* include/bits/basic_string.h (getline): Qualify call to prevent ADL
[official-gcc.git] / gcc / tree-vect-loop.c
blobfd1166f5fd74ff2b95e43133994d3ba2ff465249
1 /* Loop Vectorization
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-ssa-alias.h"
32 #include "internal-fn.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-ssa.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-pass.h"
48 #include "cfgloop.h"
49 #include "expr.h"
50 #include "recog.h"
51 #include "optabs.h"
52 #include "params.h"
53 #include "diagnostic-core.h"
54 #include "tree-chrec.h"
55 #include "tree-scalar-evolution.h"
56 #include "tree-vectorizer.h"
57 #include "target.h"
59 /* Loop Vectorization Pass.
61 This pass tries to vectorize loops.
63 For example, the vectorizer transforms the following simple loop:
65 short a[N]; short b[N]; short c[N]; int i;
67 for (i=0; i<N; i++){
68 a[i] = b[i] + c[i];
71 as if it was manually vectorized by rewriting the source code into:
73 typedef int __attribute__((mode(V8HI))) v8hi;
74 short a[N]; short b[N]; short c[N]; int i;
75 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
76 v8hi va, vb, vc;
78 for (i=0; i<N/8; i++){
79 vb = pb[i];
80 vc = pc[i];
81 va = vb + vc;
82 pa[i] = va;
85 The main entry to this pass is vectorize_loops(), in which
86 the vectorizer applies a set of analyses on a given set of loops,
87 followed by the actual vectorization transformation for the loops that
88 had successfully passed the analysis phase.
89 Throughout this pass we make a distinction between two types of
90 data: scalars (which are represented by SSA_NAMES), and memory references
91 ("data-refs"). These two types of data require different handling both
92 during analysis and transformation. The types of data-refs that the
93 vectorizer currently supports are ARRAY_REFS which base is an array DECL
94 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
95 accesses are required to have a simple (consecutive) access pattern.
97 Analysis phase:
98 ===============
99 The driver for the analysis phase is vect_analyze_loop().
100 It applies a set of analyses, some of which rely on the scalar evolution
101 analyzer (scev) developed by Sebastian Pop.
103 During the analysis phase the vectorizer records some information
104 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
105 loop, as well as general information about the loop as a whole, which is
106 recorded in a "loop_vec_info" struct attached to each loop.
108 Transformation phase:
109 =====================
110 The loop transformation phase scans all the stmts in the loop, and
111 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
112 the loop that needs to be vectorized. It inserts the vector code sequence
113 just before the scalar stmt S, and records a pointer to the vector code
114 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
115 attached to S). This pointer will be used for the vectorization of following
116 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
117 otherwise, we rely on dead code elimination for removing it.
119 For example, say stmt S1 was vectorized into stmt VS1:
121 VS1: vb = px[i];
122 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
123 S2: a = b;
125 To vectorize stmt S2, the vectorizer first finds the stmt that defines
126 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
127 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
128 resulting sequence would be:
130 VS1: vb = px[i];
131 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
132 VS2: va = vb;
133 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
135 Operands that are not SSA_NAMEs, are data-refs that appear in
136 load/store operations (like 'x[i]' in S1), and are handled differently.
138 Target modeling:
139 =================
140 Currently the only target specific information that is used is the
141 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
142 Targets that can support different sizes of vectors, for now will need
143 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
144 flexibility will be added in the future.
146 Since we only vectorize operations which vector form can be
147 expressed using existing tree codes, to verify that an operation is
148 supported, the vectorizer checks the relevant optab at the relevant
149 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
150 the value found is CODE_FOR_nothing, then there's no target support, and
151 we can't vectorize the stmt.
153 For additional information on this project see:
154 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
157 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
159 /* Function vect_determine_vectorization_factor
161 Determine the vectorization factor (VF). VF is the number of data elements
162 that are operated upon in parallel in a single iteration of the vectorized
163 loop. For example, when vectorizing a loop that operates on 4byte elements,
164 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
165 elements can fit in a single vector register.
167 We currently support vectorization of loops in which all types operated upon
168 are of the same size. Therefore this function currently sets VF according to
169 the size of the types operated upon, and fails if there are multiple sizes
170 in the loop.
172 VF is also the factor by which the loop iterations are strip-mined, e.g.:
173 original loop:
174 for (i=0; i<N; i++){
175 a[i] = b[i] + c[i];
178 vectorized loop:
179 for (i=0; i<N; i+=VF){
180 a[i:VF] = b[i:VF] + c[i:VF];
184 static bool
185 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
187 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
188 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
189 int nbbs = loop->num_nodes;
190 gimple_stmt_iterator si;
191 unsigned int vectorization_factor = 0;
192 tree scalar_type;
193 gimple phi;
194 tree vectype;
195 unsigned int nunits;
196 stmt_vec_info stmt_info;
197 int i;
198 HOST_WIDE_INT dummy;
199 gimple stmt, pattern_stmt = NULL;
200 gimple_seq pattern_def_seq = NULL;
201 gimple_stmt_iterator pattern_def_si = gsi_none ();
202 bool analyze_pattern_stmt = false;
204 if (dump_enabled_p ())
205 dump_printf_loc (MSG_NOTE, vect_location,
206 "=== vect_determine_vectorization_factor ===\n");
208 for (i = 0; i < nbbs; i++)
210 basic_block bb = bbs[i];
212 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
214 phi = gsi_stmt (si);
215 stmt_info = vinfo_for_stmt (phi);
216 if (dump_enabled_p ())
218 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
219 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
220 dump_printf (MSG_NOTE, "\n");
223 gcc_assert (stmt_info);
225 if (STMT_VINFO_RELEVANT_P (stmt_info))
227 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
228 scalar_type = TREE_TYPE (PHI_RESULT (phi));
230 if (dump_enabled_p ())
232 dump_printf_loc (MSG_NOTE, vect_location,
233 "get vectype for scalar type: ");
234 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
235 dump_printf (MSG_NOTE, "\n");
238 vectype = get_vectype_for_scalar_type (scalar_type);
239 if (!vectype)
241 if (dump_enabled_p ())
243 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
244 "not vectorized: unsupported "
245 "data-type ");
246 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
247 scalar_type);
248 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
250 return false;
252 STMT_VINFO_VECTYPE (stmt_info) = vectype;
254 if (dump_enabled_p ())
256 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
257 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
258 dump_printf (MSG_NOTE, "\n");
261 nunits = TYPE_VECTOR_SUBPARTS (vectype);
262 if (dump_enabled_p ())
263 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
264 nunits);
266 if (!vectorization_factor
267 || (nunits > vectorization_factor))
268 vectorization_factor = nunits;
272 for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
274 tree vf_vectype;
276 if (analyze_pattern_stmt)
277 stmt = pattern_stmt;
278 else
279 stmt = gsi_stmt (si);
281 stmt_info = vinfo_for_stmt (stmt);
283 if (dump_enabled_p ())
285 dump_printf_loc (MSG_NOTE, vect_location,
286 "==> examining statement: ");
287 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 dump_printf (MSG_NOTE, "\n");
291 gcc_assert (stmt_info);
293 /* Skip stmts which do not need to be vectorized. */
294 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
295 && !STMT_VINFO_LIVE_P (stmt_info))
296 || gimple_clobber_p (stmt))
298 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
299 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
300 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
