Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / emit-rtl.c
blob65022fc65e31699d2ccf0d3764c146b65bf97178
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61 #include "params.h"
63 /* Commonly used modes. */
65 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
66 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
67 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
68 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
70 /* Datastructures maintained for currently processed function in RTL form. */
72 struct rtl_data x_rtl;
74 /* Indexed by pseudo register number, gives the rtx for that pseudo.
75 Allocated in parallel with regno_pointer_align.
76 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
77 with length attribute nested in top level structures. */
79 rtx * regno_reg_rtx;
81 /* This is *not* reset after each function. It gives each CODE_LABEL
82 in the entire compilation a unique label number. */
84 static GTY(()) int label_num = 1;
86 /* Nonzero means do not generate NOTEs for source line numbers. */
88 static int no_line_numbers;
90 /* Commonly used rtx's, so that we only need space for one copy.
91 These are initialized once for the entire compilation.
92 All of these are unique; no other rtx-object will be equal to any
93 of these. */
95 rtx global_rtl[GR_MAX];
97 /* Commonly used RTL for hard registers. These objects are not necessarily
98 unique, so we allocate them separately from global_rtl. They are
99 initialized once per compilation unit, then copied into regno_reg_rtx
100 at the beginning of each function. */
101 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
103 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
104 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
105 record a copy of const[012]_rtx. */
107 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
109 rtx const_true_rtx;
111 REAL_VALUE_TYPE dconst0;
112 REAL_VALUE_TYPE dconst1;
113 REAL_VALUE_TYPE dconst2;
114 REAL_VALUE_TYPE dconstm1;
115 REAL_VALUE_TYPE dconsthalf;
117 /* Record fixed-point constant 0 and 1. */
118 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
119 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
121 /* All references to the following fixed hard registers go through
122 these unique rtl objects. On machines where the frame-pointer and
123 arg-pointer are the same register, they use the same unique object.
125 After register allocation, other rtl objects which used to be pseudo-regs
126 may be clobbered to refer to the frame-pointer register.
127 But references that were originally to the frame-pointer can be
128 distinguished from the others because they contain frame_pointer_rtx.
130 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
131 tricky: until register elimination has taken place hard_frame_pointer_rtx
132 should be used if it is being set, and frame_pointer_rtx otherwise. After
133 register elimination hard_frame_pointer_rtx should always be used.
134 On machines where the two registers are same (most) then these are the
135 same.
137 In an inline procedure, the stack and frame pointer rtxs may not be
138 used for anything else. */
139 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
140 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
141 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
143 /* This is used to implement __builtin_return_address for some machines.
144 See for instance the MIPS port. */
145 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
147 /* We make one copy of (const_int C) where C is in
148 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
149 to save space during the compilation and simplify comparisons of
150 integers. */
152 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
154 /* A hash table storing CONST_INTs whose absolute value is greater
155 than MAX_SAVED_CONST_INT. */
157 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
158 htab_t const_int_htab;
160 /* A hash table storing memory attribute structures. */
161 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
162 htab_t mem_attrs_htab;
164 /* A hash table storing register attribute structures. */
165 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
166 htab_t reg_attrs_htab;
168 /* A hash table storing all CONST_DOUBLEs. */
169 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
170 htab_t const_double_htab;
172 /* A hash table storing all CONST_FIXEDs. */
173 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
174 htab_t const_fixed_htab;
176 #define first_insn (crtl->emit.x_first_insn)
177 #define last_insn (crtl->emit.x_last_insn)
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define last_location (crtl->emit.x_last_location)
181 #define first_label_num (crtl->emit.x_first_label_num)
183 static rtx make_call_insn_raw (rtx);
184 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
185 static void set_used_decls (tree);
186 static void mark_label_nuses (rtx);
187 static hashval_t const_int_htab_hash (const void *);
188 static int const_int_htab_eq (const void *, const void *);
189 static hashval_t const_double_htab_hash (const void *);
190 static int const_double_htab_eq (const void *, const void *);
191 static rtx lookup_const_double (rtx);
192 static hashval_t const_fixed_htab_hash (const void *);
193 static int const_fixed_htab_eq (const void *, const void *);
194 static rtx lookup_const_fixed (rtx);
195 static hashval_t mem_attrs_htab_hash (const void *);
196 static int mem_attrs_htab_eq (const void *, const void *);
197 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
198 enum machine_mode);
199 static hashval_t reg_attrs_htab_hash (const void *);
200 static int reg_attrs_htab_eq (const void *, const void *);
201 static reg_attrs *get_reg_attrs (tree, int);
202 static rtx gen_const_vector (enum machine_mode, int);
203 static void copy_rtx_if_shared_1 (rtx *orig);
205 /* Probability of the conditional branch currently proceeded by try_split.
206 Set to -1 otherwise. */
207 int split_branch_probability = -1;
209 /* Returns a hash code for X (which is a really a CONST_INT). */
211 static hashval_t
212 const_int_htab_hash (const void *x)
214 return (hashval_t) INTVAL ((const_rtx) x);
217 /* Returns nonzero if the value represented by X (which is really a
218 CONST_INT) is the same as that given by Y (which is really a
219 HOST_WIDE_INT *). */
221 static int
222 const_int_htab_eq (const void *x, const void *y)
224 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
227 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
228 static hashval_t
229 const_double_htab_hash (const void *x)
231 const_rtx const value = (const_rtx) x;
232 hashval_t h;
234 if (GET_MODE (value) == VOIDmode)
235 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
236 else
238 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
239 /* MODE is used in the comparison, so it should be in the hash. */
240 h ^= GET_MODE (value);
242 return h;
245 /* Returns nonzero if the value represented by X (really a ...)
246 is the same as that represented by Y (really a ...) */
247 static int
248 const_double_htab_eq (const void *x, const void *y)
250 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
252 if (GET_MODE (a) != GET_MODE (b))
253 return 0;
254 if (GET_MODE (a) == VOIDmode)
255 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
256 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
257 else
258 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
259 CONST_DOUBLE_REAL_VALUE (b));
262 /* Returns a hash code for X (which is really a CONST_FIXED). */
264 static hashval_t
265 const_fixed_htab_hash (const void *x)
267 const_rtx const value = (const_rtx) x;
268 hashval_t h;
270 h = fixed_hash (CONST_FIXED_VALUE (value));
271 /* MODE is used in the comparison, so it should be in the hash. */
272 h ^= GET_MODE (value);
273 return h;
276 /* Returns nonzero if the value represented by X (really a ...)
277 is the same as that represented by Y (really a ...). */
279 static int
280 const_fixed_htab_eq (const void *x, const void *y)
282 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
284 if (GET_MODE (a) != GET_MODE (b))
285 return 0;
286 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
289 /* Returns a hash code for X (which is a really a mem_attrs *). */
291 static hashval_t
292 mem_attrs_htab_hash (const void *x)
294 const mem_attrs *const p = (const mem_attrs *) x;
296 return (p->alias ^ (p->align * 1000)
297 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
298 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
299 ^ (size_t) iterative_hash_expr (p->expr, 0));
302 /* Returns nonzero if the value represented by X (which is really a
303 mem_attrs *) is the same as that given by Y (which is also really a
304 mem_attrs *). */
306 static int
307 mem_attrs_htab_eq (const void *x, const void *y)
309 const mem_attrs *const p = (const mem_attrs *) x;
310 const mem_attrs *const q = (const mem_attrs *) y;
312 return (p->alias == q->alias && p->offset == q->offset
313 && p->size == q->size && p->align == q->align
314 && (p->expr == q->expr
315 || (p->expr != NULL_TREE && q->expr != NULL_TREE
316 && operand_equal_p (p->expr, q->expr, 0))));
319 /* Allocate a new mem_attrs structure and insert it into the hash table if
320 one identical to it is not already in the table. We are doing this for
321 MEM of mode MODE. */
323 static mem_attrs *
324 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
325 unsigned int align, enum machine_mode mode)
327 mem_attrs attrs;
328 void **slot;
330 /* If everything is the default, we can just return zero.
331 This must match what the corresponding MEM_* macros return when the
332 field is not present. */
333 if (alias == 0 && expr == 0 && offset == 0
334 && (size == 0
335 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
336 && (STRICT_ALIGNMENT && mode != BLKmode
337 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
338 return 0;
340 attrs.alias = alias;
341 attrs.expr = expr;
342 attrs.offset = offset;
343 attrs.size = size;
344 attrs.align = align;
346 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
347 if (*slot == 0)
349 *slot = ggc_alloc (sizeof (mem_attrs));
350 memcpy (*slot, &attrs, sizeof (mem_attrs));
353 return (mem_attrs *) *slot;
356 /* Returns a hash code for X (which is a really a reg_attrs *). */
358 static hashval_t
359 reg_attrs_htab_hash (const void *x)
361 const reg_attrs *const p = (const reg_attrs *) x;
363 return ((p->offset * 1000) ^ (long) p->decl);
366 /* Returns nonzero if the value represented by X (which is really a
367 reg_attrs *) is the same as that given by Y (which is also really a
368 reg_attrs *). */
370 static int
371 reg_attrs_htab_eq (const void *x, const void *y)
373 const reg_attrs *const p = (const reg_attrs *) x;
374 const reg_attrs *const q = (const reg_attrs *) y;
376 return (p->decl == q->decl && p->offset == q->offset);
378 /* Allocate a new reg_attrs structure and insert it into the hash table if
379 one identical to it is not already in the table. We are doing this for
380 MEM of mode MODE. */
382 static reg_attrs *
383 get_reg_attrs (tree decl, int offset)
385 reg_attrs attrs;
386 void **slot;
388 /* If everything is the default, we can just return zero. */
389 if (decl == 0 && offset == 0)
390 return 0;
392 attrs.decl = decl;
393 attrs.offset = offset;
395 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
396 if (*slot == 0)
398 *slot = ggc_alloc (sizeof (reg_attrs));
399 memcpy (*slot, &attrs, sizeof (reg_attrs));
402 return (reg_attrs *) *slot;
406 #if !HAVE_blockage
407 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
408 across this insn. */
411 gen_blockage (void)
413 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
414 MEM_VOLATILE_P (x) = true;
415 return x;
417 #endif
420 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
421 don't attempt to share with the various global pieces of rtl (such as
422 frame_pointer_rtx). */
425 gen_raw_REG (enum machine_mode mode, int regno)
427 rtx x = gen_rtx_raw_REG (mode, regno);
428 ORIGINAL_REGNO (x) = regno;
429 return x;
432 /* There are some RTL codes that require special attention; the generation
433 functions do the raw handling. If you add to this list, modify
434 special_rtx in gengenrtl.c as well. */
437 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
439 void **slot;
441 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
442 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
444 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
445 if (const_true_rtx && arg == STORE_FLAG_VALUE)
446 return const_true_rtx;
447 #endif
449 /* Look up the CONST_INT in the hash table. */
450 slot = htab_find_slot_with_hash (const_int_htab, &arg,
451 (hashval_t) arg, INSERT);
452 if (*slot == 0)
453 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
455 return (rtx) *slot;
459 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
461 return GEN_INT (trunc_int_for_mode (c, mode));
464 /* CONST_DOUBLEs might be created from pairs of integers, or from
465 REAL_VALUE_TYPEs. Also, their length is known only at run time,
466 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
468 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
469 hash table. If so, return its counterpart; otherwise add it
470 to the hash table and return it. */
471 static rtx
472 lookup_const_double (rtx real)
474 void **slot = htab_find_slot (const_double_htab, real, INSERT);
475 if (*slot == 0)
476 *slot = real;
478 return (rtx) *slot;
481 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
482 VALUE in mode MODE. */
484 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
486 rtx real = rtx_alloc (CONST_DOUBLE);
487 PUT_MODE (real, mode);
489 real->u.rv = value;
491 return lookup_const_double (real);
494 /* Determine whether FIXED, a CONST_FIXED, already exists in the
495 hash table. If so, return its counterpart; otherwise add it
496 to the hash table and return it. */
498 static rtx
499 lookup_const_fixed (rtx fixed)
501 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
502 if (*slot == 0)
503 *slot = fixed;
505 return (rtx) *slot;
508 /* Return a CONST_FIXED rtx for a fixed-point value specified by
509 VALUE in mode MODE. */
512 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
514 rtx fixed = rtx_alloc (CONST_FIXED);
515 PUT_MODE (fixed, mode);
517 fixed->u.fv = value;
519 return lookup_const_fixed (fixed);
522 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
523 of ints: I0 is the low-order word and I1 is the high-order word.
524 Do not use this routine for non-integer modes; convert to
525 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
528 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
530 rtx value;
531 unsigned int i;
533 /* There are the following cases (note that there are no modes with
534 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
536 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
537 gen_int_mode.
538 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
539 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
540 from copies of the sign bit, and sign of i0 and i1 are the same), then
541 we return a CONST_INT for i0.
542 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
543 if (mode != VOIDmode)
545 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
546 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
547 /* We can get a 0 for an error mark. */
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
549 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
551 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
552 return gen_int_mode (i0, mode);
554 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
557 /* If this integer fits in one word, return a CONST_INT. */
558 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
559 return GEN_INT (i0);
561 /* We use VOIDmode for integers. */
562 value = rtx_alloc (CONST_DOUBLE);
563 PUT_MODE (value, VOIDmode);
565 CONST_DOUBLE_LOW (value) = i0;
566 CONST_DOUBLE_HIGH (value) = i1;
568 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
569 XWINT (value, i) = 0;
571 return lookup_const_double (value);
575 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
577 /* In case the MD file explicitly references the frame pointer, have
578 all such references point to the same frame pointer. This is
579 used during frame pointer elimination to distinguish the explicit
580 references to these registers from pseudos that happened to be
581 assigned to them.
583 If we have eliminated the frame pointer or arg pointer, we will
584 be using it as a normal register, for example as a spill
585 register. In such cases, we might be accessing it in a mode that
586 is not Pmode and therefore cannot use the pre-allocated rtx.
588 Also don't do this when we are making new REGs in reload, since
589 we don't want to get confused with the real pointers. */
591 if (mode == Pmode && !reload_in_progress)
593 if (regno == FRAME_POINTER_REGNUM
594 && (!reload_completed || frame_pointer_needed))
595 return frame_pointer_rtx;
596 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
597 if (regno == HARD_FRAME_POINTER_REGNUM
598 && (!reload_completed || frame_pointer_needed))
599 return hard_frame_pointer_rtx;
600 #endif
601 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
602 if (regno == ARG_POINTER_REGNUM)
603 return arg_pointer_rtx;
604 #endif
605 #ifdef RETURN_ADDRESS_POINTER_REGNUM
606 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
607 return return_address_pointer_rtx;
608 #endif
609 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
610 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
611 return pic_offset_table_rtx;
612 if (regno == STACK_POINTER_REGNUM)
613 return stack_pointer_rtx;
616 #if 0
617 /* If the per-function register table has been set up, try to re-use
618 an existing entry in that table to avoid useless generation of RTL.
620 This code is disabled for now until we can fix the various backends
621 which depend on having non-shared hard registers in some cases. Long
622 term we want to re-enable this code as it can significantly cut down
623 on the amount of useless RTL that gets generated.
625 We'll also need to fix some code that runs after reload that wants to
626 set ORIGINAL_REGNO. */
628 if (cfun
629 && cfun->emit
630 && regno_reg_rtx
631 && regno < FIRST_PSEUDO_REGISTER
632 && reg_raw_mode[regno] == mode)
633 return regno_reg_rtx[regno];
634 #endif
636 return gen_raw_REG (mode, regno);
640 gen_rtx_MEM (enum machine_mode mode, rtx addr)
642 rtx rt = gen_rtx_raw_MEM (mode, addr);
644 /* This field is not cleared by the mere allocation of the rtx, so
645 we clear it here. */
646 MEM_ATTRS (rt) = 0;
648 return rt;
651 /* Generate a memory referring to non-trapping constant memory. */
654 gen_const_mem (enum machine_mode mode, rtx addr)
656 rtx mem = gen_rtx_MEM (mode, addr);
657 MEM_READONLY_P (mem) = 1;
658 MEM_NOTRAP_P (mem) = 1;
659 return mem;
662 /* Generate a MEM referring to fixed portions of the frame, e.g., register
663 save areas. */
666 gen_frame_mem (enum machine_mode mode, rtx addr)
668 rtx mem = gen_rtx_MEM (mode, addr);
669 MEM_NOTRAP_P (mem) = 1;
670 set_mem_alias_set (mem, get_frame_alias_set ());
671 return mem;
674 /* Generate a MEM referring to a temporary use of the stack, not part
675 of the fixed stack frame. For example, something which is pushed
676 by a target splitter. */
678 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
680 rtx mem = gen_rtx_MEM (mode, addr);
681 MEM_NOTRAP_P (mem) = 1;
682 if (!cfun->calls_alloca)
683 set_mem_alias_set (mem, get_frame_alias_set ());
684 return mem;
687 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
688 this construct would be valid, and false otherwise. */
690 bool
691 validate_subreg (enum machine_mode omode, enum machine_mode imode,
692 const_rtx reg, unsigned int offset)
694 unsigned int isize = GET_MODE_SIZE (imode);
695 unsigned int osize = GET_MODE_SIZE (omode);
697 /* All subregs must be aligned. */
698 if (offset % osize != 0)
699 return false;
701 /* The subreg offset cannot be outside the inner object. */
702 if (offset >= isize)
703 return false;
705 /* ??? This should not be here. Temporarily continue to allow word_mode
706 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
707 Generally, backends are doing something sketchy but it'll take time to
708 fix them all. */
709 if (omode == word_mode)
711 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
712 is the culprit here, and not the backends. */
713 else if (osize >= UNITS_PER_WORD && isize >= osize)
715 /* Allow component subregs of complex and vector. Though given the below
716 extraction rules, it's not always clear what that means. */
717 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
718 && GET_MODE_INNER (imode) == omode)
720 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
721 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
722 represent this. It's questionable if this ought to be represented at
723 all -- why can't this all be hidden in post-reload splitters that make
724 arbitrarily mode changes to the registers themselves. */
725 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
727 /* Subregs involving floating point modes are not allowed to
728 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
729 (subreg:SI (reg:DF) 0) isn't. */
730 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
732 if (isize != osize)
733 return false;
736 /* Paradoxical subregs must have offset zero. */
737 if (osize > isize)
738 return offset == 0;
740 /* This is a normal subreg. Verify that the offset is representable. */
742 /* For hard registers, we already have most of these rules collected in
743 subreg_offset_representable_p. */
744 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
746 unsigned int regno = REGNO (reg);
748 #ifdef CANNOT_CHANGE_MODE_CLASS
749 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
750 && GET_MODE_INNER (imode) == omode)
752 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
753 return false;
754 #endif
756 return subreg_offset_representable_p (regno, imode, offset, omode);
759 /* For pseudo registers, we want most of the same checks. Namely:
760 If the register no larger than a word, the subreg must be lowpart.
761 If the register is larger than a word, the subreg must be the lowpart
762 of a subword. A subreg does *not* perform arbitrary bit extraction.
