Factor uses of build_pairwise_scheduling.
[official-gcc/Ramakrishna.git] / gcc / tree-complex.c
blob53bf11854952e6002b20ae1a4d01a126fced3b42
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "real.h"
28 #include "flags.h"
29 #include "tree-flow.h"
30 #include "gimple.h"
31 #include "tree-iterator.h"
32 #include "tree-pass.h"
33 #include "tree-ssa-propagate.h"
34 #include "diagnostic.h"
37 /* For each complex ssa name, a lattice value. We're interested in finding
38 out whether a complex number is degenerate in some way, having only real
39 or only complex parts. */
41 enum
43 UNINITIALIZED = 0,
44 ONLY_REAL = 1,
45 ONLY_IMAG = 2,
46 VARYING = 3
49 /* The type complex_lattice_t holds combinations of the above
50 constants. */
51 typedef int complex_lattice_t;
53 #define PAIR(a, b) ((a) << 2 | (b))
55 DEF_VEC_I(complex_lattice_t);
56 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
58 static VEC(complex_lattice_t, heap) *complex_lattice_values;
60 /* For each complex variable, a pair of variables for the components exists in
61 the hashtable. */
62 static htab_t complex_variable_components;
64 /* For each complex SSA_NAME, a pair of ssa names for the components. */
65 static VEC(tree, heap) *complex_ssa_name_components;
67 /* Lookup UID in the complex_variable_components hashtable and return the
68 associated tree. */
69 static tree
70 cvc_lookup (unsigned int uid)
72 struct int_tree_map *h, in;
73 in.uid = uid;
74 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
75 return h ? h->to : NULL;
78 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
80 static void
81 cvc_insert (unsigned int uid, tree to)
83 struct int_tree_map *h;
84 void **loc;
86 h = XNEW (struct int_tree_map);
87 h->uid = uid;
88 h->to = to;
89 loc = htab_find_slot_with_hash (complex_variable_components, h,
90 uid, INSERT);
91 *(struct int_tree_map **) loc = h;
94 /* Return true if T is not a zero constant. In the case of real values,
95 we're only interested in +0.0. */
97 static int
98 some_nonzerop (tree t)
100 int zerop = false;
102 /* Operations with real or imaginary part of a complex number zero
103 cannot be treated the same as operations with a real or imaginary
104 operand if we care about the signs of zeros in the result. */
105 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
106 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
107 else if (TREE_CODE (t) == FIXED_CST)
108 zerop = fixed_zerop (t);
109 else if (TREE_CODE (t) == INTEGER_CST)
110 zerop = integer_zerop (t);
112 return !zerop;
116 /* Compute a lattice value from the components of a complex type REAL
117 and IMAG. */
119 static complex_lattice_t
120 find_lattice_value_parts (tree real, tree imag)
122 int r, i;
123 complex_lattice_t ret;
125 r = some_nonzerop (real);
126 i = some_nonzerop (imag);
127 ret = r * ONLY_REAL + i * ONLY_IMAG;
129 /* ??? On occasion we could do better than mapping 0+0i to real, but we
130 certainly don't want to leave it UNINITIALIZED, which eventually gets
131 mapped to VARYING. */
132 if (ret == UNINITIALIZED)
133 ret = ONLY_REAL;
135 return ret;
139 /* Compute a lattice value from gimple_val T. */
141 static complex_lattice_t
142 find_lattice_value (tree t)
144 tree real, imag;
146 switch (TREE_CODE (t))
148 case SSA_NAME:
149 return VEC_index (complex_lattice_t, complex_lattice_values,
150 SSA_NAME_VERSION (t));
152 case COMPLEX_CST:
153 real = TREE_REALPART (t);
154 imag = TREE_IMAGPART (t);
155 break;
157 default:
158 gcc_unreachable ();
161 return find_lattice_value_parts (real, imag);
164 /* Determine if LHS is something for which we're interested in seeing
165 simulation results. */
167 static bool
168 is_complex_reg (tree lhs)
170 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
173 /* Mark the incoming parameters to the function as VARYING. */
175 static void
176 init_parameter_lattice_values (void)
178 tree parm, ssa_name;
180 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
181 if (is_complex_reg (parm)
182 && var_ann (parm) != NULL
183 && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
184 VEC_replace (complex_lattice_t, complex_lattice_values,
185 SSA_NAME_VERSION (ssa_name), VARYING);
188 /* Initialize simulation state for each statement. Return false if we
189 found no statements we want to simulate, and thus there's nothing
190 for the entire pass to do. */
192 static bool
193 init_dont_simulate_again (void)
195 basic_block bb;
196 gimple_stmt_iterator gsi;
197 gimple phi;
198 bool saw_a_complex_op = false;
200 FOR_EACH_BB (bb)
202 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
204 phi = gsi_stmt (gsi);
205 prop_set_simulate_again (phi,
206 is_complex_reg (gimple_phi_result (phi)));
209 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
211 gimple stmt;
212 tree op0, op1;
213 bool sim_again_p;
215 stmt = gsi_stmt (gsi);
216 op0 = op1 = NULL_TREE;
218 /* Most control-altering statements must be initially
219 simulated, else we won't cover the entire cfg. */
220 sim_again_p = stmt_ends_bb_p (stmt);
222 switch (gimple_code (stmt))
224 case GIMPLE_CALL:
225 if (gimple_call_lhs (stmt))
