Enable dumping of alias graphs.
[official-gcc/Ramakrishna.git] / gcc / alias.c
blobeaa127ec8e5f8eae1e733d24d25c790c568189ad
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
48 #include "df.h"
49 #include "tree-ssa-alias.h"
50 #include "pointer-set.h"
51 #include "tree-flow.h"
53 /* The aliasing API provided here solves related but different problems:
55 Say there exists (in c)
57 struct X {
58 struct Y y1;
59 struct Z z2;
60 } x1, *px1, *px2;
62 struct Y y2, *py;
63 struct Z z2, *pz;
66 py = &px1.y1;
67 px2 = &x1;
69 Consider the four questions:
71 Can a store to x1 interfere with px2->y1?
72 Can a store to x1 interfere with px2->z2?
73 (*px2).z2
74 Can a store to x1 change the value pointed to by with py?
75 Can a store to x1 change the value pointed to by with pz?
77 The answer to these questions can be yes, yes, yes, and maybe.
79 The first two questions can be answered with a simple examination
80 of the type system. If structure X contains a field of type Y then
81 a store thru a pointer to an X can overwrite any field that is
82 contained (recursively) in an X (unless we know that px1 != px2).
84 The last two of the questions can be solved in the same way as the
85 first two questions but this is too conservative. The observation
86 is that in some cases analysis we can know if which (if any) fields
87 are addressed and if those addresses are used in bad ways. This
88 analysis may be language specific. In C, arbitrary operations may
89 be applied to pointers. However, there is some indication that
90 this may be too conservative for some C++ types.
92 The pass ipa-type-escape does this analysis for the types whose
93 instances do not escape across the compilation boundary.
95 Historically in GCC, these two problems were combined and a single
96 data structure was used to represent the solution to these
97 problems. We now have two similar but different data structures,
98 The data structure to solve the last two question is similar to the
99 first, but does not contain have the fields in it whose address are
100 never taken. For types that do escape the compilation unit, the
101 data structures will have identical information.
104 /* The alias sets assigned to MEMs assist the back-end in determining
105 which MEMs can alias which other MEMs. In general, two MEMs in
106 different alias sets cannot alias each other, with one important
107 exception. Consider something like:
109 struct S { int i; double d; };
111 a store to an `S' can alias something of either type `int' or type
112 `double'. (However, a store to an `int' cannot alias a `double'
113 and vice versa.) We indicate this via a tree structure that looks
114 like:
115 struct S
118 |/_ _\|
119 int double
121 (The arrows are directed and point downwards.)
122 In this situation we say the alias set for `struct S' is the
123 `superset' and that those for `int' and `double' are `subsets'.
125 To see whether two alias sets can point to the same memory, we must
126 see if either alias set is a subset of the other. We need not trace
127 past immediate descendants, however, since we propagate all
128 grandchildren up one level.
130 Alias set zero is implicitly a superset of all other alias sets.
131 However, this is no actual entry for alias set zero. It is an
132 error to attempt to explicitly construct a subset of zero. */
134 struct GTY(()) alias_set_entry_d {
135 /* The alias set number, as stored in MEM_ALIAS_SET. */
136 alias_set_type alias_set;
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
140 int has_zero_child;
142 /* The children of the alias set. These are not just the immediate
143 children, but, in fact, all descendants. So, if we have:
145 struct T { struct S s; float f; }
147 continuing our example above, the children here will be all of
148 `int', `double', `float', and `struct S'. */
149 splay_tree GTY((param1_is (int), param2_is (int))) children;
151 typedef struct alias_set_entry_d *alias_set_entry;
153 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
154 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
155 static void record_set (rtx, const_rtx, void *);
156 static int base_alias_check (rtx, rtx, enum machine_mode,
157 enum machine_mode);
158 static rtx find_base_value (rtx);
159 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
160 static int insert_subset_children (splay_tree_node, void*);
161 static alias_set_entry get_alias_set_entry (alias_set_type);
162 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
163 bool (*) (const_rtx, bool));
164 static int aliases_everything_p (const_rtx);
165 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
166 static tree decl_for_component_ref (tree);
167 static rtx adjust_offset_for_component_ref (tree, rtx);
168 static int write_dependence_p (const_rtx, const_rtx, int);
170 static void memory_modified_1 (rtx, const_rtx, void *);
172 /* Set up all info needed to perform alias analysis on memory references. */
174 /* Returns the size in bytes of the mode of X. */
175 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
177 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
178 different alias sets. We ignore alias sets in functions making use
179 of variable arguments because the va_arg macros on some systems are
180 not legal ANSI C. */
181 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
182 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains. 10 is a completely arbitrary choice. */
186 #define MAX_ALIAS_LOOP_PASSES 10
188 /* reg_base_value[N] gives an address to which register N is related.
189 If all sets after the first add or subtract to the current value
190 or otherwise modify it so it does not point to a different top level
191 object, reg_base_value[N] is equal to the address part of the source
192 of the first set.
194 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
195 expressions represent certain special values: function arguments and
196 the stack, frame, and argument pointers.
198 The contents of an ADDRESS is not normally used, the mode of the
199 ADDRESS determines whether the ADDRESS is a function argument or some
200 other special value. Pointer equality, not rtx_equal_p, determines whether
201 two ADDRESS expressions refer to the same base address.
203 The only use of the contents of an ADDRESS is for determining if the
204 current function performs nonlocal memory memory references for the
205 purposes of marking the function as a constant function. */
207 static GTY(()) VEC(rtx,gc) *reg_base_value;
208 static rtx *new_reg_base_value;
210 /* We preserve the copy of old array around to avoid amount of garbage
211 produced. About 8% of garbage produced were attributed to this
212 array. */
213 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
215 /* Static hunks of RTL used by the aliasing code; these are initialized
216 once per function to avoid unnecessary RTL allocations. */
217 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
219 #define REG_BASE_VALUE(X) \
220 (REGNO (X) < VEC_length (rtx, reg_base_value) \
221 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
223 /* Vector indexed by N giving the initial (unchanging) value known for
224 pseudo-register N. This array is initialized in init_alias_analysis,
225 and does not change until end_alias_analysis is called. */
226 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
228 /* Indicates number of valid entries in reg_known_value. */
229 static GTY(()) unsigned int reg_known_value_size;
231 /* Vector recording for each reg_known_value whether it is due to a
232 REG_EQUIV note. Future passes (viz., reload) may replace the
233 pseudo with the equivalent expression and so we account for the
234 dependences that would be introduced if that happens.
236 The REG_EQUIV notes created in assign_parms may mention the arg
237 pointer, and there are explicit insns in the RTL that modify the
238 arg pointer. Thus we must ensure that such insns don't get
239 scheduled across each other because that would invalidate the
240 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
241 wrong, but solving the problem in the scheduler will likely give
242 better code, so we do it here. */
243 static bool *reg_known_equiv_p;
245 /* True when scanning insns from the start of the rtl to the
246 NOTE_INSN_FUNCTION_BEG note. */
247 static bool copying_arguments;
249 DEF_VEC_P(alias_set_entry);
250 DEF_VEC_ALLOC_P(alias_set_entry,gc);
252 /* The splay-tree used to store the various alias set entries. */
253 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
255 /* Build a decomposed reference object for querying the alias-oracle
256 from the MEM rtx and store it in *REF.
257 Returns false if MEM is not suitable for the alias-oracle. */
259 static bool
260 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
262 tree expr = MEM_EXPR (mem);
263 tree base;
265 if (!expr)
266 return false;
268 ao_ref_init (ref, expr);
270 /* Get the base of the reference and see if we have to reject or
271 adjust it. */
272 base = ao_ref_base (ref);
273 if (base == NULL_TREE)
274 return false;
276 /* If this is a pointer dereference of a non-SSA_NAME punt.