301 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
303 stmt = pattern_stmt;
304 stmt_info = vinfo_for_stmt (pattern_stmt);
305 if (dump_enabled_p ())
307 dump_printf_loc (MSG_NOTE, vect_location,
308 "==> examining pattern statement: ");
309 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
310 dump_printf (MSG_NOTE, "\n");
313 else
315 if (dump_enabled_p ())
316 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
317 gsi_next (&si);
318 continue;
321 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
322 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
323 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
324 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
325 analyze_pattern_stmt = true;
327 /* If a pattern statement has def stmts, analyze them too. */
328 if (is_pattern_stmt_p (stmt_info))
330 if (pattern_def_seq == NULL)
332 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
333 pattern_def_si = gsi_start (pattern_def_seq);
335 else if (!gsi_end_p (pattern_def_si))
336 gsi_next (&pattern_def_si);
337 if (pattern_def_seq != NULL)
339 gimple pattern_def_stmt = NULL;
340 stmt_vec_info pattern_def_stmt_info = NULL;
342 while (!gsi_end_p (pattern_def_si))
344 pattern_def_stmt = gsi_stmt (pattern_def_si);
345 pattern_def_stmt_info
346 = vinfo_for_stmt (pattern_def_stmt);
347 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
348 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
349 break;
350 gsi_next (&pattern_def_si);
353 if (!gsi_end_p (pattern_def_si))
355 if (dump_enabled_p ())
357 dump_printf_loc (MSG_NOTE, vect_location,
358 "==> examining pattern def stmt: ");
359 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
360 pattern_def_stmt, 0);
361 dump_printf (MSG_NOTE, "\n");
364 stmt = pattern_def_stmt;
365 stmt_info = pattern_def_stmt_info;
367 else
369 pattern_def_si = gsi_none ();
370 analyze_pattern_stmt = false;
373 else
374 analyze_pattern_stmt = false;
377 if (gimple_get_lhs (stmt) == NULL_TREE
378 /* MASK_STORE has no lhs, but is ok. */
379 && (!is_gimple_call (stmt)
380 || !gimple_call_internal_p (stmt)
381 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
383 if (is_gimple_call (stmt))
385 /* Ignore calls with no lhs. These must be calls to
386 #pragma omp simd functions, and what vectorization factor
387 it really needs can't be determined until
388 vectorizable_simd_clone_call. */
389 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
391 pattern_def_seq = NULL;
392 gsi_next (&si);
394 continue;
396 if (dump_enabled_p ())
398 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
399 "not vectorized: irregular stmt.");
400 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
402 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
404 return false;
407 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
409 if (dump_enabled_p ())
411 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
412 "not vectorized: vector stmt in loop:");
413 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
414 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
416 return false;
419 if (STMT_VINFO_VECTYPE (stmt_info))
421 /* The only case when a vectype had been already set is for stmts
422 that contain a dataref, or for "pattern-stmts" (stmts
423 generated by the vectorizer to represent/replace a certain
424 idiom). */
425 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
426 || is_pattern_stmt_p (stmt_info)
427 || !gsi_end_p (pattern_def_si));
428 vectype = STMT_VINFO_VECTYPE (stmt_info);
430 else
432 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
433 if (is_gimple_call (stmt)
434 && gimple_call_internal_p (stmt)
435 && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
436 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
437 else
438 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
439 if (dump_enabled_p ())
441 dump_printf_loc (MSG_NOTE, vect_location,
442 "get vectype for scalar type: ");
443 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
444 dump_printf (MSG_NOTE, "\n");
446 vectype = get_vectype_for_scalar_type (scalar_type);
447 if (!vectype)
449 if (dump_enabled_p ())
451 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
452 "not vectorized: unsupported "
453 "data-type ");
454 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
455 scalar_type);
456 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
458 return false;
461 STMT_VINFO_VECTYPE (stmt_info) = vectype;
463 if (dump_enabled_p ())
465 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
466 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
467 dump_printf (MSG_NOTE, "\n");
471 /* The vectorization factor is according to the smallest
472 scalar type (or the largest vector size, but we only
473 support one vector size per loop). */
474 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
475 &dummy);
476 if (dump_enabled_p ())
478 dump_printf_loc (MSG_NOTE, vect_location,
479 "get vectype for scalar type: ");
480 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
481 dump_printf (MSG_NOTE, "\n");
483 vf_vectype = get_vectype_for_scalar_type (scalar_type);
484 if (!vf_vectype)
486 if (dump_enabled_p ())
488 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
489 "not vectorized: unsupported data-type ");
490 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
491 scalar_type);
492 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
494 return false;
497 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
498 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
500 if (dump_enabled_p ())
502 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
503 "not vectorized: different sized vector "
504 "types in statement, ");
505 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
506 vectype);
507 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
508 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
509 vf_vectype);
510 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
512 return false;
515 if (dump_enabled_p ())
517 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
518 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
519 dump_printf (MSG_NOTE, "\n");
522 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
523 if (dump_enabled_p ())
524 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
525 if (!vectorization_factor
526 || (nunits > vectorization_factor))
527 vectorization_factor = nunits;
529 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
531 pattern_def_seq = NULL;
532 gsi_next (&si);
537 /* TODO: Analyze cost. Decide if worth while to vectorize. */
538 if (dump_enabled_p ())
539 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
540 vectorization_factor);
541 if (vectorization_factor <= 1)
543 if (dump_enabled_p ())
544 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
545 "not vectorized: unsupported data-type\n");
546 return false;
548 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
550 return true;
554 /* Function vect_is_simple_iv_evolution.
556 FORNOW: A simple evolution of an induction variables in the loop is
557 considered a polynomial evolution. */
559 static bool
560 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
561 tree * step)
563 tree init_expr;
564 tree step_expr;
565 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
566 basic_block bb;
568 /* When there is no evolution in this loop, the evolution function
569 is not "simple". */
570 if (evolution_part == NULL_TREE)
571 return false;
573 /* When the evolution is a polynomial of degree >= 2
574 the evolution function is not "simple". */
575 if (tree_is_chrec (evolution_part))
576 return false;
578 step_expr = evolution_part;
579 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
581 if (dump_enabled_p ())
583 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
584 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
585 dump_printf (MSG_NOTE, ", init: ");
586 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
587 dump_printf (MSG_NOTE, "\n");
590 *init = init_expr;
591 *step = step_expr;
593 if (TREE_CODE (step_expr) != INTEGER_CST
594 && (TREE_CODE (step_expr) != SSA_NAME
595 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
596 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
597 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
598 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
599 || !flag_associative_math)))
600 && (TREE_CODE (step_expr) != REAL_CST
601 || !flag_associative_math))
603 if (dump_enabled_p ())
604 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
605 "step unknown.\n");
606 return false;
609 return true;
612 /* Function vect_analyze_scalar_cycles_1.