763 Given that we've already checked mode/offset alignment, we only have
764 to check subword subregs here. */
765 if (osize < UNITS_PER_WORD)
767 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
768 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
769 if (offset % UNITS_PER_WORD != low_off)
770 return false;
772 return true;
776 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
778 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
779 return gen_rtx_raw_SUBREG (mode, reg, offset);
782 /* Generate a SUBREG representing the least-significant part of REG if MODE
783 is smaller than mode of REG, otherwise paradoxical SUBREG. */
786 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
788 enum machine_mode inmode;
790 inmode = GET_MODE (reg);
791 if (inmode == VOIDmode)
792 inmode = mode;
793 return gen_rtx_SUBREG (mode, reg,
794 subreg_lowpart_offset (mode, inmode));
798 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
800 rtvec
801 gen_rtvec (int n, ...)
803 int i;
804 rtvec rt_val;
805 va_list p;
807 va_start (p, n);
809 /* Don't allocate an empty rtvec... */
810 if (n == 0)
811 return NULL_RTVEC;
813 rt_val = rtvec_alloc (n);
815 for (i = 0; i < n; i++)
816 rt_val->elem[i] = va_arg (p, rtx);
818 va_end (p);
819 return rt_val;
822 rtvec
823 gen_rtvec_v (int n, rtx *argp)
825 int i;
826 rtvec rt_val;
828 /* Don't allocate an empty rtvec... */
829 if (n == 0)
830 return NULL_RTVEC;
832 rt_val = rtvec_alloc (n);
834 for (i = 0; i < n; i++)
835 rt_val->elem[i] = *argp++;
837 return rt_val;
840 /* Return the number of bytes between the start of an OUTER_MODE
841 in-memory value and the start of an INNER_MODE in-memory value,
842 given that the former is a lowpart of the latter. It may be a
843 paradoxical lowpart, in which case the offset will be negative
844 on big-endian targets. */
847 byte_lowpart_offset (enum machine_mode outer_mode,
848 enum machine_mode inner_mode)
850 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
851 return subreg_lowpart_offset (outer_mode, inner_mode);
852 else
853 return -subreg_lowpart_offset (inner_mode, outer_mode);
856 /* Generate a REG rtx for a new pseudo register of mode MODE.
857 This pseudo is assigned the next sequential register number. */
860 gen_reg_rtx (enum machine_mode mode)
862 rtx val;
863 unsigned int align = GET_MODE_ALIGNMENT (mode);
865 gcc_assert (can_create_pseudo_p ());
867 /* If a virtual register with bigger mode alignment is generated,
868 increase stack alignment estimation because it might be spilled
869 to stack later. */
870 if (SUPPORTS_STACK_ALIGNMENT
871 && crtl->stack_alignment_estimated < align
872 && !crtl->stack_realign_processed)
874 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
875 if (crtl->stack_alignment_estimated < min_align)
876 crtl->stack_alignment_estimated = min_align;
879 if (generating_concat_p
880 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
881 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
883 /* For complex modes, don't make a single pseudo.
884 Instead, make a CONCAT of two pseudos.
885 This allows noncontiguous allocation of the real and imaginary parts,
886 which makes much better code. Besides, allocating DCmode
887 pseudos overstrains reload on some machines like the 386. */
888 rtx realpart, imagpart;
889 enum machine_mode partmode = GET_MODE_INNER (mode);
891 realpart = gen_reg_rtx (partmode);
892 imagpart = gen_reg_rtx (partmode);
893 return gen_rtx_CONCAT (mode, realpart, imagpart);
896 /* Make sure regno_pointer_align, and regno_reg_rtx are large
897 enough to have an element for this pseudo reg number. */
899 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
901 int old_size = crtl->emit.regno_pointer_align_length;
902 char *tmp;
903 rtx *new1;
905 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
906 memset (tmp + old_size, 0, old_size);
907 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
909 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
910 memset (new1 + old_size, 0, old_size * sizeof (rtx));
911 regno_reg_rtx = new1;
913 crtl->emit.regno_pointer_align_length = old_size * 2;
916 val = gen_raw_REG (mode, reg_rtx_no);
917 regno_reg_rtx[reg_rtx_no++] = val;
918 return val;
921 /* Update NEW with the same attributes as REG, but with OFFSET added
922 to the REG_OFFSET. */
924 static void
925 update_reg_offset (rtx new_rtx, rtx reg, int offset)
927 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
928 REG_OFFSET (reg) + offset);
931 /* Generate a register with same attributes as REG, but with OFFSET
932 added to the REG_OFFSET. */
935 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
936 int offset)
938 rtx new_rtx = gen_rtx_REG (mode, regno);
940 update_reg_offset (new_rtx, reg, offset);
941 return new_rtx;
944 /* Generate a new pseudo-register with the same attributes as REG, but
945 with OFFSET added to the REG_OFFSET. */
948 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
950 rtx new_rtx = gen_reg_rtx (mode);
952 update_reg_offset (new_rtx, reg, offset);
953 return new_rtx;
956 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
957 new register is a (possibly paradoxical) lowpart of the old one. */
959 void
960 adjust_reg_mode (rtx reg, enum machine_mode mode)
962 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
963 PUT_MODE (reg, mode);
966 /* Copy REG's attributes from X, if X has any attributes. If REG and X
967 have different modes, REG is a (possibly paradoxical) lowpart of X. */
969 void
970 set_reg_attrs_from_value (rtx reg, rtx x)
972 int offset;
974 /* Hard registers can be reused for multiple purposes within the same
975 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
976 on them is wrong. */
977 if (HARD_REGISTER_P (reg))
978 return;
980 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
981 if (MEM_P (x))
983 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
984 REG_ATTRS (reg)
985 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
986 if (MEM_POINTER (x))
987 mark_reg_pointer (reg, 0);
989 else if (REG_P (x))
991 if (REG_ATTRS (x))
992 update_reg_offset (reg, x, offset);
993 if (REG_POINTER (x))
994 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
998 /* Generate a REG rtx for a new pseudo register, copying the mode
999 and attributes from X. */
1002 gen_reg_rtx_and_attrs (rtx x)
1004 rtx reg = gen_reg_rtx (GET_MODE (x));
1005 set_reg_attrs_from_value (reg, x);
1006 return reg;
1009 /* Set the register attributes for registers contained in PARM_RTX.
1010 Use needed values from memory attributes of MEM. */
1012 void
1013 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1015 if (REG_P (parm_rtx))
1016 set_reg_attrs_from_value (parm_rtx, mem);
1017 else if (GET_CODE (parm_rtx) == PARALLEL)
1019 /* Check for a NULL entry in the first slot, used to indicate that the
1020 parameter goes both on the stack and in registers. */
1021 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1022 for (; i < XVECLEN (parm_rtx, 0); i++)
1024 rtx x = XVECEXP (parm_rtx, 0, i);
1025 if (REG_P (XEXP (x, 0)))
1026 REG_ATTRS (XEXP (x, 0))
1027 = get_reg_attrs (MEM_EXPR (mem),
1028 INTVAL (XEXP (x, 1)));
1033 /* Set the REG_ATTRS for registers in value X, given that X represents
1034 decl T. */
1036 void
1037 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1039 if (GET_CODE (x) == SUBREG)
1041 gcc_assert (subreg_lowpart_p (x));
1042 x = SUBREG_REG (x);
1044 if (REG_P (x))
1045 REG_ATTRS (x)
1046 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1047 DECL_MODE (t)));
1048 if (GET_CODE (x) == CONCAT)
1050 if (REG_P (XEXP (x, 0)))
1051 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1052 if (REG_P (XEXP (x, 1)))
1053 REG_ATTRS (XEXP (x, 1))
1054 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1056 if (GET_CODE (x) == PARALLEL)
1058 int i, start;
1060 /* Check for a NULL entry, used to indicate that the parameter goes
1061 both on the stack and in registers. */
1062 if (XEXP (XVECEXP (x, 0, 0), 0))
1063 start = 0;
1064 else
1065 start = 1;
1067 for (i = start; i < XVECLEN (x, 0); i++)
1069 rtx y = XVECEXP (x, 0, i);
1070 if (REG_P (XEXP (y, 0)))
1071 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1076 /* Assign the RTX X to declaration T. */
1078 void
1079 set_decl_rtl (tree t, rtx x)
1081 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1082 if (x)
1083 set_reg_attrs_for_decl_rtl (t, x);
1086 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1087 if the ABI requires the parameter to be passed by reference. */
1089 void
1090 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1092 DECL_INCOMING_RTL (t) = x;
1093 if (x && !by_reference_p)
1094 set_reg_attrs_for_decl_rtl (t, x);
1097 /* Identify REG (which may be a CONCAT) as a user register. */
1099 void
1100 mark_user_reg (rtx reg)
1102 if (GET_CODE (reg) == CONCAT)
1104 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1105 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1107 else
1109 gcc_assert (REG_P (reg));
1110 REG_USERVAR_P (reg) = 1;
1114 /* Identify REG as a probable pointer register and show its alignment
1115 as ALIGN, if nonzero. */
1117 void
1118 mark_reg_pointer (rtx reg, int align)
1120 if (! REG_POINTER (reg))
1122 REG_POINTER (reg) = 1;
1124 if (align)
1125 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1127 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1128 /* We can no-longer be sure just how aligned this pointer is. */
1129 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1132 /* Return 1 plus largest pseudo reg number used in the current function. */
1135 max_reg_num (void)
1137 return reg_rtx_no;
1140 /* Return 1 + the largest label number used so far in the current function. */
1143 max_label_num (void)
1145 return label_num;
1148 /* Return first label number used in this function (if any were used). */
1151 get_first_label_num (void)
1153 return first_label_num;
1156 /* If the rtx for label was created during the expansion of a nested
1157 function, then first_label_num won't include this label number.
1158 Fix this now so that array indices work later. */
1160 void
1161 maybe_set_first_label_num (rtx x)
1163 if (CODE_LABEL_NUMBER (x) < first_label_num)
1164 first_label_num = CODE_LABEL_NUMBER (x);
1167 /* Return a value representing some low-order bits of X, where the number
1168 of low-order bits is given by MODE. Note that no conversion is done
1169 between floating-point and fixed-point values, rather, the bit
1170 representation is returned.
1172 This function handles the cases in common between gen_lowpart, below,
1173 and two variants in cse.c and combine.c. These are the cases that can
1174 be safely handled at all points in the compilation.
1176 If this is not a case we can handle, return 0. */
1179 gen_lowpart_common (enum machine_mode mode, rtx x)
1181 int msize = GET_MODE_SIZE (mode);
1182 int xsize;
1183 int offset = 0;
1184 enum machine_mode innermode;
1186 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1187 so we have to make one up. Yuk. */
1188 innermode = GET_MODE (x);
1189 if (CONST_INT_P (x)
1190 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1191 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1192 else if (innermode == VOIDmode)
1193 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1195 xsize = GET_MODE_SIZE (innermode);
1197 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1199 if (innermode == mode)
1200 return x;
1202 /* MODE must occupy no more words than the mode of X. */
1203 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1204 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1205 return 0;
1207 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1208 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1209 return 0;
1211 offset = subreg_lowpart_offset (mode, innermode);
1213 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1214 && (GET_MODE_CLASS (mode) == MODE_INT
1215 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1217 /* If we are getting the low-order part of something that has been
1218 sign- or zero-extended, we can either just use the object being
1219 extended or make a narrower extension. If we want an even smaller
1220 piece than the size of the object being extended, call ourselves
1221 recursively.
1223 This case is used mostly by combine and cse. */
1225 if (GET_MODE (XEXP (x, 0)) == mode)
1226 return XEXP (x, 0);
1227 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1228 return gen_lowpart_common (mode, XEXP (x, 0));
1229 else if (msize < xsize)
1230 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1232 else if (GET_CODE (x) == SUBREG || REG_P (x)
1233 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1234 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1235 return simplify_gen_subreg (mode, x, innermode, offset);
1237 /* Otherwise, we can't do this. */
1238 return 0;
1242 gen_highpart (enum machine_mode mode, rtx x)
1244 unsigned int msize = GET_MODE_SIZE (mode);
1245 rtx result;
1247 /* This case loses if X is a subreg. To catch bugs early,
1248 complain if an invalid MODE is used even in other cases. */
1249 gcc_assert (msize <= UNITS_PER_WORD
1250 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1252 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1253 subreg_highpart_offset (mode, GET_MODE (x)));
1254 gcc_assert (result);
1256 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1257 the target if we have a MEM. gen_highpart must return a valid operand,
1258 emitting code if necessary to do so. */
1259 if (MEM_P (result))
1261 result = validize_mem (result);
1262 gcc_assert (result);
1265 return result;
1268 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1269 be VOIDmode constant. */
1271 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1273 if (GET_MODE (exp) != VOIDmode)
1275 gcc_assert (GET_MODE (exp) == innermode);
1276 return gen_highpart (outermode, exp);
1278 return simplify_gen_subreg (outermode, exp, innermode,
1279 subreg_highpart_offset (outermode, innermode));
1282 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1284 unsigned int
1285 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1287 unsigned int offset = 0;
1288 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1290 if (difference > 0)
1292 if (WORDS_BIG_ENDIAN)
1293 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1294 if (BYTES_BIG_ENDIAN)
1295 offset += difference % UNITS_PER_WORD;
1298 return offset;
1301 /* Return offset in bytes to get OUTERMODE high part
1302 of the value in mode INNERMODE stored in memory in target format. */
1303 unsigned int
1304 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1306 unsigned int offset = 0;
1307 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1309 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1311 if (difference > 0)
1313 if (! WORDS_BIG_ENDIAN)
1314 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1315 if (! BYTES_BIG_ENDIAN)
1316 offset += difference % UNITS_PER_WORD;
1319 return offset;
1322 /* Return 1 iff X, assumed to be a SUBREG,
1323 refers to the least significant part of its containing reg.
1324 If X is not a SUBREG, always return 1 (it is its own low part!). */
1327 subreg_lowpart_p (const_rtx x)
1329 if (GET_CODE (x) != SUBREG)
1330 return 1;
1331 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1332 return 0;
1334 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1335 == SUBREG_BYTE (x));
1338 /* Return subword OFFSET of operand OP.
1339 The word number, OFFSET, is interpreted as the word number starting
1340 at the low-order address. OFFSET 0 is the low-order word if not
1341 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1343 If we cannot extract the required word, we return zero. Otherwise,
1344 an rtx corresponding to the requested word will be returned.
1346 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1347 reload has completed, a valid address will always be returned. After
1348 reload, if a valid address cannot be returned, we return zero.
1350 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1351 it is the responsibility of the caller.
1353 MODE is the mode of OP in case it is a CONST_INT.
1355 ??? This is still rather broken for some cases. The problem for the
1356 moment is that all callers of this thing provide no 'goal mode' to
1357 tell us to work with. This exists because all callers were written
1358 in a word based SUBREG world.
1359 Now use of this function can be deprecated by simplify_subreg in most
1360 cases.
1364 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1366 if (mode == VOIDmode)
1367 mode = GET_MODE (op);
1369 gcc_assert (mode != VOIDmode);
1371 /* If OP is narrower than a word, fail. */
1372 if (mode != BLKmode
1373 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1374 return 0;
1376 /* If we want a word outside OP, return zero. */
1377 if (mode != BLKmode
1378 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1379 return const0_rtx;
1381 /* Form a new MEM at the requested address. */
1382 if (MEM_P (op))
1384 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1386 if (! validate_address)
1387 return new_rtx;
1389 else if (reload_completed)
1391 if (! strict_memory_address_p (word_mode, XEXP (new_rtx, 0)))
1392 return 0;
1394 else
1395 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1398 /* Rest can be handled by simplify_subreg. */
1399 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1402 /* Similar to `operand_subword', but never return 0. If we can't
1403 extract the required subword, put OP into a register and try again.
1404 The second attempt must succeed. We always validate the address in
1405 this case.
