Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / cfgloop.c
blobb9af098d070d03850a1bc30867d6d1160e27fb36
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "function.h"
29 #include "basic-block.h"
30 #include "toplev.h"
31 #include "cfgloop.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "tree-flow.h"
35 #include "pointer-set.h"
36 #include "output.h"
37 #include "ggc.h"
39 static void flow_loops_cfg_dump (FILE *);
41 /* Dump loop related CFG information. */
43 static void
44 flow_loops_cfg_dump (FILE *file)
46 basic_block bb;
48 if (!file)
49 return;
51 FOR_EACH_BB (bb)
53 edge succ;
54 edge_iterator ei;
56 fprintf (file, ";; %d succs { ", bb->index);
57 FOR_EACH_EDGE (succ, ei, bb->succs)
58 fprintf (file, "%d ", succ->dest->index);
59 fprintf (file, "}\n");
63 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
65 bool
66 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
68 unsigned odepth = loop_depth (outer);
70 return (loop_depth (loop) > odepth
71 && VEC_index (loop_p, loop->superloops, odepth) == outer);
74 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
75 loops within LOOP. */
77 struct loop *
78 superloop_at_depth (struct loop *loop, unsigned depth)
80 unsigned ldepth = loop_depth (loop);
82 gcc_assert (depth <= ldepth);
84 if (depth == ldepth)
85 return loop;
87 return VEC_index (loop_p, loop->superloops, depth);
90 /* Returns the list of the latch edges of LOOP. */
92 static VEC (edge, heap) *
93 get_loop_latch_edges (const struct loop *loop)
95 edge_iterator ei;
96 edge e;
97 VEC (edge, heap) *ret = NULL;
99 FOR_EACH_EDGE (e, ei, loop->header->preds)
101 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
102 VEC_safe_push (edge, heap, ret, e);
105 return ret;
108 /* Dump the loop information specified by LOOP to the stream FILE
109 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
111 void
112 flow_loop_dump (const struct loop *loop, FILE *file,
113 void (*loop_dump_aux) (const struct loop *, FILE *, int),
114 int verbose)
116 basic_block *bbs;
117 unsigned i;
118 VEC (edge, heap) *latches;
119 edge e;
121 if (! loop || ! loop->header)
122 return;
124 fprintf (file, ";;\n;; Loop %d\n", loop->num);
126 fprintf (file, ";; header %d, ", loop->header->index);
127 if (loop->latch)
128 fprintf (file, "latch %d\n", loop->latch->index);
129 else
131 fprintf (file, "multiple latches:");
132 latches = get_loop_latch_edges (loop);
133 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
134 fprintf (file, " %d", e->src->index);
135 VEC_free (edge, heap, latches);
136 fprintf (file, "\n");
139 fprintf (file, ";; depth %d, outer %ld\n",
140 loop_depth (loop), (long) (loop_outer (loop)
141 ? loop_outer (loop)->num : -1));
143 fprintf (file, ";; nodes:");
144 bbs = get_loop_body (loop);
145 for (i = 0; i < loop->num_nodes; i++)
146 fprintf (file, " %d", bbs[i]->index);
147 free (bbs);
148 fprintf (file, "\n");
150 if (loop_dump_aux)
151 loop_dump_aux (loop, file, verbose);
154 /* Dump the loop information about loops to the stream FILE,
155 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
157 void
158 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
160 loop_iterator li;
161 struct loop *loop;
163 if (!current_loops || ! file)
164 return;
166 fprintf (file, ";; %d loops found\n", number_of_loops ());
168 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
170 flow_loop_dump (loop, file, loop_dump_aux, verbose);
173 if (verbose)
174 flow_loops_cfg_dump (file);
177 /* Free data allocated for LOOP. */
179 void
180 flow_loop_free (struct loop *loop)
182 struct loop_exit *exit, *next;
184 VEC_free (loop_p, gc, loop->superloops);
186 /* Break the list of the loop exit records. They will be freed when the
187 corresponding edge is rescanned or removed, and this avoids
188 accessing the (already released) head of the list stored in the
189 loop structure. */
190 for (exit = loop->exits->next; exit != loop->exits; exit = next)
192 next = exit->next;
193 exit->next = exit;
194 exit->prev = exit;
197 ggc_free (loop->exits);
198 ggc_free (loop);
201 /* Free all the memory allocated for LOOPS. */
203 void
204 flow_loops_free (struct loops *loops)
206 if (loops->larray)
208 unsigned i;
209 loop_p loop;
211 /* Free the loop descriptors. */
212 for (i = 0; VEC_iterate (loop_p, loops->larray, i, loop); i++)
214 if (!loop)
215 continue;
217 flow_loop_free (loop);
220 VEC_free (loop_p, gc, loops->larray);
224 /* Find the nodes contained within the LOOP with header HEADER.
