Factor uses of build_pairwise_scheduling.
[official-gcc/Ramakrishna.git] / gcc / tree-ssa-loop-im.c
blob1cc56595a9d7881d30ef2e5637056052b9135fb7
1 /* Loop invariant motion.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software
3 Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "output.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "domwalk.h"
37 #include "params.h"
38 #include "tree-pass.h"
39 #include "flags.h"
40 #include "real.h"
41 #include "hashtab.h"
42 #include "tree-affine.h"
43 #include "pointer-set.h"
44 #include "tree-ssa-propagate.h"
46 /* TODO: Support for predicated code motion. I.e.
48 while (1)
50 if (cond)
52 a = inv;
53 something;
57 Where COND and INV are is invariants, but evaluating INV may trap or be
58 invalid from some other reason if !COND. This may be transformed to
60 if (cond)
61 a = inv;
62 while (1)
64 if (cond)
65 something;
66 } */
68 /* A type for the list of statements that have to be moved in order to be able
69 to hoist an invariant computation. */
71 struct depend
73 gimple stmt;
74 struct depend *next;
77 /* The auxiliary data kept for each statement. */
79 struct lim_aux_data
81 struct loop *max_loop; /* The outermost loop in that the statement
82 is invariant. */
84 struct loop *tgt_loop; /* The loop out of that we want to move the
85 invariant. */
87 struct loop *always_executed_in;
88 /* The outermost loop for that we are sure
89 the statement is executed if the loop
90 is entered. */
92 unsigned cost; /* Cost of the computation performed by the
93 statement. */
95 struct depend *depends; /* List of statements that must be also hoisted
96 out of the loop when this statement is
97 hoisted; i.e. those that define the operands
98 of the statement and are inside of the
99 MAX_LOOP loop. */
102 /* Maps statements to their lim_aux_data. */
104 static struct pointer_map_t *lim_aux_data_map;
106 /* Description of a memory reference location. */
108 typedef struct mem_ref_loc
110 tree *ref; /* The reference itself. */
111 gimple stmt; /* The statement in that it occurs. */
112 } *mem_ref_loc_p;
114 DEF_VEC_P(mem_ref_loc_p);
115 DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
117 /* The list of memory reference locations in a loop. */
119 typedef struct mem_ref_locs
121 VEC (mem_ref_loc_p, heap) *locs;
122 } *mem_ref_locs_p;
124 DEF_VEC_P(mem_ref_locs_p);
125 DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
127 /* Description of a memory reference. */
129 typedef struct mem_ref
131 tree mem; /* The memory itself. */
132 unsigned id; /* ID assigned to the memory reference
133 (its index in memory_accesses.refs_list) */
134 hashval_t hash; /* Its hash value. */
135 bitmap stored; /* The set of loops in that this memory location
136 is stored to. */
137 VEC (mem_ref_locs_p, heap) *accesses_in_loop;
138 /* The locations of the accesses. Vector
139 indexed by the loop number. */
140 bitmap vops; /* Vops corresponding to this memory
141 location. */
143 /* The following sets are computed on demand. We keep both set and
144 its complement, so that we know whether the information was
145 already computed or not. */
146 bitmap indep_loop; /* The set of loops in that the memory
147 reference is independent, meaning:
148 If it is stored in the loop, this store
149 is independent on all other loads and
150 stores.
151 If it is only loaded, then it is independent
152 on all stores in the loop. */
153 bitmap dep_loop; /* The complement of INDEP_LOOP. */
155 bitmap indep_ref; /* The set of memory references on that
156 this reference is independent. */
157 bitmap dep_ref; /* The complement of DEP_REF. */
158 } *mem_ref_p;
160 DEF_VEC_P(mem_ref_p);
161 DEF_VEC_ALLOC_P(mem_ref_p, heap);
163 DEF_VEC_P(bitmap);
164 DEF_VEC_ALLOC_P(bitmap, heap);
166 DEF_VEC_P(htab_t);
167 DEF_VEC_ALLOC_P(htab_t, heap);
169 /* Description of memory accesses in loops. */
171 static struct
173 /* The hash table of memory references accessed in loops. */
174 htab_t refs;
176 /* The list of memory references. */
177 VEC (mem_ref_p, heap) *refs_list;
179 /* The set of memory references accessed in each loop. */
180 VEC (bitmap, heap) *refs_in_loop;
182 /* The set of memory references accessed in each loop, including
183 subloops. */
184 VEC (bitmap, heap) *all_refs_in_loop;
186 /* The set of virtual operands clobbered in a given loop. */
187 VEC (bitmap, heap) *clobbered_vops;
189 /* Map from the pair (loop, virtual operand) to the set of refs that
190 touch the virtual operand in the loop. */
191 VEC (htab_t, heap) *vop_ref_map;
193 /* Cache for expanding memory addresses. */
194 struct pointer_map_t *ttae_cache;
195 } memory_accesses;
197 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
199 /* Minimum cost of an expensive expression. */
200 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
202 /* The outermost loop for that execution of the header guarantees that the
203 block will be executed. */
204 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
206 static struct lim_aux_data *
207 init_lim_data (gimple stmt)
209 void **p = pointer_map_insert (lim_aux_data_map, stmt);
211 *p = XCNEW (struct lim_aux_data);
212 return (struct lim_aux_data *) *p;
215 static struct lim_aux_data *
216 get_lim_data (gimple stmt)
218 void **p = pointer_map_contains (lim_aux_data_map, stmt);
219 if (!p)
220 return NULL;
222 return (struct lim_aux_data *) *p;
225 /* Releases the memory occupied by DATA. */
227 static void
228 free_lim_aux_data (struct lim_aux_data *data)
230 struct depend *dep, *next;
232 for (dep = data->depends; dep; dep = next)
234 next = dep->next;
235 free (dep);
237 free (data);
240 static void
241 clear_lim_data (gimple stmt)
243 void **p = pointer_map_contains (lim_aux_data_map, stmt);
244 if (!p)
245 return;
247 free_lim_aux_data ((struct lim_aux_data *) *p);
248 *p = NULL;
251 /* Calls CBCK for each index in memory reference ADDR_P. There are two
252 kinds situations handled; in each of these cases, the memory reference
253 and DATA are passed to the callback:
255 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
256 pass the pointer to the index to the callback.
258 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
259 pointer to addr to the callback.
261 If the callback returns false, the whole search stops and false is returned.
262 Otherwise the function returns true after traversing through the whole
263 reference *ADDR_P. */
265 bool
266 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
268 tree *nxt, *idx;
270 for (; ; addr_p = nxt)
272 switch (TREE_CODE (*addr_p))
274 case SSA_NAME:
275 return cbck (*addr_p, addr_p, data);
277 case MISALIGNED_INDIRECT_REF:
278 case ALIGN_INDIRECT_REF:
279 case INDIRECT_REF:
280 nxt = &TREE_OPERAND (*addr_p, 0);
281 return cbck (*addr_p, nxt, data);
283 case BIT_FIELD_REF:
284 case VIEW_CONVERT_EXPR:
285 case REALPART_EXPR:
286 case IMAGPART_EXPR:
287 nxt = &TREE_OPERAND (*addr_p, 0);
288 break;
290 case COMPONENT_REF:
291 /* If the component has varying offset, it behaves like index
292 as well. */
293 idx = &TREE_OPERAND (*addr_p, 2);
294 if (*idx
295 && !cbck (*addr_p, idx, data))
296 return false;
298 nxt = &TREE_OPERAND (*addr_p, 0);
299 break;
301 case ARRAY_REF:
302 case ARRAY_RANGE_REF:
303 nxt = &TREE_OPERAND (*addr_p, 0);
304 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
305 return false;
306 break;
308 case VAR_DECL:
309 case PARM_DECL:
310 case STRING_CST:
311 case RESULT_DECL:
312 case VECTOR_CST:
313 case COMPLEX_CST:
314 case INTEGER_CST:
315 case REAL_CST:
316 case FIXED_CST:
317 case CONSTRUCTOR:
318 return true;
320 case ADDR_EXPR:
321 gcc_assert (is_gimple_min_invariant (*addr_p));
322 return true;
324 case TARGET_MEM_REF:
325 idx = &TMR_BASE (*addr_p);
326 if (*idx
327 && !cbck (*addr_p, idx, data))
328 return false;
329 idx = &TMR_INDEX (*addr_p);
330 if (*idx
331 && !cbck (*addr_p, idx, data))
332 return false;
333 return true;
335 default:
336 gcc_unreachable ();
341 /* If it is possible to hoist the statement STMT unconditionally,
342 returns MOVE_POSSIBLE.