277 ??? We could replace it with a pointer to anything. */
278 if (INDIRECT_REF_P (base)
279 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
280 return false;
282 /* The tree oracle doesn't like to have these. */
283 if (TREE_CODE (base) == FUNCTION_DECL
284 || TREE_CODE (base) == LABEL_DECL)
285 return false;
287 /* If this is a reference based on a partitioned decl replace the
288 base with an INDIRECT_REF of the pointer representative we
289 created during stack slot partitioning. */
290 if (TREE_CODE (base) == VAR_DECL
291 && ! TREE_STATIC (base)
292 && cfun->gimple_df->decls_to_pointers != NULL)
294 void *namep;
295 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
296 if (namep)
298 ref->base_alias_set = get_alias_set (base);
299 ref->base = build1 (INDIRECT_REF, TREE_TYPE (base), *(tree *)namep);
303 ref->ref_alias_set = MEM_ALIAS_SET (mem);
305 /* For NULL MEM_OFFSET the MEM_EXPR may have been stripped arbitrarily
306 without recording offset or extent adjustments properly. */
307 if (MEM_OFFSET (mem) == NULL_RTX)
309 ref->offset = 0;
310 ref->max_size = -1;
312 else
314 ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT;
317 /* NULL MEM_SIZE should not really happen with a non-NULL MEM_EXPR,
318 but just play safe here. The size may have been adjusted together
319 with the offset, so we need to take it if it is set and not rely
320 on MEM_EXPR here (which has the size determining parts potentially
321 stripped anyway). We lose precision for max_size which is only
322 available from the remaining MEM_EXPR. */
323 if (MEM_SIZE (mem) == NULL_RTX)
325 ref->size = -1;
326 ref->max_size = -1;
328 else
330 ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT;
333 return true;
336 /* Query the alias-oracle on whether the two memory rtx X and MEM may
337 alias. If TBAA_P is set also apply TBAA. Returns true if the
338 two rtxen may alias, false otherwise. */
340 static bool
341 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
343 ao_ref ref1, ref2;
345 if (!ao_ref_from_mem (&ref1, x)
346 || !ao_ref_from_mem (&ref2, mem))
347 return true;
349 return refs_may_alias_p_1 (&ref1, &ref2, tbaa_p);
352 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
353 such an entry, or NULL otherwise. */
355 static inline alias_set_entry
356 get_alias_set_entry (alias_set_type alias_set)
358 return VEC_index (alias_set_entry, alias_sets, alias_set);
361 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
362 the two MEMs cannot alias each other. */
364 static inline int
365 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
367 /* Perform a basic sanity check. Namely, that there are no alias sets
368 if we're not using strict aliasing. This helps to catch bugs
369 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
370 where a MEM is allocated in some way other than by the use of
371 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
372 use alias sets to indicate that spilled registers cannot alias each
373 other, we might need to remove this check. */
374 gcc_assert (flag_strict_aliasing
375 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
377 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
380 /* Insert the NODE into the splay tree given by DATA. Used by
381 record_alias_subset via splay_tree_foreach. */
383 static int
384 insert_subset_children (splay_tree_node node, void *data)
386 splay_tree_insert ((splay_tree) data, node->key, node->value);
388 return 0;
391 /* Return true if the first alias set is a subset of the second. */
393 bool
394 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
396 alias_set_entry ase;
398 /* Everything is a subset of the "aliases everything" set. */
399 if (set2 == 0)
400 return true;
402 /* Otherwise, check if set1 is a subset of set2. */
403 ase = get_alias_set_entry (set2);
404 if (ase != 0
405 && ((ase->has_zero_child && set1 == 0)
406 || splay_tree_lookup (ase->children,
407 (splay_tree_key) set1)))
408 return true;
409 return false;
412 /* Return 1 if the two specified alias sets may conflict. */
415 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
417 alias_set_entry ase;
419 /* The easy case. */
420 if (alias_sets_must_conflict_p (set1, set2))
421 return 1;
423 /* See if the first alias set is a subset of the second. */
424 ase = get_alias_set_entry (set1);
425 if (ase != 0
426 && (ase->has_zero_child
427 || splay_tree_lookup (ase->children,
428 (splay_tree_key) set2)))
429 return 1;
431 /* Now do the same, but with the alias sets reversed. */
432 ase = get_alias_set_entry (set2);
433 if (ase != 0
434 && (ase->has_zero_child
435 || splay_tree_lookup (ase->children,
436 (splay_tree_key) set1)))
437 return 1;
439 /* The two alias sets are distinct and neither one is the
440 child of the other. Therefore, they cannot conflict. */
441 return 0;
444 static int
445 walk_mems_2 (rtx *x, rtx mem)
447 if (MEM_P (*x))
449 if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
450 return 1;
452 return -1;
454 return 0;
457 static int
458 walk_mems_1 (rtx *x, rtx *pat)
460 if (MEM_P (*x))
462 /* Visit all MEMs in *PAT and check indepedence. */
463 if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
464 /* Indicate that dependence was determined and stop traversal. */
465 return 1;
467 return -1;
469 return 0;
472 /* Return 1 if two specified instructions have mem expr with conflict alias sets*/
473 bool
474 insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
476 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
477 return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
478 &PATTERN (insn2));
481 /* Return 1 if the two specified alias sets will always conflict. */
484 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
486 if (set1 == 0 || set2 == 0 || set1 == set2)
487 return 1;
489 return 0;
492 /* Return 1 if any MEM object of type T1 will always conflict (using the
493 dependency routines in this file) with any MEM object of type T2.
494 This is used when allocating temporary storage. If T1 and/or T2 are
495 NULL_TREE, it means we know nothing about the storage. */
498 objects_must_conflict_p (tree t1, tree t2)
500 alias_set_type set1, set2;
502 /* If neither has a type specified, we don't know if they'll conflict
503 because we may be using them to store objects of various types, for
504 example the argument and local variables areas of inlined functions. */
505 if (t1 == 0 && t2 == 0)
506 return 0;
508 /* If they are the same type, they must conflict. */
509 if (t1 == t2
510 /* Likewise if both are volatile. */
511 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
512 return 1;
514 set1 = t1 ? get_alias_set (t1) : 0;
515 set2 = t2 ? get_alias_set (t2) : 0;
517 /* We can't use alias_sets_conflict_p because we must make sure
518 that every subtype of t1 will conflict with every subtype of
519 t2 for which a pair of subobjects of these respective subtypes
520 overlaps on the stack. */
521 return alias_sets_must_conflict_p (set1, set2);
524 /* Return true if all nested component references handled by
525 get_inner_reference in T are such that we should use the alias set
526 provided by the object at the heart of T.
528 This is true for non-addressable components (which don't have their
529 own alias set), as well as components of objects in alias set zero.
530 This later point is a special case wherein we wish to override the
531 alias set used by the component, but we don't have per-FIELD_DECL
532 assignable alias sets. */
534 bool
535 component_uses_parent_alias_set (const_tree t)
537 while (1)
539 /* If we're at the end, it vacuously uses its own alias set. */
540 if (!handled_component_p (t))
541 return false;
543 switch (TREE_CODE (t))
545 case COMPONENT_REF:
546 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
547 return true;
548 break;
550 case ARRAY_REF:
551 case ARRAY_RANGE_REF:
552 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
553 return true;
554 break;
556 case REALPART_EXPR:
557 case IMAGPART_EXPR:
558 break;
560 default:
561 /* Bitfields and casts are never addressable. */
562 return true;
565 t = TREE_OPERAND (t, 0);
566 if (get_alias_set (TREE_TYPE (t)) == 0)
567 return true;
571 /* Return the alias set for the memory pointed to by T, which may be
572 either a type or an expression. Return -1 if there is nothing
573 special about dereferencing T. */
575 static alias_set_type
576 get_deref_alias_set_1 (tree t)
578 /* If we're not doing any alias analysis, just assume everything
579 aliases everything else. */
580 if (!flag_strict_aliasing)
581 return 0;
583 /* All we care about is the type. */
584 if (! TYPE_P (t))
585 t = TREE_TYPE (t);
587 /* If we have an INDIRECT_REF via a void pointer, we don't
588 know anything about what that might alias. Likewise if the
589 pointer is marked that way. */
590 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
591 || TYPE_REF_CAN_ALIAS_ALL (t))
592 return 0;
594 return -1;
597 /* Return the alias set for the memory pointed to by T, which may be
598 either a type or an expression. */
600 alias_set_type
601 get_deref_alias_set (tree t)
603 alias_set_type set = get_deref_alias_set_1 (t);
605 /* Fall back to the alias-set of the pointed-to type. */
606 if (set == -1)
608 if (! TYPE_P (t))
609 t = TREE_TYPE (t);
610 set = get_alias_set (TREE_TYPE (t));
613 return set;
616 /* Return the alias set for T, which may be either a type or an
617 expression. Call language-specific routine for help, if needed. */
619 alias_set_type
620 get_alias_set (tree t)
622 alias_set_type set;
624 /* If we're not doing any alias analysis, just assume everything
625 aliases everything else. Also return 0 if this or its type is
626 an error. */
627 if (! flag_strict_aliasing || t == error_mark_node
628 || (! TYPE_P (t)
629 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
630 return 0;
632 /* We can be passed either an expression or a type. This and the
633 language-specific routine may make mutually-recursive calls to each other
634 to figure out what to do. At each juncture, we see if this is a tree
635 that the language may need to handle specially. First handle things that
636 aren't types. */
637 if (! TYPE_P (t))
639 tree inner = t;
641 /* Remove any nops, then give the language a chance to do
642 something with this tree before we look at it. */
643 STRIP_NOPS (t);
644 set = lang_hooks.get_alias_set (t);
645 if (set != -1)
646 return set;
648 /* First see if the actual object referenced is an INDIRECT_REF from a
649 restrict-qualified pointer or a "void *". */
650 while (handled_component_p (inner))
652 inner = TREE_OPERAND (inner, 0);
653 STRIP_NOPS (inner);
656 if (INDIRECT_REF_P (inner))
658 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
659 if (set != -1)
660 return set;
663 /* Otherwise, pick up the outermost object that we could have a pointer
664 to, processing conversions as above. */
665 while (component_uses_parent_alias_set (t))
667 t = TREE_OPERAND (t, 0);
668 STRIP_NOPS (t);
671 /* If we've already determined the alias set for a decl, just return
672 it. This is necessary for C++ anonymous unions, whose component
673 variables don't look like union members (boo!). */
674 if (TREE_CODE (t) == VAR_DECL
675 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
676 return MEM_ALIAS_SET (DECL_RTL (t));
678 /* Now all we care about is the type. */
679 t = TREE_TYPE (t);
682 /* Variant qualifiers don't affect the alias set, so get the main
683 variant. */
684 t = TYPE_MAIN_VARIANT (t);
686 /* Always use the canonical type as well. If this is a type that
687 requires structural comparisons to identify compatible types
688 use alias set zero. */
689 if (TYPE_STRUCTURAL_EQUALITY_P (t))
690 return 0;
691 t = TYPE_CANONICAL (t);
692 /* Canonical types shouldn't form a tree nor should the canonical
693 type require structural equality checks. */
694 gcc_assert (!TYPE_STRUCTURAL_EQUALITY_P (t) && TYPE_CANONICAL (t) == t);
696 /* If this is a type with a known alias set, return it. */
697 if (TYPE_ALIAS_SET_KNOWN_P (t))
698 return TYPE_ALIAS_SET (t);
700 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
701 if (!COMPLETE_TYPE_P (t))
703 /* For arrays with unknown size the conservative answer is the
704 alias set of the element type. */
705 if (TREE_CODE (t) == ARRAY_TYPE)
706 return get_alias_set (TREE_TYPE (t));
708 /* But return zero as a conservative answer for incomplete types. */
709 return 0;
712 /* See if the language has special handling for this type. */
713 set = lang_hooks.get_alias_set (t);
714 if (set != -1)
715 return set;
717 /* There are no objects of FUNCTION_TYPE, so there's no point in
718 using up an alias set for them. (There are, of course, pointers
719 and references to functions, but that's different.) */
720 else if (TREE_CODE (t) == FUNCTION_TYPE
721 || TREE_CODE (t) == METHOD_TYPE)
722 set = 0;
724 /* Unless the language specifies otherwise, let vector types alias
725 their components. This avoids some nasty type punning issues in
726 normal usage. And indeed lets vectors be treated more like an
727 array slice. */
728 else if (TREE_CODE (t) == VECTOR_TYPE)
729 set = get_alias_set (TREE_TYPE (t));
731 /* Unless the language specifies otherwise, treat array types the
732 same as their components. This avoids the asymmetry we get
733 through recording the components. Consider accessing a
734 character(kind=1) through a reference to a character(kind=1)[1:1].