614 Examine the cross iteration def-use cycles of scalar variables
615 in LOOP. LOOP_VINFO represents the loop that is now being
616 considered for vectorization (can be LOOP, or an outer-loop
617 enclosing LOOP). */
619 static void
620 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
622 basic_block bb = loop->header;
623 tree init, step;
624 auto_vec<gimple, 64> worklist;
625 gimple_stmt_iterator gsi;
626 bool double_reduc;
628 if (dump_enabled_p ())
629 dump_printf_loc (MSG_NOTE, vect_location,
630 "=== vect_analyze_scalar_cycles ===\n");
632 /* First - identify all inductions. Reduction detection assumes that all the
633 inductions have been identified, therefore, this order must not be
634 changed. */
635 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
637 gimple phi = gsi_stmt (gsi);
638 tree access_fn = NULL;
639 tree def = PHI_RESULT (phi);
640 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
642 if (dump_enabled_p ())
644 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
645 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
646 dump_printf (MSG_NOTE, "\n");
649 /* Skip virtual phi's. The data dependences that are associated with
650 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
651 if (virtual_operand_p (def))
652 continue;
654 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
656 /* Analyze the evolution function. */
657 access_fn = analyze_scalar_evolution (loop, def);
658 if (access_fn)
660 STRIP_NOPS (access_fn);
661 if (dump_enabled_p ())
663 dump_printf_loc (MSG_NOTE, vect_location,
664 "Access function of PHI: ");
665 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
666 dump_printf (MSG_NOTE, "\n");
668 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
669 = evolution_part_in_loop_num (access_fn, loop->num);
672 if (!access_fn
673 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
674 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
675 && TREE_CODE (step) != INTEGER_CST))
677 worklist.safe_push (phi);
678 continue;
681 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
683 if (dump_enabled_p ())
684 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
685 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
689 /* Second - identify all reductions and nested cycles. */
690 while (worklist.length () > 0)
692 gimple phi = worklist.pop ();
693 tree def = PHI_RESULT (phi);
694 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
695 gimple reduc_stmt;
696 bool nested_cycle;
698 if (dump_enabled_p ())
700 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
701 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
702 dump_printf (MSG_NOTE, "\n");
705 gcc_assert (!virtual_operand_p (def)
706 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
708 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
709 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
710 &double_reduc);
711 if (reduc_stmt)
713 if (double_reduc)
715 if (dump_enabled_p ())
716 dump_printf_loc (MSG_NOTE, vect_location,
717 "Detected double reduction.\n");
719 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
720 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
721 vect_double_reduction_def;
723 else
725 if (nested_cycle)
727 if (dump_enabled_p ())
728 dump_printf_loc (MSG_NOTE, vect_location,
729 "Detected vectorizable nested cycle.\n");
731 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
732 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
733 vect_nested_cycle;
735 else
737 if (dump_enabled_p ())
738 dump_printf_loc (MSG_NOTE, vect_location,
739 "Detected reduction.\n");
741 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
742 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
743 vect_reduction_def;
744 /* Store the reduction cycles for possible vectorization in
745 loop-aware SLP. */
746 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
750 else
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
753 "Unknown def-use cycle pattern.\n");
758 /* Function vect_analyze_scalar_cycles.
760 Examine the cross iteration def-use cycles of scalar variables, by
761 analyzing the loop-header PHIs of scalar variables. Classify each
762 cycle as one of the following: invariant, induction, reduction, unknown.
763 We do that for the loop represented by LOOP_VINFO, and also to its
764 inner-loop, if exists.
765 Examples for scalar cycles:
767 Example1: reduction:
769 loop1:
770 for (i=0; i<N; i++)
771 sum += a[i];
773 Example2: induction:
775 loop2:
776 for (i=0; i<N; i++)
777 a[i] = i; */
779 static void
780 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
782 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
784 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
786 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
787 Reductions in such inner-loop therefore have different properties than
788 the reductions in the nest that gets vectorized:
789 1. When vectorized, they are executed in the same order as in the original
790 scalar loop, so we can't change the order of computation when
791 vectorizing them.
792 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
793 current checks are too strict. */
795 if (loop->inner)
796 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
800 /* Function vect_get_loop_niters.
802 Determine how many iterations the loop is executed and place it
803 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
804 in NUMBER_OF_ITERATIONSM1.
806 Return the loop exit condition. */
808 static gimple
809 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations,
810 tree *number_of_iterationsm1)
812 tree niters;
814 if (dump_enabled_p ())
815 dump_printf_loc (MSG_NOTE, vect_location,
816 "=== get_loop_niters ===\n");
818 niters = number_of_latch_executions (loop);
819 *number_of_iterationsm1 = niters;
821 /* We want the number of loop header executions which is the number
822 of latch executions plus one.
823 ??? For UINT_MAX latch executions this number overflows to zero
824 for loops like do { n++; } while (n != 0); */
825 if (niters && !chrec_contains_undetermined (niters))
826 niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters), unshare_expr (niters),
827 build_int_cst (TREE_TYPE (niters), 1));
828 *number_of_iterations = niters;
830 return get_loop_exit_condition (loop);
834 /* Function bb_in_loop_p
836 Used as predicate for dfs order traversal of the loop bbs. */
838 static bool
839 bb_in_loop_p (const_basic_block bb, const void *data)
841 const struct loop *const loop = (const struct loop *)data;
842 if (flow_bb_inside_loop_p (loop, bb))
843 return true;
844 return false;
848 /* Function new_loop_vec_info.
850 Create and initialize a new loop_vec_info struct for LOOP, as well as
851 stmt_vec_info structs for all the stmts in LOOP. */
853 static loop_vec_info
854 new_loop_vec_info (struct loop *loop)
856 loop_vec_info res;
857 basic_block *bbs;
858 gimple_stmt_iterator si;
859 unsigned int i, nbbs;
861 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
862 LOOP_VINFO_LOOP (res) = loop;
864 bbs = get_loop_body (loop);
866 /* Create/Update stmt_info for all stmts in the loop. */
867 for (i = 0; i < loop->num_nodes; i++)
869 basic_block bb = bbs[i];
871 /* BBs in a nested inner-loop will have been already processed (because
872 we will have called vect_analyze_loop_form for any nested inner-loop).
873 Therefore, for stmts in an inner-loop we just want to update the
874 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
875 loop_info of the outer-loop we are currently considering to vectorize
876 (instead of the loop_info of the inner-loop).