343 If it is possible to hoist the statement STMT, but we must avoid making
344 it executed if it would not be executed in the original program (e.g.
345 because it may trap), return MOVE_PRESERVE_EXECUTION.
346 Otherwise return MOVE_IMPOSSIBLE. */
348 enum move_pos
349 movement_possibility (gimple stmt)
351 tree lhs;
352 enum move_pos ret = MOVE_POSSIBLE;
354 if (flag_unswitch_loops
355 && gimple_code (stmt) == GIMPLE_COND)
357 /* If we perform unswitching, force the operands of the invariant
358 condition to be moved out of the loop. */
359 return MOVE_POSSIBLE;
362 if (gimple_get_lhs (stmt) == NULL_TREE)
363 return MOVE_IMPOSSIBLE;
365 if (gimple_vdef (stmt))
366 return MOVE_IMPOSSIBLE;
368 if (stmt_ends_bb_p (stmt)
369 || gimple_has_volatile_ops (stmt)
370 || gimple_has_side_effects (stmt)
371 || stmt_could_throw_p (stmt))
372 return MOVE_IMPOSSIBLE;
374 if (is_gimple_call (stmt))
376 /* While pure or const call is guaranteed to have no side effects, we
377 cannot move it arbitrarily. Consider code like
379 char *s = something ();
381 while (1)
383 if (s)
384 t = strlen (s);
385 else
386 t = 0;
389 Here the strlen call cannot be moved out of the loop, even though
390 s is invariant. In addition to possibly creating a call with
391 invalid arguments, moving out a function call that is not executed
392 may cause performance regressions in case the call is costly and
393 not executed at all. */
394 ret = MOVE_PRESERVE_EXECUTION;
395 lhs = gimple_call_lhs (stmt);
397 else if (is_gimple_assign (stmt))
398 lhs = gimple_assign_lhs (stmt);
399 else
400 return MOVE_IMPOSSIBLE;
402 if (TREE_CODE (lhs) == SSA_NAME
403 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
404 return MOVE_IMPOSSIBLE;
406 if (TREE_CODE (lhs) != SSA_NAME
407 || gimple_could_trap_p (stmt))
408 return MOVE_PRESERVE_EXECUTION;
410 return ret;
413 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
414 loop to that we could move the expression using DEF if it did not have
415 other operands, i.e. the outermost loop enclosing LOOP in that the value
416 of DEF is invariant. */
418 static struct loop *
419 outermost_invariant_loop (tree def, struct loop *loop)
421 gimple def_stmt;
422 basic_block def_bb;
423 struct loop *max_loop;
424 struct lim_aux_data *lim_data;
426 if (!def)
427 return superloop_at_depth (loop, 1);
429 if (TREE_CODE (def) != SSA_NAME)
431 gcc_assert (is_gimple_min_invariant (def));
432 return superloop_at_depth (loop, 1);
435 def_stmt = SSA_NAME_DEF_STMT (def);
436 def_bb = gimple_bb (def_stmt);
437 if (!def_bb)
438 return superloop_at_depth (loop, 1);
440 max_loop = find_common_loop (loop, def_bb->loop_father);
442 lim_data = get_lim_data (def_stmt);
443 if (lim_data != NULL && lim_data->max_loop != NULL)
444 max_loop = find_common_loop (max_loop,
445 loop_outer (lim_data->max_loop));
446 if (max_loop == loop)
447 return NULL;
448 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
450 return max_loop;
453 /* DATA is a structure containing information associated with a statement
454 inside LOOP. DEF is one of the operands of this statement.
456 Find the outermost loop enclosing LOOP in that value of DEF is invariant
457 and record this in DATA->max_loop field. If DEF itself is defined inside
458 this loop as well (i.e. we need to hoist it out of the loop if we want
459 to hoist the statement represented by DATA), record the statement in that
460 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
461 add the cost of the computation of DEF to the DATA->cost.
463 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
465 static bool
466 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
467 bool add_cost)
469 gimple def_stmt = SSA_NAME_DEF_STMT (def);
470 basic_block def_bb = gimple_bb (def_stmt);
471 struct loop *max_loop;
472 struct depend *dep;
473 struct lim_aux_data *def_data;
475 if (!def_bb)
476 return true;
478 max_loop = outermost_invariant_loop (def, loop);
479 if (!max_loop)
480 return false;
482 if (flow_loop_nested_p (data->max_loop, max_loop))
483 data->max_loop = max_loop;
485 def_data = get_lim_data (def_stmt);
486 if (!def_data)
487 return true;
489 if (add_cost
490 /* Only add the cost if the statement defining DEF is inside LOOP,
491 i.e. if it is likely that by moving the invariants dependent
492 on it, we will be able to avoid creating a new register for
493 it (since it will be only used in these dependent invariants). */
494 && def_bb->loop_father == loop)
495 data->cost += def_data->cost;
497 dep = XNEW (struct depend);
498 dep->stmt = def_stmt;
499 dep->next = data->depends;
500 data->depends = dep;
502 return true;
505 /* Returns an estimate for a cost of statement STMT. TODO -- the values here
506 are just ad-hoc constants. The estimates should be based on target-specific
507 values. */
509 static unsigned
510 stmt_cost (gimple stmt)
512 tree fndecl;
513 unsigned cost = 1;
515 /* Always try to create possibilities for unswitching. */
516 if (gimple_code (stmt) == GIMPLE_COND)
517 return LIM_EXPENSIVE;
519 /* Hoisting memory references out should almost surely be a win. */
520 if (gimple_references_memory_p (stmt))
521 cost += 20;
523 if (is_gimple_call (stmt))
525 /* We should be hoisting calls if possible. */
527 /* Unless the call is a builtin_constant_p; this always folds to a
528 constant, so moving it is useless. */
529 fndecl = gimple_call_fndecl (stmt);
530 if (fndecl
531 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
532 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
533 return 0;
535 return cost + 20;
538 if (gimple_code (stmt) != GIMPLE_ASSIGN)
539 return cost;
541 switch (gimple_assign_rhs_code (stmt))
543 case MULT_EXPR:
544 case TRUNC_DIV_EXPR:
545 case CEIL_DIV_EXPR:
546 case FLOOR_DIV_EXPR:
547 case ROUND_DIV_EXPR:
548 case EXACT_DIV_EXPR:
549 case CEIL_MOD_EXPR:
550 case FLOOR_MOD_EXPR:
551 case ROUND_MOD_EXPR:
552 case TRUNC_MOD_EXPR:
553 case RDIV_EXPR:
554 /* Division and multiplication are usually expensive. */
555 cost += 20;
556 break;
558 case LSHIFT_EXPR:
559 case RSHIFT_EXPR:
560 cost += 20;
561 break;
563 default:
564 break;
567 return cost;
570 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
571 REF is independent. If REF is not independent in LOOP, NULL is returned
572 instead. */
574 static struct loop *
575 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
577 struct loop *aloop;
579 if (bitmap_bit_p (ref->stored, loop->num))
580 return NULL;
582 for (aloop = outer;
583 aloop != loop;
584 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
585 if (!bitmap_bit_p (ref->stored, aloop->num)
586 && ref_indep_loop_p (aloop, ref))
587 return aloop;
589 if (ref_indep_loop_p (loop, ref))
590 return loop;
591 else
592 return NULL;
595 /* If there is a simple load or store to a memory reference in STMT, returns
596 the location of the memory reference, and sets IS_STORE according to whether
597 it is a store or load. Otherwise, returns NULL. */
599 static tree *
600 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
602 tree *lhs;
603 enum tree_code code;
605 /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */
606 if (gimple_code (stmt) != GIMPLE_ASSIGN)
607 return NULL;
609 code = gimple_assign_rhs_code (stmt);
611 lhs = gimple_assign_lhs_ptr (stmt);
613 if (TREE_CODE (*lhs) == SSA_NAME)
615 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
616 || !is_gimple_addressable (gimple_assign_rhs1 (stmt)))
617 return NULL;
619 *is_store = false;
620 return gimple_assign_rhs1_ptr (stmt);
622 else if (code == SSA_NAME
623 || (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
624 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
626 *is_store = true;
627 return lhs;
629 else
630 return NULL;
633 /* Returns the memory reference contained in STMT. */
635 static mem_ref_p
636 mem_ref_in_stmt (gimple stmt)
638 bool store;
639 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
640 hashval_t hash;
641 mem_ref_p ref;
643 if (!mem)
644 return NULL;
645 gcc_assert (!store);
647 hash = iterative_hash_expr (*mem, 0);
648 ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
650 gcc_assert (ref != NULL);
651 return ref;
654 /* Determine the outermost loop to that it is possible to hoist a statement
655 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
656 the outermost loop in that the value computed by STMT is invariant.