735 Or consider if we want to assign integer(kind=4)[0:D.1387] and
736 integer(kind=4)[4] the same alias set or not.
737 Just be pragmatic here and make sure the array and its element
738 type get the same alias set assigned. */
739 else if (TREE_CODE (t) == ARRAY_TYPE
740 && !TYPE_NONALIASED_COMPONENT (t))
741 set = get_alias_set (TREE_TYPE (t));
743 else
744 /* Otherwise make a new alias set for this type. */
745 set = new_alias_set ();
747 TYPE_ALIAS_SET (t) = set;
749 /* If this is an aggregate type, we must record any component aliasing
750 information. */
751 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
752 record_component_aliases (t);
754 return set;
757 /* Return a brand-new alias set. */
759 alias_set_type
760 new_alias_set (void)
762 if (flag_strict_aliasing)
764 if (alias_sets == 0)
765 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
766 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
767 return VEC_length (alias_set_entry, alias_sets) - 1;
769 else
770 return 0;
773 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
774 not everything that aliases SUPERSET also aliases SUBSET. For example,
775 in C, a store to an `int' can alias a load of a structure containing an
776 `int', and vice versa. But it can't alias a load of a 'double' member
777 of the same structure. Here, the structure would be the SUPERSET and
778 `int' the SUBSET. This relationship is also described in the comment at
779 the beginning of this file.
781 This function should be called only once per SUPERSET/SUBSET pair.
783 It is illegal for SUPERSET to be zero; everything is implicitly a
784 subset of alias set zero. */
786 void
787 record_alias_subset (alias_set_type superset, alias_set_type subset)
789 alias_set_entry superset_entry;
790 alias_set_entry subset_entry;
792 /* It is possible in complex type situations for both sets to be the same,
793 in which case we can ignore this operation. */
794 if (superset == subset)
795 return;
797 gcc_assert (superset);
799 superset_entry = get_alias_set_entry (superset);
800 if (superset_entry == 0)
802 /* Create an entry for the SUPERSET, so that we have a place to
803 attach the SUBSET. */
804 superset_entry = GGC_NEW (struct alias_set_entry_d);
805 superset_entry->alias_set = superset;
806 superset_entry->children
807 = splay_tree_new_ggc (splay_tree_compare_ints);
808 superset_entry->has_zero_child = 0;
809 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
812 if (subset == 0)
813 superset_entry->has_zero_child = 1;
814 else
816 subset_entry = get_alias_set_entry (subset);
817 /* If there is an entry for the subset, enter all of its children
818 (if they are not already present) as children of the SUPERSET. */
819 if (subset_entry)
821 if (subset_entry->has_zero_child)
822 superset_entry->has_zero_child = 1;
824 splay_tree_foreach (subset_entry->children, insert_subset_children,
825 superset_entry->children);
828 /* Enter the SUBSET itself as a child of the SUPERSET. */
829 splay_tree_insert (superset_entry->children,
830 (splay_tree_key) subset, 0);
834 /* Record that component types of TYPE, if any, are part of that type for
835 aliasing purposes. For record types, we only record component types
836 for fields that are not marked non-addressable. For array types, we
837 only record the component type if it is not marked non-aliased. */
839 void
840 record_component_aliases (tree type)
842 alias_set_type superset = get_alias_set (type);
843 tree field;
845 if (superset == 0)
846 return;
848 switch (TREE_CODE (type))
850 case RECORD_TYPE:
851 case UNION_TYPE:
852 case QUAL_UNION_TYPE:
853 /* Recursively record aliases for the base classes, if there are any. */
854 if (TYPE_BINFO (type))
856 int i;
857 tree binfo, base_binfo;
859 for (binfo = TYPE_BINFO (type), i = 0;
860 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
861 record_alias_subset (superset,
862 get_alias_set (BINFO_TYPE (base_binfo)));
864 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
865 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
866 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
867 break;
869 case COMPLEX_TYPE:
870 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
871 break;
873 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
874 element type. */
876 default:
877 break;
881 /* Allocate an alias set for use in storing and reading from the varargs
882 spill area. */
884 static GTY(()) alias_set_type varargs_set = -1;
886 alias_set_type
887 get_varargs_alias_set (void)
889 #if 1
890 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
891 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
892 consistently use the varargs alias set for loads from the varargs
893 area. So don't use it anywhere. */
894 return 0;
895 #else
896 if (varargs_set == -1)
897 varargs_set = new_alias_set ();
899 return varargs_set;
900 #endif
903 /* Likewise, but used for the fixed portions of the frame, e.g., register
904 save areas. */
906 static GTY(()) alias_set_type frame_set = -1;
908 alias_set_type
909 get_frame_alias_set (void)
911 if (frame_set == -1)
912 frame_set = new_alias_set ();
914 return frame_set;
917 /* Inside SRC, the source of a SET, find a base address. */
919 static rtx
920 find_base_value (rtx src)
922 unsigned int regno;
924 #if defined (FIND_BASE_TERM)
925 /* Try machine-dependent ways to find the base term. */
926 src = FIND_BASE_TERM (src);
927 #endif
929 switch (GET_CODE (src))
931 case SYMBOL_REF:
932 case LABEL_REF:
933 return src;
935 case REG:
936 regno = REGNO (src);
937 /* At the start of a function, argument registers have known base
938 values which may be lost later. Returning an ADDRESS
939 expression here allows optimization based on argument values
940 even when the argument registers are used for other purposes. */
941 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
942 return new_reg_base_value[regno];
944 /* If a pseudo has a known base value, return it. Do not do this
945 for non-fixed hard regs since it can result in a circular
946 dependency chain for registers which have values at function entry.
