* include/bits/basic_string.h (getline): Qualify call to prevent ADL
[official-gcc.git] / gcc / var-tracking.c
blob4f4780824aaee8cc8baeedabc7c6c4566a3f1cd5
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "hash-map.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
99 #include "tm_p.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "sbitmap.h"
105 #include "alloc-pool.h"
106 #include "fibheap.h"
107 #include "regs.h"
108 #include "expr.h"
109 #include "tree-pass.h"
110 #include "bitmap.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "target.h"
115 #include "params.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "recog.h"
119 #include "tm_p.h"
120 #include "alias.h"
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
174 /* Type of micro operation. */
175 enum micro_operation_type type;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx insn;
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 } micro_operation;
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
214 return dv && !dv_is_decl_p (dv);
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
237 return dv;
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
247 /* Pointer to next member of the list. */
248 struct attrs_def *next;
250 /* The rtx of register. */
251 rtx loc;
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 } *attrs;
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
263 /* Next element in the chain. */
264 struct location_chain_def *next;
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
269 /* The "value" stored in this location. */
270 rtx set_src;
272 /* Initialized? */
273 enum var_init_status init;
274 } *location_chain;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s **pprev;
291 } loc_exp_dep;
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 typedef struct expand_depth_struct
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 } expand_depth;
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
333 /* Chain of locations of the part. */
334 location_chain loc_chain;
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
339 union variable_aux
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 } variable_part;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 typedef enum onepart_enum
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 } onepart_enum_t;
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
373 /* Reference count. */
374 int refcount;
376 /* Number of variable parts. */
377 char n_var_parts;
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
386 /* The variable parts. */
387 variable_part var_part[1];
388 } *variable;
389 typedef const struct variable_def *const_variable;
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
400 variable. */
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
413 #else
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
416 #endif
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
420 allocated. */
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
423 : NULL)
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
426 : NULL)
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
431 : NULL)
435 typedef unsigned int dvuid;
437 /* Return the uid of DV. */
439 static inline dvuid
440 dv_uid (decl_or_value dv)
442 if (dv_is_value_p (dv))
443 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
444 else
445 return DECL_UID (dv_as_decl (dv));
448 /* Compute the hash from the uid. */
450 static inline hashval_t
451 dv_uid2hash (dvuid uid)
453 return uid;
456 /* The hash function for a mask table in a shared_htab chain. */
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv)
461 return dv_uid2hash (dv_uid (dv));
464 static void variable_htab_free (void *);
466 /* Variable hashtable helpers. */
468 struct variable_hasher
470 typedef variable_def value_type;
471 typedef void compare_type;
472 static inline hashval_t hash (const value_type *);
473 static inline bool equal (const value_type *, const compare_type *);
474 static inline void remove (value_type *);
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
480 inline hashval_t
481 variable_hasher::hash (const value_type *v)
483 return dv_htab_hash (v->dv);
486 /* Compare the declaration of variable X with declaration Y. */
488 inline bool
489 variable_hasher::equal (const value_type *v, const compare_type *y)
491 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
493 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
498 inline void
499 variable_hasher::remove (value_type *var)
501 variable_htab_free (var);
504 typedef hash_table<variable_hasher> variable_table_type;
505 typedef variable_table_type::iterator variable_iterator_type;
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
511 /* The instruction which the note will be emitted before/after. */
512 rtx insn;
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where;
517 /* The variables and values active at this point. */
518 variable_table_type *vars;
519 } emit_note_data;
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
525 /* Reference count. */
526 int refcount;
528 /* Actual hash table. */
529 variable_table_type *htab;
530 } *shared_hash;
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust;
538 /* Attributes for registers (lists of attrs). */
539 attrs regs[FIRST_PSEUDO_REGISTER];
541 /* Variable locations. */
542 shared_hash vars;
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars;
546 } dataflow_set;
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
552 /* The vector of micro operations. */
553 vec<micro_operation> mos;
555 /* The IN and OUT set for dataflow analysis. */
556 dataflow_set in;
557 dataflow_set out;
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
563 dataflow_set *permp;
565 /* Has the block been visited in DFS? */
566 bool visited;
568 /* Has the block been flooded in VTA? */
569 bool flooded;
571 } *variable_tracking_info;
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool;
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool;
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool;
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool;
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool;
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool;
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type *changed_variables;
594 /* Shall notes be emitted? */
595 static bool emit_notes;
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type *dropped_values;
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash;
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs = NULL;
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg {
610 rtx outgoing;
611 rtx incoming;
612 } parm_reg_t;
615 /* Vector of windowed parameter registers, if any. */
616 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
617 #endif
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called;
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
624 HOST_WIDE_INT *);
625 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static bool vt_stack_adjustments (void);
629 static void init_attrs_list_set (attrs *);
630 static void attrs_list_clear (attrs *);
631 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
632 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
633 static void attrs_list_copy (attrs *, attrs);
634 static void attrs_list_union (attrs *, attrs);
636 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
637 variable var, enum var_init_status);
638 static void vars_copy (variable_table_type *, variable_table_type *);
639 static tree var_debug_decl (tree);
640 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
641 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
642 enum var_init_status, rtx);
643 static void var_reg_delete (dataflow_set *, rtx, bool);
644 static void var_regno_delete (dataflow_set *, int);
645 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
646 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
647 enum var_init_status, rtx);
648 static void var_mem_delete (dataflow_set *, rtx, bool);
650 static void dataflow_set_init (dataflow_set *);
651 static void dataflow_set_clear (dataflow_set *);
652 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set *, dataflow_set *);
655 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
656 static bool canon_value_cmp (rtx, rtx);
657 static int loc_cmp (rtx, rtx);
658 static bool variable_part_different_p (variable_part *, variable_part *);
659 static bool onepart_variable_different_p (variable, variable);
660 static bool variable_different_p (variable, variable);
661 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
662 static void dataflow_set_destroy (dataflow_set *);
664 static bool contains_symbol_ref (rtx);
665 static bool track_expr_p (tree, bool);
666 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
667 static int add_uses (rtx *, void *);
668 static void add_uses_1 (rtx *, void *);
669 static void add_stores (rtx, const_rtx, void *);
670 static bool compute_bb_dataflow (basic_block);
671 static bool vt_find_locations (void);
673 static void dump_attrs_list (attrs);
674 static void dump_var (variable);
675 static void dump_vars (variable_table_type *);
676 static void dump_dataflow_set (dataflow_set *);
677 static void dump_dataflow_sets (void);
679 static void set_dv_changed (decl_or_value, bool);
680 static void variable_was_changed (variable, dataflow_set *);
681 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
682 decl_or_value, HOST_WIDE_INT,
683 enum var_init_status, rtx);
684 static void set_variable_part (dataflow_set *, rtx,
685 decl_or_value, HOST_WIDE_INT,
686 enum var_init_status, rtx, enum insert_option);
687 static variable_def **clobber_slot_part (dataflow_set *, rtx,
688 variable_def **, HOST_WIDE_INT, rtx);
689 static void clobber_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT, rtx);
691 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
692 HOST_WIDE_INT);
693 static void delete_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT);
695 static void emit_notes_in_bb (basic_block, dataflow_set *);
696 static void vt_emit_notes (void);
698 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
703 /* Given a SET, calculate the amount of stack adjustment it contains
704 PRE- and POST-modifying stack pointer.
705 This function is similar to stack_adjust_offset. */
707 static void
708 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
709 HOST_WIDE_INT *post)
711 rtx src = SET_SRC (pattern);
712 rtx dest = SET_DEST (pattern);
713 enum rtx_code code;
715 if (dest == stack_pointer_rtx)
717 /* (set (reg sp) (plus (reg sp) (const_int))) */
718 code = GET_CODE (src);
719 if (! (code == PLUS || code == MINUS)
720 || XEXP (src, 0) != stack_pointer_rtx
721 || !CONST_INT_P (XEXP (src, 1)))
722 return;
724 if (code == MINUS)
725 *post += INTVAL (XEXP (src, 1));
726 else
727 *post -= INTVAL (XEXP (src, 1));
729 else if (MEM_P (dest))
731 /* (set (mem (pre_dec (reg sp))) (foo)) */
732 src = XEXP (dest, 0);
733 code = GET_CODE (src);
735 switch (code)
737 case PRE_MODIFY:
738 case POST_MODIFY:
739 if (XEXP (src, 0) == stack_pointer_rtx)
741 rtx val = XEXP (XEXP (src, 1), 1);
742 /* We handle only adjustments by constant amount. */
743 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
744 CONST_INT_P (val));
746 if (code == PRE_MODIFY)
747 *pre -= INTVAL (val);
748 else
749 *post -= INTVAL (val);
750 break;
752 return;
754 case PRE_DEC:
755 if (XEXP (src, 0) == stack_pointer_rtx)
757 *pre += GET_MODE_SIZE (GET_MODE (dest));
758 break;
760 return;
762 case POST_DEC:
763 if (XEXP (src, 0) == stack_pointer_rtx)
765 *post += GET_MODE_SIZE (GET_MODE (dest));
766 break;
768 return;
770 case PRE_INC:
771 if (XEXP (src, 0) == stack_pointer_rtx)
773 *pre -= GET_MODE_SIZE (GET_MODE (dest));
774 break;
776 return;
778 case POST_INC:
779 if (XEXP (src, 0) == stack_pointer_rtx)
781 *post -= GET_MODE_SIZE (GET_MODE (dest));
782 break;
784 return;
786 default:
787 return;
792 /* Given an INSN, calculate the amount of stack adjustment it contains
793 PRE- and POST-modifying stack pointer. */
795 static void
796 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
797 HOST_WIDE_INT *post)
799 rtx pattern;
801 *pre = 0;
802 *post = 0;
804 pattern = PATTERN (insn);
805 if (RTX_FRAME_RELATED_P (insn))
807 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
808 if (expr)
809 pattern = XEXP (expr, 0);
812 if (GET_CODE (pattern) == SET)
813 stack_adjust_offset_pre_post (pattern, pre, post);
814 else if (GET_CODE (pattern) == PARALLEL
815 || GET_CODE (pattern) == SEQUENCE)
817 int i;
819 /* There may be stack adjustments inside compound insns. Search
820 for them. */
821 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
822 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
823 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
827 /* Compute stack adjustments for all blocks by traversing DFS tree.
828 Return true when the adjustments on all incoming edges are consistent.
829 Heavily borrowed from pre_and_rev_post_order_compute. */
831 static bool
832 vt_stack_adjustments (void)
834 edge_iterator *stack;
835 int sp;
837 /* Initialize entry block. */
838 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
840 INCOMING_FRAME_SP_OFFSET;
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
842 INCOMING_FRAME_SP_OFFSET;
844 /* Allocate stack for back-tracking up CFG. */
845 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
846 sp = 0;
848 /* Push the first edge on to the stack. */
849 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
851 while (sp)
853 edge_iterator ei;
854 basic_block src;
855 basic_block dest;
857 /* Look at the edge on the top of the stack. */
858 ei = stack[sp - 1];
859 src = ei_edge (ei)->src;
860 dest = ei_edge (ei)->dest;
862 /* Check if the edge destination has been visited yet. */
863 if (!VTI (dest)->visited)
865 rtx insn;
866 HOST_WIDE_INT pre, post, offset;
867 VTI (dest)->visited = true;
868 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
870 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
871 for (insn = BB_HEAD (dest);
872 insn != NEXT_INSN (BB_END (dest));
873 insn = NEXT_INSN (insn))
874 if (INSN_P (insn))
876 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
877 offset += pre + post;
880 VTI (dest)->out.stack_adjust = offset;
882 if (EDGE_COUNT (dest->succs) > 0)
883 /* Since the DEST node has been visited for the first
884 time, check its successors. */
885 stack[sp++] = ei_start (dest->succs);
887 else
889 /* We can end up with different stack adjustments for the exit block
890 of a shrink-wrapped function if stack_adjust_offset_pre_post
891 doesn't understand the rtx pattern used to restore the stack
892 pointer in the epilogue. For example, on s390(x), the stack
893 pointer is often restored via a load-multiple instruction
894 and so no stack_adjust offset is recorded for it. This means
895 that the stack offset at the end of the epilogue block is the
896 the same as the offset before the epilogue, whereas other paths
897 to the exit block will have the correct stack_adjust.
899 It is safe to ignore these differences because (a) we never
900 use the stack_adjust for the exit block in this pass and
901 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
902 function are correct.
904 We must check whether the adjustments on other edges are
905 the same though. */
906 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
907 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
909 free (stack);
910 return false;
913 if (! ei_one_before_end_p (ei))
914 /* Go to the next edge. */
915 ei_next (&stack[sp - 1]);
916 else
917 /* Return to previous level if there are no more edges. */
918 sp--;
922 free (stack);
923 return true;
926 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
927 hard_frame_pointer_rtx is being mapped to it and offset for it. */
928 static rtx cfa_base_rtx;
929 static HOST_WIDE_INT cfa_base_offset;
931 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
932 or hard_frame_pointer_rtx. */
934 static inline rtx
935 compute_cfa_pointer (HOST_WIDE_INT adjustment)
937 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
940 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
941 or -1 if the replacement shouldn't be done. */
942 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
944 /* Data for adjust_mems callback. */
946 struct adjust_mem_data
948 bool store;
949 enum machine_mode mem_mode;
950 HOST_WIDE_INT stack_adjust;
951 rtx side_effects;
954 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
955 transformation of wider mode arithmetics to narrower mode,
956 -1 if it is suitable and subexpressions shouldn't be
957 traversed and 0 if it is suitable and subexpressions should
958 be traversed. Called through for_each_rtx. */
960 static int
961 use_narrower_mode_test (rtx *loc, void *data)
963 rtx subreg = (rtx) data;
965 if (CONSTANT_P (*loc))
966 return -1;
967 switch (GET_CODE (*loc))
969 case REG:
970 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
971 return 1;
972 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
973 *loc, subreg_lowpart_offset (GET_MODE (subreg),
974 GET_MODE (*loc))))
975 return 1;
976 return -1;
977 case PLUS:
978 case MINUS:
979 case MULT:
980 return 0;
981 case ASHIFT:
982 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
983 return 1;
984 else
985 return -1;
986 default:
987 return 1;
991 /* Transform X into narrower mode MODE from wider mode WMODE. */
993 static rtx
994 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
996 rtx op0, op1;
997 if (CONSTANT_P (x))
998 return lowpart_subreg (mode, x, wmode);
999 switch (GET_CODE (x))
1001 case REG:
1002 return lowpart_subreg (mode, x, wmode);
1003 case PLUS:
1004 case MINUS:
1005 case MULT:
1006 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1007 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1008 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1009 case ASHIFT:
1010 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1011 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
1012 default:
1013 gcc_unreachable ();
1017 /* Helper function for adjusting used MEMs. */
1019 static rtx
1020 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1022 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1023 rtx mem, addr = loc, tem;
1024 enum machine_mode mem_mode_save;
1025 bool store_save;
1026 switch (GET_CODE (loc))
1028 case REG:
1029 /* Don't do any sp or fp replacements outside of MEM addresses
1030 on the LHS. */
1031 if (amd->mem_mode == VOIDmode && amd->store)
1032 return loc;
1033 if (loc == stack_pointer_rtx
1034 && !frame_pointer_needed
1035 && cfa_base_rtx)
1036 return compute_cfa_pointer (amd->stack_adjust);
1037 else if (loc == hard_frame_pointer_rtx
1038 && frame_pointer_needed
1039 && hard_frame_pointer_adjustment != -1
1040 && cfa_base_rtx)
1041 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1042 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1043 return loc;
1044 case MEM:
1045 mem = loc;
1046 if (!amd->store)
1048 mem = targetm.delegitimize_address (mem);
1049 if (mem != loc && !MEM_P (mem))
1050 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1053 addr = XEXP (mem, 0);
1054 mem_mode_save = amd->mem_mode;
1055 amd->mem_mode = GET_MODE (mem);
1056 store_save = amd->store;
1057 amd->store = false;
1058 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1059 amd->store = store_save;
1060 amd->mem_mode = mem_mode_save;
1061 if (mem == loc)
1062 addr = targetm.delegitimize_address (addr);
1063 if (addr != XEXP (mem, 0))
1064 mem = replace_equiv_address_nv (mem, addr);
1065 if (!amd->store)
1066 mem = avoid_constant_pool_reference (mem);
1067 return mem;
1068 case PRE_INC:
1069 case PRE_DEC:
1070 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1071 gen_int_mode (GET_CODE (loc) == PRE_INC
1072 ? GET_MODE_SIZE (amd->mem_mode)
1073 : -GET_MODE_SIZE (amd->mem_mode),
1074 GET_MODE (loc)));
1075 case POST_INC:
1076 case POST_DEC:
1077 if (addr == loc)
1078 addr = XEXP (loc, 0);
1079 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1080 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1081 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1082 gen_int_mode ((GET_CODE (loc) == PRE_INC
1083 || GET_CODE (loc) == POST_INC)
1084 ? GET_MODE_SIZE (amd->mem_mode)
1085 : -GET_MODE_SIZE (amd->mem_mode),
1086 GET_MODE (loc)));
1087 store_save = amd->store;
1088 amd->store = false;
1089 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1090 amd->store = store_save;
1091 amd->side_effects = alloc_EXPR_LIST (0,
1092 gen_rtx_SET (VOIDmode,
1093 XEXP (loc, 0), tem),
1094 amd->side_effects);
1095 return addr;
1096 case PRE_MODIFY:
1097 addr = XEXP (loc, 1);
1098 case POST_MODIFY:
1099 if (addr == loc)
1100 addr = XEXP (loc, 0);
1101 gcc_assert (amd->mem_mode != VOIDmode);
1102 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1103 store_save = amd->store;
1104 amd->store = false;
1105 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1106 adjust_mems, data);
1107 amd->store = store_save;
1108 amd->side_effects = alloc_EXPR_LIST (0,
1109 gen_rtx_SET (VOIDmode,
1110 XEXP (loc, 0), tem),
1111 amd->side_effects);
1112 return addr;
1113 case SUBREG:
1114 /* First try without delegitimization of whole MEMs and
1115 avoid_constant_pool_reference, which is more likely to succeed. */
1116 store_save = amd->store;
1117 amd->store = true;
1118 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1119 data);
1120 amd->store = store_save;
1121 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1122 if (mem == SUBREG_REG (loc))
1124 tem = loc;
1125 goto finish_subreg;
1127 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1128 GET_MODE (SUBREG_REG (loc)),
1129 SUBREG_BYTE (loc));
1130 if (tem)
1131 goto finish_subreg;
1132 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1133 GET_MODE (SUBREG_REG (loc)),
1134 SUBREG_BYTE (loc));
1135 if (tem == NULL_RTX)
1136 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1137 finish_subreg:
1138 if (MAY_HAVE_DEBUG_INSNS
1139 && GET_CODE (tem) == SUBREG
1140 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1141 || GET_CODE (SUBREG_REG (tem)) == MINUS
1142 || GET_CODE (SUBREG_REG (tem)) == MULT
1143 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1144 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1145 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1146 && GET_MODE_SIZE (GET_MODE (tem))
1147 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1148 && subreg_lowpart_p (tem)
1149 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1150 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1151 GET_MODE (SUBREG_REG (tem)));
1152 return tem;
1153 case ASM_OPERANDS:
1154 /* Don't do any replacements in second and following
1155 ASM_OPERANDS of inline-asm with multiple sets.
1156 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1157 and ASM_OPERANDS_LABEL_VEC need to be equal between
1158 all the ASM_OPERANDs in the insn and adjust_insn will
1159 fix this up. */
1160 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1161 return loc;
1162 break;
1163 default:
1164 break;
1166 return NULL_RTX;
1169 /* Helper function for replacement of uses. */
1171 static void
1172 adjust_mem_uses (rtx *x, void *data)
1174 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1175 if (new_x != *x)
1176 validate_change (NULL_RTX, x, new_x, true);
1179 /* Helper function for replacement of stores. */
1181 static void
1182 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1184 if (MEM_P (loc))
1186 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1187 adjust_mems, data);
1188 if (new_dest != SET_DEST (expr))
1190 rtx xexpr = CONST_CAST_RTX (expr);
1191 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1196 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1197 replace them with their value in the insn and add the side-effects
1198 as other sets to the insn. */
1200 static void
1201 adjust_insn (basic_block bb, rtx insn)
1203 struct adjust_mem_data amd;
1204 rtx set;
1206 #ifdef HAVE_window_save
1207 /* If the target machine has an explicit window save instruction, the
1208 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1209 if (RTX_FRAME_RELATED_P (insn)
1210 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1212 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1213 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1214 parm_reg_t *p;
1216 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1218 XVECEXP (rtl, 0, i * 2)
1219 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1220 /* Do not clobber the attached DECL, but only the REG. */
1221 XVECEXP (rtl, 0, i * 2 + 1)
1222 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1223 gen_raw_REG (GET_MODE (p->outgoing),
1224 REGNO (p->outgoing)));
1227 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1228 return;
1230 #endif
1232 amd.mem_mode = VOIDmode;
1233 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1234 amd.side_effects = NULL_RTX;
1236 amd.store = true;
1237 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1239 amd.store = false;
1240 if (GET_CODE (PATTERN (insn)) == PARALLEL
1241 && asm_noperands (PATTERN (insn)) > 0
1242 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1244 rtx body, set0;
1245 int i;
1247 /* inline-asm with multiple sets is tiny bit more complicated,
1248 because the 3 vectors in ASM_OPERANDS need to be shared between
1249 all ASM_OPERANDS in the instruction. adjust_mems will
1250 not touch ASM_OPERANDS other than the first one, asm_noperands
1251 test above needs to be called before that (otherwise it would fail)
1252 and afterwards this code fixes it up. */
1253 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1254 body = PATTERN (insn);
1255 set0 = XVECEXP (body, 0, 0);
1256 gcc_checking_assert (GET_CODE (set0) == SET
1257 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1258 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1259 for (i = 1; i < XVECLEN (body, 0); i++)
1260 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1261 break;
1262 else
1264 set = XVECEXP (body, 0, i);
1265 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1266 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1267 == i);
1268 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1269 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1270 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1271 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1272 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1273 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1275 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1276 ASM_OPERANDS_INPUT_VEC (newsrc)
1277 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1278 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1279 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1280 ASM_OPERANDS_LABEL_VEC (newsrc)
1281 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1282 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1286 else
1287 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1289 /* For read-only MEMs containing some constant, prefer those
1290 constants. */
1291 set = single_set (insn);
1292 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1294 rtx note = find_reg_equal_equiv_note (insn);
1296 if (note && CONSTANT_P (XEXP (note, 0)))
1297 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1300 if (amd.side_effects)
1302 rtx *pat, new_pat, s;
1303 int i, oldn, newn;
1305 pat = &PATTERN (insn);
1306 if (GET_CODE (*pat) == COND_EXEC)
1307 pat = &COND_EXEC_CODE (*pat);
1308 if (GET_CODE (*pat) == PARALLEL)
1309 oldn = XVECLEN (*pat, 0);
1310 else
1311 oldn = 1;
1312 for (s = amd.side_effects, newn = 0; s; newn++)
1313 s = XEXP (s, 1);
1314 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1315 if (GET_CODE (*pat) == PARALLEL)
1316 for (i = 0; i < oldn; i++)
1317 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1318 else
1319 XVECEXP (new_pat, 0, 0) = *pat;
1320 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1321 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1322 free_EXPR_LIST_list (&amd.side_effects);
1323 validate_change (NULL_RTX, pat, new_pat, true);
1327 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1328 static inline rtx
1329 dv_as_rtx (decl_or_value dv)
1331 tree decl;
1333 if (dv_is_value_p (dv))
1334 return dv_as_value (dv);
1336 decl = dv_as_decl (dv);
1338 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1339 return DECL_RTL_KNOWN_SET (decl);
1342 /* Return nonzero if a decl_or_value must not have more than one
1343 variable part. The returned value discriminates among various
1344 kinds of one-part DVs ccording to enum onepart_enum. */
1345 static inline onepart_enum_t
1346 dv_onepart_p (decl_or_value dv)
1348 tree decl;
1350 if (!MAY_HAVE_DEBUG_INSNS)
1351 return NOT_ONEPART;
1353 if (dv_is_value_p (dv))
1354 return ONEPART_VALUE;
1356 decl = dv_as_decl (dv);
1358 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1359 return ONEPART_DEXPR;
1361 if (target_for_debug_bind (decl) != NULL_TREE)
1362 return ONEPART_VDECL;
1364 return NOT_ONEPART;
1367 /* Return the variable pool to be used for a dv of type ONEPART. */
1368 static inline alloc_pool
1369 onepart_pool (onepart_enum_t onepart)
1371 return onepart ? valvar_pool : var_pool;
1374 /* Build a decl_or_value out of a decl. */
1375 static inline decl_or_value
1376 dv_from_decl (tree decl)
1378 decl_or_value dv;
1379 dv = decl;
1380 gcc_checking_assert (dv_is_decl_p (dv));
1381 return dv;
1384 /* Build a decl_or_value out of a value. */
1385 static inline decl_or_value
1386 dv_from_value (rtx value)
1388 decl_or_value dv;
1389 dv = value;
1390 gcc_checking_assert (dv_is_value_p (dv));
1391 return dv;
1394 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1395 static inline decl_or_value
1396 dv_from_rtx (rtx x)
1398 decl_or_value dv;
1400 switch (GET_CODE (x))
1402 case DEBUG_EXPR:
1403 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1404 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1405 break;
1407 case VALUE:
1408 dv = dv_from_value (x);
1409 break;
1411 default:
1412 gcc_unreachable ();
1415 return dv;
1418 extern void debug_dv (decl_or_value dv);
1420 DEBUG_FUNCTION void
1421 debug_dv (decl_or_value dv)
1423 if (dv_is_value_p (dv))
1424 debug_rtx (dv_as_value (dv));
1425 else
1426 debug_generic_stmt (dv_as_decl (dv));
1429 static void loc_exp_dep_clear (variable var);
1431 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1433 static void
1434 variable_htab_free (void *elem)
1436 int i;
1437 variable var = (variable) elem;
1438 location_chain node, next;
1440 gcc_checking_assert (var->refcount > 0);
1442 var->refcount--;
1443 if (var->refcount > 0)
1444 return;
1446 for (i = 0; i < var->n_var_parts; i++)
1448 for (node = var->var_part[i].loc_chain; node; node = next)
1450 next = node->next;
1451 pool_free (loc_chain_pool, node);
1453 var->var_part[i].loc_chain = NULL;
1455 if (var->onepart && VAR_LOC_1PAUX (var))
1457 loc_exp_dep_clear (var);
1458 if (VAR_LOC_DEP_LST (var))
1459 VAR_LOC_DEP_LST (var)->pprev = NULL;
1460 XDELETE (VAR_LOC_1PAUX (var));
1461 /* These may be reused across functions, so reset
1462 e.g. NO_LOC_P. */
1463 if (var->onepart == ONEPART_DEXPR)
1464 set_dv_changed (var->dv, true);
1466 pool_free (onepart_pool (var->onepart), var);
1469 /* Initialize the set (array) SET of attrs to empty lists. */
1471 static void
1472 init_attrs_list_set (attrs *set)
1474 int i;
1476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1477 set[i] = NULL;
1480 /* Make the list *LISTP empty. */
1482 static void
1483 attrs_list_clear (attrs *listp)
1485 attrs list, next;
1487 for (list = *listp; list; list = next)
1489 next = list->next;
1490 pool_free (attrs_pool, list);
1492 *listp = NULL;
1495 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1497 static attrs
1498 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1500 for (; list; list = list->next)
1501 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1502 return list;
1503 return NULL;
1506 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1508 static void
1509 attrs_list_insert (attrs *listp, decl_or_value dv,
1510 HOST_WIDE_INT offset, rtx loc)
1512 attrs list;
1514 list = (attrs) pool_alloc (attrs_pool);
1515 list->loc = loc;
1516 list->dv = dv;
1517 list->offset = offset;
1518 list->next = *listp;
1519 *listp = list;
1522 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1524 static void
1525 attrs_list_copy (attrs *dstp, attrs src)
1527 attrs n;
1529 attrs_list_clear (dstp);
1530 for (; src; src = src->next)
1532 n = (attrs) pool_alloc (attrs_pool);
1533 n->loc = src->loc;
1534 n->dv = src->dv;
1535 n->offset = src->offset;
1536 n->next = *dstp;
1537 *dstp = n;
1541 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1543 static void
1544 attrs_list_union (attrs *dstp, attrs src)
1546 for (; src; src = src->next)
1548 if (!attrs_list_member (*dstp, src->dv, src->offset))
1549 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1553 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1554 *DSTP. */
1556 static void
1557 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1559 gcc_assert (!*dstp);
1560 for (; src; src = src->next)
1562 if (!dv_onepart_p (src->dv))
1563 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1565 for (src = src2; src; src = src->next)
1567 if (!dv_onepart_p (src->dv)
1568 && !attrs_list_member (*dstp, src->dv, src->offset))
1569 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1573 /* Shared hashtable support. */
1575 /* Return true if VARS is shared. */
1577 static inline bool
1578 shared_hash_shared (shared_hash vars)
1580 return vars->refcount > 1;
1583 /* Return the hash table for VARS. */
1585 static inline variable_table_type *
1586 shared_hash_htab (shared_hash vars)
1588 return vars->htab;
1591 /* Return true if VAR is shared, or maybe because VARS is shared. */
1593 static inline bool
1594 shared_var_p (variable var, shared_hash vars)
1596 /* Don't count an entry in the changed_variables table as a duplicate. */
1597 return ((var->refcount > 1 + (int) var->in_changed_variables)
1598 || shared_hash_shared (vars));
1601 /* Copy variables into a new hash table. */
1603 static shared_hash
1604 shared_hash_unshare (shared_hash vars)
1606 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1607 gcc_assert (vars->refcount > 1);
1608 new_vars->refcount = 1;
1609 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1610 vars_copy (new_vars->htab, vars->htab);
1611 vars->refcount--;
1612 return new_vars;
1615 /* Increment reference counter on VARS and return it. */
1617 static inline shared_hash
1618 shared_hash_copy (shared_hash vars)
1620 vars->refcount++;
1621 return vars;
1624 /* Decrement reference counter and destroy hash table if not shared
1625 anymore. */
1627 static void
1628 shared_hash_destroy (shared_hash vars)
1630 gcc_checking_assert (vars->refcount > 0);
1631 if (--vars->refcount == 0)
1633 delete vars->htab;
1634 pool_free (shared_hash_pool, vars);
1638 /* Unshare *PVARS if shared and return slot for DV. If INS is
1639 INSERT, insert it if not already present. */
1641 static inline variable_def **
1642 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1643 hashval_t dvhash, enum insert_option ins)
1645 if (shared_hash_shared (*pvars))
1646 *pvars = shared_hash_unshare (*pvars);
1647 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1650 static inline variable_def **
1651 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1652 enum insert_option ins)
1654 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1657 /* Return slot for DV, if it is already present in the hash table.
