Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / auto-inc-dec.c
blob929a2dcade856eb9a9114d9d90f3cc7a5c266a64
1 /* Discovery of auto-inc and auto-dec instructions.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
31 #include "regs.h"
32 #include "flags.h"
33 #include "output.h"
34 #include "function.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "recog.h"
38 #include "expr.h"
39 #include "timevar.h"
40 #include "tree-pass.h"
41 #include "df.h"
42 #include "dbgcnt.h"
44 /* This pass was originally removed from flow.c. However there is
45 almost nothing that remains of that code.
47 There are (4) basic forms that are matched:
49 (1) FORM_PRE_ADD
50 a <- b + c
51 ...
54 becomes
56 a <- b
57 ...
58 *(a += c) pre
61 (2) FORM_PRE_INC
62 a += c
63 ...
66 becomes
68 *(a += c) pre
71 (3) FORM_POST_ADD
73 ...
74 b <- a + c
76 (For this case to be true, b must not be assigned or used between
77 the *a and the assignment to b. B must also be a Pmode reg.)
79 becomes
81 b <- a
82 ...
83 *(b += c) post
86 (4) FORM_POST_INC
88 ...
89 a <- a + c
91 becomes
93 *(a += c) post
95 There are three types of values of c.
97 1) c is a constant equal to the width of the value being accessed by
98 the pointer. This is useful for machines that have
99 HAVE_PRE_INCREMENT, HAVE_POST_INCREMENT, HAVE_PRE_DECREMENT or
100 HAVE_POST_DECREMENT defined.
102 2) c is a constant not equal to the width of the value being accessed
103 by the pointer. This is useful for machines that have
104 HAVE_PRE_MODIFY_DISP, HAVE_POST_MODIFY_DISP defined.
106 3) c is a register. This is useful for machines that have
107 HAVE_PRE_MODIFY_REG, HAVE_POST_MODIFY_REG
109 The is one special case: if a already had an offset equal to it +-
110 its width and that offset is equal to -c when the increment was
111 before the ref or +c if the increment was after the ref, then if we
112 can do the combination but switch the pre/post bit. */
114 #ifdef AUTO_INC_DEC
116 enum form
118 FORM_PRE_ADD,
119 FORM_PRE_INC,
120 FORM_POST_ADD,
121 FORM_POST_INC,
122 FORM_last
125 /* The states of the second operands of mem refs and inc insns. If no
126 second operand of the mem_ref was found, it is assumed to just be
127 ZERO. SIZE is the size of the mode accessed in the memref. The
128 ANY is used for constants that are not +-size or 0. REG is used if
129 the forms are reg1 + reg2. */
131 enum inc_state
133 INC_ZERO, /* == 0 */
134 INC_NEG_SIZE, /* == +size */
135 INC_POS_SIZE, /* == -size */
136 INC_NEG_ANY, /* == some -constant */
137 INC_POS_ANY, /* == some +constant */
138 INC_REG, /* == some register */
139 INC_last
142 /* The eight forms that pre/post inc/dec can take. */
143 enum gen_form
145 NOTHING,
146 SIMPLE_PRE_INC, /* ++size */
147 SIMPLE_POST_INC, /* size++ */
148 SIMPLE_PRE_DEC, /* --size */
149 SIMPLE_POST_DEC, /* size-- */
150 DISP_PRE, /* ++con */
151 DISP_POST, /* con++ */
152 REG_PRE, /* ++reg */
153 REG_POST /* reg++ */
156 /* Tmp mem rtx for use in cost modeling. */
157 static rtx mem_tmp;
159 static enum inc_state
160 set_inc_state (HOST_WIDE_INT val, int size)
162 if (val == 0)
163 return INC_ZERO;
164 if (val < 0)
165 return (val == -size) ? INC_NEG_SIZE : INC_NEG_ANY;
166 else
167 return (val == size) ? INC_POS_SIZE : INC_POS_ANY;
170 /* The DECISION_TABLE that describes what form, if any, the increment
171 or decrement will take. It is a three dimensional table. The first
172 index is the type of constant or register found as the second
173 operand of the inc insn. The second index is the type of constant
174 or register found as the second operand of the memory reference (if
175 no second operand exists, 0 is used). The third index is the form
176 and location (relative to the mem reference) of inc insn. */
178 static bool initialized = false;
179 static enum gen_form decision_table[INC_last][INC_last][FORM_last];
181 static void
182 init_decision_table (void)
184 enum gen_form value;
186 if (HAVE_PRE_INCREMENT || HAVE_PRE_MODIFY_DISP)
188 /* Prefer the simple form if both are available. */
189 value = (HAVE_PRE_INCREMENT) ? SIMPLE_PRE_INC : DISP_PRE;
191 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
192 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_INC] = value;
194 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_ADD] = value;
195 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_INC] = value;
198 if (HAVE_POST_INCREMENT || HAVE_POST_MODIFY_DISP)
200 /* Prefer the simple form if both are available. */
201 value = (HAVE_POST_INCREMENT) ? SIMPLE_POST_INC : DISP_POST;
203 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_ADD] = value;
204 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_INC] = value;
206 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_ADD] = value;
207 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_INC] = value;
210 if (HAVE_PRE_DECREMENT || HAVE_PRE_MODIFY_DISP)
212 /* Prefer the simple form if both are available. */
213 value = (HAVE_PRE_DECREMENT) ? SIMPLE_PRE_DEC : DISP_PRE;
215 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
216 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_INC] = value;
218 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_ADD] = value;
219 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_INC] = value;
222 if (HAVE_POST_DECREMENT || HAVE_POST_MODIFY_DISP)
224 /* Prefer the simple form if both are available. */
225 value = (HAVE_POST_DECREMENT) ? SIMPLE_POST_DEC : DISP_POST;
227 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_ADD] = value;
228 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_INC] = value;
230 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_ADD] = value;
231 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_INC] = value;
234 if (HAVE_PRE_MODIFY_DISP)
236 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
237 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
239 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_ADD] = DISP_PRE;
240 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_INC] = DISP_PRE;
242 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
243 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
245 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_ADD] = DISP_PRE;
246 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_INC] = DISP_PRE;
249 if (HAVE_POST_MODIFY_DISP)
251 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
252 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
254 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_ADD] = DISP_POST;
255 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_INC] = DISP_POST;
257 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
258 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
260 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_ADD] = DISP_POST;
261 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_INC] = DISP_POST;
264 /* This is much simpler than the other cases because we do not look
265 for the reg1-reg2 case. Note that we do not have a INC_POS_REG
266 and INC_NEG_REG states. Most of the use of such states would be
267 on a target that had an R1 - R2 update address form.