657 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
658 we preserve the fact whether STMT is executed. It also fills other related
659 information to LIM_DATA (STMT).
661 The function returns false if STMT cannot be hoisted outside of the loop it
662 is defined in, and true otherwise. */
664 static bool
665 determine_max_movement (gimple stmt, bool must_preserve_exec)
667 basic_block bb = gimple_bb (stmt);
668 struct loop *loop = bb->loop_father;
669 struct loop *level;
670 struct lim_aux_data *lim_data = get_lim_data (stmt);
671 tree val;
672 ssa_op_iter iter;
674 if (must_preserve_exec)
675 level = ALWAYS_EXECUTED_IN (bb);
676 else
677 level = superloop_at_depth (loop, 1);
678 lim_data->max_loop = level;
680 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
681 if (!add_dependency (val, lim_data, loop, true))
682 return false;
684 if (gimple_vuse (stmt))
686 mem_ref_p ref = mem_ref_in_stmt (stmt);
688 if (ref)
690 lim_data->max_loop
691 = outermost_indep_loop (lim_data->max_loop, loop, ref);
692 if (!lim_data->max_loop)
693 return false;
695 else
697 if ((val = gimple_vuse (stmt)) != NULL_TREE)
699 if (!add_dependency (val, lim_data, loop, false))
700 return false;
705 lim_data->cost += stmt_cost (stmt);
707 return true;
710 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
711 and that one of the operands of this statement is computed by STMT.
712 Ensure that STMT (together with all the statements that define its
713 operands) is hoisted at least out of the loop LEVEL. */
715 static void
716 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
718 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
719 struct depend *dep;
720 struct lim_aux_data *lim_data;
722 stmt_loop = find_common_loop (orig_loop, stmt_loop);
723 lim_data = get_lim_data (stmt);
724 if (lim_data != NULL && lim_data->tgt_loop != NULL)
725 stmt_loop = find_common_loop (stmt_loop,
726 loop_outer (lim_data->tgt_loop));
727 if (flow_loop_nested_p (stmt_loop, level))
728 return;
730 gcc_assert (level == lim_data->max_loop
731 || flow_loop_nested_p (lim_data->max_loop, level));
733 lim_data->tgt_loop = level;
734 for (dep = lim_data->depends; dep; dep = dep->next)
735 set_level (dep->stmt, orig_loop, level);
738 /* Determines an outermost loop from that we want to hoist the statement STMT.
739 For now we chose the outermost possible loop. TODO -- use profiling
740 information to set it more sanely. */
742 static void
743 set_profitable_level (gimple stmt)
745 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
748 /* Returns true if STMT is a call that has side effects. */
750 static bool
751 nonpure_call_p (gimple stmt)
753 if (gimple_code (stmt) != GIMPLE_CALL)
754 return false;
756 return gimple_has_side_effects (stmt);
759 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
761 static gimple
762 rewrite_reciprocal (gimple_stmt_iterator *bsi)
764 gimple stmt, stmt1, stmt2;
765 tree var, name, lhs, type;
766 tree real_one;
767 gimple_stmt_iterator gsi;
769 stmt = gsi_stmt (*bsi);
770 lhs = gimple_assign_lhs (stmt);
771 type = TREE_TYPE (lhs);
773 var = create_tmp_var (type, "reciptmp");
774 add_referenced_var (var);
775 DECL_GIMPLE_REG_P (var) = 1;
777 /* For vectors, create a VECTOR_CST full of 1's. */
778 if (TREE_CODE (type) == VECTOR_TYPE)
780 int i, len;
781 tree list = NULL_TREE;
782 real_one = build_real (TREE_TYPE (type), dconst1);
783 len = TYPE_VECTOR_SUBPARTS (type);
784 for (i = 0; i < len; i++)
785 list = tree_cons (NULL, real_one, list);
786 real_one = build_vector (type, list);
788 else
789 real_one = build_real (type, dconst1);
791 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR,
792 var, real_one, gimple_assign_rhs2 (stmt));
793 name = make_ssa_name (var, stmt1);
794 gimple_assign_set_lhs (stmt1, name);
796 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
797 gimple_assign_rhs1 (stmt));
799 /* Replace division stmt with reciprocal and multiply stmts.
800 The multiply stmt is not invariant, so update iterator
801 and avoid rescanning. */
802 gsi = *bsi;
803 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
804 gsi_replace (&gsi, stmt2, true);
806 /* Continue processing with invariant reciprocal statement. */
807 return stmt1;
810 /* Check if the pattern at *BSI is a bittest of the form
811 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
813 static gimple
814 rewrite_bittest (gimple_stmt_iterator *bsi)
816 gimple stmt, use_stmt, stmt1, stmt2;
817 tree lhs, var, name, t, a, b;
818 use_operand_p use;
820 stmt = gsi_stmt (*bsi);
821 lhs = gimple_assign_lhs (stmt);
823 /* Verify that the single use of lhs is a comparison against zero. */
824 if (TREE_CODE (lhs) != SSA_NAME
825 || !single_imm_use (lhs, &use, &use_stmt)
826 || gimple_code (use_stmt) != GIMPLE_COND)
827 return stmt;
828 if (gimple_cond_lhs (use_stmt) != lhs
829 || (gimple_cond_code (use_stmt) != NE_EXPR
830 && gimple_cond_code (use_stmt) != EQ_EXPR)
831 || !integer_zerop (gimple_cond_rhs (use_stmt)))
832 return stmt;
834 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
835 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
836 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
837 return stmt;
839 /* There is a conversion in between possibly inserted by fold. */
840 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
842 t = gimple_assign_rhs1 (stmt1);
843 if (TREE_CODE (t) != SSA_NAME
844 || !has_single_use (t))
845 return stmt;
846 stmt1 = SSA_NAME_DEF_STMT (t);
847 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
848 return stmt;
851 /* Verify that B is loop invariant but A is not. Verify that with
852 all the stmt walking we are still in the same loop. */
853 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
854 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
855 return stmt;
857 a = gimple_assign_rhs1 (stmt1);
858 b = gimple_assign_rhs2 (stmt1);
860 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
861 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
863 gimple_stmt_iterator rsi;
865 /* 1 << B */
866 var = create_tmp_var (TREE_TYPE (a), "shifttmp");
867 add_referenced_var (var);
868 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
869 build_int_cst (TREE_TYPE (a), 1), b);
870 stmt1 = gimple_build_assign (var, t);
871 name = make_ssa_name (var, stmt1);
872 gimple_assign_set_lhs (stmt1, name);
874 /* A & (1 << B) */
875 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
876 stmt2 = gimple_build_assign (var, t);
877 name = make_ssa_name (var, stmt2);
878 gimple_assign_set_lhs (stmt2, name);
880 /* Replace the SSA_NAME we compare against zero. Adjust
881 the type of zero accordingly. */
882 SET_USE (use, name);
883 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
885 /* Don't use gsi_replace here, none of the new assignments sets
886 the variable originally set in stmt. Move bsi to stmt1, and
887 then remove the original stmt, so that we get a chance to
888 retain debug info for it. */
889 rsi = *bsi;
890 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
891 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
892 gsi_remove (&rsi, true);
894 return stmt1;
897 return stmt;
901 /* Determine the outermost loops in that statements in basic block BB are
902 invariant, and record them to the LIM_DATA associated with the statements.