1658 If it is not present, insert it only VARS is not shared, otherwise
1659 return NULL. */
1661 static inline variable_def **
1662 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1664 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1665 shared_hash_shared (vars)
1666 ? NO_INSERT : INSERT);
1669 static inline variable_def **
1670 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1672 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1675 /* Return slot for DV only if it is already present in the hash table. */
1677 static inline variable_def **
1678 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1679 hashval_t dvhash)
1681 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1684 static inline variable_def **
1685 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1687 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1690 /* Return variable for DV or NULL if not already present in the hash
1691 table. */
1693 static inline variable
1694 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1696 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1699 static inline variable
1700 shared_hash_find (shared_hash vars, decl_or_value dv)
1702 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1705 /* Return true if TVAL is better than CVAL as a canonival value. We
1706 choose lowest-numbered VALUEs, using the RTX address as a
1707 tie-breaker. The idea is to arrange them into a star topology,
1708 such that all of them are at most one step away from the canonical
1709 value, and the canonical value has backlinks to all of them, in
1710 addition to all the actual locations. We don't enforce this
1711 topology throughout the entire dataflow analysis, though.
1714 static inline bool
1715 canon_value_cmp (rtx tval, rtx cval)
1717 return !cval
1718 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1721 static bool dst_can_be_shared;
1723 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1725 static variable_def **
1726 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1727 enum var_init_status initialized)
1729 variable new_var;
1730 int i;
1732 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1733 new_var->dv = var->dv;
1734 new_var->refcount = 1;
1735 var->refcount--;
1736 new_var->n_var_parts = var->n_var_parts;
1737 new_var->onepart = var->onepart;
1738 new_var->in_changed_variables = false;
1740 if (! flag_var_tracking_uninit)
1741 initialized = VAR_INIT_STATUS_INITIALIZED;
1743 for (i = 0; i < var->n_var_parts; i++)
1745 location_chain node;
1746 location_chain *nextp;
1748 if (i == 0 && var->onepart)
1750 /* One-part auxiliary data is only used while emitting
1751 notes, so propagate it to the new variable in the active
1752 dataflow set. If we're not emitting notes, this will be
1753 a no-op. */
1754 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1755 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1756 VAR_LOC_1PAUX (var) = NULL;
1758 else
1759 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1760 nextp = &new_var->var_part[i].loc_chain;
1761 for (node = var->var_part[i].loc_chain; node; node = node->next)
1763 location_chain new_lc;
1765 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1766 new_lc->next = NULL;
1767 if (node->init > initialized)
1768 new_lc->init = node->init;
1769 else
1770 new_lc->init = initialized;
1771 if (node->set_src && !(MEM_P (node->set_src)))
1772 new_lc->set_src = node->set_src;
1773 else
1774 new_lc->set_src = NULL;
1775 new_lc->loc = node->loc;
1777 *nextp = new_lc;
1778 nextp = &new_lc->next;
1781 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1784 dst_can_be_shared = false;
1785 if (shared_hash_shared (set->vars))
1786 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1787 else if (set->traversed_vars && set->vars != set->traversed_vars)
1788 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1789 *slot = new_var;
1790 if (var->in_changed_variables)
1792 variable_def **cslot
1793 = changed_variables->find_slot_with_hash (var->dv,
1794 dv_htab_hash (var->dv),
1795 NO_INSERT);
1796 gcc_assert (*cslot == (void *) var);
1797 var->in_changed_variables = false;
1798 variable_htab_free (var);
1799 *cslot = new_var;
1800 new_var->in_changed_variables = true;
1802 return slot;
1805 /* Copy all variables from hash table SRC to hash table DST. */
1807 static void
1808 vars_copy (variable_table_type *dst, variable_table_type *src)
1810 variable_iterator_type hi;
1811 variable var;
1813 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1815 variable_def **dstp;
1816 var->refcount++;
1817 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1818 INSERT);
1819 *dstp = var;
1823 /* Map a decl to its main debug decl. */
1825 static inline tree
1826 var_debug_decl (tree decl)
1828 if (decl && TREE_CODE (decl) == VAR_DECL
1829 && DECL_HAS_DEBUG_EXPR_P (decl))
1831 tree debugdecl = DECL_DEBUG_EXPR (decl);
1832 if (DECL_P (debugdecl))
1833 decl = debugdecl;
1836 return decl;
1839 /* Set the register LOC to contain DV, OFFSET. */
1841 static void
1842 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1843 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1844 enum insert_option iopt)
1846 attrs node;
1847 bool decl_p = dv_is_decl_p (dv);
1849 if (decl_p)
1850 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1852 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1853 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1854 && node->offset == offset)
1855 break;
1856 if (!node)
1857 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1858 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1861 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1863 static void
1864 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1865 rtx set_src)
1867 tree decl = REG_EXPR (loc);
1868 HOST_WIDE_INT offset = REG_OFFSET (loc);
1870 var_reg_decl_set (set, loc, initialized,
1871 dv_from_decl (decl), offset, set_src, INSERT);
1874 static enum var_init_status
1875 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1877 variable var;
1878 int i;
1879 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1881 if (! flag_var_tracking_uninit)
1882 return VAR_INIT_STATUS_INITIALIZED;
1884 var = shared_hash_find (set->vars, dv);
1885 if (var)
1887 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1889 location_chain nextp;
1890 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1891 if (rtx_equal_p (nextp->loc, loc))
1893 ret_val = nextp->init;
1894 break;
1899 return ret_val;
1902 /* Delete current content of register LOC in dataflow set SET and set
1903 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1904 MODIFY is true, any other live copies of the same variable part are
1905 also deleted from the dataflow set, otherwise the variable part is
1906 assumed to be copied from another location holding the same
1907 part. */
1909 static void
1910 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1911 enum var_init_status initialized, rtx set_src)
1913 tree decl = REG_EXPR (loc);
1914 HOST_WIDE_INT offset = REG_OFFSET (loc);
1915 attrs node, next;
1916 attrs *nextp;
1918 decl = var_debug_decl (decl);
1920 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1921 initialized = get_init_value (set, loc, dv_from_decl (decl));
1923 nextp = &set->regs[REGNO (loc)];
1924 for (node = *nextp; node; node = next)
1926 next = node->next;
1927 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1929 delete_variable_part (set, node->loc, node->dv, node->offset);
1930 pool_free (attrs_pool, node);
1931 *nextp = next;
1933 else
1935 node->loc = loc;
1936 nextp = &node->next;
1939 if (modify)
1940 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1941 var_reg_set (set, loc, initialized, set_src);
1944 /* Delete the association of register LOC in dataflow set SET with any
1945 variables that aren't onepart. If CLOBBER is true, also delete any
1946 other live copies of the same variable part, and delete the
1947 association with onepart dvs too. */
1949 static void
1950 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1952 attrs *nextp = &set->regs[REGNO (loc)];
1953 attrs node, next;
1955 if (clobber)
1957 tree decl = REG_EXPR (loc);
1958 HOST_WIDE_INT offset = REG_OFFSET (loc);
1960 decl = var_debug_decl (decl);
1962 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1965 for (node = *nextp; node; node = next)
1967 next = node->next;
1968 if (clobber || !dv_onepart_p (node->dv))
1970 delete_variable_part (set, node->loc, node->dv, node->offset);
1971 pool_free (attrs_pool, node);
1972 *nextp = next;
1974 else
1975 nextp = &node->next;
1979 /* Delete content of register with number REGNO in dataflow set SET. */
1981 static void
1982 var_regno_delete (dataflow_set *set, int regno)
1984 attrs *reg = &set->regs[regno];
1985 attrs node, next;
1987 for (node = *reg; node; node = next)
1989 next = node->next;
1990 delete_variable_part (set, node->loc, node->dv, node->offset);
1991 pool_free (attrs_pool, node);
1993 *reg = NULL;
1996 /* Return true if I is the negated value of a power of two. */
1997 static bool
1998 negative_power_of_two_p (HOST_WIDE_INT i)
2000 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2001 return x == (x & -x);
2004 /* Strip constant offsets and alignments off of LOC. Return the base
2005 expression. */
2007 static rtx
2008 vt_get_canonicalize_base (rtx loc)
2010 while ((GET_CODE (loc) == PLUS
2011 || GET_CODE (loc) == AND)
2012 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2013 && (GET_CODE (loc) != AND
2014 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2015 loc = XEXP (loc, 0);
2017 return loc;
2020 /* This caches canonicalized addresses for VALUEs, computed using
2021 information in the global cselib table. */
2022 static hash_map<rtx, rtx> *global_get_addr_cache;
2024 /* This caches canonicalized addresses for VALUEs, computed using
2025 information from the global cache and information pertaining to a
2026 basic block being analyzed. */
2027 static hash_map<rtx, rtx> *local_get_addr_cache;
2029 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2031 /* Return the canonical address for LOC, that must be a VALUE, using a
2032 cached global equivalence or computing it and storing it in the
2033 global cache. */
2035 static rtx
2036 get_addr_from_global_cache (rtx const loc)
2038 rtx x;
2040 gcc_checking_assert (GET_CODE (loc) == VALUE);
2042 bool existed;
2043 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2044 if (existed)
2045 return *slot;
2047 x = canon_rtx (get_addr (loc));
2049 /* Tentative, avoiding infinite recursion. */
2050 *slot = x;
2052 if (x != loc)
2054 rtx nx = vt_canonicalize_addr (NULL, x);
2055 if (nx != x)
2057 /* The table may have moved during recursion, recompute
2058 SLOT. */
2059 *global_get_addr_cache->get (loc) = x = nx;
2063 return x;
2066 /* Return the canonical address for LOC, that must be a VALUE, using a
2067 cached local equivalence or computing it and storing it in the
2068 local cache. */
2070 static rtx
2071 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2073 rtx x;
2074 decl_or_value dv;
2075 variable var;
2076 location_chain l;
2078 gcc_checking_assert (GET_CODE (loc) == VALUE);
2080 bool existed;
2081 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2082 if (existed)
2083 return *slot;
2085 x = get_addr_from_global_cache (loc);
2087 /* Tentative, avoiding infinite recursion. */
2088 *slot = x;
2090 /* Recurse to cache local expansion of X, or if we need to search
2091 for a VALUE in the expansion. */
2092 if (x != loc)
2094 rtx nx = vt_canonicalize_addr (set, x);
2095 if (nx != x)
2097 slot = local_get_addr_cache->get (loc);
2098 *slot = x = nx;
2100 return x;
2103 dv = dv_from_rtx (x);
2104 var = shared_hash_find (set->vars, dv);
2105 if (!var)
2106 return x;
2108 /* Look for an improved equivalent expression. */
2109 for (l = var->var_part[0].loc_chain; l; l = l->next)
2111 rtx base = vt_get_canonicalize_base (l->loc);
2112 if (GET_CODE (base) == VALUE
2113 && canon_value_cmp (base, loc))
2115 rtx nx = vt_canonicalize_addr (set, l->loc);
2116 if (x != nx)
2118 slot = local_get_addr_cache->get (loc);
2119 *slot = x = nx;
2121 break;
2125 return x;
2128 /* Canonicalize LOC using equivalences from SET in addition to those
2129 in the cselib static table. It expects a VALUE-based expression,
2130 and it will only substitute VALUEs with other VALUEs or
2131 function-global equivalences, so that, if two addresses have base
2132 VALUEs that are locally or globally related in ways that
2133 memrefs_conflict_p cares about, they will both canonicalize to
2134 expressions that have the same base VALUE.
2136 The use of VALUEs as canonical base addresses enables the canonical
2137 RTXs to remain unchanged globally, if they resolve to a constant,
2138 or throughout a basic block otherwise, so that they can be cached
2139 and the cache needs not be invalidated when REGs, MEMs or such
2140 change. */
2142 static rtx
2143 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2145 HOST_WIDE_INT ofst = 0;
2146 enum machine_mode mode = GET_MODE (oloc);
2147 rtx loc = oloc;
2148 rtx x;
2149 bool retry = true;
2151 while (retry)
2153 while (GET_CODE (loc) == PLUS
2154 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2156 ofst += INTVAL (XEXP (loc, 1));
2157 loc = XEXP (loc, 0);
2160 /* Alignment operations can't normally be combined, so just
2161 canonicalize the base and we're done. We'll normally have
2162 only one stack alignment anyway. */
2163 if (GET_CODE (loc) == AND
2164 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2165 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2167 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2168 if (x != XEXP (loc, 0))
2169 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2170 retry = false;
2173 if (GET_CODE (loc) == VALUE)
2175 if (set)
2176 loc = get_addr_from_local_cache (set, loc);
2177 else
2178 loc = get_addr_from_global_cache (loc);
2180 /* Consolidate plus_constants. */
2181 while (ofst && GET_CODE (loc) == PLUS
2182 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2184 ofst += INTVAL (XEXP (loc, 1));
2185 loc = XEXP (loc, 0);
2188 retry = false;
2190 else
2192 x = canon_rtx (loc);
2193 if (retry)
2194 retry = (x != loc);
2195 loc = x;
2199 /* Add OFST back in. */
2200 if (ofst)
2202 /* Don't build new RTL if we can help it. */
2203 if (GET_CODE (oloc) == PLUS
2204 && XEXP (oloc, 0) == loc
2205 && INTVAL (XEXP (oloc, 1)) == ofst)
2206 return oloc;
2208 loc = plus_constant (mode, loc, ofst);
2211 return loc;
2214 /* Return true iff there's a true dependence between MLOC and LOC.
2215 MADDR must be a canonicalized version of MLOC's address. */
2217 static inline bool
2218 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2220 if (GET_CODE (loc) != MEM)
2221 return false;
2223 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2224 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2225 return false;
2227 return true;
2230 /* Hold parameters for the hashtab traversal function
2231 drop_overlapping_mem_locs, see below. */
2233 struct overlapping_mems
2235 dataflow_set *set;
2236 rtx loc, addr;
2239 /* Remove all MEMs that overlap with COMS->LOC from the location list
2240 of a hash table entry for a value. COMS->ADDR must be a
2241 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2242 canonicalized itself. */
2245 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2247 dataflow_set *set = coms->set;
2248 rtx mloc = coms->loc, addr = coms->addr;
2249 variable var = *slot;
2251 if (var->onepart == ONEPART_VALUE)
2253 location_chain loc, *locp;
2254 bool changed = false;
2255 rtx cur_loc;
2257 gcc_assert (var->n_var_parts == 1);
2259 if (shared_var_p (var, set->vars))
2261 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2262 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2263 break;
2265 if (!loc)
2266 return 1;
2268 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2269 var = *slot;
2270 gcc_assert (var->n_var_parts == 1);
2273 if (VAR_LOC_1PAUX (var))
2274 cur_loc = VAR_LOC_FROM (var);
2275 else
2276 cur_loc = var->var_part[0].cur_loc;
2278 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2279 loc; loc = *locp)
2281 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2283 locp = &loc->next;
2284 continue;
2287 *locp = loc->next;
2288 /* If we have deleted the location which was last emitted
2289 we have to emit new location so add the variable to set
2290 of changed variables. */
2291 if (cur_loc == loc->loc)
2293 changed = true;
2294 var->var_part[0].cur_loc = NULL;
2295 if (VAR_LOC_1PAUX (var))
2296 VAR_LOC_FROM (var) = NULL;
2298 pool_free (loc_chain_pool, loc);
2301 if (!var->var_part[0].loc_chain)
2303 var->n_var_parts--;
2304 changed = true;
2306 if (changed)
2307 variable_was_changed (var, set);
2310 return 1;
2313 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2315 static void
2316 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2318 struct overlapping_mems coms;
2320 gcc_checking_assert (GET_CODE (loc) == MEM);
2322 coms.set = set;
2323 coms.loc = canon_rtx (loc);
2324 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2326 set->traversed_vars = set->vars;
2327 shared_hash_htab (set->vars)
2328 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2329 set->traversed_vars = NULL;
2332 /* Set the location of DV, OFFSET as the MEM LOC. */
2334 static void
2335 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2336 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2337 enum insert_option iopt)
2339 if (dv_is_decl_p (dv))
2340 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2342 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2345 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2346 SET to LOC.
2347 Adjust the address first if it is stack pointer based. */
2349 static void
2350 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2351 rtx set_src)
2353 tree decl = MEM_EXPR (loc);
2354 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2356 var_mem_decl_set (set, loc, initialized,
2357 dv_from_decl (decl), offset, set_src, INSERT);
2360 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2361 dataflow set SET to LOC. If MODIFY is true, any other live copies
2362 of the same variable part are also deleted from the dataflow set,
2363 otherwise the variable part is assumed to be copied from another
2364 location holding the same part.
2365 Adjust the address first if it is stack pointer based. */
2367 static void
2368 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2369 enum var_init_status initialized, rtx set_src)
2371 tree decl = MEM_EXPR (loc);
2372 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2374 clobber_overlapping_mems (set, loc);
2375 decl = var_debug_decl (decl);
2377 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2378 initialized = get_init_value (set, loc, dv_from_decl (decl));
2380 if (modify)
2381 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2382 var_mem_set (set, loc, initialized, set_src);
2385 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2386 true, also delete any other live copies of the same variable part.
2387 Adjust the address first if it is stack pointer based. */
2389 static void
2390 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2392 tree decl = MEM_EXPR (loc);
2393 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2395 clobber_overlapping_mems (set, loc);
2396 decl = var_debug_decl (decl);
2397 if (clobber)
2398 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2399 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2402 /* Return true if LOC should not be expanded for location expressions,
2403 or used in them. */
2405 static inline bool
2406 unsuitable_loc (rtx loc)
2408 switch (GET_CODE (loc))
2410 case PC:
2411 case SCRATCH:
2412 case CC0:
2413 case ASM_INPUT:
2414 case ASM_OPERANDS:
2415 return true;
2417 default:
2418 return false;
2422 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2423 bound to it. */
2425 static inline void
2426 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2428 if (REG_P (loc))
2430 if (modified)
2431 var_regno_delete (set, REGNO (loc));
2432 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2433 dv_from_value (val), 0, NULL_RTX, INSERT);
2435 else if (MEM_P (loc))
2437 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2439 if (modified)
2440 clobber_overlapping_mems (set, loc);
2442 if (l && GET_CODE (l->loc) == VALUE)
2443 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2445 /* If this MEM is a global constant, we don't need it in the
2446 dynamic tables. ??? We should test this before emitting the
2447 micro-op in the first place. */
2448 while (l)
2449 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2450 break;
2451 else
2452 l = l->next;
2454 if (!l)
2455 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2456 dv_from_value (val), 0, NULL_RTX, INSERT);
2458 else
2460 /* Other kinds of equivalences are necessarily static, at least
2461 so long as we do not perform substitutions while merging
2462 expressions. */
2463 gcc_unreachable ();
2464 set_variable_part (set, loc, dv_from_value (val), 0,
2465 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2469 /* Bind a value to a location it was just stored in. If MODIFIED
2470 holds, assume the location was modified, detaching it from any
2471 values bound to it. */
2473 static void
2474 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2476 cselib_val *v = CSELIB_VAL_PTR (val);
2478 gcc_assert (cselib_preserved_value_p (v));
2480 if (dump_file)
2482 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2483 print_inline_rtx (dump_file, loc, 0);
2484 fprintf (dump_file, " evaluates to ");
2485 print_inline_rtx (dump_file, val, 0);
2486 if (v->locs)
2488 struct elt_loc_list *l;
2489 for (l = v->locs; l; l = l->next)
2491 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2492 print_inline_rtx (dump_file, l->loc, 0);
2495 fprintf (dump_file, "\n");
2498 gcc_checking_assert (!unsuitable_loc (loc));
2500 val_bind (set, val, loc, modified);
2503 /* Clear (canonical address) slots that reference X. */
2505 bool
2506 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2508 if (vt_get_canonicalize_base (*slot) == x)
2509 *slot = NULL;
2510 return true;
2513 /* Reset this node, detaching all its equivalences. Return the slot
2514 in the variable hash table that holds dv, if there is one. */
2516 static void
2517 val_reset (dataflow_set *set, decl_or_value dv)
2519 variable var = shared_hash_find (set->vars, dv) ;
2520 location_chain node;
2521 rtx cval;
2523 if (!var || !var->n_var_parts)
2524 return;
2526 gcc_assert (var->n_var_parts == 1);
2528 if (var->onepart == ONEPART_VALUE)
2530 rtx x = dv_as_value (dv);
2532 /* Relationships in the global cache don't change, so reset the
2533 local cache entry only. */
2534 rtx *slot = local_get_addr_cache->get (x);
2535 if (slot)
2537 /* If the value resolved back to itself, odds are that other
2538 values may have cached it too. These entries now refer
2539 to the old X, so detach them too. Entries that used the
2540 old X but resolved to something else remain ok as long as
2541 that something else isn't also reset. */
2542 if (*slot == x)
2543 local_get_addr_cache
2544 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2545 *slot = NULL;
2549 cval = NULL;
2550 for (node = var->var_part[0].loc_chain; node; node = node->next)
2551 if (GET_CODE (node->loc) == VALUE
2552 && canon_value_cmp (node->loc, cval))
2553 cval = node->loc;
2555 for (node = var->var_part[0].loc_chain; node; node = node->next)
2556 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2558 /* Redirect the equivalence link to the new canonical
2559 value, or simply remove it if it would point at
2560 itself. */
2561 if (cval)
2562 set_variable_part (set, cval, dv_from_value (node->loc),
2563 0, node->init, node->set_src, NO_INSERT);
2564 delete_variable_part (set, dv_as_value (dv),
2565 dv_from_value (node->loc), 0);
2568 if (cval)
2570 decl_or_value cdv = dv_from_value (cval);
2572 /* Keep the remaining values connected, accummulating links
2573 in the canonical value. */
2574 for (node = var->var_part[0].loc_chain; node; node = node->next)
2576 if (node->loc == cval)
2577 continue;
2578 else if (GET_CODE (node->loc) == REG)
2579 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2580 node->set_src, NO_INSERT);
2581 else if (GET_CODE (node->loc) == MEM)
2582 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2583 node->set_src, NO_INSERT);
2584 else
2585 set_variable_part (set, node->loc, cdv, 0,
2586 node->init, node->set_src, NO_INSERT);
2590 /* We remove this last, to make sure that the canonical value is not
2591 removed to the point of requiring reinsertion. */
2592 if (cval)
2593 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2595 clobber_variable_part (set, NULL, dv, 0, NULL);
2598 /* Find the values in a given location and map the val to another
2599 value, if it is unique, or add the location as one holding the
2600 value. */
2602 static void
2603 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2605 decl_or_value dv = dv_from_value (val);
2607 if (dump_file && (dump_flags & TDF_DETAILS))
2609 if (insn)
2610 fprintf (dump_file, "%i: ", INSN_UID (insn));
2611 else
2612 fprintf (dump_file, "head: ");
2613 print_inline_rtx (dump_file, val, 0);
2614 fputs (" is at ", dump_file);
2615 print_inline_rtx (dump_file, loc, 0);
2616 fputc ('\n', dump_file);
2619 val_reset (set, dv);
2621 gcc_checking_assert (!unsuitable_loc (loc));
2623 if (REG_P (loc))
2625 attrs node, found = NULL;
2627 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2628 if (dv_is_value_p (node->dv)
2629 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2631 found = node;
2633 /* Map incoming equivalences. ??? Wouldn't it be nice if
2634 we just started sharing the location lists? Maybe a
2635 circular list ending at the value itself or some
2636 such. */
2637 set_variable_part (set, dv_as_value (node->dv),
2638 dv_from_value (val), node->offset,
2639 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2640 set_variable_part (set, val, node->dv, node->offset,
2641 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2644 /* If we didn't find any equivalence, we need to remember that
2645 this value is held in the named register. */
2646 if (found)
2647 return;
2649 /* ??? Attempt to find and merge equivalent MEMs or other
2650 expressions too. */
2652 val_bind (set, val, loc, false);
2655 /* Initialize dataflow set SET to be empty.
2656 VARS_SIZE is the initial size of hash table VARS. */
2658 static void
2659 dataflow_set_init (dataflow_set *set)
2661 init_attrs_list_set (set->regs);
2662 set->vars = shared_hash_copy (empty_shared_hash);
2663 set->stack_adjust = 0;
2664 set->traversed_vars = NULL;
2667 /* Delete the contents of dataflow set SET. */
2669 static void
2670 dataflow_set_clear (dataflow_set *set)
2672 int i;
2674 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2675 attrs_list_clear (&set->regs[i]);
2677 shared_hash_destroy (set->vars);
2678 set->vars = shared_hash_copy (empty_shared_hash);
2681 /* Copy the contents of dataflow set SRC to DST. */
2683 static void
2684 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2686 int i;
2688 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2689 attrs_list_copy (&dst->regs[i], src->regs[i]);
2691 shared_hash_destroy (dst->vars);
2692 dst->vars = shared_hash_copy (src->vars);
2693 dst->stack_adjust = src->stack_adjust;
2696 /* Information for merging lists of locations for a given offset of variable.
2698 struct variable_union_info
2700 /* Node of the location chain. */
2701 location_chain lc;
2703 /* The sum of positions in the input chains. */
2704 int pos;
2706 /* The position in the chain of DST dataflow set. */
2707 int pos_dst;
2710 /* Buffer for location list sorting and its allocated size. */
2711 static struct variable_union_info *vui_vec;
2712 static int vui_allocated;
2714 /* Compare function for qsort, order the structures by POS element. */
2716 static int
2717 variable_union_info_cmp_pos (const void *n1, const void *n2)
2719 const struct variable_union_info *const i1 =
2720 (const struct variable_union_info *) n1;
2721 const struct variable_union_info *const i2 =
2722 ( const struct variable_union_info *) n2;
2724 if (i1->pos != i2->pos)
2725 return i1->pos - i2->pos;
2727 return (i1->pos_dst - i2->pos_dst);
2730 /* Compute union of location parts of variable *SLOT and the same variable
2731 from hash table DATA. Compute "sorted" union of the location chains
2732 for common offsets, i.e. the locations of a variable part are sorted by
2733 a priority where the priority is the sum of the positions in the 2 chains
2734 (if a location is only in one list the position in the second list is
2735 defined to be larger than the length of the chains).
2736 When we are updating the location parts the newest location is in the
2737 beginning of the chain, so when we do the described "sorted" union
2738 we keep the newest locations in the beginning. */
2740 static int
2741 variable_union (variable src, dataflow_set *set)
2743 variable dst;
2744 variable_def **dstp;
2745 int i, j, k;
2747 dstp = shared_hash_find_slot (set->vars, src->dv);
2748 if (!dstp || !*dstp)
2750 src->refcount++;
2752 dst_can_be_shared = false;
2753 if (!dstp)
2754 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2756 *dstp = src;
2758 /* Continue traversing the hash table. */
2759 return 1;
2761 else
2762 dst = *dstp;
2764 gcc_assert (src->n_var_parts);
2765 gcc_checking_assert (src->onepart == dst->onepart);
2767 /* We can combine one-part variables very efficiently, because their
2768 entries are in canonical order. */
2769 if (src->onepart)
2771 location_chain *nodep, dnode, snode;
2773 gcc_assert (src->n_var_parts == 1
2774 && dst->n_var_parts == 1);
2776 snode = src->var_part[0].loc_chain;
2777 gcc_assert (snode);
2779 restart_onepart_unshared:
2780 nodep = &dst->var_part[0].loc_chain;
2781 dnode = *nodep;
2782 gcc_assert (dnode);
2784 while (snode)
2786 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2788 if (r > 0)
2790 location_chain nnode;
2792 if (shared_var_p (dst, set->vars))
2794 dstp = unshare_variable (set, dstp, dst,
2795 VAR_INIT_STATUS_INITIALIZED);
2796 dst = *dstp;
2797 goto restart_onepart_unshared;
2800 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2801 nnode->loc = snode->loc;
2802 nnode->init = snode->init;
2803 if (!snode->set_src || MEM_P (snode->set_src))
2804 nnode->set_src = NULL;
2805 else
2806 nnode->set_src = snode->set_src;
2807 nnode->next = dnode;
2808 dnode = nnode;
2810 else if (r == 0)
2811 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2813 if (r >= 0)
2814 snode = snode->next;
2816 nodep = &dnode->next;
2817 dnode = *nodep;
2820 return 1;
2823 gcc_checking_assert (!src->onepart);
2825 /* Count the number of location parts, result is K. */
2826 for (i = 0, j = 0, k = 0;
2827 i < src->n_var_parts && j < dst->n_var_parts; k++)
2829 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2831 i++;
2832 j++;
2834 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2835 i++;
2836 else
2837 j++;
2839 k += src->n_var_parts - i;
2840 k += dst->n_var_parts - j;
2842 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2843 thus there are at most MAX_VAR_PARTS different offsets. */
2844 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2846 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2848 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2849 dst = *dstp;
2852 i = src->n_var_parts - 1;
2853 j = dst->n_var_parts - 1;
2854 dst->n_var_parts = k;
2856 for (k--; k >= 0; k--)
2858 location_chain node, node2;
2860 if (i >= 0 && j >= 0
2861 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2863 /* Compute the "sorted" union of the chains, i.e. the locations which
2864 are in both chains go first, they are sorted by the sum of
2865 positions in the chains. */
2866 int dst_l, src_l;
2867 int ii, jj, n;
2868 struct variable_union_info *vui;
2870 /* If DST is shared compare the location chains.