269 There is the remote possibility that you could also catch a = a +
270 b; *(a - b) as a postdecrement of (a + b). However, it is
271 unclear if *(a - b) would ever be generated on a machine that did
272 not have that kind of addressing mode. The IA-64 and RS6000 will
273 not do this, and I cannot speak for any other. If any
274 architecture does have an a-b update for, these cases should be
275 added. */
276 if (HAVE_PRE_MODIFY_REG)
278 decision_table[INC_REG][INC_ZERO][FORM_PRE_ADD] = REG_PRE;
279 decision_table[INC_REG][INC_ZERO][FORM_PRE_INC] = REG_PRE;
281 decision_table[INC_REG][INC_REG][FORM_POST_ADD] = REG_PRE;
282 decision_table[INC_REG][INC_REG][FORM_POST_INC] = REG_PRE;
285 if (HAVE_POST_MODIFY_REG)
287 decision_table[INC_REG][INC_ZERO][FORM_POST_ADD] = REG_POST;
288 decision_table[INC_REG][INC_ZERO][FORM_POST_INC] = REG_POST;
291 initialized = true;
294 /* Parsed fields of an inc insn of the form "reg_res = reg0+reg1" or
295 "reg_res = reg0+c". */
297 static struct inc_insn
299 rtx insn; /* The insn being parsed. */
300 rtx pat; /* The pattern of the insn. */
301 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
302 enum form form;
303 rtx reg_res;
304 rtx reg0;
305 rtx reg1;
306 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
307 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
308 } inc_insn;
311 /* Dump the parsed inc insn to FILE. */
313 static void
314 dump_inc_insn (FILE *file)
316 const char *f = ((inc_insn.form == FORM_PRE_ADD)
317 || (inc_insn.form == FORM_PRE_INC)) ? "pre" : "post";
319 dump_insn_slim (file, inc_insn.insn);
321 switch (inc_insn.form)
323 case FORM_PRE_ADD:
324 case FORM_POST_ADD:
325 if (inc_insn.reg1_is_const)
326 fprintf (file, "found %s add(%d) r[%d]=r[%d]+%d\n",
327 f, INSN_UID (inc_insn.insn),
328 REGNO (inc_insn.reg_res),
329 REGNO (inc_insn.reg0), (int) inc_insn.reg1_val);
330 else
331 fprintf (file, "found %s add(%d) r[%d]=r[%d]+r[%d]\n",
332 f, INSN_UID (inc_insn.insn),
333 REGNO (inc_insn.reg_res),
334 REGNO (inc_insn.reg0), REGNO (inc_insn.reg1));
335 break;
337 case FORM_PRE_INC:
338 case FORM_POST_INC:
339 if (inc_insn.reg1_is_const)
340 fprintf (file, "found %s inc(%d) r[%d]+=%d\n",
341 f, INSN_UID (inc_insn.insn),
342 REGNO (inc_insn.reg_res), (int) inc_insn.reg1_val);
343 else
344 fprintf (file, "found %s inc(%d) r[%d]+=r[%d]\n",
345 f, INSN_UID (inc_insn.insn),
346 REGNO (inc_insn.reg_res), REGNO (inc_insn.reg1));
347 break;
349 default:
350 break;
355 /* Parsed fields of a mem ref of the form "*(reg0+reg1)" or "*(reg0+c)". */
357 static struct mem_insn
359 rtx insn; /* The insn being parsed. */
360 rtx pat; /* The pattern of the insn. */
361 rtx *mem_loc; /* The address of the field that holds the mem */
362 /* that is to be replaced. */
363 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
364 rtx reg0;
365 rtx reg1; /* This is either a reg or a const depending on
366 reg1_is_const. */
367 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
368 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
369 } mem_insn;
372 /* Dump the parsed mem insn to FILE. */
374 static void
375 dump_mem_insn (FILE *file)
377 dump_insn_slim (file, mem_insn.insn);
379 if (mem_insn.reg1_is_const)
380 fprintf (file, "found mem(%d) *(r[%d]+%d)\n",
381 INSN_UID (mem_insn.insn),
382 REGNO (mem_insn.reg0), (int) mem_insn.reg1_val);
383 else
384 fprintf (file, "found mem(%d) *(r[%d]+r[%d])\n",
385 INSN_UID (mem_insn.insn),
386 REGNO (mem_insn.reg0), REGNO (mem_insn.reg1));
390 /* The following three arrays contain pointers to instructions. They
391 are indexed by REGNO. At any point in the basic block where we are
392 looking these three arrays contain, respectively, the next insn
393 that uses REGNO, the next inc or add insn that uses REGNO and the
394 next insn that sets REGNO.
396 The arrays are not cleared when we move from block to block so
397 whenever an insn is retrieved from these arrays, it's block number
398 must be compared with the current block.