226 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
227 break;
229 case GIMPLE_ASSIGN:
230 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
231 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
232 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
233 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
234 else
235 op0 = gimple_assign_rhs1 (stmt);
236 if (gimple_num_ops (stmt) > 2)
237 op1 = gimple_assign_rhs2 (stmt);
238 break;
240 case GIMPLE_COND:
241 op0 = gimple_cond_lhs (stmt);
242 op1 = gimple_cond_rhs (stmt);
243 break;
245 default:
246 break;
249 if (op0 || op1)
250 switch (gimple_expr_code (stmt))
252 case EQ_EXPR:
253 case NE_EXPR:
254 case PLUS_EXPR:
255 case MINUS_EXPR:
256 case MULT_EXPR:
257 case TRUNC_DIV_EXPR:
258 case CEIL_DIV_EXPR:
259 case FLOOR_DIV_EXPR:
260 case ROUND_DIV_EXPR:
261 case RDIV_EXPR:
262 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
263 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
264 saw_a_complex_op = true;
265 break;
267 case NEGATE_EXPR:
268 case CONJ_EXPR:
269 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
270 saw_a_complex_op = true;
271 break;
273 case REALPART_EXPR:
274 case IMAGPART_EXPR:
275 /* The total store transformation performed during
276 gimplification creates such uninitialized loads
277 and we need to lower the statement to be able
278 to fix things up. */
279 if (TREE_CODE (op0) == SSA_NAME
280 && ssa_undefined_value_p (op0))
281 saw_a_complex_op = true;
282 break;
284 default:
285 break;
288 prop_set_simulate_again (stmt, sim_again_p);
292 return saw_a_complex_op;
296 /* Evaluate statement STMT against the complex lattice defined above. */
298 static enum ssa_prop_result
299 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
300 tree *result_p)
302 complex_lattice_t new_l, old_l, op1_l, op2_l;
303 unsigned int ver;
304 tree lhs;
306 lhs = gimple_get_lhs (stmt);
307 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
308 if (!lhs)
309 return SSA_PROP_VARYING;
311 /* These conditions should be satisfied due to the initial filter
312 set up in init_dont_simulate_again. */
313 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
314 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
316 *result_p = lhs;
317 ver = SSA_NAME_VERSION (lhs);
318 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
320 switch (gimple_expr_code (stmt))
322 case SSA_NAME:
323 case COMPLEX_CST:
324 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
325 break;
327 case COMPLEX_EXPR:
328 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
329 gimple_assign_rhs2 (stmt));
330 break;
332 case PLUS_EXPR:
333 case MINUS_EXPR:
334 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
335 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
337 /* We've set up the lattice values such that IOR neatly
338 models addition. */
339 new_l = op1_l | op2_l;
340 break;
342 case MULT_EXPR:
343 case RDIV_EXPR:
344 case TRUNC_DIV_EXPR:
345 case CEIL_DIV_EXPR:
346 case FLOOR_DIV_EXPR:
347 case ROUND_DIV_EXPR:
348 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
349 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
351 /* Obviously, if either varies, so does the result. */
352 if (op1_l == VARYING || op2_l == VARYING)
353 new_l = VARYING;
354 /* Don't prematurely promote variables if we've not yet seen
355 their inputs. */
356 else if (op1_l == UNINITIALIZED)
357 new_l = op2_l;
358 else if (op2_l == UNINITIALIZED)
359 new_l = op1_l;
360 else
362 /* At this point both numbers have only one component. If the
363 numbers are of opposite kind, the result is imaginary,
364 otherwise the result is real. The add/subtract translates
365 the real/imag from/to 0/1; the ^ performs the comparison. */
366 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
368 /* Don't allow the lattice value to flip-flop indefinitely. */
369 new_l |= old_l;
371 break;
373 case NEGATE_EXPR:
374 case CONJ_EXPR:
375 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
376 break;
378 default:
379 new_l = VARYING;
380 break;
383 /* If nothing changed this round, let the propagator know. */
384 if (new_l == old_l)
385 return SSA_PROP_NOT_INTERESTING;
387 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
388 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
391 /* Evaluate a PHI node against the complex lattice defined above. */
393 static enum ssa_prop_result
394 complex_visit_phi (gimple phi)
396 complex_lattice_t new_l, old_l;
397 unsigned int ver;
398 tree lhs;
399 int i;
401 lhs = gimple_phi_result (phi);
403 /* This condition should be satisfied due to the initial filter
404 set up in init_dont_simulate_again. */
405 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
407 /* We've set up the lattice values such that IOR neatly models PHI meet. */
408 new_l = UNINITIALIZED;
409 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
410 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
412 ver = SSA_NAME_VERSION (lhs);
413 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
415 if (new_l == old_l)
416 return SSA_PROP_NOT_INTERESTING;