1407 MODE is the mode of OP, in case it is CONST_INT. */
1410 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1412 rtx result = operand_subword (op, offset, 1, mode);
1414 if (result)
1415 return result;
1417 if (mode != BLKmode && mode != VOIDmode)
1419 /* If this is a register which can not be accessed by words, copy it
1420 to a pseudo register. */
1421 if (REG_P (op))
1422 op = copy_to_reg (op);
1423 else
1424 op = force_reg (mode, op);
1427 result = operand_subword (op, offset, 1, mode);
1428 gcc_assert (result);
1430 return result;
1433 /* Returns 1 if both MEM_EXPR can be considered equal
1434 and 0 otherwise. */
1437 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1439 if (expr1 == expr2)
1440 return 1;
1442 if (! expr1 || ! expr2)
1443 return 0;
1445 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1446 return 0;
1448 return operand_equal_p (expr1, expr2, 0);
1451 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1452 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1453 -1 if not known. */
1456 get_mem_align_offset (rtx mem, unsigned int align)
1458 tree expr;
1459 unsigned HOST_WIDE_INT offset;
1461 /* This function can't use
1462 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1463 || !CONST_INT_P (MEM_OFFSET (mem))
1464 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1465 < align))
1466 return -1;
1467 else
1468 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1469 for two reasons:
1470 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1471 for <variable>. get_inner_reference doesn't handle it and
1472 even if it did, the alignment in that case needs to be determined
1473 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1474 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1475 isn't sufficiently aligned, the object it is in might be. */
1476 gcc_assert (MEM_P (mem));
1477 expr = MEM_EXPR (mem);
1478 if (expr == NULL_TREE
1479 || MEM_OFFSET (mem) == NULL_RTX
1480 || !CONST_INT_P (MEM_OFFSET (mem)))
1481 return -1;
1483 offset = INTVAL (MEM_OFFSET (mem));
1484 if (DECL_P (expr))
1486 if (DECL_ALIGN (expr) < align)
1487 return -1;
1489 else if (INDIRECT_REF_P (expr))
1491 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1492 return -1;
1494 else if (TREE_CODE (expr) == COMPONENT_REF)
1496 while (1)
1498 tree inner = TREE_OPERAND (expr, 0);
1499 tree field = TREE_OPERAND (expr, 1);
1500 tree byte_offset = component_ref_field_offset (expr);
1501 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1503 if (!byte_offset
1504 || !host_integerp (byte_offset, 1)
1505 || !host_integerp (bit_offset, 1))
1506 return -1;
1508 offset += tree_low_cst (byte_offset, 1);
1509 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1511 if (inner == NULL_TREE)
1513 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1514 < (unsigned int) align)
1515 return -1;
1516 break;
1518 else if (DECL_P (inner))
1520 if (DECL_ALIGN (inner) < align)
1521 return -1;
1522 break;
1524 else if (TREE_CODE (inner) != COMPONENT_REF)
1525 return -1;
1526 expr = inner;
1529 else
1530 return -1;
1532 return offset & ((align / BITS_PER_UNIT) - 1);
1535 /* Given REF (a MEM) and T, either the type of X or the expression
1536 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1537 if we are making a new object of this type. BITPOS is nonzero if
1538 there is an offset outstanding on T that will be applied later. */
1540 void
1541 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1542 HOST_WIDE_INT bitpos)
1544 alias_set_type alias = MEM_ALIAS_SET (ref);
1545 tree expr = MEM_EXPR (ref);
1546 rtx offset = MEM_OFFSET (ref);
1547 rtx size = MEM_SIZE (ref);
1548 unsigned int align = MEM_ALIGN (ref);
1549 HOST_WIDE_INT apply_bitpos = 0;
1550 tree type;
1552 /* It can happen that type_for_mode was given a mode for which there
1553 is no language-level type. In which case it returns NULL, which
1554 we can see here. */
1555 if (t == NULL_TREE)
1556 return;
1558 type = TYPE_P (t) ? t : TREE_TYPE (t);
1559 if (type == error_mark_node)
1560 return;
1562 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1563 wrong answer, as it assumes that DECL_RTL already has the right alias
1564 info. Callers should not set DECL_RTL until after the call to
1565 set_mem_attributes. */
1566 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1568 /* Get the alias set from the expression or type (perhaps using a
1569 front-end routine) and use it. */
1570 alias = get_alias_set (t);
1572 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1573 MEM_IN_STRUCT_P (ref)
1574 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1575 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1577 /* If we are making an object of this type, or if this is a DECL, we know
1578 that it is a scalar if the type is not an aggregate. */
1579 if ((objectp || DECL_P (t))
1580 && ! AGGREGATE_TYPE_P (type)
1581 && TREE_CODE (type) != COMPLEX_TYPE)
1582 MEM_SCALAR_P (ref) = 1;
1584 /* We can set the alignment from the type if we are making an object,
1585 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1586 if (objectp || TREE_CODE (t) == INDIRECT_REF
1587 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1588 || TYPE_ALIGN_OK (type))
1589 align = MAX (align, TYPE_ALIGN (type));
1590 else
1591 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1593 if (integer_zerop (TREE_OPERAND (t, 1)))
1594 /* We don't know anything about the alignment. */
1595 align = BITS_PER_UNIT;
1596 else
1597 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1600 /* If the size is known, we can set that. */
1601 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1602 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1604 /* If T is not a type, we may be able to deduce some more information about
1605 the expression. */
1606 if (! TYPE_P (t))
1608 tree base;
1609 bool align_computed = false;
1611 if (TREE_THIS_VOLATILE (t))
1612 MEM_VOLATILE_P (ref) = 1;
1614 /* Now remove any conversions: they don't change what the underlying
1615 object is. Likewise for SAVE_EXPR. */
1616 while (CONVERT_EXPR_P (t)
1617 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1618 || TREE_CODE (t) == SAVE_EXPR)
1619 t = TREE_OPERAND (t, 0);
1621 /* We may look through structure-like accesses for the purposes of
1622 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1623 base = t;
1624 while (TREE_CODE (base) == COMPONENT_REF
1625 || TREE_CODE (base) == REALPART_EXPR
1626 || TREE_CODE (base) == IMAGPART_EXPR
1627 || TREE_CODE (base) == BIT_FIELD_REF)
1628 base = TREE_OPERAND (base, 0);
1630 if (DECL_P (base))
1632 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1633 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1634 else
1635 MEM_NOTRAP_P (ref) = 1;
1637 else
1638 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1640 base = get_base_address (base);
1641 if (base && DECL_P (base)
1642 && TREE_READONLY (base)
1643 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1645 tree base_type = TREE_TYPE (base);
1646 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1647 || DECL_ARTIFICIAL (base));
1648 MEM_READONLY_P (ref) = 1;
1651 /* If this expression uses it's parent's alias set, mark it such
1652 that we won't change it. */
1653 if (component_uses_parent_alias_set (t))
1654 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1656 /* If this is a decl, set the attributes of the MEM from it. */
1657 if (DECL_P (t))
1659 expr = t;
1660 offset = const0_rtx;
1661 apply_bitpos = bitpos;
1662 size = (DECL_SIZE_UNIT (t)
1663 && host_integerp (DECL_SIZE_UNIT (t), 1)
1664 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1665 align = DECL_ALIGN (t);
1666 align_computed = true;
1669 /* If this is a constant, we know the alignment. */
1670 else if (CONSTANT_CLASS_P (t))
1672 align = TYPE_ALIGN (type);
1673 #ifdef CONSTANT_ALIGNMENT
1674 align = CONSTANT_ALIGNMENT (t, align);
1675 #endif
1676 align_computed = true;
1679 /* If this is a field reference and not a bit-field, record it. */
1680 /* ??? There is some information that can be gleaned from bit-fields,
1681 such as the word offset in the structure that might be modified.
1682 But skip it for now. */
1683 else if (TREE_CODE (t) == COMPONENT_REF
1684 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1686 expr = t;
1687 offset = const0_rtx;
1688 apply_bitpos = bitpos;
1689 /* ??? Any reason the field size would be different than
1690 the size we got from the type? */
1693 /* If this is an array reference, look for an outer field reference. */
1694 else if (TREE_CODE (t) == ARRAY_REF)
1696 tree off_tree = size_zero_node;
1697 /* We can't modify t, because we use it at the end of the
1698 function. */
1699 tree t2 = t;
1703 tree index = TREE_OPERAND (t2, 1);
1704 tree low_bound = array_ref_low_bound (t2);
1705 tree unit_size = array_ref_element_size (t2);
1707 /* We assume all arrays have sizes that are a multiple of a byte.
1708 First subtract the lower bound, if any, in the type of the
1709 index, then convert to sizetype and multiply by the size of
1710 the array element. */
1711 if (! integer_zerop (low_bound))
1712 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1713 index, low_bound);
1715 off_tree = size_binop (PLUS_EXPR,
1716 size_binop (MULT_EXPR,
1717 fold_convert (sizetype,
1718 index),
1719 unit_size),
1720 off_tree);
1721 t2 = TREE_OPERAND (t2, 0);
1723 while (TREE_CODE (t2) == ARRAY_REF);
1725 if (DECL_P (t2))
1727 expr = t2;
1728 offset = NULL;
1729 if (host_integerp (off_tree, 1))
1731 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1732 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1733 align = DECL_ALIGN (t2);
1734 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1735 align = aoff;
1736 align_computed = true;
1737 offset = GEN_INT (ioff);
1738 apply_bitpos = bitpos;
1741 else if (TREE_CODE (t2) == COMPONENT_REF)
1743 expr = t2;
1744 offset = NULL;
1745 if (host_integerp (off_tree, 1))
1747 offset = GEN_INT (tree_low_cst (off_tree, 1));
1748 apply_bitpos = bitpos;
1750 /* ??? Any reason the field size would be different than
1751 the size we got from the type? */
1753 else if (flag_argument_noalias > 1
1754 && (INDIRECT_REF_P (t2))
1755 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1757 expr = t2;
1758 offset = NULL;
1762 /* If this is a Fortran indirect argument reference, record the
1763 parameter decl. */
1764 else if (flag_argument_noalias > 1
1765 && (INDIRECT_REF_P (t))
1766 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1768 expr = t;
1769 offset = NULL;
1772 if (!align_computed && !INDIRECT_REF_P (t))
1774 unsigned int obj_align
1775 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1776 align = MAX (align, obj_align);
1780 /* If we modified OFFSET based on T, then subtract the outstanding
1781 bit position offset. Similarly, increase the size of the accessed
1782 object to contain the negative offset. */
1783 if (apply_bitpos)
1785 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1786 if (size)
1787 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1790 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1792 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1793 we're overlapping. */
1794 offset = NULL;
1795 expr = NULL;
1798 /* Now set the attributes we computed above. */
1799 MEM_ATTRS (ref)
1800 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1802 /* If this is already known to be a scalar or aggregate, we are done. */
1803 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1804 return;
1806 /* If it is a reference into an aggregate, this is part of an aggregate.
1807 Otherwise we don't know. */
1808 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1809 || TREE_CODE (t) == ARRAY_RANGE_REF
1810 || TREE_CODE (t) == BIT_FIELD_REF)
1811 MEM_IN_STRUCT_P (ref) = 1;
1814 void
1815 set_mem_attributes (rtx ref, tree t, int objectp)
1817 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1820 /* Set the alias set of MEM to SET. */
1822 void
1823 set_mem_alias_set (rtx mem, alias_set_type set)
1825 #ifdef ENABLE_CHECKING
1826 /* If the new and old alias sets don't conflict, something is wrong. */
1827 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1828 #endif
1830 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1831 MEM_SIZE (mem), MEM_ALIGN (mem),
1832 GET_MODE (mem));
1835 /* Set the alignment of MEM to ALIGN bits. */
1837 void
1838 set_mem_align (rtx mem, unsigned int align)
1840 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1841 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1842 GET_MODE (mem));
1845 /* Set the expr for MEM to EXPR. */
1847 void
1848 set_mem_expr (rtx mem, tree expr)
1850 MEM_ATTRS (mem)
1851 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1852 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1855 /* Set the offset of MEM to OFFSET. */
1857 void
1858 set_mem_offset (rtx mem, rtx offset)
1860 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1861 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1862 GET_MODE (mem));
1865 /* Set the size of MEM to SIZE. */
1867 void
1868 set_mem_size (rtx mem, rtx size)
1870 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1871 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1872 GET_MODE (mem));
1875 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1876 and its address changed to ADDR. (VOIDmode means don't change the mode.
1877 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1878 returned memory location is required to be valid. The memory
1879 attributes are not changed. */
1881 static rtx
1882 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1884 rtx new_rtx;
1886 gcc_assert (MEM_P (memref));
1887 if (mode == VOIDmode)
1888 mode = GET_MODE (memref);
1889 if (addr == 0)
1890 addr = XEXP (memref, 0);
1891 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1892 && (!validate || memory_address_p (mode, addr)))
1893 return memref;
1895 if (validate)
1897 if (reload_in_progress || reload_completed)
1898 gcc_assert (memory_address_p (mode, addr));
1899 else
1900 addr = memory_address (mode, addr);
1903 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1904 return memref;
1906 new_rtx = gen_rtx_MEM (mode, addr);
1907 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1908 return new_rtx;
1911 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1912 way we are changing MEMREF, so we only preserve the alias set. */
1915 change_address (rtx memref, enum machine_mode mode, rtx addr)
1917 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1918 enum machine_mode mmode = GET_MODE (new_rtx);
1919 unsigned int align;
1921 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1922 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1924 /* If there are no changes, just return the original memory reference. */
1925 if (new_rtx == memref)
1927 if (MEM_ATTRS (memref) == 0
1928 || (MEM_EXPR (memref) == NULL
1929 && MEM_OFFSET (memref) == NULL
1930 && MEM_SIZE (memref) == size
1931 && MEM_ALIGN (memref) == align))
1932 return new_rtx;
1934 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1935 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1938 MEM_ATTRS (new_rtx)
1939 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1941 return new_rtx;
1944 /* Return a memory reference like MEMREF, but with its mode changed
1945 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1946 nonzero, the memory address is forced to be valid.
1947 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1948 and caller is responsible for adjusting MEMREF base register. */
1951 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1952 int validate, int adjust)
1954 rtx addr = XEXP (memref, 0);
1955 rtx new_rtx;
1956 rtx memoffset = MEM_OFFSET (memref);
1957 rtx size = 0;
1958 unsigned int memalign = MEM_ALIGN (memref);
1959 int pbits;
1961 /* If there are no changes, just return the original memory reference. */
1962 if (mode == GET_MODE (memref) && !offset
1963 && (!validate || memory_address_p (mode, addr)))
1964 return memref;
1966 /* ??? Prefer to create garbage instead of creating shared rtl.
1967 This may happen even if offset is nonzero -- consider
1968 (plus (plus reg reg) const_int) -- so do this always. */
1969 addr = copy_rtx (addr);
1971 /* Convert a possibly large offset to a signed value within the
1972 range of the target address space. */
1973 pbits = GET_MODE_BITSIZE (Pmode);
1974 if (HOST_BITS_PER_WIDE_INT > pbits)
1976 int shift = HOST_BITS_PER_WIDE_INT - pbits;
1977 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
1978 >> shift);
1981 if (adjust)
1983 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1984 object, we can merge it into the LO_SUM. */
1985 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1986 && offset >= 0
1987 && (unsigned HOST_WIDE_INT) offset
1988 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1989 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1990 plus_constant (XEXP (addr, 1), offset));
1991 else
1992 addr = plus_constant (addr, offset);
1995 new_rtx = change_address_1 (memref, mode, addr, validate);
1997 /* If the address is a REG, change_address_1 rightfully returns memref,
1998 but this would destroy memref's MEM_ATTRS. */
1999 if (new_rtx == memref && offset != 0)
2000 new_rtx = copy_rtx (new_rtx);
2002 /* Compute the new values of the memory attributes due to this adjustment.
2003 We add the offsets and update the alignment. */
2004 if (memoffset)
2005 memoffset = GEN_INT (offset + INTVAL (memoffset));
2007 /* Compute the new alignment by taking the MIN of the alignment and the
2008 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2009 if zero. */
2010 if (offset != 0)
2011 memalign
2012 = MIN (memalign,
2013 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2015 /* We can compute the size in a number of ways. */
2016 if (GET_MODE (new_rtx) != BLKmode)
2017 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2018 else if (MEM_SIZE (memref))
2019 size = plus_constant (MEM_SIZE (memref), -offset);
2021 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2022 memoffset, size, memalign, GET_MODE (new_rtx));
2024 /* At some point, we should validate that this offset is within the object,
2025 if all the appropriate values are known. */
2026 return new_rtx;
2029 /* Return a memory reference like MEMREF, but with its mode changed
2030 to MODE and its address changed to ADDR, which is assumed to be
2031 MEMREF offset by OFFSET bytes. If VALIDATE is
2032 nonzero, the memory address is forced to be valid. */
2035 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2036 HOST_WIDE_INT offset, int validate)
2038 memref = change_address_1 (memref, VOIDmode, addr, validate);
2039 return adjust_address_1 (memref, mode, offset, validate, 0);
2042 /* Return a memory reference like MEMREF, but whose address is changed by
2043 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2044 known to be in OFFSET (possibly 1). */
2047 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2049 rtx new_rtx, addr = XEXP (memref, 0);
2051 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2053 /* At this point we don't know _why_ the address is invalid. It
2054 could have secondary memory references, multiplies or anything.
2056 However, if we did go and rearrange things, we can wind up not
2057 being able to recognize the magic around pic_offset_table_rtx.