903 Callback for walk_dominator_tree. */
905 static void
906 determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
907 basic_block bb)
909 enum move_pos pos;
910 gimple_stmt_iterator bsi;
911 gimple stmt;
912 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
913 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
914 struct lim_aux_data *lim_data;
916 if (!loop_outer (bb->loop_father))
917 return;
919 if (dump_file && (dump_flags & TDF_DETAILS))
920 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
921 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
923 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
925 stmt = gsi_stmt (bsi);
927 pos = movement_possibility (stmt);
928 if (pos == MOVE_IMPOSSIBLE)
930 if (nonpure_call_p (stmt))
932 maybe_never = true;
933 outermost = NULL;
935 /* Make sure to note always_executed_in for stores to make
936 store-motion work. */
937 else if (stmt_makes_single_store (stmt))
939 struct lim_aux_data *lim_data = init_lim_data (stmt);
940 lim_data->always_executed_in = outermost;
942 continue;
945 if (is_gimple_assign (stmt)
946 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
947 == GIMPLE_BINARY_RHS))
949 tree op0 = gimple_assign_rhs1 (stmt);
950 tree op1 = gimple_assign_rhs2 (stmt);
951 struct loop *ol1 = outermost_invariant_loop (op1,
952 loop_containing_stmt (stmt));
954 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
955 to be hoisted out of loop, saving expensive divide. */
956 if (pos == MOVE_POSSIBLE
957 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
958 && flag_unsafe_math_optimizations
959 && !flag_trapping_math
960 && ol1 != NULL
961 && outermost_invariant_loop (op0, ol1) == NULL)
962 stmt = rewrite_reciprocal (&bsi);
964 /* If the shift count is invariant, convert (A >> B) & 1 to
965 A & (1 << B) allowing the bit mask to be hoisted out of the loop
966 saving an expensive shift. */
967 if (pos == MOVE_POSSIBLE
968 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
969 && integer_onep (op1)
970 && TREE_CODE (op0) == SSA_NAME
971 && has_single_use (op0))
972 stmt = rewrite_bittest (&bsi);
975 lim_data = init_lim_data (stmt);
976 lim_data->always_executed_in = outermost;
978 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
979 continue;
981 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
983 lim_data->max_loop = NULL;
984 continue;
987 if (dump_file && (dump_flags & TDF_DETAILS))
989 print_gimple_stmt (dump_file, stmt, 2, 0);
990 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
991 loop_depth (lim_data->max_loop),
992 lim_data->cost);
995 if (lim_data->cost >= LIM_EXPENSIVE)
996 set_profitable_level (stmt);
1000 /* For each statement determines the outermost loop in that it is invariant,
1001 statements on whose motion it depends and the cost of the computation.
1002 This information is stored to the LIM_DATA structure associated with
1003 each statement. */
1005 static void
1006 determine_invariantness (void)
1008 struct dom_walk_data walk_data;
1010 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1011 walk_data.dom_direction = CDI_DOMINATORS;
1012 walk_data.before_dom_children = determine_invariantness_stmt;
1014 init_walk_dominator_tree (&walk_data);
1015 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1016 fini_walk_dominator_tree (&walk_data);
1019 /* Hoist the statements in basic block BB out of the loops prescribed by
1020 data stored in LIM_DATA structures associated with each statement. Callback
1021 for walk_dominator_tree. */
1023 static void
1024 move_computations_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
1025 basic_block bb)
1027 struct loop *level;
1028 gimple_stmt_iterator bsi;
1029 gimple stmt;
1030 unsigned cost = 0;
1031 struct lim_aux_data *lim_data;
1033 if (!loop_outer (bb->loop_father))
1034 return;
1036 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1038 stmt = gsi_stmt (bsi);
1040 lim_data = get_lim_data (stmt);
1041 if (lim_data == NULL)
1043 gsi_next (&bsi);
1044 continue;
1047 cost = lim_data->cost;
1048 level = lim_data->tgt_loop;
1049 clear_lim_data (stmt);
1051 if (!level)
1053 gsi_next (&bsi);
1054 continue;
1057 /* We do not really want to move conditionals out of the loop; we just
1058 placed it here to force its operands to be moved if necessary. */
1059 if (gimple_code (stmt) == GIMPLE_COND)
1060 continue;
1062 if (dump_file && (dump_flags & TDF_DETAILS))
1064 fprintf (dump_file, "Moving statement\n");
1065 print_gimple_stmt (dump_file, stmt, 0, 0);
1066 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1067 cost, level->num);
1070 mark_virtual_ops_for_renaming (stmt);
1071 gsi_insert_on_edge (loop_preheader_edge (level), stmt);
1072 gsi_remove (&bsi, false);
1076 /* Hoist the statements out of the loops prescribed by data stored in
1077 LIM_DATA structures associated with each statement.*/
1079 static void
1080 move_computations (void)
1082 struct dom_walk_data walk_data;
1084 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1085 walk_data.dom_direction = CDI_DOMINATORS;
1086 walk_data.before_dom_children = move_computations_stmt;
1088 init_walk_dominator_tree (&walk_data);
1089 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1090 fini_walk_dominator_tree (&walk_data);
1092 gsi_commit_edge_inserts ();
1093 if (need_ssa_update_p (cfun))
1094 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1097 /* Checks whether the statement defining variable *INDEX can be hoisted
1098 out of the loop passed in DATA. Callback for for_each_index. */
1100 static bool
1101 may_move_till (tree ref, tree *index, void *data)
1103 struct loop *loop = (struct loop *) data, *max_loop;
1105 /* If REF is an array reference, check also that the step and the lower
1106 bound is invariant in LOOP. */
1107 if (TREE_CODE (ref) == ARRAY_REF)
1109 tree step = TREE_OPERAND (ref, 3);
1110 tree lbound = TREE_OPERAND (ref, 2);
1112 max_loop = outermost_invariant_loop (step, loop);
1113 if (!max_loop)
1114 return false;
1116 max_loop = outermost_invariant_loop (lbound, loop);
1117 if (!max_loop)
1118 return false;
1121 max_loop = outermost_invariant_loop (*index, loop);
1122 if (!max_loop)
1123 return false;
1125 return true;
1128 /* If OP is SSA NAME, force the statement that defines it to be
1129 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1131 static void
1132 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1134 gimple stmt;
1136 if (!op
1137 || is_gimple_min_invariant (op))
1138 return;
1140 gcc_assert (TREE_CODE (op) == SSA_NAME);
1142 stmt = SSA_NAME_DEF_STMT (op);
1143 if (gimple_nop_p (stmt))
1144 return;
1146 set_level (stmt, orig_loop, loop);
1149 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1150 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1151 for_each_index. */
1153 struct fmt_data
1155 struct loop *loop;
1156 struct loop *orig_loop;
1159 static bool
1160 force_move_till (tree ref, tree *index, void *data)
1162 struct fmt_data *fmt_data = (struct fmt_data *) data;
1164 if (TREE_CODE (ref) == ARRAY_REF)
1166 tree step = TREE_OPERAND (ref, 3);
1167 tree lbound = TREE_OPERAND (ref, 2);
1169 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1170 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1173 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1175 return true;
1178 /* A hash function for struct mem_ref object OBJ. */
1180 static hashval_t
1181 memref_hash (const void *obj)
1183 const struct mem_ref *const mem = (const struct mem_ref *) obj;
1185 return mem->hash;
1188 /* An equality function for struct mem_ref object OBJ1 with
1189 memory reference OBJ2. */
1191 static int
1192 memref_eq (const void *obj1, const void *obj2)
1194 const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
1196 return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
1199 /* Releases list of memory reference locations ACCS. */
1201 static void
1202 free_mem_ref_locs (mem_ref_locs_p accs)
1204 unsigned i;
1205 mem_ref_loc_p loc;
1207 if (!accs)
1208 return;