418 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
419 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
422 /* Create one backing variable for a complex component of ORIG. */
424 static tree
425 create_one_component_var (tree type, tree orig, const char *prefix,
426 const char *suffix, enum tree_code code)
428 tree r = create_tmp_var (type, prefix);
429 add_referenced_var (r);
431 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
432 DECL_ARTIFICIAL (r) = 1;
434 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
436 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
438 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
440 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
441 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
442 DECL_IGNORED_P (r) = 0;
443 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
445 else
447 DECL_IGNORED_P (r) = 1;
448 TREE_NO_WARNING (r) = 1;
451 return r;
454 /* Retrieve a value for a complex component of VAR. */
456 static tree
457 get_component_var (tree var, bool imag_p)
459 size_t decl_index = DECL_UID (var) * 2 + imag_p;
460 tree ret = cvc_lookup (decl_index);
462 if (ret == NULL)
464 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
465 imag_p ? "CI" : "CR",
466 imag_p ? "$imag" : "$real",
467 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
468 cvc_insert (decl_index, ret);
471 return ret;
474 /* Retrieve a value for a complex component of SSA_NAME. */
476 static tree
477 get_component_ssa_name (tree ssa_name, bool imag_p)
479 complex_lattice_t lattice = find_lattice_value (ssa_name);
480 size_t ssa_name_index;
481 tree ret;
483 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
485 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
486 if (SCALAR_FLOAT_TYPE_P (inner_type))
487 return build_real (inner_type, dconst0);
488 else
489 return build_int_cst (inner_type, 0);
492 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
493 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
494 if (ret == NULL)
496 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
497 ret = make_ssa_name (ret, NULL);
499 /* Copy some properties from the original. In particular, whether it
500 is used in an abnormal phi, and whether it's uninitialized. */
501 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
502 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
503 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
504 && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
506 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
507 set_default_def (SSA_NAME_VAR (ret), ret);
510 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
513 return ret;
516 /* Set a value for a complex component of SSA_NAME, return a
517 gimple_seq of stuff that needs doing. */
519 static gimple_seq
520 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
522 complex_lattice_t lattice = find_lattice_value (ssa_name);
523 size_t ssa_name_index;
524 tree comp;
525 gimple last;
526 gimple_seq list;
528 /* We know the value must be zero, else there's a bug in our lattice
529 analysis. But the value may well be a variable known to contain
530 zero. We should be safe ignoring it. */
531 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
532 return NULL;
534 /* If we've already assigned an SSA_NAME to this component, then this
535 means that our walk of the basic blocks found a use before the set.
536 This is fine. Now we should create an initialization for the value
537 we created earlier. */
538 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
539 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
540 if (comp)
543 /* If we've nothing assigned, and the value we're given is already stable,
544 then install that as the value for this SSA_NAME. This preemptively
545 copy-propagates the value, which avoids unnecessary memory allocation. */
546 else if (is_gimple_min_invariant (value)
547 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
549 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
550 return NULL;
552 else if (TREE_CODE (value) == SSA_NAME
553 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
555 /* Replace an anonymous base value with the variable from cvc_lookup.
556 This should result in better debug info. */
557 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
558 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
560 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
561 replace_ssa_name_symbol (value, comp);
564 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
565 return NULL;
568 /* Finally, we need to stabilize the result by installing the value into
569 a new ssa name. */
570 else
571 comp = get_component_ssa_name (ssa_name, imag_p);
573 /* Do all the work to assign VALUE to COMP. */
574 list = NULL;
575 value = force_gimple_operand (value, &list, false, NULL);
576 last = gimple_build_assign (comp, value);
577 gimple_seq_add_stmt (&list, last);
578 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
580 return list;
583 /* Extract the real or imaginary part of a complex variable or constant.