2871 If they are different we will modify the chain in DST with
2872 high probability so make a copy of DST. */
2873 if (shared_var_p (dst, set->vars))
2875 for (node = src->var_part[i].loc_chain,
2876 node2 = dst->var_part[j].loc_chain; node && node2;
2877 node = node->next, node2 = node2->next)
2879 if (!((REG_P (node2->loc)
2880 && REG_P (node->loc)
2881 && REGNO (node2->loc) == REGNO (node->loc))
2882 || rtx_equal_p (node2->loc, node->loc)))
2884 if (node2->init < node->init)
2885 node2->init = node->init;
2886 break;
2889 if (node || node2)
2891 dstp = unshare_variable (set, dstp, dst,
2892 VAR_INIT_STATUS_UNKNOWN);
2893 dst = (variable)*dstp;
2897 src_l = 0;
2898 for (node = src->var_part[i].loc_chain; node; node = node->next)
2899 src_l++;
2900 dst_l = 0;
2901 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2902 dst_l++;
2904 if (dst_l == 1)
2906 /* The most common case, much simpler, no qsort is needed. */
2907 location_chain dstnode = dst->var_part[j].loc_chain;
2908 dst->var_part[k].loc_chain = dstnode;
2909 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2910 node2 = dstnode;
2911 for (node = src->var_part[i].loc_chain; node; node = node->next)
2912 if (!((REG_P (dstnode->loc)
2913 && REG_P (node->loc)
2914 && REGNO (dstnode->loc) == REGNO (node->loc))
2915 || rtx_equal_p (dstnode->loc, node->loc)))
2917 location_chain new_node;
2919 /* Copy the location from SRC. */
2920 new_node = (location_chain) pool_alloc (loc_chain_pool);
2921 new_node->loc = node->loc;
2922 new_node->init = node->init;
2923 if (!node->set_src || MEM_P (node->set_src))
2924 new_node->set_src = NULL;
2925 else
2926 new_node->set_src = node->set_src;
2927 node2->next = new_node;
2928 node2 = new_node;
2930 node2->next = NULL;
2932 else
2934 if (src_l + dst_l > vui_allocated)
2936 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2937 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2938 vui_allocated);
2940 vui = vui_vec;
2942 /* Fill in the locations from DST. */
2943 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2944 node = node->next, jj++)
2946 vui[jj].lc = node;
2947 vui[jj].pos_dst = jj;
2949 /* Pos plus value larger than a sum of 2 valid positions. */
2950 vui[jj].pos = jj + src_l + dst_l;
2953 /* Fill in the locations from SRC. */
2954 n = dst_l;
2955 for (node = src->var_part[i].loc_chain, ii = 0; node;
2956 node = node->next, ii++)
2958 /* Find location from NODE. */
2959 for (jj = 0; jj < dst_l; jj++)
2961 if ((REG_P (vui[jj].lc->loc)
2962 && REG_P (node->loc)
2963 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2964 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2966 vui[jj].pos = jj + ii;
2967 break;
2970 if (jj >= dst_l) /* The location has not been found. */
2972 location_chain new_node;
2974 /* Copy the location from SRC. */
2975 new_node = (location_chain) pool_alloc (loc_chain_pool);
2976 new_node->loc = node->loc;
2977 new_node->init = node->init;
2978 if (!node->set_src || MEM_P (node->set_src))
2979 new_node->set_src = NULL;
2980 else
2981 new_node->set_src = node->set_src;
2982 vui[n].lc = new_node;
2983 vui[n].pos_dst = src_l + dst_l;
2984 vui[n].pos = ii + src_l + dst_l;
2985 n++;
2989 if (dst_l == 2)
2991 /* Special case still very common case. For dst_l == 2
2992 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2993 vui[i].pos == i + src_l + dst_l. */
2994 if (vui[0].pos > vui[1].pos)
2996 /* Order should be 1, 0, 2... */
2997 dst->var_part[k].loc_chain = vui[1].lc;
2998 vui[1].lc->next = vui[0].lc;
2999 if (n >= 3)
3001 vui[0].lc->next = vui[2].lc;
3002 vui[n - 1].lc->next = NULL;
3004 else
3005 vui[0].lc->next = NULL;
3006 ii = 3;
3008 else
3010 dst->var_part[k].loc_chain = vui[0].lc;
3011 if (n >= 3 && vui[2].pos < vui[1].pos)
3013 /* Order should be 0, 2, 1, 3... */
3014 vui[0].lc->next = vui[2].lc;
3015 vui[2].lc->next = vui[1].lc;
3016 if (n >= 4)
3018 vui[1].lc->next = vui[3].lc;
3019 vui[n - 1].lc->next = NULL;
3021 else
3022 vui[1].lc->next = NULL;
3023 ii = 4;
3025 else
3027 /* Order should be 0, 1, 2... */
3028 ii = 1;
3029 vui[n - 1].lc->next = NULL;
3032 for (; ii < n; ii++)
3033 vui[ii - 1].lc->next = vui[ii].lc;
3035 else
3037 qsort (vui, n, sizeof (struct variable_union_info),
3038 variable_union_info_cmp_pos);
3040 /* Reconnect the nodes in sorted order. */
3041 for (ii = 1; ii < n; ii++)
3042 vui[ii - 1].lc->next = vui[ii].lc;
3043 vui[n - 1].lc->next = NULL;
3044 dst->var_part[k].loc_chain = vui[0].lc;
3047 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3049 i--;
3050 j--;
3052 else if ((i >= 0 && j >= 0
3053 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3054 || i < 0)
3056 dst->var_part[k] = dst->var_part[j];
3057 j--;
3059 else if ((i >= 0 && j >= 0
3060 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3061 || j < 0)
3063 location_chain *nextp;
3065 /* Copy the chain from SRC. */
3066 nextp = &dst->var_part[k].loc_chain;
3067 for (node = src->var_part[i].loc_chain; node; node = node->next)
3069 location_chain new_lc;
3071 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3072 new_lc->next = NULL;
3073 new_lc->init = node->init;
3074 if (!node->set_src || MEM_P (node->set_src))
3075 new_lc->set_src = NULL;
3076 else
3077 new_lc->set_src = node->set_src;
3078 new_lc->loc = node->loc;
3080 *nextp = new_lc;
3081 nextp = &new_lc->next;
3084 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3085 i--;
3087 dst->var_part[k].cur_loc = NULL;
3090 if (flag_var_tracking_uninit)
3091 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3093 location_chain node, node2;
3094 for (node = src->var_part[i].loc_chain; node; node = node->next)
3095 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3096 if (rtx_equal_p (node->loc, node2->loc))
3098 if (node->init > node2->init)
3099 node2->init = node->init;
3103 /* Continue traversing the hash table. */
3104 return 1;
3107 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3109 static void
3110 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3112 int i;
3114 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3115 attrs_list_union (&dst->regs[i], src->regs[i]);
3117 if (dst->vars == empty_shared_hash)
3119 shared_hash_destroy (dst->vars);
3120 dst->vars = shared_hash_copy (src->vars);
3122 else
3124 variable_iterator_type hi;
3125 variable var;
3127 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3128 var, variable, hi)
3129 variable_union (var, dst);
3133 /* Whether the value is currently being expanded. */
3134 #define VALUE_RECURSED_INTO(x) \
3135 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3137 /* Whether no expansion was found, saving useless lookups.
3138 It must only be set when VALUE_CHANGED is clear. */
3139 #define NO_LOC_P(x) \
3140 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3142 /* Whether cur_loc in the value needs to be (re)computed. */
3143 #define VALUE_CHANGED(x) \
3144 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3145 /* Whether cur_loc in the decl needs to be (re)computed. */
3146 #define DECL_CHANGED(x) TREE_VISITED (x)
3148 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3149 user DECLs, this means they're in changed_variables. Values and
3150 debug exprs may be left with this flag set if no user variable
3151 requires them to be evaluated. */
3153 static inline void
3154 set_dv_changed (decl_or_value dv, bool newv)
3156 switch (dv_onepart_p (dv))
3158 case ONEPART_VALUE:
3159 if (newv)
3160 NO_LOC_P (dv_as_value (dv)) = false;
3161 VALUE_CHANGED (dv_as_value (dv)) = newv;
3162 break;
3164 case ONEPART_DEXPR:
3165 if (newv)
3166 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3167 /* Fall through... */
3169 default:
3170 DECL_CHANGED (dv_as_decl (dv)) = newv;
3171 break;
3175 /* Return true if DV needs to have its cur_loc recomputed. */
3177 static inline bool
3178 dv_changed_p (decl_or_value dv)
3180 return (dv_is_value_p (dv)
3181 ? VALUE_CHANGED (dv_as_value (dv))
3182 : DECL_CHANGED (dv_as_decl (dv)));
3185 /* Return a location list node whose loc is rtx_equal to LOC, in the
3186 location list of a one-part variable or value VAR, or in that of
3187 any values recursively mentioned in the location lists. VARS must
3188 be in star-canonical form. */
3190 static location_chain
3191 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3193 location_chain node;
3194 enum rtx_code loc_code;
3196 if (!var)
3197 return NULL;
3199 gcc_checking_assert (var->onepart);
3201 if (!var->n_var_parts)
3202 return NULL;
3204 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3206 loc_code = GET_CODE (loc);
3207 for (node = var->var_part[0].loc_chain; node; node = node->next)
3209 decl_or_value dv;
3210 variable rvar;
3212 if (GET_CODE (node->loc) != loc_code)
3214 if (GET_CODE (node->loc) != VALUE)
3215 continue;
3217 else if (loc == node->loc)
3218 return node;
3219 else if (loc_code != VALUE)
3221 if (rtx_equal_p (loc, node->loc))
3222 return node;
3223 continue;
3226 /* Since we're in star-canonical form, we don't need to visit
3227 non-canonical nodes: one-part variables and non-canonical
3228 values would only point back to the canonical node. */
3229 if (dv_is_value_p (var->dv)
3230 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3232 /* Skip all subsequent VALUEs. */
3233 while (node->next && GET_CODE (node->next->loc) == VALUE)
3235 node = node->next;
3236 gcc_checking_assert (!canon_value_cmp (node->loc,
3237 dv_as_value (var->dv)));
3238 if (loc == node->loc)
3239 return node;
3241 continue;
3244 gcc_checking_assert (node == var->var_part[0].loc_chain);
3245 gcc_checking_assert (!node->next);
3247 dv = dv_from_value (node->loc);
3248 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3249 return find_loc_in_1pdv (loc, rvar, vars);
3252 /* ??? Gotta look in cselib_val locations too. */
3254 return NULL;
3257 /* Hash table iteration argument passed to variable_merge. */
3258 struct dfset_merge
3260 /* The set in which the merge is to be inserted. */
3261 dataflow_set *dst;
3262 /* The set that we're iterating in. */
3263 dataflow_set *cur;
3264 /* The set that may contain the other dv we are to merge with. */
3265 dataflow_set *src;
3266 /* Number of onepart dvs in src. */
3267 int src_onepart_cnt;
3270 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3271 loc_cmp order, and it is maintained as such. */
3273 static void
3274 insert_into_intersection (location_chain *nodep, rtx loc,
3275 enum var_init_status status)
3277 location_chain node;
3278 int r;
3280 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3281 if ((r = loc_cmp (node->loc, loc)) == 0)
3283 node->init = MIN (node->init, status);
3284 return;
3286 else if (r > 0)
3287 break;
3289 node = (location_chain) pool_alloc (loc_chain_pool);
3291 node->loc = loc;
3292 node->set_src = NULL;
3293 node->init = status;
3294 node->next = *nodep;
3295 *nodep = node;
3298 /* Insert in DEST the intersection of the locations present in both
3299 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3300 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3301 DSM->dst. */
3303 static void
3304 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3305 location_chain s1node, variable s2var)
3307 dataflow_set *s1set = dsm->cur;
3308 dataflow_set *s2set = dsm->src;
3309 location_chain found;
3311 if (s2var)
3313 location_chain s2node;
3315 gcc_checking_assert (s2var->onepart);
3317 if (s2var->n_var_parts)
3319 s2node = s2var->var_part[0].loc_chain;
3321 for (; s1node && s2node;
3322 s1node = s1node->next, s2node = s2node->next)
3323 if (s1node->loc != s2node->loc)
3324 break;
3325 else if (s1node->loc == val)
3326 continue;
3327 else
3328 insert_into_intersection (dest, s1node->loc,
3329 MIN (s1node->init, s2node->init));
3333 for (; s1node; s1node = s1node->next)
3335 if (s1node->loc == val)
3336 continue;
3338 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3339 shared_hash_htab (s2set->vars))))
3341 insert_into_intersection (dest, s1node->loc,
3342 MIN (s1node->init, found->init));
3343 continue;
3346 if (GET_CODE (s1node->loc) == VALUE
3347 && !VALUE_RECURSED_INTO (s1node->loc))
3349 decl_or_value dv = dv_from_value (s1node->loc);
3350 variable svar = shared_hash_find (s1set->vars, dv);
3351 if (svar)
3353 if (svar->n_var_parts == 1)
3355 VALUE_RECURSED_INTO (s1node->loc) = true;
3356 intersect_loc_chains (val, dest, dsm,
3357 svar->var_part[0].loc_chain,
3358 s2var);
3359 VALUE_RECURSED_INTO (s1node->loc) = false;
3364 /* ??? gotta look in cselib_val locations too. */
3366 /* ??? if the location is equivalent to any location in src,
3367 searched recursively
3369 add to dst the values needed to represent the equivalence
3371 telling whether locations S is equivalent to another dv's
3372 location list:
3374 for each location D in the list
3376 if S and D satisfy rtx_equal_p, then it is present
3378 else if D is a value, recurse without cycles
3380 else if S and D have the same CODE and MODE
3382 for each operand oS and the corresponding oD
3384 if oS and oD are not equivalent, then S an D are not equivalent
3386 else if they are RTX vectors
3388 if any vector oS element is not equivalent to its respective oD,
3389 then S and D are not equivalent
3397 /* Return -1 if X should be before Y in a location list for a 1-part
3398 variable, 1 if Y should be before X, and 0 if they're equivalent
3399 and should not appear in the list. */
3401 static int
3402 loc_cmp (rtx x, rtx y)
3404 int i, j, r;
3405 RTX_CODE code = GET_CODE (x);
3406 const char *fmt;
3408 if (x == y)
3409 return 0;
3411 if (REG_P (x))
3413 if (!REG_P (y))
3414 return -1;
3415 gcc_assert (GET_MODE (x) == GET_MODE (y));
3416 if (REGNO (x) == REGNO (y))
3417 return 0;
3418 else if (REGNO (x) < REGNO (y))
3419 return -1;
3420 else
3421 return 1;
3424 if (REG_P (y))
3425 return 1;
3427 if (MEM_P (x))
3429 if (!MEM_P (y))
3430 return -1;
3431 gcc_assert (GET_MODE (x) == GET_MODE (y));
3432 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3435 if (MEM_P (y))
3436 return 1;
3438 if (GET_CODE (x) == VALUE)
3440 if (GET_CODE (y) != VALUE)
3441 return -1;
3442 /* Don't assert the modes are the same, that is true only
3443 when not recursing. (subreg:QI (value:SI 1:1) 0)
3444 and (subreg:QI (value:DI 2:2) 0) can be compared,
3445 even when the modes are different. */
3446 if (canon_value_cmp (x, y))
3447 return -1;
3448 else
3449 return 1;
3452 if (GET_CODE (y) == VALUE)
3453 return 1;
3455 /* Entry value is the least preferable kind of expression. */
3456 if (GET_CODE (x) == ENTRY_VALUE)
3458 if (GET_CODE (y) != ENTRY_VALUE)
3459 return 1;
3460 gcc_assert (GET_MODE (x) == GET_MODE (y));
3461 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3464 if (GET_CODE (y) == ENTRY_VALUE)
3465 return -1;
3467 if (GET_CODE (x) == GET_CODE (y))
3468 /* Compare operands below. */;
3469 else if (GET_CODE (x) < GET_CODE (y))
3470 return -1;
3471 else
3472 return 1;
3474 gcc_assert (GET_MODE (x) == GET_MODE (y));
3476 if (GET_CODE (x) == DEBUG_EXPR)
3478 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3479 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3480 return -1;
3481 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3482 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3483 return 1;
3486 fmt = GET_RTX_FORMAT (code);
3487 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3488 switch (fmt[i])
3490 case 'w':
3491 if (XWINT (x, i) == XWINT (y, i))
3492 break;
3493 else if (XWINT (x, i) < XWINT (y, i))
3494 return -1;
3495 else
3496 return 1;
3498 case 'n':
3499 case 'i':
3500 if (XINT (x, i) == XINT (y, i))
3501 break;
3502 else if (XINT (x, i) < XINT (y, i))
3503 return -1;
3504 else
3505 return 1;
3507 case 'V':
3508 case 'E':
3509 /* Compare the vector length first. */
3510 if (XVECLEN (x, i) == XVECLEN (y, i))
3511 /* Compare the vectors elements. */;
3512 else if (XVECLEN (x, i) < XVECLEN (y, i))
3513 return -1;
3514 else
3515 return 1;
3517 for (j = 0; j < XVECLEN (x, i); j++)
3518 if ((r = loc_cmp (XVECEXP (x, i, j),
3519 XVECEXP (y, i, j))))
3520 return r;
3521 break;
3523 case 'e':
3524 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3525 return r;
3526 break;
3528 case 'S':
3529 case 's':
3530 if (XSTR (x, i) == XSTR (y, i))
3531 break;
3532 if (!XSTR (x, i))
3533 return -1;
3534 if (!XSTR (y, i))
3535 return 1;
3536 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3537 break;
3538 else if (r < 0)
3539 return -1;
3540 else
3541 return 1;
3543 case 'u':
3544 /* These are just backpointers, so they don't matter. */
3545 break;
3547 case '0':
3548 case 't':
3549 break;
3551 /* It is believed that rtx's at this level will never
3552 contain anything but integers and other rtx's,
3553 except for within LABEL_REFs and SYMBOL_REFs. */
3554 default:
3555 gcc_unreachable ();
3557 if (CONST_WIDE_INT_P (x))
3559 /* Compare the vector length first. */
3560 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3561 return 1;
3562 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3563 return -1;
3565 /* Compare the vectors elements. */;
3566 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3568 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3569 return -1;
3570 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3571 return 1;
3575 return 0;
3578 #if ENABLE_CHECKING
3579 /* Check the order of entries in one-part variables. */
3582 canonicalize_loc_order_check (variable_def **slot,
3583 dataflow_set *data ATTRIBUTE_UNUSED)
3585 variable var = *slot;
3586 location_chain node, next;
3588 #ifdef ENABLE_RTL_CHECKING
3589 int i;
3590 for (i = 0; i < var->n_var_parts; i++)
3591 gcc_assert (var->var_part[0].cur_loc == NULL);
3592 gcc_assert (!var->in_changed_variables);
3593 #endif
3595 if (!var->onepart)
3596 return 1;
3598 gcc_assert (var->n_var_parts == 1);
3599 node = var->var_part[0].loc_chain;
3600 gcc_assert (node);
3602 while ((next = node->next))
3604 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3605 node = next;
3608 return 1;
3610 #endif
3612 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3613 more likely to be chosen as canonical for an equivalence set.
3614 Ensure less likely values can reach more likely neighbors, making
3615 the connections bidirectional. */
3618 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3620 variable var = *slot;
3621 decl_or_value dv = var->dv;
3622 rtx val;
3623 location_chain node;
3625 if (!dv_is_value_p (dv))
3626 return 1;
3628 gcc_checking_assert (var->n_var_parts == 1);
3630 val = dv_as_value (dv);
3632 for (node = var->var_part[0].loc_chain; node; node = node->next)
3633 if (GET_CODE (node->loc) == VALUE)
3635 if (canon_value_cmp (node->loc, val))
3636 VALUE_RECURSED_INTO (val) = true;
3637 else
3639 decl_or_value odv = dv_from_value (node->loc);
3640 variable_def **oslot;
3641 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3643 set_slot_part (set, val, oslot, odv, 0,
3644 node->init, NULL_RTX);
3646 VALUE_RECURSED_INTO (node->loc) = true;
3650 return 1;
3653 /* Remove redundant entries from equivalence lists in onepart
3654 variables, canonicalizing equivalence sets into star shapes. */
3657 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3659 variable var = *slot;
3660 decl_or_value dv = var->dv;
3661 location_chain node;
3662 decl_or_value cdv;
3663 rtx val, cval;
3664 variable_def **cslot;
3665 bool has_value;
3666 bool has_marks;
3668 if (!var->onepart)
3669 return 1;
3671 gcc_checking_assert (var->n_var_parts == 1);
3673 if (dv_is_value_p (dv))
3675 cval = dv_as_value (dv);
3676 if (!VALUE_RECURSED_INTO (cval))
3677 return 1;
3678 VALUE_RECURSED_INTO (cval) = false;
3680 else
3681 cval = NULL_RTX;
3683 restart:
3684 val = cval;
3685 has_value = false;
3686 has_marks = false;
3688 gcc_assert (var->n_var_parts == 1);
3690 for (node = var->var_part[0].loc_chain; node; node = node->next)
3691 if (GET_CODE (node->loc) == VALUE)
3693 has_value = true;
3694 if (VALUE_RECURSED_INTO (node->loc))
3695 has_marks = true;
3696 if (canon_value_cmp (node->loc, cval))
3697 cval = node->loc;
3700 if (!has_value)
3701 return 1;
3703 if (cval == val)
3705 if (!has_marks || dv_is_decl_p (dv))
3706 return 1;
3708 /* Keep it marked so that we revisit it, either after visiting a
3709 child node, or after visiting a new parent that might be
3710 found out. */
3711 VALUE_RECURSED_INTO (val) = true;
3713 for (node = var->var_part[0].loc_chain; node; node = node->next)
3714 if (GET_CODE (node->loc) == VALUE
3715 && VALUE_RECURSED_INTO (node->loc))
3717 cval = node->loc;
3718 restart_with_cval:
3719 VALUE_RECURSED_INTO (cval) = false;
3720 dv = dv_from_value (cval);
3721 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3722 if (!slot)
3724 gcc_assert (dv_is_decl_p (var->dv));
3725 /* The canonical value was reset and dropped.
3726 Remove it. */
3727 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3728 return 1;
3730 var = *slot;
3731 gcc_assert (dv_is_value_p (var->dv));
3732 if (var->n_var_parts == 0)
3733 return 1;
3734 gcc_assert (var->n_var_parts == 1);
3735 goto restart;
3738 VALUE_RECURSED_INTO (val) = false;
3740 return 1;
3743 /* Push values to the canonical one. */
3744 cdv = dv_from_value (cval);
3745 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3747 for (node = var->var_part[0].loc_chain; node; node = node->next)
3748 if (node->loc != cval)
3750 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3751 node->init, NULL_RTX);
3752 if (GET_CODE (node->loc) == VALUE)
3754 decl_or_value ndv = dv_from_value (node->loc);
3756 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3757 NO_INSERT);
3759 if (canon_value_cmp (node->loc, val))
3761 /* If it could have been a local minimum, it's not any more,
3762 since it's now neighbor to cval, so it may have to push
3763 to it. Conversely, if it wouldn't have prevailed over
3764 val, then whatever mark it has is fine: if it was to
3765 push, it will now push to a more canonical node, but if
3766 it wasn't, then it has already pushed any values it might
3767 have to. */
3768 VALUE_RECURSED_INTO (node->loc) = true;
3769 /* Make sure we visit node->loc by ensuring we cval is
3770 visited too. */
3771 VALUE_RECURSED_INTO (cval) = true;
3773 else if (!VALUE_RECURSED_INTO (node->loc))
3774 /* If we have no need to "recurse" into this node, it's
3775 already "canonicalized", so drop the link to the old
3776 parent. */
3777 clobber_variable_part (set, cval, ndv, 0, NULL);
3779 else if (GET_CODE (node->loc) == REG)
3781 attrs list = set->regs[REGNO (node->loc)], *listp;
3783 /* Change an existing attribute referring to dv so that it
3784 refers to cdv, removing any duplicate this might
3785 introduce, and checking that no previous duplicates
3786 existed, all in a single pass. */
3788 while (list)
3790 if (list->offset == 0
3791 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3792 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3793 break;
3795 list = list->next;
3798 gcc_assert (list);
3799 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3801 list->dv = cdv;
3802 for (listp = &list->next; (list = *listp); listp = &list->next)
3804 if (list->offset)
3805 continue;
3807 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3809 *listp = list->next;
3810 pool_free (attrs_pool, list);
3811 list = *listp;
3812 break;
3815 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3818 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3820 for (listp = &list->next; (list = *listp); listp = &list->next)
3822 if (list->offset)
3823 continue;
3825 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3827 *listp = list->next;
3828 pool_free (attrs_pool, list);
3829 list = *listp;
3830 break;
3833 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3836 else
3837 gcc_unreachable ();
3839 #if ENABLE_CHECKING
3840 while (list)
3842 if (list->offset == 0
3843 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3844 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3845 gcc_unreachable ();
3847 list = list->next;
3849 #endif
3853 if (val)
3854 set_slot_part (set, val, cslot, cdv, 0,
3855 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3857 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3859 /* Variable may have been unshared. */
3860 var = *slot;
3861 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3862 && var->var_part[0].loc_chain->next == NULL);
3864 if (VALUE_RECURSED_INTO (cval))
3865 goto restart_with_cval;
3867 return 1;
3870 /* Bind one-part variables to the canonical value in an equivalence
3871 set. Not doing this causes dataflow convergence failure in rare
3872 circumstances, see PR42873. Unfortunately we can't do this
3873 efficiently as part of canonicalize_values_star, since we may not
3874 have determined or even seen the canonical value of a set when we
3875 get to a variable that references another member of the set. */
3878 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3880 variable var = *slot;
3881 decl_or_value dv = var->dv;
3882 location_chain node;
3883 rtx cval;
3884 decl_or_value cdv;
3885 variable_def **cslot;
3886 variable cvar;
3887 location_chain cnode;
3889 if (!var->onepart || var->onepart == ONEPART_VALUE)
3890 return 1;
3892 gcc_assert (var->n_var_parts == 1);
3894 node = var->var_part[0].loc_chain;
3896 if (GET_CODE (node->loc) != VALUE)
3897 return 1;
3899 gcc_assert (!node->next);
3900 cval = node->loc;
3902 /* Push values to the canonical one. */
3903 cdv = dv_from_value (cval);
3904 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3905 if (!cslot)
3906 return 1;
3907 cvar = *cslot;
3908 gcc_assert (cvar->n_var_parts == 1);
3910 cnode = cvar->var_part[0].loc_chain;
3912 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3913 that are not “more canonical” than it. */
3914 if (GET_CODE (cnode->loc) != VALUE
3915 || !canon_value_cmp (cnode->loc, cval))
3916 return 1;
3918 /* CVAL was found to be non-canonical. Change the variable to point
3919 to the canonical VALUE. */
3920 gcc_assert (!cnode->next);
3921 cval = cnode->loc;
3923 slot = set_slot_part (set, cval, slot, dv, 0,
3924 node->init, node->set_src);
3925 clobber_slot_part (set, cval, slot, 0, node->set_src);
3927 return 1;
3930 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3931 corresponding entry in DSM->src. Multi-part variables are combined
3932 with variable_union, whereas onepart dvs are combined with
3933 intersection. */
3935 static int
3936 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3938 dataflow_set *dst = dsm->dst;
3939 variable_def **dstslot;
3940 variable s2var, dvar = NULL;
3941 decl_or_value dv = s1var->dv;
3942 onepart_enum_t onepart = s1var->onepart;
3943 rtx val;
3944 hashval_t dvhash;
3945 location_chain node, *nodep;
3947 /* If the incoming onepart variable has an empty location list, then
3948 the intersection will be just as empty. For other variables,
3949 it's always union. */
3950 gcc_checking_assert (s1var->n_var_parts
3951 && s1var->var_part[0].loc_chain);
3953 if (!onepart)
3954 return variable_union (s1var, dst);
3956 gcc_checking_assert (s1var->n_var_parts == 1);
3958 dvhash = dv_htab_hash (dv);
3959 if (dv_is_value_p (dv))
3960 val = dv_as_value (dv);
3961 else
3962 val = NULL;
3964 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3965 if (!s2var)
3967 dst_can_be_shared = false;
3968 return 1;
3971 dsm->src_onepart_cnt--;
3972 gcc_assert (s2var->var_part[0].loc_chain
3973 && s2var->onepart == onepart
3974 && s2var->n_var_parts == 1);
3976 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3977 if (dstslot)
3979 dvar = *dstslot;
3980 gcc_assert (dvar->refcount == 1
3981 && dvar->onepart == onepart
3982 && dvar->n_var_parts == 1);
3983 nodep = &dvar->var_part[0].loc_chain;
3985 else
3987 nodep = &node;
3988 node = NULL;
3991 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3993 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3994 dvhash, INSERT);
3995 *dstslot = dvar = s2var;
3996 dvar->refcount++;
3998 else
4000 dst_can_be_shared = false;
4002 intersect_loc_chains (val, nodep, dsm,
4003 s1var->var_part[0].loc_chain, s2var);
4005 if (!dstslot)
4007 if (node)
4009 dvar = (variable) pool_alloc (onepart_pool (onepart));
4010 dvar->dv = dv;
4011 dvar->refcount = 1;
4012 dvar->n_var_parts = 1;
4013 dvar->onepart = onepart;
4014 dvar->in_changed_variables = false;
4015 dvar->var_part[0].loc_chain = node;
4016 dvar->var_part[0].cur_loc = NULL;
4017 if (onepart)
4018 VAR_LOC_1PAUX (dvar) = NULL;
4019 else
4020 VAR_PART_OFFSET (dvar, 0) = 0;
4022 dstslot
4023 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4024 INSERT);
4025 gcc_assert (!*dstslot);
4026 *dstslot = dvar;
4028 else
4029 return 1;
4033 nodep = &dvar->var_part[0].loc_chain;
4034 while ((node = *nodep))
4036 location_chain *nextp = &node->next;
4038 if (GET_CODE (node->loc) == REG)
4040 attrs list;
4042 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4043 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4044 && dv_is_value_p (list->dv))
4045 break;
4047 if (!list)
4048 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4049 dv, 0, node->loc);
4050 /* If this value became canonical for another value that had
4051 this register, we want to leave it alone. */
4052 else if (dv_as_value (list->dv) != val)
4054 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4055 dstslot, dv, 0,
4056 node->init, NULL_RTX);
4057 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4059 /* Since nextp points into the removed node, we can't
4060 use it. The pointer to the next node moved to nodep.
