Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / cfgloopmanip.c
bloba357a2fd77aefc359dcdb14c89bc5f266d2d781d
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009 Free Software
3 Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "cfghooks.h"
32 #include "output.h"
33 #include "tree-flow.h"
35 static void duplicate_subloops (struct loop *, struct loop *);
36 static void copy_loops_to (struct loop **, int,
37 struct loop *);
38 static void loop_redirect_edge (edge, basic_block);
39 static void remove_bbs (basic_block *, int);
40 static bool rpe_enum_p (const_basic_block, const void *);
41 static int find_path (edge, basic_block **);
42 static void fix_loop_placements (struct loop *, bool *);
43 static bool fix_bb_placement (basic_block);
44 static void fix_bb_placements (basic_block, bool *);
45 static void unloop (struct loop *, bool *);
47 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
49 /* Checks whether basic block BB is dominated by DATA. */
50 static bool
51 rpe_enum_p (const_basic_block bb, const void *data)
53 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
56 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
58 static void
59 remove_bbs (basic_block *bbs, int nbbs)
61 int i;
63 for (i = 0; i < nbbs; i++)
64 delete_basic_block (bbs[i]);
67 /* Find path -- i.e. the basic blocks dominated by edge E and put them
68 into array BBS, that will be allocated large enough to contain them.
69 E->dest must have exactly one predecessor for this to work (it is
70 easy to achieve and we do not put it here because we do not want to
71 alter anything by this function). The number of basic blocks in the
72 path is returned. */
73 static int
74 find_path (edge e, basic_block **bbs)
76 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
78 /* Find bbs in the path. */
79 *bbs = XCNEWVEC (basic_block, n_basic_blocks);
80 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
81 n_basic_blocks, e->dest);
84 /* Fix placement of basic block BB inside loop hierarchy --
85 Let L be a loop to that BB belongs. Then every successor of BB must either
86 1) belong to some superloop of loop L, or
87 2) be a header of loop K such that K->outer is superloop of L
88 Returns true if we had to move BB into other loop to enforce this condition,
89 false if the placement of BB was already correct (provided that placements
90 of its successors are correct). */
91 static bool
92 fix_bb_placement (basic_block bb)
94 edge e;
95 edge_iterator ei;
96 struct loop *loop = current_loops->tree_root, *act;
98 FOR_EACH_EDGE (e, ei, bb->succs)
100 if (e->dest == EXIT_BLOCK_PTR)
101 continue;
103 act = e->dest->loop_father;
104 if (act->header == e->dest)
105 act = loop_outer (act);
107 if (flow_loop_nested_p (loop, act))
108 loop = act;
111 if (loop == bb->loop_father)
112 return false;
114 remove_bb_from_loops (bb);
115 add_bb_to_loop (bb, loop);
117 return true;
120 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
121 of LOOP to that leads at least one exit edge of LOOP, and set it
122 as the immediate superloop of LOOP. Return true if the immediate superloop
123 of LOOP changed. */
125 static bool
126 fix_loop_placement (struct loop *loop)
128 unsigned i;
129 edge e;
130 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
131 struct loop *father = current_loops->tree_root, *act;
132 bool ret = false;
134 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
136 act = find_common_loop (loop, e->dest->loop_father);
137 if (flow_loop_nested_p (father, act))
138 father = act;
141 if (father != loop_outer (loop))
143 for (act = loop_outer (loop); act != father; act = loop_outer (act))
144 act->num_nodes -= loop->num_nodes;
145 flow_loop_tree_node_remove (loop);
146 flow_loop_tree_node_add (father, loop);
148 /* The exit edges of LOOP no longer exits its original immediate
149 superloops; remove them from the appropriate exit lists. */
150 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
151 rescan_loop_exit (e, false, false);
153 ret = true;
156 VEC_free (edge, heap, exits);
157 return ret;
160 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
161 enforce condition condition stated in description of fix_bb_placement. We
162 start from basic block FROM that had some of its successors removed, so that
163 his placement no longer has to be correct, and iteratively fix placement of
164 its predecessors that may change if placement of FROM changed. Also fix
165 placement of subloops of FROM->loop_father, that might also be altered due
166 to this change; the condition for them is similar, except that instead of
167 successors we consider edges coming out of the loops.
