ubsan: d-demangle.c:214 signed integer overflow
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_win.cpp
blobfca15beb61612dfb5d301ce6a9b430602a687689
1 //===-- sanitizer_win.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements windows-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
14 #include "sanitizer_platform.h"
15 #if SANITIZER_WINDOWS
17 #define WIN32_LEAN_AND_MEAN
18 #define NOGDI
19 #include <windows.h>
20 #include <io.h>
21 #include <psapi.h>
22 #include <stdlib.h>
24 #include "sanitizer_common.h"
25 #include "sanitizer_file.h"
26 #include "sanitizer_libc.h"
27 #include "sanitizer_mutex.h"
28 #include "sanitizer_placement_new.h"
29 #include "sanitizer_win_defs.h"
31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32 #pragma comment(lib, "psapi")
33 #endif
34 #if SANITIZER_WIN_TRACE
35 #include <traceloggingprovider.h>
36 // Windows trace logging provider init
37 #pragma comment(lib, "advapi32.lib")
38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41 (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42 0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43 #else
44 #define TraceLoggingUnregister(x)
45 #endif
47 // A macro to tell the compiler that this part of the code cannot be reached,
48 // if the compiler supports this feature. Since we're using this in
49 // code that is called when terminating the process, the expansion of the
50 // macro should not terminate the process to avoid infinite recursion.
51 #if defined(__clang__)
52 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
53 #elif defined(__GNUC__) && \
54 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
55 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
56 #elif defined(_MSC_VER)
57 # define BUILTIN_UNREACHABLE() __assume(0)
58 #else
59 # define BUILTIN_UNREACHABLE()
60 #endif
62 namespace __sanitizer {
64 #include "sanitizer_syscall_generic.inc"
66 // --------------------- sanitizer_common.h
67 uptr GetPageSize() {
68 SYSTEM_INFO si;
69 GetSystemInfo(&si);
70 return si.dwPageSize;
73 uptr GetMmapGranularity() {
74 SYSTEM_INFO si;
75 GetSystemInfo(&si);
76 return si.dwAllocationGranularity;
79 uptr GetMaxUserVirtualAddress() {
80 SYSTEM_INFO si;
81 GetSystemInfo(&si);
82 return (uptr)si.lpMaximumApplicationAddress;
85 uptr GetMaxVirtualAddress() {
86 return GetMaxUserVirtualAddress();
89 bool FileExists(const char *filename) {
90 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
93 uptr internal_getpid() {
94 return GetProcessId(GetCurrentProcess());
97 int internal_dlinfo(void *handle, int request, void *p) {
98 UNIMPLEMENTED();
101 // In contrast to POSIX, on Windows GetCurrentThreadId()
102 // returns a system-unique identifier.
103 tid_t GetTid() {
104 return GetCurrentThreadId();
107 uptr GetThreadSelf() {
108 return GetTid();
111 #if !SANITIZER_GO
112 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
113 uptr *stack_bottom) {
114 CHECK(stack_top);
115 CHECK(stack_bottom);
116 MEMORY_BASIC_INFORMATION mbi;
117 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
118 // FIXME: is it possible for the stack to not be a single allocation?
119 // Are these values what ASan expects to get (reserved, not committed;
120 // including stack guard page) ?
121 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
122 *stack_bottom = (uptr)mbi.AllocationBase;
124 #endif // #if !SANITIZER_GO
126 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
127 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
128 if (rv == 0)
129 ReportMmapFailureAndDie(size, mem_type, "allocate",
130 GetLastError(), raw_report);
131 return rv;
134 void UnmapOrDie(void *addr, uptr size) {
135 if (!size || !addr)
136 return;
138 MEMORY_BASIC_INFORMATION mbi;
139 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
141 // MEM_RELEASE can only be used to unmap whole regions previously mapped with
142 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
143 // fails try MEM_DECOMMIT.
144 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
145 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
146 Report("ERROR: %s failed to "
147 "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
148 SanitizerToolName, size, size, addr, GetLastError());
149 CHECK("unable to unmap" && 0);
154 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
155 const char *mmap_type) {
156 error_t last_error = GetLastError();
157 if (last_error == ERROR_NOT_ENOUGH_MEMORY)
158 return nullptr;
159 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
162 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
163 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
164 if (rv == 0)
165 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
166 return rv;
169 // We want to map a chunk of address space aligned to 'alignment'.