584 Make sure that it's a proper gimple_val and gimplify it if not.
585 Emit any new code before gsi. */
587 static tree
588 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
589 bool gimple_p)
591 switch (TREE_CODE (t))
593 case COMPLEX_CST:
594 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
596 case COMPLEX_EXPR:
597 gcc_unreachable ();
599 case VAR_DECL:
600 case RESULT_DECL:
601 case PARM_DECL:
602 case INDIRECT_REF:
603 case COMPONENT_REF:
604 case ARRAY_REF:
605 case VIEW_CONVERT_EXPR:
607 tree inner_type = TREE_TYPE (TREE_TYPE (t));
609 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
610 inner_type, unshare_expr (t));
612 if (gimple_p)
613 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
614 GSI_SAME_STMT);
616 return t;
619 case SSA_NAME:
620 return get_component_ssa_name (t, imagpart_p);
622 default:
623 gcc_unreachable ();
627 /* Update the complex components of the ssa name on the lhs of STMT. */
629 static void
630 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
631 tree i)
633 tree lhs;
634 gimple_seq list;
636 lhs = gimple_get_lhs (stmt);
638 list = set_component_ssa_name (lhs, false, r);
639 if (list)
640 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
642 list = set_component_ssa_name (lhs, true, i);
643 if (list)
644 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
647 static void
648 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
650 gimple_seq list;
652 list = set_component_ssa_name (lhs, false, r);
653 if (list)
654 gsi_insert_seq_on_edge (e, list);
656 list = set_component_ssa_name (lhs, true, i);
657 if (list)
658 gsi_insert_seq_on_edge (e, list);
662 /* Update an assignment to a complex variable in place. */
664 static void
665 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
667 gimple_stmt_iterator orig_si = *gsi;
669 if (gimple_in_ssa_p (cfun))
670 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
672 gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
673 update_stmt (gsi_stmt (orig_si));
677 /* Generate code at the entry point of the function to initialize the
678 component variables for a complex parameter. */
680 static void
681 update_parameter_components (void)
683 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
684 tree parm;
686 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
688 tree type = TREE_TYPE (parm);
689 tree ssa_name, r, i;
691 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
692 continue;
694 type = TREE_TYPE (type);
695 ssa_name = gimple_default_def (cfun, parm);
696 if (!ssa_name)
697 continue;
699 r = build1 (REALPART_EXPR, type, ssa_name);
700 i = build1 (IMAGPART_EXPR, type, ssa_name);
701 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
705 /* Generate code to set the component variables of a complex variable
706 to match the PHI statements in block BB. */
708 static void
709 update_phi_components (basic_block bb)
711 gimple_stmt_iterator gsi;
713 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
715 gimple phi = gsi_stmt (gsi);
717 if (is_complex_reg (gimple_phi_result (phi)))
719 tree lr, li;
720 gimple pr = NULL, pi = NULL;
721 unsigned int i, n;
723 lr = get_component_ssa_name (gimple_phi_result (phi), false);
724 if (TREE_CODE (lr) == SSA_NAME)
726 pr = create_phi_node (lr, bb);
727 SSA_NAME_DEF_STMT (lr) = pr;
730 li = get_component_ssa_name (gimple_phi_result (phi), true);
731 if (TREE_CODE (li) == SSA_NAME)
733 pi = create_phi_node (li, bb);
734 SSA_NAME_DEF_STMT (li) = pi;
737 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
739 tree comp, arg = gimple_phi_arg_def (phi, i);
740 if (pr)
742 comp = extract_component (NULL, arg, false, false);
743 SET_PHI_ARG_DEF (pr, i, comp);
745 if (pi)
747 comp = extract_component (NULL, arg, true, false);
748 SET_PHI_ARG_DEF (pi, i, comp);
755 /* Expand a complex move to scalars. */
757 static void
758 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
760 tree inner_type = TREE_TYPE (type);
761 tree r, i, lhs, rhs;
762 gimple stmt = gsi_stmt (*gsi);
764 if (is_gimple_assign (stmt))
766 lhs = gimple_assign_lhs (stmt);
767 if (gimple_num_ops (stmt) == 2)
768 rhs = gimple_assign_rhs1 (stmt);
769 else
770 rhs = NULL_TREE;
772 else if (is_gimple_call (stmt))
774 lhs = gimple_call_lhs (stmt);
775 rhs = NULL_TREE;
777 else
778 gcc_unreachable ();
780 if (TREE_CODE (lhs) == SSA_NAME)
782 if (is_ctrl_altering_stmt (stmt))
784 edge_iterator ei;
785 edge e;
787 /* The value is not assigned on the exception edges, so we need not
788 concern ourselves there. We do need to update on the fallthru
789 edge. Find it. */
790 FOR_EACH_EDGE (e, ei, gsi_bb (*gsi)->succs)
791 if (e->flags & EDGE_FALLTHRU)
792 goto found_fallthru;
793 gcc_unreachable ();
794 found_fallthru:
796 r = build1 (REALPART_EXPR, inner_type, lhs);
797 i = build1 (IMAGPART_EXPR, inner_type, lhs);
798 update_complex_components_on_edge (e, lhs, r, i);
800 else if (is_gimple_call (stmt)
801 || gimple_has_side_effects (stmt)
802 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
804 r = build1 (REALPART_EXPR, inner_type, lhs);
805 i = build1 (IMAGPART_EXPR, inner_type, lhs);
806 update_complex_components (gsi, stmt, r, i);
808 else
810 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
812 r = extract_component (gsi, rhs, 0, true);
813 i = extract_component (gsi, rhs, 1, true);
815 else
817 r = gimple_assign_rhs1 (stmt);
818 i = gimple_assign_rhs2 (stmt);
820 update_complex_assignment (gsi, r, i);
823 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
825 tree x;
826 gimple t;
828 r = extract_component (gsi, rhs, 0, false);
829 i = extract_component (gsi, rhs, 1, false);
831 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
832 t = gimple_build_assign (x, r);
833 gsi_insert_before (gsi, t, GSI_SAME_STMT);
835 if (stmt == gsi_stmt (*gsi))