169 If the changes may invalidate the information about irreducible regions,
170 IRRED_INVALIDATED is set to true. */
172 static void
173 fix_bb_placements (basic_block from,
174 bool *irred_invalidated)
176 sbitmap in_queue;
177 basic_block *queue, *qtop, *qbeg, *qend;
178 struct loop *base_loop;
179 edge e;
181 /* We pass through blocks back-reachable from FROM, testing whether some
182 of their successors moved to outer loop. It may be necessary to
183 iterate several times, but it is finite, as we stop unless we move
184 the basic block up the loop structure. The whole story is a bit
185 more complicated due to presence of subloops, those are moved using
186 fix_loop_placement. */
188 base_loop = from->loop_father;
189 if (base_loop == current_loops->tree_root)
190 return;
192 in_queue = sbitmap_alloc (last_basic_block);
193 sbitmap_zero (in_queue);
194 SET_BIT (in_queue, from->index);
195 /* Prevent us from going out of the base_loop. */
196 SET_BIT (in_queue, base_loop->header->index);
198 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
199 qtop = queue + base_loop->num_nodes + 1;
200 qbeg = queue;
201 qend = queue + 1;
202 *qbeg = from;
204 while (qbeg != qend)
206 edge_iterator ei;
207 from = *qbeg;
208 qbeg++;
209 if (qbeg == qtop)
210 qbeg = queue;
211 RESET_BIT (in_queue, from->index);
213 if (from->loop_father->header == from)
215 /* Subloop header, maybe move the loop upward. */
216 if (!fix_loop_placement (from->loop_father))
217 continue;
219 else
221 /* Ordinary basic block. */
222 if (!fix_bb_placement (from))
223 continue;
226 FOR_EACH_EDGE (e, ei, from->succs)
228 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
229 *irred_invalidated = true;
232 /* Something has changed, insert predecessors into queue. */
233 FOR_EACH_EDGE (e, ei, from->preds)
235 basic_block pred = e->src;
236 struct loop *nca;
238 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
239 *irred_invalidated = true;
241 if (TEST_BIT (in_queue, pred->index))
242 continue;
244 /* If it is subloop, then it either was not moved, or
245 the path up the loop tree from base_loop do not contain
246 it. */
247 nca = find_common_loop (pred->loop_father, base_loop);
248 if (pred->loop_father != base_loop
249 && (nca == base_loop
250 || nca != pred->loop_father))
251 pred = pred->loop_father->header;
252 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
254 /* No point in processing it. */
255 continue;
258 if (TEST_BIT (in_queue, pred->index))
259 continue;
261 /* Schedule the basic block. */
262 *qend = pred;
263 qend++;
264 if (qend == qtop)
265 qend = queue;
266 SET_BIT (in_queue, pred->index);
269 free (in_queue);
270 free (queue);
273 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
274 and update loop structures and dominators. Return true if we were able
275 to remove the path, false otherwise (and nothing is affected then). */
276 bool
277 remove_path (edge e)
279 edge ae;
280 basic_block *rem_bbs, *bord_bbs, from, bb;
281 VEC (basic_block, heap) *dom_bbs;
282 int i, nrem, n_bord_bbs, nreml;
283 sbitmap seen;
284 bool irred_invalidated = false;
285 struct loop **deleted_loop;
287 if (!can_remove_branch_p (e))
288 return false;
290 /* Keep track of whether we need to update information about irreducible
291 regions. This is the case if the removed area is a part of the
292 irreducible region, or if the set of basic blocks that belong to a loop
293 that is inside an irreducible region is changed, or if such a loop is
294 removed. */
295 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
296 irred_invalidated = true;
298 /* We need to check whether basic blocks are dominated by the edge
299 e, but we only have basic block dominators. This is easy to
300 fix -- when e->dest has exactly one predecessor, this corresponds
301 to blocks dominated by e->dest, if not, split the edge. */
302 if (!single_pred_p (e->dest))
303 e = single_pred_edge (split_edge (e));
305 /* It may happen that by removing path we remove one or more loops
306 we belong to. In this case first unloop the loops, then proceed
307 normally. We may assume that e->dest is not a header of any loop,
308 as it now has exactly one predecessor. */
309 while (loop_outer (e->src->loop_father)
310 && dominated_by_p (CDI_DOMINATORS,
311 e->src->loop_father->latch, e->dest))
312 unloop (e->src->loop_father, &irred_invalidated);
314 /* Identify the path. */
315 nrem = find_path (e, &rem_bbs);
317 n_bord_bbs = 0;
318 bord_bbs = XCNEWVEC (basic_block, n_basic_blocks);
319 seen = sbitmap_alloc (last_basic_block);
320 sbitmap_zero (seen);
322 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
323 for (i = 0; i < nrem; i++)
324 SET_BIT (seen, rem_bbs[i]->index);
325 for (i = 0; i < nrem; i++)
327 edge_iterator ei;
328 bb = rem_bbs[i];
329 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
330 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
332 SET_BIT (seen, ae->dest->index);
333 bord_bbs[n_bord_bbs++] = ae->dest;
335 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
336 irred_invalidated = true;
340 /* Remove the path. */
341 from = e->src;
342 remove_branch (e);
343 dom_bbs = NULL;
345 /* Cancel loops contained in the path. */
346 deleted_loop = XNEWVEC (struct loop *, nrem);
347 nreml = 0;
348 for (i = 0; i < nrem; i++)
349 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
350 deleted_loop[nreml++] = rem_bbs[i]->loop_father;
352 for (i = 0; i < nreml; i++)
353 cancel_loop_tree (deleted_loop[i]);
354 free (deleted_loop);
356 remove_bbs (rem_bbs, nrem);
357 free (rem_bbs);
359 /* Find blocks whose dominators may be affected. */
360 sbitmap_zero (seen);
361 for (i = 0; i < n_bord_bbs; i++)
363 basic_block ldom;
365 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
366 if (TEST_BIT (seen, bb->index))
367 continue;
368 SET_BIT (seen, bb->index);
370 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
371 ldom;
372 ldom = next_dom_son (CDI_DOMINATORS, ldom))
373 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
374 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