401 static rtx *reg_next_use = NULL;
402 static rtx *reg_next_inc_use = NULL;
403 static rtx *reg_next_def = NULL;
406 /* Move dead note that match PATTERN to TO_INSN from FROM_INSN. We do
407 not really care about moving any other notes from the inc or add
408 insn. Moving the REG_EQUAL and REG_EQUIV is clearly wrong and it
409 does not appear that there are any other kinds of relevant notes. */
411 static void
412 move_dead_notes (rtx to_insn, rtx from_insn, rtx pattern)
414 rtx note;
415 rtx next_note;
416 rtx prev_note = NULL;
418 for (note = REG_NOTES (from_insn); note; note = next_note)
420 next_note = XEXP (note, 1);
422 if ((REG_NOTE_KIND (note) == REG_DEAD)
423 && pattern == XEXP (note, 0))
425 XEXP (note, 1) = REG_NOTES (to_insn);
426 REG_NOTES (to_insn) = note;
427 if (prev_note)
428 XEXP (prev_note, 1) = next_note;
429 else
430 REG_NOTES (from_insn) = next_note;
432 else prev_note = note;
437 /* Create a mov insn DEST_REG <- SRC_REG and insert it before
438 NEXT_INSN. */
440 static rtx
441 insert_move_insn_before (rtx next_insn, rtx dest_reg, rtx src_reg)
443 rtx insns;
445 start_sequence ();
446 emit_move_insn (dest_reg, src_reg);
447 insns = get_insns ();
448 end_sequence ();
449 emit_insn_before (insns, next_insn);
450 return insns;
454 /* Change mem_insn.mem_loc so that uses NEW_ADDR which has an
455 increment of INC_REG. To have reached this point, the change is a
456 legitimate one from a dataflow point of view. The only questions
457 are is this a valid change to the instruction and is this a
458 profitable change to the instruction. */
460 static bool
461 attempt_change (rtx new_addr, rtx inc_reg)
463 /* There are four cases: For the two cases that involve an add
464 instruction, we are going to have to delete the add and insert a
465 mov. We are going to assume that the mov is free. This is
466 fairly early in the backend and there are a lot of opportunities
467 for removing that move later. In particular, there is the case
468 where the move may be dead, this is what dead code elimination
469 passes are for. The two cases where we have an inc insn will be
470 handled mov free. */
472 basic_block bb = BASIC_BLOCK (BLOCK_NUM (mem_insn.insn));
473 rtx mov_insn = NULL;
474 int regno;
475 rtx mem = *mem_insn.mem_loc;
476 enum machine_mode mode = GET_MODE (mem);
477 rtx new_mem;
478 int old_cost = 0;
479 int new_cost = 0;
480 bool speed = optimize_bb_for_speed_p (bb);
482 PUT_MODE (mem_tmp, mode);
483 XEXP (mem_tmp, 0) = new_addr;
485 old_cost = (rtx_cost (mem, SET, speed)
486 + rtx_cost (PATTERN (inc_insn.insn), SET, speed));
487 new_cost = rtx_cost (mem_tmp, SET, speed);
489 /* The first item of business is to see if this is profitable. */
490 if (old_cost < new_cost)
492 if (dump_file)
493 fprintf (dump_file, "cost failure old=%d new=%d\n", old_cost, new_cost);
494 return false;
497 /* Jump thru a lot of hoops to keep the attributes up to date. We
498 do not want to call one of the change address variants that take
499 an offset even though we know the offset in many cases. These
500 assume you are changing where the address is pointing by the
501 offset. */
502 new_mem = replace_equiv_address_nv (mem, new_addr);
503 if (! validate_change (mem_insn.insn, mem_insn.mem_loc, new_mem, 0))
505 if (dump_file)
506 fprintf (dump_file, "validation failure\n");
507 return false;
510 /* From here to the end of the function we are committed to the
511 change, i.e. nothing fails. Generate any necessary movs, move
512 any regnotes, and fix up the reg_next_{use,inc_use,def}. */
513 switch (inc_insn.form)
515 case FORM_PRE_ADD:
516 /* Replace the addition with a move. Do it at the location of
517 the addition since the operand of the addition may change
518 before the memory reference. */
519 mov_insn = insert_move_insn_before (inc_insn.insn,
520 inc_insn.reg_res, inc_insn.reg0);
521 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
523 regno = REGNO (inc_insn.reg_res);
524 reg_next_def[regno] = mov_insn;
525 reg_next_use[regno] = NULL;
526 regno = REGNO (inc_insn.reg0);
527 reg_next_use[regno] = mov_insn;
528 df_recompute_luids (bb);
529 break;
531 case FORM_POST_INC:
532 regno = REGNO (inc_insn.reg_res);
533 if (reg_next_use[regno] == reg_next_inc_use[regno])
534 reg_next_inc_use[regno] = NULL;
536 /* Fallthru. */
537 case FORM_PRE_INC:
538 regno = REGNO (inc_insn.reg_res);
539 reg_next_def[regno] = mem_insn.insn;
540 reg_next_use[regno] = NULL;
542 break;
544 case FORM_POST_ADD:
545 mov_insn = insert_move_insn_before (mem_insn.insn,
546 inc_insn.reg_res, inc_insn.reg0);
547 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
549 /* Do not move anything to the mov insn because the instruction
550 pointer for the main iteration has not yet hit that. It is
551 still pointing to the mem insn. */
552 regno = REGNO (inc_insn.reg_res);
553 reg_next_def[regno] = mem_insn.insn;
554 reg_next_use[regno] = NULL;
556 regno = REGNO (inc_insn.reg0);
557 reg_next_use[regno] = mem_insn.insn;
558 if ((reg_next_use[regno] == reg_next_inc_use[regno])
559 || (reg_next_inc_use[regno] == inc_insn.insn))
560 reg_next_inc_use[regno] = NULL;
561 df_recompute_luids (bb);
562 break;
564 case FORM_last:
565 default:
566 gcc_unreachable ();
569 if (!inc_insn.reg1_is_const)
571 regno = REGNO (inc_insn.reg1);
572 reg_next_use[regno] = mem_insn.insn;
573 if ((reg_next_use[regno] == reg_next_inc_use[regno])
574 || (reg_next_inc_use[regno] == inc_insn.insn))
575 reg_next_inc_use[regno] = NULL;
578 delete_insn (inc_insn.insn);
580 if (dump_file && mov_insn)
582 fprintf (dump_file, "inserting mov ");
583 dump_insn_slim (dump_file, mov_insn);
586 /* Record that this insn has an implicit side effect. */
587 add_reg_note (mem_insn.insn, REG_INC, inc_reg);
589 if (dump_file)
591 fprintf (dump_file, "****success ");
592 dump_insn_slim (dump_file, mem_insn.insn);
595 return true;
599 /* Try to combine the instruction in INC_INSN with the instruction in
600 MEM_INSN. First the form is determined using the DECISION_TABLE
601 and the results of parsing the INC_INSN and the MEM_INSN.