2058 This stuff is fragile, and is yet another example of why it is
2059 bad to expose PIC machinery too early. */
2060 if (! memory_address_p (GET_MODE (memref), new_rtx)
2061 && GET_CODE (addr) == PLUS
2062 && XEXP (addr, 0) == pic_offset_table_rtx)
2064 addr = force_reg (GET_MODE (addr), addr);
2065 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2068 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2069 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2071 /* If there are no changes, just return the original memory reference. */
2072 if (new_rtx == memref)
2073 return new_rtx;
2075 /* Update the alignment to reflect the offset. Reset the offset, which
2076 we don't know. */
2077 MEM_ATTRS (new_rtx)
2078 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2079 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2080 GET_MODE (new_rtx));
2081 return new_rtx;
2084 /* Return a memory reference like MEMREF, but with its address changed to
2085 ADDR. The caller is asserting that the actual piece of memory pointed
2086 to is the same, just the form of the address is being changed, such as
2087 by putting something into a register. */
2090 replace_equiv_address (rtx memref, rtx addr)
2092 /* change_address_1 copies the memory attribute structure without change
2093 and that's exactly what we want here. */
2094 update_temp_slot_address (XEXP (memref, 0), addr);
2095 return change_address_1 (memref, VOIDmode, addr, 1);
2098 /* Likewise, but the reference is not required to be valid. */
2101 replace_equiv_address_nv (rtx memref, rtx addr)
2103 return change_address_1 (memref, VOIDmode, addr, 0);
2106 /* Return a memory reference like MEMREF, but with its mode widened to
2107 MODE and offset by OFFSET. This would be used by targets that e.g.
2108 cannot issue QImode memory operations and have to use SImode memory
2109 operations plus masking logic. */
2112 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2114 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2115 tree expr = MEM_EXPR (new_rtx);
2116 rtx memoffset = MEM_OFFSET (new_rtx);
2117 unsigned int size = GET_MODE_SIZE (mode);
2119 /* If there are no changes, just return the original memory reference. */
2120 if (new_rtx == memref)
2121 return new_rtx;
2123 /* If we don't know what offset we were at within the expression, then
2124 we can't know if we've overstepped the bounds. */
2125 if (! memoffset)
2126 expr = NULL_TREE;
2128 while (expr)
2130 if (TREE_CODE (expr) == COMPONENT_REF)
2132 tree field = TREE_OPERAND (expr, 1);
2133 tree offset = component_ref_field_offset (expr);
2135 if (! DECL_SIZE_UNIT (field))
2137 expr = NULL_TREE;
2138 break;
2141 /* Is the field at least as large as the access? If so, ok,
2142 otherwise strip back to the containing structure. */
2143 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2144 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2145 && INTVAL (memoffset) >= 0)
2146 break;
2148 if (! host_integerp (offset, 1))
2150 expr = NULL_TREE;
2151 break;
2154 expr = TREE_OPERAND (expr, 0);
2155 memoffset
2156 = (GEN_INT (INTVAL (memoffset)
2157 + tree_low_cst (offset, 1)
2158 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2159 / BITS_PER_UNIT)));
2161 /* Similarly for the decl. */
2162 else if (DECL_P (expr)
2163 && DECL_SIZE_UNIT (expr)
2164 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2165 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2166 && (! memoffset || INTVAL (memoffset) >= 0))
2167 break;
2168 else
2170 /* The widened memory access overflows the expression, which means
2171 that it could alias another expression. Zap it. */
2172 expr = NULL_TREE;
2173 break;
2177 if (! expr)
2178 memoffset = NULL_RTX;
2180 /* The widened memory may alias other stuff, so zap the alias set. */
2181 /* ??? Maybe use get_alias_set on any remaining expression. */
2183 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2184 MEM_ALIGN (new_rtx), mode);
2186 return new_rtx;
2189 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2190 static GTY(()) tree spill_slot_decl;
2192 tree
2193 get_spill_slot_decl (bool force_build_p)
2195 tree d = spill_slot_decl;
2196 rtx rd;
2198 if (d || !force_build_p)
2199 return d;
2201 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2202 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2203 DECL_ARTIFICIAL (d) = 1;
2204 DECL_IGNORED_P (d) = 1;
2205 TREE_USED (d) = 1;
2206 TREE_THIS_NOTRAP (d) = 1;
2207 spill_slot_decl = d;
2209 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2210 MEM_NOTRAP_P (rd) = 1;
2211 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2212 NULL_RTX, 0, BLKmode);
2213 SET_DECL_RTL (d, rd);
2215 return d;
2218 /* Given MEM, a result from assign_stack_local, fill in the memory
2219 attributes as appropriate for a register allocator spill slot.
2220 These slots are not aliasable by other memory. We arrange for
2221 them all to use a single MEM_EXPR, so that the aliasing code can
2222 work properly in the case of shared spill slots. */
2224 void
2225 set_mem_attrs_for_spill (rtx mem)
2227 alias_set_type alias;
2228 rtx addr, offset;
2229 tree expr;
2231 expr = get_spill_slot_decl (true);
2232 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2234 /* We expect the incoming memory to be of the form:
2235 (mem:MODE (plus (reg sfp) (const_int offset)))
2236 with perhaps the plus missing for offset = 0. */
2237 addr = XEXP (mem, 0);
2238 offset = const0_rtx;
2239 if (GET_CODE (addr) == PLUS
2240 && CONST_INT_P (XEXP (addr, 1)))
2241 offset = XEXP (addr, 1);
2243 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2244 MEM_SIZE (mem), MEM_ALIGN (mem),
2245 GET_MODE (mem));
2246 MEM_NOTRAP_P (mem) = 1;
2249 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2252 gen_label_rtx (void)
2254 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2255 NULL, label_num++, NULL);
2258 /* For procedure integration. */
2260 /* Install new pointers to the first and last insns in the chain.
2261 Also, set cur_insn_uid to one higher than the last in use.
2262 Used for an inline-procedure after copying the insn chain. */
2264 void
2265 set_new_first_and_last_insn (rtx first, rtx last)
2267 rtx insn;
2269 first_insn = first;
2270 last_insn = last;
2271 cur_insn_uid = 0;
2273 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2275 int debug_count = 0;
2277 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2278 cur_debug_insn_uid = 0;
2280 for (insn = first; insn; insn = NEXT_INSN (insn))
2281 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2282 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2283 else
2285 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2286 if (DEBUG_INSN_P (insn))
2287 debug_count++;
2290 if (debug_count)
2291 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2292 else
2293 cur_debug_insn_uid++;
2295 else
2296 for (insn = first; insn; insn = NEXT_INSN (insn))
2297 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2299 cur_insn_uid++;
2302 /* Go through all the RTL insn bodies and copy any invalid shared
2303 structure. This routine should only be called once. */
2305 static void
2306 unshare_all_rtl_1 (rtx insn)
2308 /* Unshare just about everything else. */
2309 unshare_all_rtl_in_chain (insn);
2311 /* Make sure the addresses of stack slots found outside the insn chain
2312 (such as, in DECL_RTL of a variable) are not shared
2313 with the insn chain.
2315 This special care is necessary when the stack slot MEM does not
2316 actually appear in the insn chain. If it does appear, its address
2317 is unshared from all else at that point. */
2318 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2321 /* Go through all the RTL insn bodies and copy any invalid shared
2322 structure, again. This is a fairly expensive thing to do so it
2323 should be done sparingly. */
2325 void
2326 unshare_all_rtl_again (rtx insn)
2328 rtx p;
2329 tree decl;
2331 for (p = insn; p; p = NEXT_INSN (p))
2332 if (INSN_P (p))
2334 reset_used_flags (PATTERN (p));
2335 reset_used_flags (REG_NOTES (p));
2338 /* Make sure that virtual stack slots are not shared. */
2339 set_used_decls (DECL_INITIAL (cfun->decl));
2341 /* Make sure that virtual parameters are not shared. */
2342 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2343 set_used_flags (DECL_RTL (decl));
2345 reset_used_flags (stack_slot_list);
2347 unshare_all_rtl_1 (insn);
2350 unsigned int
2351 unshare_all_rtl (void)
2353 unshare_all_rtl_1 (get_insns ());
2354 return 0;
2357 struct rtl_opt_pass pass_unshare_all_rtl =
2360 RTL_PASS,
2361 "unshare", /* name */
2362 NULL, /* gate */
2363 unshare_all_rtl, /* execute */
2364 NULL, /* sub */
2365 NULL, /* next */
2366 0, /* static_pass_number */
2367 TV_NONE, /* tv_id */
2368 0, /* properties_required */
2369 0, /* properties_provided */
2370 0, /* properties_destroyed */
2371 0, /* todo_flags_start */
2372 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2377 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2378 Recursively does the same for subexpressions. */
2380 static void
2381 verify_rtx_sharing (rtx orig, rtx insn)
2383 rtx x = orig;
2384 int i;
2385 enum rtx_code code;
2386 const char *format_ptr;
2388 if (x == 0)
2389 return;
2391 code = GET_CODE (x);
2393 /* These types may be freely shared. */
2395 switch (code)
2397 case REG:
2398 case CONST_INT:
2399 case CONST_DOUBLE:
2400 case CONST_FIXED:
2401 case CONST_VECTOR:
2402 case SYMBOL_REF:
2403 case LABEL_REF:
2404 case CODE_LABEL:
2405 case PC:
2406 case CC0:
2407 case SCRATCH:
2408 return;
2409 /* SCRATCH must be shared because they represent distinct values. */
2410 case CLOBBER:
2411 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2412 return;
2413 break;
2415 case CONST:
2416 if (shared_const_p (orig))
2417 return;
2418 break;
2420 case MEM:
2421 /* A MEM is allowed to be shared if its address is constant. */
2422 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2423 || reload_completed || reload_in_progress)
2424 return;
2426 break;
2428 default:
2429 break;
2432 /* This rtx may not be shared. If it has already been seen,
2433 replace it with a copy of itself. */
2434 #ifdef ENABLE_CHECKING
2435 if (RTX_FLAG (x, used))
2437 error ("invalid rtl sharing found in the insn");
2438 debug_rtx (insn);
2439 error ("shared rtx");
2440 debug_rtx (x);
2441 internal_error ("internal consistency failure");
2443 #endif
2444 gcc_assert (!RTX_FLAG (x, used));
2446 RTX_FLAG (x, used) = 1;
2448 /* Now scan the subexpressions recursively. */
2450 format_ptr = GET_RTX_FORMAT (code);
2452 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2454 switch (*format_ptr++)
2456 case 'e':
2457 verify_rtx_sharing (XEXP (x, i), insn);
2458 break;
2460 case 'E':
2461 if (XVEC (x, i) != NULL)
2463 int j;
2464 int len = XVECLEN (x, i);
2466 for (j = 0; j < len; j++)
2468 /* We allow sharing of ASM_OPERANDS inside single
2469 instruction. */
2470 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2471 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2472 == ASM_OPERANDS))
2473 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2474 else
2475 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2478 break;
2481 return;
2484 /* Go through all the RTL insn bodies and check that there is no unexpected
2485 sharing in between the subexpressions. */
2487 void
2488 verify_rtl_sharing (void)
2490 rtx p;
2492 for (p = get_insns (); p; p = NEXT_INSN (p))
2493 if (INSN_P (p))
2495 reset_used_flags (PATTERN (p));
2496 reset_used_flags (REG_NOTES (p));
2497 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2499 int i;
2500 rtx q, sequence = PATTERN (p);
2502 for (i = 0; i < XVECLEN (sequence, 0); i++)
2504 q = XVECEXP (sequence, 0, i);
2505 gcc_assert (INSN_P (q));
2506 reset_used_flags (PATTERN (q));
2507 reset_used_flags (REG_NOTES (q));
2512 for (p = get_insns (); p; p = NEXT_INSN (p))
2513 if (INSN_P (p))
2515 verify_rtx_sharing (PATTERN (p), p);
2516 verify_rtx_sharing (REG_NOTES (p), p);
2520 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2521 Assumes the mark bits are cleared at entry. */
2523 void
2524 unshare_all_rtl_in_chain (rtx insn)
2526 for (; insn; insn = NEXT_INSN (insn))
2527 if (INSN_P (insn))
2529 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2530 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2534 /* Go through all virtual stack slots of a function and mark them as
2535 shared. We never replace the DECL_RTLs themselves with a copy,
2536 but expressions mentioned into a DECL_RTL cannot be shared with
2537 expressions in the instruction stream.
2539 Note that reload may convert pseudo registers into memories in-place.
2540 Pseudo registers are always shared, but MEMs never are. Thus if we
2541 reset the used flags on MEMs in the instruction stream, we must set
2542 them again on MEMs that appear in DECL_RTLs. */
2544 static void
2545 set_used_decls (tree blk)
2547 tree t;
2549 /* Mark decls. */
2550 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2551 if (DECL_RTL_SET_P (t))
2552 set_used_flags (DECL_RTL (t));
2554 /* Now process sub-blocks. */
2555 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2556 set_used_decls (t);
2559 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2560 Recursively does the same for subexpressions. Uses
2561 copy_rtx_if_shared_1 to reduce stack space. */
2564 copy_rtx_if_shared (rtx orig)
2566 copy_rtx_if_shared_1 (&orig);
2567 return orig;
2570 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2571 use. Recursively does the same for subexpressions. */
2573 static void
2574 copy_rtx_if_shared_1 (rtx *orig1)
2576 rtx x;
2577 int i;
2578 enum rtx_code code;
2579 rtx *last_ptr;
2580 const char *format_ptr;
2581 int copied = 0;
2582 int length;
2584 /* Repeat is used to turn tail-recursion into iteration. */
2585 repeat:
2586 x = *orig1;
2588 if (x == 0)
2589 return;
2591 code = GET_CODE (x);
2593 /* These types may be freely shared. */
2595 switch (code)
2597 case REG:
2598 case CONST_INT:
2599 case CONST_DOUBLE:
2600 case CONST_FIXED:
2601 case CONST_VECTOR:
2602 case SYMBOL_REF:
2603 case LABEL_REF:
2604 case CODE_LABEL:
2605 case PC:
2606 case CC0:
2607 case SCRATCH:
2608 /* SCRATCH must be shared because they represent distinct values. */
2609 return;
2610 case CLOBBER:
2611 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2612 return;
2613 break;
2615 case CONST:
2616 if (shared_const_p (x))
2617 return;
2618 break;
2620 case DEBUG_INSN:
2621 case INSN:
2622 case JUMP_INSN:
2623 case CALL_INSN:
2624 case NOTE:
2625 case BARRIER:
2626 /* The chain of insns is not being copied. */
2627 return;
2629 default:
2630 break;
2633 /* This rtx may not be shared. If it has already been seen,
2634 replace it with a copy of itself. */
2636 if (RTX_FLAG (x, used))
2638 x = shallow_copy_rtx (x);
2639 copied = 1;
2641 RTX_FLAG (x, used) = 1;
2643 /* Now scan the subexpressions recursively.
2644 We can store any replaced subexpressions directly into X
2645 since we know X is not shared! Any vectors in X
2646 must be copied if X was copied. */
2648 format_ptr = GET_RTX_FORMAT (code);
2649 length = GET_RTX_LENGTH (code);
2650 last_ptr = NULL;
2652 for (i = 0; i < length; i++)
2654 switch (*format_ptr++)
2656 case 'e':
2657 if (last_ptr)
2658 copy_rtx_if_shared_1 (last_ptr);
2659 last_ptr = &XEXP (x, i);
2660 break;
2662 case 'E':
2663 if (XVEC (x, i) != NULL)
2665 int j;
2666 int len = XVECLEN (x, i);
2668 /* Copy the vector iff I copied the rtx and the length
2669 is nonzero. */
2670 if (copied && len > 0)
2671 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2673 /* Call recursively on all inside the vector. */
2674 for (j = 0; j < len; j++)
2676 if (last_ptr)
2677 copy_rtx_if_shared_1 (last_ptr);
2678 last_ptr = &XVECEXP (x, i, j);
2681 break;
2684 *orig1 = x;
2685 if (last_ptr)
2687 orig1 = last_ptr;
2688 goto repeat;
2690 return;
2693 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2694 to look for shared sub-parts. */
2696 void
2697 reset_used_flags (rtx x)
2699 int i, j;
2700 enum rtx_code code;
2701 const char *format_ptr;
2702 int length;
2704 /* Repeat is used to turn tail-recursion into iteration. */
2705 repeat:
2706 if (x == 0)
2707 return;
2709 code = GET_CODE (x);
2711 /* These types may be freely shared so we needn't do any resetting
2712 for them. */
2714 switch (code)
2716 case REG:
2717 case CONST_INT:
2718 case CONST_DOUBLE:
2719 case CONST_FIXED:
2720 case CONST_VECTOR:
2721 case SYMBOL_REF:
2722 case CODE_LABEL:
2723 case PC:
2724 case CC0:
2725 return;
2727 case DEBUG_INSN:
2728 case INSN:
2729 case JUMP_INSN:
2730 case CALL_INSN:
2731 case NOTE:
2732 case LABEL_REF:
2733 case BARRIER:
2734 /* The chain of insns is not being copied. */
2735 return;
2737 default:
2738 break;
2741 RTX_FLAG (x, used) = 0;
2743 format_ptr = GET_RTX_FORMAT (code);
2744 length = GET_RTX_LENGTH (code);
2746 for (i = 0; i < length; i++)
2748 switch (*format_ptr++)
2750 case 'e':
2751 if (i == length-1)
2753 x = XEXP (x, i);
2754 goto repeat;
2756 reset_used_flags (XEXP (x, i));
2757 break;
2759 case 'E':
2760 for (j = 0; j < XVECLEN (x, i); j++)
2761 reset_used_flags (XVECEXP (x, i, j));
2762 break;
2767 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2768 to look for shared sub-parts. */
2770 void
2771 set_used_flags (rtx x)
2773 int i, j;
2774 enum rtx_code code;
2775 const char *format_ptr;
2777 if (x == 0)
2778 return;
2780 code = GET_CODE (x);
2782 /* These types may be freely shared so we needn't do any resetting
2783 for them. */
2785 switch (code)
2787 case REG:
2788 case CONST_INT:
2789 case CONST_DOUBLE:
2790 case CONST_FIXED:
2791 case CONST_VECTOR:
2792 case SYMBOL_REF:
2793 case CODE_LABEL:
2794 case PC:
2795 case CC0:
2796 return;
2798 case DEBUG_INSN:
2799 case INSN:
2800 case JUMP_INSN:
2801 case CALL_INSN:
2802 case NOTE:
2803 case LABEL_REF:
2804 case BARRIER:
2805 /* The chain of insns is not being copied. */
2806 return;
2808 default:
2809 break;
2812 RTX_FLAG (x, used) = 1;
2814 format_ptr = GET_RTX_FORMAT (code);
2815 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2817 switch (*format_ptr++)
2819 case 'e':
2820 set_used_flags (XEXP (x, i));
2821 break;
2823 case 'E':
2824 for (j = 0; j < XVECLEN (x, i); j++)
2825 set_used_flags (XVECEXP (x, i, j));
2826 break;
2831 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2832 Return X or the rtx for the pseudo reg the value of X was copied into.