877 For stmts in other BBs we need to create a stmt_info from scratch. */
878 if (bb->loop_father != loop)
880 /* Inner-loop bb. */
881 gcc_assert (loop->inner && bb->loop_father == loop->inner);
882 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
884 gimple phi = gsi_stmt (si);
885 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
886 loop_vec_info inner_loop_vinfo =
887 STMT_VINFO_LOOP_VINFO (stmt_info);
888 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
889 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
891 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
893 gimple stmt = gsi_stmt (si);
894 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
895 loop_vec_info inner_loop_vinfo =
896 STMT_VINFO_LOOP_VINFO (stmt_info);
897 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
898 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
901 else
903 /* bb in current nest. */
904 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
906 gimple phi = gsi_stmt (si);
907 gimple_set_uid (phi, 0);
908 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
911 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
913 gimple stmt = gsi_stmt (si);
914 gimple_set_uid (stmt, 0);
915 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
920 /* CHECKME: We want to visit all BBs before their successors (except for
921 latch blocks, for which this assertion wouldn't hold). In the simple
922 case of the loop forms we allow, a dfs order of the BBs would the same
923 as reversed postorder traversal, so we are safe. */
925 free (bbs);
926 bbs = XCNEWVEC (basic_block, loop->num_nodes);
927 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
928 bbs, loop->num_nodes, loop);
929 gcc_assert (nbbs == loop->num_nodes);
931 LOOP_VINFO_BBS (res) = bbs;
932 LOOP_VINFO_NITERSM1 (res) = NULL;
933 LOOP_VINFO_NITERS (res) = NULL;
934 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
935 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
936 LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
937 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
938 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
939 LOOP_VINFO_VECT_FACTOR (res) = 0;
940 LOOP_VINFO_LOOP_NEST (res).create (3);
941 LOOP_VINFO_DATAREFS (res).create (10);
942 LOOP_VINFO_DDRS (res).create (10 * 10);
943 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
944 LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
945 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
946 LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
947 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
948 LOOP_VINFO_GROUPED_STORES (res).create (10);
949 LOOP_VINFO_REDUCTIONS (res).create (10);
950 LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
951 LOOP_VINFO_SLP_INSTANCES (res).create (10);
952 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
953 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
954 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
955 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
956 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
958 return res;
962 /* Function destroy_loop_vec_info.
964 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
965 stmts in the loop. */
967 void
968 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
970 struct loop *loop;
971 basic_block *bbs;
972 int nbbs;
973 gimple_stmt_iterator si;
974 int j;
975 vec<slp_instance> slp_instances;
976 slp_instance instance;
977 bool swapped;
979 if (!loop_vinfo)
980 return;
982 loop = LOOP_VINFO_LOOP (loop_vinfo);
984 bbs = LOOP_VINFO_BBS (loop_vinfo);
985 nbbs = clean_stmts ? loop->num_nodes : 0;
986 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
988 for (j = 0; j < nbbs; j++)
990 basic_block bb = bbs[j];
991 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
992 free_stmt_vec_info (gsi_stmt (si));
994 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
996 gimple stmt = gsi_stmt (si);
998 /* We may have broken canonical form by moving a constant
999 into RHS1 of a commutative op. Fix such occurrences. */
1000 if (swapped && is_gimple_assign (stmt))
1002 enum tree_code code = gimple_assign_rhs_code (stmt);
1004 if ((code == PLUS_EXPR
1005 || code == POINTER_PLUS_EXPR
1006 || code == MULT_EXPR)
1007 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1008 swap_ssa_operands (stmt,
1009 gimple_assign_rhs1_ptr (stmt),
1010 gimple_assign_rhs2_ptr (stmt));
1013 /* Free stmt_vec_info. */
1014 free_stmt_vec_info (stmt);
1015 gsi_next (&si);
1019 free (LOOP_VINFO_BBS (loop_vinfo));
1020 vect_destroy_datarefs (loop_vinfo, NULL);
1021 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1022 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1023 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1024 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1025 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1026 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1027 vect_free_slp_instance (instance);
1029 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1030 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1031 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1032 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1034 delete LOOP_VINFO_PEELING_HTAB (loop_vinfo);
1035 LOOP_VINFO_PEELING_HTAB (loop_vinfo) = NULL;
1037 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1039 free (loop_vinfo);
1040 loop->aux = NULL;
1044 /* Function vect_analyze_loop_1.
1046 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1047 for it. The different analyses will record information in the
1048 loop_vec_info struct. This is a subset of the analyses applied in
1049 vect_analyze_loop, to be applied on an inner-loop nested in the loop
1050 that is now considered for (outer-loop) vectorization. */
1052 static loop_vec_info
1053 vect_analyze_loop_1 (struct loop *loop)
1055 loop_vec_info loop_vinfo;
1057 if (dump_enabled_p ())
1058 dump_printf_loc (MSG_NOTE, vect_location,
1059 "===== analyze_loop_nest_1 =====\n");
1061 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1063 loop_vinfo = vect_analyze_loop_form (loop);
1064 if (!loop_vinfo)
1066 if (dump_enabled_p ())
1067 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1068 "bad inner-loop form.\n");
1069 return NULL;
1072 return loop_vinfo;
1076 /* Function vect_analyze_loop_form.
1078 Verify that certain CFG restrictions hold, including:
1079 - the loop has a pre-header
1080 - the loop has a single entry and exit
1081 - the loop exit condition is simple enough, and the number of iterations
1082 can be analyzed (a countable loop). */
1084 loop_vec_info
1085 vect_analyze_loop_form (struct loop *loop)
1087 loop_vec_info loop_vinfo;
1088 gimple loop_cond;
1089 tree number_of_iterations = NULL, number_of_iterationsm1 = NULL;
1090 loop_vec_info inner_loop_vinfo = NULL;
1092 if (dump_enabled_p ())
1093 dump_printf_loc (MSG_NOTE, vect_location,
1094 "=== vect_analyze_loop_form ===\n");
1096 /* Different restrictions apply when we are considering an inner-most loop,
1097 vs. an outer (nested) loop.
1098 (FORNOW. May want to relax some of these restrictions in the future). */
1100 if (!loop->inner)
1102 /* Inner-most loop. We currently require that the number of BBs is
1103 exactly 2 (the header and latch). Vectorizable inner-most loops
1104 look like this:
1106 (pre-header)
1108 header <--------+
1109 | | |
1110 | +--> latch --+
1112 (exit-bb) */
1114 if (loop->num_nodes != 2)
1116 if (dump_enabled_p ())
1117 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1118 "not vectorized: control flow in loop.\n");
1119 return NULL;
1122 if (empty_block_p (loop->header))
1124 if (dump_enabled_p ())
1125 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1126 "not vectorized: empty loop.\n");
1127 return NULL;
1130 else
1132 struct loop *innerloop = loop->inner;
1133 edge entryedge;
1135 /* Nested loop. We currently require that the loop is doubly-nested,
1136 contains a single inner loop, and the number of BBs is exactly 5.