602 Assuming the form is ok, a prototype new address is built which is
603 passed to ATTEMPT_CHANGE for final processing. */
605 static bool
606 try_merge (void)
608 enum gen_form gen_form;
609 rtx mem = *mem_insn.mem_loc;
610 rtx inc_reg = inc_insn.form == FORM_POST_ADD ?
611 inc_insn.reg_res : mem_insn.reg0;
613 /* The width of the mem being accessed. */
614 int size = GET_MODE_SIZE (GET_MODE (mem));
615 rtx last_insn = NULL;
617 switch (inc_insn.form)
619 case FORM_PRE_ADD:
620 case FORM_PRE_INC:
621 last_insn = mem_insn.insn;
622 break;
623 case FORM_POST_INC:
624 case FORM_POST_ADD:
625 last_insn = inc_insn.insn;
626 break;
627 case FORM_last:
628 default:
629 gcc_unreachable ();
632 /* Cannot handle auto inc of the stack. */
633 if (inc_reg == stack_pointer_rtx)
635 if (dump_file)
636 fprintf (dump_file, "cannot inc stack %d failure\n", REGNO (inc_reg));
637 return false;
640 /* Look to see if the inc register is dead after the memory
641 reference. If it is, do not do the combination. */
642 if (find_regno_note (last_insn, REG_DEAD, REGNO (inc_reg)))
644 if (dump_file)
645 fprintf (dump_file, "dead failure %d\n", REGNO (inc_reg));
646 return false;
649 mem_insn.reg1_state = (mem_insn.reg1_is_const)
650 ? set_inc_state (mem_insn.reg1_val, size) : INC_REG;
651 inc_insn.reg1_state = (inc_insn.reg1_is_const)
652 ? set_inc_state (inc_insn.reg1_val, size) : INC_REG;
654 /* Now get the form that we are generating. */
655 gen_form = decision_table
656 [inc_insn.reg1_state][mem_insn.reg1_state][inc_insn.form];
658 if (dbg_cnt (auto_inc_dec) == false)
659 return false;
661 switch (gen_form)
663 default:
664 case NOTHING:
665 return false;
667 case SIMPLE_PRE_INC: /* ++size */
668 if (dump_file)
669 fprintf (dump_file, "trying SIMPLE_PRE_INC\n");
670 return attempt_change (gen_rtx_PRE_INC (Pmode, inc_reg), inc_reg);
671 break;
673 case SIMPLE_POST_INC: /* size++ */
674 if (dump_file)
675 fprintf (dump_file, "trying SIMPLE_POST_INC\n");
676 return attempt_change (gen_rtx_POST_INC (Pmode, inc_reg), inc_reg);
677 break;
679 case SIMPLE_PRE_DEC: /* --size */
680 if (dump_file)
681 fprintf (dump_file, "trying SIMPLE_PRE_DEC\n");
682 return attempt_change (gen_rtx_PRE_DEC (Pmode, inc_reg), inc_reg);
683 break;
685 case SIMPLE_POST_DEC: /* size-- */
686 if (dump_file)
687 fprintf (dump_file, "trying SIMPLE_POST_DEC\n");
688 return attempt_change (gen_rtx_POST_DEC (Pmode, inc_reg), inc_reg);
689 break;
691 case DISP_PRE: /* ++con */
692 if (dump_file)
693 fprintf (dump_file, "trying DISP_PRE\n");
694 return attempt_change (gen_rtx_PRE_MODIFY (Pmode,
695 inc_reg,
696 gen_rtx_PLUS (Pmode,
697 inc_reg,
698 inc_insn.reg1)),
699 inc_reg);
700 break;
702 case DISP_POST: /* con++ */
703 if (dump_file)
704 fprintf (dump_file, "trying POST_DISP\n");
705 return attempt_change (gen_rtx_POST_MODIFY (Pmode,
706 inc_reg,
707 gen_rtx_PLUS (Pmode,
708 inc_reg,
709 inc_insn.reg1)),
710 inc_reg);
711 break;
713 case REG_PRE: /* ++reg */
714 if (dump_file)
715 fprintf (dump_file, "trying PRE_REG\n");
716 return attempt_change (gen_rtx_PRE_MODIFY (Pmode,
717 inc_reg,
718 gen_rtx_PLUS (Pmode,
719 inc_reg,
720 inc_insn.reg1)),
721 inc_reg);
722 break;
724 case REG_POST: /* reg++ */
725 if (dump_file)
726 fprintf (dump_file, "trying POST_REG\n");
727 return attempt_change (gen_rtx_POST_MODIFY (Pmode,
728 inc_reg,
729 gen_rtx_PLUS (Pmode,
730 inc_reg,
731 inc_insn.reg1)),
732 inc_reg);
733 break;
737 /* Return the next insn that uses (if reg_next_use is passed in
738 NEXT_ARRAY) or defines (if reg_next_def is passed in NEXT_ARRAY)
739 REGNO in BB. */
741 static rtx
742 get_next_ref (int regno, basic_block bb, rtx *next_array)
744 rtx insn = next_array[regno];
746 /* Lazy about cleaning out the next_arrays. */
747 if (insn && BASIC_BLOCK (BLOCK_NUM (insn)) != bb)
749 next_array[regno] = NULL;
750 insn = NULL;
753 return insn;
757 /* Reverse the operands in a mem insn. */
759 static void
760 reverse_mem (void)
762 rtx tmp = mem_insn.reg1;
763 mem_insn.reg1 = mem_insn.reg0;
764 mem_insn.reg0 = tmp;
768 /* Reverse the operands in a inc insn. */
770 static void
771 reverse_inc (void)
773 rtx tmp = inc_insn.reg1;
774 inc_insn.reg1 = inc_insn.reg0;
775 inc_insn.reg0 = tmp;