225 Return the number of nodes within the loop. */
228 flow_loop_nodes_find (basic_block header, struct loop *loop)
230 VEC (basic_block, heap) *stack = NULL;
231 int num_nodes = 1;
232 edge latch;
233 edge_iterator latch_ei;
234 unsigned depth = loop_depth (loop);
236 header->loop_father = loop;
237 header->loop_depth = depth;
239 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
241 if (latch->src->loop_father == loop
242 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
243 continue;
245 num_nodes++;
246 VEC_safe_push (basic_block, heap, stack, latch->src);
247 latch->src->loop_father = loop;
248 latch->src->loop_depth = depth;
250 while (!VEC_empty (basic_block, stack))
252 basic_block node;
253 edge e;
254 edge_iterator ei;
256 node = VEC_pop (basic_block, stack);
258 FOR_EACH_EDGE (e, ei, node->preds)
260 basic_block ancestor = e->src;
262 if (ancestor->loop_father != loop)
264 ancestor->loop_father = loop;
265 ancestor->loop_depth = depth;
266 num_nodes++;
267 VEC_safe_push (basic_block, heap, stack, ancestor);
272 VEC_free (basic_block, heap, stack);
274 return num_nodes;
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
280 static void
281 establish_preds (struct loop *loop, struct loop *father)
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
287 VEC_truncate (loop_p, loop->superloops, 0);
288 VEC_reserve (loop_p, gc, loop->superloops, depth);
289 for (i = 0; VEC_iterate (loop_p, father->superloops, i, ploop); i++)
290 VEC_quick_push (loop_p, loop->superloops, ploop);
291 VEC_quick_push (loop_p, loop->superloops, father);
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. */
301 void
302 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
304 loop->next = father->inner;
305 father->inner = loop;
307 establish_preds (loop, father);
310 /* Remove LOOP from the loop hierarchy tree. */
312 void
313 flow_loop_tree_node_remove (struct loop *loop)
315 struct loop *prev, *father;
317 father = loop_outer (loop);
319 /* Remove loop from the list of sons. */
320 if (father->inner == loop)
321 father->inner = loop->next;
322 else
324 for (prev = father->inner; prev->next != loop; prev = prev->next)
325 continue;
326 prev->next = loop->next;
329 VEC_truncate (loop_p, loop->superloops, 0);
332 /* Allocates and returns new loop structure. */
334 struct loop *
335 alloc_loop (void)
337 struct loop *loop = GGC_CNEW (struct loop);
339 loop->exits = GGC_CNEW (struct loop_exit);
340 loop->exits->next = loop->exits->prev = loop->exits;
341 loop->can_be_parallel = false;
343 return loop;
346 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
347 (including the root of the loop tree). */
349 static void
350 init_loops_structure (struct loops *loops, unsigned num_loops)
352 struct loop *root;
354 memset (loops, 0, sizeof *loops);
355 loops->larray = VEC_alloc (loop_p, gc, num_loops);
357 /* Dummy loop containing whole function. */
358 root = alloc_loop ();
359 root->num_nodes = n_basic_blocks;
360 root->latch = EXIT_BLOCK_PTR;
361 root->header = ENTRY_BLOCK_PTR;
362 ENTRY_BLOCK_PTR->loop_father = root;
363 EXIT_BLOCK_PTR->loop_father = root;
365 VEC_quick_push (loop_p, loops->larray, root);
366 loops->tree_root = root;
369 /* Find all the natural loops in the function and save in LOOPS structure and
370 recalculate loop_depth information in basic block structures.
371 Return the number of natural loops found. */
374 flow_loops_find (struct loops *loops)
376 int b;
377 int num_loops;
378 edge e;
379 sbitmap headers;
380 int *dfs_order;
381 int *rc_order;
382 basic_block header;
383 basic_block bb;
385 /* Ensure that the dominators are computed. */
386 calculate_dominance_info (CDI_DOMINATORS);
388 /* Taking care of this degenerate case makes the rest of
389 this code simpler. */
390 if (n_basic_blocks == NUM_FIXED_BLOCKS)
392 init_loops_structure (loops, 1);
393 return 1;
396 dfs_order = NULL;
397 rc_order = NULL;
399 /* Count the number of loop headers. This should be the
400 same as the number of natural loops. */
401 headers = sbitmap_alloc (last_basic_block);
402 sbitmap_zero (headers);
404 num_loops = 0;
405 FOR_EACH_BB (header)
407 edge_iterator ei;
409 header->loop_depth = 0;
411 /* If we have an abnormal predecessor, do not consider the
412 loop (not worth the problems). */
413 FOR_EACH_EDGE (e, ei, header->preds)
414 if (e->flags & EDGE_ABNORMAL)
415 break;
416 if (e)
417 continue;
419 FOR_EACH_EDGE (e, ei, header->preds)
421 basic_block latch = e->src;
423 gcc_assert (!(e->flags & EDGE_ABNORMAL));
425 /* Look for back edges where a predecessor is dominated
426 by this block. A natural loop has a single entry
427 node (header) that dominates all the nodes in the
428 loop. It also has single back edge to the header
429 from a latch node. */
430 if (latch != ENTRY_BLOCK_PTR
431 && dominated_by_p (CDI_DOMINATORS, latch, header))
433 /* Shared headers should be eliminated by now. */
434 SET_BIT (headers, header->index);
435 num_loops++;
440 /* Allocate loop structures. */