170 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
171 const char *mem_type) {
172 CHECK(IsPowerOfTwo(size));
173 CHECK(IsPowerOfTwo(alignment));
175 // Windows will align our allocations to at least 64K.
176 alignment = Max(alignment, GetMmapGranularity());
178 uptr mapped_addr =
179 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
180 if (!mapped_addr)
181 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
183 // If we got it right on the first try, return. Otherwise, unmap it and go to
184 // the slow path.
185 if (IsAligned(mapped_addr, alignment))
186 return (void*)mapped_addr;
187 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
188 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
190 // If we didn't get an aligned address, overallocate, find an aligned address,
191 // unmap, and try to allocate at that aligned address.
192 int retries = 0;
193 const int kMaxRetries = 10;
194 for (; retries < kMaxRetries &&
195 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
196 retries++) {
197 // Overallocate size + alignment bytes.
198 mapped_addr =
199 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
200 if (!mapped_addr)
201 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
203 // Find the aligned address.
204 uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
206 // Free the overallocation.
207 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
208 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
210 // Attempt to allocate exactly the number of bytes we need at the aligned
211 // address. This may fail for a number of reasons, in which case we continue
212 // the loop.
213 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
214 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
217 // Fail if we can't make this work quickly.
218 if (retries == kMaxRetries && mapped_addr == 0)
219 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
221 return (void *)mapped_addr;
224 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
225 // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
226 // but on Win64 it does.
227 (void)name; // unsupported
228 #if !SANITIZER_GO && SANITIZER_WINDOWS64
229 // On asan/Windows64, use MEM_COMMIT would result in error
230 // 1455:ERROR_COMMITMENT_LIMIT.
231 // Asan uses exception handler to commit page on demand.
232 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
233 #else
234 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
235 PAGE_READWRITE);
236 #endif
237 if (p == 0) {
238 Report("ERROR: %s failed to "
239 "allocate %p (%zd) bytes at %p (error code: %d)\n",
240 SanitizerToolName, size, size, fixed_addr, GetLastError());
241 return false;
243 return true;
246 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
247 // FIXME: Windows support large pages too. Might be worth checking
248 return MmapFixedNoReserve(fixed_addr, size, name);
251 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
252 // 'MmapFixedNoAccess'.
253 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
254 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
255 MEM_COMMIT, PAGE_READWRITE);
256 if (p == 0) {
257 char mem_type[30];
258 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
259 fixed_addr);
260 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
262 return p;
265 // Uses fixed_addr for now.
266 // Will use offset instead once we've implemented this function for real.
267 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
268 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
271 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
272 const char *name) {
273 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
276 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
277 // Only unmap if it covers the entire range.
278 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
279 // We unmap the whole range, just null out the base.
280 base_ = nullptr;
281 size_ = 0;
282 UnmapOrDie(reinterpret_cast<void*>(addr), size);
285 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
286 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
287 MEM_COMMIT, PAGE_READWRITE);
288 if (p == 0) {
289 char mem_type[30];
290 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
291 fixed_addr);
292 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
294 return p;
297 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
298 // FIXME: make this really NoReserve?
299 return MmapOrDie(size, mem_type);
302 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
303 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
304 size_ = size;
305 name_ = name;
306 (void)os_handle_; // unsupported
307 return reinterpret_cast<uptr>(base_);
311 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
312 (void)name; // unsupported
313 void *res = VirtualAlloc((LPVOID)fixed_addr, size,
314 MEM_RESERVE, PAGE_NOACCESS);
315 if (res == 0)
316 Report("WARNING: %s failed to "
317 "mprotect %p (%zd) bytes at %p (error code: %d)\n",
318 SanitizerToolName, size, size, fixed_addr, GetLastError());
319 return res;
322 void *MmapNoAccess(uptr size) {
323 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
324 if (res == 0)
325 Report("WARNING: %s failed to "
326 "mprotect %p (%zd) bytes (error code: %d)\n",
327 SanitizerToolName, size, size, GetLastError());
328 return res;
331 bool MprotectNoAccess(uptr addr, uptr size) {
332 DWORD old_protection;
333 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
336 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
337 // This is almost useless on 32-bits.
338 // FIXME: add madvise-analog when we move to 64-bits.
341 void SetShadowRegionHugePageMode(uptr addr, uptr size) {
342 // FIXME: probably similar to ReleaseMemoryToOS.
345 bool DontDumpShadowMemory(uptr addr, uptr length) {
346 // This is almost useless on 32-bits.