779 /* Return true if INSN is of a form "a = b op c" where a and b are
780 regs. op is + if c is a reg and +|- if c is a const. Fill in
781 INC_INSN with what is found.
783 This function is called in two contexts, if BEFORE_MEM is true,
784 this is called for each insn in the basic block. If BEFORE_MEM is
785 false, it is called for the instruction in the block that uses the
786 index register for some memory reference that is currently being
787 processed. */
789 static bool
790 parse_add_or_inc (rtx insn, bool before_mem)
792 rtx pat = single_set (insn);
793 if (!pat)
794 return false;
796 /* Result must be single reg. */
797 if (!REG_P (SET_DEST (pat)))
798 return false;
800 if ((GET_CODE (SET_SRC (pat)) != PLUS)
801 && (GET_CODE (SET_SRC (pat)) != MINUS))
802 return false;
804 if (!REG_P (XEXP (SET_SRC (pat), 0)))
805 return false;
807 inc_insn.insn = insn;
808 inc_insn.pat = pat;
809 inc_insn.reg_res = SET_DEST (pat);
810 inc_insn.reg0 = XEXP (SET_SRC (pat), 0);
811 if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg0))
812 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
813 else
814 inc_insn.form = before_mem ? FORM_PRE_ADD : FORM_POST_ADD;
816 if (CONST_INT_P (XEXP (SET_SRC (pat), 1)))
818 /* Process a = b + c where c is a const. */
819 inc_insn.reg1_is_const = true;
820 if (GET_CODE (SET_SRC (pat)) == PLUS)
822 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
823 inc_insn.reg1_val = INTVAL (inc_insn.reg1);
825 else
827 inc_insn.reg1_val = -INTVAL (XEXP (SET_SRC (pat), 1));
828 inc_insn.reg1 = GEN_INT (inc_insn.reg1_val);
830 return true;
832 else if ((HAVE_PRE_MODIFY_REG || HAVE_POST_MODIFY_REG)
833 && (REG_P (XEXP (SET_SRC (pat), 1)))
834 && GET_CODE (SET_SRC (pat)) == PLUS)
836 /* Process a = b + c where c is a reg. */
837 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
838 inc_insn.reg1_is_const = false;
840 if (inc_insn.form == FORM_PRE_INC
841 || inc_insn.form == FORM_POST_INC)
842 return true;
843 else if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg1))
845 /* Reverse the two operands and turn *_ADD into *_INC since
846 a = c + a. */
847 reverse_inc ();
848 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
849 return true;
851 else
852 return true;
855 return false;
859 /* A recursive function that checks all of the mem uses in
860 ADDRESS_OF_X to see if any single one of them is compatible with
861 what has been found in inc_insn.
863 -1 is returned for success. 0 is returned if nothing was found and
864 1 is returned for failure. */
866 static int
867 find_address (rtx *address_of_x)
869 rtx x = *address_of_x;
870 enum rtx_code code = GET_CODE (x);
871 const char *const fmt = GET_RTX_FORMAT (code);
872 int i;
873 int value = 0;
874 int tem;
876 if (code == MEM && rtx_equal_p (XEXP (x, 0), inc_insn.reg_res))
878 /* Match with *reg0. */
879 mem_insn.mem_loc = address_of_x;
880 mem_insn.reg0 = inc_insn.reg_res;
881 mem_insn.reg1_is_const = true;
882 mem_insn.reg1_val = 0;
883 mem_insn.reg1 = GEN_INT (0);
884 return -1;
886 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
887 && rtx_equal_p (XEXP (XEXP (x, 0), 0), inc_insn.reg_res))
889 rtx b = XEXP (XEXP (x, 0), 1);
890 mem_insn.mem_loc = address_of_x;
891 mem_insn.reg0 = inc_insn.reg_res;
892 mem_insn.reg1 = b;
893 mem_insn.reg1_is_const = inc_insn.reg1_is_const;
894 if (CONST_INT_P (b))
896 /* Match with *(reg0 + reg1) where reg1 is a const. */
897 HOST_WIDE_INT val = INTVAL (b);
898 if (inc_insn.reg1_is_const
899 && (inc_insn.reg1_val == val || inc_insn.reg1_val == -val))
901 mem_insn.reg1_val = val;
902 return -1;
905 else if (!inc_insn.reg1_is_const
906 && rtx_equal_p (inc_insn.reg1, b))
907 /* Match with *(reg0 + reg1). */
908 return -1;
911 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
913 /* If REG occurs inside a MEM used in a bit-field reference,
914 that is unacceptable. */
915 if (find_address (&XEXP (x, 0)))
916 return 1;
919 if (x == inc_insn.reg_res)
920 return 1;
922 /* Time for some deep diving. */
923 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
925 if (fmt[i] == 'e')
927 tem = find_address (&XEXP (x, i));
928 /* If this is the first use, let it go so the rest of the
929 insn can be checked. */
930 if (value == 0)
931 value = tem;
932 else if (tem != 0)
933 /* More than one match was found. */
934 return 1;
936 else if (fmt[i] == 'E')
938 int j;
939 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
941 tem = find_address (&XVECEXP (x, i, j));
942 /* If this is the first use, let it go so the rest of
943 the insn can be checked. */
944 if (value == 0)
945 value = tem;
946 else if (tem != 0)
947 /* More than one match was found. */
948 return 1;
952 return value;
955 /* Once a suitable mem reference has been found and the MEM_INSN
956 structure has been filled in, FIND_INC is called to see if there is
957 a suitable add or inc insn that follows the mem reference and
958 determine if it is suitable to merge.