948 The test above is not sufficient because the scheduler may move
949 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
950 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
951 && regno < VEC_length (rtx, reg_base_value))
953 /* If we're inside init_alias_analysis, use new_reg_base_value
954 to reduce the number of relaxation iterations. */
955 if (new_reg_base_value && new_reg_base_value[regno]
956 && DF_REG_DEF_COUNT (regno) == 1)
957 return new_reg_base_value[regno];
959 if (VEC_index (rtx, reg_base_value, regno))
960 return VEC_index (rtx, reg_base_value, regno);
963 return 0;
965 case MEM:
966 /* Check for an argument passed in memory. Only record in the
967 copying-arguments block; it is too hard to track changes
968 otherwise. */
969 if (copying_arguments
970 && (XEXP (src, 0) == arg_pointer_rtx
971 || (GET_CODE (XEXP (src, 0)) == PLUS
972 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
973 return gen_rtx_ADDRESS (VOIDmode, src);
974 return 0;
976 case CONST:
977 src = XEXP (src, 0);
978 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
979 break;
981 /* ... fall through ... */
983 case PLUS:
984 case MINUS:
986 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
988 /* If either operand is a REG that is a known pointer, then it
989 is the base. */
990 if (REG_P (src_0) && REG_POINTER (src_0))
991 return find_base_value (src_0);
992 if (REG_P (src_1) && REG_POINTER (src_1))
993 return find_base_value (src_1);
995 /* If either operand is a REG, then see if we already have
996 a known value for it. */
997 if (REG_P (src_0))
999 temp = find_base_value (src_0);
1000 if (temp != 0)
1001 src_0 = temp;
1004 if (REG_P (src_1))
1006 temp = find_base_value (src_1);
1007 if (temp!= 0)
1008 src_1 = temp;
1011 /* If either base is named object or a special address
1012 (like an argument or stack reference), then use it for the
1013 base term. */
1014 if (src_0 != 0
1015 && (GET_CODE (src_0) == SYMBOL_REF
1016 || GET_CODE (src_0) == LABEL_REF
1017 || (GET_CODE (src_0) == ADDRESS
1018 && GET_MODE (src_0) != VOIDmode)))
1019 return src_0;
1021 if (src_1 != 0
1022 && (GET_CODE (src_1) == SYMBOL_REF
1023 || GET_CODE (src_1) == LABEL_REF
1024 || (GET_CODE (src_1) == ADDRESS
1025 && GET_MODE (src_1) != VOIDmode)))
1026 return src_1;
1028 /* Guess which operand is the base address:
1029 If either operand is a symbol, then it is the base. If
1030 either operand is a CONST_INT, then the other is the base. */
1031 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1032 return find_base_value (src_0);
1033 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1034 return find_base_value (src_1);
1036 return 0;
1039 case LO_SUM:
1040 /* The standard form is (lo_sum reg sym) so look only at the
1041 second operand. */
1042 return find_base_value (XEXP (src, 1));
1044 case AND:
1045 /* If the second operand is constant set the base
1046 address to the first operand. */
1047 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1048 return find_base_value (XEXP (src, 0));
1049 return 0;
1051 case TRUNCATE:
1052 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1053 break;
1054 /* Fall through. */
1055 case HIGH:
1056 case PRE_INC:
1057 case PRE_DEC:
1058 case POST_INC:
1059 case POST_DEC:
1060 case PRE_MODIFY:
1061 case POST_MODIFY:
1062 return find_base_value (XEXP (src, 0));
1064 case ZERO_EXTEND:
1065 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1067 rtx temp = find_base_value (XEXP (src, 0));
1069 if (temp != 0 && CONSTANT_P (temp))
1070 temp = convert_memory_address (Pmode, temp);
1072 return temp;
1075 default:
1076 break;
1079 return 0;
1082 /* Called from init_alias_analysis indirectly through note_stores. */
1084 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1085 register N has been set in this function. */
1086 static char *reg_seen;
1088 /* Addresses which are known not to alias anything else are identified
1089 by a unique integer. */
1090 static int unique_id;
1092 static void
1093 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1095 unsigned regno;
1096 rtx src;
1097 int n;
1099 if (!REG_P (dest))
1100 return;
1102 regno = REGNO (dest);
1104 gcc_assert (regno < VEC_length (rtx, reg_base_value));
1106 /* If this spans multiple hard registers, then we must indicate that every
1107 register has an unusable value. */
1108 if (regno < FIRST_PSEUDO_REGISTER)
1109 n = hard_regno_nregs[regno][GET_MODE (dest)];
1110 else
1111 n = 1;
1112 if (n != 1)
1114 while (--n >= 0)
1116 reg_seen[regno + n] = 1;
1117 new_reg_base_value[regno + n] = 0;
1119 return;
1122 if (set)
1124 /* A CLOBBER wipes out any old value but does not prevent a previously
1125 unset register from acquiring a base address (i.e. reg_seen is not
1126 set). */
1127 if (GET_CODE (set) == CLOBBER)
1129 new_reg_base_value[regno] = 0;
1130 return;
1132 src = SET_SRC (set);
1134 else
1136 if (reg_seen[regno])
1138 new_reg_base_value[regno] = 0;
1139 return;
1141 reg_seen[regno] = 1;
1142 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1143 GEN_INT (unique_id++));
1144 return;
1147 /* If this is not the first set of REGNO, see whether the new value
1148 is related to the old one. There are two cases of interest:
1150 (1) The register might be assigned an entirely new value
1151 that has the same base term as the original set.
1153 (2) The set might be a simple self-modification that
1154 cannot change REGNO's base value.
1156 If neither case holds, reject the original base value as invalid.
1157 Note that the following situation is not detected:
1159 extern int x, y; int *p = &x; p += (&y-&x);
1161 ANSI C does not allow computing the difference of addresses
1162 of distinct top level objects. */
1163 if (new_reg_base_value[regno] != 0
1164 && find_base_value (src) != new_reg_base_value[regno])
1165 switch (GET_CODE (src))
1167 case LO_SUM:
1168 case MINUS:
1169 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1170 new_reg_base_value[regno] = 0;
1171 break;
1172 case PLUS:
1173 /* If the value we add in the PLUS is also a valid base value,
1174 this might be the actual base value, and the original value
1175 an index. */
1177 rtx other = NULL_RTX;
1179 if (XEXP (src, 0) == dest)
1180 other = XEXP (src, 1);
1181 else if (XEXP (src, 1) == dest)
1182 other = XEXP (src, 0);
1184 if (! other || find_base_value (other))
1185 new_reg_base_value[regno] = 0;
1186 break;
1188 case AND:
1189 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1190 new_reg_base_value[regno] = 0;
1191 break;
1192 default:
1193 new_reg_base_value[regno] = 0;
1194 break;
1196 /* If this is the first set of a register, record the value. */
1197 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1198 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1199 new_reg_base_value[regno] = find_base_value (src);
1201 reg_seen[regno] = 1;
1204 /* If a value is known for REGNO, return it. */
1207 get_reg_known_value (unsigned int regno)
1209 if (regno >= FIRST_PSEUDO_REGISTER)
1211 regno -= FIRST_PSEUDO_REGISTER;
1212 if (regno < reg_known_value_size)
1213 return reg_known_value[regno];
1215 return NULL;
1218 /* Set it. */
1220 static void
1221 set_reg_known_value (unsigned int regno, rtx val)
1223 if (regno >= FIRST_PSEUDO_REGISTER)
1225 regno -= FIRST_PSEUDO_REGISTER;
1226 if (regno < reg_known_value_size)
1227 reg_known_value[regno] = val;
1231 /* Similarly for reg_known_equiv_p. */
1233 bool
1234 get_reg_known_equiv_p (unsigned int regno)
1236 if (regno >= FIRST_PSEUDO_REGISTER)
1238 regno -= FIRST_PSEUDO_REGISTER;
1239 if (regno < reg_known_value_size)
1240 return reg_known_equiv_p[regno];
1242 return false;
1245 static void
1246 set_reg_known_equiv_p (unsigned int regno, bool val)
1248 if (regno >= FIRST_PSEUDO_REGISTER)
1250 regno -= FIRST_PSEUDO_REGISTER;
1251 if (regno < reg_known_value_size)
1252 reg_known_equiv_p[regno] = val;
1257 /* Returns a canonical version of X, from the point of view alias
1258 analysis. (For example, if X is a MEM whose address is a register,
1259 and the register has a known value (say a SYMBOL_REF), then a MEM
1260 whose address is the SYMBOL_REF is returned.) */
1263 canon_rtx (rtx x)
1265 /* Recursively look for equivalences. */
1266 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1268 rtx t = get_reg_known_value (REGNO (x));
1269 if (t == x)
1270 return x;
1271 if (t)
1272 return canon_rtx (t);
1275 if (GET_CODE (x) == PLUS)
1277 rtx x0 = canon_rtx (XEXP (x, 0));
1278 rtx x1 = canon_rtx (XEXP (x, 1));
1280 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1282 if (CONST_INT_P (x0))
1283 return plus_constant (x1, INTVAL (x0));
1284 else if (CONST_INT_P (x1))
1285 return plus_constant (x0, INTVAL (x1));
1286 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1290 /* This gives us much better alias analysis when called from
1291 the loop optimizer. Note we want to leave the original
1292 MEM alone, but need to return the canonicalized MEM with
1293 all the flags with their original values. */
1294 else if (MEM_P (x))
1295 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1297 return x;
1300 /* Return 1 if X and Y are identical-looking rtx's.
1301 Expect that X and Y has been already canonicalized.
1303 We use the data in reg_known_value above to see if two registers with
1304 different numbers are, in fact, equivalent. */
1306 static int
1307 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1309 int i;
1310 int j;
1311 enum rtx_code code;
1312 const char *fmt;
1314 if (x == 0 && y == 0)
1315 return 1;
1316 if (x == 0 || y == 0)
1317 return 0;
1319 if (x == y)
1320 return 1;
1322 code = GET_CODE (x);
1323 /* Rtx's of different codes cannot be equal. */
1324 if (code != GET_CODE (y))
1325 return 0;
1327 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1328 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1330 if (GET_MODE (x) != GET_MODE (y))
1331 return 0;
1333 /* Some RTL can be compared without a recursive examination. */
1334 switch (code)
1336 case REG:
1337 return REGNO (x) == REGNO (y);
1339 case LABEL_REF:
1340 return XEXP (x, 0) == XEXP (y, 0);
1342 case SYMBOL_REF:
1343 return XSTR (x, 0) == XSTR (y, 0);
1345 case VALUE:
1346 case CONST_INT:
1347 case CONST_DOUBLE:
1348 case CONST_FIXED:
1349 /* There's no need to compare the contents of CONST_DOUBLEs or
1350 CONST_INTs because pointer equality is a good enough
1351 comparison for these nodes. */
1352 return 0;
1354 default:
1355 break;
1358 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1359 if (code == PLUS)
1360 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1361 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1362 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1363 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1364 /* For commutative operations, the RTX match if the operand match in any
1365 order. Also handle the simple binary and unary cases without a loop. */
1366 if (COMMUTATIVE_P (x))
1368 rtx xop0 = canon_rtx (XEXP (x, 0));
1369 rtx yop0 = canon_rtx (XEXP (y, 0));
1370 rtx yop1 = canon_rtx (XEXP (y, 1));
1372 return ((rtx_equal_for_memref_p (xop0, yop0)
1373 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1374 || (rtx_equal_for_memref_p (xop0, yop1)
1375 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1377 else if (NON_COMMUTATIVE_P (x))
1379 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1380 canon_rtx (XEXP (y, 0)))
1381 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1382 canon_rtx (XEXP (y, 1))));
1384 else if (UNARY_P (x))
1385 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1386 canon_rtx (XEXP (y, 0)));
1388 /* Compare the elements. If any pair of corresponding elements
1389 fail to match, return 0 for the whole things.