347 // FIXME: add madvise-analog when we move to 64-bits.
348 return true;
351 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
352 uptr *largest_gap_found,
353 uptr *max_occupied_addr) {
354 uptr address = 0;
355 while (true) {
356 MEMORY_BASIC_INFORMATION info;
357 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
358 return 0;
360 if (info.State == MEM_FREE) {
361 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
362 alignment);
363 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
364 return shadow_address;
367 // Move to the next region.
368 address = (uptr)info.BaseAddress + info.RegionSize;
370 return 0;
373 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
374 MEMORY_BASIC_INFORMATION mbi;
375 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
376 return mbi.Protect == PAGE_NOACCESS &&
377 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
380 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
381 UNIMPLEMENTED();
384 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
385 UNIMPLEMENTED();
388 static const int kMaxEnvNameLength = 128;
389 static const DWORD kMaxEnvValueLength = 32767;
391 namespace {
393 struct EnvVariable {
394 char name[kMaxEnvNameLength];
395 char value[kMaxEnvValueLength];
398 } // namespace
400 static const int kEnvVariables = 5;
401 static EnvVariable env_vars[kEnvVariables];
402 static int num_env_vars;
404 const char *GetEnv(const char *name) {
405 // Note: this implementation caches the values of the environment variables
406 // and limits their quantity.
407 for (int i = 0; i < num_env_vars; i++) {
408 if (0 == internal_strcmp(name, env_vars[i].name))
409 return env_vars[i].value;
411 CHECK_LT(num_env_vars, kEnvVariables);
412 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
413 kMaxEnvValueLength);
414 if (rv > 0 && rv < kMaxEnvValueLength) {
415 CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
416 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
417 num_env_vars++;
418 return env_vars[num_env_vars - 1].value;
420 return 0;
423 const char *GetPwd() {
424 UNIMPLEMENTED();
427 u32 GetUid() {
428 UNIMPLEMENTED();
431 namespace {
432 struct ModuleInfo {
433 const char *filepath;
434 uptr base_address;
435 uptr end_address;
438 #if !SANITIZER_GO
439 int CompareModulesBase(const void *pl, const void *pr) {
440 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
441 if (l->base_address < r->base_address)
442 return -1;
443 return l->base_address > r->base_address;
445 #endif
446 } // namespace
448 #if !SANITIZER_GO
449 void DumpProcessMap() {
450 Report("Dumping process modules:\n");
451 ListOfModules modules;
452 modules.init();
453 uptr num_modules = modules.size();
455 InternalMmapVector<ModuleInfo> module_infos(num_modules);
456 for (size_t i = 0; i < num_modules; ++i) {
457 module_infos[i].filepath = modules[i].full_name();
458 module_infos[i].base_address = modules[i].ranges().front()->beg;
459 module_infos[i].end_address = modules[i].ranges().back()->end;
461 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
462 CompareModulesBase);
464 for (size_t i = 0; i < num_modules; ++i) {
465 const ModuleInfo &mi = module_infos[i];
466 if (mi.end_address != 0) {
467 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
468 mi.filepath[0] ? mi.filepath : "[no name]");
469 } else if (mi.filepath[0]) {
470 Printf("\t??\?-??? %s\n", mi.filepath);
471 } else {
472 Printf("\t???\n");
476 #endif
478 void PrintModuleMap() { }
480 void DisableCoreDumperIfNecessary() {
481 // Do nothing.
484 void ReExec() {
485 UNIMPLEMENTED();
488 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
490 bool StackSizeIsUnlimited() {
491 UNIMPLEMENTED();
494 void SetStackSizeLimitInBytes(uptr limit) {
495 UNIMPLEMENTED();
498 bool AddressSpaceIsUnlimited() {
499 UNIMPLEMENTED();
502 void SetAddressSpaceUnlimited() {
503 UNIMPLEMENTED();
506 bool IsPathSeparator(const char c) {
507 return c == '\\' || c == '/';
510 static bool IsAlpha(char c) {
511 c = ToLower(c);
512 return c >= 'a' && c <= 'z';
515 bool IsAbsolutePath(const char *path) {
516 return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
517 IsPathSeparator(path[2]);
520 void SleepForSeconds(int seconds) {
521 Sleep(seconds * 1000);
524 void SleepForMillis(int millis) {
525 Sleep(millis);
528 u64 NanoTime() {
529 static LARGE_INTEGER frequency = {};
530 LARGE_INTEGER counter;
531 if (UNLIKELY(frequency.QuadPart == 0)) {
532 QueryPerformanceFrequency(&frequency);
533 CHECK_NE(frequency.QuadPart, 0);
535 QueryPerformanceCounter(&counter);
536 counter.QuadPart *= 1000ULL * 1000000ULL;
537 counter.QuadPart /= frequency.QuadPart;
538 return counter.QuadPart;
541 u64 MonotonicNanoTime() { return NanoTime(); }
543 void Abort() {
544 internal__exit(3);
547 #if !SANITIZER_GO
548 // Read the file to extract the ImageBase field from the PE header. If ASLR is
549 // disabled and this virtual address is available, the loader will typically
550 // load the image at this address. Therefore, we call it the preferred base. Any
551 // addresses in the DWARF typically assume that the object has been loaded at
552 // this address.