377 free (seen);
379 /* Recount dominators. */
380 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
381 VEC_free (basic_block, heap, dom_bbs);
382 free (bord_bbs);
384 /* Fix placements of basic blocks inside loops and the placement of
385 loops in the loop tree. */
386 fix_bb_placements (from, &irred_invalidated);
387 fix_loop_placements (from->loop_father, &irred_invalidated);
389 if (irred_invalidated
390 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
391 mark_irreducible_loops ();
393 return true;
396 /* Creates place for a new LOOP in loops structure. */
398 static void
399 place_new_loop (struct loop *loop)
401 loop->num = number_of_loops ();
402 VEC_safe_push (loop_p, gc, current_loops->larray, loop);
405 /* Given LOOP structure with filled header and latch, find the body of the
406 corresponding loop and add it to loops tree. Insert the LOOP as a son of
407 outer. */
409 void
410 add_loop (struct loop *loop, struct loop *outer)
412 basic_block *bbs;
413 int i, n;
414 struct loop *subloop;
415 edge e;
416 edge_iterator ei;
418 /* Add it to loop structure. */
419 place_new_loop (loop);
420 flow_loop_tree_node_add (outer, loop);
422 /* Find its nodes. */
423 bbs = XNEWVEC (basic_block, n_basic_blocks);
424 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
426 for (i = 0; i < n; i++)
428 if (bbs[i]->loop_father == outer)
430 remove_bb_from_loops (bbs[i]);
431 add_bb_to_loop (bbs[i], loop);
432 continue;
435 loop->num_nodes++;
437 /* If we find a direct subloop of OUTER, move it to LOOP. */
438 subloop = bbs[i]->loop_father;
439 if (loop_outer (subloop) == outer
440 && subloop->header == bbs[i])
442 flow_loop_tree_node_remove (subloop);
443 flow_loop_tree_node_add (loop, subloop);
447 /* Update the information about loop exit edges. */
448 for (i = 0; i < n; i++)
450 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
452 rescan_loop_exit (e, false, false);
456 free (bbs);
459 /* Multiply all frequencies in LOOP by NUM/DEN. */
460 void
461 scale_loop_frequencies (struct loop *loop, int num, int den)
463 basic_block *bbs;
465 bbs = get_loop_body (loop);
466 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
467 free (bbs);
470 /* Recompute dominance information for basic blocks outside LOOP. */
472 static void
473 update_dominators_in_loop (struct loop *loop)
475 VEC (basic_block, heap) *dom_bbs = NULL;
476 sbitmap seen;
477 basic_block *body;
478 unsigned i;
480 seen = sbitmap_alloc (last_basic_block);
481 sbitmap_zero (seen);
482 body = get_loop_body (loop);
484 for (i = 0; i < loop->num_nodes; i++)
485 SET_BIT (seen, body[i]->index);
487 for (i = 0; i < loop->num_nodes; i++)
489 basic_block ldom;
491 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
492 ldom;
493 ldom = next_dom_son (CDI_DOMINATORS, ldom))
494 if (!TEST_BIT (seen, ldom->index))
496 SET_BIT (seen, ldom->index);
497 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
501 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
502 free (body);
503 free (seen);
504 VEC_free (basic_block, heap, dom_bbs);
507 /* Creates an if region as shown above. CONDITION is used to create
508 the test for the if.
511 | ------------- -------------
512 | | pred_bb | | pred_bb |
513 | ------------- -------------
514 | | |
515 | | | ENTRY_EDGE
516 | | ENTRY_EDGE V
517 | | ====> -------------
518 | | | cond_bb |
519 | | | CONDITION |
520 | | -------------
521 | V / \
522 | ------------- e_false / \ e_true
523 | | succ_bb | V V
524 | ------------- ----------- -----------
525 | | false_bb | | true_bb |
526 | ----------- -----------
527 | \ /
528 | \ /
529 | V V
530 | -------------
531 | | join_bb |
532 | -------------
533 | | exit_edge (result)
535 | -----------
536 | | succ_bb |
537 | -----------
541 edge
542 create_empty_if_region_on_edge (edge entry_edge, tree condition)
545 basic_block succ_bb, cond_bb, true_bb, false_bb, join_bb;
546 edge e_true, e_false, exit_edge;
547 gimple cond_stmt;
548 tree simple_cond;
549 gimple_stmt_iterator gsi;
551 succ_bb = entry_edge->dest;
552 cond_bb = split_edge (entry_edge);
554 /* Insert condition in cond_bb. */
555 gsi = gsi_last_bb (cond_bb);
556 simple_cond =
557 force_gimple_operand_gsi (&gsi, condition, true, NULL,
558 false, GSI_NEW_STMT);
559 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
560 gsi = gsi_last_bb (cond_bb);
561 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
563 join_bb = split_edge (single_succ_edge (cond_bb));
565 e_true = single_succ_edge (cond_bb);
566 true_bb = split_edge (e_true);
568 e_false = make_edge (cond_bb, join_bb, 0);
569 false_bb = split_edge (e_false);
571 e_true->flags &= ~EDGE_FALLTHRU;
572 e_true->flags |= EDGE_TRUE_VALUE;
573 e_false->flags &= ~EDGE_FALLTHRU;
574 e_false->flags |= EDGE_FALSE_VALUE;
576 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
577 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
578 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
579 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
581 exit_edge = single_succ_edge (join_bb);
583 if (single_pred_p (exit_edge->dest))
584 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
586 return exit_edge;
589 /* create_empty_loop_on_edge
591 | - pred_bb - ------ pred_bb ------
592 | | | | iv0 = initial_value |
593 | -----|----- ---------|-----------
594 | | ______ | entry_edge
595 | | entry_edge / | |
596 | | ====> | -V---V- loop_header -------------
597 | V | | iv_before = phi (iv0, iv_after) |
598 | - succ_bb - | ---|-----------------------------
599 | | | | |
600 | ----------- | ---V--- loop_body ---------------
601 | | | iv_after = iv_before + stride |
602 | | | if (iv_before < upper_bound) |
603 | | ---|--------------\--------------
604 | | | \ exit_e
605 | | V \
606 | | - loop_latch - V- succ_bb -
607 | | | | | |
608 | | /------------- -----------
609 | \ ___ /
611 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
612 that is used before the increment of IV. IV_BEFORE should be used for
613 adding code to the body that uses the IV. OUTER is the outer loop in
614 which the new loop should be inserted.