2833 OTHER must be valid as a SET_DEST. */
2836 make_safe_from (rtx x, rtx other)
2838 while (1)
2839 switch (GET_CODE (other))
2841 case SUBREG:
2842 other = SUBREG_REG (other);
2843 break;
2844 case STRICT_LOW_PART:
2845 case SIGN_EXTEND:
2846 case ZERO_EXTEND:
2847 other = XEXP (other, 0);
2848 break;
2849 default:
2850 goto done;
2852 done:
2853 if ((MEM_P (other)
2854 && ! CONSTANT_P (x)
2855 && !REG_P (x)
2856 && GET_CODE (x) != SUBREG)
2857 || (REG_P (other)
2858 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2859 || reg_mentioned_p (other, x))))
2861 rtx temp = gen_reg_rtx (GET_MODE (x));
2862 emit_move_insn (temp, x);
2863 return temp;
2865 return x;
2868 /* Emission of insns (adding them to the doubly-linked list). */
2870 /* Return the first insn of the current sequence or current function. */
2873 get_insns (void)
2875 return first_insn;
2878 /* Specify a new insn as the first in the chain. */
2880 void
2881 set_first_insn (rtx insn)
2883 gcc_assert (!PREV_INSN (insn));
2884 first_insn = insn;
2887 /* Return the last insn emitted in current sequence or current function. */
2890 get_last_insn (void)
2892 return last_insn;
2895 /* Specify a new insn as the last in the chain. */
2897 void
2898 set_last_insn (rtx insn)
2900 gcc_assert (!NEXT_INSN (insn));
2901 last_insn = insn;
2904 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2907 get_last_insn_anywhere (void)
2909 struct sequence_stack *stack;
2910 if (last_insn)
2911 return last_insn;
2912 for (stack = seq_stack; stack; stack = stack->next)
2913 if (stack->last != 0)
2914 return stack->last;
2915 return 0;
2918 /* Return the first nonnote insn emitted in current sequence or current
2919 function. This routine looks inside SEQUENCEs. */
2922 get_first_nonnote_insn (void)
2924 rtx insn = first_insn;
2926 if (insn)
2928 if (NOTE_P (insn))
2929 for (insn = next_insn (insn);
2930 insn && NOTE_P (insn);
2931 insn = next_insn (insn))
2932 continue;
2933 else
2935 if (NONJUMP_INSN_P (insn)
2936 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2937 insn = XVECEXP (PATTERN (insn), 0, 0);
2941 return insn;
2944 /* Return the last nonnote insn emitted in current sequence or current
2945 function. This routine looks inside SEQUENCEs. */
2948 get_last_nonnote_insn (void)
2950 rtx insn = last_insn;
2952 if (insn)
2954 if (NOTE_P (insn))
2955 for (insn = previous_insn (insn);
2956 insn && NOTE_P (insn);
2957 insn = previous_insn (insn))
2958 continue;
2959 else
2961 if (NONJUMP_INSN_P (insn)
2962 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2963 insn = XVECEXP (PATTERN (insn), 0,
2964 XVECLEN (PATTERN (insn), 0) - 1);
2968 return insn;
2971 /* Return a number larger than any instruction's uid in this function. */
2974 get_max_uid (void)
2976 return cur_insn_uid;
2979 /* Return the number of actual (non-debug) insns emitted in this
2980 function. */
2983 get_max_insn_count (void)
2985 int n = cur_insn_uid;
2987 /* The table size must be stable across -g, to avoid codegen
2988 differences due to debug insns, and not be affected by
2989 -fmin-insn-uid, to avoid excessive table size and to simplify
2990 debugging of -fcompare-debug failures. */
2991 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
2992 n -= cur_debug_insn_uid;
2993 else
2994 n -= MIN_NONDEBUG_INSN_UID;
2996 return n;
3000 /* Return the next insn. If it is a SEQUENCE, return the first insn
3001 of the sequence. */
3004 next_insn (rtx insn)
3006 if (insn)
3008 insn = NEXT_INSN (insn);
3009 if (insn && NONJUMP_INSN_P (insn)
3010 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3011 insn = XVECEXP (PATTERN (insn), 0, 0);
3014 return insn;
3017 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3018 of the sequence. */
3021 previous_insn (rtx insn)
3023 if (insn)
3025 insn = PREV_INSN (insn);
3026 if (insn && NONJUMP_INSN_P (insn)
3027 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3028 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3031 return insn;
3034 /* Return the next insn after INSN that is not a NOTE. This routine does not
3035 look inside SEQUENCEs. */
3038 next_nonnote_insn (rtx insn)
3040 while (insn)
3042 insn = NEXT_INSN (insn);
3043 if (insn == 0 || !NOTE_P (insn))
3044 break;
3047 return insn;
3050 /* Return the next insn after INSN that is not a NOTE, but stop the
3051 search before we enter another basic block. This routine does not
3052 look inside SEQUENCEs. */
3055 next_nonnote_insn_bb (rtx insn)
3057 while (insn)
3059 insn = NEXT_INSN (insn);
3060 if (insn == 0 || !NOTE_P (insn))
3061 break;
3062 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3063 return NULL_RTX;
3066 return insn;
3069 /* Return the previous insn before INSN that is not a NOTE. This routine does
3070 not look inside SEQUENCEs. */
3073 prev_nonnote_insn (rtx insn)
3075 while (insn)
3077 insn = PREV_INSN (insn);
3078 if (insn == 0 || !NOTE_P (insn))
3079 break;
3082 return insn;
3085 /* Return the previous insn before INSN that is not a NOTE, but stop
3086 the search before we enter another basic block. This routine does
3087 not look inside SEQUENCEs. */
3090 prev_nonnote_insn_bb (rtx insn)
3092 while (insn)
3094 insn = PREV_INSN (insn);
3095 if (insn == 0 || !NOTE_P (insn))
3096 break;
3097 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3098 return NULL_RTX;
3101 return insn;
3104 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3105 routine does not look inside SEQUENCEs. */
3108 next_nondebug_insn (rtx insn)
3110 while (insn)
3112 insn = NEXT_INSN (insn);
3113 if (insn == 0 || !DEBUG_INSN_P (insn))
3114 break;
3117 return insn;
3120 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3121 This routine does not look inside SEQUENCEs. */
3124 prev_nondebug_insn (rtx insn)
3126 while (insn)
3128 insn = PREV_INSN (insn);
3129 if (insn == 0 || !DEBUG_INSN_P (insn))
3130 break;
3133 return insn;
3136 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3137 or 0, if there is none. This routine does not look inside
3138 SEQUENCEs. */
3141 next_real_insn (rtx insn)
3143 while (insn)
3145 insn = NEXT_INSN (insn);
3146 if (insn == 0 || INSN_P (insn))
3147 break;
3150 return insn;
3153 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3154 or 0, if there is none. This routine does not look inside
3155 SEQUENCEs. */
3158 prev_real_insn (rtx insn)
3160 while (insn)
3162 insn = PREV_INSN (insn);
3163 if (insn == 0 || INSN_P (insn))
3164 break;
3167 return insn;
3170 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3171 This routine does not look inside SEQUENCEs. */
3174 last_call_insn (void)
3176 rtx insn;
3178 for (insn = get_last_insn ();
3179 insn && !CALL_P (insn);
3180 insn = PREV_INSN (insn))
3183 return insn;
3186 /* Find the next insn after INSN that really does something. This routine
3187 does not look inside SEQUENCEs. Until reload has completed, this is the
3188 same as next_real_insn. */
3191 active_insn_p (const_rtx insn)
3193 return (CALL_P (insn) || JUMP_P (insn)
3194 || (NONJUMP_INSN_P (insn)
3195 && (! reload_completed
3196 || (GET_CODE (PATTERN (insn)) != USE
3197 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3201 next_active_insn (rtx insn)
3203 while (insn)
3205 insn = NEXT_INSN (insn);
3206 if (insn == 0 || active_insn_p (insn))
3207 break;
3210 return insn;
3213 /* Find the last insn before INSN that really does something. This routine
3214 does not look inside SEQUENCEs. Until reload has completed, this is the
3215 same as prev_real_insn. */
3218 prev_active_insn (rtx insn)
3220 while (insn)
3222 insn = PREV_INSN (insn);
3223 if (insn == 0 || active_insn_p (insn))
3224 break;
3227 return insn;
3230 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3233 next_label (rtx insn)
3235 while (insn)
3237 insn = NEXT_INSN (insn);
3238 if (insn == 0 || LABEL_P (insn))
3239 break;
3242 return insn;
3245 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3248 prev_label (rtx insn)
3250 while (insn)
3252 insn = PREV_INSN (insn);
3253 if (insn == 0 || LABEL_P (insn))
3254 break;
3257 return insn;
3260 /* Return the last label to mark the same position as LABEL. Return null
3261 if LABEL itself is null. */
3264 skip_consecutive_labels (rtx label)
3266 rtx insn;
3268 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3269 if (LABEL_P (insn))
3270 label = insn;
3272 return label;
3275 #ifdef HAVE_cc0
3276 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3277 and REG_CC_USER notes so we can find it. */
3279 void
3280 link_cc0_insns (rtx insn)
3282 rtx user = next_nonnote_insn (insn);
3284 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3285 user = XVECEXP (PATTERN (user), 0, 0);
3287 add_reg_note (user, REG_CC_SETTER, insn);
3288 add_reg_note (insn, REG_CC_USER, user);
3291 /* Return the next insn that uses CC0 after INSN, which is assumed to
3292 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3293 applied to the result of this function should yield INSN).
3295 Normally, this is simply the next insn. However, if a REG_CC_USER note
3296 is present, it contains the insn that uses CC0.
3298 Return 0 if we can't find the insn. */
3301 next_cc0_user (rtx insn)
3303 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3305 if (note)
3306 return XEXP (note, 0);
3308 insn = next_nonnote_insn (insn);
3309 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3310 insn = XVECEXP (PATTERN (insn), 0, 0);
3312 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3313 return insn;
3315 return 0;
3318 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3319 note, it is the previous insn. */
3322 prev_cc0_setter (rtx insn)
3324 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3326 if (note)
3327 return XEXP (note, 0);
3329 insn = prev_nonnote_insn (insn);
3330 gcc_assert (sets_cc0_p (PATTERN (insn)));
3332 return insn;
3334 #endif
3336 #ifdef AUTO_INC_DEC
3337 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3339 static int
3340 find_auto_inc (rtx *xp, void *data)
3342 rtx x = *xp;
3343 rtx reg = (rtx) data;
3345 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3346 return 0;
3348 switch (GET_CODE (x))
3350 case PRE_DEC:
3351 case PRE_INC:
3352 case POST_DEC:
3353 case POST_INC:
3354 case PRE_MODIFY:
3355 case POST_MODIFY:
3356 if (rtx_equal_p (reg, XEXP (x, 0)))
3357 return 1;
3358 break;
3360 default:
3361 gcc_unreachable ();
3363 return -1;
3365 #endif
3367 /* Increment the label uses for all labels present in rtx. */
3369 static void
3370 mark_label_nuses (rtx x)
3372 enum rtx_code code;
3373 int i, j;
3374 const char *fmt;
3376 code = GET_CODE (x);
3377 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3378 LABEL_NUSES (XEXP (x, 0))++;
3380 fmt = GET_RTX_FORMAT (code);
3381 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3383 if (fmt[i] == 'e')
3384 mark_label_nuses (XEXP (x, i));
3385 else if (fmt[i] == 'E')
3386 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3387 mark_label_nuses (XVECEXP (x, i, j));
3392 /* Try splitting insns that can be split for better scheduling.
3393 PAT is the pattern which might split.
3394 TRIAL is the insn providing PAT.
3395 LAST is nonzero if we should return the last insn of the sequence produced.
3397 If this routine succeeds in splitting, it returns the first or last
3398 replacement insn depending on the value of LAST. Otherwise, it
3399 returns TRIAL. If the insn to be returned can be split, it will be. */
3402 try_split (rtx pat, rtx trial, int last)
3404 rtx before = PREV_INSN (trial);
3405 rtx after = NEXT_INSN (trial);
3406 int has_barrier = 0;
3407 rtx note, seq, tem;
3408 int probability;
3409 rtx insn_last, insn;
3410 int njumps = 0;
3412 /* We're not good at redistributing frame information. */
3413 if (RTX_FRAME_RELATED_P (trial))
3414 return trial;
3416 if (any_condjump_p (trial)
3417 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3418 split_branch_probability = INTVAL (XEXP (note, 0));
3419 probability = split_branch_probability;
3421 seq = split_insns (pat, trial);
3423 split_branch_probability = -1;
3425 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3426 We may need to handle this specially. */
3427 if (after && BARRIER_P (after))
3429 has_barrier = 1;
3430 after = NEXT_INSN (after);
3433 if (!seq)
3434 return trial;
3436 /* Avoid infinite loop if any insn of the result matches
3437 the original pattern. */
3438 insn_last = seq;
3439 while (1)
3441 if (INSN_P (insn_last)
3442 && rtx_equal_p (PATTERN (insn_last), pat))
3443 return trial;
3444 if (!NEXT_INSN (insn_last))
3445 break;
3446 insn_last = NEXT_INSN (insn_last);
3449 /* We will be adding the new sequence to the function. The splitters
3450 may have introduced invalid RTL sharing, so unshare the sequence now. */
3451 unshare_all_rtl_in_chain (seq);
3453 /* Mark labels. */
3454 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3456 if (JUMP_P (insn))
3458 mark_jump_label (PATTERN (insn), insn, 0);
3459 njumps++;
3460 if (probability != -1
3461 && any_condjump_p (insn)
3462 && !find_reg_note (insn, REG_BR_PROB, 0))
3464 /* We can preserve the REG_BR_PROB notes only if exactly
3465 one jump is created, otherwise the machine description
3466 is responsible for this step using
3467 split_branch_probability variable. */
3468 gcc_assert (njumps == 1);
3469 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3474 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3475 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3476 if (CALL_P (trial))
3478 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3479 if (CALL_P (insn))
3481 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3482 while (*p)
3483 p = &XEXP (*p, 1);
3484 *p = CALL_INSN_FUNCTION_USAGE (trial);
3485 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3489 /* Copy notes, particularly those related to the CFG. */
3490 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3492 switch (REG_NOTE_KIND (note))
3494 case REG_EH_REGION:
3495 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3497 if (CALL_P (insn)
3498 || (flag_non_call_exceptions && INSN_P (insn)
3499 && may_trap_p (PATTERN (insn))))
3500 add_reg_note (insn, REG_EH_REGION, XEXP (note, 0));
3502 break;
3504 case REG_NORETURN:
3505 case REG_SETJMP:
3506 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3508 if (CALL_P (insn))
3509 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3511 break;
3513 case REG_NON_LOCAL_GOTO:
3514 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3516 if (JUMP_P (insn))
3517 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3519 break;
3521 #ifdef AUTO_INC_DEC
3522 case REG_INC:
3523 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3525 rtx reg = XEXP (note, 0);
3526 if (!FIND_REG_INC_NOTE (insn, reg)
3527 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3528 add_reg_note (insn, REG_INC, reg);
3530 break;
3531 #endif
3533 default:
3534 break;
3538 /* If there are LABELS inside the split insns increment the
3539 usage count so we don't delete the label. */
3540 if (INSN_P (trial))
3542 insn = insn_last;
3543 while (insn != NULL_RTX)
3545 /* JUMP_P insns have already been "marked" above. */
3546 if (NONJUMP_INSN_P (insn))
3547 mark_label_nuses (PATTERN (insn));
3549 insn = PREV_INSN (insn);
3553 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3555 delete_insn (trial);
3556 if (has_barrier)
3557 emit_barrier_after (tem);
3559 /* Recursively call try_split for each new insn created; by the
3560 time control returns here that insn will be fully split, so
3561 set LAST and continue from the insn after the one returned.
3562 We can't use next_active_insn here since AFTER may be a note.
3563 Ignore deleted insns, which can be occur if not optimizing. */
3564 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3565 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3566 tem = try_split (PATTERN (tem), tem, 1);
3568 /* Return either the first or the last insn, depending on which was
3569 requested. */
3570 return last
3571 ? (after ? PREV_INSN (after) : last_insn)
3572 : NEXT_INSN (before);
3575 /* Make and return an INSN rtx, initializing all its slots.
3576 Store PATTERN in the pattern slots. */
3579 make_insn_raw (rtx pattern)
3581 rtx insn;
3583 insn = rtx_alloc (INSN);
3585 INSN_UID (insn) = cur_insn_uid++;
3586 PATTERN (insn) = pattern;
3587 INSN_CODE (insn) = -1;
3588 REG_NOTES (insn) = NULL;
3589 INSN_LOCATOR (insn) = curr_insn_locator ();
3590 BLOCK_FOR_INSN (insn) = NULL;
3592 #ifdef ENABLE_RTL_CHECKING
3593 if (insn
3594 && INSN_P (insn)
3595 && (returnjump_p (insn)
3596 || (GET_CODE (insn) == SET
3597 && SET_DEST (insn) == pc_rtx)))
3599 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3600 debug_rtx (insn);
3602 #endif
3604 return insn;
3607 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3610 make_debug_insn_raw (rtx pattern)
3612 rtx insn;
3614 insn = rtx_alloc (DEBUG_INSN);
3615 INSN_UID (insn) = cur_debug_insn_uid++;
3616 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3617 INSN_UID (insn) = cur_insn_uid++;
3619 PATTERN (insn) = pattern;
3620 INSN_CODE (insn) = -1;
3621 REG_NOTES (insn) = NULL;
3622 INSN_LOCATOR (insn) = curr_insn_locator ();
3623 BLOCK_FOR_INSN (insn) = NULL;
3625 return insn;
3628 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3631 make_jump_insn_raw (rtx pattern)
3633 rtx insn;
3635 insn = rtx_alloc (JUMP_INSN);
3636 INSN_UID (insn) = cur_insn_uid++;
3638 PATTERN (insn) = pattern;
3639 INSN_CODE (insn) = -1;
3640 REG_NOTES (insn) = NULL;
3641 JUMP_LABEL (insn) = NULL;
3642 INSN_LOCATOR (insn) = curr_insn_locator ();
3643 BLOCK_FOR_INSN (insn) = NULL;
3645 return insn;
3648 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3650 static rtx
3651 make_call_insn_raw (rtx pattern)
3653 rtx insn;
3655 insn = rtx_alloc (CALL_INSN);
3656 INSN_UID (insn) = cur_insn_uid++;
3658 PATTERN (insn) = pattern;
3659 INSN_CODE (insn) = -1;
3660 REG_NOTES (insn) = NULL;
3661 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3662 INSN_LOCATOR (insn) = curr_insn_locator ();
3663 BLOCK_FOR_INSN (insn) = NULL;
3665 return insn;
3668 /* Add INSN to the end of the doubly-linked list.