837 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
838 gimple_assign_set_lhs (stmt, x);
839 gimple_assign_set_rhs1 (stmt, i);
841 else
843 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
844 t = gimple_build_assign (x, i);
845 gsi_insert_before (gsi, t, GSI_SAME_STMT);
847 stmt = gsi_stmt (*gsi);
848 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
849 gimple_return_set_retval (stmt, lhs);
852 update_stmt (stmt);
856 /* Expand complex addition to scalars:
857 a + b = (ar + br) + i(ai + bi)
858 a - b = (ar - br) + i(ai + bi)
861 static void
862 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
863 tree ar, tree ai, tree br, tree bi,
864 enum tree_code code,
865 complex_lattice_t al, complex_lattice_t bl)
867 tree rr, ri;
869 switch (PAIR (al, bl))
871 case PAIR (ONLY_REAL, ONLY_REAL):
872 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
873 ri = ai;
874 break;
876 case PAIR (ONLY_REAL, ONLY_IMAG):
877 rr = ar;
878 if (code == MINUS_EXPR)
879 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
880 else
881 ri = bi;
882 break;
884 case PAIR (ONLY_IMAG, ONLY_REAL):
885 if (code == MINUS_EXPR)
886 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
887 else
888 rr = br;
889 ri = ai;
890 break;
892 case PAIR (ONLY_IMAG, ONLY_IMAG):
893 rr = ar;
894 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
895 break;
897 case PAIR (VARYING, ONLY_REAL):
898 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
899 ri = ai;
900 break;
902 case PAIR (VARYING, ONLY_IMAG):
903 rr = ar;
904 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
905 break;
907 case PAIR (ONLY_REAL, VARYING):
908 if (code == MINUS_EXPR)
909 goto general;
910 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
911 ri = bi;
912 break;
914 case PAIR (ONLY_IMAG, VARYING):
915 if (code == MINUS_EXPR)
916 goto general;
917 rr = br;
918 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
919 break;
921 case PAIR (VARYING, VARYING):
922 general:
923 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
924 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
925 break;
927 default:
928 gcc_unreachable ();
931 update_complex_assignment (gsi, rr, ri);
934 /* Expand a complex multiplication or division to a libcall to the c99
935 compliant routines. */
937 static void
938 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
939 tree br, tree bi, enum tree_code code)
941 enum machine_mode mode;
942 enum built_in_function bcode;
943 tree fn, type, lhs;
944 gimple old_stmt, stmt;
946 old_stmt = gsi_stmt (*gsi);
947 lhs = gimple_assign_lhs (old_stmt);
948 type = TREE_TYPE (lhs);
950 mode = TYPE_MODE (type);
951 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
953 if (code == MULT_EXPR)
954 bcode = ((enum built_in_function)
955 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
956 else if (code == RDIV_EXPR)
957 bcode = ((enum built_in_function)
958 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
959 else
960 gcc_unreachable ();
961 fn = built_in_decls[bcode];
963 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
964 gimple_call_set_lhs (stmt, lhs);
965 update_stmt (stmt);
966 gsi_replace (gsi, stmt, false);
968 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
969 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
971 if (gimple_in_ssa_p (cfun))
973 type = TREE_TYPE (type);
974 update_complex_components (gsi, stmt,
975 build1 (REALPART_EXPR, type, lhs),
976 build1 (IMAGPART_EXPR, type, lhs));
977 SSA_NAME_DEF_STMT (lhs) = stmt;
981 /* Expand complex multiplication to scalars:
982 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
985 static void
986 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
987 tree ar, tree ai, tree br, tree bi,
988 complex_lattice_t al, complex_lattice_t bl)
990 tree rr, ri;
992 if (al < bl)
994 complex_lattice_t tl;
995 rr = ar, ar = br, br = rr;
996 ri = ai, ai = bi, bi = ri;
997 tl = al, al = bl, bl = tl;
1000 switch (PAIR (al, bl))
1002 case PAIR (ONLY_REAL, ONLY_REAL):
1003 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1004 ri = ai;
1005 break;
1007 case PAIR (ONLY_IMAG, ONLY_REAL):
1008 rr = ar;
1009 if (TREE_CODE (ai) == REAL_CST
1010 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1011 ri = br;
1012 else
1013 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1014 break;
1016 case PAIR (ONLY_IMAG, ONLY_IMAG):
1017 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1018 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1019 ri = ar;
1020 break;
1022 case PAIR (VARYING, ONLY_REAL):
1023 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1024 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1025 break;
1027 case PAIR (VARYING, ONLY_IMAG):
1028 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1029 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1030 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1031 break;
1033 case PAIR (VARYING, VARYING):
1034 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1036 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1037 return;
1039 else
1041 tree t1, t2, t3, t4;
1043 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1044 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1045 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1047 /* Avoid expanding redundant multiplication for the common
1048 case of squaring a complex number. */
1049 if (ar == br && ai == bi)
1050 t4 = t3;
1051 else
1052 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1054 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1055 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1057 break;
1059 default:
1060 gcc_unreachable ();
1063 update_complex_assignment (gsi, rr, ri);
1066 /* Keep this algorithm in sync with fold-const.c:const_binop().