1391 Limit cases to types which actually appear in addresses. */
1393 fmt = GET_RTX_FORMAT (code);
1394 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1396 switch (fmt[i])
1398 case 'i':
1399 if (XINT (x, i) != XINT (y, i))
1400 return 0;
1401 break;
1403 case 'E':
1404 /* Two vectors must have the same length. */
1405 if (XVECLEN (x, i) != XVECLEN (y, i))
1406 return 0;
1408 /* And the corresponding elements must match. */
1409 for (j = 0; j < XVECLEN (x, i); j++)
1410 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1411 canon_rtx (XVECEXP (y, i, j))) == 0)
1412 return 0;
1413 break;
1415 case 'e':
1416 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1417 canon_rtx (XEXP (y, i))) == 0)
1418 return 0;
1419 break;
1421 /* This can happen for asm operands. */
1422 case 's':
1423 if (strcmp (XSTR (x, i), XSTR (y, i)))
1424 return 0;
1425 break;
1427 /* This can happen for an asm which clobbers memory. */
1428 case '0':
1429 break;
1431 /* It is believed that rtx's at this level will never
1432 contain anything but integers and other rtx's,
1433 except for within LABEL_REFs and SYMBOL_REFs. */
1434 default:
1435 gcc_unreachable ();
1438 return 1;
1442 find_base_term (rtx x)
1444 cselib_val *val;
1445 struct elt_loc_list *l;
1447 #if defined (FIND_BASE_TERM)
1448 /* Try machine-dependent ways to find the base term. */
1449 x = FIND_BASE_TERM (x);
1450 #endif
1452 switch (GET_CODE (x))
1454 case REG:
1455 return REG_BASE_VALUE (x);
1457 case TRUNCATE:
1458 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1459 return 0;
1460 /* Fall through. */
1461 case HIGH:
1462 case PRE_INC:
1463 case PRE_DEC:
1464 case POST_INC:
1465 case POST_DEC:
1466 case PRE_MODIFY:
1467 case POST_MODIFY:
1468 return find_base_term (XEXP (x, 0));
1470 case ZERO_EXTEND:
1471 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1473 rtx temp = find_base_term (XEXP (x, 0));
1475 if (temp != 0 && CONSTANT_P (temp))
1476 temp = convert_memory_address (Pmode, temp);
1478 return temp;
1481 case VALUE:
1482 val = CSELIB_VAL_PTR (x);
1483 if (!val)
1484 return 0;
1485 for (l = val->locs; l; l = l->next)
1486 if ((x = find_base_term (l->loc)) != 0)
1487 return x;
1488 return 0;
1490 case LO_SUM:
1491 /* The standard form is (lo_sum reg sym) so look only at the
1492 second operand. */
1493 return find_base_term (XEXP (x, 1));
1495 case CONST:
1496 x = XEXP (x, 0);
1497 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1498 return 0;
1499 /* Fall through. */
1500 case PLUS:
1501 case MINUS:
1503 rtx tmp1 = XEXP (x, 0);
1504 rtx tmp2 = XEXP (x, 1);
1506 /* This is a little bit tricky since we have to determine which of
1507 the two operands represents the real base address. Otherwise this
1508 routine may return the index register instead of the base register.
1510 That may cause us to believe no aliasing was possible, when in
1511 fact aliasing is possible.
1513 We use a few simple tests to guess the base register. Additional
1514 tests can certainly be added. For example, if one of the operands
1515 is a shift or multiply, then it must be the index register and the
1516 other operand is the base register. */
1518 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1519 return find_base_term (tmp2);
1521 /* If either operand is known to be a pointer, then use it
1522 to determine the base term. */
1523 if (REG_P (tmp1) && REG_POINTER (tmp1))
1525 rtx base = find_base_term (tmp1);
1526 if (base)
1527 return base;
1530 if (REG_P (tmp2) && REG_POINTER (tmp2))
1532 rtx base = find_base_term (tmp2);
1533 if (base)
1534 return base;
1537 /* Neither operand was known to be a pointer. Go ahead and find the
1538 base term for both operands. */
1539 tmp1 = find_base_term (tmp1);
1540 tmp2 = find_base_term (tmp2);
1542 /* If either base term is named object or a special address
1543 (like an argument or stack reference), then use it for the
1544 base term. */
1545 if (tmp1 != 0
1546 && (GET_CODE (tmp1) == SYMBOL_REF
1547 || GET_CODE (tmp1) == LABEL_REF
1548 || (GET_CODE (tmp1) == ADDRESS
1549 && GET_MODE (tmp1) != VOIDmode)))
1550 return tmp1;
1552 if (tmp2 != 0
1553 && (GET_CODE (tmp2) == SYMBOL_REF
1554 || GET_CODE (tmp2) == LABEL_REF
1555 || (GET_CODE (tmp2) == ADDRESS
1556 && GET_MODE (tmp2) != VOIDmode)))
1557 return tmp2;
1559 /* We could not determine which of the two operands was the
1560 base register and which was the index. So we can determine
1561 nothing from the base alias check. */
1562 return 0;
1565 case AND:
1566 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1567 return find_base_term (XEXP (x, 0));
1568 return 0;
1570 case SYMBOL_REF:
1571 case LABEL_REF:
1572 return x;
1574 default:
1575 return 0;
1579 /* Return 0 if the addresses X and Y are known to point to different
1580 objects, 1 if they might be pointers to the same object. */
1582 static int
1583 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1584 enum machine_mode y_mode)
1586 rtx x_base = find_base_term (x);
1587 rtx y_base = find_base_term (y);
1589 /* If the address itself has no known base see if a known equivalent
1590 value has one. If either address still has no known base, nothing
1591 is known about aliasing. */
1592 if (x_base == 0)
1594 rtx x_c;
1596 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1597 return 1;
1599 x_base = find_base_term (x_c);
1600 if (x_base == 0)
1601 return 1;
1604 if (y_base == 0)
1606 rtx y_c;
1607 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1608 return 1;
1610 y_base = find_base_term (y_c);
1611 if (y_base == 0)
1612 return 1;
1615 /* If the base addresses are equal nothing is known about aliasing. */
1616 if (rtx_equal_p (x_base, y_base))
1617 return 1;
1619 /* The base addresses are different expressions. If they are not accessed
1620 via AND, there is no conflict. We can bring knowledge of object
1621 alignment into play here. For example, on alpha, "char a, b;" can
1622 alias one another, though "char a; long b;" cannot. AND addesses may
1623 implicitly alias surrounding objects; i.e. unaligned access in DImode
1624 via AND address can alias all surrounding object types except those
1625 with aligment 8 or higher. */
1626 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1627 return 1;
1628 if (GET_CODE (x) == AND
1629 && (!CONST_INT_P (XEXP (x, 1))
1630 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1631 return 1;
1632 if (GET_CODE (y) == AND
1633 && (!CONST_INT_P (XEXP (y, 1))
1634 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1635 return 1;
1637 /* Differing symbols not accessed via AND never alias. */
1638 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1639 return 0;
1641 /* If one address is a stack reference there can be no alias:
1642 stack references using different base registers do not alias,
1643 a stack reference can not alias a parameter, and a stack reference
1644 can not alias a global. */
1645 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1646 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1647 return 0;
1649 if (! flag_argument_noalias)
1650 return 1;
1652 if (flag_argument_noalias > 1)
1653 return 0;
1655 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1656 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1659 /* Convert the address X into something we can use. This is done by returning
1660 it unchanged unless it is a value; in the latter case we call cselib to get
1661 a more useful rtx. */
1664 get_addr (rtx x)
1666 cselib_val *v;
1667 struct elt_loc_list *l;
1669 if (GET_CODE (x) != VALUE)
1670 return x;
1671 v = CSELIB_VAL_PTR (x);
1672 if (v)
1674 for (l = v->locs; l; l = l->next)
1675 if (CONSTANT_P (l->loc))
1676 return l->loc;
1677 for (l = v->locs; l; l = l->next)
1678 if (!REG_P (l->loc) && !MEM_P (l->loc))
1679 return l->loc;
1680 if (v->locs)
1681 return v->locs->loc;
1683 return x;
1686 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1687 where SIZE is the size in bytes of the memory reference. If ADDR
1688 is not modified by the memory reference then ADDR is returned. */
1690 static rtx
1691 addr_side_effect_eval (rtx addr, int size, int n_refs)
1693 int offset = 0;
1695 switch (GET_CODE (addr))
1697 case PRE_INC:
1698 offset = (n_refs + 1) * size;
1699 break;
1700 case PRE_DEC:
1701 offset = -(n_refs + 1) * size;
1702 break;
1703 case POST_INC:
1704 offset = n_refs * size;
1705 break;
1706 case POST_DEC:
1707 offset = -n_refs * size;
1708 break;
1710 default:
1711 return addr;
1714 if (offset)
1715 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1716 GEN_INT (offset));
1717 else
1718 addr = XEXP (addr, 0);
1719 addr = canon_rtx (addr);
1721 return addr;
1724 /* Return nonzero if X and Y (memory addresses) could reference the
1725 same location in memory. C is an offset accumulator. When
1726 C is nonzero, we are testing aliases between X and Y + C.
1727 XSIZE is the size in bytes of the X reference,
1728 similarly YSIZE is the size in bytes for Y.