616 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
617 inserted on the loop entry edge. This implies that this function
618 should be used only when the UPPER_BOUND expression is a loop
619 invariant. */
621 struct loop *
622 create_empty_loop_on_edge (edge entry_edge,
623 tree initial_value,
624 tree stride, tree upper_bound,
625 tree iv,
626 tree *iv_before,
627 tree *iv_after,
628 struct loop *outer)
630 basic_block loop_header, loop_latch, succ_bb, pred_bb;
631 struct loop *loop;
632 int freq;
633 gcov_type cnt;
634 gimple_stmt_iterator gsi;
635 gimple_seq stmts;
636 gimple cond_expr;
637 tree exit_test;
638 edge exit_e;
639 int prob;
641 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
643 /* Create header, latch and wire up the loop. */
644 pred_bb = entry_edge->src;
645 loop_header = split_edge (entry_edge);
646 loop_latch = split_edge (single_succ_edge (loop_header));
647 succ_bb = single_succ (loop_latch);
648 make_edge (loop_header, succ_bb, 0);
649 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
651 /* Set immediate dominator information. */
652 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
653 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
654 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
656 /* Initialize a loop structure and put it in a loop hierarchy. */
657 loop = alloc_loop ();
658 loop->header = loop_header;
659 loop->latch = loop_latch;
660 add_loop (loop, outer);
662 /* TODO: Fix frequencies and counts. */
663 freq = EDGE_FREQUENCY (entry_edge);
664 cnt = entry_edge->count;
666 prob = REG_BR_PROB_BASE / 2;
668 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
670 /* Update dominators. */
671 update_dominators_in_loop (loop);
673 /* Modify edge flags. */
674 exit_e = single_exit (loop);
675 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
676 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
678 /* Construct IV code in loop. */
679 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
680 if (stmts)
682 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
683 gsi_commit_edge_inserts ();
686 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
687 if (stmts)
689 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
690 gsi_commit_edge_inserts ();
693 gsi = gsi_last_bb (loop_header);
694 create_iv (initial_value, stride, iv, loop, &gsi, false,
695 iv_before, iv_after);
697 /* Insert loop exit condition. */
698 cond_expr = gimple_build_cond
699 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
701 exit_test = gimple_cond_lhs (cond_expr);
702 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
703 false, GSI_NEW_STMT);
704 gimple_cond_set_lhs (cond_expr, exit_test);
705 gsi = gsi_last_bb (exit_e->src);
706 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
708 split_block_after_labels (loop_header);
710 return loop;
713 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
714 latch to header and update loop tree and dominators
715 accordingly. Everything between them plus LATCH_EDGE destination must
716 be dominated by HEADER_EDGE destination, and back-reachable from
717 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
718 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
719 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
720 Returns the newly created loop. Frequencies and counts in the new loop
721 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
723 struct loop *
724 loopify (edge latch_edge, edge header_edge,
725 basic_block switch_bb, edge true_edge, edge false_edge,
726 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
728 basic_block succ_bb = latch_edge->dest;
729 basic_block pred_bb = header_edge->src;
730 struct loop *loop = alloc_loop ();
731 struct loop *outer = loop_outer (succ_bb->loop_father);
732 int freq;
733 gcov_type cnt;
734 edge e;
735 edge_iterator ei;
737 loop->header = header_edge->dest;
738 loop->latch = latch_edge->src;
740 freq = EDGE_FREQUENCY (header_edge);
741 cnt = header_edge->count;
743 /* Redirect edges. */
744 loop_redirect_edge (latch_edge, loop->header);
745 loop_redirect_edge (true_edge, succ_bb);
747 /* During loop versioning, one of the switch_bb edge is already properly
748 set. Do not redirect it again unless redirect_all_edges is true. */
749 if (redirect_all_edges)
751 loop_redirect_edge (header_edge, switch_bb);
752 loop_redirect_edge (false_edge, loop->header);
754 /* Update dominators. */
755 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
756 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
759 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
761 /* Compute new loop. */
762 add_loop (loop, outer);
764 /* Add switch_bb to appropriate loop. */
765 if (switch_bb->loop_father)
766 remove_bb_from_loops (switch_bb);
767 add_bb_to_loop (switch_bb, outer);
769 /* Fix frequencies. */
770 if (redirect_all_edges)
772 switch_bb->frequency = freq;
773 switch_bb->count = cnt;
774 FOR_EACH_EDGE (e, ei, switch_bb->succs)
776 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
779 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
780 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
781 update_dominators_in_loop (loop);
783 return loop;
786 /* Remove the latch edge of a LOOP and update loops to indicate that
787 the LOOP was removed. After this function, original loop latch will
788 have no successor, which caller is expected to fix somehow.
790 If this may cause the information about irreducible regions to become
791 invalid, IRRED_INVALIDATED is set to true. */
793 static void
794 unloop (struct loop *loop, bool *irred_invalidated)
796 basic_block *body;
797 struct loop *ploop;
798 unsigned i, n;
799 basic_block latch = loop->latch;
800 bool dummy = false;
802 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
803 *irred_invalidated = true;
805 /* This is relatively straightforward. The dominators are unchanged, as
806 loop header dominates loop latch, so the only thing we have to care of
807 is the placement of loops and basic blocks inside the loop tree. We
808 move them all to the loop->outer, and then let fix_bb_placements do
809 its work. */
811 body = get_loop_body (loop);
812 n = loop->num_nodes;
813 for (i = 0; i < n; i++)
814 if (body[i]->loop_father == loop)
816 remove_bb_from_loops (body[i]);
817 add_bb_to_loop (body[i], loop_outer (loop));
819 free(body);
821 while (loop->inner)
823 ploop = loop->inner;
824 flow_loop_tree_node_remove (ploop);
825 flow_loop_tree_node_add (loop_outer (loop), ploop);
828 /* Remove the loop and free its data. */
829 delete_loop (loop);
831 remove_edge (single_succ_edge (latch));
833 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
834 there is an irreducible region inside the cancelled loop, the flags will
835 be still correct. */
836 fix_bb_placements (latch, &dummy);
839 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
840 condition stated in description of fix_loop_placement holds for them.
841 It is used in case when we removed some edges coming out of LOOP, which
842 may cause the right placement of LOOP inside loop tree to change.