4061 However, if the variable we're walking is unshared
4062 during our walk, we'll keep walking the location list
4063 of the previously-shared variable, in which case the
4064 node won't have been removed, and we'll want to skip
4065 it. That's why we test *nodep here. */
4066 if (*nodep != node)
4067 nextp = nodep;
4070 else
4071 /* Canonicalization puts registers first, so we don't have to
4072 walk it all. */
4073 break;
4074 nodep = nextp;
4077 if (dvar != *dstslot)
4078 dvar = *dstslot;
4079 nodep = &dvar->var_part[0].loc_chain;
4081 if (val)
4083 /* Mark all referenced nodes for canonicalization, and make sure
4084 we have mutual equivalence links. */
4085 VALUE_RECURSED_INTO (val) = true;
4086 for (node = *nodep; node; node = node->next)
4087 if (GET_CODE (node->loc) == VALUE)
4089 VALUE_RECURSED_INTO (node->loc) = true;
4090 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4091 node->init, NULL, INSERT);
4094 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4095 gcc_assert (*dstslot == dvar);
4096 canonicalize_values_star (dstslot, dst);
4097 gcc_checking_assert (dstslot
4098 == shared_hash_find_slot_noinsert_1 (dst->vars,
4099 dv, dvhash));
4100 dvar = *dstslot;
4102 else
4104 bool has_value = false, has_other = false;
4106 /* If we have one value and anything else, we're going to
4107 canonicalize this, so make sure all values have an entry in
4108 the table and are marked for canonicalization. */
4109 for (node = *nodep; node; node = node->next)
4111 if (GET_CODE (node->loc) == VALUE)
4113 /* If this was marked during register canonicalization,
4114 we know we have to canonicalize values. */
4115 if (has_value)
4116 has_other = true;
4117 has_value = true;
4118 if (has_other)
4119 break;
4121 else
4123 has_other = true;
4124 if (has_value)
4125 break;
4129 if (has_value && has_other)
4131 for (node = *nodep; node; node = node->next)
4133 if (GET_CODE (node->loc) == VALUE)
4135 decl_or_value dv = dv_from_value (node->loc);
4136 variable_def **slot = NULL;
4138 if (shared_hash_shared (dst->vars))
4139 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4140 if (!slot)
4141 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4142 INSERT);
4143 if (!*slot)
4145 variable var = (variable) pool_alloc (onepart_pool
4146 (ONEPART_VALUE));
4147 var->dv = dv;
4148 var->refcount = 1;
4149 var->n_var_parts = 1;
4150 var->onepart = ONEPART_VALUE;
4151 var->in_changed_variables = false;
4152 var->var_part[0].loc_chain = NULL;
4153 var->var_part[0].cur_loc = NULL;
4154 VAR_LOC_1PAUX (var) = NULL;
4155 *slot = var;
4158 VALUE_RECURSED_INTO (node->loc) = true;
4162 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4163 gcc_assert (*dstslot == dvar);
4164 canonicalize_values_star (dstslot, dst);
4165 gcc_checking_assert (dstslot
4166 == shared_hash_find_slot_noinsert_1 (dst->vars,
4167 dv, dvhash));
4168 dvar = *dstslot;
4172 if (!onepart_variable_different_p (dvar, s2var))
4174 variable_htab_free (dvar);
4175 *dstslot = dvar = s2var;
4176 dvar->refcount++;
4178 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4180 variable_htab_free (dvar);
4181 *dstslot = dvar = s1var;
4182 dvar->refcount++;
4183 dst_can_be_shared = false;
4185 else
4186 dst_can_be_shared = false;
4188 return 1;
4191 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4192 multi-part variable. Unions of multi-part variables and
4193 intersections of one-part ones will be handled in
4194 variable_merge_over_cur(). */
4196 static int
4197 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4199 dataflow_set *dst = dsm->dst;
4200 decl_or_value dv = s2var->dv;
4202 if (!s2var->onepart)
4204 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4205 *dstp = s2var;
4206 s2var->refcount++;
4207 return 1;
4210 dsm->src_onepart_cnt++;
4211 return 1;
4214 /* Combine dataflow set information from SRC2 into DST, using PDST
4215 to carry over information across passes. */
4217 static void
4218 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4220 dataflow_set cur = *dst;
4221 dataflow_set *src1 = &cur;
4222 struct dfset_merge dsm;
4223 int i;
4224 size_t src1_elems, src2_elems;
4225 variable_iterator_type hi;
4226 variable var;
4228 src1_elems = shared_hash_htab (src1->vars)->elements ();
4229 src2_elems = shared_hash_htab (src2->vars)->elements ();
4230 dataflow_set_init (dst);
4231 dst->stack_adjust = cur.stack_adjust;
4232 shared_hash_destroy (dst->vars);
4233 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4234 dst->vars->refcount = 1;
4235 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4237 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4238 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4240 dsm.dst = dst;
4241 dsm.src = src2;
4242 dsm.cur = src1;
4243 dsm.src_onepart_cnt = 0;
4245 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4246 var, variable, hi)
4247 variable_merge_over_src (var, &dsm);
4248 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4249 var, variable, hi)
4250 variable_merge_over_cur (var, &dsm);
4252 if (dsm.src_onepart_cnt)
4253 dst_can_be_shared = false;
4255 dataflow_set_destroy (src1);
4258 /* Mark register equivalences. */
4260 static void
4261 dataflow_set_equiv_regs (dataflow_set *set)
4263 int i;
4264 attrs list, *listp;
4266 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4268 rtx canon[NUM_MACHINE_MODES];
4270 /* If the list is empty or one entry, no need to canonicalize
4271 anything. */
4272 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4273 continue;
4275 memset (canon, 0, sizeof (canon));
4277 for (list = set->regs[i]; list; list = list->next)
4278 if (list->offset == 0 && dv_is_value_p (list->dv))
4280 rtx val = dv_as_value (list->dv);
4281 rtx *cvalp = &canon[(int)GET_MODE (val)];
4282 rtx cval = *cvalp;
4284 if (canon_value_cmp (val, cval))
4285 *cvalp = val;
4288 for (list = set->regs[i]; list; list = list->next)
4289 if (list->offset == 0 && dv_onepart_p (list->dv))
4291 rtx cval = canon[(int)GET_MODE (list->loc)];
4293 if (!cval)
4294 continue;
4296 if (dv_is_value_p (list->dv))
4298 rtx val = dv_as_value (list->dv);
4300 if (val == cval)
4301 continue;
4303 VALUE_RECURSED_INTO (val) = true;
4304 set_variable_part (set, val, dv_from_value (cval), 0,
4305 VAR_INIT_STATUS_INITIALIZED,
4306 NULL, NO_INSERT);
4309 VALUE_RECURSED_INTO (cval) = true;
4310 set_variable_part (set, cval, list->dv, 0,
4311 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4314 for (listp = &set->regs[i]; (list = *listp);
4315 listp = list ? &list->next : listp)
4316 if (list->offset == 0 && dv_onepart_p (list->dv))
4318 rtx cval = canon[(int)GET_MODE (list->loc)];
4319 variable_def **slot;
4321 if (!cval)
4322 continue;
4324 if (dv_is_value_p (list->dv))
4326 rtx val = dv_as_value (list->dv);
4327 if (!VALUE_RECURSED_INTO (val))
4328 continue;
4331 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4332 canonicalize_values_star (slot, set);
4333 if (*listp != list)
4334 list = NULL;
4339 /* Remove any redundant values in the location list of VAR, which must
4340 be unshared and 1-part. */
4342 static void
4343 remove_duplicate_values (variable var)
4345 location_chain node, *nodep;
4347 gcc_assert (var->onepart);
4348 gcc_assert (var->n_var_parts == 1);
4349 gcc_assert (var->refcount == 1);
4351 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4353 if (GET_CODE (node->loc) == VALUE)
4355 if (VALUE_RECURSED_INTO (node->loc))
4357 /* Remove duplicate value node. */
4358 *nodep = node->next;
4359 pool_free (loc_chain_pool, node);
4360 continue;
4362 else
4363 VALUE_RECURSED_INTO (node->loc) = true;
4365 nodep = &node->next;
4368 for (node = var->var_part[0].loc_chain; node; node = node->next)
4369 if (GET_CODE (node->loc) == VALUE)
4371 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4372 VALUE_RECURSED_INTO (node->loc) = false;
4377 /* Hash table iteration argument passed to variable_post_merge. */
4378 struct dfset_post_merge
4380 /* The new input set for the current block. */
4381 dataflow_set *set;
4382 /* Pointer to the permanent input set for the current block, or
4383 NULL. */
4384 dataflow_set **permp;
4387 /* Create values for incoming expressions associated with one-part
4388 variables that don't have value numbers for them. */
4391 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4393 dataflow_set *set = dfpm->set;
4394 variable var = *slot;
4395 location_chain node;
4397 if (!var->onepart || !var->n_var_parts)
4398 return 1;
4400 gcc_assert (var->n_var_parts == 1);
4402 if (dv_is_decl_p (var->dv))
4404 bool check_dupes = false;
4406 restart:
4407 for (node = var->var_part[0].loc_chain; node; node = node->next)
4409 if (GET_CODE (node->loc) == VALUE)
4410 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4411 else if (GET_CODE (node->loc) == REG)
4413 attrs att, *attp, *curp = NULL;
4415 if (var->refcount != 1)
4417 slot = unshare_variable (set, slot, var,
4418 VAR_INIT_STATUS_INITIALIZED);
4419 var = *slot;
4420 goto restart;
4423 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4424 attp = &att->next)
4425 if (att->offset == 0
4426 && GET_MODE (att->loc) == GET_MODE (node->loc))
4428 if (dv_is_value_p (att->dv))
4430 rtx cval = dv_as_value (att->dv);
4431 node->loc = cval;
4432 check_dupes = true;
4433 break;
4435 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4436 curp = attp;
4439 if (!curp)
4441 curp = attp;
4442 while (*curp)
4443 if ((*curp)->offset == 0
4444 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4445 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4446 break;
4447 else
4448 curp = &(*curp)->next;
4449 gcc_assert (*curp);
4452 if (!att)
4454 decl_or_value cdv;
4455 rtx cval;
4457 if (!*dfpm->permp)
4459 *dfpm->permp = XNEW (dataflow_set);
4460 dataflow_set_init (*dfpm->permp);
4463 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4464 att; att = att->next)
4465 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4467 gcc_assert (att->offset == 0
4468 && dv_is_value_p (att->dv));
4469 val_reset (set, att->dv);
4470 break;
4473 if (att)
4475 cdv = att->dv;
4476 cval = dv_as_value (cdv);
4478 else
4480 /* Create a unique value to hold this register,
4481 that ought to be found and reused in
4482 subsequent rounds. */
4483 cselib_val *v;
4484 gcc_assert (!cselib_lookup (node->loc,
4485 GET_MODE (node->loc), 0,
4486 VOIDmode));
4487 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4488 VOIDmode);
4489 cselib_preserve_value (v);
4490 cselib_invalidate_rtx (node->loc);
4491 cval = v->val_rtx;
4492 cdv = dv_from_value (cval);
4493 if (dump_file)
4494 fprintf (dump_file,
4495 "Created new value %u:%u for reg %i\n",
4496 v->uid, v->hash, REGNO (node->loc));
4499 var_reg_decl_set (*dfpm->permp, node->loc,
4500 VAR_INIT_STATUS_INITIALIZED,
4501 cdv, 0, NULL, INSERT);
4503 node->loc = cval;
4504 check_dupes = true;
4507 /* Remove attribute referring to the decl, which now
4508 uses the value for the register, already existing or
4509 to be added when we bring perm in. */
4510 att = *curp;
4511 *curp = att->next;
4512 pool_free (attrs_pool, att);
4516 if (check_dupes)
4517 remove_duplicate_values (var);
4520 return 1;
4523 /* Reset values in the permanent set that are not associated with the
4524 chosen expression. */
4527 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4529 dataflow_set *set = dfpm->set;
4530 variable pvar = *pslot, var;
4531 location_chain pnode;
4532 decl_or_value dv;
4533 attrs att;
4535 gcc_assert (dv_is_value_p (pvar->dv)
4536 && pvar->n_var_parts == 1);
4537 pnode = pvar->var_part[0].loc_chain;
4538 gcc_assert (pnode
4539 && !pnode->next
4540 && REG_P (pnode->loc));
4542 dv = pvar->dv;
4544 var = shared_hash_find (set->vars, dv);
4545 if (var)
4547 /* Although variable_post_merge_new_vals may have made decls
4548 non-star-canonical, values that pre-existed in canonical form
4549 remain canonical, and newly-created values reference a single
4550 REG, so they are canonical as well. Since VAR has the
4551 location list for a VALUE, using find_loc_in_1pdv for it is
4552 fine, since VALUEs don't map back to DECLs. */
4553 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4554 return 1;
4555 val_reset (set, dv);
4558 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4559 if (att->offset == 0
4560 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4561 && dv_is_value_p (att->dv))
4562 break;
4564 /* If there is a value associated with this register already, create
4565 an equivalence. */
4566 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4568 rtx cval = dv_as_value (att->dv);
4569 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4570 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4571 NULL, INSERT);
4573 else if (!att)
4575 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4576 dv, 0, pnode->loc);
4577 variable_union (pvar, set);
4580 return 1;
4583 /* Just checking stuff and registering register attributes for
4584 now. */
4586 static void
4587 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4589 struct dfset_post_merge dfpm;
4591 dfpm.set = set;
4592 dfpm.permp = permp;
4594 shared_hash_htab (set->vars)
4595 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4596 if (*permp)
4597 shared_hash_htab ((*permp)->vars)
4598 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4599 shared_hash_htab (set->vars)
4600 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4601 shared_hash_htab (set->vars)
4602 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4605 /* Return a node whose loc is a MEM that refers to EXPR in the
4606 location list of a one-part variable or value VAR, or in that of
4607 any values recursively mentioned in the location lists. */
4609 static location_chain
4610 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4612 location_chain node;
4613 decl_or_value dv;
4614 variable var;
4615 location_chain where = NULL;
4617 if (!val)
4618 return NULL;
4620 gcc_assert (GET_CODE (val) == VALUE
4621 && !VALUE_RECURSED_INTO (val));
4623 dv = dv_from_value (val);
4624 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4626 if (!var)
4627 return NULL;
4629 gcc_assert (var->onepart);
4631 if (!var->n_var_parts)
4632 return NULL;
4634 VALUE_RECURSED_INTO (val) = true;
4636 for (node = var->var_part[0].loc_chain; node; node = node->next)
4637 if (MEM_P (node->loc)
4638 && MEM_EXPR (node->loc) == expr
4639 && INT_MEM_OFFSET (node->loc) == 0)
4641 where = node;
4642 break;
4644 else if (GET_CODE (node->loc) == VALUE
4645 && !VALUE_RECURSED_INTO (node->loc)
4646 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4647 break;
4649 VALUE_RECURSED_INTO (val) = false;
4651 return where;
4654 /* Return TRUE if the value of MEM may vary across a call. */
4656 static bool
4657 mem_dies_at_call (rtx mem)
4659 tree expr = MEM_EXPR (mem);
4660 tree decl;
4662 if (!expr)
4663 return true;
4665 decl = get_base_address (expr);
4667 if (!decl)
4668 return true;
4670 if (!DECL_P (decl))
4671 return true;
4673 return (may_be_aliased (decl)
4674 || (!TREE_READONLY (decl) && is_global_var (decl)));
4677 /* Remove all MEMs from the location list of a hash table entry for a
4678 one-part variable, except those whose MEM attributes map back to
4679 the variable itself, directly or within a VALUE. */
4682 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4684 variable var = *slot;
4686 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4688 tree decl = dv_as_decl (var->dv);
4689 location_chain loc, *locp;
4690 bool changed = false;
4692 if (!var->n_var_parts)
4693 return 1;
4695 gcc_assert (var->n_var_parts == 1);
4697 if (shared_var_p (var, set->vars))
4699 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4701 /* We want to remove dying MEMs that doesn't refer to DECL. */
4702 if (GET_CODE (loc->loc) == MEM
4703 && (MEM_EXPR (loc->loc) != decl
4704 || INT_MEM_OFFSET (loc->loc) != 0)
4705 && !mem_dies_at_call (loc->loc))
4706 break;
4707 /* We want to move here MEMs that do refer to DECL. */
4708 else if (GET_CODE (loc->loc) == VALUE
4709 && find_mem_expr_in_1pdv (decl, loc->loc,
4710 shared_hash_htab (set->vars)))
4711 break;
4714 if (!loc)
4715 return 1;
4717 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4718 var = *slot;
4719 gcc_assert (var->n_var_parts == 1);
4722 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4723 loc; loc = *locp)
4725 rtx old_loc = loc->loc;
4726 if (GET_CODE (old_loc) == VALUE)
4728 location_chain mem_node
4729 = find_mem_expr_in_1pdv (decl, loc->loc,
4730 shared_hash_htab (set->vars));
4732 /* ??? This picks up only one out of multiple MEMs that
4733 refer to the same variable. Do we ever need to be
4734 concerned about dealing with more than one, or, given
4735 that they should all map to the same variable
4736 location, their addresses will have been merged and
4737 they will be regarded as equivalent? */
4738 if (mem_node)
4740 loc->loc = mem_node->loc;
4741 loc->set_src = mem_node->set_src;
4742 loc->init = MIN (loc->init, mem_node->init);
4746 if (GET_CODE (loc->loc) != MEM
4747 || (MEM_EXPR (loc->loc) == decl
4748 && INT_MEM_OFFSET (loc->loc) == 0)
4749 || !mem_dies_at_call (loc->loc))
4751 if (old_loc != loc->loc && emit_notes)
4753 if (old_loc == var->var_part[0].cur_loc)
4755 changed = true;
4756 var->var_part[0].cur_loc = NULL;
4759 locp = &loc->next;
4760 continue;
4763 if (emit_notes)
4765 if (old_loc == var->var_part[0].cur_loc)
4767 changed = true;
4768 var->var_part[0].cur_loc = NULL;
4771 *locp = loc->next;
4772 pool_free (loc_chain_pool, loc);
4775 if (!var->var_part[0].loc_chain)
4777 var->n_var_parts--;
4778 changed = true;
4780 if (changed)
4781 variable_was_changed (var, set);
4784 return 1;
4787 /* Remove all MEMs from the location list of a hash table entry for a
4788 value. */
4791 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4793 variable var = *slot;
4795 if (var->onepart == ONEPART_VALUE)
4797 location_chain loc, *locp;
4798 bool changed = false;
4799 rtx cur_loc;
4801 gcc_assert (var->n_var_parts == 1);
4803 if (shared_var_p (var, set->vars))
4805 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4806 if (GET_CODE (loc->loc) == MEM
4807 && mem_dies_at_call (loc->loc))
4808 break;
4810 if (!loc)
4811 return 1;
4813 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4814 var = *slot;
4815 gcc_assert (var->n_var_parts == 1);
4818 if (VAR_LOC_1PAUX (var))
4819 cur_loc = VAR_LOC_FROM (var);
4820 else
4821 cur_loc = var->var_part[0].cur_loc;
4823 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4824 loc; loc = *locp)
4826 if (GET_CODE (loc->loc) != MEM
4827 || !mem_dies_at_call (loc->loc))
4829 locp = &loc->next;
4830 continue;
4833 *locp = loc->next;
4834 /* If we have deleted the location which was last emitted
4835 we have to emit new location so add the variable to set
4836 of changed variables. */
4837 if (cur_loc == loc->loc)
4839 changed = true;
4840 var->var_part[0].cur_loc = NULL;
4841 if (VAR_LOC_1PAUX (var))
4842 VAR_LOC_FROM (var) = NULL;
4844 pool_free (loc_chain_pool, loc);
4847 if (!var->var_part[0].loc_chain)
4849 var->n_var_parts--;
4850 changed = true;
4852 if (changed)
4853 variable_was_changed (var, set);
4856 return 1;
4859 /* Remove all variable-location information about call-clobbered
4860 registers, as well as associations between MEMs and VALUEs. */
4862 static void
4863 dataflow_set_clear_at_call (dataflow_set *set)
4865 unsigned int r;
4866 hard_reg_set_iterator hrsi;
4868 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4869 var_regno_delete (set, r);
4871 if (MAY_HAVE_DEBUG_INSNS)
4873 set->traversed_vars = set->vars;
4874 shared_hash_htab (set->vars)
4875 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4876 set->traversed_vars = set->vars;
4877 shared_hash_htab (set->vars)
4878 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4879 set->traversed_vars = NULL;
4883 static bool
4884 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4886 location_chain lc1, lc2;
4888 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4890 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4892 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4894 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4895 break;
4897 if (rtx_equal_p (lc1->loc, lc2->loc))
4898 break;
4900 if (!lc2)
4901 return true;
4903 return false;
4906 /* Return true if one-part variables VAR1 and VAR2 are different.
4907 They must be in canonical order. */
4909 static bool
4910 onepart_variable_different_p (variable var1, variable var2)
4912 location_chain lc1, lc2;
4914 if (var1 == var2)
4915 return false;
4917 gcc_assert (var1->n_var_parts == 1
4918 && var2->n_var_parts == 1);
4920 lc1 = var1->var_part[0].loc_chain;
4921 lc2 = var2->var_part[0].loc_chain;
4923 gcc_assert (lc1 && lc2);
4925 while (lc1 && lc2)
4927 if (loc_cmp (lc1->loc, lc2->loc))
4928 return true;
4929 lc1 = lc1->next;
4930 lc2 = lc2->next;
4933 return lc1 != lc2;
4936 /* Return true if variables VAR1 and VAR2 are different. */
4938 static bool
4939 variable_different_p (variable var1, variable var2)
4941 int i;
4943 if (var1 == var2)
4944 return false;
4946 if (var1->onepart != var2->onepart)
4947 return true;
4949 if (var1->n_var_parts != var2->n_var_parts)
4950 return true;
4952 if (var1->onepart && var1->n_var_parts)
4954 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4955 && var1->n_var_parts == 1);
4956 /* One-part values have locations in a canonical order. */
4957 return onepart_variable_different_p (var1, var2);
4960 for (i = 0; i < var1->n_var_parts; i++)
4962 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4963 return true;
4964 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4965 return true;
4966 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4967 return true;
4969 return false;
4972 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4974 static bool
4975 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4977 variable_iterator_type hi;
4978 variable var1;
4980 if (old_set->vars == new_set->vars)
4981 return false;
4983 if (shared_hash_htab (old_set->vars)->elements ()
4984 != shared_hash_htab (new_set->vars)->elements ())
4985 return true;
4987 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4988 var1, variable, hi)
4990 variable_table_type *htab = shared_hash_htab (new_set->vars);
4991 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4992 if (!var2)
4994 if (dump_file && (dump_flags & TDF_DETAILS))
4996 fprintf (dump_file, "dataflow difference found: removal of:\n");
4997 dump_var (var1);
4999 return true;
5002 if (variable_different_p (var1, var2))
5004 if (dump_file && (dump_flags & TDF_DETAILS))
5006 fprintf (dump_file, "dataflow difference found: "
5007 "old and new follow:\n");
5008 dump_var (var1);
5009 dump_var (var2);
5011 return true;
5015 /* No need to traverse the second hashtab, if both have the same number
5016 of elements and the second one had all entries found in the first one,
5017 then it can't have any extra entries. */
5018 return false;
5021 /* Free the contents of dataflow set SET. */
5023 static void
5024 dataflow_set_destroy (dataflow_set *set)
5026 int i;
5028 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5029 attrs_list_clear (&set->regs[i]);
5031 shared_hash_destroy (set->vars);
5032 set->vars = NULL;
5035 /* Return true if RTL X contains a SYMBOL_REF. */
5037 static bool
5038 contains_symbol_ref (rtx x)
5040 const char *fmt;
5041 RTX_CODE code;
5042 int i;
5044 if (!x)
5045 return false;
5047 code = GET_CODE (x);
5048 if (code == SYMBOL_REF)
5049 return true;
5051 fmt = GET_RTX_FORMAT (code);
5052 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5054 if (fmt[i] == 'e')
5056 if (contains_symbol_ref (XEXP (x, i)))
5057 return true;
5059 else if (fmt[i] == 'E')
5061 int j;
5062 for (j = 0; j < XVECLEN (x, i); j++)
5063 if (contains_symbol_ref (XVECEXP (x, i, j)))
5064 return true;
5068 return false;
5071 /* Shall EXPR be tracked? */
5073 static bool
5074 track_expr_p (tree expr, bool need_rtl)
5076 rtx decl_rtl;
5077 tree realdecl;
5079 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5080 return DECL_RTL_SET_P (expr);
5082 /* If EXPR is not a parameter or a variable do not track it. */
5083 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5084 return 0;
5086 /* It also must have a name... */
5087 if (!DECL_NAME (expr) && need_rtl)
5088 return 0;
5090 /* ... and a RTL assigned to it. */
5091 decl_rtl = DECL_RTL_IF_SET (expr);
5092 if (!decl_rtl && need_rtl)
5093 return 0;
5095 /* If this expression is really a debug alias of some other declaration, we
5096 don't need to track this expression if the ultimate declaration is
5097 ignored. */
5098 realdecl = expr;
5099 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5101 realdecl = DECL_DEBUG_EXPR (realdecl);
5102 if (!DECL_P (realdecl))
5104 if (handled_component_p (realdecl)
5105 || (TREE_CODE (realdecl) == MEM_REF
5106 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5108 HOST_WIDE_INT bitsize, bitpos, maxsize;
5109 tree innerdecl
5110 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5111 &maxsize);
5112 if (!DECL_P (innerdecl)
5113 || DECL_IGNORED_P (innerdecl)
5114 /* Do not track declarations for parts of tracked parameters
5115 since we want to track them as a whole instead. */
5116 || (TREE_CODE (innerdecl) == PARM_DECL
5117 && DECL_MODE (innerdecl) != BLKmode
5118 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5119 || TREE_STATIC (innerdecl)
5120 || bitsize <= 0
5121 || bitpos + bitsize > 256
5122 || bitsize != maxsize)
5123 return 0;
5124 else
5125 realdecl = expr;
5127 else
5128 return 0;
5132 /* Do not track EXPR if REALDECL it should be ignored for debugging
5133 purposes. */
5134 if (DECL_IGNORED_P (realdecl))
5135 return 0;
5137 /* Do not track global variables until we are able to emit correct location
5138 list for them. */
5139 if (TREE_STATIC (realdecl))
5140 return 0;
5142 /* When the EXPR is a DECL for alias of some variable (see example)
5143 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5144 DECL_RTL contains SYMBOL_REF.
5146 Example:
5147 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5148 char **_dl_argv;
5150 if (decl_rtl && MEM_P (decl_rtl)
5151 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5152 return 0;
5154 /* If RTX is a memory it should not be very large (because it would be
5155 an array or struct). */
5156 if (decl_rtl && MEM_P (decl_rtl))
5158 /* Do not track structures and arrays. */
5159 if (GET_MODE (decl_rtl) == BLKmode
5160 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5161 return 0;
5162 if (MEM_SIZE_KNOWN_P (decl_rtl)
5163 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5164 return 0;
5167 DECL_CHANGED (expr) = 0;
5168 DECL_CHANGED (realdecl) = 0;
5169 return 1;
5172 /* Determine whether a given LOC refers to the same variable part as
5173 EXPR+OFFSET. */
5175 static bool
5176 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5178 tree expr2;
5179 HOST_WIDE_INT offset2;
5181 if (! DECL_P (expr))
5182 return false;
5184 if (REG_P (loc))
5186 expr2 = REG_EXPR (loc);
5187 offset2 = REG_OFFSET (loc);
5189 else if (MEM_P (loc))
5191 expr2 = MEM_EXPR (loc);
5192 offset2 = INT_MEM_OFFSET (loc);
5194 else
5195 return false;
5197 if (! expr2 || ! DECL_P (expr2))
5198 return false;
5200 expr = var_debug_decl (expr);
5201 expr2 = var_debug_decl (expr2);
5203 return (expr == expr2 && offset == offset2);
5206 /* LOC is a REG or MEM that we would like to track if possible.
5207 If EXPR is null, we don't know what expression LOC refers to,
5208 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5209 LOC is an lvalue register.
5211 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5212 is something we can track. When returning true, store the mode of
5213 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5214 from EXPR in *OFFSET_OUT (if nonnull). */
5216 static bool
5217 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5218 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5220 enum machine_mode mode;
5222 if (expr == NULL || !track_expr_p (expr, true))
5223 return false;
5225 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5226 whole subreg, but only the old inner part is really relevant. */
5227 mode = GET_MODE (loc);
5228 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5230 enum machine_mode pseudo_mode;
5232 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5233 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5235 offset += byte_lowpart_offset (pseudo_mode, mode);
5236 mode = pseudo_mode;
5240 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5241 Do the same if we are storing to a register and EXPR occupies
5242 the whole of register LOC; in that case, the whole of EXPR is
5243 being changed. We exclude complex modes from the second case
5244 because the real and imaginary parts are represented as separate
5245 pseudo registers, even if the whole complex value fits into one
5246 hard register. */
5247 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5248 || (store_reg_p
5249 && !COMPLEX_MODE_P (DECL_MODE (expr))
5250 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5251 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5253 mode = DECL_MODE (expr);
5254 offset = 0;
5257 if (offset < 0 || offset >= MAX_VAR_PARTS)
5258 return false;
5260 if (mode_out)
5261 *mode_out = mode;
5262 if (offset_out)
5263 *offset_out = offset;
5264 return true;
5267 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5268 want to track. When returning nonnull, make sure that the attributes
5269 on the returned value are updated. */
5271 static rtx
5272 var_lowpart (enum machine_mode mode, rtx loc)
5274 unsigned int offset, reg_offset, regno;
5276 if (GET_MODE (loc) == mode)
5277 return loc;
5279 if (!REG_P (loc) && !MEM_P (loc))
5280 return NULL;
5282 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5284 if (MEM_P (loc))
5285 return adjust_address_nv (loc, mode, offset);
5287 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5288 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5289 reg_offset, mode);
5290 return gen_rtx_REG_offset (loc, mode, regno, offset);
5293 /* Carry information about uses and stores while walking rtx. */
5295 struct count_use_info
5297 /* The insn where the RTX is. */
5298 rtx insn;
5300 /* The basic block where insn is. */
5301 basic_block bb;
5303 /* The array of n_sets sets in the insn, as determined by cselib. */
5304 struct cselib_set *sets;
5305 int n_sets;
5307 /* True if we're counting stores, false otherwise. */
5308 bool store_p;
5311 /* Find a VALUE corresponding to X. */
5313 static inline cselib_val *
5314 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5316 int i;
5318 if (cui->sets)
5320 /* This is called after uses are set up and before stores are
5321 processed by cselib, so it's safe to look up srcs, but not
5322 dsts. So we look up expressions that appear in srcs or in
5323 dest expressions, but we search the sets array for dests of
5324 stores. */
5325 if (cui->store_p)
5327 /* Some targets represent memset and memcpy patterns
5328 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5329 (set (mem:BLK ...) (const_int ...)) or
5330 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5331 in that case, otherwise we end up with mode mismatches. */
5332 if (mode == BLKmode && MEM_P (x))
5333 return NULL;
5334 for (i = 0; i < cui->n_sets; i++)
5335 if (cui->sets[i].dest == x)
5336 return cui->sets[i].src_elt;
5338 else
5339 return cselib_lookup (x, mode, 0, VOIDmode);
5342 return NULL;
5345 /* Replace all registers and addresses in an expression with VALUE
5346 expressions that map back to them, unless the expression is a
5347 register. If no mapping is or can be performed, returns NULL. */
5349 static rtx
5350 replace_expr_with_values (rtx loc)
5352 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5353 return NULL;
5354 else if (MEM_P (loc))
5356 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5357 get_address_mode (loc), 0,
5358 GET_MODE (loc));
5359 if (addr)
5360 return replace_equiv_address_nv (loc, addr->val_rtx);
5361 else
5362 return NULL;
5364 else
5365 return cselib_subst_to_values (loc, VOIDmode);
5368 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5369 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5370 RTX. */
5372 static int
5373 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5375 rtx loc = *x;
5377 return GET_CODE (loc) == DEBUG_EXPR;
5380 /* Determine what kind of micro operation to choose for a USE. Return
5381 MO_CLOBBER if no micro operation is to be generated. */
5383 static enum micro_operation_type
5384 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5386 tree expr;
5388 if (cui && cui->sets)
5390 if (GET_CODE (loc) == VAR_LOCATION)
5392 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5394 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5395 if (! VAR_LOC_UNKNOWN_P (ploc))
5397 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5398 VOIDmode);
5400 /* ??? flag_float_store and volatile mems are never
5401 given values, but we could in theory use them for
5402 locations. */
5403 gcc_assert (val || 1);
5405 return MO_VAL_LOC;
5407 else
5408 return MO_CLOBBER;
5411 if (REG_P (loc) || MEM_P (loc))
5413 if (modep)
5414 *modep = GET_MODE (loc);
5415 if (cui->store_p)
5417 if (REG_P (loc)
5418 || (find_use_val (loc, GET_MODE (loc), cui)
5419 && cselib_lookup (XEXP (loc, 0),
5420 get_address_mode (loc), 0,
5421 GET_MODE (loc))))
5422 return MO_VAL_SET;
5424 else
5426 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5428 if (val && !cselib_preserved_value_p (val))
5429 return MO_VAL_USE;
5434 if (REG_P (loc))
5436 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5438 if (loc == cfa_base_rtx)
5439 return MO_CLOBBER;
5440 expr = REG_EXPR (loc);
5442 if (!expr)
5443 return MO_USE_NO_VAR;
5444 else if (target_for_debug_bind (var_debug_decl (expr)))
5445 return MO_CLOBBER;
5446 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5447 false, modep, NULL))
5448 return MO_USE;
5449 else
5450 return MO_USE_NO_VAR;
5452 else if (MEM_P (loc))
5454 expr = MEM_EXPR (loc);
5456 if (!expr)
5457 return MO_CLOBBER;
5458 else if (target_for_debug_bind (var_debug_decl (expr)))
5459 return MO_CLOBBER;
5460 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5461 false, modep, NULL)
5462 /* Multi-part variables shouldn't refer to one-part
5463 variable names such as VALUEs (never happens) or
5464 DEBUG_EXPRs (only happens in the presence of debug
5465 insns). */
5466 && (!MAY_HAVE_DEBUG_INSNS
5467 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5468 return MO_USE;
5469 else
5470 return MO_CLOBBER;
5473 return MO_CLOBBER;
5476 /* Log to OUT information about micro-operation MOPT involving X in
5477 INSN of BB. */
5479 static inline void
5480 log_op_type (rtx x, basic_block bb, rtx insn,
5481 enum micro_operation_type mopt, FILE *out)
5483 fprintf (out, "bb %i op %i insn %i %s ",
5484 bb->index, VTI (bb)->mos.length (),
5485 INSN_UID (insn), micro_operation_type_name[mopt]);
5486 print_inline_rtx (out, x, 2);
5487 fputc ('\n', out);
5490 /* Tell whether the CONCAT used to holds a VALUE and its location
5491 needs value resolution, i.e., an attempt of mapping the location
5492 back to other incoming values. */
5493 #define VAL_NEEDS_RESOLUTION(x) \
5494 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5495 /* Whether the location in the CONCAT is a tracked expression, that
5496 should also be handled like a MO_USE. */
5497 #define VAL_HOLDS_TRACK_EXPR(x) \
5498 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5499 /* Whether the location in the CONCAT should be handled like a MO_COPY
5500 as well. */
5501 #define VAL_EXPR_IS_COPIED(x) \
5502 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5503 /* Whether the location in the CONCAT should be handled like a
5504 MO_CLOBBER as well. */
5505 #define VAL_EXPR_IS_CLOBBERED(x) \
5506 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5508 /* All preserved VALUEs. */
5509 static vec<rtx> preserved_values;
5511 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5513 static void
5514 preserve_value (cselib_val *val)
5516 cselib_preserve_value (val);
5517 preserved_values.safe_push (val->val_rtx);
5520 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5521 any rtxes not suitable for CONST use not replaced by VALUEs
5522 are discovered. */
5524 static int
5525 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5527 if (*x == NULL_RTX)
5528 return 0;
5530 switch (GET_CODE (*x))
5532 case REG:
5533 case DEBUG_EXPR:
5534 case PC:
5535 case SCRATCH:
5536 case CC0:
5537 case ASM_INPUT:
5538 case ASM_OPERANDS:
5539 return 1;
5540 case MEM:
5541 return !MEM_READONLY_P (*x);
5542 default:
5543 return 0;
5547 /* Add uses (register and memory references) LOC which will be tracked
5548 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5550 static int
5551 add_uses (rtx *ploc, void *data)
5553 rtx loc = *ploc;
5554 enum machine_mode mode = VOIDmode;
5555 struct count_use_info *cui = (struct count_use_info *)data;
5556 enum micro_operation_type type = use_type (loc, cui, &mode);
5558 if (type != MO_CLOBBER)
5560 basic_block bb = cui->bb;
5561 micro_operation mo;
5563 mo.type = type;
5564 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5565 mo.insn = cui->insn;
5567 if (type == MO_VAL_LOC)
5569 rtx oloc = loc;
5570 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5571 cselib_val *val;
5573 gcc_assert (cui->sets);
5575 if (MEM_P (vloc)
5576 && !REG_P (XEXP (vloc, 0))
5577 && !MEM_P (XEXP (vloc, 0)))
5579 rtx mloc = vloc;
5580 enum machine_mode address_mode = get_address_mode (mloc);
5581 cselib_val *val
5582 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5583 GET_MODE (mloc));
5585 if (val && !cselib_preserved_value_p (val))
5586 preserve_value (val);
5589 if (CONSTANT_P (vloc)
5590 && (GET_CODE (vloc) != CONST
5591 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5592 /* For constants don't look up any value. */;
5593 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5594 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5596 enum machine_mode mode2;
5597 enum micro_operation_type type2;
5598 rtx nloc = NULL;
5599 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5601 if (resolvable)
5602 nloc = replace_expr_with_values (vloc);
5604 if (nloc)
5606 oloc = shallow_copy_rtx (oloc);
5607 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5610 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5612 type2 = use_type (vloc, 0, &mode2);
5614 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5615 || type2 == MO_CLOBBER);
5617 if (type2 == MO_CLOBBER
5618 && !cselib_preserved_value_p (val))
5620 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5621 preserve_value (val);
5624 else if (!VAR_LOC_UNKNOWN_P (vloc))
5626 oloc = shallow_copy_rtx (oloc);
5627 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5630 mo.u.loc = oloc;
5632 else if (type == MO_VAL_USE)
5634 enum machine_mode mode2 = VOIDmode;
5635 enum micro_operation_type type2;
5636 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5637 rtx vloc, oloc = loc, nloc;
5639 gcc_assert (cui->sets);
5641 if (MEM_P (oloc)
5642 && !REG_P (XEXP (oloc, 0))
5643 && !MEM_P (XEXP (oloc, 0)))
5645 rtx mloc = oloc;
5646 enum machine_mode address_mode = get_address_mode (mloc);
5647 cselib_val *val
5648 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5649 GET_MODE (mloc));
5651 if (val && !cselib_preserved_value_p (val))
5652 preserve_value (val);
5655 type2 = use_type (loc, 0, &mode2);
5657 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5658 || type2 == MO_CLOBBER);
5660 if (type2 == MO_USE)
5661 vloc = var_lowpart (mode2, loc);
5662 else
5663 vloc = oloc;
5665 /* The loc of a MO_VAL_USE may have two forms:
5667 (concat val src): val is at src, a value-based
5668 representation.