1729 Expect that canon_rtx has been already called for X and Y.
1731 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1732 referenced (the reference was BLKmode), so make the most pessimistic
1733 assumptions.
1735 If XSIZE or YSIZE is negative, we may access memory outside the object
1736 being referenced as a side effect. This can happen when using AND to
1737 align memory references, as is done on the Alpha.
1739 Nice to notice that varying addresses cannot conflict with fp if no
1740 local variables had their addresses taken, but that's too hard now. */
1742 static int
1743 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1745 if (GET_CODE (x) == VALUE)
1746 x = get_addr (x);
1747 if (GET_CODE (y) == VALUE)
1748 y = get_addr (y);
1749 if (GET_CODE (x) == HIGH)
1750 x = XEXP (x, 0);
1751 else if (GET_CODE (x) == LO_SUM)
1752 x = XEXP (x, 1);
1753 else
1754 x = addr_side_effect_eval (x, xsize, 0);
1755 if (GET_CODE (y) == HIGH)
1756 y = XEXP (y, 0);
1757 else if (GET_CODE (y) == LO_SUM)
1758 y = XEXP (y, 1);
1759 else
1760 y = addr_side_effect_eval (y, ysize, 0);
1762 if (rtx_equal_for_memref_p (x, y))
1764 if (xsize <= 0 || ysize <= 0)
1765 return 1;
1766 if (c >= 0 && xsize > c)
1767 return 1;
1768 if (c < 0 && ysize+c > 0)
1769 return 1;
1770 return 0;
1773 /* This code used to check for conflicts involving stack references and
1774 globals but the base address alias code now handles these cases. */
1776 if (GET_CODE (x) == PLUS)
1778 /* The fact that X is canonicalized means that this
1779 PLUS rtx is canonicalized. */
1780 rtx x0 = XEXP (x, 0);
1781 rtx x1 = XEXP (x, 1);
1783 if (GET_CODE (y) == PLUS)
1785 /* The fact that Y is canonicalized means that this
1786 PLUS rtx is canonicalized. */
1787 rtx y0 = XEXP (y, 0);
1788 rtx y1 = XEXP (y, 1);
1790 if (rtx_equal_for_memref_p (x1, y1))
1791 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1792 if (rtx_equal_for_memref_p (x0, y0))
1793 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1794 if (CONST_INT_P (x1))
1796 if (CONST_INT_P (y1))
1797 return memrefs_conflict_p (xsize, x0, ysize, y0,
1798 c - INTVAL (x1) + INTVAL (y1));
1799 else
1800 return memrefs_conflict_p (xsize, x0, ysize, y,
1801 c - INTVAL (x1));
1803 else if (CONST_INT_P (y1))
1804 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1806 return 1;
1808 else if (CONST_INT_P (x1))
1809 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1811 else if (GET_CODE (y) == PLUS)
1813 /* The fact that Y is canonicalized means that this
1814 PLUS rtx is canonicalized. */
1815 rtx y0 = XEXP (y, 0);
1816 rtx y1 = XEXP (y, 1);
1818 if (CONST_INT_P (y1))
1819 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1820 else
1821 return 1;
1824 if (GET_CODE (x) == GET_CODE (y))
1825 switch (GET_CODE (x))
1827 case MULT:
1829 /* Handle cases where we expect the second operands to be the
1830 same, and check only whether the first operand would conflict
1831 or not. */
1832 rtx x0, y0;
1833 rtx x1 = canon_rtx (XEXP (x, 1));
1834 rtx y1 = canon_rtx (XEXP (y, 1));
1835 if (! rtx_equal_for_memref_p (x1, y1))
1836 return 1;
1837 x0 = canon_rtx (XEXP (x, 0));
1838 y0 = canon_rtx (XEXP (y, 0));
1839 if (rtx_equal_for_memref_p (x0, y0))
1840 return (xsize == 0 || ysize == 0
1841 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1843 /* Can't properly adjust our sizes. */
1844 if (!CONST_INT_P (x1))
1845 return 1;
1846 xsize /= INTVAL (x1);
1847 ysize /= INTVAL (x1);
1848 c /= INTVAL (x1);
1849 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1852 default:
1853 break;
1856 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1857 as an access with indeterminate size. Assume that references
1858 besides AND are aligned, so if the size of the other reference is
1859 at least as large as the alignment, assume no other overlap. */
1860 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
1862 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1863 xsize = -1;
1864 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1866 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
1868 /* ??? If we are indexing far enough into the array/structure, we
1869 may yet be able to determine that we can not overlap. But we
1870 also need to that we are far enough from the end not to overlap
1871 a following reference, so we do nothing with that for now. */
1872 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1873 ysize = -1;
1874 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1877 if (CONSTANT_P (x))
1879 if (CONST_INT_P (x) && CONST_INT_P (y))
1881 c += (INTVAL (y) - INTVAL (x));
1882 return (xsize <= 0 || ysize <= 0
1883 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1886 if (GET_CODE (x) == CONST)
1888 if (GET_CODE (y) == CONST)
1889 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1890 ysize, canon_rtx (XEXP (y, 0)), c);
1891 else
1892 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1893 ysize, y, c);
1895 if (GET_CODE (y) == CONST)
1896 return memrefs_conflict_p (xsize, x, ysize,
1897 canon_rtx (XEXP (y, 0)), c);
1899 if (CONSTANT_P (y))
1900 return (xsize <= 0 || ysize <= 0
1901 || (rtx_equal_for_memref_p (x, y)
1902 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1904 return 1;
1906 return 1;
1909 /* Functions to compute memory dependencies.
1911 Since we process the insns in execution order, we can build tables
1912 to keep track of what registers are fixed (and not aliased), what registers
1913 are varying in known ways, and what registers are varying in unknown
1914 ways.
1916 If both memory references are volatile, then there must always be a
1917 dependence between the two references, since their order can not be
1918 changed. A volatile and non-volatile reference can be interchanged
1919 though.
1921 A MEM_IN_STRUCT reference at a non-AND varying address can never
1922 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1923 also must allow AND addresses, because they may generate accesses
1924 outside the object being referenced. This is used to generate
1925 aligned addresses from unaligned addresses, for instance, the alpha
1926 storeqi_unaligned pattern. */
1928 /* Read dependence: X is read after read in MEM takes place. There can
1929 only be a dependence here if both reads are volatile. */
1932 read_dependence (const_rtx mem, const_rtx x)
1934 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1937 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1938 MEM2 is a reference to a structure at a varying address, or returns
1939 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1940 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1941 to decide whether or not an address may vary; it should return
1942 nonzero whenever variation is possible.