553 static uptr GetPreferredBase(const char *modname) {
554 fd_t fd = OpenFile(modname, RdOnly, nullptr);
555 if (fd == kInvalidFd)
556 return 0;
557 FileCloser closer(fd);
559 // Read just the DOS header.
560 IMAGE_DOS_HEADER dos_header;
561 uptr bytes_read;
562 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
563 bytes_read != sizeof(dos_header))
564 return 0;
566 // The file should start with the right signature.
567 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
568 return 0;
570 // The layout at e_lfanew is:
571 // "PE\0\0"
572 // IMAGE_FILE_HEADER
573 // IMAGE_OPTIONAL_HEADER
574 // Seek to e_lfanew and read all that data.
575 char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
576 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
577 INVALID_SET_FILE_POINTER)
578 return 0;
579 if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
580 bytes_read != sizeof(buf))
581 return 0;
583 // Check for "PE\0\0" before the PE header.
584 char *pe_sig = &buf[0];
585 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
586 return 0;
588 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
589 IMAGE_OPTIONAL_HEADER *pe_header =
590 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
592 // Check for more magic in the PE header.
593 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
594 return 0;
596 // Finally, return the ImageBase.
597 return (uptr)pe_header->ImageBase;
600 void ListOfModules::init() {
601 clearOrInit();
602 HANDLE cur_process = GetCurrentProcess();
604 // Query the list of modules. Start by assuming there are no more than 256
605 // modules and retry if that's not sufficient.
606 HMODULE *hmodules = 0;
607 uptr modules_buffer_size = sizeof(HMODULE) * 256;
608 DWORD bytes_required;
609 while (!hmodules) {
610 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
611 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
612 &bytes_required));
613 if (bytes_required > modules_buffer_size) {
614 // Either there turned out to be more than 256 hmodules, or new hmodules
615 // could have loaded since the last try. Retry.
616 UnmapOrDie(hmodules, modules_buffer_size);
617 hmodules = 0;
618 modules_buffer_size = bytes_required;
622 // |num_modules| is the number of modules actually present,
623 size_t num_modules = bytes_required / sizeof(HMODULE);
624 for (size_t i = 0; i < num_modules; ++i) {
625 HMODULE handle = hmodules[i];
626 MODULEINFO mi;
627 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
628 continue;
630 // Get the UTF-16 path and convert to UTF-8.
631 wchar_t modname_utf16[kMaxPathLength];
632 int modname_utf16_len =
633 GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
634 if (modname_utf16_len == 0)
635 modname_utf16[0] = '\0';
636 char module_name[kMaxPathLength];
637 int module_name_len =
638 ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
639 &module_name[0], kMaxPathLength, NULL, NULL);
640 module_name[module_name_len] = '\0';
642 uptr base_address = (uptr)mi.lpBaseOfDll;
643 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
645 // Adjust the base address of the module so that we get a VA instead of an
646 // RVA when computing the module offset. This helps llvm-symbolizer find the
647 // right DWARF CU. In the common case that the image is loaded at it's
648 // preferred address, we will now print normal virtual addresses.
649 uptr preferred_base = GetPreferredBase(&module_name[0]);
650 uptr adjusted_base = base_address - preferred_base;
652 LoadedModule cur_module;
653 cur_module.set(module_name, adjusted_base);
654 // We add the whole module as one single address range.