844 IRRED_INVALIDATED is set to true if a change in the loop structures might
845 invalidate the information about irreducible regions. */
847 static void
848 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
850 struct loop *outer;
852 while (loop_outer (loop))
854 outer = loop_outer (loop);
855 if (!fix_loop_placement (loop))
856 break;
858 /* Changing the placement of a loop in the loop tree may alter the
859 validity of condition 2) of the description of fix_bb_placement
860 for its preheader, because the successor is the header and belongs
861 to the loop. So call fix_bb_placements to fix up the placement
862 of the preheader and (possibly) of its predecessors. */
863 fix_bb_placements (loop_preheader_edge (loop)->src,
864 irred_invalidated);
865 loop = outer;
869 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
870 created loop into loops structure. */
871 struct loop *
872 duplicate_loop (struct loop *loop, struct loop *target)
874 struct loop *cloop;
875 cloop = alloc_loop ();
876 place_new_loop (cloop);
878 /* Mark the new loop as copy of LOOP. */
879 set_loop_copy (loop, cloop);
881 /* Add it to target. */
882 flow_loop_tree_node_add (target, cloop);
884 return cloop;
887 /* Copies structure of subloops of LOOP into TARGET loop, placing
888 newly created loops into loop tree. */
889 static void
890 duplicate_subloops (struct loop *loop, struct loop *target)
892 struct loop *aloop, *cloop;
894 for (aloop = loop->inner; aloop; aloop = aloop->next)
896 cloop = duplicate_loop (aloop, target);
897 duplicate_subloops (aloop, cloop);
901 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
902 into TARGET loop, placing newly created loops into loop tree. */
903 static void
904 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
906 struct loop *aloop;
907 int i;
909 for (i = 0; i < n; i++)
911 aloop = duplicate_loop (copied_loops[i], target);
912 duplicate_subloops (copied_loops[i], aloop);
916 /* Redirects edge E to basic block DEST. */
917 static void
918 loop_redirect_edge (edge e, basic_block dest)
920 if (e->dest == dest)
921 return;
923 redirect_edge_and_branch_force (e, dest);
926 /* Check whether LOOP's body can be duplicated. */
927 bool
928 can_duplicate_loop_p (const struct loop *loop)
930 int ret;
931 basic_block *bbs = get_loop_body (loop);
933 ret = can_copy_bbs_p (bbs, loop->num_nodes);
934 free (bbs);
936 return ret;
939 /* Sets probability and count of edge E to zero. The probability and count
940 is redistributed evenly to the remaining edges coming from E->src. */
942 static void
943 set_zero_probability (edge e)
945 basic_block bb = e->src;
946 edge_iterator ei;
947 edge ae, last = NULL;
948 unsigned n = EDGE_COUNT (bb->succs);
949 gcov_type cnt = e->count, cnt1;
950 unsigned prob = e->probability, prob1;
952 gcc_assert (n > 1);
953 cnt1 = cnt / (n - 1);
954 prob1 = prob / (n - 1);
956 FOR_EACH_EDGE (ae, ei, bb->succs)
958 if (ae == e)
959 continue;
961 ae->probability += prob1;
962 ae->count += cnt1;
963 last = ae;
966 /* Move the rest to one of the edges. */
967 last->probability += prob % (n - 1);
968 last->count += cnt % (n - 1);
970 e->probability = 0;
971 e->count = 0;
974 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
975 loop structure and dominators. E's destination must be LOOP header for
976 this to work, i.e. it must be entry or latch edge of this loop; these are
977 unique, as the loops must have preheaders for this function to work
978 correctly (in case E is latch, the function unrolls the loop, if E is entry
979 edge, it peels the loop). Store edges created by copying ORIG edge from
980 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
981 original LOOP body, the other copies are numbered in order given by control
982 flow through them) into TO_REMOVE array. Returns false if duplication is
983 impossible. */
985 bool
986 duplicate_loop_to_header_edge (struct loop *loop, edge e,
987 unsigned int ndupl, sbitmap wont_exit,
988 edge orig, VEC (edge, heap) **to_remove,
989 int flags)
991 struct loop *target, *aloop;
992 struct loop **orig_loops;
993 unsigned n_orig_loops;
994 basic_block header = loop->header, latch = loop->latch;
995 basic_block *new_bbs, *bbs, *first_active;
996 basic_block new_bb, bb, first_active_latch = NULL;
997 edge ae, latch_edge;
998 edge spec_edges[2], new_spec_edges[2];
999 #define SE_LATCH 0
1000 #define SE_ORIG 1
1001 unsigned i, j, n;
1002 int is_latch = (latch == e->src);
1003 int scale_act = 0, *scale_step = NULL, scale_main = 0;
1004 int scale_after_exit = 0;
1005 int p, freq_in, freq_le, freq_out_orig;
1006 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1007 int add_irreducible_flag;
1008 basic_block place_after;
1009 bitmap bbs_to_scale = NULL;
1010 bitmap_iterator bi;
1012 gcc_assert (e->dest == loop->header);
1013 gcc_assert (ndupl > 0);
1015 if (orig)
1017 /* Orig must be edge out of the loop. */
1018 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1019 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1022 n = loop->num_nodes;
1023 bbs = get_loop_body_in_dom_order (loop);
1024 gcc_assert (bbs[0] == loop->header);
1025 gcc_assert (bbs[n - 1] == loop->latch);
1027 /* Check whether duplication is possible. */
1028 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1030 free (bbs);
1031 return false;
1033 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1035 /* In case we are doing loop peeling and the loop is in the middle of
1036 irreducible region, the peeled copies will be inside it too. */
1037 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1038 gcc_assert (!is_latch || !add_irreducible_flag);
1040 /* Find edge from latch. */
1041 latch_edge = loop_latch_edge (loop);
1043 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1045 /* Calculate coefficients by that we have to scale frequencies
1046 of duplicated loop bodies. */
1047 freq_in = header->frequency;
1048 freq_le = EDGE_FREQUENCY (latch_edge);
1049 if (freq_in == 0)
1050 freq_in = 1;
1051 if (freq_in < freq_le)
1052 freq_in = freq_le;
1053 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1054 if (freq_out_orig > freq_in - freq_le)
1055 freq_out_orig = freq_in - freq_le;
1056 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1057 prob_pass_wont_exit =
1058 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1060 if (orig
1061 && REG_BR_PROB_BASE - orig->probability != 0)
1063 /* The blocks that are dominated by a removed exit edge ORIG have
1064 frequencies scaled by this. */
1065 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
1066 REG_BR_PROB_BASE - orig->probability);
1067 bbs_to_scale = BITMAP_ALLOC (NULL);
1068 for (i = 0; i < n; i++)
1070 if (bbs[i] != orig->src
1071 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1072 bitmap_set_bit (bbs_to_scale, i);
1076 scale_step = XNEWVEC (int, ndupl);
1078 for (i = 1; i <= ndupl; i++)
1079 scale_step[i - 1] = TEST_BIT (wont_exit, i)
1080 ? prob_pass_wont_exit
1081 : prob_pass_thru;
1083 /* Complete peeling is special as the probability of exit in last