5670 (concat (concat val use) src): same as above, with use as
5671 the MO_USE tracked value, if it differs from src.
5675 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5676 nloc = replace_expr_with_values (loc);
5677 if (!nloc)
5678 nloc = oloc;
5680 if (vloc != nloc)
5681 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5682 else
5683 oloc = val->val_rtx;
5685 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5687 if (type2 == MO_USE)
5688 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5689 if (!cselib_preserved_value_p (val))
5691 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5692 preserve_value (val);
5695 else
5696 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5698 if (dump_file && (dump_flags & TDF_DETAILS))
5699 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5700 VTI (bb)->mos.safe_push (mo);
5703 return 0;
5706 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5708 static void
5709 add_uses_1 (rtx *x, void *cui)
5711 for_each_rtx (x, add_uses, cui);
5714 /* This is the value used during expansion of locations. We want it
5715 to be unbounded, so that variables expanded deep in a recursion
5716 nest are fully evaluated, so that their values are cached
5717 correctly. We avoid recursion cycles through other means, and we
5718 don't unshare RTL, so excess complexity is not a problem. */
5719 #define EXPR_DEPTH (INT_MAX)
5720 /* We use this to keep too-complex expressions from being emitted as
5721 location notes, and then to debug information. Users can trade
5722 compile time for ridiculously complex expressions, although they're
5723 seldom useful, and they may often have to be discarded as not
5724 representable anyway. */
5725 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5727 /* Attempt to reverse the EXPR operation in the debug info and record
5728 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5729 no longer live we can express its value as VAL - 6. */
5731 static void
5732 reverse_op (rtx val, const_rtx expr, rtx insn)
5734 rtx src, arg, ret;
5735 cselib_val *v;
5736 struct elt_loc_list *l;
5737 enum rtx_code code;
5738 int count;
5740 if (GET_CODE (expr) != SET)
5741 return;
5743 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5744 return;
5746 src = SET_SRC (expr);
5747 switch (GET_CODE (src))
5749 case PLUS:
5750 case MINUS:
5751 case XOR:
5752 case NOT:
5753 case NEG:
5754 if (!REG_P (XEXP (src, 0)))
5755 return;
5756 break;
5757 case SIGN_EXTEND:
5758 case ZERO_EXTEND:
5759 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5760 return;
5761 break;
5762 default:
5763 return;
5766 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5767 return;
5769 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5770 if (!v || !cselib_preserved_value_p (v))
5771 return;
5773 /* Use canonical V to avoid creating multiple redundant expressions
5774 for different VALUES equivalent to V. */
5775 v = canonical_cselib_val (v);
5777 /* Adding a reverse op isn't useful if V already has an always valid
5778 location. Ignore ENTRY_VALUE, while it is always constant, we should
5779 prefer non-ENTRY_VALUE locations whenever possible. */
5780 for (l = v->locs, count = 0; l; l = l->next, count++)
5781 if (CONSTANT_P (l->loc)
5782 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5783 return;
5784 /* Avoid creating too large locs lists. */
5785 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5786 return;
5788 switch (GET_CODE (src))
5790 case NOT:
5791 case NEG:
5792 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5793 return;
5794 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5795 break;
5796 case SIGN_EXTEND:
5797 case ZERO_EXTEND:
5798 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5799 break;
5800 case XOR:
5801 code = XOR;
5802 goto binary;
5803 case PLUS:
5804 code = MINUS;
5805 goto binary;
5806 case MINUS:
5807 code = PLUS;
5808 goto binary;
5809 binary:
5810 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5811 return;
5812 arg = XEXP (src, 1);
5813 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5815 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5816 if (arg == NULL_RTX)
5817 return;
5818 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5819 return;
5821 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5822 if (ret == val)
5823 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5824 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5825 breaks a lot of routines during var-tracking. */
5826 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5827 break;
5828 default:
5829 gcc_unreachable ();
5832 cselib_add_permanent_equiv (v, ret, insn);
5835 /* Add stores (register and memory references) LOC which will be tracked
5836 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5837 CUIP->insn is instruction which the LOC is part of. */
5839 static void
5840 add_stores (rtx loc, const_rtx expr, void *cuip)
5842 enum machine_mode mode = VOIDmode, mode2;
5843 struct count_use_info *cui = (struct count_use_info *)cuip;
5844 basic_block bb = cui->bb;
5845 micro_operation mo;
5846 rtx oloc = loc, nloc, src = NULL;
5847 enum micro_operation_type type = use_type (loc, cui, &mode);
5848 bool track_p = false;
5849 cselib_val *v;
5850 bool resolve, preserve;
5852 if (type == MO_CLOBBER)
5853 return;
5855 mode2 = mode;
5857 if (REG_P (loc))
5859 gcc_assert (loc != cfa_base_rtx);
5860 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5861 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5862 || GET_CODE (expr) == CLOBBER)
5864 mo.type = MO_CLOBBER;
5865 mo.u.loc = loc;
5866 if (GET_CODE (expr) == SET
5867 && SET_DEST (expr) == loc
5868 && !unsuitable_loc (SET_SRC (expr))
5869 && find_use_val (loc, mode, cui))
5871 gcc_checking_assert (type == MO_VAL_SET);
5872 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5875 else
5877 if (GET_CODE (expr) == SET
5878 && SET_DEST (expr) == loc
5879 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5880 src = var_lowpart (mode2, SET_SRC (expr));
5881 loc = var_lowpart (mode2, loc);
5883 if (src == NULL)
5885 mo.type = MO_SET;
5886 mo.u.loc = loc;
5888 else
5890 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5891 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5893 /* If this is an instruction copying (part of) a parameter
5894 passed by invisible reference to its register location,
5895 pretend it's a SET so that the initial memory location
5896 is discarded, as the parameter register can be reused
5897 for other purposes and we do not track locations based
5898 on generic registers. */
5899 if (MEM_P (src)
5900 && REG_EXPR (loc)
5901 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5902 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5903 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5904 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5905 != arg_pointer_rtx)
5906 mo.type = MO_SET;
5907 else
5908 mo.type = MO_COPY;
5910 else
5911 mo.type = MO_SET;
5912 mo.u.loc = xexpr;
5915 mo.insn = cui->insn;
5917 else if (MEM_P (loc)
5918 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5919 || cui->sets))
5921 if (MEM_P (loc) && type == MO_VAL_SET
5922 && !REG_P (XEXP (loc, 0))
5923 && !MEM_P (XEXP (loc, 0)))
5925 rtx mloc = loc;
5926 enum machine_mode address_mode = get_address_mode (mloc);
5927 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5928 address_mode, 0,
5929 GET_MODE (mloc));
5931 if (val && !cselib_preserved_value_p (val))
5932 preserve_value (val);
5935 if (GET_CODE (expr) == CLOBBER || !track_p)
5937 mo.type = MO_CLOBBER;
5938 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5940 else
5942 if (GET_CODE (expr) == SET
5943 && SET_DEST (expr) == loc
5944 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5945 src = var_lowpart (mode2, SET_SRC (expr));
5946 loc = var_lowpart (mode2, loc);
5948 if (src == NULL)
5950 mo.type = MO_SET;
5951 mo.u.loc = loc;
5953 else
5955 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5956 if (same_variable_part_p (SET_SRC (xexpr),
5957 MEM_EXPR (loc),
5958 INT_MEM_OFFSET (loc)))
5959 mo.type = MO_COPY;
5960 else
5961 mo.type = MO_SET;
5962 mo.u.loc = xexpr;
5965 mo.insn = cui->insn;
5967 else
5968 return;
5970 if (type != MO_VAL_SET)
5971 goto log_and_return;
5973 v = find_use_val (oloc, mode, cui);
5975 if (!v)
5976 goto log_and_return;
5978 resolve = preserve = !cselib_preserved_value_p (v);
5980 /* We cannot track values for multiple-part variables, so we track only
5981 locations for tracked parameters passed either by invisible reference
5982 or directly in multiple locations. */
5983 if (track_p
5984 && REG_P (loc)
5985 && REG_EXPR (loc)
5986 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5987 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5988 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5989 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5990 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5991 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5992 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5994 /* Although we don't use the value here, it could be used later by the
5995 mere virtue of its existence as the operand of the reverse operation
5996 that gave rise to it (typically extension/truncation). Make sure it
5997 is preserved as required by vt_expand_var_loc_chain. */
5998 if (preserve)
5999 preserve_value (v);
6000 goto log_and_return;
6003 if (loc == stack_pointer_rtx
6004 && hard_frame_pointer_adjustment != -1
6005 && preserve)
6006 cselib_set_value_sp_based (v);
6008 nloc = replace_expr_with_values (oloc);
6009 if (nloc)
6010 oloc = nloc;
6012 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6014 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6016 if (oval == v)
6017 return;
6018 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6020 if (oval && !cselib_preserved_value_p (oval))
6022 micro_operation moa;
6024 preserve_value (oval);
6026 moa.type = MO_VAL_USE;
6027 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6028 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6029 moa.insn = cui->insn;
6031 if (dump_file && (dump_flags & TDF_DETAILS))
6032 log_op_type (moa.u.loc, cui->bb, cui->insn,
6033 moa.type, dump_file);
6034 VTI (bb)->mos.safe_push (moa);
6037 resolve = false;
6039 else if (resolve && GET_CODE (mo.u.loc) == SET)
6041 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6042 nloc = replace_expr_with_values (SET_SRC (expr));
6043 else
6044 nloc = NULL_RTX;
6046 /* Avoid the mode mismatch between oexpr and expr. */
6047 if (!nloc && mode != mode2)
6049 nloc = SET_SRC (expr);
6050 gcc_assert (oloc == SET_DEST (expr));
6053 if (nloc && nloc != SET_SRC (mo.u.loc))
6054 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6055 else
6057 if (oloc == SET_DEST (mo.u.loc))
6058 /* No point in duplicating. */
6059 oloc = mo.u.loc;
6060 if (!REG_P (SET_SRC (mo.u.loc)))
6061 resolve = false;
6064 else if (!resolve)
6066 if (GET_CODE (mo.u.loc) == SET
6067 && oloc == SET_DEST (mo.u.loc))
6068 /* No point in duplicating. */
6069 oloc = mo.u.loc;
6071 else
6072 resolve = false;
6074 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6076 if (mo.u.loc != oloc)
6077 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6079 /* The loc of a MO_VAL_SET may have various forms:
6081 (concat val dst): dst now holds val
6083 (concat val (set dst src)): dst now holds val, copied from src
6085 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6086 after replacing mems and non-top-level regs with values.
6088 (concat (concat val dstv) (set dst src)): dst now holds val,
6089 copied from src. dstv is a value-based representation of dst, if
6090 it differs from dst. If resolution is needed, src is a REG, and
6091 its mode is the same as that of val.
6093 (concat (concat val (set dstv srcv)) (set dst src)): src
6094 copied to dst, holding val. dstv and srcv are value-based
6095 representations of dst and src, respectively.
6099 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6100 reverse_op (v->val_rtx, expr, cui->insn);
6102 mo.u.loc = loc;
6104 if (track_p)
6105 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6106 if (preserve)
6108 VAL_NEEDS_RESOLUTION (loc) = resolve;
6109 preserve_value (v);
6111 if (mo.type == MO_CLOBBER)
6112 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6113 if (mo.type == MO_COPY)
6114 VAL_EXPR_IS_COPIED (loc) = 1;
6116 mo.type = MO_VAL_SET;
6118 log_and_return:
6119 if (dump_file && (dump_flags & TDF_DETAILS))
6120 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6121 VTI (bb)->mos.safe_push (mo);
6124 /* Arguments to the call. */
6125 static rtx call_arguments;
6127 /* Compute call_arguments. */
6129 static void
6130 prepare_call_arguments (basic_block bb, rtx insn)
6132 rtx link, x, call;
6133 rtx prev, cur, next;
6134 rtx this_arg = NULL_RTX;
6135 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6136 tree obj_type_ref = NULL_TREE;
6137 CUMULATIVE_ARGS args_so_far_v;
6138 cumulative_args_t args_so_far;
6140 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6141 args_so_far = pack_cumulative_args (&args_so_far_v);
6142 call = get_call_rtx_from (insn);
6143 if (call)
6145 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6147 rtx symbol = XEXP (XEXP (call, 0), 0);
6148 if (SYMBOL_REF_DECL (symbol))
6149 fndecl = SYMBOL_REF_DECL (symbol);
6151 if (fndecl == NULL_TREE)
6152 fndecl = MEM_EXPR (XEXP (call, 0));
6153 if (fndecl
6154 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6155 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6156 fndecl = NULL_TREE;
6157 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6158 type = TREE_TYPE (fndecl);
6159 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6161 if (TREE_CODE (fndecl) == INDIRECT_REF
6162 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6163 obj_type_ref = TREE_OPERAND (fndecl, 0);
6164 fndecl = NULL_TREE;
6166 if (type)
6168 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6169 t = TREE_CHAIN (t))
6170 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6171 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6172 break;
6173 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6174 type = NULL;
6175 else
6177 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6178 link = CALL_INSN_FUNCTION_USAGE (insn);
6179 #ifndef PCC_STATIC_STRUCT_RETURN
6180 if (aggregate_value_p (TREE_TYPE (type), type)
6181 && targetm.calls.struct_value_rtx (type, 0) == 0)
6183 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6184 enum machine_mode mode = TYPE_MODE (struct_addr);
6185 rtx reg;
6186 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6187 nargs + 1);
6188 reg = targetm.calls.function_arg (args_so_far, mode,
6189 struct_addr, true);
6190 targetm.calls.function_arg_advance (args_so_far, mode,
6191 struct_addr, true);
6192 if (reg == NULL_RTX)
6194 for (; link; link = XEXP (link, 1))
6195 if (GET_CODE (XEXP (link, 0)) == USE
6196 && MEM_P (XEXP (XEXP (link, 0), 0)))
6198 link = XEXP (link, 1);
6199 break;
6203 else
6204 #endif
6205 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6206 nargs);
6207 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6209 enum machine_mode mode;
6210 t = TYPE_ARG_TYPES (type);
6211 mode = TYPE_MODE (TREE_VALUE (t));
6212 this_arg = targetm.calls.function_arg (args_so_far, mode,
6213 TREE_VALUE (t), true);
6214 if (this_arg && !REG_P (this_arg))
6215 this_arg = NULL_RTX;
6216 else if (this_arg == NULL_RTX)
6218 for (; link; link = XEXP (link, 1))
6219 if (GET_CODE (XEXP (link, 0)) == USE
6220 && MEM_P (XEXP (XEXP (link, 0), 0)))
6222 this_arg = XEXP (XEXP (link, 0), 0);
6223 break;
6230 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6232 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6233 if (GET_CODE (XEXP (link, 0)) == USE)
6235 rtx item = NULL_RTX;
6236 x = XEXP (XEXP (link, 0), 0);
6237 if (GET_MODE (link) == VOIDmode
6238 || GET_MODE (link) == BLKmode
6239 || (GET_MODE (link) != GET_MODE (x)
6240 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6241 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6242 /* Can't do anything for these, if the original type mode
6243 isn't known or can't be converted. */;
6244 else if (REG_P (x))
6246 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6247 if (val && cselib_preserved_value_p (val))
6248 item = val->val_rtx;
6249 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6251 enum machine_mode mode = GET_MODE (x);
6253 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6254 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6256 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6258 if (reg == NULL_RTX || !REG_P (reg))
6259 continue;
6260 val = cselib_lookup (reg, mode, 0, VOIDmode);
6261 if (val && cselib_preserved_value_p (val))
6263 item = val->val_rtx;
6264 break;
6269 else if (MEM_P (x))
6271 rtx mem = x;
6272 cselib_val *val;
6274 if (!frame_pointer_needed)
6276 struct adjust_mem_data amd;
6277 amd.mem_mode = VOIDmode;
6278 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6279 amd.side_effects = NULL_RTX;
6280 amd.store = true;
6281 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6282 &amd);
6283 gcc_assert (amd.side_effects == NULL_RTX);
6285 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6286 if (val && cselib_preserved_value_p (val))
6287 item = val->val_rtx;
6288 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6290 /* For non-integer stack argument see also if they weren't
6291 initialized by integers. */
6292 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6293 if (imode != GET_MODE (mem) && imode != BLKmode)
6295 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6296 imode, 0, VOIDmode);
6297 if (val && cselib_preserved_value_p (val))
6298 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6299 imode);
6303 if (item)
6305 rtx x2 = x;
6306 if (GET_MODE (item) != GET_MODE (link))
6307 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6308 if (GET_MODE (x2) != GET_MODE (link))
6309 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6310 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6311 call_arguments
6312 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6314 if (t && t != void_list_node)
6316 tree argtype = TREE_VALUE (t);
6317 enum machine_mode mode = TYPE_MODE (argtype);
6318 rtx reg;
6319 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6321 argtype = build_pointer_type (argtype);
6322 mode = TYPE_MODE (argtype);
6324 reg = targetm.calls.function_arg (args_so_far, mode,
6325 argtype, true);
6326 if (TREE_CODE (argtype) == REFERENCE_TYPE
6327 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6328 && reg
6329 && REG_P (reg)
6330 && GET_MODE (reg) == mode
6331 && GET_MODE_CLASS (mode) == MODE_INT
6332 && REG_P (x)
6333 && REGNO (x) == REGNO (reg)
6334 && GET_MODE (x) == mode
6335 && item)
6337 enum machine_mode indmode
6338 = TYPE_MODE (TREE_TYPE (argtype));
6339 rtx mem = gen_rtx_MEM (indmode, x);
6340 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6341 if (val && cselib_preserved_value_p (val))
6343 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6344 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6345 call_arguments);
6347 else
6349 struct elt_loc_list *l;
6350 tree initial;
6352 /* Try harder, when passing address of a constant
6353 pool integer it can be easily read back. */
6354 item = XEXP (item, 1);
6355 if (GET_CODE (item) == SUBREG)
6356 item = SUBREG_REG (item);
6357 gcc_assert (GET_CODE (item) == VALUE);
6358 val = CSELIB_VAL_PTR (item);
6359 for (l = val->locs; l; l = l->next)
6360 if (GET_CODE (l->loc) == SYMBOL_REF
6361 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6362 && SYMBOL_REF_DECL (l->loc)
6363 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6365 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6366 if (tree_fits_shwi_p (initial))
6368 item = GEN_INT (tree_to_shwi (initial));
6369 item = gen_rtx_CONCAT (indmode, mem, item);
6370 call_arguments
6371 = gen_rtx_EXPR_LIST (VOIDmode, item,
6372 call_arguments);
6374 break;
6378 targetm.calls.function_arg_advance (args_so_far, mode,
6379 argtype, true);
6380 t = TREE_CHAIN (t);
6384 /* Add debug arguments. */
6385 if (fndecl
6386 && TREE_CODE (fndecl) == FUNCTION_DECL
6387 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6389 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6390 if (debug_args)
6392 unsigned int ix;
6393 tree param;
6394 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6396 rtx item;
6397 tree dtemp = (**debug_args)[ix + 1];
6398 enum machine_mode mode = DECL_MODE (dtemp);
6399 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6400 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6401 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6402 call_arguments);
6407 /* Reverse call_arguments chain. */
6408 prev = NULL_RTX;
6409 for (cur = call_arguments; cur; cur = next)
6411 next = XEXP (cur, 1);
6412 XEXP (cur, 1) = prev;
6413 prev = cur;
6415 call_arguments = prev;
6417 x = get_call_rtx_from (insn);
6418 if (x)
6420 x = XEXP (XEXP (x, 0), 0);
6421 if (GET_CODE (x) == SYMBOL_REF)
6422 /* Don't record anything. */;
6423 else if (CONSTANT_P (x))
6425 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6426 pc_rtx, x);
6427 call_arguments
6428 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6430 else
6432 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6433 if (val && cselib_preserved_value_p (val))
6435 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6436 call_arguments
6437 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6441 if (this_arg)
6443 enum machine_mode mode
6444 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6445 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6446 HOST_WIDE_INT token
6447 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6448 if (token)
6449 clobbered = plus_constant (mode, clobbered,
6450 token * GET_MODE_SIZE (mode));
6451 clobbered = gen_rtx_MEM (mode, clobbered);
6452 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6453 call_arguments
6454 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6458 /* Callback for cselib_record_sets_hook, that records as micro
6459 operations uses and stores in an insn after cselib_record_sets has
6460 analyzed the sets in an insn, but before it modifies the stored
6461 values in the internal tables, unless cselib_record_sets doesn't
6462 call it directly (perhaps because we're not doing cselib in the
6463 first place, in which case sets and n_sets will be 0). */
6465 static void
6466 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6468 basic_block bb = BLOCK_FOR_INSN (insn);
6469 int n1, n2;
6470 struct count_use_info cui;
6471 micro_operation *mos;
6473 cselib_hook_called = true;
6475 cui.insn = insn;
6476 cui.bb = bb;
6477 cui.sets = sets;
6478 cui.n_sets = n_sets;
6480 n1 = VTI (bb)->mos.length ();
6481 cui.store_p = false;
6482 note_uses (&PATTERN (insn), add_uses_1, &cui);
6483 n2 = VTI (bb)->mos.length () - 1;
6484 mos = VTI (bb)->mos.address ();
6486 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6487 MO_VAL_LOC last. */
6488 while (n1 < n2)
6490 while (n1 < n2 && mos[n1].type == MO_USE)
6491 n1++;
6492 while (n1 < n2 && mos[n2].type != MO_USE)
6493 n2--;
6494 if (n1 < n2)
6496 micro_operation sw;
6498 sw = mos[n1];
6499 mos[n1] = mos[n2];
6500 mos[n2] = sw;
6504 n2 = VTI (bb)->mos.length () - 1;
6505 while (n1 < n2)
6507 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6508 n1++;
6509 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6510 n2--;
6511 if (n1 < n2)
6513 micro_operation sw;
6515 sw = mos[n1];
6516 mos[n1] = mos[n2];
6517 mos[n2] = sw;
6521 if (CALL_P (insn))
6523 micro_operation mo;
6525 mo.type = MO_CALL;
6526 mo.insn = insn;
6527 mo.u.loc = call_arguments;
6528 call_arguments = NULL_RTX;
6530 if (dump_file && (dump_flags & TDF_DETAILS))
6531 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6532 VTI (bb)->mos.safe_push (mo);
6535 n1 = VTI (bb)->mos.length ();
6536 /* This will record NEXT_INSN (insn), such that we can
6537 insert notes before it without worrying about any
6538 notes that MO_USEs might emit after the insn. */
6539 cui.store_p = true;
6540 note_stores (PATTERN (insn), add_stores, &cui);
6541 n2 = VTI (bb)->mos.length () - 1;
6542 mos = VTI (bb)->mos.address ();
6544 /* Order the MO_VAL_USEs first (note_stores does nothing
6545 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6546 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6547 while (n1 < n2)
6549 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6550 n1++;
6551 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6552 n2--;
6553 if (n1 < n2)
6555 micro_operation sw;
6557 sw = mos[n1];
6558 mos[n1] = mos[n2];
6559 mos[n2] = sw;
6563 n2 = VTI (bb)->mos.length () - 1;
6564 while (n1 < n2)
6566 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6567 n1++;
6568 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6569 n2--;
6570 if (n1 < n2)
6572 micro_operation sw;
6574 sw = mos[n1];
6575 mos[n1] = mos[n2];
6576 mos[n2] = sw;
6581 static enum var_init_status
6582 find_src_status (dataflow_set *in, rtx src)
6584 tree decl = NULL_TREE;
6585 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6587 if (! flag_var_tracking_uninit)
6588 status = VAR_INIT_STATUS_INITIALIZED;
6590 if (src && REG_P (src))
6591 decl = var_debug_decl (REG_EXPR (src));
6592 else if (src && MEM_P (src))
6593 decl = var_debug_decl (MEM_EXPR (src));
6595 if (src && decl)
6596 status = get_init_value (in, src, dv_from_decl (decl));
6598 return status;
6601 /* SRC is the source of an assignment. Use SET to try to find what
6602 was ultimately assigned to SRC. Return that value if known,
6603 otherwise return SRC itself. */
6605 static rtx
6606 find_src_set_src (dataflow_set *set, rtx src)
6608 tree decl = NULL_TREE; /* The variable being copied around. */
6609 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6610 variable var;
6611 location_chain nextp;
6612 int i;
6613 bool found;
6615 if (src && REG_P (src))
6616 decl = var_debug_decl (REG_EXPR (src));
6617 else if (src && MEM_P (src))
6618 decl = var_debug_decl (MEM_EXPR (src));
6620 if (src && decl)
6622 decl_or_value dv = dv_from_decl (decl);
6624 var = shared_hash_find (set->vars, dv);
6625 if (var)
6627 found = false;
6628 for (i = 0; i < var->n_var_parts && !found; i++)
6629 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6630 nextp = nextp->next)
6631 if (rtx_equal_p (nextp->loc, src))
6633 set_src = nextp->set_src;
6634 found = true;
6640 return set_src;
6643 /* Compute the changes of variable locations in the basic block BB. */
6645 static bool
6646 compute_bb_dataflow (basic_block bb)
6648 unsigned int i;
6649 micro_operation *mo;
6650 bool changed;
6651 dataflow_set old_out;
6652 dataflow_set *in = &VTI (bb)->in;
6653 dataflow_set *out = &VTI (bb)->out;
6655 dataflow_set_init (&old_out);
6656 dataflow_set_copy (&old_out, out);
6657 dataflow_set_copy (out, in);
6659 if (MAY_HAVE_DEBUG_INSNS)
6660 local_get_addr_cache = new hash_map<rtx, rtx>;
6662 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6664 rtx insn = mo->insn;
6666 switch (mo->type)
6668 case MO_CALL:
6669 dataflow_set_clear_at_call (out);
6670 break;
6672 case MO_USE:
6674 rtx loc = mo->u.loc;
6676 if (REG_P (loc))
6677 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6678 else if (MEM_P (loc))
6679 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6681 break;
6683 case MO_VAL_LOC:
6685 rtx loc = mo->u.loc;
6686 rtx val, vloc;
6687 tree var;
6689 if (GET_CODE (loc) == CONCAT)
6691 val = XEXP (loc, 0);
6692 vloc = XEXP (loc, 1);
6694 else
6696 val = NULL_RTX;
6697 vloc = loc;
6700 var = PAT_VAR_LOCATION_DECL (vloc);
6702 clobber_variable_part (out, NULL_RTX,
6703 dv_from_decl (var), 0, NULL_RTX);
6704 if (val)
6706 if (VAL_NEEDS_RESOLUTION (loc))
6707 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6708 set_variable_part (out, val, dv_from_decl (var), 0,
6709 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6710 INSERT);
6712 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6713 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6714 dv_from_decl (var), 0,
6715 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6716 INSERT);
6718 break;
6720 case MO_VAL_USE:
6722 rtx loc = mo->u.loc;
6723 rtx val, vloc, uloc;
6725 vloc = uloc = XEXP (loc, 1);
6726 val = XEXP (loc, 0);
6728 if (GET_CODE (val) == CONCAT)
6730 uloc = XEXP (val, 1);
6731 val = XEXP (val, 0);
6734 if (VAL_NEEDS_RESOLUTION (loc))
6735 val_resolve (out, val, vloc, insn);
6736 else
6737 val_store (out, val, uloc, insn, false);
6739 if (VAL_HOLDS_TRACK_EXPR (loc))
6741 if (GET_CODE (uloc) == REG)
6742 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6743 NULL);
6744 else if (GET_CODE (uloc) == MEM)
6745 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6746 NULL);
6749 break;
6751 case MO_VAL_SET:
6753 rtx loc = mo->u.loc;
6754 rtx val, vloc, uloc;
6755 rtx dstv, srcv;
6757 vloc = loc;
6758 uloc = XEXP (vloc, 1);
6759 val = XEXP (vloc, 0);
6760 vloc = uloc;
6762 if (GET_CODE (uloc) == SET)
6764 dstv = SET_DEST (uloc);
6765 srcv = SET_SRC (uloc);
6767 else
6769 dstv = uloc;
6770 srcv = NULL;
6773 if (GET_CODE (val) == CONCAT)