1137 Vectorizable outer-loops look like this:
1139 (pre-header)
1141 header <---+
1143 inner-loop |
1145 tail ------+
1147 (exit-bb)
1149 The inner-loop has the properties expected of inner-most loops
1150 as described above. */
1152 if ((loop->inner)->inner || (loop->inner)->next)
1154 if (dump_enabled_p ())
1155 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1156 "not vectorized: multiple nested loops.\n");
1157 return NULL;
1160 /* Analyze the inner-loop. */
1161 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1162 if (!inner_loop_vinfo)
1164 if (dump_enabled_p ())
1165 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1166 "not vectorized: Bad inner loop.\n");
1167 return NULL;
1170 if (!expr_invariant_in_loop_p (loop,
1171 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1173 if (dump_enabled_p ())
1174 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1175 "not vectorized: inner-loop count not"
1176 " invariant.\n");
1177 destroy_loop_vec_info (inner_loop_vinfo, true);
1178 return NULL;
1181 if (loop->num_nodes != 5)
1183 if (dump_enabled_p ())
1184 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1185 "not vectorized: control flow in loop.\n");
1186 destroy_loop_vec_info (inner_loop_vinfo, true);
1187 return NULL;
1190 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1191 entryedge = EDGE_PRED (innerloop->header, 0);
1192 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1193 entryedge = EDGE_PRED (innerloop->header, 1);
1195 if (entryedge->src != loop->header
1196 || !single_exit (innerloop)
1197 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1199 if (dump_enabled_p ())
1200 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1201 "not vectorized: unsupported outerloop form.\n");
1202 destroy_loop_vec_info (inner_loop_vinfo, true);
1203 return NULL;
1206 if (dump_enabled_p ())
1207 dump_printf_loc (MSG_NOTE, vect_location,
1208 "Considering outer-loop vectorization.\n");
1211 if (!single_exit (loop)
1212 || EDGE_COUNT (loop->header->preds) != 2)
1214 if (dump_enabled_p ())
1216 if (!single_exit (loop))
1217 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1218 "not vectorized: multiple exits.\n");
1219 else if (EDGE_COUNT (loop->header->preds) != 2)
1220 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1221 "not vectorized: too many incoming edges.\n");
1223 if (inner_loop_vinfo)
1224 destroy_loop_vec_info (inner_loop_vinfo, true);
1225 return NULL;
1228 /* We assume that the loop exit condition is at the end of the loop. i.e,
1229 that the loop is represented as a do-while (with a proper if-guard
1230 before the loop if needed), where the loop header contains all the
1231 executable statements, and the latch is empty. */
1232 if (!empty_block_p (loop->latch)
1233 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1235 if (dump_enabled_p ())
1236 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1237 "not vectorized: latch block not empty.\n");
1238 if (inner_loop_vinfo)
1239 destroy_loop_vec_info (inner_loop_vinfo, true);
1240 return NULL;
1243 /* Make sure there exists a single-predecessor exit bb: */
1244 if (!single_pred_p (single_exit (loop)->dest))
1246 edge e = single_exit (loop);
1247 if (!(e->flags & EDGE_ABNORMAL))
1249 split_loop_exit_edge (e);
1250 if (dump_enabled_p ())
1251 dump_printf (MSG_NOTE, "split exit edge.\n");
1253 else
1255 if (dump_enabled_p ())
1256 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1257 "not vectorized: abnormal loop exit edge.\n");
1258 if (inner_loop_vinfo)
1259 destroy_loop_vec_info (inner_loop_vinfo, true);
1260 return NULL;
1264 loop_cond = vect_get_loop_niters (loop, &number_of_iterations,
1265 &number_of_iterationsm1);
1266 if (!loop_cond)
1268 if (dump_enabled_p ())
1269 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1270 "not vectorized: complicated exit condition.\n");
1271 if (inner_loop_vinfo)
1272 destroy_loop_vec_info (inner_loop_vinfo, true);
1273 return NULL;
1276 if (!number_of_iterations
1277 || chrec_contains_undetermined (number_of_iterations))
1279 if (dump_enabled_p ())
1280 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1281 "not vectorized: number of iterations cannot be "
1282 "computed.\n");
1283 if (inner_loop_vinfo)
1284 destroy_loop_vec_info (inner_loop_vinfo, true);
1285 return NULL;
1288 if (integer_zerop (number_of_iterations))
1290 if (dump_enabled_p ())
1291 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1292 "not vectorized: number of iterations = 0.\n");
1293 if (inner_loop_vinfo)
1294 destroy_loop_vec_info (inner_loop_vinfo, true);
1295 return NULL;
1298 loop_vinfo = new_loop_vec_info (loop);
1299 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1300 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1301 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1303 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1305 if (dump_enabled_p ())
1307 dump_printf_loc (MSG_NOTE, vect_location,
1308 "Symbolic number of iterations is ");
1309 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1310 dump_printf (MSG_NOTE, "\n");
1314 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1316 /* CHECKME: May want to keep it around it in the future. */
1317 if (inner_loop_vinfo)
1318 destroy_loop_vec_info (inner_loop_vinfo, false);
1320 gcc_assert (!loop->aux);
1321 loop->aux = loop_vinfo;
1322 return loop_vinfo;
1326 /* Function vect_analyze_loop_operations.