1068 Expand complex division to scalars, straightforward algorithm.
1069 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1070 t = br*br + bi*bi
1073 static void
1074 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1075 tree ar, tree ai, tree br, tree bi,
1076 enum tree_code code)
1078 tree rr, ri, div, t1, t2, t3;
1080 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1081 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1082 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1084 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1085 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1086 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1087 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1089 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1090 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1091 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1092 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1094 update_complex_assignment (gsi, rr, ri);
1097 /* Keep this algorithm in sync with fold-const.c:const_binop().
1099 Expand complex division to scalars, modified algorithm to minimize
1100 overflow with wide input ranges. */
1102 static void
1103 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1104 tree ar, tree ai, tree br, tree bi,
1105 enum tree_code code)
1107 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1108 basic_block bb_cond, bb_true, bb_false, bb_join;
1109 gimple stmt;
1111 /* Examine |br| < |bi|, and branch. */
1112 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1113 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1114 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1115 LT_EXPR, boolean_type_node, t1, t2);
1116 STRIP_NOPS (compare);
1118 bb_cond = bb_true = bb_false = bb_join = NULL;
1119 rr = ri = tr = ti = NULL;
1120 if (TREE_CODE (compare) != INTEGER_CST)
1122 edge e;
1123 gimple stmt;
1124 tree cond, tmp;
1126 tmp = create_tmp_var (boolean_type_node, NULL);
1127 stmt = gimple_build_assign (tmp, compare);
1128 if (gimple_in_ssa_p (cfun))
1130 tmp = make_ssa_name (tmp, stmt);
1131 gimple_assign_set_lhs (stmt, tmp);
1134 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1136 cond = fold_build2_loc (gimple_location (stmt),
1137 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1138 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1139 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1141 /* Split the original block, and create the TRUE and FALSE blocks. */
1142 e = split_block (gsi_bb (*gsi), stmt);
1143 bb_cond = e->src;
1144 bb_join = e->dest;
1145 bb_true = create_empty_bb (bb_cond);
1146 bb_false = create_empty_bb (bb_true);
1148 /* Wire the blocks together. */
1149 e->flags = EDGE_TRUE_VALUE;
1150 redirect_edge_succ (e, bb_true);
1151 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1152 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1153 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1155 /* Update dominance info. Note that bb_join's data was
1156 updated by split_block. */
1157 if (dom_info_available_p (CDI_DOMINATORS))
1159 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1160 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1163 rr = make_rename_temp (inner_type, NULL);
1164 ri = make_rename_temp (inner_type, NULL);
1167 /* In the TRUE branch, we compute
1168 ratio = br/bi;
1169 div = (br * ratio) + bi;
1170 tr = (ar * ratio) + ai;
1171 ti = (ai * ratio) - ar;
1172 tr = tr / div;
1173 ti = ti / div; */
1174 if (bb_true || integer_nonzerop (compare))
1176 if (bb_true)
1178 *gsi = gsi_last_bb (bb_true);
1179 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1182 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1184 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1185 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1187 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1188 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1190 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1191 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1193 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1194 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1196 if (bb_true)
1198 stmt = gimple_build_assign (rr, tr);
1199 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1200 stmt = gimple_build_assign (ri, ti);
1201 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1202 gsi_remove (gsi, true);
1206 /* In the FALSE branch, we compute
1207 ratio = d/c;
1208 divisor = (d * ratio) + c;
1209 tr = (b * ratio) + a;
1210 ti = b - (a * ratio);
1211 tr = tr / div;
1212 ti = ti / div; */
1213 if (bb_false || integer_zerop (compare))
1215 if (bb_false)
1217 *gsi = gsi_last_bb (bb_false);
1218 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1221 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1223 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1224 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1226 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1227 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1229 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1230 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1232 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1233 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1235 if (bb_false)
1237 stmt = gimple_build_assign (rr, tr);