1084 copy becomes 1. */
1085 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1087 int wanted_freq = EDGE_FREQUENCY (e);
1089 if (wanted_freq > freq_in)
1090 wanted_freq = freq_in;
1092 gcc_assert (!is_latch);
1093 /* First copy has frequency of incoming edge. Each subsequent
1094 frequency should be reduced by prob_pass_wont_exit. Caller
1095 should've managed the flags so all except for original loop
1096 has won't exist set. */
1097 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1098 /* Now simulate the duplication adjustments and compute header
1099 frequency of the last copy. */
1100 for (i = 0; i < ndupl; i++)
1101 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
1102 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1104 else if (is_latch)
1106 prob_pass_main = TEST_BIT (wont_exit, 0)
1107 ? prob_pass_wont_exit
1108 : prob_pass_thru;
1109 p = prob_pass_main;
1110 scale_main = REG_BR_PROB_BASE;
1111 for (i = 0; i < ndupl; i++)
1113 scale_main += p;
1114 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
1116 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
1117 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
1119 else
1121 scale_main = REG_BR_PROB_BASE;
1122 for (i = 0; i < ndupl; i++)
1123 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
1124 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1126 for (i = 0; i < ndupl; i++)
1127 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1128 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1129 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1132 /* Loop the new bbs will belong to. */
1133 target = e->src->loop_father;
1135 /* Original loops. */
1136 n_orig_loops = 0;
1137 for (aloop = loop->inner; aloop; aloop = aloop->next)
1138 n_orig_loops++;
1139 orig_loops = XCNEWVEC (struct loop *, n_orig_loops);
1140 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1141 orig_loops[i] = aloop;
1143 set_loop_copy (loop, target);
1145 first_active = XNEWVEC (basic_block, n);
1146 if (is_latch)
1148 memcpy (first_active, bbs, n * sizeof (basic_block));
1149 first_active_latch = latch;
1152 spec_edges[SE_ORIG] = orig;
1153 spec_edges[SE_LATCH] = latch_edge;
1155 place_after = e->src;
1156 for (j = 0; j < ndupl; j++)
1158 /* Copy loops. */
1159 copy_loops_to (orig_loops, n_orig_loops, target);
1161 /* Copy bbs. */
1162 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1163 place_after);
1164 place_after = new_spec_edges[SE_LATCH]->src;
1166 if (flags & DLTHE_RECORD_COPY_NUMBER)
1167 for (i = 0; i < n; i++)
1169 gcc_assert (!new_bbs[i]->aux);
1170 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1173 /* Note whether the blocks and edges belong to an irreducible loop. */
1174 if (add_irreducible_flag)
1176 for (i = 0; i < n; i++)
1177 new_bbs[i]->flags |= BB_DUPLICATED;
1178 for (i = 0; i < n; i++)
1180 edge_iterator ei;
1181 new_bb = new_bbs[i];
1182 if (new_bb->loop_father == target)
1183 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1185 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1186 if ((ae->dest->flags & BB_DUPLICATED)
1187 && (ae->src->loop_father == target
1188 || ae->dest->loop_father == target))
1189 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1191 for (i = 0; i < n; i++)
1192 new_bbs[i]->flags &= ~BB_DUPLICATED;
1195 /* Redirect the special edges. */
1196 if (is_latch)
1198 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1199 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1200 loop->header);
1201 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1202 latch = loop->latch = new_bbs[n - 1];
1203 e = latch_edge = new_spec_edges[SE_LATCH];
1205 else
1207 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1208 loop->header);
1209 redirect_edge_and_branch_force (e, new_bbs[0]);
1210 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1211 e = new_spec_edges[SE_LATCH];
1214 /* Record exit edge in this copy. */
1215 if (orig && TEST_BIT (wont_exit, j + 1))
1217 if (to_remove)
1218 VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
1219 set_zero_probability (new_spec_edges[SE_ORIG]);
1221 /* Scale the frequencies of the blocks dominated by the exit. */
1222 if (bbs_to_scale)
1224 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1226 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1227 REG_BR_PROB_BASE);
1232 /* Record the first copy in the control flow order if it is not
1233 the original loop (i.e. in case of peeling). */
1234 if (!first_active_latch)
1236 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1237 first_active_latch = new_bbs[n - 1];
1240 /* Set counts and frequencies. */
1241 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1243 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1244 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1247 free (new_bbs);
1248 free (orig_loops);
1250 /* Record the exit edge in the original loop body, and update the frequencies. */
1251 if (orig && TEST_BIT (wont_exit, 0))
1253 if (to_remove)
1254 VEC_safe_push (edge, heap, *to_remove, orig);
1255 set_zero_probability (orig);
1257 /* Scale the frequencies of the blocks dominated by the exit. */
1258 if (bbs_to_scale)
1260 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1262 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1263 REG_BR_PROB_BASE);
1268 /* Update the original loop. */
1269 if (!is_latch)
1270 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1271 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1273 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1274 free (scale_step);
1277 /* Update dominators of outer blocks if affected. */
1278 for (i = 0; i < n; i++)
1280 basic_block dominated, dom_bb;
1281 VEC (basic_block, heap) *dom_bbs;
1282 unsigned j;
1284 bb = bbs[i];
1285 bb->aux = 0;
1287 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1288 for (j = 0; VEC_iterate (basic_block, dom_bbs, j, dominated); j++)
1290 if (flow_bb_inside_loop_p (loop, dominated))
1291 continue;
1292 dom_bb = nearest_common_dominator (
1293 CDI_DOMINATORS, first_active[i], first_active_latch);
1294 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1296 VEC_free (basic_block, heap, dom_bbs);
1298 free (first_active);
1300 free (bbs);
1301 BITMAP_FREE (bbs_to_scale);
1303 return true;
1306 /* A callback for make_forwarder block, to redirect all edges except for
1307 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1308 whether to redirect it. */
1310 edge mfb_kj_edge;
1311 bool
1312 mfb_keep_just (edge e)
1314 return e != mfb_kj_edge;
1317 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1319 static bool
1320 has_preds_from_loop (basic_block block, struct loop *loop)
1322 edge e;
1323 edge_iterator ei;
1325 FOR_EACH_EDGE (e, ei, block->preds)
1326 if (e->src->loop_father == loop)
1327 return true;
1328 return false;
1331 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1332 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1333 entry; otherwise we also force preheader block to have only one successor.