1328 Scan the loop stmts and make sure they are all vectorizable. */
1330 static bool
1331 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1333 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1334 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1335 int nbbs = loop->num_nodes;
1336 gimple_stmt_iterator si;
1337 unsigned int vectorization_factor = 0;
1338 int i;
1339 gimple phi;
1340 stmt_vec_info stmt_info;
1341 bool need_to_vectorize = false;
1342 int min_profitable_iters;
1343 int min_scalar_loop_bound;
1344 unsigned int th;
1345 bool only_slp_in_loop = true, ok;
1346 HOST_WIDE_INT max_niter;
1347 HOST_WIDE_INT estimated_niter;
1348 int min_profitable_estimate;
1350 if (dump_enabled_p ())
1351 dump_printf_loc (MSG_NOTE, vect_location,
1352 "=== vect_analyze_loop_operations ===\n");
1354 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1355 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1356 if (slp)
1358 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1359 vectorization factor of the loop is the unrolling factor required by
1360 the SLP instances. If that unrolling factor is 1, we say, that we
1361 perform pure SLP on loop - cross iteration parallelism is not
1362 exploited. */
1363 for (i = 0; i < nbbs; i++)
1365 basic_block bb = bbs[i];
1366 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1368 gimple stmt = gsi_stmt (si);
1369 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1370 gcc_assert (stmt_info);
1371 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1372 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1373 && !PURE_SLP_STMT (stmt_info))
1374 /* STMT needs both SLP and loop-based vectorization. */
1375 only_slp_in_loop = false;
1379 if (only_slp_in_loop)
1380 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1381 else
1382 vectorization_factor = least_common_multiple (vectorization_factor,
1383 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1385 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1386 if (dump_enabled_p ())
1387 dump_printf_loc (MSG_NOTE, vect_location,
1388 "Updating vectorization factor to %d\n",
1389 vectorization_factor);
1392 for (i = 0; i < nbbs; i++)
1394 basic_block bb = bbs[i];
1396 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1398 phi = gsi_stmt (si);
1399 ok = true;
1401 stmt_info = vinfo_for_stmt (phi);
1402 if (dump_enabled_p ())
1404 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1405 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1406 dump_printf (MSG_NOTE, "\n");
1409 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1410 (i.e., a phi in the tail of the outer-loop). */
1411 if (! is_loop_header_bb_p (bb))
1413 /* FORNOW: we currently don't support the case that these phis
1414 are not used in the outerloop (unless it is double reduction,
1415 i.e., this phi is vect_reduction_def), cause this case
1416 requires to actually do something here. */
1417 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1418 || STMT_VINFO_LIVE_P (stmt_info))
1419 && STMT_VINFO_DEF_TYPE (stmt_info)
1420 != vect_double_reduction_def)
1422 if (dump_enabled_p ())
1423 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1424 "Unsupported loop-closed phi in "
1425 "outer-loop.\n");
1426 return false;
1429 /* If PHI is used in the outer loop, we check that its operand
1430 is defined in the inner loop. */
1431 if (STMT_VINFO_RELEVANT_P (stmt_info))
1433 tree phi_op;
1434 gimple op_def_stmt;
1436 if (gimple_phi_num_args (phi) != 1)
1437 return false;
1439 phi_op = PHI_ARG_DEF (phi, 0);
1440 if (TREE_CODE (phi_op) != SSA_NAME)
1441 return false;
1443 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1444 if (gimple_nop_p (op_def_stmt)
1445 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1446 || !vinfo_for_stmt (op_def_stmt))
1447 return false;
1449 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1450 != vect_used_in_outer
1451 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1452 != vect_used_in_outer_by_reduction)
1453 return false;
1456 continue;
1459 gcc_assert (stmt_info);
1461 if (STMT_VINFO_LIVE_P (stmt_info))
1463 /* FORNOW: not yet supported. */
1464 if (dump_enabled_p ())
1465 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1466 "not vectorized: value used after loop.\n");
1467 return false;
1470 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1471 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1473 /* A scalar-dependence cycle that we don't support. */
1474 if (dump_enabled_p ())
1475 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1476 "not vectorized: scalar dependence cycle.\n");
1477 return false;
1480 if (STMT_VINFO_RELEVANT_P (stmt_info))
1482 need_to_vectorize = true;
1483 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1484 ok = vectorizable_induction (phi, NULL, NULL);
1487 if (!ok)
1489 if (dump_enabled_p ())
1491 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1492 "not vectorized: relevant phi not "
1493 "supported: ");
1494 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1495 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1497 return false;
1501 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1503 gimple stmt = gsi_stmt (si);
1504 if (!gimple_clobber_p (stmt)
1505 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1506 return false;
1508 } /* bbs */
1510 /* All operations in the loop are either irrelevant (deal with loop
1511 control, or dead), or only used outside the loop and can be moved
1512 out of the loop (e.g. invariants, inductions). The loop can be
1513 optimized away by scalar optimizations. We're better off not
1514 touching this loop. */
1515 if (!need_to_vectorize)
1517 if (dump_enabled_p ())
1518 dump_printf_loc (MSG_NOTE, vect_location,
1519 "All the computation can be taken out of the loop.\n");
1520 if (dump_enabled_p ())
1521 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1522 "not vectorized: redundant loop. no profit to "
1523 "vectorize.\n");
1524 return false;
1527 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1528 dump_printf_loc (MSG_NOTE, vect_location,
1529 "vectorization_factor = %d, niters = "
1530 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
1531 LOOP_VINFO_INT_NITERS (loop_vinfo));
1533 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1534 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1535 || ((max_niter = max_stmt_executions_int (loop)) != -1
1536 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1538 if (dump_enabled_p ())
1539 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1540 "not vectorized: iteration count too small.\n");
1541 if (dump_enabled_p ())
1542 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1543 "not vectorized: iteration count smaller than "
1544 "vectorization factor.\n");
1545 return false;
1548 /* Analyze cost. Decide if worth while to vectorize. */
1550 /* Once VF is set, SLP costs should be updated since the number of created
1551 vector stmts depends on VF. */
1552 vect_update_slp_costs_according_to_vf (loop_vinfo);
1554 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1555 &min_profitable_estimate);
1556 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1558 if (min_profitable_iters < 0)
1560 if (dump_enabled_p ())
1561 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1562 "not vectorized: vectorization not profitable.\n");
1563 if (dump_enabled_p ())
1564 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1565 "not vectorized: vector version will never be "
1566 "profitable.\n");
1567 return false;
1570 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1571 * vectorization_factor) - 1);
1574 /* Use the cost model only if it is more conservative than user specified
1575 threshold. */
1577 th = (unsigned) min_scalar_loop_bound;
1578 if (min_profitable_iters
1579 && (!min_scalar_loop_bound
1580 || min_profitable_iters > min_scalar_loop_bound))
1581 th = (unsigned) min_profitable_iters;
1583 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
1585 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1586 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1588 if (dump_enabled_p ())
1589 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1590 "not vectorized: vectorization not profitable.\n");
1591 if (dump_enabled_p ())
1592 dump_printf_loc (MSG_NOTE, vect_location,
1593 "not vectorized: iteration count smaller than user "
1594 "specified loop bound parameter or minimum profitable "
1595 "iterations (whichever is more conservative).\n");
1596 return false;
1599 if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
1600 && ((unsigned HOST_WIDE_INT) estimated_niter
1601 <= MAX (th, (unsigned)min_profitable_estimate)))
1603 if (dump_enabled_p ())
1604 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1605 "not vectorized: estimated iteration count too "
1606 "small.\n");
1607 if (dump_enabled_p ())
1608 dump_printf_loc (MSG_NOTE, vect_location,
1609 "not vectorized: estimated iteration count smaller "
1610 "than specified loop bound parameter or minimum "
1611 "profitable iterations (whichever is more "
1612 "conservative).\n");
1613 return false;
1616 return true;
1620 /* Function vect_analyze_loop_2.
1622 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1623 for it. The different analyses will record information in the
1624 loop_vec_info struct. */
1625 static bool
1626 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1628 bool ok, slp = false;
1629 int max_vf = MAX_VECTORIZATION_FACTOR;
1630 int min_vf = 2;
1631 unsigned int th;
1632 unsigned int n_stmts = 0;
1634 /* Find all data references in the loop (which correspond to vdefs/vuses)
1635 and analyze their evolution in the loop. Also adjust the minimal
1636 vectorization factor according to the loads and stores.