6775 dstv = vloc = XEXP (val, 1);
6776 val = XEXP (val, 0);
6779 if (GET_CODE (vloc) == SET)
6781 srcv = SET_SRC (vloc);
6783 gcc_assert (val != srcv);
6784 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6786 dstv = vloc = SET_DEST (vloc);
6788 if (VAL_NEEDS_RESOLUTION (loc))
6789 val_resolve (out, val, srcv, insn);
6791 else if (VAL_NEEDS_RESOLUTION (loc))
6793 gcc_assert (GET_CODE (uloc) == SET
6794 && GET_CODE (SET_SRC (uloc)) == REG);
6795 val_resolve (out, val, SET_SRC (uloc), insn);
6798 if (VAL_HOLDS_TRACK_EXPR (loc))
6800 if (VAL_EXPR_IS_CLOBBERED (loc))
6802 if (REG_P (uloc))
6803 var_reg_delete (out, uloc, true);
6804 else if (MEM_P (uloc))
6806 gcc_assert (MEM_P (dstv));
6807 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6808 var_mem_delete (out, dstv, true);
6811 else
6813 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6814 rtx src = NULL, dst = uloc;
6815 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6817 if (GET_CODE (uloc) == SET)
6819 src = SET_SRC (uloc);
6820 dst = SET_DEST (uloc);
6823 if (copied_p)
6825 if (flag_var_tracking_uninit)
6827 status = find_src_status (in, src);
6829 if (status == VAR_INIT_STATUS_UNKNOWN)
6830 status = find_src_status (out, src);
6833 src = find_src_set_src (in, src);
6836 if (REG_P (dst))
6837 var_reg_delete_and_set (out, dst, !copied_p,
6838 status, srcv);
6839 else if (MEM_P (dst))
6841 gcc_assert (MEM_P (dstv));
6842 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6843 var_mem_delete_and_set (out, dstv, !copied_p,
6844 status, srcv);
6848 else if (REG_P (uloc))
6849 var_regno_delete (out, REGNO (uloc));
6850 else if (MEM_P (uloc))
6852 gcc_checking_assert (GET_CODE (vloc) == MEM);
6853 gcc_checking_assert (dstv == vloc);
6854 if (dstv != vloc)
6855 clobber_overlapping_mems (out, vloc);
6858 val_store (out, val, dstv, insn, true);
6860 break;
6862 case MO_SET:
6864 rtx loc = mo->u.loc;
6865 rtx set_src = NULL;
6867 if (GET_CODE (loc) == SET)
6869 set_src = SET_SRC (loc);
6870 loc = SET_DEST (loc);
6873 if (REG_P (loc))
6874 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6875 set_src);
6876 else if (MEM_P (loc))
6877 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6878 set_src);
6880 break;
6882 case MO_COPY:
6884 rtx loc = mo->u.loc;
6885 enum var_init_status src_status;
6886 rtx set_src = NULL;
6888 if (GET_CODE (loc) == SET)
6890 set_src = SET_SRC (loc);
6891 loc = SET_DEST (loc);
6894 if (! flag_var_tracking_uninit)
6895 src_status = VAR_INIT_STATUS_INITIALIZED;
6896 else
6898 src_status = find_src_status (in, set_src);
6900 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6901 src_status = find_src_status (out, set_src);
6904 set_src = find_src_set_src (in, set_src);
6906 if (REG_P (loc))
6907 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6908 else if (MEM_P (loc))
6909 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6911 break;
6913 case MO_USE_NO_VAR:
6915 rtx loc = mo->u.loc;
6917 if (REG_P (loc))
6918 var_reg_delete (out, loc, false);
6919 else if (MEM_P (loc))
6920 var_mem_delete (out, loc, false);
6922 break;
6924 case MO_CLOBBER:
6926 rtx loc = mo->u.loc;
6928 if (REG_P (loc))
6929 var_reg_delete (out, loc, true);
6930 else if (MEM_P (loc))
6931 var_mem_delete (out, loc, true);
6933 break;
6935 case MO_ADJUST:
6936 out->stack_adjust += mo->u.adjust;
6937 break;
6941 if (MAY_HAVE_DEBUG_INSNS)
6943 delete local_get_addr_cache;
6944 local_get_addr_cache = NULL;
6946 dataflow_set_equiv_regs (out);
6947 shared_hash_htab (out->vars)
6948 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6949 shared_hash_htab (out->vars)
6950 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6951 #if ENABLE_CHECKING
6952 shared_hash_htab (out->vars)
6953 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6954 #endif
6956 changed = dataflow_set_different (&old_out, out);
6957 dataflow_set_destroy (&old_out);
6958 return changed;
6961 /* Find the locations of variables in the whole function. */
6963 static bool
6964 vt_find_locations (void)
6966 fibheap_t worklist, pending, fibheap_swap;
6967 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6968 basic_block bb;
6969 edge e;
6970 int *bb_order;
6971 int *rc_order;
6972 int i;
6973 int htabsz = 0;
6974 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6975 bool success = true;
6977 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6978 /* Compute reverse completion order of depth first search of the CFG
6979 so that the data-flow runs faster. */
6980 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6981 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6982 pre_and_rev_post_order_compute (NULL, rc_order, false);
6983 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6984 bb_order[rc_order[i]] = i;
6985 free (rc_order);
6987 worklist = fibheap_new ();
6988 pending = fibheap_new ();
6989 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6990 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6991 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6992 bitmap_clear (in_worklist);
6994 FOR_EACH_BB_FN (bb, cfun)
6995 fibheap_insert (pending, bb_order[bb->index], bb);
6996 bitmap_ones (in_pending);
6998 while (success && !fibheap_empty (pending))
7000 fibheap_swap = pending;
7001 pending = worklist;
7002 worklist = fibheap_swap;
7003 sbitmap_swap = in_pending;
7004 in_pending = in_worklist;
7005 in_worklist = sbitmap_swap;
7007 bitmap_clear (visited);
7009 while (!fibheap_empty (worklist))
7011 bb = (basic_block) fibheap_extract_min (worklist);
7012 bitmap_clear_bit (in_worklist, bb->index);
7013 gcc_assert (!bitmap_bit_p (visited, bb->index));
7014 if (!bitmap_bit_p (visited, bb->index))
7016 bool changed;
7017 edge_iterator ei;
7018 int oldinsz, oldoutsz;
7020 bitmap_set_bit (visited, bb->index);
7022 if (VTI (bb)->in.vars)
7024 htabsz
7025 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7026 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7027 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7028 oldoutsz
7029 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7031 else
7032 oldinsz = oldoutsz = 0;
7034 if (MAY_HAVE_DEBUG_INSNS)
7036 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7037 bool first = true, adjust = false;
7039 /* Calculate the IN set as the intersection of
7040 predecessor OUT sets. */
7042 dataflow_set_clear (in);
7043 dst_can_be_shared = true;
7045 FOR_EACH_EDGE (e, ei, bb->preds)
7046 if (!VTI (e->src)->flooded)
7047 gcc_assert (bb_order[bb->index]
7048 <= bb_order[e->src->index]);
7049 else if (first)
7051 dataflow_set_copy (in, &VTI (e->src)->out);
7052 first_out = &VTI (e->src)->out;
7053 first = false;
7055 else
7057 dataflow_set_merge (in, &VTI (e->src)->out);
7058 adjust = true;
7061 if (adjust)
7063 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7064 #if ENABLE_CHECKING
7065 /* Merge and merge_adjust should keep entries in
7066 canonical order. */
7067 shared_hash_htab (in->vars)
7068 ->traverse <dataflow_set *,
7069 canonicalize_loc_order_check> (in);
7070 #endif
7071 if (dst_can_be_shared)
7073 shared_hash_destroy (in->vars);
7074 in->vars = shared_hash_copy (first_out->vars);
7078 VTI (bb)->flooded = true;
7080 else
7082 /* Calculate the IN set as union of predecessor OUT sets. */
7083 dataflow_set_clear (&VTI (bb)->in);
7084 FOR_EACH_EDGE (e, ei, bb->preds)
7085 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7088 changed = compute_bb_dataflow (bb);
7089 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7090 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7092 if (htabmax && htabsz > htabmax)
7094 if (MAY_HAVE_DEBUG_INSNS)
7095 inform (DECL_SOURCE_LOCATION (cfun->decl),
7096 "variable tracking size limit exceeded with "
7097 "-fvar-tracking-assignments, retrying without");
7098 else
7099 inform (DECL_SOURCE_LOCATION (cfun->decl),
7100 "variable tracking size limit exceeded");
7101 success = false;
7102 break;
7105 if (changed)
7107 FOR_EACH_EDGE (e, ei, bb->succs)
7109 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7110 continue;
7112 if (bitmap_bit_p (visited, e->dest->index))
7114 if (!bitmap_bit_p (in_pending, e->dest->index))
7116 /* Send E->DEST to next round. */
7117 bitmap_set_bit (in_pending, e->dest->index);
7118 fibheap_insert (pending,
7119 bb_order[e->dest->index],
7120 e->dest);
7123 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7125 /* Add E->DEST to current round. */
7126 bitmap_set_bit (in_worklist, e->dest->index);
7127 fibheap_insert (worklist, bb_order[e->dest->index],
7128 e->dest);
7133 if (dump_file)
7134 fprintf (dump_file,
7135 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7136 bb->index,
7137 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7138 oldinsz,
7139 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7140 oldoutsz,
7141 (int)worklist->nodes, (int)pending->nodes, htabsz);
7143 if (dump_file && (dump_flags & TDF_DETAILS))
7145 fprintf (dump_file, "BB %i IN:\n", bb->index);
7146 dump_dataflow_set (&VTI (bb)->in);
7147 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7148 dump_dataflow_set (&VTI (bb)->out);
7154 if (success && MAY_HAVE_DEBUG_INSNS)
7155 FOR_EACH_BB_FN (bb, cfun)
7156 gcc_assert (VTI (bb)->flooded);
7158 free (bb_order);
7159 fibheap_delete (worklist);
7160 fibheap_delete (pending);
7161 sbitmap_free (visited);
7162 sbitmap_free (in_worklist);
7163 sbitmap_free (in_pending);
7165 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7166 return success;
7169 /* Print the content of the LIST to dump file. */
7171 static void
7172 dump_attrs_list (attrs list)
7174 for (; list; list = list->next)
7176 if (dv_is_decl_p (list->dv))
7177 print_mem_expr (dump_file, dv_as_decl (list->dv));
7178 else
7179 print_rtl_single (dump_file, dv_as_value (list->dv));
7180 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7182 fprintf (dump_file, "\n");
7185 /* Print the information about variable *SLOT to dump file. */
7188 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7190 variable var = *slot;
7192 dump_var (var);
7194 /* Continue traversing the hash table. */
7195 return 1;
7198 /* Print the information about variable VAR to dump file. */
7200 static void
7201 dump_var (variable var)
7203 int i;
7204 location_chain node;
7206 if (dv_is_decl_p (var->dv))
7208 const_tree decl = dv_as_decl (var->dv);
7210 if (DECL_NAME (decl))
7212 fprintf (dump_file, " name: %s",
7213 IDENTIFIER_POINTER (DECL_NAME (decl)));
7214 if (dump_flags & TDF_UID)
7215 fprintf (dump_file, "D.%u", DECL_UID (decl));
7217 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7218 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7219 else
7220 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7221 fprintf (dump_file, "\n");
7223 else
7225 fputc (' ', dump_file);
7226 print_rtl_single (dump_file, dv_as_value (var->dv));
7229 for (i = 0; i < var->n_var_parts; i++)
7231 fprintf (dump_file, " offset %ld\n",
7232 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7233 for (node = var->var_part[i].loc_chain; node; node = node->next)
7235 fprintf (dump_file, " ");
7236 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7237 fprintf (dump_file, "[uninit]");
7238 print_rtl_single (dump_file, node->loc);
7243 /* Print the information about variables from hash table VARS to dump file. */
7245 static void
7246 dump_vars (variable_table_type *vars)
7248 if (vars->elements () > 0)
7250 fprintf (dump_file, "Variables:\n");
7251 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7255 /* Print the dataflow set SET to dump file. */
7257 static void
7258 dump_dataflow_set (dataflow_set *set)
7260 int i;
7262 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7263 set->stack_adjust);
7264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7266 if (set->regs[i])
7268 fprintf (dump_file, "Reg %d:", i);
7269 dump_attrs_list (set->regs[i]);
7272 dump_vars (shared_hash_htab (set->vars));
7273 fprintf (dump_file, "\n");
7276 /* Print the IN and OUT sets for each basic block to dump file. */
7278 static void
7279 dump_dataflow_sets (void)
7281 basic_block bb;
7283 FOR_EACH_BB_FN (bb, cfun)
7285 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7286 fprintf (dump_file, "IN:\n");
7287 dump_dataflow_set (&VTI (bb)->in);
7288 fprintf (dump_file, "OUT:\n");
7289 dump_dataflow_set (&VTI (bb)->out);
7293 /* Return the variable for DV in dropped_values, inserting one if
7294 requested with INSERT. */
7296 static inline variable
7297 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7299 variable_def **slot;
7300 variable empty_var;
7301 onepart_enum_t onepart;
7303 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7305 if (!slot)
7306 return NULL;
7308 if (*slot)
7309 return *slot;
7311 gcc_checking_assert (insert == INSERT);
7313 onepart = dv_onepart_p (dv);
7315 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7317 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7318 empty_var->dv = dv;
7319 empty_var->refcount = 1;
7320 empty_var->n_var_parts = 0;
7321 empty_var->onepart = onepart;
7322 empty_var->in_changed_variables = false;
7323 empty_var->var_part[0].loc_chain = NULL;
7324 empty_var->var_part[0].cur_loc = NULL;
7325 VAR_LOC_1PAUX (empty_var) = NULL;
7326 set_dv_changed (dv, true);
7328 *slot = empty_var;
7330 return empty_var;
7333 /* Recover the one-part aux from dropped_values. */
7335 static struct onepart_aux *
7336 recover_dropped_1paux (variable var)
7338 variable dvar;
7340 gcc_checking_assert (var->onepart);
7342 if (VAR_LOC_1PAUX (var))
7343 return VAR_LOC_1PAUX (var);
7345 if (var->onepart == ONEPART_VDECL)
7346 return NULL;
7348 dvar = variable_from_dropped (var->dv, NO_INSERT);
7350 if (!dvar)
7351 return NULL;
7353 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7354 VAR_LOC_1PAUX (dvar) = NULL;
7356 return VAR_LOC_1PAUX (var);
7359 /* Add variable VAR to the hash table of changed variables and
7360 if it has no locations delete it from SET's hash table. */
7362 static void
7363 variable_was_changed (variable var, dataflow_set *set)
7365 hashval_t hash = dv_htab_hash (var->dv);
7367 if (emit_notes)
7369 variable_def **slot;
7371 /* Remember this decl or VALUE has been added to changed_variables. */
7372 set_dv_changed (var->dv, true);
7374 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7376 if (*slot)
7378 variable old_var = *slot;
7379 gcc_assert (old_var->in_changed_variables);
7380 old_var->in_changed_variables = false;
7381 if (var != old_var && var->onepart)
7383 /* Restore the auxiliary info from an empty variable
7384 previously created for changed_variables, so it is
7385 not lost. */
7386 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7387 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7388 VAR_LOC_1PAUX (old_var) = NULL;
7390 variable_htab_free (*slot);
7393 if (set && var->n_var_parts == 0)
7395 onepart_enum_t onepart = var->onepart;
7396 variable empty_var = NULL;
7397 variable_def **dslot = NULL;
7399 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7401 dslot = dropped_values->find_slot_with_hash (var->dv,
7402 dv_htab_hash (var->dv),
7403 INSERT);
7404 empty_var = *dslot;
7406 if (empty_var)
7408 gcc_checking_assert (!empty_var->in_changed_variables);
7409 if (!VAR_LOC_1PAUX (var))
7411 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7412 VAR_LOC_1PAUX (empty_var) = NULL;
7414 else
7415 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7419 if (!empty_var)
7421 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7422 empty_var->dv = var->dv;
7423 empty_var->refcount = 1;
7424 empty_var->n_var_parts = 0;
7425 empty_var->onepart = onepart;
7426 if (dslot)
7428 empty_var->refcount++;
7429 *dslot = empty_var;
7432 else
7433 empty_var->refcount++;
7434 empty_var->in_changed_variables = true;
7435 *slot = empty_var;
7436 if (onepart)
7438 empty_var->var_part[0].loc_chain = NULL;
7439 empty_var->var_part[0].cur_loc = NULL;
7440 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7441 VAR_LOC_1PAUX (var) = NULL;
7443 goto drop_var;
7445 else
7447 if (var->onepart && !VAR_LOC_1PAUX (var))
7448 recover_dropped_1paux (var);
7449 var->refcount++;
7450 var->in_changed_variables = true;
7451 *slot = var;
7454 else
7456 gcc_assert (set);
7457 if (var->n_var_parts == 0)
7459 variable_def **slot;
7461 drop_var:
7462 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7463 if (slot)
7465 if (shared_hash_shared (set->vars))
7466 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7467 NO_INSERT);
7468 shared_hash_htab (set->vars)->clear_slot (slot);
7474 /* Look for the index in VAR->var_part corresponding to OFFSET.
7475 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7476 referenced int will be set to the index that the part has or should
7477 have, if it should be inserted. */
7479 static inline int
7480 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7481 int *insertion_point)
7483 int pos, low, high;
7485 if (var->onepart)
7487 if (offset != 0)
7488 return -1;
7490 if (insertion_point)
7491 *insertion_point = 0;
7493 return var->n_var_parts - 1;
7496 /* Find the location part. */
7497 low = 0;
7498 high = var->n_var_parts;
7499 while (low != high)
7501 pos = (low + high) / 2;
7502 if (VAR_PART_OFFSET (var, pos) < offset)
7503 low = pos + 1;
7504 else
7505 high = pos;
7507 pos = low;
7509 if (insertion_point)
7510 *insertion_point = pos;
7512 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7513 return pos;
7515 return -1;
7518 static variable_def **
7519 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7520 decl_or_value dv, HOST_WIDE_INT offset,
7521 enum var_init_status initialized, rtx set_src)
7523 int pos;
7524 location_chain node, next;
7525 location_chain *nextp;
7526 variable var;
7527 onepart_enum_t onepart;
7529 var = *slot;
7531 if (var)
7532 onepart = var->onepart;
7533 else
7534 onepart = dv_onepart_p (dv);
7536 gcc_checking_assert (offset == 0 || !onepart);
7537 gcc_checking_assert (loc != dv_as_opaque (dv));
7539 if (! flag_var_tracking_uninit)
7540 initialized = VAR_INIT_STATUS_INITIALIZED;
7542 if (!var)
7544 /* Create new variable information. */
7545 var = (variable) pool_alloc (onepart_pool (onepart));
7546 var->dv = dv;
7547 var->refcount = 1;
7548 var->n_var_parts = 1;
7549 var->onepart = onepart;
7550 var->in_changed_variables = false;
7551 if (var->onepart)
7552 VAR_LOC_1PAUX (var) = NULL;
7553 else
7554 VAR_PART_OFFSET (var, 0) = offset;
7555 var->var_part[0].loc_chain = NULL;
7556 var->var_part[0].cur_loc = NULL;
7557 *slot = var;
7558 pos = 0;
7559 nextp = &var->var_part[0].loc_chain;
7561 else if (onepart)
7563 int r = -1, c = 0;
7565 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7567 pos = 0;
7569 if (GET_CODE (loc) == VALUE)
7571 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7572 nextp = &node->next)
7573 if (GET_CODE (node->loc) == VALUE)
7575 if (node->loc == loc)
7577 r = 0;
7578 break;
7580 if (canon_value_cmp (node->loc, loc))
7581 c++;
7582 else
7584 r = 1;
7585 break;
7588 else if (REG_P (node->loc) || MEM_P (node->loc))
7589 c++;
7590 else
7592 r = 1;
7593 break;
7596 else if (REG_P (loc))
7598 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7599 nextp = &node->next)
7600 if (REG_P (node->loc))
7602 if (REGNO (node->loc) < REGNO (loc))
7603 c++;
7604 else
7606 if (REGNO (node->loc) == REGNO (loc))
7607 r = 0;
7608 else
7609 r = 1;
7610 break;
7613 else
7615 r = 1;
7616 break;
7619 else if (MEM_P (loc))
7621 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7622 nextp = &node->next)
7623 if (REG_P (node->loc))
7624 c++;
7625 else if (MEM_P (node->loc))
7627 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7628 break;
7629 else
7630 c++;
7632 else
7634 r = 1;
7635 break;
7638 else
7639 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7640 nextp = &node->next)
7641 if ((r = loc_cmp (node->loc, loc)) >= 0)
7642 break;
7643 else
7644 c++;
7646 if (r == 0)
7647 return slot;
7649 if (shared_var_p (var, set->vars))
7651 slot = unshare_variable (set, slot, var, initialized);
7652 var = *slot;
7653 for (nextp = &var->var_part[0].loc_chain; c;
7654 nextp = &(*nextp)->next)
7655 c--;
7656 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7659 else
7661 int inspos = 0;
7663 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7665 pos = find_variable_location_part (var, offset, &inspos);
7667 if (pos >= 0)
7669 node = var->var_part[pos].loc_chain;
7671 if (node
7672 && ((REG_P (node->loc) && REG_P (loc)
7673 && REGNO (node->loc) == REGNO (loc))
7674 || rtx_equal_p (node->loc, loc)))
7676 /* LOC is in the beginning of the chain so we have nothing
7677 to do. */
7678 if (node->init < initialized)
7679 node->init = initialized;
7680 if (set_src != NULL)
7681 node->set_src = set_src;
7683 return slot;
7685 else
7687 /* We have to make a copy of a shared variable. */
7688 if (shared_var_p (var, set->vars))
7690 slot = unshare_variable (set, slot, var, initialized);
7691 var = *slot;
7695 else
7697 /* We have not found the location part, new one will be created. */
7699 /* We have to make a copy of the shared variable. */
7700 if (shared_var_p (var, set->vars))
7702 slot = unshare_variable (set, slot, var, initialized);
7703 var = *slot;
7706 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7707 thus there are at most MAX_VAR_PARTS different offsets. */
7708 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7709 && (!var->n_var_parts || !onepart));
7711 /* We have to move the elements of array starting at index
7712 inspos to the next position. */
7713 for (pos = var->n_var_parts; pos > inspos; pos--)
7714 var->var_part[pos] = var->var_part[pos - 1];
7716 var->n_var_parts++;
7717 gcc_checking_assert (!onepart);
7718 VAR_PART_OFFSET (var, pos) = offset;
7719 var->var_part[pos].loc_chain = NULL;
7720 var->var_part[pos].cur_loc = NULL;
7723 /* Delete the location from the list. */
7724 nextp = &var->var_part[pos].loc_chain;
7725 for (node = var->var_part[pos].loc_chain; node; node = next)
7727 next = node->next;
7728 if ((REG_P (node->loc) && REG_P (loc)
7729 && REGNO (node->loc) == REGNO (loc))
7730 || rtx_equal_p (node->loc, loc))
7732 /* Save these values, to assign to the new node, before
7733 deleting this one. */
7734 if (node->init > initialized)
7735 initialized = node->init;
7736 if (node->set_src != NULL && set_src == NULL)
7737 set_src = node->set_src;
7738 if (var->var_part[pos].cur_loc == node->loc)
7739 var->var_part[pos].cur_loc = NULL;
7740 pool_free (loc_chain_pool, node);
7741 *nextp = next;
7742 break;
7744 else
7745 nextp = &node->next;
7748 nextp = &var->var_part[pos].loc_chain;
7751 /* Add the location to the beginning. */
7752 node = (location_chain) pool_alloc (loc_chain_pool);
7753 node->loc = loc;
7754 node->init = initialized;
7755 node->set_src = set_src;
7756 node->next = *nextp;
7757 *nextp = node;
7759 /* If no location was emitted do so. */
7760 if (var->var_part[pos].cur_loc == NULL)
7761 variable_was_changed (var, set);
7763 return slot;
7766 /* Set the part of variable's location in the dataflow set SET. The
7767 variable part is specified by variable's declaration in DV and
7768 offset OFFSET and the part's location by LOC. IOPT should be
7769 NO_INSERT if the variable is known to be in SET already and the
7770 variable hash table must not be resized, and INSERT otherwise. */
7772 static void
7773 set_variable_part (dataflow_set *set, rtx loc,
7774 decl_or_value dv, HOST_WIDE_INT offset,
7775 enum var_init_status initialized, rtx set_src,
7776 enum insert_option iopt)
7778 variable_def **slot;
7780 if (iopt == NO_INSERT)
7781 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7782 else
7784 slot = shared_hash_find_slot (set->vars, dv);
7785 if (!slot)
7786 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7788 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7791 /* Remove all recorded register locations for the given variable part
7792 from dataflow set SET, except for those that are identical to loc.
7793 The variable part is specified by variable's declaration or value
7794 DV and offset OFFSET. */
7796 static variable_def **
7797 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7798 HOST_WIDE_INT offset, rtx set_src)
7800 variable var = *slot;
7801 int pos = find_variable_location_part (var, offset, NULL);
7803 if (pos >= 0)
7805 location_chain node, next;
7807 /* Remove the register locations from the dataflow set. */
7808 next = var->var_part[pos].loc_chain;
7809 for (node = next; node; node = next)
7811 next = node->next;
7812 if (node->loc != loc
7813 && (!flag_var_tracking_uninit
7814 || !set_src
7815 || MEM_P (set_src)
7816 || !rtx_equal_p (set_src, node->set_src)))
7818 if (REG_P (node->loc))
7820 attrs anode, anext;
7821 attrs *anextp;
7823 /* Remove the variable part from the register's
7824 list, but preserve any other variable parts
7825 that might be regarded as live in that same
7826 register. */
7827 anextp = &set->regs[REGNO (node->loc)];
7828 for (anode = *anextp; anode; anode = anext)
7830 anext = anode->next;
7831 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7832 && anode->offset == offset)
7834 pool_free (attrs_pool, anode);
7835 *anextp = anext;
7837 else
7838 anextp = &anode->next;
7842 slot = delete_slot_part (set, node->loc, slot, offset);
7847 return slot;
7850 /* Remove all recorded register locations for the given variable part
7851 from dataflow set SET, except for those that are identical to loc.
7852 The variable part is specified by variable's declaration or value
7853 DV and offset OFFSET. */
7855 static void
7856 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7857 HOST_WIDE_INT offset, rtx set_src)
7859 variable_def **slot;
7861 if (!dv_as_opaque (dv)
7862 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7863 return;
7865 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7866 if (!slot)
7867 return;
7869 clobber_slot_part (set, loc, slot, offset, set_src);
7872 /* Delete the part of variable's location from dataflow set SET. The
7873 variable part is specified by its SET->vars slot SLOT and offset
7874 OFFSET and the part's location by LOC. */
7876 static variable_def **
7877 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7878 HOST_WIDE_INT offset)
7880 variable var = *slot;
7881 int pos = find_variable_location_part (var, offset, NULL);
7883 if (pos >= 0)
7885 location_chain node, next;
7886 location_chain *nextp;
7887 bool changed;
7888 rtx cur_loc;
7890 if (shared_var_p (var, set->vars))
7892 /* If the variable contains the location part we have to
7893 make a copy of the variable. */
7894 for (node = var->var_part[pos].loc_chain; node;
7895 node = node->next)
7897 if ((REG_P (node->loc) && REG_P (loc)
7898 && REGNO (node->loc) == REGNO (loc))
7899 || rtx_equal_p (node->loc, loc))
7901 slot = unshare_variable (set, slot, var,
7902 VAR_INIT_STATUS_UNKNOWN);
7903 var = *slot;
7904 break;
7909 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7910 cur_loc = VAR_LOC_FROM (var);
7911 else
7912 cur_loc = var->var_part[pos].cur_loc;
7914 /* Delete the location part. */
7915 changed = false;
7916 nextp = &var->var_part[pos].loc_chain;
7917 for (node = *nextp; node; node = next)
7919 next = node->next;
7920 if ((REG_P (node->loc) && REG_P (loc)
7921 && REGNO (node->loc) == REGNO (loc))
7922 || rtx_equal_p (node->loc, loc))
7924 /* If we have deleted the location which was last emitted
7925 we have to emit new location so add the variable to set
7926 of changed variables. */
7927 if (cur_loc == node->loc)
7929 changed = true;
7930 var->var_part[pos].cur_loc = NULL;
7931 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7932 VAR_LOC_FROM (var) = NULL;
7934 pool_free (loc_chain_pool, node);
7935 *nextp = next;
7936 break;
7938 else
7939 nextp = &node->next;
7942 if (var->var_part[pos].loc_chain == NULL)
7944 changed = true;
7945 var->n_var_parts--;
7946 while (pos < var->n_var_parts)
7948 var->var_part[pos] = var->var_part[pos + 1];
7949 pos++;
7952 if (changed)
7953 variable_was_changed (var, set);
7956 return slot;
7959 /* Delete the part of variable's location from dataflow set SET. The
7960 variable part is specified by variable's declaration or value DV
7961 and offset OFFSET and the part's location by LOC. */
7963 static void
7964 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7965 HOST_WIDE_INT offset)
7967 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7968 if (!slot)
7969 return;
7971 delete_slot_part (set, loc, slot, offset);
7975 /* Structure for passing some other parameters to function
7976 vt_expand_loc_callback. */
7977 struct expand_loc_callback_data
7979 /* The variables and values active at this point. */
7980 variable_table_type *vars;
7982 /* Stack of values and debug_exprs under expansion, and their
7983 children. */
7984 auto_vec<rtx, 4> expanding;
7986 /* Stack of values and debug_exprs whose expansion hit recursion
7987 cycles. They will have VALUE_RECURSED_INTO marked when added to
7988 this list. This flag will be cleared if any of its dependencies
7989 resolves to a valid location. So, if the flag remains set at the
7990 end of the search, we know no valid location for this one can
7991 possibly exist. */
7992 auto_vec<rtx, 4> pending;
7994 /* The maximum depth among the sub-expressions under expansion.