1238 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1239 stmt = gimple_build_assign (ri, ti);
1240 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1241 gsi_remove (gsi, true);
1245 if (bb_join)
1246 *gsi = gsi_start_bb (bb_join);
1247 else
1248 rr = tr, ri = ti;
1250 update_complex_assignment (gsi, rr, ri);
1253 /* Expand complex division to scalars. */
1255 static void
1256 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1257 tree ar, tree ai, tree br, tree bi,
1258 enum tree_code code,
1259 complex_lattice_t al, complex_lattice_t bl)
1261 tree rr, ri;
1263 switch (PAIR (al, bl))
1265 case PAIR (ONLY_REAL, ONLY_REAL):
1266 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1267 ri = ai;
1268 break;
1270 case PAIR (ONLY_REAL, ONLY_IMAG):
1271 rr = ai;
1272 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1273 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1274 break;
1276 case PAIR (ONLY_IMAG, ONLY_REAL):
1277 rr = ar;
1278 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1279 break;
1281 case PAIR (ONLY_IMAG, ONLY_IMAG):
1282 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1283 ri = ar;
1284 break;
1286 case PAIR (VARYING, ONLY_REAL):
1287 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1288 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1289 break;
1291 case PAIR (VARYING, ONLY_IMAG):
1292 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1293 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1294 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1296 case PAIR (ONLY_REAL, VARYING):
1297 case PAIR (ONLY_IMAG, VARYING):
1298 case PAIR (VARYING, VARYING):
1299 switch (flag_complex_method)
1301 case 0:
1302 /* straightforward implementation of complex divide acceptable. */
1303 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1304 break;
1306 case 2:
1307 if (SCALAR_FLOAT_TYPE_P (inner_type))
1309 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1310 break;
1312 /* FALLTHRU */
1314 case 1:
1315 /* wide ranges of inputs must work for complex divide. */
1316 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1317 break;
1319 default:
1320 gcc_unreachable ();
1322 return;
1324 default:
1325 gcc_unreachable ();
1328 update_complex_assignment (gsi, rr, ri);
1331 /* Expand complex negation to scalars:
1332 -a = (-ar) + i(-ai)
1335 static void
1336 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1337 tree ar, tree ai)
1339 tree rr, ri;
1341 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1342 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1344 update_complex_assignment (gsi, rr, ri);
1347 /* Expand complex conjugate to scalars:
1348 ~a = (ar) + i(-ai)
1351 static void
1352 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1353 tree ar, tree ai)
1355 tree ri;
1357 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1359 update_complex_assignment (gsi, ar, ri);
1362 /* Expand complex comparison (EQ or NE only). */
1364 static void
1365 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1366 tree br, tree bi, enum tree_code code)
1368 tree cr, ci, cc, type;
1369 gimple stmt;
1371 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1372 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1373 cc = gimplify_build2 (gsi,
1374 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1375 boolean_type_node, cr, ci);
1377 stmt = gsi_stmt (*gsi);
1379 switch (gimple_code (stmt))
1381 case GIMPLE_RETURN:
1382 type = TREE_TYPE (gimple_return_retval (stmt));
1383 gimple_return_set_retval (stmt, fold_convert (type, cc));
1384 break;
1386 case GIMPLE_ASSIGN:
1387 type = TREE_TYPE (gimple_assign_lhs (stmt));
1388 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1389 stmt = gsi_stmt (*gsi);
1390 break;
1392 case GIMPLE_COND:
1393 gimple_cond_set_code (stmt, EQ_EXPR);
1394 gimple_cond_set_lhs (stmt, cc);
1395 gimple_cond_set_rhs (stmt, boolean_true_node);
1396 break;
1398 default:
1399 gcc_unreachable ();
1402 update_stmt (stmt);
1406 /* Process one statement. If we identify a complex operation, expand it. */
1408 static void
1409 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1411 gimple stmt = gsi_stmt (*gsi);
1412 tree type, inner_type, lhs;
1413 tree ac, ar, ai, bc, br, bi;
1414 complex_lattice_t al, bl;
1415 enum tree_code code;
1417 lhs = gimple_get_lhs (stmt);
1418 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1419 return;
1421 type = TREE_TYPE (gimple_op (stmt, 0));
1422 code = gimple_expr_code (stmt);
1424 /* Initial filter for operations we handle. */
1425 switch (code)
1427 case PLUS_EXPR:
1428 case MINUS_EXPR:
1429 case MULT_EXPR:
1430 case TRUNC_DIV_EXPR:
1431 case CEIL_DIV_EXPR:
1432 case FLOOR_DIV_EXPR:
1433 case ROUND_DIV_EXPR:
1434 case RDIV_EXPR:
1435 case NEGATE_EXPR:
1436 case CONJ_EXPR:
1437 if (TREE_CODE (type) != COMPLEX_TYPE)
1438 return;
1439 inner_type = TREE_TYPE (type);
1440 break;
1442 case EQ_EXPR:
1443 case NE_EXPR:
1444 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1445 subocde, so we need to access the operands using gimple_op. */
1446 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1447 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1448 return;
1449 break;
1451 default:
1453 tree rhs;
1455 /* GIMPLE_COND may also fallthru here, but we do not need to
1456 do anything with it. */
1457 if (gimple_code (stmt) == GIMPLE_COND)
1458 return;