1638 FORNOW: Handle only simple, array references, which
1639 alignment can be forced, and aligned pointer-references. */
1641 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf, &n_stmts);
1642 if (!ok)
1644 if (dump_enabled_p ())
1645 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1646 "bad data references.\n");
1647 return false;
1650 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1651 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1653 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1654 if (!ok)
1656 if (dump_enabled_p ())
1657 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1658 "bad data access.\n");
1659 return false;
1662 /* Classify all cross-iteration scalar data-flow cycles.
1663 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1665 vect_analyze_scalar_cycles (loop_vinfo);
1667 vect_pattern_recog (loop_vinfo, NULL);
1669 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1671 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1672 if (!ok)
1674 if (dump_enabled_p ())
1675 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1676 "unexpected pattern.\n");
1677 return false;
1680 /* Analyze data dependences between the data-refs in the loop
1681 and adjust the maximum vectorization factor according to
1682 the dependences.
1683 FORNOW: fail at the first data dependence that we encounter. */
1685 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1686 if (!ok
1687 || max_vf < min_vf)
1689 if (dump_enabled_p ())
1690 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1691 "bad data dependence.\n");
1692 return false;
1695 ok = vect_determine_vectorization_factor (loop_vinfo);
1696 if (!ok)
1698 if (dump_enabled_p ())
1699 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1700 "can't determine vectorization factor.\n");
1701 return false;
1703 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1705 if (dump_enabled_p ())
1706 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1707 "bad data dependence.\n");
1708 return false;
1711 /* Analyze the alignment of the data-refs in the loop.
1712 Fail if a data reference is found that cannot be vectorized. */
1714 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1715 if (!ok)
1717 if (dump_enabled_p ())
1718 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1719 "bad data alignment.\n");
1720 return false;
1723 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1724 It is important to call pruning after vect_analyze_data_ref_accesses,
1725 since we use grouping information gathered by interleaving analysis. */
1726 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1727 if (!ok)
1729 if (dump_enabled_p ())
1730 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1731 "number of versioning for alias "
1732 "run-time tests exceeds %d "
1733 "(--param vect-max-version-for-alias-checks)\n",
1734 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
1735 return false;
1738 /* This pass will decide on using loop versioning and/or loop peeling in
1739 order to enhance the alignment of data references in the loop. */
1741 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1742 if (!ok)
1744 if (dump_enabled_p ())
1745 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1746 "bad data alignment.\n");
1747 return false;
1750 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1751 ok = vect_analyze_slp (loop_vinfo, NULL, n_stmts);
1752 if (ok)
1754 /* Decide which possible SLP instances to SLP. */
1755 slp = vect_make_slp_decision (loop_vinfo);
1757 /* Find stmts that need to be both vectorized and SLPed. */
1758 vect_detect_hybrid_slp (loop_vinfo);
1760 else
1761 return false;
1763 /* Scan all the operations in the loop and make sure they are
1764 vectorizable. */
1766 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1767 if (!ok)
1769 if (dump_enabled_p ())
1770 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1771 "bad operation or unsupported loop bound.\n");
1772 return false;
1775 /* Decide whether we need to create an epilogue loop to handle
1776 remaining scalar iterations. */
1777 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) + 1)
1778 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1779 * LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1781 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1782 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1784 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
1785 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
1786 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
1787 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1789 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1790 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
1791 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1792 /* In case of versioning, check if the maximum number of
1793 iterations is greater than th. If they are identical,
1794 the epilogue is unnecessary. */
1795 && ((!LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
1796 && !LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1797 || (unsigned HOST_WIDE_INT)max_stmt_executions_int
1798 (LOOP_VINFO_LOOP (loop_vinfo)) > th)))
1799 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1801 /* If an epilogue loop is required make sure we can create one. */
1802 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1803 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
1805 if (dump_enabled_p ())
1806 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
1807 if (!vect_can_advance_ivs_p (loop_vinfo)
1808 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
1809 single_exit (LOOP_VINFO_LOOP
1810 (loop_vinfo))))
1812 if (dump_enabled_p ())
1813 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1814 "not vectorized: can't create required "
1815 "epilog loop\n");
1816 return false;
1820 return true;
1823 /* Function vect_analyze_loop.
1825 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1826 for it. The different analyses will record information in the
1827 loop_vec_info struct. */
1828 loop_vec_info
1829 vect_analyze_loop (struct loop *loop)
1831 loop_vec_info loop_vinfo;
1832 unsigned int vector_sizes;
1834 /* Autodetect first vector size we try. */
1835 current_vector_size = 0;
1836 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1838 if (dump_enabled_p ())
1839 dump_printf_loc (MSG_NOTE, vect_location,
1840 "===== analyze_loop_nest =====\n");
1842 if (loop_outer (loop)
1843 && loop_vec_info_for_loop (loop_outer (loop))
1844 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1846 if (dump_enabled_p ())
1847 dump_printf_loc (MSG_NOTE, vect_location,
1848 "outer-loop already vectorized.\n");
1849 return NULL;
1852 while (1)
1854 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1855 loop_vinfo = vect_analyze_loop_form (loop);
1856 if (!loop_vinfo)
1858 if (dump_enabled_p ())
1859 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1860 "bad loop form.\n");
1861 return NULL;
1864 if (vect_analyze_loop_2 (loop_vinfo))
1866 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1868 return loop_vinfo;
1871 destroy_loop_vec_info (loop_vinfo, true);
1873 vector_sizes &= ~current_vector_size;
1874 if (vector_sizes == 0
1875 || current_vector_size == 0)
1876 return NULL;
1878 /* Try the next biggest vector size. */
1879 current_vector_size = 1 << floor_log2 (vector_sizes);
1880 if (dump_enabled_p ())
1881 dump_printf_loc (MSG_NOTE, vect_location,
1882 "***** Re-trying analysis with "
1883 "vector size %d\n", current_vector_size);
1888 /* Function reduction_code_for_scalar_code
1890 Input:
1891 CODE - tree_code of a reduction operations.
1893 Output:
1894 REDUC_CODE - the corresponding tree-code to be used to reduce the
1895 vector of partial results into a single scalar result (which
1896 will also reside in a vector) or ERROR_MARK if the operation is
1897 a supported reduction operation, but does not have such tree-code.