441 init_loops_structure (loops, num_loops + 1);
443 /* Find and record information about all the natural loops
444 in the CFG. */
445 FOR_EACH_BB (bb)
446 bb->loop_father = loops->tree_root;
448 if (num_loops)
450 /* Compute depth first search order of the CFG so that outer
451 natural loops will be found before inner natural loops. */
452 dfs_order = XNEWVEC (int, n_basic_blocks);
453 rc_order = XNEWVEC (int, n_basic_blocks);
454 pre_and_rev_post_order_compute (dfs_order, rc_order, false);
456 num_loops = 1;
458 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
460 struct loop *loop;
461 edge_iterator ei;
463 /* Search the nodes of the CFG in reverse completion order
464 so that we can find outer loops first. */
465 if (!TEST_BIT (headers, rc_order[b]))
466 continue;
468 header = BASIC_BLOCK (rc_order[b]);
470 loop = alloc_loop ();
471 VEC_quick_push (loop_p, loops->larray, loop);
473 loop->header = header;
474 loop->num = num_loops;
475 num_loops++;
477 flow_loop_tree_node_add (header->loop_father, loop);
478 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
480 /* Look for the latch for this header block, if it has just a
481 single one. */
482 FOR_EACH_EDGE (e, ei, header->preds)
484 basic_block latch = e->src;
486 if (flow_bb_inside_loop_p (loop, latch))
488 if (loop->latch != NULL)
490 /* More than one latch edge. */
491 loop->latch = NULL;
492 break;
494 loop->latch = latch;
499 free (dfs_order);
500 free (rc_order);
503 sbitmap_free (headers);
505 loops->exits = NULL;
506 return VEC_length (loop_p, loops->larray);
509 /* Ratio of frequencies of edges so that one of more latch edges is
510 considered to belong to inner loop with same header. */
511 #define HEAVY_EDGE_RATIO 8
513 /* Minimum number of samples for that we apply
514 find_subloop_latch_edge_by_profile heuristics. */
515 #define HEAVY_EDGE_MIN_SAMPLES 10
517 /* If the profile info is available, finds an edge in LATCHES that much more
518 frequent than the remaining edges. Returns such an edge, or NULL if we do
519 not find one.
521 We do not use guessed profile here, only the measured one. The guessed
522 profile is usually too flat and unreliable for this (and it is mostly based
523 on the loop structure of the program, so it does not make much sense to
524 derive the loop structure from it). */
526 static edge
527 find_subloop_latch_edge_by_profile (VEC (edge, heap) *latches)
529 unsigned i;
530 edge e, me = NULL;
531 gcov_type mcount = 0, tcount = 0;
533 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
535 if (e->count > mcount)
537 me = e;
538 mcount = e->count;
540 tcount += e->count;
543 if (tcount < HEAVY_EDGE_MIN_SAMPLES
544 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
545 return NULL;
547 if (dump_file)
548 fprintf (dump_file,
549 "Found latch edge %d -> %d using profile information.\n",
550 me->src->index, me->dest->index);
551 return me;
554 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
555 on the structure of induction variables. Returns this edge, or NULL if we
556 do not find any.
558 We are quite conservative, and look just for an obvious simple innermost
559 loop (which is the case where we would lose the most performance by not
560 disambiguating the loop). More precisely, we look for the following
561 situation: The source of the chosen latch edge dominates sources of all
562 the other latch edges. Additionally, the header does not contain a phi node
563 such that the argument from the chosen edge is equal to the argument from
564 another edge. */
566 static edge
567 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, VEC (edge, heap) *latches)
569 edge e, latch = VEC_index (edge, latches, 0);
570 unsigned i;
571 gimple phi;
572 gimple_stmt_iterator psi;
573 tree lop;
574 basic_block bb;
576 /* Find the candidate for the latch edge. */
577 for (i = 1; VEC_iterate (edge, latches, i, e); i++)
578 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
579 latch = e;
581 /* Verify that it dominates all the latch edges. */
582 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
583 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
584 return NULL;
586 /* Check for a phi node that would deny that this is a latch edge of
587 a subloop. */
588 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
590 phi = gsi_stmt (psi);
591 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
593 /* Ignore the values that are not changed inside the subloop. */
594 if (TREE_CODE (lop) != SSA_NAME
595 || SSA_NAME_DEF_STMT (lop) == phi)
596 continue;
597 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
598 if (!bb || !flow_bb_inside_loop_p (loop, bb))
599 continue;
601 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
602 if (e != latch
603 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
604 return NULL;
607 if (dump_file)
608 fprintf (dump_file,
609 "Found latch edge %d -> %d using iv structure.\n",
610 latch->src->index, latch->dest->index);