3669 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3671 void
3672 add_insn (rtx insn)
3674 PREV_INSN (insn) = last_insn;
3675 NEXT_INSN (insn) = 0;
3677 if (NULL != last_insn)
3678 NEXT_INSN (last_insn) = insn;
3680 if (NULL == first_insn)
3681 first_insn = insn;
3683 last_insn = insn;
3686 /* Add INSN into the doubly-linked list after insn AFTER. This and
3687 the next should be the only functions called to insert an insn once
3688 delay slots have been filled since only they know how to update a
3689 SEQUENCE. */
3691 void
3692 add_insn_after (rtx insn, rtx after, basic_block bb)
3694 rtx next = NEXT_INSN (after);
3696 gcc_assert (!optimize || !INSN_DELETED_P (after));
3698 NEXT_INSN (insn) = next;
3699 PREV_INSN (insn) = after;
3701 if (next)
3703 PREV_INSN (next) = insn;
3704 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3705 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3707 else if (last_insn == after)
3708 last_insn = insn;
3709 else
3711 struct sequence_stack *stack = seq_stack;
3712 /* Scan all pending sequences too. */
3713 for (; stack; stack = stack->next)
3714 if (after == stack->last)
3716 stack->last = insn;
3717 break;
3720 gcc_assert (stack);
3723 if (!BARRIER_P (after)
3724 && !BARRIER_P (insn)
3725 && (bb = BLOCK_FOR_INSN (after)))
3727 set_block_for_insn (insn, bb);
3728 if (INSN_P (insn))
3729 df_insn_rescan (insn);
3730 /* Should not happen as first in the BB is always
3731 either NOTE or LABEL. */
3732 if (BB_END (bb) == after
3733 /* Avoid clobbering of structure when creating new BB. */
3734 && !BARRIER_P (insn)
3735 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3736 BB_END (bb) = insn;
3739 NEXT_INSN (after) = insn;
3740 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3742 rtx sequence = PATTERN (after);
3743 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3747 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3748 the previous should be the only functions called to insert an insn
3749 once delay slots have been filled since only they know how to
3750 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3751 bb from before. */
3753 void
3754 add_insn_before (rtx insn, rtx before, basic_block bb)
3756 rtx prev = PREV_INSN (before);
3758 gcc_assert (!optimize || !INSN_DELETED_P (before));
3760 PREV_INSN (insn) = prev;
3761 NEXT_INSN (insn) = before;
3763 if (prev)
3765 NEXT_INSN (prev) = insn;
3766 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3768 rtx sequence = PATTERN (prev);
3769 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3772 else if (first_insn == before)
3773 first_insn = insn;
3774 else
3776 struct sequence_stack *stack = seq_stack;
3777 /* Scan all pending sequences too. */
3778 for (; stack; stack = stack->next)
3779 if (before == stack->first)
3781 stack->first = insn;
3782 break;
3785 gcc_assert (stack);
3788 if (!bb
3789 && !BARRIER_P (before)
3790 && !BARRIER_P (insn))
3791 bb = BLOCK_FOR_INSN (before);
3793 if (bb)
3795 set_block_for_insn (insn, bb);
3796 if (INSN_P (insn))
3797 df_insn_rescan (insn);
3798 /* Should not happen as first in the BB is always either NOTE or
3799 LABEL. */
3800 gcc_assert (BB_HEAD (bb) != insn
3801 /* Avoid clobbering of structure when creating new BB. */
3802 || BARRIER_P (insn)
3803 || NOTE_INSN_BASIC_BLOCK_P (insn));
3806 PREV_INSN (before) = insn;
3807 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3808 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3812 /* Replace insn with an deleted instruction note. */
3814 void
3815 set_insn_deleted (rtx insn)
3817 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3818 PUT_CODE (insn, NOTE);
3819 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3823 /* Remove an insn from its doubly-linked list. This function knows how
3824 to handle sequences. */
3825 void
3826 remove_insn (rtx insn)
3828 rtx next = NEXT_INSN (insn);
3829 rtx prev = PREV_INSN (insn);
3830 basic_block bb;
3832 /* Later in the code, the block will be marked dirty. */
3833 df_insn_delete (NULL, INSN_UID (insn));
3835 if (prev)
3837 NEXT_INSN (prev) = next;
3838 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3840 rtx sequence = PATTERN (prev);
3841 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3844 else if (first_insn == insn)
3845 first_insn = next;
3846 else
3848 struct sequence_stack *stack = seq_stack;
3849 /* Scan all pending sequences too. */
3850 for (; stack; stack = stack->next)
3851 if (insn == stack->first)
3853 stack->first = next;
3854 break;
3857 gcc_assert (stack);
3860 if (next)
3862 PREV_INSN (next) = prev;
3863 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3864 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3866 else if (last_insn == insn)
3867 last_insn = prev;
3868 else
3870 struct sequence_stack *stack = seq_stack;
3871 /* Scan all pending sequences too. */
3872 for (; stack; stack = stack->next)
3873 if (insn == stack->last)
3875 stack->last = prev;
3876 break;
3879 gcc_assert (stack);
3881 if (!BARRIER_P (insn)
3882 && (bb = BLOCK_FOR_INSN (insn)))
3884 if (INSN_P (insn))
3885 df_set_bb_dirty (bb);
3886 if (BB_HEAD (bb) == insn)
3888 /* Never ever delete the basic block note without deleting whole
3889 basic block. */
3890 gcc_assert (!NOTE_P (insn));
3891 BB_HEAD (bb) = next;
3893 if (BB_END (bb) == insn)
3894 BB_END (bb) = prev;
3898 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3900 void
3901 add_function_usage_to (rtx call_insn, rtx call_fusage)
3903 gcc_assert (call_insn && CALL_P (call_insn));
3905 /* Put the register usage information on the CALL. If there is already
3906 some usage information, put ours at the end. */
3907 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3909 rtx link;
3911 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3912 link = XEXP (link, 1))
3915 XEXP (link, 1) = call_fusage;
3917 else
3918 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3921 /* Delete all insns made since FROM.
3922 FROM becomes the new last instruction. */
3924 void
3925 delete_insns_since (rtx from)
3927 if (from == 0)
3928 first_insn = 0;
3929 else
3930 NEXT_INSN (from) = 0;
3931 last_insn = from;
3934 /* This function is deprecated, please use sequences instead.
3936 Move a consecutive bunch of insns to a different place in the chain.
3937 The insns to be moved are those between FROM and TO.
3938 They are moved to a new position after the insn AFTER.
3939 AFTER must not be FROM or TO or any insn in between.
3941 This function does not know about SEQUENCEs and hence should not be
3942 called after delay-slot filling has been done. */
3944 void
3945 reorder_insns_nobb (rtx from, rtx to, rtx after)
3947 /* Splice this bunch out of where it is now. */
3948 if (PREV_INSN (from))
3949 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3950 if (NEXT_INSN (to))
3951 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3952 if (last_insn == to)
3953 last_insn = PREV_INSN (from);
3954 if (first_insn == from)
3955 first_insn = NEXT_INSN (to);
3957 /* Make the new neighbors point to it and it to them. */
3958 if (NEXT_INSN (after))
3959 PREV_INSN (NEXT_INSN (after)) = to;
3961 NEXT_INSN (to) = NEXT_INSN (after);
3962 PREV_INSN (from) = after;
3963 NEXT_INSN (after) = from;
3964 if (after == last_insn)
3965 last_insn = to;
3968 /* Same as function above, but take care to update BB boundaries. */
3969 void
3970 reorder_insns (rtx from, rtx to, rtx after)
3972 rtx prev = PREV_INSN (from);
3973 basic_block bb, bb2;
3975 reorder_insns_nobb (from, to, after);
3977 if (!BARRIER_P (after)
3978 && (bb = BLOCK_FOR_INSN (after)))
3980 rtx x;
3981 df_set_bb_dirty (bb);
3983 if (!BARRIER_P (from)
3984 && (bb2 = BLOCK_FOR_INSN (from)))
3986 if (BB_END (bb2) == to)
3987 BB_END (bb2) = prev;
3988 df_set_bb_dirty (bb2);
3991 if (BB_END (bb) == after)
3992 BB_END (bb) = to;
3994 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3995 if (!BARRIER_P (x))
3996 df_insn_change_bb (x, bb);
4001 /* Emit insn(s) of given code and pattern
4002 at a specified place within the doubly-linked list.
4004 All of the emit_foo global entry points accept an object
4005 X which is either an insn list or a PATTERN of a single
4006 instruction.
4008 There are thus a few canonical ways to generate code and
4009 emit it at a specific place in the instruction stream. For
4010 example, consider the instruction named SPOT and the fact that
4011 we would like to emit some instructions before SPOT. We might
4012 do it like this:
4014 start_sequence ();
4015 ... emit the new instructions ...
4016 insns_head = get_insns ();
4017 end_sequence ();
4019 emit_insn_before (insns_head, SPOT);
4021 It used to be common to generate SEQUENCE rtl instead, but that
4022 is a relic of the past which no longer occurs. The reason is that
4023 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4024 generated would almost certainly die right after it was created. */
4026 /* Make X be output before the instruction BEFORE. */
4029 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4031 rtx last = before;
4032 rtx insn;
4034 gcc_assert (before);
4036 if (x == NULL_RTX)
4037 return last;
4039 switch (GET_CODE (x))
4041 case DEBUG_INSN:
4042 case INSN:
4043 case JUMP_INSN:
4044 case CALL_INSN:
4045 case CODE_LABEL:
4046 case BARRIER:
4047 case NOTE:
4048 insn = x;
4049 while (insn)
4051 rtx next = NEXT_INSN (insn);
4052 add_insn_before (insn, before, bb);
4053 last = insn;
4054 insn = next;
4056 break;
4058 #ifdef ENABLE_RTL_CHECKING
4059 case SEQUENCE:
4060 gcc_unreachable ();
4061 break;
4062 #endif
4064 default:
4065 last = make_insn_raw (x);
4066 add_insn_before (last, before, bb);
4067 break;
4070 return last;
4073 /* Make an instruction with body X and code JUMP_INSN
4074 and output it before the instruction BEFORE. */
4077 emit_jump_insn_before_noloc (rtx x, rtx before)
4079 rtx insn, last = NULL_RTX;
4081 gcc_assert (before);
4083 switch (GET_CODE (x))
4085 case DEBUG_INSN:
4086 case INSN:
4087 case JUMP_INSN:
4088 case CALL_INSN:
4089 case CODE_LABEL:
4090 case BARRIER:
4091 case NOTE:
4092 insn = x;
4093 while (insn)
4095 rtx next = NEXT_INSN (insn);
4096 add_insn_before (insn, before, NULL);
4097 last = insn;
4098 insn = next;
4100 break;
4102 #ifdef ENABLE_RTL_CHECKING
4103 case SEQUENCE:
4104 gcc_unreachable ();
4105 break;
4106 #endif
4108 default:
4109 last = make_jump_insn_raw (x);
4110 add_insn_before (last, before, NULL);
4111 break;
4114 return last;
4117 /* Make an instruction with body X and code CALL_INSN
4118 and output it before the instruction BEFORE. */
4121 emit_call_insn_before_noloc (rtx x, rtx before)
4123 rtx last = NULL_RTX, insn;
4125 gcc_assert (before);
4127 switch (GET_CODE (x))
4129 case DEBUG_INSN:
4130 case INSN:
4131 case JUMP_INSN:
4132 case CALL_INSN:
4133 case CODE_LABEL:
4134 case BARRIER:
4135 case NOTE:
4136 insn = x;
4137 while (insn)
4139 rtx next = NEXT_INSN (insn);
4140 add_insn_before (insn, before, NULL);
4141 last = insn;
4142 insn = next;
4144 break;
4146 #ifdef ENABLE_RTL_CHECKING
4147 case SEQUENCE:
4148 gcc_unreachable ();
4149 break;
4150 #endif
4152 default:
4153 last = make_call_insn_raw (x);
4154 add_insn_before (last, before, NULL);
4155 break;
4158 return last;
4161 /* Make an instruction with body X and code DEBUG_INSN
4162 and output it before the instruction BEFORE. */
4165 emit_debug_insn_before_noloc (rtx x, rtx before)
4167 rtx last = NULL_RTX, insn;
4169 gcc_assert (before);
4171 switch (GET_CODE (x))
4173 case DEBUG_INSN:
4174 case INSN:
4175 case JUMP_INSN:
4176 case CALL_INSN:
4177 case CODE_LABEL:
4178 case BARRIER:
4179 case NOTE:
4180 insn = x;
4181 while (insn)
4183 rtx next = NEXT_INSN (insn);
4184 add_insn_before (insn, before, NULL);
4185 last = insn;
4186 insn = next;
4188 break;
4190 #ifdef ENABLE_RTL_CHECKING
4191 case SEQUENCE:
4192 gcc_unreachable ();
4193 break;
4194 #endif
4196 default:
4197 last = make_debug_insn_raw (x);
4198 add_insn_before (last, before, NULL);
4199 break;
4202 return last;
4205 /* Make an insn of code BARRIER
4206 and output it before the insn BEFORE. */
4209 emit_barrier_before (rtx before)
4211 rtx insn = rtx_alloc (BARRIER);
4213 INSN_UID (insn) = cur_insn_uid++;
4215 add_insn_before (insn, before, NULL);
4216 return insn;
4219 /* Emit the label LABEL before the insn BEFORE. */
4222 emit_label_before (rtx label, rtx before)
4224 /* This can be called twice for the same label as a result of the
4225 confusion that follows a syntax error! So make it harmless. */
4226 if (INSN_UID (label) == 0)
4228 INSN_UID (label) = cur_insn_uid++;
4229 add_insn_before (label, before, NULL);
4232 return label;
4235 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4238 emit_note_before (enum insn_note subtype, rtx before)
4240 rtx note = rtx_alloc (NOTE);
4241 INSN_UID (note) = cur_insn_uid++;
4242 NOTE_KIND (note) = subtype;
4243 BLOCK_FOR_INSN (note) = NULL;
4244 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4246 add_insn_before (note, before, NULL);
4247 return note;
4250 /* Helper for emit_insn_after, handles lists of instructions
4251 efficiently. */
4253 static rtx
4254 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4256 rtx last;
4257 rtx after_after;
4258 if (!bb && !BARRIER_P (after))
4259 bb = BLOCK_FOR_INSN (after);
4261 if (bb)
4263 df_set_bb_dirty (bb);
4264 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4265 if (!BARRIER_P (last))
4267 set_block_for_insn (last, bb);
4268 df_insn_rescan (last);
4270 if (!BARRIER_P (last))
4272 set_block_for_insn (last, bb);
4273 df_insn_rescan (last);
4275 if (BB_END (bb) == after)
4276 BB_END (bb) = last;
4278 else
4279 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4280 continue;
4282 after_after = NEXT_INSN (after);
4284 NEXT_INSN (after) = first;
4285 PREV_INSN (first) = after;
4286 NEXT_INSN (last) = after_after;
4287 if (after_after)
4288 PREV_INSN (after_after) = last;
4290 if (after == last_insn)
4291 last_insn = last;
4293 return last;
4296 /* Make X be output after the insn AFTER and set the BB of insn. If
4297 BB is NULL, an attempt is made to infer the BB from AFTER. */
4300 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4302 rtx last = after;
4304 gcc_assert (after);
4306 if (x == NULL_RTX)
4307 return last;
4309 switch (GET_CODE (x))
4311 case DEBUG_INSN:
4312 case INSN:
4313 case JUMP_INSN:
4314 case CALL_INSN:
4315 case CODE_LABEL:
4316 case BARRIER:
4317 case NOTE:
4318 last = emit_insn_after_1 (x, after, bb);
4319 break;
4321 #ifdef ENABLE_RTL_CHECKING
4322 case SEQUENCE:
4323 gcc_unreachable ();
4324 break;
4325 #endif
4327 default:
4328 last = make_insn_raw (x);
4329 add_insn_after (last, after, bb);
4330 break;
4333 return last;
4337 /* Make an insn of code JUMP_INSN with body X
4338 and output it after the insn AFTER. */
4341 emit_jump_insn_after_noloc (rtx x, rtx after)
4343 rtx last;
4345 gcc_assert (after);
4347 switch (GET_CODE (x))
4349 case DEBUG_INSN:
4350 case INSN:
4351 case JUMP_INSN:
4352 case CALL_INSN:
4353 case CODE_LABEL:
4354 case BARRIER:
4355 case NOTE:
4356 last = emit_insn_after_1 (x, after, NULL);
4357 break;
4359 #ifdef ENABLE_RTL_CHECKING
4360 case SEQUENCE:
4361 gcc_unreachable ();
4362 break;
4363 #endif
4365 default:
4366 last = make_jump_insn_raw (x);
4367 add_insn_after (last, after, NULL);
4368 break;
4371 return last;
4374 /* Make an instruction with body X and code CALL_INSN
4375 and output it after the instruction AFTER. */
4378 emit_call_insn_after_noloc (rtx x, rtx after)
4380 rtx last;
4382 gcc_assert (after);
4384 switch (GET_CODE (x))
4386 case DEBUG_INSN:
4387 case INSN:
4388 case JUMP_INSN:
4389 case CALL_INSN:
4390 case CODE_LABEL:
4391 case BARRIER:
4392 case NOTE:
4393 last = emit_insn_after_1 (x, after, NULL);
4394 break;
4396 #ifdef ENABLE_RTL_CHECKING
4397 case SEQUENCE:
4398 gcc_unreachable ();
4399 break;
4400 #endif
4402 default:
4403 last = make_call_insn_raw (x);
4404 add_insn_after (last, after, NULL);
4405 break;
4408 return last;
4411 /* Make an instruction with body X and code CALL_INSN
4412 and output it after the instruction AFTER. */
4415 emit_debug_insn_after_noloc (rtx x, rtx after)
4417 rtx last;
4419 gcc_assert (after);
4421 switch (GET_CODE (x))
4423 case DEBUG_INSN:
4424 case INSN:
4425 case JUMP_INSN:
4426 case CALL_INSN:
4427 case CODE_LABEL:
4428 case BARRIER:
4429 case NOTE:
4430 last = emit_insn_after_1 (x, after, NULL);
4431 break;
4433 #ifdef ENABLE_RTL_CHECKING
4434 case SEQUENCE:
4435 gcc_unreachable ();
4436 break;
4437 #endif
4439 default:
4440 last = make_debug_insn_raw (x);
4441 add_insn_after (last, after, NULL);
4442 break;
4445 return last;
4448 /* Make an insn of code BARRIER
4449 and output it after the insn AFTER. */
4452 emit_barrier_after (rtx after)
4454 rtx insn = rtx_alloc (BARRIER);
4456 INSN_UID (insn) = cur_insn_uid++;
4458 add_insn_after (insn, after, NULL);
4459 return insn;
4462 /* Emit the label LABEL after the insn AFTER. */
4465 emit_label_after (rtx label, rtx after)
4467 /* This can be called twice for the same label
4468 as a result of the confusion that follows a syntax error!