1460 if (TREE_CODE (type) == COMPLEX_TYPE)
1461 expand_complex_move (gsi, type);
1462 else if (is_gimple_assign (stmt)
1463 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1464 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1465 && TREE_CODE (lhs) == SSA_NAME)
1467 rhs = gimple_assign_rhs1 (stmt);
1468 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1469 gimple_assign_rhs_code (stmt)
1470 == IMAGPART_EXPR,
1471 false);
1472 gimple_assign_set_rhs_from_tree (gsi, rhs);
1473 stmt = gsi_stmt (*gsi);
1474 update_stmt (stmt);
1477 return;
1480 /* Extract the components of the two complex values. Make sure and
1481 handle the common case of the same value used twice specially. */
1482 if (is_gimple_assign (stmt))
1484 ac = gimple_assign_rhs1 (stmt);
1485 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1487 /* GIMPLE_CALL can not get here. */
1488 else
1490 ac = gimple_cond_lhs (stmt);
1491 bc = gimple_cond_rhs (stmt);
1494 ar = extract_component (gsi, ac, false, true);
1495 ai = extract_component (gsi, ac, true, true);
1497 if (ac == bc)
1498 br = ar, bi = ai;
1499 else if (bc)
1501 br = extract_component (gsi, bc, 0, true);
1502 bi = extract_component (gsi, bc, 1, true);
1504 else
1505 br = bi = NULL_TREE;
1507 if (gimple_in_ssa_p (cfun))
1509 al = find_lattice_value (ac);
1510 if (al == UNINITIALIZED)
1511 al = VARYING;
1513 if (TREE_CODE_CLASS (code) == tcc_unary)
1514 bl = UNINITIALIZED;
1515 else if (ac == bc)
1516 bl = al;
1517 else
1519 bl = find_lattice_value (bc);
1520 if (bl == UNINITIALIZED)
1521 bl = VARYING;
1524 else
1525 al = bl = VARYING;
1527 switch (code)
1529 case PLUS_EXPR:
1530 case MINUS_EXPR:
1531 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1532 break;
1534 case MULT_EXPR:
1535 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1536 break;
1538 case TRUNC_DIV_EXPR:
1539 case CEIL_DIV_EXPR:
1540 case FLOOR_DIV_EXPR:
1541 case ROUND_DIV_EXPR:
1542 case RDIV_EXPR:
1543 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1544 break;
1546 case NEGATE_EXPR:
1547 expand_complex_negation (gsi, inner_type, ar, ai);
1548 break;
1550 case CONJ_EXPR:
1551 expand_complex_conjugate (gsi, inner_type, ar, ai);
1552 break;
1554 case EQ_EXPR:
1555 case NE_EXPR:
1556 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1557 break;
1559 default:
1560 gcc_unreachable ();
1565 /* Entry point for complex operation lowering during optimization. */
1567 static unsigned int
1568 tree_lower_complex (void)
1570 int old_last_basic_block;
1571 gimple_stmt_iterator gsi;
1572 basic_block bb;
1574 if (!init_dont_simulate_again ())
1575 return 0;
1577 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1578 VEC_safe_grow_cleared (complex_lattice_t, heap,
1579 complex_lattice_values, num_ssa_names);
1581 init_parameter_lattice_values ();
1582 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1584 complex_variable_components = htab_create (10, int_tree_map_hash,
1585 int_tree_map_eq, free);
1587 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1588 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1589 2 * num_ssa_names);
1591 update_parameter_components ();
1593 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1594 old_last_basic_block = last_basic_block;
1595 FOR_EACH_BB (bb)
1597 if (bb->index >= old_last_basic_block)
1598 continue;
1600 update_phi_components (bb);
1601 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1602 expand_complex_operations_1 (&gsi);
1605 gsi_commit_edge_inserts ();
1607 htab_delete (complex_variable_components);
1608 VEC_free (tree, heap, complex_ssa_name_components);
1609 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1610 return 0;
1613 struct gimple_opt_pass pass_lower_complex =
1616 GIMPLE_PASS,
1617 "cplxlower", /* name */
1618 0, /* gate */
1619 tree_lower_complex, /* execute */
1620 NULL, /* sub */
1621 NULL, /* next */
1622 0, /* static_pass_number */
1623 TV_NONE, /* tv_id */
1624 PROP_ssa, /* properties_required */
1625 0, /* properties_provided */
1626 0, /* properties_destroyed */
1627 0, /* todo_flags_start */
1628 TODO_dump_func
1629 | TODO_ggc_collect
1630 | TODO_update_ssa
1631 | TODO_verify_stmts /* todo_flags_finish */
1636 /* Entry point for complex operation lowering without optimization. */
1638 static unsigned int
1639 tree_lower_complex_O0 (void)
1641 int old_last_basic_block = last_basic_block;
1642 gimple_stmt_iterator gsi;
1643 basic_block bb;
1645 FOR_EACH_BB (bb)
1647 if (bb->index >= old_last_basic_block)
1648 continue;
1650 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1651 expand_complex_operations_1 (&gsi);
1653 return 0;
1656 static bool
1657 gate_no_optimization (void)
1659 /* With errors, normal optimization passes are not run. If we don't
1660 lower complex operations at all, rtl expansion will abort. */
1661 return optimize == 0 || sorrycount || errorcount;
1664 struct gimple_opt_pass pass_lower_complex_O0 =
1667 GIMPLE_PASS,
1668 "cplxlower0", /* name */
1669 gate_no_optimization, /* gate */
1670 tree_lower_complex_O0, /* execute */
1671 NULL, /* sub */
1672 NULL, /* next */
1673 0, /* static_pass_number */
1674 TV_NONE, /* tv_id */
1675 PROP_cfg, /* properties_required */
1676 0, /* properties_provided */
1677 0, /* properties_destroyed */
1678 0, /* todo_flags_start */
1679 TODO_dump_func | TODO_ggc_collect
1680 | TODO_verify_stmts, /* todo_flags_finish */