611 return latch;
614 /* If we can determine that one of the several latch edges of LOOP behaves
615 as a latch edge of a separate subloop, returns this edge. Otherwise
616 returns NULL. */
618 static edge
619 find_subloop_latch_edge (struct loop *loop)
621 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
622 edge latch = NULL;
624 if (VEC_length (edge, latches) > 1)
626 latch = find_subloop_latch_edge_by_profile (latches);
628 if (!latch
629 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
630 should use cfghook for this, but it is hard to imagine it would
631 be useful elsewhere. */
632 && current_ir_type () == IR_GIMPLE)
633 latch = find_subloop_latch_edge_by_ivs (loop, latches);
636 VEC_free (edge, heap, latches);
637 return latch;
640 /* Callback for make_forwarder_block. Returns true if the edge E is marked
641 in the set MFB_REIS_SET. */
643 static struct pointer_set_t *mfb_reis_set;
644 static bool
645 mfb_redirect_edges_in_set (edge e)
647 return pointer_set_contains (mfb_reis_set, e);
650 /* Creates a subloop of LOOP with latch edge LATCH. */
652 static void
653 form_subloop (struct loop *loop, edge latch)
655 edge_iterator ei;
656 edge e, new_entry;
657 struct loop *new_loop;
659 mfb_reis_set = pointer_set_create ();
660 FOR_EACH_EDGE (e, ei, loop->header->preds)
662 if (e != latch)
663 pointer_set_insert (mfb_reis_set, e);
665 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
666 NULL);
667 pointer_set_destroy (mfb_reis_set);
669 loop->header = new_entry->src;
671 /* Find the blocks and subloops that belong to the new loop, and add it to
672 the appropriate place in the loop tree. */
673 new_loop = alloc_loop ();
674 new_loop->header = new_entry->dest;
675 new_loop->latch = latch->src;
676 add_loop (new_loop, loop);
679 /* Make all the latch edges of LOOP to go to a single forwarder block --
680 a new latch of LOOP. */
682 static void
683 merge_latch_edges (struct loop *loop)
685 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
686 edge latch, e;
687 unsigned i;
689 gcc_assert (VEC_length (edge, latches) > 0);
691 if (VEC_length (edge, latches) == 1)
692 loop->latch = VEC_index (edge, latches, 0)->src;
693 else
695 if (dump_file)
696 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
698 mfb_reis_set = pointer_set_create ();
699 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
700 pointer_set_insert (mfb_reis_set, e);
701 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
702 NULL);
703 pointer_set_destroy (mfb_reis_set);
705 loop->header = latch->dest;
706 loop->latch = latch->src;
709 VEC_free (edge, heap, latches);
712 /* LOOP may have several latch edges. Transform it into (possibly several)
713 loops with single latch edge. */
715 static void
716 disambiguate_multiple_latches (struct loop *loop)
718 edge e;
720 /* We eliminate the multiple latches by splitting the header to the forwarder
721 block F and the rest R, and redirecting the edges. There are two cases:
723 1) If there is a latch edge E that corresponds to a subloop (we guess
724 that based on profile -- if it is taken much more often than the
725 remaining edges; and on trees, using the information about induction
726 variables of the loops), we redirect E to R, all the remaining edges to
727 F, then rescan the loops and try again for the outer loop.
728 2) If there is no such edge, we redirect all latch edges to F, and the
729 entry edges to R, thus making F the single latch of the loop. */
731 if (dump_file)
732 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
733 loop->num);
735 /* During latch merging, we may need to redirect the entry edges to a new
736 block. This would cause problems if the entry edge was the one from the
737 entry block. To avoid having to handle this case specially, split
738 such entry edge. */
739 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
740 if (e)
741 split_edge (e);
743 while (1)
745 e = find_subloop_latch_edge (loop);
746 if (!e)
747 break;
749 form_subloop (loop, e);
752 merge_latch_edges (loop);
755 /* Split loops with multiple latch edges. */
757 void
758 disambiguate_loops_with_multiple_latches (void)
760 loop_iterator li;
761 struct loop *loop;
763 FOR_EACH_LOOP (li, loop, 0)
765 if (!loop->latch)
766 disambiguate_multiple_latches (loop);
770 /* Return nonzero if basic block BB belongs to LOOP. */
771 bool
772 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
774 struct loop *source_loop;
776 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
777 return 0;
779 source_loop = bb->loop_father;
780 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
783 /* Enumeration predicate for get_loop_body_with_size. */
784 static bool
785 glb_enum_p (const_basic_block bb, const void *glb_loop)
787 const struct loop *const loop = (const struct loop *) glb_loop;
788 return (bb != loop->header
789 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
792 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
