtl_opt_pass pass_match_asm_constraints =
5681 RTL_PASS,
5682 "asmcons", /* name */
5683 NULL, /* gate */
5684 rest_of_match_asm_constraints, /* execute */
5685 NULL, /* sub */
5686 NULL, /* next */
5687 0, /* static_pass_number */
5688 TV_NONE, /* tv_id */
5689 0, /* properties_required */
5690 0, /* properties_provided */
5691 0, /* properties_destroyed */
5692 0, /* todo_flags_start */
5693 TODO_dump_func /* todo_flags_finish */
5698 #include "gt-function.h"