960 In the case where the MEM_INSN has two registers in the reference,
961 this function may be called recursively. The first time looking
962 for an add of the first register, and if that fails, looking for an
963 add of the second register. The FIRST_TRY parameter is used to
964 only allow the parameters to be reversed once. */
966 static bool
967 find_inc (bool first_try)
969 rtx insn;
970 basic_block bb = BASIC_BLOCK (BLOCK_NUM (mem_insn.insn));
971 rtx other_insn;
972 df_ref *def_rec;
974 /* Make sure this reg appears only once in this insn. */
975 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg0, 1) != 1)
977 if (dump_file)
978 fprintf (dump_file, "mem count failure\n");
979 return false;
982 if (dump_file)
983 dump_mem_insn (dump_file);
985 /* Find the next use that is an inc. */
986 insn = get_next_ref (REGNO (mem_insn.reg0),
987 BASIC_BLOCK (BLOCK_NUM (mem_insn.insn)),
988 reg_next_inc_use);
989 if (!insn)
990 return false;
992 /* Even though we know the next use is an add or inc because it came
993 from the reg_next_inc_use, we must still reparse. */
994 if (!parse_add_or_inc (insn, false))
996 /* Next use was not an add. Look for one extra case. It could be
997 that we have:
999 *(a + b)
1000 ...= a;
1001 ...= b + a
1003 if we reverse the operands in the mem ref we would
1004 find this. Only try it once though. */
1005 if (first_try && !mem_insn.reg1_is_const)
1007 reverse_mem ();
1008 return find_inc (false);
1010 else
1011 return false;
1014 /* Need to assure that none of the operands of the inc instruction are
1015 assigned to by the mem insn. */
1016 for (def_rec = DF_INSN_DEFS (mem_insn.insn); *def_rec; def_rec++)
1018 df_ref def = *def_rec;
1019 unsigned int regno = DF_REF_REGNO (def);
1020 if ((regno == REGNO (inc_insn.reg0))
1021 || (regno == REGNO (inc_insn.reg_res)))
1023 if (dump_file)
1024 fprintf (dump_file, "inc conflicts with store failure.\n");
1025 return false;
1027 if (!inc_insn.reg1_is_const && (regno == REGNO (inc_insn.reg1)))
1029 if (dump_file)
1030 fprintf (dump_file, "inc conflicts with store failure.\n");
1031 return false;
1035 if (dump_file)
1036 dump_inc_insn (dump_file);
1038 if (inc_insn.form == FORM_POST_ADD)
1040 /* Make sure that there is no insn that assigns to inc_insn.res
1041 between the mem_insn and the inc_insn. */
1042 rtx other_insn = get_next_ref (REGNO (inc_insn.reg_res),
1043 BASIC_BLOCK (BLOCK_NUM (mem_insn.insn)),
1044 reg_next_def);
1045 if (other_insn != inc_insn.insn)
1047 if (dump_file)
1048 fprintf (dump_file,
1049 "result of add is assigned to between mem and inc insns.\n");
1050 return false;
1053 other_insn = get_next_ref (REGNO (inc_insn.reg_res),
1054 BASIC_BLOCK (BLOCK_NUM (mem_insn.insn)),
1055 reg_next_use);
1056 if (other_insn
1057 && (other_insn != inc_insn.insn)
1058 && (DF_INSN_LUID (inc_insn.insn) > DF_INSN_LUID (other_insn)))
1060 if (dump_file)
1061 fprintf (dump_file,
1062 "result of add is used between mem and inc insns.\n");
1063 return false;
1066 /* For the post_add to work, the result_reg of the inc must not be
1067 used in the mem insn since this will become the new index
1068 register. */
1069 if (count_occurrences (PATTERN (mem_insn.insn), inc_insn.reg_res, 1) != 0)
1071 if (dump_file)
1072 fprintf (dump_file, "base reg replacement failure.\n");
1073 return false;
1077 if (mem_insn.reg1_is_const)
1079 if (mem_insn.reg1_val == 0)
1081 if (!inc_insn.reg1_is_const)
1083 /* The mem looks like *r0 and the rhs of the add has two
1084 registers. */
1085 int luid = DF_INSN_LUID (inc_insn.insn);
1086 if (inc_insn.form == FORM_POST_ADD)
1088 /* The trick is that we are not going to increment r0,
1089 we are going to increment the result of the add insn.