793 order against direction of edges from latch. Specially, if
794 header != latch, latch is the 1-st block. LOOP cannot be the fake
795 loop tree root, and its size must be at most MAX_SIZE. The blocks
796 in the LOOP body are stored to BODY, and the size of the LOOP is
797 returned. */
799 unsigned
800 get_loop_body_with_size (const struct loop *loop, basic_block *body,
801 unsigned max_size)
803 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
804 body, max_size, loop);
807 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
808 order against direction of edges from latch. Specially, if
809 header != latch, latch is the 1-st block. */
811 basic_block *
812 get_loop_body (const struct loop *loop)
814 basic_block *body, bb;
815 unsigned tv = 0;
817 gcc_assert (loop->num_nodes);
819 body = XCNEWVEC (basic_block, loop->num_nodes);
821 if (loop->latch == EXIT_BLOCK_PTR)
823 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
824 special-case the fake loop that contains the whole function. */
825 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
826 body[tv++] = loop->header;
827 body[tv++] = EXIT_BLOCK_PTR;
828 FOR_EACH_BB (bb)
829 body[tv++] = bb;
831 else
832 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
834 gcc_assert (tv == loop->num_nodes);
835 return body;
838 /* Fills dominance descendants inside LOOP of the basic block BB into
839 array TOVISIT from index *TV. */
841 static void
842 fill_sons_in_loop (const struct loop *loop, basic_block bb,
843 basic_block *tovisit, int *tv)
845 basic_block son, postpone = NULL;
847 tovisit[(*tv)++] = bb;
848 for (son = first_dom_son (CDI_DOMINATORS, bb);
849 son;
850 son = next_dom_son (CDI_DOMINATORS, son))
852 if (!flow_bb_inside_loop_p (loop, son))
853 continue;
855 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
857 postpone = son;
858 continue;
860 fill_sons_in_loop (loop, son, tovisit, tv);
863 if (postpone)
864 fill_sons_in_loop (loop, postpone, tovisit, tv);
867 /* Gets body of a LOOP (that must be different from the outermost loop)
868 sorted by dominance relation. Additionally, if a basic block s dominates
869 the latch, then only blocks dominated by s are be after it. */
871 basic_block *
872 get_loop_body_in_dom_order (const struct loop *loop)
874 basic_block *tovisit;
875 int tv;
877 gcc_assert (loop->num_nodes);
879 tovisit = XCNEWVEC (basic_block, loop->num_nodes);
881 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
883 tv = 0;
884 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
886 gcc_assert (tv == (int) loop->num_nodes);
888 return tovisit;
891 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
893 basic_block *
894 get_loop_body_in_custom_order (const struct loop *loop,
895 int (*bb_comparator) (const void *, const void *))
897 basic_block *bbs = get_loop_body (loop);
899 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
901 return bbs;
904 /* Get body of a LOOP in breadth first sort order. */
906 basic_block *
907 get_loop_body_in_bfs_order (const struct loop *loop)
909 basic_block *blocks;
910 basic_block bb;
911 bitmap visited;
912 unsigned int i = 0;
913 unsigned int vc = 1;
915 gcc_assert (loop->num_nodes);
916 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
918 blocks = XCNEWVEC (basic_block, loop->num_nodes);
919 visited = BITMAP_ALLOC (NULL);
921 bb = loop->header;
922 while (i < loop->num_nodes)
924 edge e;
925 edge_iterator ei;
927 if (!bitmap_bit_p (visited, bb->index))
929 /* This basic block is now visited */
930 bitmap_set_bit (visited, bb->index);
931 blocks[i++] = bb;
934 FOR_EACH_EDGE (e, ei, bb->succs)
936 if (flow_bb_inside_loop_p (loop, e->dest))
938 if (!bitmap_bit_p (visited, e->dest->index))
940 bitmap_set_bit (visited, e->dest->index);
941 blocks[i++] = e->dest;
946 gcc_assert (i >= vc);
948 bb = blocks[vc++];
951 BITMAP_FREE (visited);
952 return blocks;
955 /* Hash function for struct loop_exit. */
957 static hashval_t
958 loop_exit_hash (const void *ex)
960 const struct loop_exit *const exit = (const struct loop_exit *) ex;
962 return htab_hash_pointer (exit->e);
965 /* Equality function for struct loop_exit. Compares with edge. */
967 static int
968 loop_exit_eq (const void *ex, const void *e)
970 const struct loop_exit *const exit = (const struct loop_exit *) ex;
972 return exit->e == e;
975 /* Frees the list of loop exit descriptions EX. */
977 static void
978 loop_exit_free (void *ex)
980 struct loop_exit *exit = (struct loop_exit *) ex, *next;
982 for (; exit; exit = next)
984 next = exit->next_e;
986 exit->next->prev = exit->prev;
987 exit->prev->next = exit->next;
989 ggc_free (exit);
993 /* Returns the list of records for E as an exit of a loop. */
995 static struct loop_exit *
996 get_exit_descriptions (edge e)
998 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
999 htab_hash_pointer (e));
1002 /* Updates the lists of loop exits in that E appears.
1003 If REMOVED is true, E is being removed, and we
1004 just remove it from the lists of exits.