7995 Zero indicates no expansion so far. */
7996 expand_depth depth;
7999 /* Allocate the one-part auxiliary data structure for VAR, with enough
8000 room for COUNT dependencies. */
8002 static void
8003 loc_exp_dep_alloc (variable var, int count)
8005 size_t allocsize;
8007 gcc_checking_assert (var->onepart);
8009 /* We can be called with COUNT == 0 to allocate the data structure
8010 without any dependencies, e.g. for the backlinks only. However,
8011 if we are specifying a COUNT, then the dependency list must have
8012 been emptied before. It would be possible to adjust pointers or
8013 force it empty here, but this is better done at an earlier point
8014 in the algorithm, so we instead leave an assertion to catch
8015 errors. */
8016 gcc_checking_assert (!count
8017 || VAR_LOC_DEP_VEC (var) == NULL
8018 || VAR_LOC_DEP_VEC (var)->is_empty ());
8020 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8021 return;
8023 allocsize = offsetof (struct onepart_aux, deps)
8024 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8026 if (VAR_LOC_1PAUX (var))
8028 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8029 VAR_LOC_1PAUX (var), allocsize);
8030 /* If the reallocation moves the onepaux structure, the
8031 back-pointer to BACKLINKS in the first list member will still
8032 point to its old location. Adjust it. */
8033 if (VAR_LOC_DEP_LST (var))
8034 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8036 else
8038 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8039 *VAR_LOC_DEP_LSTP (var) = NULL;
8040 VAR_LOC_FROM (var) = NULL;
8041 VAR_LOC_DEPTH (var).complexity = 0;
8042 VAR_LOC_DEPTH (var).entryvals = 0;
8044 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8047 /* Remove all entries from the vector of active dependencies of VAR,
8048 removing them from the back-links lists too. */
8050 static void
8051 loc_exp_dep_clear (variable var)
8053 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8055 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8056 if (led->next)
8057 led->next->pprev = led->pprev;
8058 if (led->pprev)
8059 *led->pprev = led->next;
8060 VAR_LOC_DEP_VEC (var)->pop ();
8064 /* Insert an active dependency from VAR on X to the vector of
8065 dependencies, and add the corresponding back-link to X's list of
8066 back-links in VARS. */
8068 static void
8069 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8071 decl_or_value dv;
8072 variable xvar;
8073 loc_exp_dep *led;
8075 dv = dv_from_rtx (x);
8077 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8078 an additional look up? */
8079 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8081 if (!xvar)
8083 xvar = variable_from_dropped (dv, NO_INSERT);
8084 gcc_checking_assert (xvar);
8087 /* No point in adding the same backlink more than once. This may
8088 arise if say the same value appears in two complex expressions in
8089 the same loc_list, or even more than once in a single
8090 expression. */
8091 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8092 return;
8094 if (var->onepart == NOT_ONEPART)
8095 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8096 else
8098 loc_exp_dep empty;
8099 memset (&empty, 0, sizeof (empty));
8100 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8101 led = &VAR_LOC_DEP_VEC (var)->last ();
8103 led->dv = var->dv;
8104 led->value = x;
8106 loc_exp_dep_alloc (xvar, 0);
8107 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8108 led->next = *led->pprev;
8109 if (led->next)
8110 led->next->pprev = &led->next;
8111 *led->pprev = led;
8114 /* Create active dependencies of VAR on COUNT values starting at
8115 VALUE, and corresponding back-links to the entries in VARS. Return
8116 true if we found any pending-recursion results. */
8118 static bool
8119 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8120 variable_table_type *vars)
8122 bool pending_recursion = false;
8124 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8125 || VAR_LOC_DEP_VEC (var)->is_empty ());
8127 /* Set up all dependencies from last_child (as set up at the end of
8128 the loop above) to the end. */
8129 loc_exp_dep_alloc (var, count);
8131 while (count--)
8133 rtx x = *value++;
8135 if (!pending_recursion)
8136 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8138 loc_exp_insert_dep (var, x, vars);
8141 return pending_recursion;
8144 /* Notify the back-links of IVAR that are pending recursion that we
8145 have found a non-NIL value for it, so they are cleared for another
8146 attempt to compute a current location. */
8148 static void
8149 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8151 loc_exp_dep *led, *next;
8153 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8155 decl_or_value dv = led->dv;
8156 variable var;
8158 next = led->next;
8160 if (dv_is_value_p (dv))
8162 rtx value = dv_as_value (dv);
8164 /* If we have already resolved it, leave it alone. */
8165 if (!VALUE_RECURSED_INTO (value))
8166 continue;
8168 /* Check that VALUE_RECURSED_INTO, true from the test above,
8169 implies NO_LOC_P. */
8170 gcc_checking_assert (NO_LOC_P (value));
8172 /* We won't notify variables that are being expanded,
8173 because their dependency list is cleared before
8174 recursing. */
8175 NO_LOC_P (value) = false;
8176 VALUE_RECURSED_INTO (value) = false;
8178 gcc_checking_assert (dv_changed_p (dv));
8180 else
8182 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8183 if (!dv_changed_p (dv))
8184 continue;
8187 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8189 if (!var)
8190 var = variable_from_dropped (dv, NO_INSERT);
8192 if (var)
8193 notify_dependents_of_resolved_value (var, vars);
8195 if (next)
8196 next->pprev = led->pprev;
8197 if (led->pprev)
8198 *led->pprev = next;
8199 led->next = NULL;
8200 led->pprev = NULL;
8204 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8205 int max_depth, void *data);
8207 /* Return the combined depth, when one sub-expression evaluated to
8208 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8210 static inline expand_depth
8211 update_depth (expand_depth saved_depth, expand_depth best_depth)
8213 /* If we didn't find anything, stick with what we had. */
8214 if (!best_depth.complexity)
8215 return saved_depth;
8217 /* If we found hadn't found anything, use the depth of the current
8218 expression. Do NOT add one extra level, we want to compute the
8219 maximum depth among sub-expressions. We'll increment it later,
8220 if appropriate. */
8221 if (!saved_depth.complexity)
8222 return best_depth;
8224 /* Combine the entryval count so that regardless of which one we
8225 return, the entryval count is accurate. */
8226 best_depth.entryvals = saved_depth.entryvals
8227 = best_depth.entryvals + saved_depth.entryvals;
8229 if (saved_depth.complexity < best_depth.complexity)
8230 return best_depth;
8231 else
8232 return saved_depth;
8235 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8236 DATA for cselib expand callback. If PENDRECP is given, indicate in
8237 it whether any sub-expression couldn't be fully evaluated because
8238 it is pending recursion resolution. */
8240 static inline rtx
8241 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8243 struct expand_loc_callback_data *elcd
8244 = (struct expand_loc_callback_data *) data;
8245 location_chain loc, next;
8246 rtx result = NULL;
8247 int first_child, result_first_child, last_child;
8248 bool pending_recursion;
8249 rtx loc_from = NULL;
8250 struct elt_loc_list *cloc = NULL;
8251 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8252 int wanted_entryvals, found_entryvals = 0;
8254 /* Clear all backlinks pointing at this, so that we're not notified
8255 while we're active. */
8256 loc_exp_dep_clear (var);
8258 retry:
8259 if (var->onepart == ONEPART_VALUE)
8261 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8263 gcc_checking_assert (cselib_preserved_value_p (val));
8265 cloc = val->locs;
8268 first_child = result_first_child = last_child
8269 = elcd->expanding.length ();
8271 wanted_entryvals = found_entryvals;
8273 /* Attempt to expand each available location in turn. */
8274 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8275 loc || cloc; loc = next)
8277 result_first_child = last_child;
8279 if (!loc)
8281 loc_from = cloc->loc;
8282 next = loc;
8283 cloc = cloc->next;
8284 if (unsuitable_loc (loc_from))
8285 continue;
8287 else
8289 loc_from = loc->loc;
8290 next = loc->next;
8293 gcc_checking_assert (!unsuitable_loc (loc_from));
8295 elcd->depth.complexity = elcd->depth.entryvals = 0;
8296 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8297 vt_expand_loc_callback, data);
8298 last_child = elcd->expanding.length ();
8300 if (result)
8302 depth = elcd->depth;
8304 gcc_checking_assert (depth.complexity
8305 || result_first_child == last_child);
8307 if (last_child - result_first_child != 1)
8309 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8310 depth.entryvals++;
8311 depth.complexity++;
8314 if (depth.complexity <= EXPR_USE_DEPTH)
8316 if (depth.entryvals <= wanted_entryvals)
8317 break;
8318 else if (!found_entryvals || depth.entryvals < found_entryvals)
8319 found_entryvals = depth.entryvals;
8322 result = NULL;
8325 /* Set it up in case we leave the loop. */
8326 depth.complexity = depth.entryvals = 0;
8327 loc_from = NULL;
8328 result_first_child = first_child;
8331 if (!loc_from && wanted_entryvals < found_entryvals)
8333 /* We found entries with ENTRY_VALUEs and skipped them. Since
8334 we could not find any expansions without ENTRY_VALUEs, but we
8335 found at least one with them, go back and get an entry with
8336 the minimum number ENTRY_VALUE count that we found. We could
8337 avoid looping, but since each sub-loc is already resolved,
8338 the re-expansion should be trivial. ??? Should we record all
8339 attempted locs as dependencies, so that we retry the
8340 expansion should any of them change, in the hope it can give
8341 us a new entry without an ENTRY_VALUE? */
8342 elcd->expanding.truncate (first_child);
8343 goto retry;
8346 /* Register all encountered dependencies as active. */
8347 pending_recursion = loc_exp_dep_set
8348 (var, result, elcd->expanding.address () + result_first_child,
8349 last_child - result_first_child, elcd->vars);
8351 elcd->expanding.truncate (first_child);
8353 /* Record where the expansion came from. */
8354 gcc_checking_assert (!result || !pending_recursion);
8355 VAR_LOC_FROM (var) = loc_from;
8356 VAR_LOC_DEPTH (var) = depth;
8358 gcc_checking_assert (!depth.complexity == !result);
8360 elcd->depth = update_depth (saved_depth, depth);
8362 /* Indicate whether any of the dependencies are pending recursion
8363 resolution. */
8364 if (pendrecp)
8365 *pendrecp = pending_recursion;
8367 if (!pendrecp || !pending_recursion)
8368 var->var_part[0].cur_loc = result;
8370 return result;
8373 /* Callback for cselib_expand_value, that looks for expressions
8374 holding the value in the var-tracking hash tables. Return X for
8375 standard processing, anything else is to be used as-is. */
8377 static rtx
8378 vt_expand_loc_callback (rtx x, bitmap regs,
8379 int max_depth ATTRIBUTE_UNUSED,
8380 void *data)
8382 struct expand_loc_callback_data *elcd
8383 = (struct expand_loc_callback_data *) data;
8384 decl_or_value dv;
8385 variable var;
8386 rtx result, subreg;
8387 bool pending_recursion = false;
8388 bool from_empty = false;
8390 switch (GET_CODE (x))
8392 case SUBREG:
8393 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8394 EXPR_DEPTH,
8395 vt_expand_loc_callback, data);
8397 if (!subreg)
8398 return NULL;
8400 result = simplify_gen_subreg (GET_MODE (x), subreg,
8401 GET_MODE (SUBREG_REG (x)),
8402 SUBREG_BYTE (x));
8404 /* Invalid SUBREGs are ok in debug info. ??? We could try
8405 alternate expansions for the VALUE as well. */
8406 if (!result)
8407 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8409 return result;
8411 case DEBUG_EXPR:
8412 case VALUE:
8413 dv = dv_from_rtx (x);
8414 break;
8416 default:
8417 return x;
8420 elcd->expanding.safe_push (x);
8422 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8423 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8425 if (NO_LOC_P (x))
8427 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8428 return NULL;
8431 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8433 if (!var)
8435 from_empty = true;
8436 var = variable_from_dropped (dv, INSERT);
8439 gcc_checking_assert (var);
8441 if (!dv_changed_p (dv))
8443 gcc_checking_assert (!NO_LOC_P (x));
8444 gcc_checking_assert (var->var_part[0].cur_loc);
8445 gcc_checking_assert (VAR_LOC_1PAUX (var));
8446 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8448 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8450 return var->var_part[0].cur_loc;
8453 VALUE_RECURSED_INTO (x) = true;
8454 /* This is tentative, but it makes some tests simpler. */
8455 NO_LOC_P (x) = true;
8457 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8459 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8461 if (pending_recursion)
8463 gcc_checking_assert (!result);
8464 elcd->pending.safe_push (x);
8466 else
8468 NO_LOC_P (x) = !result;
8469 VALUE_RECURSED_INTO (x) = false;
8470 set_dv_changed (dv, false);
8472 if (result)
8473 notify_dependents_of_resolved_value (var, elcd->vars);
8476 return result;
8479 /* While expanding variables, we may encounter recursion cycles
8480 because of mutual (possibly indirect) dependencies between two
8481 particular variables (or values), say A and B. If we're trying to
8482 expand A when we get to B, which in turn attempts to expand A, if
8483 we can't find any other expansion for B, we'll add B to this
8484 pending-recursion stack, and tentatively return NULL for its
8485 location. This tentative value will be used for any other
8486 occurrences of B, unless A gets some other location, in which case
8487 it will notify B that it is worth another try at computing a
8488 location for it, and it will use the location computed for A then.
8489 At the end of the expansion, the tentative NULL locations become
8490 final for all members of PENDING that didn't get a notification.
8491 This function performs this finalization of NULL locations. */
8493 static void
8494 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8496 while (!pending->is_empty ())
8498 rtx x = pending->pop ();
8499 decl_or_value dv;
8501 if (!VALUE_RECURSED_INTO (x))
8502 continue;
8504 gcc_checking_assert (NO_LOC_P (x));
8505 VALUE_RECURSED_INTO (x) = false;
8506 dv = dv_from_rtx (x);
8507 gcc_checking_assert (dv_changed_p (dv));
8508 set_dv_changed (dv, false);
8512 /* Initialize expand_loc_callback_data D with variable hash table V.
8513 It must be a macro because of alloca (vec stack). */
8514 #define INIT_ELCD(d, v) \
8515 do \
8517 (d).vars = (v); \
8518 (d).depth.complexity = (d).depth.entryvals = 0; \
8520 while (0)
8521 /* Finalize expand_loc_callback_data D, resolved to location L. */
8522 #define FINI_ELCD(d, l) \
8523 do \
8525 resolve_expansions_pending_recursion (&(d).pending); \
8526 (d).pending.release (); \
8527 (d).expanding.release (); \
8529 if ((l) && MEM_P (l)) \
8530 (l) = targetm.delegitimize_address (l); \
8532 while (0)
8534 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8535 equivalences in VARS, updating their CUR_LOCs in the process. */
8537 static rtx
8538 vt_expand_loc (rtx loc, variable_table_type *vars)
8540 struct expand_loc_callback_data data;
8541 rtx result;
8543 if (!MAY_HAVE_DEBUG_INSNS)
8544 return loc;
8546 INIT_ELCD (data, vars);
8548 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8549 vt_expand_loc_callback, &data);
8551 FINI_ELCD (data, result);
8553 return result;
8556 /* Expand the one-part VARiable to a location, using the equivalences
8557 in VARS, updating their CUR_LOCs in the process. */
8559 static rtx
8560 vt_expand_1pvar (variable var, variable_table_type *vars)
8562 struct expand_loc_callback_data data;
8563 rtx loc;
8565 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8567 if (!dv_changed_p (var->dv))
8568 return var->var_part[0].cur_loc;
8570 INIT_ELCD (data, vars);
8572 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8574 gcc_checking_assert (data.expanding.is_empty ());
8576 FINI_ELCD (data, loc);
8578 return loc;
8581 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8582 additional parameters: WHERE specifies whether the note shall be emitted
8583 before or after instruction INSN. */
8586 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8588 variable var = *varp;
8589 rtx insn = data->insn;
8590 enum emit_note_where where = data->where;
8591 variable_table_type *vars = data->vars;
8592 rtx note, note_vl;
8593 int i, j, n_var_parts;
8594 bool complete;
8595 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8596 HOST_WIDE_INT last_limit;
8597 tree type_size_unit;
8598 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8599 rtx loc[MAX_VAR_PARTS];
8600 tree decl;
8601 location_chain lc;
8603 gcc_checking_assert (var->onepart == NOT_ONEPART
8604 || var->onepart == ONEPART_VDECL);
8606 decl = dv_as_decl (var->dv);
8608 complete = true;
8609 last_limit = 0;
8610 n_var_parts = 0;
8611 if (!var->onepart)
8612 for (i = 0; i < var->n_var_parts; i++)
8613 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8614 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8615 for (i = 0; i < var->n_var_parts; i++)
8617 enum machine_mode mode, wider_mode;
8618 rtx loc2;
8619 HOST_WIDE_INT offset;
8621 if (i == 0 && var->onepart)
8623 gcc_checking_assert (var->n_var_parts == 1);
8624 offset = 0;
8625 initialized = VAR_INIT_STATUS_INITIALIZED;
8626 loc2 = vt_expand_1pvar (var, vars);
8628 else
8630 if (last_limit < VAR_PART_OFFSET (var, i))
8632 complete = false;
8633 break;
8635 else if (last_limit > VAR_PART_OFFSET (var, i))
8636 continue;
8637 offset = VAR_PART_OFFSET (var, i);
8638 loc2 = var->var_part[i].cur_loc;
8639 if (loc2 && GET_CODE (loc2) == MEM
8640 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8642 rtx depval = XEXP (loc2, 0);
8644 loc2 = vt_expand_loc (loc2, vars);
8646 if (loc2)
8647 loc_exp_insert_dep (var, depval, vars);
8649 if (!loc2)
8651 complete = false;
8652 continue;
8654 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8655 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8656 if (var->var_part[i].cur_loc == lc->loc)
8658 initialized = lc->init;
8659 break;
8661 gcc_assert (lc);
8664 offsets[n_var_parts] = offset;
8665 if (!loc2)
8667 complete = false;
8668 continue;
8670 loc[n_var_parts] = loc2;
8671 mode = GET_MODE (var->var_part[i].cur_loc);
8672 if (mode == VOIDmode && var->onepart)
8673 mode = DECL_MODE (decl);
8674 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8676 /* Attempt to merge adjacent registers or memory. */
8677 wider_mode = GET_MODE_WIDER_MODE (mode);
8678 for (j = i + 1; j < var->n_var_parts; j++)
8679 if (last_limit <= VAR_PART_OFFSET (var, j))
8680 break;
8681 if (j < var->n_var_parts
8682 && wider_mode != VOIDmode
8683 && var->var_part[j].cur_loc
8684 && mode == GET_MODE (var->var_part[j].cur_loc)
8685 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8686 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8687 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8688 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8690 rtx new_loc = NULL;
8692 if (REG_P (loc[n_var_parts])
8693 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8694 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8695 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8696 == REGNO (loc2))
8698 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8699 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8700 mode, 0);
8701 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8702 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8703 if (new_loc)
8705 if (!REG_P (new_loc)
8706 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8707 new_loc = NULL;
8708 else
8709 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8712 else if (MEM_P (loc[n_var_parts])
8713 && GET_CODE (XEXP (loc2, 0)) == PLUS
8714 && REG_P (XEXP (XEXP (loc2, 0), 0))
8715 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8717 if ((REG_P (XEXP (loc[n_var_parts], 0))
8718 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8719 XEXP (XEXP (loc2, 0), 0))
8720 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8721 == GET_MODE_SIZE (mode))
8722 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8723 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8724 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8725 XEXP (XEXP (loc2, 0), 0))
8726 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8727 + GET_MODE_SIZE (mode)
8728 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8729 new_loc = adjust_address_nv (loc[n_var_parts],
8730 wider_mode, 0);
8733 if (new_loc)
8735 loc[n_var_parts] = new_loc;
8736 mode = wider_mode;
8737 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8738 i = j;
8741 ++n_var_parts;
8743 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8744 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8745 complete = false;
8747 if (! flag_var_tracking_uninit)
8748 initialized = VAR_INIT_STATUS_INITIALIZED;
8750 note_vl = NULL_RTX;
8751 if (!complete)
8752 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8753 else if (n_var_parts == 1)
8755 rtx expr_list;
8757 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8758 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8759 else
8760 expr_list = loc[0];
8762 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8764 else if (n_var_parts)
8766 rtx parallel;
8768 for (i = 0; i < n_var_parts; i++)
8769 loc[i]
8770 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8772 parallel = gen_rtx_PARALLEL (VOIDmode,
8773 gen_rtvec_v (n_var_parts, loc));
8774 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8775 parallel, initialized);
8778 if (where != EMIT_NOTE_BEFORE_INSN)
8780 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8781 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8782 NOTE_DURING_CALL_P (note) = true;
8784 else
8786 /* Make sure that the call related notes come first. */
8787 while (NEXT_INSN (insn)
8788 && NOTE_P (insn)
8789 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8790 && NOTE_DURING_CALL_P (insn))
8791 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8792 insn = NEXT_INSN (insn);
8793 if (NOTE_P (insn)
8794 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8795 && NOTE_DURING_CALL_P (insn))
8796 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8797 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8798 else
8799 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8801 NOTE_VAR_LOCATION (note) = note_vl;
8803 set_dv_changed (var->dv, false);
8804 gcc_assert (var->in_changed_variables);
8805 var->in_changed_variables = false;
8806 changed_variables->clear_slot (varp);
8808 /* Continue traversing the hash table. */
8809 return 1;
8812 /* While traversing changed_variables, push onto DATA (a stack of RTX
8813 values) entries that aren't user variables. */
8816 var_track_values_to_stack (variable_def **slot,
8817 vec<rtx, va_heap> *changed_values_stack)
8819 variable var = *slot;
8821 if (var->onepart == ONEPART_VALUE)
8822 changed_values_stack->safe_push (dv_as_value (var->dv));
8823 else if (var->onepart == ONEPART_DEXPR)
8824 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8826 return 1;
8829 /* Remove from changed_variables the entry whose DV corresponds to
8830 value or debug_expr VAL. */
8831 static void
8832 remove_value_from_changed_variables (rtx val)
8834 decl_or_value dv = dv_from_rtx (val);
8835 variable_def **slot;
8836 variable var;
8838 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8839 NO_INSERT);
8840 var = *slot;
8841 var->in_changed_variables = false;
8842 changed_variables->clear_slot (slot);
8845 /* If VAL (a value or debug_expr) has backlinks to variables actively
8846 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8847 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8848 have dependencies of their own to notify. */
8850 static void
8851 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8852 vec<rtx, va_heap> *changed_values_stack)
8854 variable_def **slot;
8855 variable var;
8856 loc_exp_dep *led;
8857 decl_or_value dv = dv_from_rtx (val);
8859 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8860 NO_INSERT);
8861 if (!slot)
8862 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8863 if (!slot)
8864 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8865 NO_INSERT);
8866 var = *slot;
8868 while ((led = VAR_LOC_DEP_LST (var)))
8870 decl_or_value ldv = led->dv;
8871 variable ivar;
8873 /* Deactivate and remove the backlink, as it was “used up”. It
8874 makes no sense to attempt to notify the same entity again:
8875 either it will be recomputed and re-register an active
8876 dependency, or it will still have the changed mark. */
8877 if (led->next)
8878 led->next->pprev = led->pprev;
8879 if (led->pprev)
8880 *led->pprev = led->next;
8881 led->next = NULL;
8882 led->pprev = NULL;
8884 if (dv_changed_p (ldv))
8885 continue;
8887 switch (dv_onepart_p (ldv))
8889 case ONEPART_VALUE:
8890 case ONEPART_DEXPR:
8891 set_dv_changed (ldv, true);
8892 changed_values_stack->safe_push (dv_as_rtx (ldv));
8893 break;
8895 case ONEPART_VDECL:
8896 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8897 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8898 variable_was_changed (ivar, NULL);
8899 break;
8901 case NOT_ONEPART:
8902 pool_free (loc_exp_dep_pool, led);
8903 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8904 if (ivar)
8906 int i = ivar->n_var_parts;
8907 while (i--)
8909 rtx loc = ivar->var_part[i].cur_loc;
8911 if (loc && GET_CODE (loc) == MEM
8912 && XEXP (loc, 0) == val)
8914 variable_was_changed (ivar, NULL);
8915 break;
8919 break;
8921 default:
8922 gcc_unreachable ();
8927 /* Take out of changed_variables any entries that don't refer to use
8928 variables. Back-propagate change notifications from values and
8929 debug_exprs to their active dependencies in HTAB or in
8930 CHANGED_VARIABLES. */
8932 static void
8933 process_changed_values (variable_table_type *htab)
8935 int i, n;
8936 rtx val;
8937 auto_vec<rtx, 20> changed_values_stack;
8939 /* Move values from changed_variables to changed_values_stack. */
8940 changed_variables
8941 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8942 (&changed_values_stack);
8944 /* Back-propagate change notifications in values while popping
8945 them from the stack. */
8946 for (n = i = changed_values_stack.length ();
8947 i > 0; i = changed_values_stack.length ())
8949 val = changed_values_stack.pop ();
8950 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8952 /* This condition will hold when visiting each of the entries
8953 originally in changed_variables. We can't remove them
8954 earlier because this could drop the backlinks before we got a
8955 chance to use them. */
8956 if (i == n)
8958 remove_value_from_changed_variables (val);
8959 n--;
8964 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8965 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8966 the notes shall be emitted before of after instruction INSN. */
8968 static void
8969 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8970 shared_hash vars)
8972 emit_note_data data;
8973 variable_table_type *htab = shared_hash_htab (vars);
8975 if (!changed_variables->elements ())
8976 return;
8978 if (MAY_HAVE_DEBUG_INSNS)
8979 process_changed_values (htab);
8981 data.insn = insn;
8982 data.where = where;
8983 data.vars = htab;
8985 changed_variables
8986 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8989 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8990 same variable in hash table DATA or is not there at all. */
8993 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
8995 variable old_var, new_var;
8997 old_var = *slot;
8998 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9000 if (!new_var)
9002 /* Variable has disappeared. */
9003 variable empty_var = NULL;
9005 if (old_var->onepart == ONEPART_VALUE
9006 || old_var->onepart == ONEPART_DEXPR)
9008 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9009 if (empty_var)
9011 gcc_checking_assert (!empty_var->in_changed_variables);
9012 if (!VAR_LOC_1PAUX (old_var))
9014 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9015 VAR_LOC_1PAUX (empty_var) = NULL;
9017 else
9018 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9022 if (!empty_var)
9024 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9025 empty_var->dv = old_var->dv;
9026 empty_var->refcount = 0;
9027 empty_var->n_var_parts = 0;
9028 empty_var->onepart = old_var->onepart;
9029 empty_var->in_changed_variables = false;
9032 if (empty_var->onepart)
9034 /* Propagate the auxiliary data to (ultimately)
9035 changed_variables. */
9036 empty_var->var_part[0].loc_chain = NULL;
9037 empty_var->var_part[0].cur_loc = NULL;
9038 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9039 VAR_LOC_1PAUX (old_var) = NULL;
9041 variable_was_changed (empty_var, NULL);
9042 /* Continue traversing the hash table. */
9043 return 1;
9045 /* Update cur_loc and one-part auxiliary data, before new_var goes
9046 through variable_was_changed. */
9047 if (old_var != new_var && new_var->onepart)
9049 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9050 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9051 VAR_LOC_1PAUX (old_var) = NULL;
9052 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9054 if (variable_different_p (old_var, new_var))
9055 variable_was_changed (new_var, NULL);
9057 /* Continue traversing the hash table. */
9058 return 1;
9061 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9062 table DATA. */
9065 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9067 variable old_var, new_var;
9069 new_var = *slot;
9070 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9071 if (!old_var)
9073 int i;
9074 for (i = 0; i < new_var->n_var_parts; i++)
9075 new_var->var_part[i].cur_loc = NULL;
9076 variable_was_changed (new_var, NULL);
9079 /* Continue traversing the hash table. */
9080 return 1;
9083 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9084 NEW_SET. */
9086 static void
9087 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9088 dataflow_set *new_set)
9090 shared_hash_htab (old_set->vars)
9091 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9092 (shared_hash_htab (new_set->vars));
9093 shared_hash_htab (new_set->vars)
9094 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9095 (shared_hash_htab (old_set->vars));
9096 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9099 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9101 static rtx
9102 next_non_note_insn_var_location (rtx insn)
9104 while (insn)
9106 insn = NEXT_INSN (insn);
9107 if (insn == 0
9108 || !NOTE_P (insn)
9109 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9110 break;
9113 return insn;
9116 /* Emit the notes for changes of location parts in the basic block BB. */
9118 static void
9119 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9121 unsigned int i;
9122 micro_operation *mo;
9124 dataflow_set_clear (set);
9125 dataflow_set_copy (set, &VTI (bb)->in);
9127 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9129 rtx insn = mo->insn;
9130 rtx next_insn = next_non_note_insn_var_location (insn);
9132 switch (mo->type)
9134 case MO_CALL:
9135 dataflow_set_clear_at_call (set);