1090 For this trick to be correct, the result reg of
1091 the inc must be a valid addressing reg. */
1092 if (GET_MODE (inc_insn.reg_res) != Pmode)
1094 if (dump_file)
1095 fprintf (dump_file, "base reg mode failure.\n");
1096 return false;
1099 /* We also need to make sure that the next use of
1100 inc result is after the inc. */
1101 other_insn
1102 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1103 if (other_insn && luid > DF_INSN_LUID (other_insn))
1104 return false;
1106 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1107 reverse_inc ();
1110 other_insn
1111 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1112 if (other_insn && luid > DF_INSN_LUID (other_insn))
1113 return false;
1116 /* Both the inc/add and the mem have a constant. Need to check
1117 that the constants are ok. */
1118 else if ((mem_insn.reg1_val != inc_insn.reg1_val)
1119 && (mem_insn.reg1_val != -inc_insn.reg1_val))
1120 return false;
1122 else
1124 /* The mem insn is of the form *(a + b) where a and b are both
1125 regs. It may be that in order to match the add or inc we
1126 need to treat it as if it was *(b + a). It may also be that
1127 the add is of the form a + c where c does not match b and
1128 then we just abandon this. */
1130 int luid = DF_INSN_LUID (inc_insn.insn);
1131 rtx other_insn;
1133 /* Make sure this reg appears only once in this insn. */
1134 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg1, 1) != 1)
1135 return false;
1137 if (inc_insn.form == FORM_POST_ADD)
1139 /* For this trick to be correct, the result reg of the inc
1140 must be a valid addressing reg. */
1141 if (GET_MODE (inc_insn.reg_res) != Pmode)
1143 if (dump_file)
1144 fprintf (dump_file, "base reg mode failure.\n");
1145 return false;
1148 if (rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1150 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1152 /* See comment above on find_inc (false) call. */
1153 if (first_try)
1155 reverse_mem ();
1156 return find_inc (false);
1158 else
1159 return false;
1162 /* Need to check that there are no assignments to b
1163 before the add insn. */
1164 other_insn
1165 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1166 if (other_insn && luid > DF_INSN_LUID (other_insn))
1167 return false;
1168 /* All ok for the next step. */
1170 else
1172 /* We know that mem_insn.reg0 must equal inc_insn.reg1
1173 or else we would not have found the inc insn. */
1174 reverse_mem ();
1175 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1177 /* See comment above on find_inc (false) call. */
1178 if (first_try)
1179 return find_inc (false);
1180 else
1181 return false;
1183 /* To have gotten here know that.
1184 *(b + a)
1186 ... = (b + a)
1188 We also know that the lhs of the inc is not b or a. We
1189 need to make sure that there are no assignments to b
1190 between the mem ref and the inc. */
1192 other_insn
1193 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_def);
1194 if (other_insn && luid > DF_INSN_LUID (other_insn))
1195 return false;
1198 /* Need to check that the next use of the add result is later than
1199 add insn since this will be the reg incremented. */
1200 other_insn
1201 = get_next_ref (REGNO (inc_insn.reg_res), bb, reg_next_use);
1202 if (other_insn && luid > DF_INSN_LUID (other_insn))
1203 return false;
1205 else /* FORM_POST_INC. There is less to check here because we
1206 know that operands must line up. */
1208 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1209 /* See comment above on find_inc (false) call. */
1211 if (first_try)
1213 reverse_mem ();
1214 return find_inc (false);
1216 else
1217 return false;
1220 /* To have gotten here know that.
1221 *(a + b)
1223 ... = (a + b)
1225 We also know that the lhs of the inc is not b. We need to make
1226 sure that there are no assignments to b between the mem ref and
1227 the inc. */
1228 other_insn
1229 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1230 if (other_insn && luid > DF_INSN_LUID (other_insn))
1231 return false;
1235 if (inc_insn.form == FORM_POST_INC)
1237 other_insn
1238 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_use);
1239 /* When we found inc_insn, we were looking for the
1240 next add or inc, not the next insn that used the
1241 reg. Because we are going to increment the reg
1242 in this form, we need to make sure that there
1243 were no intervening uses of reg. */
1244 if (inc_insn.insn != other_insn)
1245 return false;
1248 return try_merge ();
1252 /* A recursive function that walks ADDRESS_OF_X to find all of the mem
1253 uses in pat that could be used as an auto inc or dec. It then
1254 calls FIND_INC for each one. */
1256 static bool
1257 find_mem (rtx *address_of_x)
1259 rtx x = *address_of_x;
1260 enum rtx_code code = GET_CODE (x);
1261 const char *const fmt = GET_RTX_FORMAT (code);
1262 int i;
1264 if (code == MEM && REG_P (XEXP (x, 0)))
1266 /* Match with *reg0. */
1267 mem_insn.mem_loc = address_of_x;
1268 mem_insn.reg0 = XEXP (x, 0);
1269 mem_insn.reg1_is_const = true;
1270 mem_insn.reg1_val = 0;
1271 mem_insn.reg1 = GEN_INT (0);
1272 if (find_inc (true))
1273 return true;
1275 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
1276 && REG_P (XEXP (XEXP (x, 0), 0)))
1278 rtx reg1 = XEXP (XEXP (x, 0), 1);
1279 mem_insn.mem_loc = address_of_x;
1280 mem_insn.reg0 = XEXP (XEXP (x, 0), 0);
1281 mem_insn.reg1 = reg1;
1282 if (CONST_INT_P (reg1))
1284 mem_insn.reg1_is_const = true;
1285 /* Match with *(reg0 + c) where c is a const. */
1286 mem_insn.reg1_val = INTVAL (reg1);
1287 if (find_inc (true))
1288 return true;
1290 else if (REG_P (reg1))
1292 /* Match with *(reg0 + reg1). */