1005 If NEW_EDGE is true and E is not a loop exit, we
1006 do not try to remove it from loop exit lists. */
1008 void
1009 rescan_loop_exit (edge e, bool new_edge, bool removed)
1011 void **slot;
1012 struct loop_exit *exits = NULL, *exit;
1013 struct loop *aloop, *cloop;
1015 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1016 return;
1018 if (!removed
1019 && e->src->loop_father != NULL
1020 && e->dest->loop_father != NULL
1021 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1023 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1024 for (aloop = e->src->loop_father;
1025 aloop != cloop;
1026 aloop = loop_outer (aloop))
1028 exit = GGC_NEW (struct loop_exit);
1029 exit->e = e;
1031 exit->next = aloop->exits->next;
1032 exit->prev = aloop->exits;
1033 exit->next->prev = exit;
1034 exit->prev->next = exit;
1036 exit->next_e = exits;
1037 exits = exit;
1041 if (!exits && new_edge)
1042 return;
1044 slot = htab_find_slot_with_hash (current_loops->exits, e,
1045 htab_hash_pointer (e),
1046 exits ? INSERT : NO_INSERT);
1047 if (!slot)
1048 return;
1050 if (exits)
1052 if (*slot)
1053 loop_exit_free (*slot);
1054 *slot = exits;
1056 else
1057 htab_clear_slot (current_loops->exits, slot);
1060 /* For each loop, record list of exit edges, and start maintaining these
1061 lists. */
1063 void
1064 record_loop_exits (void)
1066 basic_block bb;
1067 edge_iterator ei;
1068 edge e;
1070 if (!current_loops)
1071 return;
1073 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1074 return;
1075 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1077 gcc_assert (current_loops->exits == NULL);
1078 current_loops->exits = htab_create_alloc (2 * number_of_loops (),
1079 loop_exit_hash,
1080 loop_exit_eq,
1081 loop_exit_free,
1082 ggc_calloc, ggc_free);
1084 FOR_EACH_BB (bb)
1086 FOR_EACH_EDGE (e, ei, bb->succs)
1088 rescan_loop_exit (e, true, false);
1093 /* Dumps information about the exit in *SLOT to FILE.
1094 Callback for htab_traverse. */
1096 static int
1097 dump_recorded_exit (void **slot, void *file)
1099 struct loop_exit *exit = (struct loop_exit *) *slot;
1100 unsigned n = 0;
1101 edge e = exit->e;
1103 for (; exit != NULL; exit = exit->next_e)
1104 n++;
1106 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1107 e->src->index, e->dest->index, n);
1109 return 1;
1112 /* Dumps the recorded exits of loops to FILE. */
1114 extern void dump_recorded_exits (FILE *);
1115 void
1116 dump_recorded_exits (FILE *file)
1118 if (!current_loops->exits)
1119 return;
1120 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1123 /* Releases lists of loop exits. */
1125 void
1126 release_recorded_exits (void)
1128 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1129 htab_delete (current_loops->exits);
1130 current_loops->exits = NULL;
1131 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1134 /* Returns the list of the exit edges of a LOOP. */
1136 VEC (edge, heap) *
1137 get_loop_exit_edges (const struct loop *loop)
1139 VEC (edge, heap) *edges = NULL;
1140 edge e;
1141 unsigned i;
1142 basic_block *body;
1143 edge_iterator ei;
1144 struct loop_exit *exit;
1146 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1148 /* If we maintain the lists of exits, use them. Otherwise we must
1149 scan the body of the loop. */
1150 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1152 for (exit = loop->exits->next; exit->e; exit = exit->next)
1153 VEC_safe_push (edge, heap, edges, exit->e);
1155 else
1157 body = get_loop_body (loop);
1158 for (i = 0; i < loop->num_nodes; i++)
1159 FOR_EACH_EDGE (e, ei, body[i]->succs)
1161 if (!flow_bb_inside_loop_p (loop, e->dest))
1162 VEC_safe_push (edge, heap, edges, e);
1164 free (body);
1167 return edges;
1170 /* Counts the number of conditional branches inside LOOP. */
1172 unsigned
1173 num_loop_branches (const struct loop *loop)
1175 unsigned i, n;
1176 basic_block * body;
1178 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1180 body = get_loop_body (loop);
1181 n = 0;
1182 for (i = 0; i < loop->num_nodes; i++)
1183 if (EDGE_COUNT (body[i]->succs) >= 2)
1184 n++;
1185 free (body);
1187 return n;
1190 /* Adds basic block BB to LOOP. */
1191 void
1192 add_bb_to_loop (basic_block bb, struct loop *loop)
1194 unsigned i;
1195 loop_p ploop;
1196 edge_iterator ei;
1197 edge e;
1199 gcc_assert (bb->loop_father == NULL);
1200 bb->loop_father = loop;
1201 bb->loop_depth = loop_depth (loop);
1202 loop->num_nodes++;
1203 for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
1204 ploop->num_nodes++;
1206 FOR_EACH_EDGE (e, ei, bb->succs)
1208 rescan_loop_exit (e, true, false);
1210 FOR_EACH_EDGE (e, ei, bb->preds)
1212 rescan_loop_exit (e, true, false);
1216 /* Remove basic block BB from loops. */
1217 void