4469 So make it harmless. */
4470 if (INSN_UID (label) == 0)
4472 INSN_UID (label) = cur_insn_uid++;
4473 add_insn_after (label, after, NULL);
4476 return label;
4479 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4482 emit_note_after (enum insn_note subtype, rtx after)
4484 rtx note = rtx_alloc (NOTE);
4485 INSN_UID (note) = cur_insn_uid++;
4486 NOTE_KIND (note) = subtype;
4487 BLOCK_FOR_INSN (note) = NULL;
4488 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4489 add_insn_after (note, after, NULL);
4490 return note;
4493 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4495 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4497 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4499 if (pattern == NULL_RTX || !loc)
4500 return last;
4502 after = NEXT_INSN (after);
4503 while (1)
4505 if (active_insn_p (after) && !INSN_LOCATOR (after))
4506 INSN_LOCATOR (after) = loc;
4507 if (after == last)
4508 break;
4509 after = NEXT_INSN (after);
4511 return last;
4514 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4516 emit_insn_after (rtx pattern, rtx after)
4518 rtx prev = after;
4520 while (DEBUG_INSN_P (prev))
4521 prev = PREV_INSN (prev);
4523 if (INSN_P (prev))
4524 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4525 else
4526 return emit_insn_after_noloc (pattern, after, NULL);
4529 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4531 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4533 rtx last = emit_jump_insn_after_noloc (pattern, after);
4535 if (pattern == NULL_RTX || !loc)
4536 return last;
4538 after = NEXT_INSN (after);
4539 while (1)
4541 if (active_insn_p (after) && !INSN_LOCATOR (after))
4542 INSN_LOCATOR (after) = loc;
4543 if (after == last)
4544 break;
4545 after = NEXT_INSN (after);
4547 return last;
4550 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4552 emit_jump_insn_after (rtx pattern, rtx after)
4554 rtx prev = after;
4556 while (DEBUG_INSN_P (prev))
4557 prev = PREV_INSN (prev);
4559 if (INSN_P (prev))
4560 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4561 else
4562 return emit_jump_insn_after_noloc (pattern, after);
4565 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4567 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4569 rtx last = emit_call_insn_after_noloc (pattern, after);
4571 if (pattern == NULL_RTX || !loc)
4572 return last;
4574 after = NEXT_INSN (after);
4575 while (1)
4577 if (active_insn_p (after) && !INSN_LOCATOR (after))
4578 INSN_LOCATOR (after) = loc;
4579 if (after == last)
4580 break;
4581 after = NEXT_INSN (after);
4583 return last;
4586 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4588 emit_call_insn_after (rtx pattern, rtx after)
4590 rtx prev = after;
4592 while (DEBUG_INSN_P (prev))
4593 prev = PREV_INSN (prev);
4595 if (INSN_P (prev))
4596 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4597 else
4598 return emit_call_insn_after_noloc (pattern, after);
4601 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4603 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4605 rtx last = emit_debug_insn_after_noloc (pattern, after);
4607 if (pattern == NULL_RTX || !loc)
4608 return last;
4610 after = NEXT_INSN (after);
4611 while (1)
4613 if (active_insn_p (after) && !INSN_LOCATOR (after))
4614 INSN_LOCATOR (after) = loc;
4615 if (after == last)
4616 break;
4617 after = NEXT_INSN (after);
4619 return last;
4622 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4624 emit_debug_insn_after (rtx pattern, rtx after)
4626 if (INSN_P (after))
4627 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4628 else
4629 return emit_debug_insn_after_noloc (pattern, after);
4632 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4634 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4636 rtx first = PREV_INSN (before);
4637 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4639 if (pattern == NULL_RTX || !loc)
4640 return last;
4642 if (!first)
4643 first = get_insns ();
4644 else
4645 first = NEXT_INSN (first);
4646 while (1)
4648 if (active_insn_p (first) && !INSN_LOCATOR (first))
4649 INSN_LOCATOR (first) = loc;
4650 if (first == last)
4651 break;
4652 first = NEXT_INSN (first);
4654 return last;
4657 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4659 emit_insn_before (rtx pattern, rtx before)
4661 rtx next = before;
4663 while (DEBUG_INSN_P (next))
4664 next = PREV_INSN (next);
4666 if (INSN_P (next))
4667 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4668 else
4669 return emit_insn_before_noloc (pattern, before, NULL);
4672 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4674 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4676 rtx first = PREV_INSN (before);
4677 rtx last = emit_jump_insn_before_noloc (pattern, before);
4679 if (pattern == NULL_RTX)
4680 return last;
4682 first = NEXT_INSN (first);
4683 while (1)
4685 if (active_insn_p (first) && !INSN_LOCATOR (first))
4686 INSN_LOCATOR (first) = loc;
4687 if (first == last)
4688 break;
4689 first = NEXT_INSN (first);
4691 return last;
4694 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4696 emit_jump_insn_before (rtx pattern, rtx before)
4698 rtx next = before;
4700 while (DEBUG_INSN_P (next))
4701 next = PREV_INSN (next);
4703 if (INSN_P (next))
4704 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4705 else
4706 return emit_jump_insn_before_noloc (pattern, before);
4709 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4711 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4713 rtx first = PREV_INSN (before);
4714 rtx last = emit_call_insn_before_noloc (pattern, before);
4716 if (pattern == NULL_RTX)
4717 return last;
4719 first = NEXT_INSN (first);
4720 while (1)
4722 if (active_insn_p (first) && !INSN_LOCATOR (first))
4723 INSN_LOCATOR (first) = loc;
4724 if (first == last)
4725 break;
4726 first = NEXT_INSN (first);
4728 return last;
4731 /* like emit_call_insn_before_noloc,
4732 but set insn_locator according to before. */
4734 emit_call_insn_before (rtx pattern, rtx before)
4736 rtx next = before;
4738 while (DEBUG_INSN_P (next))
4739 next = PREV_INSN (next);
4741 if (INSN_P (next))
4742 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4743 else
4744 return emit_call_insn_before_noloc (pattern, before);
4747 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4749 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4751 rtx first = PREV_INSN (before);
4752 rtx last = emit_debug_insn_before_noloc (pattern, before);
4754 if (pattern == NULL_RTX)
4755 return last;
4757 first = NEXT_INSN (first);
4758 while (1)
4760 if (active_insn_p (first) && !INSN_LOCATOR (first))
4761 INSN_LOCATOR (first) = loc;
4762 if (first == last)
4763 break;
4764 first = NEXT_INSN (first);
4766 return last;
4769 /* like emit_debug_insn_before_noloc,
4770 but set insn_locator according to before. */
4772 emit_debug_insn_before (rtx pattern, rtx before)
4774 if (INSN_P (before))
4775 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4776 else
4777 return emit_debug_insn_before_noloc (pattern, before);
4780 /* Take X and emit it at the end of the doubly-linked
4781 INSN list.
4783 Returns the last insn emitted. */
4786 emit_insn (rtx x)
4788 rtx last = last_insn;
4789 rtx insn;
4791 if (x == NULL_RTX)
4792 return last;
4794 switch (GET_CODE (x))
4796 case DEBUG_INSN:
4797 case INSN:
4798 case JUMP_INSN:
4799 case CALL_INSN:
4800 case CODE_LABEL:
4801 case BARRIER:
4802 case NOTE:
4803 insn = x;
4804 while (insn)
4806 rtx next = NEXT_INSN (insn);
4807 add_insn (insn);
4808 last = insn;
4809 insn = next;
4811 break;
4813 #ifdef ENABLE_RTL_CHECKING
4814 case SEQUENCE:
4815 gcc_unreachable ();
4816 break;
4817 #endif
4819 default:
4820 last = make_insn_raw (x);
4821 add_insn (last);
4822 break;
4825 return last;
4828 /* Make an insn of code DEBUG_INSN with pattern X
4829 and add it to the end of the doubly-linked list. */
4832 emit_debug_insn (rtx x)
4834 rtx last = last_insn;
4835 rtx insn;
4837 if (x == NULL_RTX)
4838 return last;
4840 switch (GET_CODE (x))
4842 case DEBUG_INSN:
4843 case INSN:
4844 case JUMP_INSN:
4845 case CALL_INSN:
4846 case CODE_LABEL:
4847 case BARRIER:
4848 case NOTE:
4849 insn = x;
4850 while (insn)
4852 rtx next = NEXT_INSN (insn);
4853 add_insn (insn);
4854 last = insn;
4855 insn = next;
4857 break;
4859 #ifdef ENABLE_RTL_CHECKING
4860 case SEQUENCE:
4861 gcc_unreachable ();
4862 break;
4863 #endif
4865 default:
4866 last = make_debug_insn_raw (x);
4867 add_insn (last);
4868 break;
4871 return last;
4874 /* Make an insn of code JUMP_INSN with pattern X
4875 and add it to the end of the doubly-linked list. */
4878 emit_jump_insn (rtx x)
4880 rtx last = NULL_RTX, insn;
4882 switch (GET_CODE (x))
4884 case DEBUG_INSN:
4885 case INSN:
4886 case JUMP_INSN:
4887 case CALL_INSN:
4888 case CODE_LABEL:
4889 case BARRIER:
4890 case NOTE:
4891 insn = x;
4892 while (insn)
4894 rtx next = NEXT_INSN (insn);
4895 add_insn (insn);
4896 last = insn;
4897 insn = next;
4899 break;
4901 #ifdef ENABLE_RTL_CHECKING
4902 case SEQUENCE:
4903 gcc_unreachable ();
4904 break;
4905 #endif
4907 default:
4908 last = make_jump_insn_raw (x);
4909 add_insn (last);
4910 break;
4913 return last;
4916 /* Make an insn of code CALL_INSN with pattern X
4917 and add it to the end of the doubly-linked list. */
4920 emit_call_insn (rtx x)
4922 rtx insn;
4924 switch (GET_CODE (x))
4926 case DEBUG_INSN:
4927 case INSN:
4928 case JUMP_INSN:
4929 case CALL_INSN:
4930 case CODE_LABEL:
4931 case BARRIER:
4932 case NOTE:
4933 insn = emit_insn (x);
4934 break;
4936 #ifdef ENABLE_RTL_CHECKING
4937 case SEQUENCE:
4938 gcc_unreachable ();
4939 break;
4940 #endif
4942 default:
4943 insn = make_call_insn_raw (x);
4944 add_insn (insn);
4945 break;
4948 return insn;
4951 /* Add the label LABEL to the end of the doubly-linked list. */
4954 emit_label (rtx label)
4956 /* This can be called twice for the same label
4957 as a result of the confusion that follows a syntax error!
4958 So make it harmless. */
4959 if (INSN_UID (label) == 0)
4961 INSN_UID (label) = cur_insn_uid++;
4962 add_insn (label);
4964 return label;
4967 /* Make an insn of code BARRIER
4968 and add it to the end of the doubly-linked list. */
4971 emit_barrier (void)
4973 rtx barrier = rtx_alloc (BARRIER);
4974 INSN_UID (barrier) = cur_insn_uid++;
4975 add_insn (barrier);
4976 return barrier;
4979 /* Emit a copy of note ORIG. */
4982 emit_note_copy (rtx orig)
4984 rtx note;
4986 note = rtx_alloc (NOTE);
4988 INSN_UID (note) = cur_insn_uid++;
4989 NOTE_DATA (note) = NOTE_DATA (orig);
4990 NOTE_KIND (note) = NOTE_KIND (orig);
4991 BLOCK_FOR_INSN (note) = NULL;
4992 add_insn (note);
4994 return note;
4997 /* Make an insn of code NOTE or type NOTE_NO
4998 and add it to the end of the doubly-linked list. */
5001 emit_note (enum insn_note kind)
5003 rtx note;
5005 note = rtx_alloc (NOTE);
5006 INSN_UID (note) = cur_insn_uid++;
5007 NOTE_KIND (note) = kind;
5008 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5009 BLOCK_FOR_INSN (note) = NULL;
5010 add_insn (note);
5011 return note;
5014 /* Emit a clobber of lvalue X. */
5017 emit_clobber (rtx x)
5019 /* CONCATs should not appear in the insn stream. */
5020 if (GET_CODE (x) == CONCAT)
5022 emit_clobber (XEXP (x, 0));
5023 return emit_clobber (XEXP (x, 1));
5025 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5028 /* Return a sequence of insns to clobber lvalue X. */
5031 gen_clobber (rtx x)
5033 rtx seq;
5035 start_sequence ();
5036 emit_clobber (x);
5037 seq = get_insns ();
5038 end_sequence ();
5039 return seq;
5042 /* Emit a use of rvalue X. */
5045 emit_use (rtx x)
5047 /* CONCATs should not appear in the insn stream. */
5048 if (GET_CODE (x) == CONCAT)
5050 emit_use (XEXP (x, 0));
5051 return emit_use (XEXP (x, 1));
5053 return emit_insn (gen_rtx_USE (VOIDmode, x));
5056 /* Return a sequence of insns to use rvalue X. */
5059 gen_use (rtx x)
5061 rtx seq;
5063 start_sequence ();
5064 emit_use (x);
5065 seq = get_insns ();
5066 end_sequence ();
5067 return seq;
5070 /* Cause next statement to emit a line note even if the line number
5071 has not changed. */
5073 void
5074 force_next_line_note (void)
5076 last_location = -1;
5079 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5080 note of this type already exists, remove it first. */
5083 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5085 rtx note = find_reg_note (insn, kind, NULL_RTX);
5087 switch (kind)
5089 case REG_EQUAL:
5090 case REG_EQUIV:
5091 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5092 has multiple sets (some callers assume single_set
5093 means the insn only has one set, when in fact it
5094 means the insn only has one * useful * set). */
5095 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5097 gcc_assert (!note);
5098 return NULL_RTX;
5101 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5102 It serves no useful purpose and breaks eliminate_regs. */
5103 if (GET_CODE (datum) == ASM_OPERANDS)
5104 return NULL_RTX;
5106 if (note)
5108 XEXP (note, 0) = datum;
5109 df_notes_rescan (insn);
5110 return note;
5112 break;
5114 default:
5115 if (note)
5117 XEXP (note, 0) = datum;
5118 return note;
5120 break;
5123 add_reg_note (insn, kind, datum);
5125 switch (kind)
5127 case REG_EQUAL:
5128 case REG_EQUIV:
5129 df_notes_rescan (insn);
5130 break;
5131 default:
5132 break;
5135 return REG_NOTES (insn);
5138 /* Return an indication of which type of insn should have X as a body.
5139 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5141 static enum rtx_code
5142 classify_insn (rtx x)
5144 if (LABEL_P (x))
5145 return CODE_LABEL;
5146 if (GET_CODE (x) == CALL)
5147 return CALL_INSN;
5148 if (GET_CODE (x) == RETURN)
5149 return JUMP_INSN;
5150 if (GET_CODE (x) == SET)
5152 if (SET_DEST (x) == pc_rtx)
5153 return JUMP_INSN;
5154 else if (GET_CODE (SET_SRC (x)) == CALL)
5155 return CALL_INSN;
5156 else
5157 return INSN;
5159 if (GET_CODE (x) == PARALLEL)
5161 int j;
5162 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5163 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5164 return CALL_INSN;
5165 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5166 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5167 return JUMP_INSN;
5168 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5169 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5170 return CALL_INSN;
5172 return INSN;
5175 /* Emit the rtl pattern X as an appropriate kind of insn.
5176 If X is a label, it is simply added into the insn chain. */
5179 emit (rtx x)
5181 enum rtx_code code = classify_insn (x);
5183 switch (code)
5185 case CODE_LABEL:
5186 return emit_label (x);
5187 case INSN:
5188 return emit_insn (x);
5189 case JUMP_INSN:
5191 rtx insn = emit_jump_insn (x);
5192 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5193 return emit_barrier ();
5194 return insn;
5196 case CALL_INSN:
5197 return emit_call_insn (x);
5198 case DEBUG_INSN:
5199 return emit_debug_insn (x);
5200 default:
5201 gcc_unreachable ();
5205 /* Space for free sequence stack entries. */
5206 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5208 /* Begin emitting insns to a sequence. If this sequence will contain
5209 something that might cause the compiler to pop arguments to function
5210 calls (because those pops have previously been deferred; see
5211 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5212 before calling this function. That will ensure that the deferred
5213 pops are not accidentally emitted in the middle of this sequence. */
5215 void
5216 start_sequence (void)
5218 struct sequence_stack *tem;
5220 if (free_sequence_stack != NULL)
5222 tem = free_sequence_stack;
5223 free_sequence_stack = tem->next;
5225 else
5226 tem = GGC_NEW (struct sequence_stack);
5228 tem->next = seq_stack;
5229 tem->first = first_insn;
5230 tem->last = last_insn;
5232 seq_stack = tem;
5234 first_insn = 0;
5235 last_insn = 0;
5238 /* Set up the insn chain starting with FIRST as the current sequence,
5239 saving the previously current one. See the documentation for
5240 start_sequence for more information about how to use this function. */
5242 void
5243 push_to_sequence (rtx first)
5245 rtx last;
5247 start_sequence ();
5249 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5251 first_insn = first;
5252 last_insn = last;
5255 /* Like push_to_sequence, but take the last insn as an argument to avoid
5256 looping through the list. */
5258 void
5259 push_to_sequence2 (rtx first, rtx last)
5261 start_sequence ();
5263 first_insn = first;
5264 last_insn = last;
5267 /* Set up the outer-level insn chain
5268 as the current sequence, saving the previously current one. */
5270 void
5271 push_topmost_sequence (void)
5273 struct sequence_stack *stack, *top = NULL;
5275 start_sequence ();
5277 for (stack = seq_stack; stack; stack = stack->next)
5278 top = stack;
5280 first_insn = top->first;
5281 last_insn = top->last;
5284 /* After emitting to the outer-level insn chain, update the outer-level
5285 insn chain, and restore the previous saved state. */
5287 void
5288 pop_topmost_sequence (void)
5290 struct sequence_stack *stack, *top = NULL;
5292 for (stack = seq_stack; stack; stack = stack->next)
5293 top = stack;
5295 top->first = first_insn;
5296 top->last = last_insn;
5298 end_sequence ();
5301 /* After emitting to a sequence, restore previous saved state.