1293 mem_insn.reg1_is_const = false;
1294 if (find_inc (true))
1295 return true;
1299 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
1301 /* If REG occurs inside a MEM used in a bit-field reference,
1302 that is unacceptable. */
1303 return false;
1306 /* Time for some deep diving. */
1307 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1309 if (fmt[i] == 'e')
1311 if (find_mem (&XEXP (x, i)))
1312 return true;
1314 else if (fmt[i] == 'E')
1316 int j;
1317 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1318 if (find_mem (&XVECEXP (x, i, j)))
1319 return true;
1322 return false;
1326 /* Try to combine all incs and decs by constant values with memory
1327 references in BB. */
1329 static void
1330 merge_in_block (int max_reg, basic_block bb)
1332 rtx insn;
1333 rtx curr;
1334 int success_in_block = 0;
1336 if (dump_file)
1337 fprintf (dump_file, "\n\nstarting bb %d\n", bb->index);
1339 FOR_BB_INSNS_REVERSE_SAFE (bb, insn, curr)
1341 unsigned int uid = INSN_UID (insn);
1342 bool insn_is_add_or_inc = true;
1344 if (!NONDEBUG_INSN_P (insn))
1345 continue;
1347 /* This continue is deliberate. We do not want the uses of the
1348 jump put into reg_next_use because it is not considered safe to
1349 combine a preincrement with a jump. */
1350 if (JUMP_P (insn))
1351 continue;
1353 if (dump_file)
1354 dump_insn_slim (dump_file, insn);
1356 /* Does this instruction increment or decrement a register? */
1357 if (parse_add_or_inc (insn, true))
1359 int regno = REGNO (inc_insn.reg_res);
1360 /* Cannot handle case where there are three separate regs
1361 before a mem ref. Too many moves would be needed to be
1362 profitable. */
1363 if ((inc_insn.form == FORM_PRE_INC) || inc_insn.reg1_is_const)
1365 mem_insn.insn = get_next_ref (regno, bb, reg_next_use);
1366 if (mem_insn.insn)
1368 bool ok = true;
1369 if (!inc_insn.reg1_is_const)
1371 /* We are only here if we are going to try a
1372 HAVE_*_MODIFY_REG type transformation. c is a
1373 reg and we must sure that the path from the
1374 inc_insn to the mem_insn.insn is both def and use
1375 clear of c because the inc insn is going to move
1376 into the mem_insn.insn. */
1377 int luid = DF_INSN_LUID (mem_insn.insn);
1378 rtx other_insn
1379 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1381 if (other_insn && luid > DF_INSN_LUID (other_insn))
1382 ok = false;
1384 other_insn
1385 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1387 if (other_insn && luid > DF_INSN_LUID (other_insn))
1388 ok = false;
1391 if (dump_file)
1392 dump_inc_insn (dump_file);
1394 if (ok && find_address (&PATTERN (mem_insn.insn)) == -1)
1396 if (dump_file)
1397 dump_mem_insn (dump_file);
1398 if (try_merge ())
1400 success_in_block++;
1401 insn_is_add_or_inc = false;
1407 else
1409 insn_is_add_or_inc = false;
1410 mem_insn.insn = insn;
1411 if (find_mem (&PATTERN (insn)))
1412 success_in_block++;
1415 /* If the inc insn was merged with a mem, the inc insn is gone
1416 and there is noting to update. */
1417 if (DF_INSN_UID_GET (uid))
1419 df_ref *def_rec;
1420 df_ref *use_rec;
1421 /* Need to update next use. */
1422 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1424 df_ref def = *def_rec;
1425 reg_next_use[DF_REF_REGNO (def)] = NULL;
1426 reg_next_inc_use[DF_REF_REGNO (def)] = NULL;
1427 reg_next_def[DF_REF_REGNO (def)] = insn;
1430 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1432 df_ref use = *use_rec;
1433 reg_next_use[DF_REF_REGNO (use)] = insn;
1434 if (insn_is_add_or_inc)
1435 reg_next_inc_use[DF_REF_REGNO (use)] = insn;
1436 else
1437 reg_next_inc_use[DF_REF_REGNO (use)] = NULL;
1440 else if (dump_file)
1441 fprintf (dump_file, "skipping update of deleted insn %d\n", uid);
1444 /* If we were successful, try again. There may have been several
1445 opportunities that were interleaved. This is rare but
1446 gcc.c-torture/compile/pr17273.c actually exhibits this. */
1447 if (success_in_block)
1449 /* In this case, we must clear these vectors since the trick of
1450 testing if the stale insn in the block will not work. */
1451 memset (reg_next_use, 0, max_reg * sizeof(rtx));
1452 memset (reg_next_inc_use, 0, max_reg * sizeof(rtx));
1453 memset (reg_next_def, 0, max_reg * sizeof(rtx));
1454 df_recompute_luids (bb);
1455 merge_in_block (max_reg, bb);
1459 #endif
1461 static unsigned int
1462 rest_of_handle_auto_inc_dec (void)
1464 #ifdef AUTO_INC_DEC
1465 basic_block bb;
1466 int max_reg = max_reg_num ();
1468 if (!initialized)
1469 init_decision_table ();
1471 mem_tmp = gen_rtx_MEM (Pmode, NULL_RTX);
1473 df_note_add_problem ();
1474 df_analyze ();
1476 reg_next_use = XCNEWVEC (rtx, max_reg);
1477 reg_next_inc_use = XCNEWVEC (rtx, max_reg);
1478 reg_next_def = XCNEWVEC (rtx, max_reg);
1479 FOR_EACH_BB (bb)
1480 merge_in_block (max_reg, bb);
1482 free (reg_next_use);
1483 free (reg_next_inc_use);
1484 free (reg_next_def);
1486 mem_tmp = NULL;
1487 #endif
1488 return 0;
1492 /* Discover auto-inc auto-dec instructions. */
1494 static bool
1495 gate_auto_inc_dec (void)
1497 #ifdef AUTO_INC_DEC
1498 return (optimize > 0 && flag_auto_inc_dec);
1499 #else
1500 return false;
1501 #endif
1505 struct rtl_opt_pass pass_inc_dec =
1508 RTL_PASS,
1509 "auto_inc_dec", /* name */
1510 gate_auto_inc_dec, /* gate */
1511 rest_of_handle_auto_inc_dec, /* execute */
1512 NULL, /* sub */
1513 NULL, /* next */
1514 0, /* static_pass_number */
1515 TV_AUTO_INC_DEC, /* tv_id */
1516 0, /* properties_required */
1517 0, /* properties_provided */
1518 0, /* properties_destroyed */
1519 0, /* todo_flags_start */
1520 TODO_dump_func |
1521 TODO_df_finish, /* todo_flags_finish */