1210 for (i = 0; VEC_iterate (mem_ref_loc_p, accs->locs, i, loc); i++)
1211 free (loc);
1212 VEC_free (mem_ref_loc_p, heap, accs->locs);
1213 free (accs);
1216 /* A function to free the mem_ref object OBJ. */
1218 static void
1219 memref_free (void *obj)
1221 struct mem_ref *const mem = (struct mem_ref *) obj;
1222 unsigned i;
1223 mem_ref_locs_p accs;
1225 BITMAP_FREE (mem->stored);
1226 BITMAP_FREE (mem->indep_loop);
1227 BITMAP_FREE (mem->dep_loop);
1228 BITMAP_FREE (mem->indep_ref);
1229 BITMAP_FREE (mem->dep_ref);
1231 for (i = 0; VEC_iterate (mem_ref_locs_p, mem->accesses_in_loop, i, accs); i++)
1232 free_mem_ref_locs (accs);
1233 VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
1235 BITMAP_FREE (mem->vops);
1236 free (mem);
1239 /* Allocates and returns a memory reference description for MEM whose hash
1240 value is HASH and id is ID. */
1242 static mem_ref_p
1243 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1245 mem_ref_p ref = XNEW (struct mem_ref);
1246 ref->mem = mem;
1247 ref->id = id;
1248 ref->hash = hash;
1249 ref->stored = BITMAP_ALLOC (NULL);
1250 ref->indep_loop = BITMAP_ALLOC (NULL);
1251 ref->dep_loop = BITMAP_ALLOC (NULL);
1252 ref->indep_ref = BITMAP_ALLOC (NULL);
1253 ref->dep_ref = BITMAP_ALLOC (NULL);
1254 ref->accesses_in_loop = NULL;
1255 ref->vops = BITMAP_ALLOC (NULL);
1257 return ref;
1260 /* Allocates and returns the new list of locations. */
1262 static mem_ref_locs_p
1263 mem_ref_locs_alloc (void)
1265 mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
1266 accs->locs = NULL;
1267 return accs;
1270 /* Records memory reference location *LOC in LOOP to the memory reference
1271 description REF. The reference occurs in statement STMT. */
1273 static void
1274 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1276 mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
1277 mem_ref_locs_p accs;
1278 bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1280 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1281 <= (unsigned) loop->num)
1282 VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop,
1283 loop->num + 1);
1284 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1285 if (!accs)
1287 accs = mem_ref_locs_alloc ();
1288 VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs);
1291 aref->stmt = stmt;
1292 aref->ref = loc;
1294 VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
1295 bitmap_set_bit (ril, ref->id);
1298 /* Marks reference REF as stored in LOOP. */
1300 static void
1301 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1303 for (;
1304 loop != current_loops->tree_root
1305 && !bitmap_bit_p (ref->stored, loop->num);
1306 loop = loop_outer (loop))
1307 bitmap_set_bit (ref->stored, loop->num);
1310 /* Gathers memory references in statement STMT in LOOP, storing the
1311 information about them in the memory_accesses structure. Marks
1312 the vops accessed through unrecognized statements there as
1313 well. */
1315 static void
1316 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1318 tree *mem = NULL;
1319 hashval_t hash;
1320 PTR *slot;
1321 mem_ref_p ref;
1322 tree vname;
1323 bool is_stored;
1324 bitmap clvops;
1325 unsigned id;
1327 if (!gimple_vuse (stmt))
1328 return;
1330 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1331 if (!mem)
1332 goto fail;
1334 hash = iterative_hash_expr (*mem, 0);
1335 slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
1337 if (*slot)
1339 ref = (mem_ref_p) *slot;
1340 id = ref->id;
1342 else
1344 id = VEC_length (mem_ref_p, memory_accesses.refs_list);
1345 ref = mem_ref_alloc (*mem, hash, id);
1346 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
1347 *slot = ref;
1349 if (dump_file && (dump_flags & TDF_DETAILS))
1351 fprintf (dump_file, "Memory reference %u: ", id);
1352 print_generic_expr (dump_file, ref->mem, TDF_SLIM);
1353 fprintf (dump_file, "\n");
1356 if (is_stored)
1357 mark_ref_stored (ref, loop);
1359 if ((vname = gimple_vuse (stmt)) != NULL_TREE)
1360 bitmap_set_bit (ref->vops, DECL_UID (SSA_NAME_VAR (vname)));
1361 record_mem_ref_loc (ref, loop, stmt, mem);
1362 return;
1364 fail:
1365 clvops = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1366 if ((vname = gimple_vuse (stmt)) != NULL_TREE)
1367 bitmap_set_bit (clvops, DECL_UID (SSA_NAME_VAR (vname)));
1370 /* Gathers memory references in loops. */
1372 static void
1373 gather_mem_refs_in_loops (void)
1375 gimple_stmt_iterator bsi;
1376 basic_block bb;
1377 struct loop *loop;
1378 loop_iterator li;
1379 bitmap clvo, clvi;
1380 bitmap lrefs, alrefs, alrefso;
1382 FOR_EACH_BB (bb)
1384 loop = bb->loop_father;
1385 if (loop == current_loops->tree_root)
1386 continue;
1388 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1389 gather_mem_refs_stmt (loop, gsi_stmt (bsi));
1392 /* Propagate the information about clobbered vops and accessed memory
1393 references up the loop hierarchy. */
1394 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1396 lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1397 alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
1398 bitmap_ior_into (alrefs, lrefs);
1400 if (loop_outer (loop) == current_loops->tree_root)
1401 continue;
1403 clvi = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1404 clvo = VEC_index (bitmap, memory_accesses.clobbered_vops,
1405 loop_outer (loop)->num);
1406 bitmap_ior_into (clvo, clvi);
1408 alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1409 loop_outer (loop)->num);
1410 bitmap_ior_into (alrefso, alrefs);
1414 /* Element of the hash table that maps vops to memory references. */
1416 struct vop_to_refs_elt
1418 /* DECL_UID of the vop. */
1419 unsigned uid;
1421 /* List of the all references. */
1422 bitmap refs_all;
1424 /* List of stored references. */
1425 bitmap refs_stored;
1428 /* A hash function for struct vop_to_refs_elt object OBJ. */
1430 static hashval_t
1431 vtoe_hash (const void *obj)
1433 const struct vop_to_refs_elt *const vtoe =
1434 (const struct vop_to_refs_elt *) obj;
1436 return vtoe->uid;
1439 /* An equality function for struct vop_to_refs_elt object OBJ1 with
1440 uid of a vop OBJ2. */
1442 static int
1443 vtoe_eq (const void *obj1, const void *obj2)
1445 const struct vop_to_refs_elt *const vtoe =
1446 (const struct vop_to_refs_elt *) obj1;
1447 const unsigned *const uid = (const unsigned *) obj2;
1449 return vtoe->uid == *uid;
1452 /* A function to free the struct vop_to_refs_elt object. */
1454 static void
1455 vtoe_free (void *obj)
1457 struct vop_to_refs_elt *const vtoe =
1458 (struct vop_to_refs_elt *) obj;
1460 BITMAP_FREE (vtoe->refs_all);
1461 BITMAP_FREE (vtoe->refs_stored);
1462 free (vtoe);
1465 /* Records REF to hashtable VOP_TO_REFS for the index VOP. STORED is true
1466 if the reference REF is stored. */
1468 static void
1469 record_vop_access (htab_t vop_to_refs, unsigned vop, unsigned ref, bool stored)
1471 void **slot = htab_find_slot_with_hash (vop_to_refs, &vop, vop, INSERT);
1472 struct vop_to_refs_elt *vtoe;
1474 if (!*slot)
1476 vtoe = XNEW (struct vop_to_refs_elt);
1477 vtoe->uid = vop;
1478 vtoe->refs_all = BITMAP_ALLOC (NULL);
1479 vtoe->refs_stored = BITMAP_ALLOC (NULL);
1480 *slot = vtoe;
1482 else
1483 vtoe = (struct vop_to_refs_elt *) *slot;
1485 bitmap_set_bit (vtoe->refs_all, ref);
1486 if (stored)
1487 bitmap_set_bit (vtoe->refs_stored, ref);
1490 /* Returns the set of references that access VOP according to the table
1491 VOP_TO_REFS. */
1493 static bitmap
1494 get_vop_accesses (htab_t vop_to_refs, unsigned vop)
1496 struct vop_to_refs_elt *const vtoe =
1497 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1498 return vtoe->refs_all;
1501 /* Returns the set of stores that access VOP according to the table
1502 VOP_TO_REFS. */
1504 static bitmap
1505 get_vop_stores (htab_t vop_to_refs, unsigned vop)
1507 struct vop_to_refs_elt *const vtoe =
1508 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1509 return vtoe->refs_stored;
1512 /* Adds REF to mapping from virtual operands to references in LOOP. */
1514 static void
1515 add_vop_ref_mapping (struct loop *loop, mem_ref_p ref)