1943 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1945 static const_rtx
1946 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
1947 rtx mem2_addr,
1948 bool (*varies_p) (const_rtx, bool))
1950 if (! flag_strict_aliasing)
1951 return NULL_RTX;
1953 if (MEM_ALIAS_SET (mem2)
1954 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1955 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1956 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1957 varying address. */
1958 return mem1;
1960 if (MEM_ALIAS_SET (mem1)
1961 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1962 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1963 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1964 varying address. */
1965 return mem2;
1967 return NULL_RTX;
1970 /* Returns nonzero if something about the mode or address format MEM1
1971 indicates that it might well alias *anything*. */
1973 static int
1974 aliases_everything_p (const_rtx mem)
1976 if (GET_CODE (XEXP (mem, 0)) == AND)
1977 /* If the address is an AND, it's very hard to know at what it is
1978 actually pointing. */
1979 return 1;
1981 return 0;
1984 /* Return true if we can determine that the fields referenced cannot
1985 overlap for any pair of objects. */
1987 static bool
1988 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1990 const_tree fieldx, fieldy, typex, typey, orig_y;
1992 if (!flag_strict_aliasing)
1993 return false;
1997 /* The comparison has to be done at a common type, since we don't
1998 know how the inheritance hierarchy works. */
1999 orig_y = y;
2002 fieldx = TREE_OPERAND (x, 1);
2003 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2005 y = orig_y;
2008 fieldy = TREE_OPERAND (y, 1);
2009 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2011 if (typex == typey)
2012 goto found;
2014 y = TREE_OPERAND (y, 0);
2016 while (y && TREE_CODE (y) == COMPONENT_REF);
2018 x = TREE_OPERAND (x, 0);
2020 while (x && TREE_CODE (x) == COMPONENT_REF);
2021 /* Never found a common type. */
2022 return false;
2024 found:
2025 /* If we're left with accessing different fields of a structure,
2026 then no overlap. */
2027 if (TREE_CODE (typex) == RECORD_TYPE
2028 && fieldx != fieldy)
2029 return true;
2031 /* The comparison on the current field failed. If we're accessing
2032 a very nested structure, look at the next outer level. */
2033 x = TREE_OPERAND (x, 0);
2034 y = TREE_OPERAND (y, 0);
2036 while (x && y
2037 && TREE_CODE (x) == COMPONENT_REF
2038 && TREE_CODE (y) == COMPONENT_REF);
2040 return false;
2043 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2045 static tree
2046 decl_for_component_ref (tree x)
2050 x = TREE_OPERAND (x, 0);
2052 while (x && TREE_CODE (x) == COMPONENT_REF);
2054 return x && DECL_P (x) ? x : NULL_TREE;
2057 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2058 offset of the field reference. */
2060 static rtx
2061 adjust_offset_for_component_ref (tree x, rtx offset)
2063 HOST_WIDE_INT ioffset;
2065 if (! offset)
2066 return NULL_RTX;
2068 ioffset = INTVAL (offset);
2071 tree offset = component_ref_field_offset (x);
2072 tree field = TREE_OPERAND (x, 1);
2074 if (! host_integerp (offset, 1))
2075 return NULL_RTX;
2076 ioffset += (tree_low_cst (offset, 1)
2077 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2078 / BITS_PER_UNIT));
2080 x = TREE_OPERAND (x, 0);
2082 while (x && TREE_CODE (x) == COMPONENT_REF);
2084 return GEN_INT (ioffset);
2087 /* Return nonzero if we can determine the exprs corresponding to memrefs
2088 X and Y and they do not overlap. */
2091 nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
2093 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2094 rtx rtlx, rtly;
2095 rtx basex, basey;
2096 rtx moffsetx, moffsety;
2097 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2099 /* Unless both have exprs, we can't tell anything. */
2100 if (exprx == 0 || expry == 0)
2101 return 0;
2103 /* If both are field references, we may be able to determine something. */
2104 if (TREE_CODE (exprx) == COMPONENT_REF
2105 && TREE_CODE (expry) == COMPONENT_REF
2106 && nonoverlapping_component_refs_p (exprx, expry))
2107 return 1;
2110 /* If the field reference test failed, look at the DECLs involved. */
2111 moffsetx = MEM_OFFSET (x);
2112 if (TREE_CODE (exprx) == COMPONENT_REF)
2114 if (TREE_CODE (expry) == VAR_DECL
2115 && POINTER_TYPE_P (TREE_TYPE (expry)))
2117 tree field = TREE_OPERAND (exprx, 1);
2118 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2119 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2120 TREE_TYPE (field)))
2121 return 1;
2124 tree t = decl_for_component_ref (exprx);
2125 if (! t)
2126 return 0;
2127 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2128 exprx = t;
2131 else if (INDIRECT_REF_P (exprx))
2133 exprx = TREE_OPERAND (exprx, 0);
2134 if (flag_argument_noalias < 2
2135 || TREE_CODE (exprx) != PARM_DECL)
2136 return 0;
2139 moffsety = MEM_OFFSET (y);
2140 if (TREE_CODE (expry) == COMPONENT_REF)
2142 if (TREE_CODE (exprx) == VAR_DECL
2143 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2145 tree field = TREE_OPERAND (expry, 1);
2146 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2147 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2148 TREE_TYPE (field)))
2149 return 1;
2152 tree t = decl_for_component_ref (expry);
2153 if (! t)
2154 return 0;
2155 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2156 expry = t;
2159 else if (INDIRECT_REF_P (expry))
2161 expry = TREE_OPERAND (expry, 0);
2162 if (flag_argument_noalias < 2
2163 || TREE_CODE (expry) != PARM_DECL)
2164 return 0;
2167 if (! DECL_P (exprx) || ! DECL_P (expry))
2168 return 0;
2170 rtlx = DECL_RTL (exprx);
2171 rtly = DECL_RTL (expry);
2173 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2174 can't overlap unless they are the same because we never reuse that part
2175 of the stack frame used for locals for spilled pseudos. */
2176 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2177 && ! rtx_equal_p (rtlx, rtly))
2178 return 1;
2180 /* Get the base and offsets of both decls. If either is a register, we
2181 know both are and are the same, so use that as the base. The only
2182 we can avoid overlap is if we can deduce that they are nonoverlapping
2183 pieces of that decl, which is very rare. */
2184 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2185 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2186 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2188 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2189 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2190 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2192 /* If the bases are different, we know they do not overlap if both
2193 are constants or if one is a constant and the other a pointer into the
2194 stack frame. Otherwise a different base means we can't tell if they
2195 overlap or not. */
2196 if (! rtx_equal_p (basex, basey))
2197 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2198 || (CONSTANT_P (basex) && REG_P (basey)
2199 && REGNO_PTR_FRAME_P (REGNO (basey)))
2200 || (CONSTANT_P (basey) && REG_P (basex)
2201 && REGNO_PTR_FRAME_P (REGNO (basex))));
2203 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2204 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2205 : -1);
2206 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2207 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2208 -1);
2210 /* If we have an offset for either memref, it can update the values computed
2211 above. */
2212 if (moffsetx)
2213 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2214 if (moffsety)
2215 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2217 /* If a memref has both a size and an offset, we can use the smaller size.
2218 We can't do this if the offset isn't known because we must view this
2219 memref as being anywhere inside the DECL's MEM. */
2220 if (MEM_SIZE (x) && moffsetx)
2221 sizex = INTVAL (MEM_SIZE (x));
2222 if (MEM_SIZE (y) && moffsety)
2223 sizey = INTVAL (MEM_SIZE (y));
2225 /* Put the values of the memref with the lower offset in X's values. */
2226 if (offsetx > offsety)
2228 tem = offsetx, offsetx = offsety, offsety = tem;
2229 tem = sizex, sizex = sizey, sizey = tem;
2232 /* If we don't know the size of the lower-offset value, we can't tell
2233 if they conflict. Otherwise, we do the test. */
2234 return sizex >= 0 && offsety >= offsetx + sizex;
2237 /* True dependence: X is read after store in MEM takes place. */
2240 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2241 bool (*varies) (const_rtx, bool))
2243 rtx x_addr, mem_addr;
2244 rtx base;
2246 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2247 return 1;
2249 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2250 This is used in epilogue deallocation functions, and in cselib. */
2251 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2252 return 1;
2253 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2254 return 1;
2255 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2256 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2257 return 1;
2259 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2260 return 0;
2262 /* Read-only memory is by definition never modified, and therefore can't
2263 conflict with anything. We don't expect to find read-only set on MEM,
2264 but stupid user tricks can produce them, so don't die. */
2265 if (MEM_READONLY_P (x))
2266 return 0;
2268 if (nonoverlapping_memrefs_p (mem, x))
2269 return 0;
2271 if (mem_mode == VOIDmode)
2272 mem_mode = GET_MODE (mem);
2274 x_addr = get_addr (XEXP (x, 0));
2275 mem_addr = get_addr (XEXP (mem, 0));
2277 base = find_base_term (x_addr);
2278 if (base && (GET_CODE (base) == LABEL_REF
2279 || (GET_CODE (base) == SYMBOL_REF
2280 && CONSTANT_POOL_ADDRESS_P (base))))
2281 return 0;
2283 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2284 return 0;
2286 x_addr = canon_rtx (x_addr);
2287 mem_addr = canon_rtx (mem_addr);
2289 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2290 SIZE_FOR_MODE (x), x_addr, 0))
2291 return 0;
2293 if (aliases_everything_p (x))
2294 return 1;
2296 /* We cannot use aliases_everything_p to test MEM, since we must look
2297 at MEM_MODE, rather than GET_MODE (MEM). */
2298 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2299 return 1;
2301 /* In true_dependence we also allow BLKmode to alias anything. Why
2302 don't we do this in anti_dependence and output_dependence? */
2303 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2304 return 1;
2306 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2307 return 0;
2309 return rtx_refs_may_alias_p (x, mem, true);
2312 /* Canonical true dependence: X is read after store in MEM takes place.
2313 Variant of true_dependence which assumes MEM has already been
2314 canonicalized (hence we no longer do that here).
2315 The mem_addr argument has been added, since true_dependence computed
2316 this value prior to canonicalizing.