1334 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1335 to be a fallthru predecessor to the loop header and to have only
1336 predecessors from outside of the loop.
1337 The function also updates dominators. */
1339 basic_block
1340 create_preheader (struct loop *loop, int flags)
1342 edge e, fallthru;
1343 basic_block dummy;
1344 int nentry = 0;
1345 bool irred = false;
1346 bool latch_edge_was_fallthru;
1347 edge one_succ_pred = NULL, single_entry = NULL;
1348 edge_iterator ei;
1350 FOR_EACH_EDGE (e, ei, loop->header->preds)
1352 if (e->src == loop->latch)
1353 continue;
1354 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1355 nentry++;
1356 single_entry = e;
1357 if (single_succ_p (e->src))
1358 one_succ_pred = e;
1360 gcc_assert (nentry);
1361 if (nentry == 1)
1363 bool need_forwarder_block = false;
1365 /* We do not allow entry block to be the loop preheader, since we
1366 cannot emit code there. */
1367 if (single_entry->src == ENTRY_BLOCK_PTR)
1368 need_forwarder_block = true;
1369 else
1371 /* If we want simple preheaders, also force the preheader to have
1372 just a single successor. */
1373 if ((flags & CP_SIMPLE_PREHEADERS)
1374 && !single_succ_p (single_entry->src))
1375 need_forwarder_block = true;
1376 /* If we want fallthru preheaders, also create forwarder block when
1377 preheader ends with a jump or has predecessors from loop. */
1378 else if ((flags & CP_FALLTHRU_PREHEADERS)
1379 && (JUMP_P (BB_END (single_entry->src))
1380 || has_preds_from_loop (single_entry->src, loop)))
1381 need_forwarder_block = true;
1383 if (! need_forwarder_block)
1384 return NULL;
1387 mfb_kj_edge = loop_latch_edge (loop);
1388 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1389 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1390 dummy = fallthru->src;
1391 loop->header = fallthru->dest;
1393 /* Try to be clever in placing the newly created preheader. The idea is to
1394 avoid breaking any "fallthruness" relationship between blocks.
1396 The preheader was created just before the header and all incoming edges
1397 to the header were redirected to the preheader, except the latch edge.
1398 So the only problematic case is when this latch edge was a fallthru
1399 edge: it is not anymore after the preheader creation so we have broken
1400 the fallthruness. We're therefore going to look for a better place. */
1401 if (latch_edge_was_fallthru)
1403 if (one_succ_pred)
1404 e = one_succ_pred;
1405 else
1406 e = EDGE_PRED (dummy, 0);
1408 move_block_after (dummy, e->src);
1411 if (irred)
1413 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1414 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1417 if (dump_file)
1418 fprintf (dump_file, "Created preheader block for loop %i\n",
1419 loop->num);
1421 if (flags & CP_FALLTHRU_PREHEADERS)
1422 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1423 && !JUMP_P (BB_END (dummy)));
1425 return dummy;
1428 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1430 void
1431 create_preheaders (int flags)
1433 loop_iterator li;
1434 struct loop *loop;
1436 if (!current_loops)
1437 return;
1439 FOR_EACH_LOOP (li, loop, 0)
1440 create_preheader (loop, flags);
1441 loops_state_set (LOOPS_HAVE_PREHEADERS);
1444 /* Forces all loop latches to have only single successor. */
1446 void
1447 force_single_succ_latches (void)
1449 loop_iterator li;
1450 struct loop *loop;
1451 edge e;
1453 FOR_EACH_LOOP (li, loop, 0)
1455 if (loop->latch != loop->header && single_succ_p (loop->latch))
1456 continue;
1458 e = find_edge (loop->latch, loop->header);
1460 split_edge (e);
1462 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1465 /* This function is called from loop_version. It splits the entry edge
1466 of the loop we want to version, adds the versioning condition, and
1467 adjust the edges to the two versions of the loop appropriately.
1468 e is an incoming edge. Returns the basic block containing the
1469 condition.
1471 --- edge e ---- > [second_head]
1473 Split it and insert new conditional expression and adjust edges.
1475 --- edge e ---> [cond expr] ---> [first_head]
1477 +---------> [second_head]
1479 THEN_PROB is the probability of then branch of the condition. */
1481 static basic_block
1482 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1483 edge e, void *cond_expr, unsigned then_prob)
1485 basic_block new_head = NULL;
1486 edge e1;
1488 gcc_assert (e->dest == second_head);
1490 /* Split edge 'e'. This will create a new basic block, where we can
1491 insert conditional expr. */
1492 new_head = split_edge (e);
1494 lv_add_condition_to_bb (first_head, second_head, new_head,
1495 cond_expr);
1497 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1498 e = single_succ_edge (new_head);
1499 e1 = make_edge (new_head, first_head,
1500 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1501 e1->probability = then_prob;
1502 e->probability = REG_BR_PROB_BASE - then_prob;
1503 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
1504 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
1506 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1507 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1509 /* Adjust loop header phi nodes. */
1510 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1512 return new_head;
1515 /* Main entry point for Loop Versioning transformation.