1517 htab_t map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num);
1518 bool stored = bitmap_bit_p (ref->stored, loop->num);
1519 bitmap clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops,
1520 loop->num);
1521 bitmap_iterator bi;
1522 unsigned vop;
1524 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, vop, bi)
1526 record_vop_access (map, vop, ref->id, stored);
1530 /* Create a mapping from virtual operands to references that touch them
1531 in LOOP. */
1533 static void
1534 create_vop_ref_mapping_loop (struct loop *loop)
1536 bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1537 struct loop *sloop;
1538 bitmap_iterator bi;
1539 unsigned i;
1540 mem_ref_p ref;
1542 EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
1544 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
1545 for (sloop = loop; sloop != current_loops->tree_root; sloop = loop_outer (sloop))
1546 add_vop_ref_mapping (sloop, ref);
1550 /* For each non-clobbered virtual operand and each loop, record the memory
1551 references in this loop that touch the operand. */
1553 static void
1554 create_vop_ref_mapping (void)
1556 loop_iterator li;
1557 struct loop *loop;
1559 FOR_EACH_LOOP (li, loop, 0)
1561 create_vop_ref_mapping_loop (loop);
1565 /* Gathers information about memory accesses in the loops. */
1567 static void
1568 analyze_memory_references (void)
1570 unsigned i;
1571 bitmap empty;
1572 htab_t hempty;
1574 memory_accesses.refs
1575 = htab_create (100, memref_hash, memref_eq, memref_free);
1576 memory_accesses.refs_list = NULL;
1577 memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap,
1578 number_of_loops ());
1579 memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap,
1580 number_of_loops ());
1581 memory_accesses.clobbered_vops = VEC_alloc (bitmap, heap,
1582 number_of_loops ());
1583 memory_accesses.vop_ref_map = VEC_alloc (htab_t, heap,
1584 number_of_loops ());
1586 for (i = 0; i < number_of_loops (); i++)
1588 empty = BITMAP_ALLOC (NULL);
1589 VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty);
1590 empty = BITMAP_ALLOC (NULL);
1591 VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty);
1592 empty = BITMAP_ALLOC (NULL);
1593 VEC_quick_push (bitmap, memory_accesses.clobbered_vops, empty);
1594 hempty = htab_create (10, vtoe_hash, vtoe_eq, vtoe_free);
1595 VEC_quick_push (htab_t, memory_accesses.vop_ref_map, hempty);
1598 memory_accesses.ttae_cache = NULL;
1600 gather_mem_refs_in_loops ();
1601 create_vop_ref_mapping ();
1604 /* Returns true if a region of size SIZE1 at position 0 and a region of
1605 size SIZE2 at position DIFF cannot overlap. */
1607 static bool
1608 cannot_overlap_p (aff_tree *diff, double_int size1, double_int size2)
1610 double_int d, bound;
1612 /* Unless the difference is a constant, we fail. */
1613 if (diff->n != 0)
1614 return false;
1616 d = diff->offset;
1617 if (double_int_negative_p (d))
1619 /* The second object is before the first one, we succeed if the last
1620 element of the second object is before the start of the first one. */
1621 bound = double_int_add (d, double_int_add (size2, double_int_minus_one));
1622 return double_int_negative_p (bound);
1624 else
1626 /* We succeed if the second object starts after the first one ends. */
1627 return double_int_scmp (size1, d) <= 0;
1631 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1632 tree_to_aff_combination_expand. */
1634 static bool
1635 mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
1637 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1638 object and their offset differ in such a way that the locations cannot
1639 overlap, then they cannot alias. */
1640 double_int size1, size2;
1641 aff_tree off1, off2;
1643 /* Perform basic offset and type-based disambiguation. */
1644 if (!refs_may_alias_p (mem1, mem2))
1645 return false;
1647 /* The expansion of addresses may be a bit expensive, thus we only do
1648 the check at -O2 and higher optimization levels. */
1649 if (optimize < 2)
1650 return true;
1652 get_inner_reference_aff (mem1, &off1, &size1);
1653 get_inner_reference_aff (mem2, &off2, &size2);
1654 aff_combination_expand (&off1, ttae_cache);
1655 aff_combination_expand (&off2, ttae_cache);
1656 aff_combination_scale (&off1, double_int_minus_one);
1657 aff_combination_add (&off2, &off1);
1659 if (cannot_overlap_p (&off2, size1, size2))
1660 return false;
1662 return true;
1665 /* Rewrites location LOC by TMP_VAR. */
1667 static void
1668 rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
1670 mark_virtual_ops_for_renaming (loc->stmt);
1671 *loc->ref = tmp_var;
1672 update_stmt (loc->stmt);
1675 /* Adds all locations of REF in LOOP and its subloops to LOCS. */
1677 static void
1678 get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
1679 VEC (mem_ref_loc_p, heap) **locs)
1681 mem_ref_locs_p accs;
1682 unsigned i;
1683 mem_ref_loc_p loc;
1684 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1685 loop->num);
1686 struct loop *subloop;
1688 if (!bitmap_bit_p (refs, ref->id))
1689 return;
1691 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1692 > (unsigned) loop->num)
1694 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1695 if (accs)
1697 for (i = 0; VEC_iterate (mem_ref_loc_p, accs->locs, i, loc); i++)
1698 VEC_safe_push (mem_ref_loc_p, heap, *locs, loc);
1702 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1703 get_all_locs_in_loop (subloop, ref, locs);
1706 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1708 static void
1709 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1711 unsigned i;
1712 mem_ref_loc_p loc;
1713 VEC (mem_ref_loc_p, heap) *locs = NULL;
1715 get_all_locs_in_loop (loop, ref, &locs);
1716 for (i = 0; VEC_iterate (mem_ref_loc_p, locs, i, loc); i++)
1717 rewrite_mem_ref_loc (loc, tmp_var);
1718 VEC_free (mem_ref_loc_p, heap, locs);
1721 /* The name and the length of the currently generated variable
1722 for lsm. */
1723 #define MAX_LSM_NAME_LENGTH 40
1724 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
1725 static int lsm_tmp_name_length;
1727 /* Adds S to lsm_tmp_name. */
1729 static void
1730 lsm_tmp_name_add (const char *s)
1732 int l = strlen (s) + lsm_tmp_name_length;
1733 if (l > MAX_LSM_NAME_LENGTH)
1734 return;
1736 strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
1737 lsm_tmp_name_length = l;
1740 /* Stores the name for temporary variable that replaces REF to
1741 lsm_tmp_name. */
1743 static void
1744 gen_lsm_tmp_name (tree ref)
1746 const char *name;
1748 switch (TREE_CODE (ref))
1750 case MISALIGNED_INDIRECT_REF:
1751 case ALIGN_INDIRECT_REF:
1752 case INDIRECT_REF:
1753 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1754 lsm_tmp_name_add ("_");
1755 break;
1757 case BIT_FIELD_REF:
1758 case VIEW_CONVERT_EXPR:
1759 case ARRAY_RANGE_REF:
1760 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1761 break;
1763 case REALPART_EXPR:
1764 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1765 lsm_tmp_name_add ("_RE");
1766 break;
1768 case IMAGPART_EXPR:
1769 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1770 lsm_tmp_name_add ("_IM");
1771 break;
1773 case COMPONENT_REF:
1774 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1775 lsm_tmp_name_add ("_");
1776 name = get_name (TREE_OPERAND (ref, 1));
1777 if (!name)
1778 name = "F";
1779 lsm_tmp_name_add ("_");
1780 lsm_tmp_name_add (name);
1782 case ARRAY_REF:
1783 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1784 lsm_tmp_name_add ("_I");
1785 break;
1787 case SSA_NAME:
1788 ref = SSA_NAME_VAR (ref);
1789 /* Fallthru. */
1791 case VAR_DECL:
1792 case PARM_DECL:
1793 name = get_name (ref);
1794 if (!name)
1795 name = "D";
1796 lsm_tmp_name_add (name);
1797 break;
1799 case STRING_CST:
1800 lsm_tmp_name_add ("S");
1801 break;
1803 case RESULT_DECL:
1804 lsm_tmp_name_add ("R");
1805 break;
1807 case INTEGER_CST:
1808 /* Nothing. */
1809 break;
1811 default:
1812 gcc_unreachable ();
1816 /* Determines name for temporary variable that replaces REF.