655 cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
656 /*writable*/ true);
657 modules_.push_back(cur_module);
659 UnmapOrDie(hmodules, modules_buffer_size);
662 void ListOfModules::fallbackInit() { clear(); }
664 // We can't use atexit() directly at __asan_init time as the CRT is not fully
665 // initialized at this point. Place the functions into a vector and use
666 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
667 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
669 int Atexit(void (*function)(void)) {
670 atexit_functions.push_back(function);
671 return 0;
674 static int RunAtexit() {
675 TraceLoggingUnregister(g_asan_provider);
676 int ret = 0;
677 for (uptr i = 0; i < atexit_functions.size(); ++i) {
678 ret |= atexit(atexit_functions[i]);
680 return ret;
683 #pragma section(".CRT$XID", long, read)
684 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
685 #endif
687 // ------------------ sanitizer_libc.h
688 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
689 // FIXME: Use the wide variants to handle Unicode filenames.
690 fd_t res;
691 if (mode == RdOnly) {
692 res = CreateFileA(filename, GENERIC_READ,
693 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
694 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
695 } else if (mode == WrOnly) {
696 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
697 FILE_ATTRIBUTE_NORMAL, nullptr);
698 } else {
699 UNIMPLEMENTED();
701 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
702 CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
703 if (res == kInvalidFd && last_error)
704 *last_error = GetLastError();
705 return res;
708 void CloseFile(fd_t fd) {
709 CloseHandle(fd);
712 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
713 error_t *error_p) {
714 CHECK(fd != kInvalidFd);
716 // bytes_read can't be passed directly to ReadFile:
717 // uptr is unsigned long long on 64-bit Windows.
718 unsigned long num_read_long;
720 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
721 if (!success && error_p)
722 *error_p = GetLastError();
723 if (bytes_read)
724 *bytes_read = num_read_long;
725 return success;
728 bool SupportsColoredOutput(fd_t fd) {
729 // FIXME: support colored output.
730 return false;
733 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
734 error_t *error_p) {
735 CHECK(fd != kInvalidFd);
737 // Handle null optional parameters.
738 error_t dummy_error;
739 error_p = error_p ? error_p : &dummy_error;
740 uptr dummy_bytes_written;
741 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
743 // Initialize output parameters in case we fail.
744 *error_p = 0;
745 *bytes_written = 0;
747 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
748 // closed, in which case this will fail.
749 if (fd == kStdoutFd || fd == kStderrFd) {
750 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
751 if (fd == 0) {
752 *error_p = ERROR_INVALID_HANDLE;
753 return false;
757 DWORD bytes_written_32;
758 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
759 *error_p = GetLastError();
760 return false;
761 } else {
762 *bytes_written = bytes_written_32;
763 return true;
767 uptr internal_sched_yield() {
768 Sleep(0);
769 return 0;
772 void internal__exit(int exitcode) {
773 TraceLoggingUnregister(g_asan_provider);
774 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
775 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
776 // so add our own breakpoint here.
777 if (::IsDebuggerPresent())
778 __debugbreak();
779 TerminateProcess(GetCurrentProcess(), exitcode);
780 BUILTIN_UNREACHABLE();
783 uptr internal_ftruncate(fd_t fd, uptr size) {
784 UNIMPLEMENTED();
787 uptr GetRSS() {
788 PROCESS_MEMORY_COUNTERS counters;
789 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
790 return 0;
791 return counters.WorkingSetSize;
794 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
795 void internal_join_thread(void *th) { }
797 // ---------------------- BlockingMutex ---------------- {{{1
799 BlockingMutex::BlockingMutex() {
800 CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
801 internal_memset(this, 0, sizeof(*this));
804 void BlockingMutex::Lock() {
805 AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
806 CHECK_EQ(owner_, 0);
807 owner_ = GetThreadSelf();
810 void BlockingMutex::Unlock() {
811 CheckLocked();
812 owner_ = 0;
813 ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
816 void BlockingMutex::CheckLocked() {
817 CHECK_EQ(owner_, GetThreadSelf());
820 uptr GetTlsSize() {
821 return 0;
824 void InitTlsSize() {
827 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
828 uptr *tls_addr, uptr *tls_size) {
829 #if SANITIZER_GO
830 *stk_addr = 0;
831 *stk_size = 0;
832 *tls_addr = 0;
833 *tls_size = 0;
834 #else
835 uptr stack_top, stack_bottom;
836 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
837 *stk_addr = stack_bottom;
838 *stk_size = stack_top - stack_bottom;
839 *tls_addr = 0;
840 *tls_size = 0;
841 #endif
844 void ReportFile::Write(const char *buffer, uptr length) {
845 SpinMutexLock l(mu);
846 ReopenIfNecessary();
847 if (!WriteToFile(fd, buffer, length)) {
848 // stderr may be closed, but we may be able to print to the debugger
849 // instead. This is the case when launching a program from Visual Studio,
850 // and the following routine should write to its console.