9136 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9138 rtx arguments = mo->u.loc, *p = &arguments, note;
9139 while (*p)
9141 XEXP (XEXP (*p, 0), 1)
9142 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9143 shared_hash_htab (set->vars));
9144 /* If expansion is successful, keep it in the list. */
9145 if (XEXP (XEXP (*p, 0), 1))
9146 p = &XEXP (*p, 1);
9147 /* Otherwise, if the following item is data_value for it,
9148 drop it too too. */
9149 else if (XEXP (*p, 1)
9150 && REG_P (XEXP (XEXP (*p, 0), 0))
9151 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9152 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9154 && REGNO (XEXP (XEXP (*p, 0), 0))
9155 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9156 0), 0)))
9157 *p = XEXP (XEXP (*p, 1), 1);
9158 /* Just drop this item. */
9159 else
9160 *p = XEXP (*p, 1);
9162 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9163 NOTE_VAR_LOCATION (note) = arguments;
9165 break;
9167 case MO_USE:
9169 rtx loc = mo->u.loc;
9171 if (REG_P (loc))
9172 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9173 else
9174 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9176 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9178 break;
9180 case MO_VAL_LOC:
9182 rtx loc = mo->u.loc;
9183 rtx val, vloc;
9184 tree var;
9186 if (GET_CODE (loc) == CONCAT)
9188 val = XEXP (loc, 0);
9189 vloc = XEXP (loc, 1);
9191 else
9193 val = NULL_RTX;
9194 vloc = loc;
9197 var = PAT_VAR_LOCATION_DECL (vloc);
9199 clobber_variable_part (set, NULL_RTX,
9200 dv_from_decl (var), 0, NULL_RTX);
9201 if (val)
9203 if (VAL_NEEDS_RESOLUTION (loc))
9204 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9205 set_variable_part (set, val, dv_from_decl (var), 0,
9206 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9207 INSERT);
9209 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9210 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9211 dv_from_decl (var), 0,
9212 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9213 INSERT);
9215 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9217 break;
9219 case MO_VAL_USE:
9221 rtx loc = mo->u.loc;
9222 rtx val, vloc, uloc;
9224 vloc = uloc = XEXP (loc, 1);
9225 val = XEXP (loc, 0);
9227 if (GET_CODE (val) == CONCAT)
9229 uloc = XEXP (val, 1);
9230 val = XEXP (val, 0);
9233 if (VAL_NEEDS_RESOLUTION (loc))
9234 val_resolve (set, val, vloc, insn);
9235 else
9236 val_store (set, val, uloc, insn, false);
9238 if (VAL_HOLDS_TRACK_EXPR (loc))
9240 if (GET_CODE (uloc) == REG)
9241 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9242 NULL);
9243 else if (GET_CODE (uloc) == MEM)
9244 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9245 NULL);
9248 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9250 break;
9252 case MO_VAL_SET:
9254 rtx loc = mo->u.loc;
9255 rtx val, vloc, uloc;
9256 rtx dstv, srcv;
9258 vloc = loc;
9259 uloc = XEXP (vloc, 1);
9260 val = XEXP (vloc, 0);
9261 vloc = uloc;
9263 if (GET_CODE (uloc) == SET)
9265 dstv = SET_DEST (uloc);
9266 srcv = SET_SRC (uloc);
9268 else
9270 dstv = uloc;
9271 srcv = NULL;
9274 if (GET_CODE (val) == CONCAT)
9276 dstv = vloc = XEXP (val, 1);
9277 val = XEXP (val, 0);
9280 if (GET_CODE (vloc) == SET)
9282 srcv = SET_SRC (vloc);
9284 gcc_assert (val != srcv);
9285 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9287 dstv = vloc = SET_DEST (vloc);
9289 if (VAL_NEEDS_RESOLUTION (loc))
9290 val_resolve (set, val, srcv, insn);
9292 else if (VAL_NEEDS_RESOLUTION (loc))
9294 gcc_assert (GET_CODE (uloc) == SET
9295 && GET_CODE (SET_SRC (uloc)) == REG);
9296 val_resolve (set, val, SET_SRC (uloc), insn);
9299 if (VAL_HOLDS_TRACK_EXPR (loc))
9301 if (VAL_EXPR_IS_CLOBBERED (loc))
9303 if (REG_P (uloc))
9304 var_reg_delete (set, uloc, true);
9305 else if (MEM_P (uloc))
9307 gcc_assert (MEM_P (dstv));
9308 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9309 var_mem_delete (set, dstv, true);
9312 else
9314 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9315 rtx src = NULL, dst = uloc;
9316 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9318 if (GET_CODE (uloc) == SET)
9320 src = SET_SRC (uloc);
9321 dst = SET_DEST (uloc);
9324 if (copied_p)
9326 status = find_src_status (set, src);
9328 src = find_src_set_src (set, src);
9331 if (REG_P (dst))
9332 var_reg_delete_and_set (set, dst, !copied_p,
9333 status, srcv);
9334 else if (MEM_P (dst))
9336 gcc_assert (MEM_P (dstv));
9337 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9338 var_mem_delete_and_set (set, dstv, !copied_p,
9339 status, srcv);
9343 else if (REG_P (uloc))
9344 var_regno_delete (set, REGNO (uloc));
9345 else if (MEM_P (uloc))
9347 gcc_checking_assert (GET_CODE (vloc) == MEM);
9348 gcc_checking_assert (vloc == dstv);
9349 if (vloc != dstv)
9350 clobber_overlapping_mems (set, vloc);
9353 val_store (set, val, dstv, insn, true);
9355 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9356 set->vars);
9358 break;
9360 case MO_SET:
9362 rtx loc = mo->u.loc;
9363 rtx set_src = NULL;
9365 if (GET_CODE (loc) == SET)
9367 set_src = SET_SRC (loc);
9368 loc = SET_DEST (loc);
9371 if (REG_P (loc))
9372 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9373 set_src);
9374 else
9375 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9376 set_src);
9378 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9379 set->vars);
9381 break;
9383 case MO_COPY:
9385 rtx loc = mo->u.loc;
9386 enum var_init_status src_status;
9387 rtx set_src = NULL;
9389 if (GET_CODE (loc) == SET)
9391 set_src = SET_SRC (loc);
9392 loc = SET_DEST (loc);
9395 src_status = find_src_status (set, set_src);
9396 set_src = find_src_set_src (set, set_src);
9398 if (REG_P (loc))
9399 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9400 else
9401 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9403 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9404 set->vars);
9406 break;
9408 case MO_USE_NO_VAR:
9410 rtx loc = mo->u.loc;
9412 if (REG_P (loc))
9413 var_reg_delete (set, loc, false);
9414 else
9415 var_mem_delete (set, loc, false);
9417 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9419 break;
9421 case MO_CLOBBER:
9423 rtx loc = mo->u.loc;
9425 if (REG_P (loc))
9426 var_reg_delete (set, loc, true);
9427 else
9428 var_mem_delete (set, loc, true);
9430 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9431 set->vars);
9433 break;
9435 case MO_ADJUST:
9436 set->stack_adjust += mo->u.adjust;
9437 break;
9442 /* Emit notes for the whole function. */
9444 static void
9445 vt_emit_notes (void)
9447 basic_block bb;
9448 dataflow_set cur;
9450 gcc_assert (!changed_variables->elements ());
9452 /* Free memory occupied by the out hash tables, as they aren't used
9453 anymore. */
9454 FOR_EACH_BB_FN (bb, cfun)
9455 dataflow_set_clear (&VTI (bb)->out);
9457 /* Enable emitting notes by functions (mainly by set_variable_part and
9458 delete_variable_part). */
9459 emit_notes = true;
9461 if (MAY_HAVE_DEBUG_INSNS)
9463 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9464 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9465 sizeof (loc_exp_dep), 64);
9468 dataflow_set_init (&cur);
9470 FOR_EACH_BB_FN (bb, cfun)
9472 /* Emit the notes for changes of variable locations between two
9473 subsequent basic blocks. */
9474 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9476 if (MAY_HAVE_DEBUG_INSNS)
9477 local_get_addr_cache = new hash_map<rtx, rtx>;
9479 /* Emit the notes for the changes in the basic block itself. */
9480 emit_notes_in_bb (bb, &cur);
9482 if (MAY_HAVE_DEBUG_INSNS)
9483 delete local_get_addr_cache;
9484 local_get_addr_cache = NULL;
9486 /* Free memory occupied by the in hash table, we won't need it
9487 again. */
9488 dataflow_set_clear (&VTI (bb)->in);
9490 #ifdef ENABLE_CHECKING
9491 shared_hash_htab (cur.vars)
9492 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9493 (shared_hash_htab (empty_shared_hash));
9494 #endif
9495 dataflow_set_destroy (&cur);
9497 if (MAY_HAVE_DEBUG_INSNS)
9498 delete dropped_values;
9499 dropped_values = NULL;
9501 emit_notes = false;
9504 /* If there is a declaration and offset associated with register/memory RTL
9505 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9507 static bool
9508 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9510 if (REG_P (rtl))
9512 if (REG_ATTRS (rtl))
9514 *declp = REG_EXPR (rtl);
9515 *offsetp = REG_OFFSET (rtl);
9516 return true;
9519 else if (GET_CODE (rtl) == PARALLEL)
9521 tree decl = NULL_TREE;
9522 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9523 int len = XVECLEN (rtl, 0), i;
9525 for (i = 0; i < len; i++)
9527 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9528 if (!REG_P (reg) || !REG_ATTRS (reg))
9529 break;
9530 if (!decl)
9531 decl = REG_EXPR (reg);
9532 if (REG_EXPR (reg) != decl)
9533 break;
9534 if (REG_OFFSET (reg) < offset)
9535 offset = REG_OFFSET (reg);
9538 if (i == len)
9540 *declp = decl;
9541 *offsetp = offset;
9542 return true;
9545 else if (MEM_P (rtl))
9547 if (MEM_ATTRS (rtl))
9549 *declp = MEM_EXPR (rtl);
9550 *offsetp = INT_MEM_OFFSET (rtl);
9551 return true;
9554 return false;
9557 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9558 of VAL. */
9560 static void
9561 record_entry_value (cselib_val *val, rtx rtl)
9563 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9565 ENTRY_VALUE_EXP (ev) = rtl;
9567 cselib_add_permanent_equiv (val, ev, get_insns ());
9570 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9572 static void
9573 vt_add_function_parameter (tree parm)
9575 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9576 rtx incoming = DECL_INCOMING_RTL (parm);
9577 tree decl;
9578 enum machine_mode mode;
9579 HOST_WIDE_INT offset;
9580 dataflow_set *out;
9581 decl_or_value dv;
9583 if (TREE_CODE (parm) != PARM_DECL)
9584 return;
9586 if (!decl_rtl || !incoming)
9587 return;
9589 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9590 return;
9592 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9593 rewrite the incoming location of parameters passed on the stack
9594 into MEMs based on the argument pointer, so that incoming doesn't
9595 depend on a pseudo. */
9596 if (MEM_P (incoming)
9597 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9598 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9599 && XEXP (XEXP (incoming, 0), 0)
9600 == crtl->args.internal_arg_pointer
9601 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9603 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9604 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9605 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9606 incoming
9607 = replace_equiv_address_nv (incoming,
9608 plus_constant (Pmode,
9609 arg_pointer_rtx, off));
9612 #ifdef HAVE_window_save
9613 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9614 If the target machine has an explicit window save instruction, the
9615 actual entry value is the corresponding OUTGOING_REGNO instead. */
9616 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9618 if (REG_P (incoming)
9619 && HARD_REGISTER_P (incoming)
9620 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9622 parm_reg_t p;
9623 p.incoming = incoming;
9624 incoming
9625 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9626 OUTGOING_REGNO (REGNO (incoming)), 0);
9627 p.outgoing = incoming;
9628 vec_safe_push (windowed_parm_regs, p);
9630 else if (GET_CODE (incoming) == PARALLEL)
9632 rtx outgoing
9633 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9634 int i;
9636 for (i = 0; i < XVECLEN (incoming, 0); i++)
9638 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9639 parm_reg_t p;
9640 p.incoming = reg;
9641 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9642 OUTGOING_REGNO (REGNO (reg)), 0);
9643 p.outgoing = reg;
9644 XVECEXP (outgoing, 0, i)
9645 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9646 XEXP (XVECEXP (incoming, 0, i), 1));
9647 vec_safe_push (windowed_parm_regs, p);
9650 incoming = outgoing;
9652 else if (MEM_P (incoming)
9653 && REG_P (XEXP (incoming, 0))
9654 && HARD_REGISTER_P (XEXP (incoming, 0)))
9656 rtx reg = XEXP (incoming, 0);
9657 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9659 parm_reg_t p;
9660 p.incoming = reg;
9661 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9662 p.outgoing = reg;
9663 vec_safe_push (windowed_parm_regs, p);
9664 incoming = replace_equiv_address_nv (incoming, reg);
9668 #endif
9670 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9672 if (MEM_P (incoming))
9674 /* This means argument is passed by invisible reference. */
9675 offset = 0;
9676 decl = parm;
9678 else
9680 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9681 return;
9682 offset += byte_lowpart_offset (GET_MODE (incoming),
9683 GET_MODE (decl_rtl));
9687 if (!decl)
9688 return;
9690 if (parm != decl)
9692 /* If that DECL_RTL wasn't a pseudo that got spilled to
9693 memory, bail out. Otherwise, the spill slot sharing code
9694 will force the memory to reference spill_slot_decl (%sfp),
9695 so we don't match above. That's ok, the pseudo must have
9696 referenced the entire parameter, so just reset OFFSET. */
9697 if (decl != get_spill_slot_decl (false))
9698 return;
9699 offset = 0;
9702 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9703 return;
9705 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9707 dv = dv_from_decl (parm);
9709 if (target_for_debug_bind (parm)
9710 /* We can't deal with these right now, because this kind of
9711 variable is single-part. ??? We could handle parallels
9712 that describe multiple locations for the same single
9713 value, but ATM we don't. */
9714 && GET_CODE (incoming) != PARALLEL)
9716 cselib_val *val;
9717 rtx lowpart;
9719 /* ??? We shouldn't ever hit this, but it may happen because
9720 arguments passed by invisible reference aren't dealt with
9721 above: incoming-rtl will have Pmode rather than the
9722 expected mode for the type. */
9723 if (offset)
9724 return;
9726 lowpart = var_lowpart (mode, incoming);
9727 if (!lowpart)
9728 return;
9730 val = cselib_lookup_from_insn (lowpart, mode, true,
9731 VOIDmode, get_insns ());
9733 /* ??? Float-typed values in memory are not handled by
9734 cselib. */
9735 if (val)
9737 preserve_value (val);
9738 set_variable_part (out, val->val_rtx, dv, offset,
9739 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9740 dv = dv_from_value (val->val_rtx);
9743 if (MEM_P (incoming))
9745 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9746 VOIDmode, get_insns ());
9747 if (val)
9749 preserve_value (val);
9750 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9755 if (REG_P (incoming))
9757 incoming = var_lowpart (mode, incoming);
9758 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9759 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9760 incoming);
9761 set_variable_part (out, incoming, dv, offset,
9762 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9763 if (dv_is_value_p (dv))
9765 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9766 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9767 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9769 enum machine_mode indmode
9770 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9771 rtx mem = gen_rtx_MEM (indmode, incoming);
9772 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9773 VOIDmode,
9774 get_insns ());
9775 if (val)
9777 preserve_value (val);
9778 record_entry_value (val, mem);
9779 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9780 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9785 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9787 int i;
9789 for (i = 0; i < XVECLEN (incoming, 0); i++)
9791 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9792 offset = REG_OFFSET (reg);
9793 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9794 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9795 set_variable_part (out, reg, dv, offset,
9796 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9799 else if (MEM_P (incoming))
9801 incoming = var_lowpart (mode, incoming);
9802 set_variable_part (out, incoming, dv, offset,
9803 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9807 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9809 static void
9810 vt_add_function_parameters (void)
9812 tree parm;
9814 for (parm = DECL_ARGUMENTS (current_function_decl);
9815 parm; parm = DECL_CHAIN (parm))
9816 vt_add_function_parameter (parm);
9818 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9820 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9822 if (TREE_CODE (vexpr) == INDIRECT_REF)
9823 vexpr = TREE_OPERAND (vexpr, 0);
9825 if (TREE_CODE (vexpr) == PARM_DECL
9826 && DECL_ARTIFICIAL (vexpr)
9827 && !DECL_IGNORED_P (vexpr)
9828 && DECL_NAMELESS (vexpr))
9829 vt_add_function_parameter (vexpr);
9833 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9834 ensure it isn't flushed during cselib_reset_table.
9835 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9836 has been eliminated. */
9838 static void
9839 vt_init_cfa_base (void)
9841 cselib_val *val;
9843 #ifdef FRAME_POINTER_CFA_OFFSET
9844 cfa_base_rtx = frame_pointer_rtx;
9845 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9846 #else
9847 cfa_base_rtx = arg_pointer_rtx;
9848 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9849 #endif
9850 if (cfa_base_rtx == hard_frame_pointer_rtx
9851 || !fixed_regs[REGNO (cfa_base_rtx)])
9853 cfa_base_rtx = NULL_RTX;
9854 return;
9856 if (!MAY_HAVE_DEBUG_INSNS)
9857 return;
9859 /* Tell alias analysis that cfa_base_rtx should share
9860 find_base_term value with stack pointer or hard frame pointer. */
9861 if (!frame_pointer_needed)
9862 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9863 else if (!crtl->stack_realign_tried)
9864 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9866 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9867 VOIDmode, get_insns ());
9868 preserve_value (val);
9869 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9872 /* Allocate and initialize the data structures for variable tracking
9873 and parse the RTL to get the micro operations. */
9875 static bool
9876 vt_initialize (void)
9878 basic_block bb;
9879 HOST_WIDE_INT fp_cfa_offset = -1;
9881 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9883 attrs_pool = create_alloc_pool ("attrs_def pool",
9884 sizeof (struct attrs_def), 1024);
9885 var_pool = create_alloc_pool ("variable_def pool",
9886 sizeof (struct variable_def)
9887 + (MAX_VAR_PARTS - 1)
9888 * sizeof (((variable)NULL)->var_part[0]), 64);
9889 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9890 sizeof (struct location_chain_def),
9891 1024);
9892 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9893 sizeof (struct shared_hash_def), 256);
9894 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9895 empty_shared_hash->refcount = 1;
9896 empty_shared_hash->htab = new variable_table_type (1);
9897 changed_variables = new variable_table_type (10);
9899 /* Init the IN and OUT sets. */
9900 FOR_ALL_BB_FN (bb, cfun)
9902 VTI (bb)->visited = false;
9903 VTI (bb)->flooded = false;
9904 dataflow_set_init (&VTI (bb)->in);
9905 dataflow_set_init (&VTI (bb)->out);
9906 VTI (bb)->permp = NULL;
9909 if (MAY_HAVE_DEBUG_INSNS)
9911 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9912 scratch_regs = BITMAP_ALLOC (NULL);
9913 valvar_pool = create_alloc_pool ("small variable_def pool",
9914 sizeof (struct variable_def), 256);
9915 preserved_values.create (256);
9916 global_get_addr_cache = new hash_map<rtx, rtx>;
9918 else
9920 scratch_regs = NULL;
9921 valvar_pool = NULL;
9922 global_get_addr_cache = NULL;
9925 if (MAY_HAVE_DEBUG_INSNS)
9927 rtx reg, expr;
9928 int ofst;
9929 cselib_val *val;
9931 #ifdef FRAME_POINTER_CFA_OFFSET
9932 reg = frame_pointer_rtx;
9933 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9934 #else
9935 reg = arg_pointer_rtx;
9936 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9937 #endif
9939 ofst -= INCOMING_FRAME_SP_OFFSET;
9941 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9942 VOIDmode, get_insns ());
9943 preserve_value (val);
9944 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9945 cselib_preserve_cfa_base_value (val, REGNO (reg));
9946 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9947 stack_pointer_rtx, -ofst);
9948 cselib_add_permanent_equiv (val, expr, get_insns ());
9950 if (ofst)
9952 val = cselib_lookup_from_insn (stack_pointer_rtx,
9953 GET_MODE (stack_pointer_rtx), 1,
9954 VOIDmode, get_insns ());
9955 preserve_value (val);
9956 expr = plus_constant (GET_MODE (reg), reg, ofst);
9957 cselib_add_permanent_equiv (val, expr, get_insns ());
9961 /* In order to factor out the adjustments made to the stack pointer or to
9962 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9963 instead of individual location lists, we're going to rewrite MEMs based
9964 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9965 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9966 resp. arg_pointer_rtx. We can do this either when there is no frame
9967 pointer in the function and stack adjustments are consistent for all
9968 basic blocks or when there is a frame pointer and no stack realignment.
9969 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9970 has been eliminated. */
9971 if (!frame_pointer_needed)
9973 rtx reg, elim;
9975 if (!vt_stack_adjustments ())
9976 return false;
9978 #ifdef FRAME_POINTER_CFA_OFFSET
9979 reg = frame_pointer_rtx;
9980 #else
9981 reg = arg_pointer_rtx;
9982 #endif
9983 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9984 if (elim != reg)
9986 if (GET_CODE (elim) == PLUS)
9987 elim = XEXP (elim, 0);
9988 if (elim == stack_pointer_rtx)
9989 vt_init_cfa_base ();
9992 else if (!crtl->stack_realign_tried)
9994 rtx reg, elim;
9996 #ifdef FRAME_POINTER_CFA_OFFSET
9997 reg = frame_pointer_rtx;
9998 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9999 #else
10000 reg = arg_pointer_rtx;
10001 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10002 #endif
10003 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10004 if (elim != reg)
10006 if (GET_CODE (elim) == PLUS)
10008 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10009 elim = XEXP (elim, 0);
10011 if (elim != hard_frame_pointer_rtx)
10012 fp_cfa_offset = -1;
10014 else
10015 fp_cfa_offset = -1;
10018 /* If the stack is realigned and a DRAP register is used, we're going to
10019 rewrite MEMs based on it representing incoming locations of parameters
10020 passed on the stack into MEMs based on the argument pointer. Although
10021 we aren't going to rewrite other MEMs, we still need to initialize the
10022 virtual CFA pointer in order to ensure that the argument pointer will
10023 be seen as a constant throughout the function.
10025 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10026 else if (stack_realign_drap)
10028 rtx reg, elim;
10030 #ifdef FRAME_POINTER_CFA_OFFSET
10031 reg = frame_pointer_rtx;
10032 #else
10033 reg = arg_pointer_rtx;
10034 #endif
10035 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10036 if (elim != reg)
10038 if (GET_CODE (elim) == PLUS)
10039 elim = XEXP (elim, 0);
10040 if (elim == hard_frame_pointer_rtx)
10041 vt_init_cfa_base ();
10045 hard_frame_pointer_adjustment = -1;
10047 vt_add_function_parameters ();
10049 FOR_EACH_BB_FN (bb, cfun)
10051 rtx insn;
10052 HOST_WIDE_INT pre, post = 0;
10053 basic_block first_bb, last_bb;
10055 if (MAY_HAVE_DEBUG_INSNS)
10057 cselib_record_sets_hook = add_with_sets;
10058 if (dump_file && (dump_flags & TDF_DETAILS))
10059 fprintf (dump_file, "first value: %i\n",
10060 cselib_get_next_uid ());
10063 first_bb = bb;
10064 for (;;)
10066 edge e;
10067 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10068 || ! single_pred_p (bb->next_bb))
10069 break;
10070 e = find_edge (bb, bb->next_bb);
10071 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10072 break;
10073 bb = bb->next_bb;
10075 last_bb = bb;
10077 /* Add the micro-operations to the vector. */
10078 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10080 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10081 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10082 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10083 insn = NEXT_INSN (insn))
10085 if (INSN_P (insn))
10087 if (!frame_pointer_needed)
10089 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10090 if (pre)
10092 micro_operation mo;
10093 mo.type = MO_ADJUST;
10094 mo.u.adjust = pre;
10095 mo.insn = insn;
10096 if (dump_file && (dump_flags & TDF_DETAILS))
10097 log_op_type (PATTERN (insn), bb, insn,
10098 MO_ADJUST, dump_file);
10099 VTI (bb)->mos.safe_push (mo);
10100 VTI (bb)->out.stack_adjust += pre;
10104 cselib_hook_called = false;
10105 adjust_insn (bb, insn);
10106 if (MAY_HAVE_DEBUG_INSNS)
10108 if (CALL_P (insn))
10109 prepare_call_arguments (bb, insn);
10110 cselib_process_insn (insn);
10111 if (dump_file && (dump_flags & TDF_DETAILS))
10113 print_rtl_single (dump_file, insn);
10114 dump_cselib_table (dump_file);
10117 if (!cselib_hook_called)
10118 add_with_sets (insn, 0, 0);
10119 cancel_changes (0);
10121 if (!frame_pointer_needed && post)
10123 micro_operation mo;
10124 mo.type = MO_ADJUST;
10125 mo.u.adjust = post;
10126 mo.insn = insn;
10127 if (dump_file && (dump_flags & TDF_DETAILS))
10128 log_op_type (PATTERN (insn), bb, insn,
10129 MO_ADJUST, dump_file);
10130 VTI (bb)->mos.safe_push (mo);
10131 VTI (bb)->out.stack_adjust += post;
10134 if (fp_cfa_offset != -1
10135 && hard_frame_pointer_adjustment == -1
10136 && fp_setter_insn (insn))
10138 vt_init_cfa_base ();
10139 hard_frame_pointer_adjustment = fp_cfa_offset;
10140 /* Disassociate sp from fp now. */
10141 if (MAY_HAVE_DEBUG_INSNS)
10143 cselib_val *v;
10144 cselib_invalidate_rtx (stack_pointer_rtx);
10145 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10146 VOIDmode);
10147 if (v && !cselib_preserved_value_p (v))
10149 cselib_set_value_sp_based (v);
10150 preserve_value (v);
10156 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10159 bb = last_bb;
10161 if (MAY_HAVE_DEBUG_INSNS)
10163 cselib_preserve_only_values ();
10164 cselib_reset_table (cselib_get_next_uid ());
10165 cselib_record_sets_hook = NULL;
10169 hard_frame_pointer_adjustment = -1;
10170 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10171 cfa_base_rtx = NULL_RTX;
10172 return true;
10175 /* This is *not* reset after each function. It gives each
10176 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10177 a unique label number. */
10179 static int debug_label_num = 1;
10181 /* Get rid of all debug insns from the insn stream. */
10183 static void
10184 delete_debug_insns (void)
10186 basic_block bb;
10187 rtx insn, next;
10189 if (!MAY_HAVE_DEBUG_INSNS)
10190 return;
10192 FOR_EACH_BB_FN (bb, cfun)
10194 FOR_BB_INSNS_SAFE (bb, insn, next)
10195 if (DEBUG_INSN_P (insn))
10197 tree decl = INSN_VAR_LOCATION_DECL (insn);
10198 if (TREE_CODE (decl) == LABEL_DECL
10199 && DECL_NAME (decl)
10200 && !DECL_RTL_SET_P (decl))
10202 PUT_CODE (insn, NOTE);
10203 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10204 NOTE_DELETED_LABEL_NAME (insn)
10205 = IDENTIFIER_POINTER (DECL_NAME (decl));
10206 SET_DECL_RTL (decl, insn);
10207 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10209 else
10210 delete_insn (insn);
10215 /* Run a fast, BB-local only version of var tracking, to take care of
10216 information that we don't do global analysis on, such that not all
10217 information is lost. If SKIPPED holds, we're skipping the global
10218 pass entirely, so we should try to use information it would have
10219 handled as well.. */
10221 static void
10222 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10224 /* ??? Just skip it all for now. */
10225 delete_debug_insns ();
10228 /* Free the data structures needed for variable tracking. */
10230 static void
10231 vt_finalize (void)
10233 basic_block bb;
10235 FOR_EACH_BB_FN (bb, cfun)
10237 VTI (bb)->mos.release ();
10240 FOR_ALL_BB_FN (bb, cfun)
10242 dataflow_set_destroy (&VTI (bb)->in);
10243 dataflow_set_destroy (&VTI (bb)->out);
10244 if (VTI (bb)->permp)
10246 dataflow_set_destroy (VTI (bb)->permp);
10247 XDELETE (VTI (bb)->permp);
10250 free_aux_for_blocks ();
10251 delete empty_shared_hash->htab;
10252 empty_shared_hash->htab = NULL;
10253 delete changed_variables;
10254 changed_variables = NULL;
10255 free_alloc_pool (attrs_pool);
10256 free_alloc_pool (var_pool);
10257 free_alloc_pool (loc_chain_pool);
10258 free_alloc_pool (shared_hash_pool);
10260 if (MAY_HAVE_DEBUG_INSNS)
10262 if (global_get_addr_cache)
10263 delete global_get_addr_cache;
10264 global_get_addr_cache = NULL;
10265 if (loc_exp_dep_pool)
10266 free_alloc_pool (loc_exp_dep_pool);
10267 loc_exp_dep_pool = NULL;
10268 free_alloc_pool (valvar_pool);
10269 preserved_values.release ();
10270 cselib_finish ();
10271 BITMAP_FREE (scratch_regs);
10272 scratch_regs = NULL;
10275 #ifdef HAVE_window_save
10276 vec_free (windowed_parm_regs);
10277 #endif
10279 if (vui_vec)
10280 XDELETEVEC (vui_vec);
10281 vui_vec = NULL;
10282 vui_allocated = 0;
10285 /* The entry point to variable tracking pass. */
10287 static inline unsigned int
10288 variable_tracking_main_1 (void)
10290 bool success;
10292 if (flag_var_tracking_assignments < 0)
10294 delete_debug_insns ();
10295 return 0;
10298 if (n_basic_blocks_for_fn (cfun) > 500 &&
10299 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10301 vt_debug_insns_local (true);
10302 return 0;
10305 mark_dfs_back_edges ();
10306 if (!vt_initialize ())
10308 vt_finalize ();
10309 vt_debug_insns_local (true);
10310 return 0;
10313 success = vt_find_locations ();
10315 if (!success && flag_var_tracking_assignments > 0)
10317 vt_finalize ();
10319 delete_debug_insns ();
10321 /* This is later restored by our caller. */
10322 flag_var_tracking_assignments = 0;
10324 success = vt_initialize ();
10325 gcc_assert (success);
10327 success = vt_find_locations ();
10330 if (!success)
10332 vt_finalize ();
10333 vt_debug_insns_local (false);
10334 return 0;
10337 if (dump_file && (dump_flags & TDF_DETAILS))
10339 dump_dataflow_sets ();
10340 dump_reg_info (dump_file);
10341 dump_flow_info (dump_file, dump_flags);
10344 timevar_push (TV_VAR_TRACKING_EMIT);
10345 vt_emit_notes ();
10346 timevar_pop (TV_VAR_TRACKING_EMIT);
10348 vt_finalize ();
10349 vt_debug_insns_local (false);
10350 return 0;
10353 unsigned int
10354 variable_tracking_main (void)
10356 unsigned int ret;
10357 int save = flag_var_tracking_assignments;
10359 ret = variable_tracking_main_1 ();
10361 flag_var_tracking_assignments = save;
10363 return ret;
10366 namespace {
10368 const pass_data pass_data_variable_tracking =
10370 RTL_PASS, /* type */
10371 "vartrack", /* name */
10372 OPTGROUP_NONE, /* optinfo_flags */
10373 TV_VAR_TRACKING, /* tv_id */
10374 0, /* properties_required */
10375 0, /* properties_provided */
10376 0, /* properties_destroyed */
10377 0, /* todo_flags_start */
10378 0, /* todo_flags_finish */
10381 class pass_variable_tracking : public rtl_opt_pass
10383 public:
10384 pass_variable_tracking (gcc::context *ctxt)
10385 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10388 /* opt_pass methods: */
10389 virtual bool gate (function *)
10391 return (flag_var_tracking && !targetm.delay_vartrack);
10394 virtual unsigned int execute (function *)
10396 return variable_tracking_main ();
10399 }; // class pass_variable_tracking
10401 } // anon namespace
10403 rtl_opt_pass *
10404 make_pass_variable_tracking (gcc::context *ctxt)
10406 return new pass_variable_tracking (ctxt);