1817 The name is accumulated into the lsm_tmp_name variable.
1818 N is added to the name of the temporary. */
1820 char *
1821 get_lsm_tmp_name (tree ref, unsigned n)
1823 char ns[2];
1825 lsm_tmp_name_length = 0;
1826 gen_lsm_tmp_name (ref);
1827 lsm_tmp_name_add ("_lsm");
1828 if (n < 10)
1830 ns[0] = '0' + n;
1831 ns[1] = 0;
1832 lsm_tmp_name_add (ns);
1834 return lsm_tmp_name;
1837 /* Executes store motion of memory reference REF from LOOP.
1838 Exits from the LOOP are stored in EXITS. The initialization of the
1839 temporary variable is put to the preheader of the loop, and assignments
1840 to the reference from the temporary variable are emitted to exits. */
1842 static void
1843 execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref)
1845 tree tmp_var;
1846 unsigned i;
1847 gimple load, store;
1848 struct fmt_data fmt_data;
1849 edge ex;
1850 struct lim_aux_data *lim_data;
1852 if (dump_file && (dump_flags & TDF_DETAILS))
1854 fprintf (dump_file, "Executing store motion of ");
1855 print_generic_expr (dump_file, ref->mem, 0);
1856 fprintf (dump_file, " from loop %d\n", loop->num);
1859 tmp_var = make_rename_temp (TREE_TYPE (ref->mem),
1860 get_lsm_tmp_name (ref->mem, ~0));
1862 fmt_data.loop = loop;
1863 fmt_data.orig_loop = loop;
1864 for_each_index (&ref->mem, force_move_till, &fmt_data);
1866 rewrite_mem_refs (loop, ref, tmp_var);
1868 /* Emit the load & stores. */
1869 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
1870 lim_data = init_lim_data (load);
1871 lim_data->max_loop = loop;
1872 lim_data->tgt_loop = loop;
1874 /* Put this into the latch, so that we are sure it will be processed after
1875 all dependencies. */
1876 gsi_insert_on_edge (loop_latch_edge (loop), load);
1878 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
1880 store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
1881 gsi_insert_on_edge (ex, store);
1885 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
1886 edges of the LOOP. */
1888 static void
1889 hoist_memory_references (struct loop *loop, bitmap mem_refs,
1890 VEC (edge, heap) *exits)
1892 mem_ref_p ref;
1893 unsigned i;
1894 bitmap_iterator bi;
1896 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
1898 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
1899 execute_sm (loop, exits, ref);
1903 /* Returns true if REF is always accessed in LOOP. */
1905 static bool
1906 ref_always_accessed_p (struct loop *loop, mem_ref_p ref)
1908 VEC (mem_ref_loc_p, heap) *locs = NULL;
1909 unsigned i;
1910 mem_ref_loc_p loc;
1911 bool ret = false;
1912 struct loop *must_exec;
1914 get_all_locs_in_loop (loop, ref, &locs);
1915 for (i = 0; VEC_iterate (mem_ref_loc_p, locs, i, loc); i++)
1917 if (!get_lim_data (loc->stmt))
1918 continue;
1920 must_exec = get_lim_data (loc->stmt)->always_executed_in;
1921 if (!must_exec)
1922 continue;
1924 if (must_exec == loop
1925 || flow_loop_nested_p (must_exec, loop))
1927 ret = true;
1928 break;
1931 VEC_free (mem_ref_loc_p, heap, locs);
1933 return ret;
1936 /* Returns true if REF1 and REF2 are independent. */
1938 static bool
1939 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
1941 if (ref1 == ref2
1942 || bitmap_bit_p (ref1->indep_ref, ref2->id))
1943 return true;
1944 if (bitmap_bit_p (ref1->dep_ref, ref2->id))
1945 return false;
1947 if (dump_file && (dump_flags & TDF_DETAILS))
1948 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
1949 ref1->id, ref2->id);
1951 if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
1952 &memory_accesses.ttae_cache))
1954 bitmap_set_bit (ref1->dep_ref, ref2->id);
1955 bitmap_set_bit (ref2->dep_ref, ref1->id);
1956 if (dump_file && (dump_flags & TDF_DETAILS))
1957 fprintf (dump_file, "dependent.\n");
1958 return false;
1960 else
1962 bitmap_set_bit (ref1->indep_ref, ref2->id);
1963 bitmap_set_bit (ref2->indep_ref, ref1->id);
1964 if (dump_file && (dump_flags & TDF_DETAILS))
1965 fprintf (dump_file, "independent.\n");
1966 return true;
1970 /* Records the information whether REF is independent in LOOP (according
1971 to INDEP). */
1973 static void
1974 record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
1976 if (indep)
1977 bitmap_set_bit (ref->indep_loop, loop->num);
1978 else
1979 bitmap_set_bit (ref->dep_loop, loop->num);
1982 /* Returns true if REF is independent on all other memory references in
1983 LOOP. */
1985 static bool
1986 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
1988 bitmap clobbers, refs_to_check, refs;
1989 unsigned i;
1990 bitmap_iterator bi;
1991 bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
1992 htab_t map;
1993 mem_ref_p aref;
1995 /* If the reference is clobbered, it is not independent. */
1996 clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1997 if (bitmap_intersect_p (ref->vops, clobbers))
1998 return false;
2000 refs_to_check = BITMAP_ALLOC (NULL);
2002 map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num);
2003 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, i, bi)
2005 if (stored)
2006 refs = get_vop_accesses (map, i);
2007 else
2008 refs = get_vop_stores (map, i);
2010 bitmap_ior_into (refs_to_check, refs);
2013 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2015 aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2016 if (!refs_independent_p (ref, aref))
2018 ret = false;
2019 record_indep_loop (loop, aref, false);
2020 break;
2024 BITMAP_FREE (refs_to_check);
2025 return ret;
2028 /* Returns true if REF is independent on all other memory references in
2029 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2031 static bool
2032 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2034 bool ret;
2036 if (bitmap_bit_p (ref->indep_loop, loop->num))
2037 return true;
2038 if (bitmap_bit_p (ref->dep_loop, loop->num))
2039 return false;
2041 ret = ref_indep_loop_p_1 (loop, ref);
2043 if (dump_file && (dump_flags & TDF_DETAILS))
2044 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2045 ref->id, loop->num, ret ? "independent" : "dependent");
2047 record_indep_loop (loop, ref, ret);
2049 return ret;
2052 /* Returns true if we can perform store motion of REF from LOOP. */
2054 static bool
2055 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2057 /* Unless the reference is stored in the loop, there is nothing to do. */
2058 if (!bitmap_bit_p (ref->stored, loop->num))
2059 return false;
2061 /* It should be movable. */
2062 if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
2063 || TREE_THIS_VOLATILE (ref->mem)
2064 || !for_each_index (&ref->mem, may_move_till, loop))
2065 return false;
2067 /* If it can trap, it must be always executed in LOOP. */