1517 This transformation given a condition and a loop, creates
1518 -if (condition) { loop_copy1 } else { loop_copy2 },
1519 where loop_copy1 is the loop transformed in one way, and loop_copy2
1520 is the loop transformed in another way (or unchanged). 'condition'
1521 may be a run time test for things that were not resolved by static
1522 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1524 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1525 is the ratio by that the frequencies in the original loop should
1526 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1527 new loop should be scaled.
1529 If PLACE_AFTER is true, we place the new loop after LOOP in the
1530 instruction stream, otherwise it is placed before LOOP. */
1532 struct loop *
1533 loop_version (struct loop *loop,
1534 void *cond_expr, basic_block *condition_bb,
1535 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1536 bool place_after)
1538 basic_block first_head, second_head;
1539 edge entry, latch_edge, true_edge, false_edge;
1540 int irred_flag;
1541 struct loop *nloop;
1542 basic_block cond_bb;
1544 /* Record entry and latch edges for the loop */
1545 entry = loop_preheader_edge (loop);
1546 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1547 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1549 /* Note down head of loop as first_head. */
1550 first_head = entry->dest;
1552 /* Duplicate loop. */
1553 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1554 NULL, NULL, NULL, 0))
1555 return NULL;
1557 /* After duplication entry edge now points to new loop head block.
1558 Note down new head as second_head. */
1559 second_head = entry->dest;
1561 /* Split loop entry edge and insert new block with cond expr. */
1562 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1563 entry, cond_expr, then_prob);
1564 if (condition_bb)
1565 *condition_bb = cond_bb;
1567 if (!cond_bb)
1569 entry->flags |= irred_flag;
1570 return NULL;
1573 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1575 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1576 nloop = loopify (latch_edge,
1577 single_pred_edge (get_bb_copy (loop->header)),
1578 cond_bb, true_edge, false_edge,
1579 false /* Do not redirect all edges. */,
1580 then_scale, else_scale);
1582 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1583 lv_flush_pending_stmts (latch_edge);
1585 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1586 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1587 lv_flush_pending_stmts (false_edge);
1588 /* Adjust irreducible flag. */
1589 if (irred_flag)
1591 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1592 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1593 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1594 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1597 if (place_after)
1599 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1600 unsigned i;
1602 after = loop->latch;
1604 for (i = 0; i < nloop->num_nodes; i++)
1606 move_block_after (bbs[i], after);
1607 after = bbs[i];
1609 free (bbs);
1612 /* At this point condition_bb is loop preheader with two successors,
1613 first_head and second_head. Make sure that loop preheader has only
1614 one successor. */
1615 split_edge (loop_preheader_edge (loop));
1616 split_edge (loop_preheader_edge (nloop));
1618 return nloop;
1621 /* The structure of loops might have changed. Some loops might get removed
1622 (and their headers and latches were set to NULL), loop exists might get
1623 removed (thus the loop nesting may be wrong), and some blocks and edges
1624 were changed (so the information about bb --> loop mapping does not have
1625 to be correct). But still for the remaining loops the header dominates
1626 the latch, and loops did not get new subloops (new loops might possibly
1627 get created, but we are not interested in them). Fix up the mess.
1629 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1630 marked in it. */
1632 void
1633 fix_loop_structure (bitmap changed_bbs)
1635 basic_block bb;
1636 struct loop *loop, *ploop;
1637 loop_iterator li;
1638 bool record_exits = false;
1639 struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
1641 /* Remove the old bb -> loop mapping. Remember the depth of the blocks in
1642 the loop hierarchy, so that we can recognize blocks whose loop nesting
1643 relationship has changed. */
1644 FOR_EACH_BB (bb)
1646 if (changed_bbs)
1647 bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
1648 bb->loop_father = current_loops->tree_root;
1651 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1653 release_recorded_exits ();
1654 record_exits = true;
1657 /* Remove the dead loops from structures. We start from the innermost
1658 loops, so that when we remove the loops, we know that the loops inside
1659 are preserved, and do not waste time relinking loops that will be
1660 removed later. */
1661 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1663 if (loop->header)
1664 continue;
1666 while (loop->inner)
1668 ploop = loop->inner;
1669 flow_loop_tree_node_remove (ploop);
1670 flow_loop_tree_node_add (loop_outer (loop), ploop);
1673 /* Remove the loop and free its data. */
1674 delete_loop (loop);
1677 /* Rescan the bodies of loops, starting from the outermost ones. We assume
1678 that no optimization interchanges the order of the loops, i.e., it cannot
1679 happen that L1 was superloop of L2 before and it is subloop of L2 now
1680 (without explicitly updating loop information). At the same time, we also
1681 determine the new loop structure. */
1682 current_loops->tree_root->num_nodes = n_basic_blocks;
1683 FOR_EACH_LOOP (li, loop, 0)
1685 superloop[loop->num] = loop->header->loop_father;
1686 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1689 /* Now fix the loop nesting. */
1690 FOR_EACH_LOOP (li, loop, 0)
1692 ploop = superloop[loop->num];
1693 if (ploop != loop_outer (loop))
1695 flow_loop_tree_node_remove (loop);
1696 flow_loop_tree_node_add (ploop, loop);
1699 free (superloop);
1701 /* Mark the blocks whose loop has changed. */
1702 if (changed_bbs)
1704 FOR_EACH_BB (bb)
1706 if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
1707 bitmap_set_bit (changed_bbs, bb->index);
1709 bb->aux = NULL;
1713 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
1714 create_preheaders (CP_SIMPLE_PREHEADERS);
1716 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1717 force_single_succ_latches ();
1719 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1720 mark_irreducible_loops ();
1722 if (record_exits)
1723 record_loop_exits ();
1725 #ifdef ENABLE_CHECKING
1726 verify_loop_structure ();
1727 #endif