1218 remove_bb_from_loops (basic_block bb)
1220 int i;
1221 struct loop *loop = bb->loop_father;
1222 loop_p ploop;
1223 edge_iterator ei;
1224 edge e;
1226 gcc_assert (loop != NULL);
1227 loop->num_nodes--;
1228 for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
1229 ploop->num_nodes--;
1230 bb->loop_father = NULL;
1231 bb->loop_depth = 0;
1233 FOR_EACH_EDGE (e, ei, bb->succs)
1235 rescan_loop_exit (e, false, true);
1237 FOR_EACH_EDGE (e, ei, bb->preds)
1239 rescan_loop_exit (e, false, true);
1243 /* Finds nearest common ancestor in loop tree for given loops. */
1244 struct loop *
1245 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1247 unsigned sdepth, ddepth;
1249 if (!loop_s) return loop_d;
1250 if (!loop_d) return loop_s;
1252 sdepth = loop_depth (loop_s);
1253 ddepth = loop_depth (loop_d);
1255 if (sdepth < ddepth)
1256 loop_d = VEC_index (loop_p, loop_d->superloops, sdepth);
1257 else if (sdepth > ddepth)
1258 loop_s = VEC_index (loop_p, loop_s->superloops, ddepth);
1260 while (loop_s != loop_d)
1262 loop_s = loop_outer (loop_s);
1263 loop_d = loop_outer (loop_d);
1265 return loop_s;
1268 /* Removes LOOP from structures and frees its data. */
1270 void
1271 delete_loop (struct loop *loop)
1273 /* Remove the loop from structure. */
1274 flow_loop_tree_node_remove (loop);
1276 /* Remove loop from loops array. */
1277 VEC_replace (loop_p, current_loops->larray, loop->num, NULL);
1279 /* Free loop data. */
1280 flow_loop_free (loop);
1283 /* Cancels the LOOP; it must be innermost one. */
1285 static void
1286 cancel_loop (struct loop *loop)
1288 basic_block *bbs;
1289 unsigned i;
1290 struct loop *outer = loop_outer (loop);
1292 gcc_assert (!loop->inner);
1294 /* Move blocks up one level (they should be removed as soon as possible). */
1295 bbs = get_loop_body (loop);
1296 for (i = 0; i < loop->num_nodes; i++)
1297 bbs[i]->loop_father = outer;
1299 delete_loop (loop);
1302 /* Cancels LOOP and all its subloops. */
1303 void
1304 cancel_loop_tree (struct loop *loop)
1306 while (loop->inner)
1307 cancel_loop_tree (loop->inner);
1308 cancel_loop (loop);
1311 /* Checks that information about loops is correct
1312 -- sizes of loops are all right
1313 -- results of get_loop_body really belong to the loop
1314 -- loop header have just single entry edge and single latch edge
1315 -- loop latches have only single successor that is header of their loop
1316 -- irreducible loops are correctly marked
1318 void
1319 verify_loop_structure (void)
1321 unsigned *sizes, i, j;
1322 sbitmap irreds;
1323 basic_block *bbs, bb;
1324 struct loop *loop;
1325 int err = 0;
1326 edge e;
1327 unsigned num = number_of_loops ();
1328 loop_iterator li;
1329 struct loop_exit *exit, *mexit;
1331 /* Check sizes. */
1332 sizes = XCNEWVEC (unsigned, num);
1333 sizes[0] = 2;
1335 FOR_EACH_BB (bb)
1336 for (loop = bb->loop_father; loop; loop = loop_outer (loop))
1337 sizes[loop->num]++;
1339 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
1341 i = loop->num;
1343 if (loop->num_nodes != sizes[i])
1345 error ("size of loop %d should be %d, not %d",
1346 i, sizes[i], loop->num_nodes);
1347 err = 1;
1351 /* Check get_loop_body. */
1352 FOR_EACH_LOOP (li, loop, 0)
1354 bbs = get_loop_body (loop);
1356 for (j = 0; j < loop->num_nodes; j++)
1357 if (!flow_bb_inside_loop_p (loop, bbs[j]))
1359 error ("bb %d do not belong to loop %d",
1360 bbs[j]->index, loop->num);
1361 err = 1;
1363 free (bbs);
1366 /* Check headers and latches. */
1367 FOR_EACH_LOOP (li, loop, 0)
1369 i = loop->num;
1371 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1372 && EDGE_COUNT (loop->header->preds) != 2)
1374 error ("loop %d's header does not have exactly 2 entries", i);
1375 err = 1;
1377 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1379 if (!single_succ_p (loop->latch))
1381 error ("loop %d's latch does not have exactly 1 successor", i);
1382 err = 1;
1384 if (single_succ (loop->latch) != loop->header)
1386 error ("loop %d's latch does not have header as successor", i);
1387 err = 1;
1389 if (loop->latch->loop_father != loop)
1391 error ("loop %d's latch does not belong directly to it", i);
1392 err = 1;
1395 if (loop->header->loop_father != loop)
1397 error ("loop %d's header does not belong directly to it", i);
1398 err = 1;
1400 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1401 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1403 error ("loop %d's latch is marked as part of irreducible region", i);
1404 err = 1;
1408 /* Check irreducible loops. */
1409 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1411 /* Record old info. */
1412 irreds = sbitmap_alloc (last_basic_block);
1413 FOR_EACH_BB (bb)
1415 edge_iterator ei;
1416 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1417 SET_BIT (irreds, bb->index);