2317 If x_addr is non-NULL, it is used in preference of XEXP (x, 0). */
2320 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2321 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
2323 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2324 return 1;
2326 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2327 This is used in epilogue deallocation functions. */
2328 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2329 return 1;
2330 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2331 return 1;
2332 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2333 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2334 return 1;
2336 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2337 return 0;
2339 /* Read-only memory is by definition never modified, and therefore can't
2340 conflict with anything. We don't expect to find read-only set on MEM,
2341 but stupid user tricks can produce them, so don't die. */
2342 if (MEM_READONLY_P (x))
2343 return 0;
2345 if (nonoverlapping_memrefs_p (x, mem))
2346 return 0;
2348 if (! x_addr)
2349 x_addr = get_addr (XEXP (x, 0));
2351 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2352 return 0;
2354 x_addr = canon_rtx (x_addr);
2355 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2356 SIZE_FOR_MODE (x), x_addr, 0))
2357 return 0;
2359 if (aliases_everything_p (x))
2360 return 1;
2362 /* We cannot use aliases_everything_p to test MEM, since we must look
2363 at MEM_MODE, rather than GET_MODE (MEM). */
2364 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2365 return 1;
2367 /* In true_dependence we also allow BLKmode to alias anything. Why
2368 don't we do this in anti_dependence and output_dependence? */
2369 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2370 return 1;
2372 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2373 return 0;
2375 return rtx_refs_may_alias_p (x, mem, true);
2378 /* Returns nonzero if a write to X might alias a previous read from
2379 (or, if WRITEP is nonzero, a write to) MEM. */
2381 static int
2382 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2384 rtx x_addr, mem_addr;
2385 const_rtx fixed_scalar;
2386 rtx base;
2388 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2389 return 1;
2391 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2392 This is used in epilogue deallocation functions. */
2393 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2394 return 1;
2395 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2396 return 1;
2397 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2398 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2399 return 1;
2401 /* A read from read-only memory can't conflict with read-write memory. */
2402 if (!writep && MEM_READONLY_P (mem))
2403 return 0;
2405 if (nonoverlapping_memrefs_p (x, mem))
2406 return 0;
2408 x_addr = get_addr (XEXP (x, 0));
2409 mem_addr = get_addr (XEXP (mem, 0));
2411 if (! writep)
2413 base = find_base_term (mem_addr);
2414 if (base && (GET_CODE (base) == LABEL_REF
2415 || (GET_CODE (base) == SYMBOL_REF
2416 && CONSTANT_POOL_ADDRESS_P (base))))
2417 return 0;
2420 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2421 GET_MODE (mem)))
2422 return 0;
2424 x_addr = canon_rtx (x_addr);
2425 mem_addr = canon_rtx (mem_addr);
2427 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2428 SIZE_FOR_MODE (x), x_addr, 0))
2429 return 0;
2431 fixed_scalar
2432 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2433 rtx_addr_varies_p);
2435 if ((fixed_scalar == mem && !aliases_everything_p (x))
2436 || (fixed_scalar == x && !aliases_everything_p (mem)))
2437 return 0;
2439 return rtx_refs_may_alias_p (x, mem, false);
2442 /* Anti dependence: X is written after read in MEM takes place. */
2445 anti_dependence (const_rtx mem, const_rtx x)
2447 return write_dependence_p (mem, x, /*writep=*/0);
2450 /* Output dependence: X is written after store in MEM takes place. */
2453 output_dependence (const_rtx mem, const_rtx x)
2455 return write_dependence_p (mem, x, /*writep=*/1);
2459 void
2460 init_alias_target (void)
2462 int i;
2464 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2466 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2467 /* Check whether this register can hold an incoming pointer
2468 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2469 numbers, so translate if necessary due to register windows. */
2470 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2471 && HARD_REGNO_MODE_OK (i, Pmode))
2472 static_reg_base_value[i]
2473 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2475 static_reg_base_value[STACK_POINTER_REGNUM]
2476 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2477 static_reg_base_value[ARG_POINTER_REGNUM]
2478 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2479 static_reg_base_value[FRAME_POINTER_REGNUM]
2480 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2481 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2482 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2483 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2484 #endif
2487 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2488 to be memory reference. */
2489 static bool memory_modified;
2490 static void
2491 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2493 if (MEM_P (x))
2495 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2496 memory_modified = true;
2501 /* Return true when INSN possibly modify memory contents of MEM
2502 (i.e. address can be modified). */
2503 bool
2504 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2506 if (!INSN_P (insn))
2507 return false;
2508 memory_modified = false;
2509 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2510 return memory_modified;
2513 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2514 array. */
2516 void
2517 init_alias_analysis (void)
2519 unsigned int maxreg = max_reg_num ();
2520 int changed, pass;
2521 int i;
2522 unsigned int ui;
2523 rtx insn;
2525 timevar_push (TV_ALIAS_ANALYSIS);
2527 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2528 reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
2529 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2531 /* If we have memory allocated from the previous run, use it. */
2532 if (old_reg_base_value)
2533 reg_base_value = old_reg_base_value;
2535 if (reg_base_value)
2536 VEC_truncate (rtx, reg_base_value, 0);
2538 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2540 new_reg_base_value = XNEWVEC (rtx, maxreg);
2541 reg_seen = XNEWVEC (char, maxreg);
2543 /* The basic idea is that each pass through this loop will use the
2544 "constant" information from the previous pass to propagate alias
2545 information through another level of assignments.
2547 This could get expensive if the assignment chains are long. Maybe
2548 we should throttle the number of iterations, possibly based on
2549 the optimization level or flag_expensive_optimizations.
2551 We could propagate more information in the first pass by making use
2552 of DF_REG_DEF_COUNT to determine immediately that the alias information
2553 for a pseudo is "constant".
2555 A program with an uninitialized variable can cause an infinite loop
2556 here. Instead of doing a full dataflow analysis to detect such problems
2557 we just cap the number of iterations for the loop.
2559 The state of the arrays for the set chain in question does not matter
2560 since the program has undefined behavior. */
2562 pass = 0;
2565 /* Assume nothing will change this iteration of the loop. */
2566 changed = 0;
2568 /* We want to assign the same IDs each iteration of this loop, so
2569 start counting from zero each iteration of the loop. */
2570 unique_id = 0;
2572 /* We're at the start of the function each iteration through the
2573 loop, so we're copying arguments. */
2574 copying_arguments = true;
2576 /* Wipe the potential alias information clean for this pass. */
2577 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2579 /* Wipe the reg_seen array clean. */
2580 memset (reg_seen, 0, maxreg);
2582 /* Mark all hard registers which may contain an address.
2583 The stack, frame and argument pointers may contain an address.
2584 An argument register which can hold a Pmode value may contain
2585 an address even if it is not in BASE_REGS.
2587 The address expression is VOIDmode for an argument and
2588 Pmode for other registers. */
2590 memcpy (new_reg_base_value, static_reg_base_value,
2591 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2593 /* Walk the insns adding values to the new_reg_base_value array. */
2594 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2596 if (INSN_P (insn))
2598 rtx note, set;
2600 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2601 /* The prologue/epilogue insns are not threaded onto the
2602 insn chain until after reload has completed. Thus,
2603 there is no sense wasting time checking if INSN is in
2604 the prologue/epilogue until after reload has completed. */
2605 if (reload_completed
2606 && prologue_epilogue_contains (insn))
2607 continue;
2608 #endif
2610 /* If this insn has a noalias note, process it, Otherwise,
2611 scan for sets. A simple set will have no side effects
2612 which could change the base value of any other register. */
2614 if (GET_CODE (PATTERN (insn)) == SET
2615 && REG_NOTES (insn) != 0
2616 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2617 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2618 else
2619 note_stores (PATTERN (insn), record_set, NULL);
2621 set = single_set (insn);
2623 if (set != 0
2624 && REG_P (SET_DEST (set))
2625 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2627 unsigned int regno = REGNO (SET_DEST (set));
2628 rtx src = SET_SRC (set);
2629 rtx t;
2631 note = find_reg_equal_equiv_note (insn);
2632 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2633 && DF_REG_DEF_COUNT (regno) != 1)
2634 note = NULL_RTX;
2636 if (note != NULL_RTX
2637 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2638 && ! rtx_varies_p (XEXP (note, 0), 1)
2639 && ! reg_overlap_mentioned_p (SET_DEST (set),
2640 XEXP (note, 0)))
2642 set_reg_known_value (regno, XEXP (note, 0));
2643 set_reg_known_equiv_p (regno,
2644 REG_NOTE_KIND (note) == REG_EQUIV);
2646 else if (DF_REG_DEF_COUNT (regno) == 1
2647 && GET_CODE (src) == PLUS
2648 && REG_P (XEXP (src, 0))
2649 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2650 && CONST_INT_P (XEXP (src, 1)))
2652 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2653 set_reg_known_value (regno, t);
2654 set_reg_known_equiv_p (regno, 0);
2656 else if (DF_REG_DEF_COUNT (regno) == 1
2657 && ! rtx_varies_p (src, 1))
2659 set_reg_known_value (regno, src);
2660 set_reg_known_equiv_p (regno, 0);
2664 else if (NOTE_P (insn)
2665 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2666 copying_arguments = false;
2669 /* Now propagate values from new_reg_base_value to reg_base_value. */
2670 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2672 for (ui = 0; ui < maxreg; ui++)
2674 if (new_reg_base_value[ui]
2675 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2676 && ! rtx_equal_p (new_reg_base_value[ui],
2677 VEC_index (rtx, reg_base_value, ui)))
2679 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2680 changed = 1;
2684 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2686 /* Fill in the remaining entries. */
2687 for (i = 0; i < (int)reg_known_value_size; i++)
2688 if (reg_known_value[i] == 0)
2689 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2691 /* Clean up. */
2692 free (new_reg_base_value);
2693 new_reg_base_value = 0;
2694 free (reg_seen);
2695 reg_seen = 0;
2696 timevar_pop (TV_ALIAS_ANALYSIS);
2699 void
2700 end_alias_analysis (void)
2702 old_reg_base_value = reg_base_value;
2703 ggc_free (reg_known_value);
2704 reg_known_value = 0;
2705 reg_known_value_size = 0;
2706 free (reg_known_equiv_p);
2707 reg_known_equiv_p = 0;
2710 #include "gt-alias.h"