851 OutputDebugStringA(buffer);
855 void SetAlternateSignalStack() {
856 // FIXME: Decide what to do on Windows.
859 void UnsetAlternateSignalStack() {
860 // FIXME: Decide what to do on Windows.
863 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
864 (void)handler;
865 // FIXME: Decide what to do on Windows.
868 HandleSignalMode GetHandleSignalMode(int signum) {
869 // FIXME: Decide what to do on Windows.
870 return kHandleSignalNo;
873 // Check based on flags if we should handle this exception.
874 bool IsHandledDeadlyException(DWORD exceptionCode) {
875 switch (exceptionCode) {
876 case EXCEPTION_ACCESS_VIOLATION:
877 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
878 case EXCEPTION_STACK_OVERFLOW:
879 case EXCEPTION_DATATYPE_MISALIGNMENT:
880 case EXCEPTION_IN_PAGE_ERROR:
881 return common_flags()->handle_segv;
882 case EXCEPTION_ILLEGAL_INSTRUCTION:
883 case EXCEPTION_PRIV_INSTRUCTION:
884 case EXCEPTION_BREAKPOINT:
885 return common_flags()->handle_sigill;
886 case EXCEPTION_FLT_DENORMAL_OPERAND:
887 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
888 case EXCEPTION_FLT_INEXACT_RESULT:
889 case EXCEPTION_FLT_INVALID_OPERATION:
890 case EXCEPTION_FLT_OVERFLOW:
891 case EXCEPTION_FLT_STACK_CHECK:
892 case EXCEPTION_FLT_UNDERFLOW:
893 case EXCEPTION_INT_DIVIDE_BY_ZERO:
894 case EXCEPTION_INT_OVERFLOW:
895 return common_flags()->handle_sigfpe;
897 return false;
900 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
901 SYSTEM_INFO si;
902 GetNativeSystemInfo(&si);
903 uptr page_size = si.dwPageSize;
904 uptr page_mask = ~(page_size - 1);
906 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
907 page <= end;) {
908 MEMORY_BASIC_INFORMATION info;
909 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
910 return false;
912 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
913 info.Protect == PAGE_EXECUTE)
914 return false;
916 if (info.RegionSize == 0)
917 return false;
919 page += info.RegionSize;
922 return true;
925 bool SignalContext::IsStackOverflow() const {
926 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
929 void SignalContext::InitPcSpBp() {
930 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
931 CONTEXT *context_record = (CONTEXT *)context;
933 pc = (uptr)exception_record->ExceptionAddress;
934 #ifdef _WIN64
935 bp = (uptr)context_record->Rbp;
936 sp = (uptr)context_record->Rsp;
937 #else
938 bp = (uptr)context_record->Ebp;
939 sp = (uptr)context_record->Esp;
940 #endif
943 uptr SignalContext::GetAddress() const {
944 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
945 return exception_record->ExceptionInformation[1];
948 bool SignalContext::IsMemoryAccess() const {
949 return GetWriteFlag() != SignalContext::UNKNOWN;
952 bool SignalContext::IsTrueFaultingAddress() const {
953 // FIXME: Provide real implementation for this. See Linux and Mac variants.
954 return IsMemoryAccess();
957 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
958 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
959 // The contents of this array are documented at
960 // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
961 // The first element indicates read as 0, write as 1, or execute as 8. The
962 // second element is the faulting address.
963 switch (exception_record->ExceptionInformation[0]) {
964 case 0:
965 return SignalContext::READ;
966 case 1:
967 return SignalContext::WRITE;
968 case 8:
969 return SignalContext::UNKNOWN;
971 return SignalContext::UNKNOWN;
974 void SignalContext::DumpAllRegisters(void *context) {
975 // FIXME: Implement this.
978 int SignalContext::GetType() const {
979 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
982 const char *SignalContext::Describe() const {
983 unsigned code = GetType();
984 // Get the string description of the exception if this is a known deadly
985 // exception.