5303 To get the contents of the sequence just made, you must call
5304 `get_insns' *before* calling here.
5306 If the compiler might have deferred popping arguments while
5307 generating this sequence, and this sequence will not be immediately
5308 inserted into the instruction stream, use do_pending_stack_adjust
5309 before calling get_insns. That will ensure that the deferred
5310 pops are inserted into this sequence, and not into some random
5311 location in the instruction stream. See INHIBIT_DEFER_POP for more
5312 information about deferred popping of arguments. */
5314 void
5315 end_sequence (void)
5317 struct sequence_stack *tem = seq_stack;
5319 first_insn = tem->first;
5320 last_insn = tem->last;
5321 seq_stack = tem->next;
5323 memset (tem, 0, sizeof (*tem));
5324 tem->next = free_sequence_stack;
5325 free_sequence_stack = tem;
5328 /* Return 1 if currently emitting into a sequence. */
5331 in_sequence_p (void)
5333 return seq_stack != 0;
5336 /* Put the various virtual registers into REGNO_REG_RTX. */
5338 static void
5339 init_virtual_regs (void)
5341 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5342 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5343 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5344 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5345 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5349 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5350 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5351 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5352 static int copy_insn_n_scratches;
5354 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5355 copied an ASM_OPERANDS.
5356 In that case, it is the original input-operand vector. */
5357 static rtvec orig_asm_operands_vector;
5359 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5360 copied an ASM_OPERANDS.
5361 In that case, it is the copied input-operand vector. */
5362 static rtvec copy_asm_operands_vector;
5364 /* Likewise for the constraints vector. */
5365 static rtvec orig_asm_constraints_vector;
5366 static rtvec copy_asm_constraints_vector;
5368 /* Recursively create a new copy of an rtx for copy_insn.
5369 This function differs from copy_rtx in that it handles SCRATCHes and
5370 ASM_OPERANDs properly.
5371 Normally, this function is not used directly; use copy_insn as front end.
5372 However, you could first copy an insn pattern with copy_insn and then use
5373 this function afterwards to properly copy any REG_NOTEs containing
5374 SCRATCHes. */
5377 copy_insn_1 (rtx orig)
5379 rtx copy;
5380 int i, j;
5381 RTX_CODE code;
5382 const char *format_ptr;
5384 if (orig == NULL)
5385 return NULL;
5387 code = GET_CODE (orig);
5389 switch (code)
5391 case REG:
5392 case CONST_INT:
5393 case CONST_DOUBLE:
5394 case CONST_FIXED:
5395 case CONST_VECTOR:
5396 case SYMBOL_REF:
5397 case CODE_LABEL:
5398 case PC:
5399 case CC0:
5400 return orig;
5401 case CLOBBER:
5402 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5403 return orig;
5404 break;
5406 case SCRATCH:
5407 for (i = 0; i < copy_insn_n_scratches; i++)
5408 if (copy_insn_scratch_in[i] == orig)
5409 return copy_insn_scratch_out[i];
5410 break;
5412 case CONST:
5413 if (shared_const_p (orig))
5414 return orig;
5415 break;
5417 /* A MEM with a constant address is not sharable. The problem is that
5418 the constant address may need to be reloaded. If the mem is shared,
5419 then reloading one copy of this mem will cause all copies to appear
5420 to have been reloaded. */
5422 default:
5423 break;
5426 /* Copy the various flags, fields, and other information. We assume
5427 that all fields need copying, and then clear the fields that should
5428 not be copied. That is the sensible default behavior, and forces
5429 us to explicitly document why we are *not* copying a flag. */
5430 copy = shallow_copy_rtx (orig);
5432 /* We do not copy the USED flag, which is used as a mark bit during
5433 walks over the RTL. */
5434 RTX_FLAG (copy, used) = 0;
5436 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5437 if (INSN_P (orig))
5439 RTX_FLAG (copy, jump) = 0;
5440 RTX_FLAG (copy, call) = 0;
5441 RTX_FLAG (copy, frame_related) = 0;
5444 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5446 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5447 switch (*format_ptr++)
5449 case 'e':
5450 if (XEXP (orig, i) != NULL)
5451 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5452 break;
5454 case 'E':
5455 case 'V':
5456 if (XVEC (orig, i) == orig_asm_constraints_vector)
5457 XVEC (copy, i) = copy_asm_constraints_vector;
5458 else if (XVEC (orig, i) == orig_asm_operands_vector)
5459 XVEC (copy, i) = copy_asm_operands_vector;
5460 else if (XVEC (orig, i) != NULL)
5462 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5463 for (j = 0; j < XVECLEN (copy, i); j++)
5464 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5466 break;
5468 case 't':
5469 case 'w':
5470 case 'i':
5471 case 's':
5472 case 'S':
5473 case 'u':
5474 case '0':
5475 /* These are left unchanged. */
5476 break;
5478 default:
5479 gcc_unreachable ();
5482 if (code == SCRATCH)
5484 i = copy_insn_n_scratches++;
5485 gcc_assert (i < MAX_RECOG_OPERANDS);
5486 copy_insn_scratch_in[i] = orig;
5487 copy_insn_scratch_out[i] = copy;
5489 else if (code == ASM_OPERANDS)
5491 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5492 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5493 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5494 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5497 return copy;
5500 /* Create a new copy of an rtx.
5501 This function differs from copy_rtx in that it handles SCRATCHes and
5502 ASM_OPERANDs properly.
5503 INSN doesn't really have to be a full INSN; it could be just the
5504 pattern. */
5506 copy_insn (rtx insn)
5508 copy_insn_n_scratches = 0;
5509 orig_asm_operands_vector = 0;
5510 orig_asm_constraints_vector = 0;
5511 copy_asm_operands_vector = 0;
5512 copy_asm_constraints_vector = 0;
5513 return copy_insn_1 (insn);
5516 /* Initialize data structures and variables in this file
5517 before generating rtl for each function. */
5519 void
5520 init_emit (void)
5522 first_insn = NULL;
5523 last_insn = NULL;
5524 if (MIN_NONDEBUG_INSN_UID)
5525 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5526 else
5527 cur_insn_uid = 1;
5528 cur_debug_insn_uid = 1;
5529 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5530 last_location = UNKNOWN_LOCATION;
5531 first_label_num = label_num;
5532 seq_stack = NULL;
5534 /* Init the tables that describe all the pseudo regs. */
5536 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5538 crtl->emit.regno_pointer_align
5539 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5541 regno_reg_rtx
5542 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5544 /* Put copies of all the hard registers into regno_reg_rtx. */
5545 memcpy (regno_reg_rtx,
5546 static_regno_reg_rtx,
5547 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5549 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5550 init_virtual_regs ();
5552 /* Indicate that the virtual registers and stack locations are
5553 all pointers. */
5554 REG_POINTER (stack_pointer_rtx) = 1;
5555 REG_POINTER (frame_pointer_rtx) = 1;
5556 REG_POINTER (hard_frame_pointer_rtx) = 1;
5557 REG_POINTER (arg_pointer_rtx) = 1;
5559 REG_POINTER (virtual_incoming_args_rtx) = 1;
5560 REG_POINTER (virtual_stack_vars_rtx) = 1;
5561 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5562 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5563 REG_POINTER (virtual_cfa_rtx) = 1;
5565 #ifdef STACK_BOUNDARY
5566 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5567 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5568 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5569 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5571 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5572 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5573 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5574 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5575 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5576 #endif
5578 #ifdef INIT_EXPANDERS
5579 INIT_EXPANDERS;
5580 #endif
5583 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5585 static rtx
5586 gen_const_vector (enum machine_mode mode, int constant)
5588 rtx tem;
5589 rtvec v;
5590 int units, i;
5591 enum machine_mode inner;
5593 units = GET_MODE_NUNITS (mode);
5594 inner = GET_MODE_INNER (mode);
5596 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5598 v = rtvec_alloc (units);
5600 /* We need to call this function after we set the scalar const_tiny_rtx
5601 entries. */
5602 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5604 for (i = 0; i < units; ++i)
5605 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5607 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5608 return tem;
5611 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5612 all elements are zero, and the one vector when all elements are one. */
5614 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5616 enum machine_mode inner = GET_MODE_INNER (mode);
5617 int nunits = GET_MODE_NUNITS (mode);
5618 rtx x;
5619 int i;
5621 /* Check to see if all of the elements have the same value. */
5622 x = RTVEC_ELT (v, nunits - 1);
5623 for (i = nunits - 2; i >= 0; i--)
5624 if (RTVEC_ELT (v, i) != x)
5625 break;
5627 /* If the values are all the same, check to see if we can use one of the
5628 standard constant vectors. */
5629 if (i == -1)
5631 if (x == CONST0_RTX (inner))
5632 return CONST0_RTX (mode);
5633 else if (x == CONST1_RTX (inner))
5634 return CONST1_RTX (mode);
5637 return gen_rtx_raw_CONST_VECTOR (mode, v);
5640 /* Initialise global register information required by all functions. */
5642 void
5643 init_emit_regs (void)
5645 int i;
5647 /* Reset register attributes */
5648 htab_empty (reg_attrs_htab);
5650 /* We need reg_raw_mode, so initialize the modes now. */
5651 init_reg_modes_target ();
5653 /* Assign register numbers to the globally defined register rtx. */
5654 pc_rtx = gen_rtx_PC (VOIDmode);
5655 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5656 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5657 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5658 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5659 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5660 virtual_incoming_args_rtx =
5661 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5662 virtual_stack_vars_rtx =
5663 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5664 virtual_stack_dynamic_rtx =
5665 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5666 virtual_outgoing_args_rtx =
5667 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5668 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5670 /* Initialize RTL for commonly used hard registers. These are
5671 copied into regno_reg_rtx as we begin to compile each function. */
5672 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5673 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5675 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5676 return_address_pointer_rtx
5677 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5678 #endif
5680 #ifdef STATIC_CHAIN_REGNUM
5681 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5683 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5684 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5685 static_chain_incoming_rtx
5686 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5687 else
5688 #endif
5689 static_chain_incoming_rtx = static_chain_rtx;
5690 #endif
5692 #ifdef STATIC_CHAIN
5693 static_chain_rtx = STATIC_CHAIN;
5695 #ifdef STATIC_CHAIN_INCOMING
5696 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5697 #else
5698 static_chain_incoming_rtx = static_chain_rtx;
5699 #endif
5700 #endif
5702 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5703 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5704 else
5705 pic_offset_table_rtx = NULL_RTX;
5708 /* Create some permanent unique rtl objects shared between all functions.
5709 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5711 void
5712 init_emit_once (int line_numbers)
5714 int i;
5715 enum machine_mode mode;
5716 enum machine_mode double_mode;
5718 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5719 hash tables. */
5720 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5721 const_int_htab_eq, NULL);
5723 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5724 const_double_htab_eq, NULL);
5726 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5727 const_fixed_htab_eq, NULL);
5729 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5730 mem_attrs_htab_eq, NULL);
5731 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5732 reg_attrs_htab_eq, NULL);
5734 no_line_numbers = ! line_numbers;
5736 /* Compute the word and byte modes. */
5738 byte_mode = VOIDmode;
5739 word_mode = VOIDmode;
5740 double_mode = VOIDmode;
5742 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5743 mode != VOIDmode;
5744 mode = GET_MODE_WIDER_MODE (mode))
5746 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5747 && byte_mode == VOIDmode)
5748 byte_mode = mode;
5750 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5751 && word_mode == VOIDmode)
5752 word_mode = mode;
5755 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5756 mode != VOIDmode;
5757 mode = GET_MODE_WIDER_MODE (mode))
5759 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5760 && double_mode == VOIDmode)
5761 double_mode = mode;
5764 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5766 #ifdef INIT_EXPANDERS
5767 /* This is to initialize {init|mark|free}_machine_status before the first
5768 call to push_function_context_to. This is needed by the Chill front
5769 end which calls push_function_context_to before the first call to
5770 init_function_start. */
5771 INIT_EXPANDERS;
5772 #endif
5774 /* Create the unique rtx's for certain rtx codes and operand values. */
5776 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5777 tries to use these variables. */
5778 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5779 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5780 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5782 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5783 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5784 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5785 else
5786 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5788 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5789 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5790 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5792 dconstm1 = dconst1;
5793 dconstm1.sign = 1;
5795 dconsthalf = dconst1;
5796 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5798 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5800 const REAL_VALUE_TYPE *const r =
5801 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5803 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5804 mode != VOIDmode;
5805 mode = GET_MODE_WIDER_MODE (mode))
5806 const_tiny_rtx[i][(int) mode] =
5807 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5809 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5810 mode != VOIDmode;
5811 mode = GET_MODE_WIDER_MODE (mode))
5812 const_tiny_rtx[i][(int) mode] =
5813 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5815 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5817 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5818 mode != VOIDmode;
5819 mode = GET_MODE_WIDER_MODE (mode))
5820 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5822 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5823 mode != VOIDmode;
5824 mode = GET_MODE_WIDER_MODE (mode))
5825 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5828 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5829 mode != VOIDmode;
5830 mode = GET_MODE_WIDER_MODE (mode))
5832 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5833 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5836 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5837 mode != VOIDmode;
5838 mode = GET_MODE_WIDER_MODE (mode))
5840 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5841 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5844 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5845 mode != VOIDmode;
5846 mode = GET_MODE_WIDER_MODE (mode))
5848 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5849 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5852 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5853 mode != VOIDmode;
5854 mode = GET_MODE_WIDER_MODE (mode))
5856 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5857 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5860 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5861 mode != VOIDmode;
5862 mode = GET_MODE_WIDER_MODE (mode))
5864 FCONST0(mode).data.high = 0;
5865 FCONST0(mode).data.low = 0;
5866 FCONST0(mode).mode = mode;
5867 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5868 FCONST0 (mode), mode);
5871 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5872 mode != VOIDmode;
5873 mode = GET_MODE_WIDER_MODE (mode))
5875 FCONST0(mode).data.high = 0;
5876 FCONST0(mode).data.low = 0;
5877 FCONST0(mode).mode = mode;
5878 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5879 FCONST0 (mode), mode);
5882 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5883 mode != VOIDmode;
5884 mode = GET_MODE_WIDER_MODE (mode))
5886 FCONST0(mode).data.high = 0;
5887 FCONST0(mode).data.low = 0;
5888 FCONST0(mode).mode = mode;
5889 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5890 FCONST0 (mode), mode);
5892 /* We store the value 1. */
5893 FCONST1(mode).data.high = 0;
5894 FCONST1(mode).data.low = 0;
5895 FCONST1(mode).mode = mode;
5896 lshift_double (1, 0, GET_MODE_FBIT (mode),
5897 2 * HOST_BITS_PER_WIDE_INT,
5898 &FCONST1(mode).data.low,
5899 &FCONST1(mode).data.high,
5900 SIGNED_FIXED_POINT_MODE_P (mode));
5901 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5902 FCONST1 (mode), mode);
5905 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5906 mode != VOIDmode;
5907 mode = GET_MODE_WIDER_MODE (mode))
5909 FCONST0(mode).data.high = 0;
5910 FCONST0(mode).data.low = 0;
5911 FCONST0(mode).mode = mode;
5912 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5913 FCONST0 (mode), mode);
5915 /* We store the value 1. */
5916 FCONST1(mode).data.high = 0;
5917 FCONST1(mode).data.low = 0;
5918 FCONST1(mode).mode = mode;
5919 lshift_double (1, 0, GET_MODE_FBIT (mode),
5920 2 * HOST_BITS_PER_WIDE_INT,
5921 &FCONST1(mode).data.low,
5922 &FCONST1(mode).data.high,
5923 SIGNED_FIXED_POINT_MODE_P (mode));
5924 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5925 FCONST1 (mode), mode);
5928 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5929 mode != VOIDmode;
5930 mode = GET_MODE_WIDER_MODE (mode))
5932 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5935 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5936 mode != VOIDmode;
5937 mode = GET_MODE_WIDER_MODE (mode))
5939 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5942 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5943 mode != VOIDmode;
5944 mode = GET_MODE_WIDER_MODE (mode))
5946 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5947 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5950 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5951 mode != VOIDmode;
5952 mode = GET_MODE_WIDER_MODE (mode))
5954 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5955 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5958 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5959 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5960 const_tiny_rtx[0][i] = const0_rtx;
5962 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5963 if (STORE_FLAG_VALUE == 1)
5964 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5967 /* Produce exact duplicate of insn INSN after AFTER.
5968 Care updating of libcall regions if present. */
5971 emit_copy_of_insn_after (rtx insn, rtx after)
5973 rtx new_rtx, link;
5975 switch (GET_CODE (insn))
5977 case INSN:
5978 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5979 break;
5981 case JUMP_INSN:
5982 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5983 break;
5985 case DEBUG_INSN:
5986 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5987 break;
5989 case CALL_INSN:
5990 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5991 if (CALL_INSN_FUNCTION_USAGE (insn))
5992 CALL_INSN_FUNCTION_USAGE (new_rtx)
5993 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5994 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5995 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5996 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5997 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5998 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5999 break;
6001 default:
6002 gcc_unreachable ();
6005 /* Update LABEL_NUSES. */
6006 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6008 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
6010 /* If the old insn is frame related, then so is the new one. This is
6011 primarily needed for IA-64 unwind info which marks epilogue insns,
6012 which may be duplicated by the basic block reordering code. */
6013 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6015 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6016 will make them. REG_LABEL_TARGETs are created there too, but are
6017 supposed to be sticky, so we copy them. */
6018 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6019 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6021 if (GET_CODE (link) == EXPR_LIST)
6022 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6023 copy_insn_1 (XEXP (link, 0)));
6024 else
6025 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6028 INSN_CODE (new_rtx) = INSN_CODE (insn);
6029 return new_rtx;
6032 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6034 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6036 if (hard_reg_clobbers[mode][regno])
6037 return hard_reg_clobbers[mode][regno];
6038 else
6039 return (hard_reg_clobbers[mode][regno] =
6040 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6043 #include "gt-emit-rtl.h"