1418 else
1419 RESET_BIT (irreds, bb->index);
1420 FOR_EACH_EDGE (e, ei, bb->succs)
1421 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1422 e->flags |= EDGE_ALL_FLAGS + 1;
1425 /* Recount it. */
1426 mark_irreducible_loops ();
1428 /* Compare. */
1429 FOR_EACH_BB (bb)
1431 edge_iterator ei;
1433 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1434 && !TEST_BIT (irreds, bb->index))
1436 error ("basic block %d should be marked irreducible", bb->index);
1437 err = 1;
1439 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1440 && TEST_BIT (irreds, bb->index))
1442 error ("basic block %d should not be marked irreducible", bb->index);
1443 err = 1;
1445 FOR_EACH_EDGE (e, ei, bb->succs)
1447 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1448 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1450 error ("edge from %d to %d should be marked irreducible",
1451 e->src->index, e->dest->index);
1452 err = 1;
1454 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1455 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1457 error ("edge from %d to %d should not be marked irreducible",
1458 e->src->index, e->dest->index);
1459 err = 1;
1461 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1464 free (irreds);
1467 /* Check the recorded loop exits. */
1468 FOR_EACH_LOOP (li, loop, 0)
1470 if (!loop->exits || loop->exits->e != NULL)
1472 error ("corrupted head of the exits list of loop %d",
1473 loop->num);
1474 err = 1;
1476 else
1478 /* Check that the list forms a cycle, and all elements except
1479 for the head are nonnull. */
1480 for (mexit = loop->exits, exit = mexit->next, i = 0;
1481 exit->e && exit != mexit;
1482 exit = exit->next)
1484 if (i++ & 1)
1485 mexit = mexit->next;
1488 if (exit != loop->exits)
1490 error ("corrupted exits list of loop %d", loop->num);
1491 err = 1;
1495 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1497 if (loop->exits->next != loop->exits)
1499 error ("nonempty exits list of loop %d, but exits are not recorded",
1500 loop->num);
1501 err = 1;
1506 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1508 unsigned n_exits = 0, eloops;
1510 memset (sizes, 0, sizeof (unsigned) * num);
1511 FOR_EACH_BB (bb)
1513 edge_iterator ei;
1514 if (bb->loop_father == current_loops->tree_root)
1515 continue;
1516 FOR_EACH_EDGE (e, ei, bb->succs)
1518 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1519 continue;
1521 n_exits++;
1522 exit = get_exit_descriptions (e);
1523 if (!exit)
1525 error ("Exit %d->%d not recorded",
1526 e->src->index, e->dest->index);
1527 err = 1;
1529 eloops = 0;
1530 for (; exit; exit = exit->next_e)
1531 eloops++;
1533 for (loop = bb->loop_father;
1534 loop != e->dest->loop_father;
1535 loop = loop_outer (loop))
1537 eloops--;
1538 sizes[loop->num]++;
1541 if (eloops != 0)
1543 error ("Wrong list of exited loops for edge %d->%d",
1544 e->src->index, e->dest->index);
1545 err = 1;
1550 if (n_exits != htab_elements (current_loops->exits))
1552 error ("Too many loop exits recorded");
1553 err = 1;
1556 FOR_EACH_LOOP (li, loop, 0)
1558 eloops = 0;
1559 for (exit = loop->exits->next; exit->e; exit = exit->next)
1560 eloops++;
1561 if (eloops != sizes[loop->num])
1563 error ("%d exits recorded for loop %d (having %d exits)",
1564 eloops, loop->num, sizes[loop->num]);
1565 err = 1;
1570 gcc_assert (!err);
1572 free (sizes);
1575 /* Returns latch edge of LOOP. */
1576 edge
1577 loop_latch_edge (const struct loop *loop)
1579 return find_edge (loop->latch, loop->header);
1582 /* Returns preheader edge of LOOP. */
1583 edge
1584 loop_preheader_edge (const struct loop *loop)
1586 edge e;
1587 edge_iterator ei;
1589 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1591 FOR_EACH_EDGE (e, ei, loop->header->preds)
1592 if (e->src != loop->latch)
1593 break;
1595 return e;
1598 /* Returns true if E is an exit of LOOP. */
1600 bool
1601 loop_exit_edge_p (const struct loop *loop, const_edge e)
1603 return (flow_bb_inside_loop_p (loop, e->src)
1604 && !flow_bb_inside_loop_p (loop, e->dest));
1607 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1608 or more than one exit. If loops do not have the exits recorded, NULL
1609 is returned always. */
1611 edge
1612 single_exit (const struct loop *loop)
1614 struct loop_exit *exit = loop->exits->next;
1616 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1617 return NULL;
1619 if (exit->e && exit->next == loop->exits)
1620 return exit->e;
1621 else
1622 return NULL;
1625 /* Returns true when BB has an edge exiting LOOP. */
1627 bool
1628 is_loop_exit (struct loop *loop, basic_block bb)
1630 edge e;
1631 edge_iterator ei;
1633 FOR_EACH_EDGE (e, ei, bb->preds)
1634 if (loop_exit_edge_p (loop, e))
1635 return true;
1637 return false;