986 switch (code) {
987 case EXCEPTION_ACCESS_VIOLATION:
988 return "access-violation";
989 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
990 return "array-bounds-exceeded";
991 case EXCEPTION_STACK_OVERFLOW:
992 return "stack-overflow";
993 case EXCEPTION_DATATYPE_MISALIGNMENT:
994 return "datatype-misalignment";
995 case EXCEPTION_IN_PAGE_ERROR:
996 return "in-page-error";
997 case EXCEPTION_ILLEGAL_INSTRUCTION:
998 return "illegal-instruction";
999 case EXCEPTION_PRIV_INSTRUCTION:
1000 return "priv-instruction";
1001 case EXCEPTION_BREAKPOINT:
1002 return "breakpoint";
1003 case EXCEPTION_FLT_DENORMAL_OPERAND:
1004 return "flt-denormal-operand";
1005 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1006 return "flt-divide-by-zero";
1007 case EXCEPTION_FLT_INEXACT_RESULT:
1008 return "flt-inexact-result";
1009 case EXCEPTION_FLT_INVALID_OPERATION:
1010 return "flt-invalid-operation";
1011 case EXCEPTION_FLT_OVERFLOW:
1012 return "flt-overflow";
1013 case EXCEPTION_FLT_STACK_CHECK:
1014 return "flt-stack-check";
1015 case EXCEPTION_FLT_UNDERFLOW:
1016 return "flt-underflow";
1017 case EXCEPTION_INT_DIVIDE_BY_ZERO:
1018 return "int-divide-by-zero";
1019 case EXCEPTION_INT_OVERFLOW:
1020 return "int-overflow";
1022 return "unknown exception";
1025 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1026 // FIXME: Actually implement this function.
1027 CHECK_GT(buf_len, 0);
1028 buf[0] = 0;
1029 return 0;
1032 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1033 return ReadBinaryName(buf, buf_len);
1036 void CheckVMASize() {
1037 // Do nothing.
1040 void InitializePlatformEarly() {
1041 // Do nothing.
1044 void MaybeReexec() {
1045 // No need to re-exec on Windows.
1048 void CheckASLR() {
1049 // Do nothing
1052 void CheckMPROTECT() {
1053 // Do nothing
1056 char **GetArgv() {
1057 // FIXME: Actually implement this function.
1058 return 0;
1061 char **GetEnviron() {
1062 // FIXME: Actually implement this function.
1063 return 0;
1066 pid_t StartSubprocess(const char *program, const char *const argv[],
1067 const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1068 fd_t stderr_fd) {
1069 // FIXME: implement on this platform
1070 // Should be implemented based on
1071 // SymbolizerProcess::StarAtSymbolizerSubprocess
1072 // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1073 return -1;
1076 bool IsProcessRunning(pid_t pid) {
1077 // FIXME: implement on this platform.
1078 return false;
1081 int WaitForProcess(pid_t pid) { return -1; }
1083 // FIXME implement on this platform.
1084 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
1086 void CheckNoDeepBind(const char *filename, int flag) {
1087 // Do nothing.
1090 // FIXME: implement on this platform.
1091 bool GetRandom(void *buffer, uptr length, bool blocking) {
1092 UNIMPLEMENTED();
1095 u32 GetNumberOfCPUs() {
1096 SYSTEM_INFO sysinfo = {};
1097 GetNativeSystemInfo(&sysinfo);
1098 return sysinfo.dwNumberOfProcessors;
1101 #if SANITIZER_WIN_TRACE
1102 // TODO(mcgov): Rename this project-wide to PlatformLogInit
1103 void AndroidLogInit(void) {
1104 HRESULT hr = TraceLoggingRegister(g_asan_provider);
1105 if (!SUCCEEDED(hr))
1106 return;
1109 void SetAbortMessage(const char *) {}
1111 void LogFullErrorReport(const char *buffer) {
1112 if (common_flags()->log_to_syslog) {
1113 InternalMmapVector<wchar_t> filename;
1114 DWORD filename_length = 0;
1115 do {
1116 filename.resize(filename.size() + 0x100);
1117 filename_length =
1118 GetModuleFileNameW(NULL, filename.begin(), filename.size());
1119 } while (filename_length >= filename.size());
1120 TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1121 TraceLoggingValue(filename.begin(), "ExecutableName"),
1122 TraceLoggingValue(buffer, "AsanReportContents"));
1125 #endif // SANITIZER_WIN_TRACE
1127 } // namespace __sanitizer
1129 #endif // _WIN32