2068 if (tree_could_trap_p (ref->mem)
2069 && !ref_always_accessed_p (loop, ref))
2070 return false;
2072 /* And it must be independent on all other memory references
2073 in LOOP. */
2074 if (!ref_indep_loop_p (loop, ref))
2075 return false;
2077 return true;
2080 /* Marks the references in LOOP for that store motion should be performed
2081 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2082 motion was performed in one of the outer loops. */
2084 static void
2085 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2087 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
2088 loop->num);
2089 unsigned i;
2090 bitmap_iterator bi;
2091 mem_ref_p ref;
2093 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2095 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2096 if (can_sm_ref_p (loop, ref))
2097 bitmap_set_bit (refs_to_sm, i);
2101 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2102 for a store motion optimization (i.e. whether we can insert statement
2103 on its exits). */
2105 static bool
2106 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2107 VEC (edge, heap) *exits)
2109 unsigned i;
2110 edge ex;
2112 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
2113 if (ex->flags & EDGE_ABNORMAL)
2114 return false;
2116 return true;
2119 /* Try to perform store motion for all memory references modified inside
2120 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2121 store motion was executed in one of the outer loops. */
2123 static void
2124 store_motion_loop (struct loop *loop, bitmap sm_executed)
2126 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2127 struct loop *subloop;
2128 bitmap sm_in_loop = BITMAP_ALLOC (NULL);
2130 if (loop_suitable_for_sm (loop, exits))
2132 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2133 hoist_memory_references (loop, sm_in_loop, exits);
2135 VEC_free (edge, heap, exits);
2137 bitmap_ior_into (sm_executed, sm_in_loop);
2138 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2139 store_motion_loop (subloop, sm_executed);
2140 bitmap_and_compl_into (sm_executed, sm_in_loop);
2141 BITMAP_FREE (sm_in_loop);
2144 /* Try to perform store motion for all memory references modified inside
2145 loops. */
2147 static void
2148 store_motion (void)
2150 struct loop *loop;
2151 bitmap sm_executed = BITMAP_ALLOC (NULL);
2153 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2154 store_motion_loop (loop, sm_executed);
2156 BITMAP_FREE (sm_executed);
2157 gsi_commit_edge_inserts ();
2160 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2161 for each such basic block bb records the outermost loop for that execution
2162 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2163 blocks that contain a nonpure call. */
2165 static void
2166 fill_always_executed_in (struct loop *loop, sbitmap contains_call)
2168 basic_block bb = NULL, *bbs, last = NULL;
2169 unsigned i;
2170 edge e;
2171 struct loop *inn_loop = loop;
2173 if (!loop->header->aux)
2175 bbs = get_loop_body_in_dom_order (loop);
2177 for (i = 0; i < loop->num_nodes; i++)
2179 edge_iterator ei;
2180 bb = bbs[i];
2182 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2183 last = bb;
2185 if (TEST_BIT (contains_call, bb->index))
2186 break;
2188 FOR_EACH_EDGE (e, ei, bb->succs)
2189 if (!flow_bb_inside_loop_p (loop, e->dest))
2190 break;
2191 if (e)
2192 break;
2194 /* A loop might be infinite (TODO use simple loop analysis
2195 to disprove this if possible). */
2196 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2197 break;
2199 if (!flow_bb_inside_loop_p (inn_loop, bb))
2200 break;
2202 if (bb->loop_father->header == bb)
2204 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2205 break;
2207 /* In a loop that is always entered we may proceed anyway.
2208 But record that we entered it and stop once we leave it. */
2209 inn_loop = bb->loop_father;
2213 while (1)
2215 last->aux = loop;
2216 if (last == loop->header)
2217 break;
2218 last = get_immediate_dominator (CDI_DOMINATORS, last);
2221 free (bbs);
2224 for (loop = loop->inner; loop; loop = loop->next)
2225 fill_always_executed_in (loop, contains_call);
2228 /* Compute the global information needed by the loop invariant motion pass. */
2230 static void
2231 tree_ssa_lim_initialize (void)
2233 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2234 gimple_stmt_iterator bsi;
2235 struct loop *loop;
2236 basic_block bb;
2238 sbitmap_zero (contains_call);
2239 FOR_EACH_BB (bb)
2241 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2243 if (nonpure_call_p (gsi_stmt (bsi)))
2244 break;
2247 if (!gsi_end_p (bsi))
2248 SET_BIT (contains_call, bb->index);
2251 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2252 fill_always_executed_in (loop, contains_call);
2254 sbitmap_free (contains_call);
2256 lim_aux_data_map = pointer_map_create ();
2259 /* Cleans up after the invariant motion pass. */
2261 static void
2262 tree_ssa_lim_finalize (void)
2264 basic_block bb;
2265 unsigned i;
2266 bitmap b;
2267 htab_t h;
2269 FOR_EACH_BB (bb)
2271 bb->aux = NULL;
2274 pointer_map_destroy (lim_aux_data_map);
2276 VEC_free (mem_ref_p, heap, memory_accesses.refs_list);
2277 htab_delete (memory_accesses.refs);
2279 for (i = 0; VEC_iterate (bitmap, memory_accesses.refs_in_loop, i, b); i++)
2280 BITMAP_FREE (b);
2281 VEC_free (bitmap, heap, memory_accesses.refs_in_loop);
2283 for (i = 0; VEC_iterate (bitmap, memory_accesses.all_refs_in_loop, i, b); i++)
2284 BITMAP_FREE (b);
2285 VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop);
2287 for (i = 0; VEC_iterate (bitmap, memory_accesses.clobbered_vops, i, b); i++)
2288 BITMAP_FREE (b);
2289 VEC_free (bitmap, heap, memory_accesses.clobbered_vops);
2291 for (i = 0; VEC_iterate (htab_t, memory_accesses.vop_ref_map, i, h); i++)
2292 htab_delete (h);
2293 VEC_free (htab_t, heap, memory_accesses.vop_ref_map);
2295 if (memory_accesses.ttae_cache)
2296 pointer_map_destroy (memory_accesses.ttae_cache);
2299 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2300 i.e. those that are likely to be win regardless of the register pressure. */
2302 void
2303 tree_ssa_lim (void)
2305 tree_ssa_lim_initialize ();
2307 /* Gathers information about memory accesses in the loops. */
2308 analyze_memory_references ();
2310 /* For each statement determine the outermost loop in that it is
2311 invariant and cost for computing the invariant. */
2312 determine_invariantness ();
2314 /* Execute store motion. Force the necessary invariants to be moved
2315 out of the loops as well. */
2316 store_motion ();
2318 /* Move the expressions that are expensive enough. */
2319 move_computations ();
2321 tree_ssa_lim_finalize ();