1899 Return FALSE if CODE currently cannot be vectorized as reduction. */
1901 static bool
1902 reduction_code_for_scalar_code (enum tree_code code,
1903 enum tree_code *reduc_code)
1905 switch (code)
1907 case MAX_EXPR:
1908 *reduc_code = REDUC_MAX_EXPR;
1909 return true;
1911 case MIN_EXPR:
1912 *reduc_code = REDUC_MIN_EXPR;
1913 return true;
1915 case PLUS_EXPR:
1916 *reduc_code = REDUC_PLUS_EXPR;
1917 return true;
1919 case MULT_EXPR:
1920 case MINUS_EXPR:
1921 case BIT_IOR_EXPR:
1922 case BIT_XOR_EXPR:
1923 case BIT_AND_EXPR:
1924 *reduc_code = ERROR_MARK;
1925 return true;
1927 default:
1928 return false;
1933 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1934 STMT is printed with a message MSG. */
1936 static void
1937 report_vect_op (int msg_type, gimple stmt, const char *msg)
1939 dump_printf_loc (msg_type, vect_location, "%s", msg);
1940 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
1941 dump_printf (msg_type, "\n");
1945 /* Detect SLP reduction of the form:
1947 #a1 = phi <a5, a0>
1948 a2 = operation (a1)
1949 a3 = operation (a2)
1950 a4 = operation (a3)
1951 a5 = operation (a4)
1953 #a = phi <a5>
1955 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1956 FIRST_STMT is the first reduction stmt in the chain
1957 (a2 = operation (a1)).
1959 Return TRUE if a reduction chain was detected. */
1961 static bool
1962 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1964 struct loop *loop = (gimple_bb (phi))->loop_father;
1965 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1966 enum tree_code code;
1967 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1968 stmt_vec_info use_stmt_info, current_stmt_info;
1969 tree lhs;
1970 imm_use_iterator imm_iter;
1971 use_operand_p use_p;
1972 int nloop_uses, size = 0, n_out_of_loop_uses;
1973 bool found = false;
1975 if (loop != vect_loop)
1976 return false;
1978 lhs = PHI_RESULT (phi);
1979 code = gimple_assign_rhs_code (first_stmt);
1980 while (1)
1982 nloop_uses = 0;
1983 n_out_of_loop_uses = 0;
1984 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1986 gimple use_stmt = USE_STMT (use_p);
1987 if (is_gimple_debug (use_stmt))
1988 continue;
1990 /* Check if we got back to the reduction phi. */
1991 if (use_stmt == phi)
1993 loop_use_stmt = use_stmt;
1994 found = true;
1995 break;
1998 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2000 if (vinfo_for_stmt (use_stmt)
2001 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
2003 loop_use_stmt = use_stmt;
2004 nloop_uses++;
2007 else
2008 n_out_of_loop_uses++;
2010 /* There are can be either a single use in the loop or two uses in
2011 phi nodes. */
2012 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2013 return false;
2016 if (found)
2017 break;
2019 /* We reached a statement with no loop uses. */
2020 if (nloop_uses == 0)
2021 return false;
2023 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2024 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2025 return false;
2027 if (!is_gimple_assign (loop_use_stmt)
2028 || code != gimple_assign_rhs_code (loop_use_stmt)
2029 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2030 return false;
2032 /* Insert USE_STMT into reduction chain. */
2033 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2034 if (current_stmt)
2036 current_stmt_info = vinfo_for_stmt (current_stmt);
2037 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2038 GROUP_FIRST_ELEMENT (use_stmt_info)
2039 = GROUP_FIRST_ELEMENT (current_stmt_info);
2041 else
2042 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2044 lhs = gimple_assign_lhs (loop_use_stmt);
2045 current_stmt = loop_use_stmt;
2046 size++;
2049 if (!found || loop_use_stmt != phi || size < 2)
2050 return false;
2052 /* Swap the operands, if needed, to make the reduction operand be the second
2053 operand. */
2054 lhs = PHI_RESULT (phi);
2055 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2056 while (next_stmt)
2058 if (gimple_assign_rhs2 (next_stmt) == lhs)
2060 tree op = gimple_assign_rhs1 (next_stmt);
2061 gimple def_stmt = NULL;
2063 if (TREE_CODE (op) == SSA_NAME)
2064 def_stmt = SSA_NAME_DEF_STMT (op);
2066 /* Check that the other def is either defined in the loop
2067 ("vect_internal_def"), or it's an induction (defined by a
2068 loop-header phi-node). */
2069 if (def_stmt
2070 && gimple_bb (def_stmt)
2071 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2072 && (is_gimple_assign (def_stmt)
2073 || is_gimple_call (def_stmt)
2074 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2075 == vect_induction_def
2076 || (gimple_code (def_stmt) == GIMPLE_PHI
2077 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2078 == vect_internal_def
2079 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2081 lhs = gimple_assign_lhs (next_stmt);
2082 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2083 continue;
2086 return false;
2088 else
2090 tree op = gimple_assign_rhs2 (next_stmt);
2091 gimple def_stmt = NULL;
2093 if (TREE_CODE (op) == SSA_NAME)
2094 def_stmt = SSA_NAME_DEF_STMT (op);
2096 /* Check that the other def is either defined in the loop
2097 ("vect_internal_def"), or it's an induction (defined by a
2098 loop-header phi-node). */
2099 if (def_stmt
2100 && gimple_bb (def_stmt)
2101 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2102 && (is_gimple_assign (def_stmt)
2103 || is_gimple_call (def_stmt)
2104 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2105 == vect_induction_def
2106 || (gimple_code (def_stmt) == GIMPLE_PHI
2107 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2108 == vect_internal_def
2109 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2111 if (dump_enabled_p ())
2113 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2114 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2115 dump_printf (MSG_NOTE, "\n");
2118 swap_ssa_operands (next_stmt,
2119 gimple_assign_rhs1_ptr (next_stmt),
2120 gimple_assign_rhs2_ptr (next_stmt));
2121 update_stmt (next_stmt);
2123 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2124 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2126 else
2127 return false;
2130 lhs = gimple_assign_lhs (next_stmt);
2131 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2134 /* Save the chain for further analysis in SLP detection. */
2135 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2136 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2137 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2139 return true;
2143 /* Function vect_is_simple_reduction_1
2145 (1) Detect a cross-iteration def-use cycle that represents a simple
2146 reduction computation. We look for the following pattern:
2148 loop_header:
2149 a1 = phi < a0, a2 >
2150 a3 = ...
2151 a2 = operation (a3, a1)
2155 a3 = ...
2156 loop_header:
2157 a1 = phi < a0, a2 >
2158 a2 = operation (a3, a1)
2160 such that:
2161 1. operation is commutative and associative and it is safe to
2162 change the order of the computation (if CHECK_REDUCTION is true)
2163 2. no uses for a2 in the loop (a2 is used out of the loop)
2164 3. no uses of a1 in the loop besides the reduction operation
2165 4. no uses of a1 outside the loop.
2167 Conditions 1,4 are tested here.
2168 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2170 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2171 nested cycles, if CHECK_REDUCTION is false.
2173 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2174 reductions:
2176 a1 = phi < a0, a2 >
2177 inner loop (def of a3)
2178 a2 = phi < a3 >
2180 If MODIFY is true it tries also to rework the code in-place to enable
2181 detection of more reduction patterns. For the time being we rewrite
2182 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2185 static gimple
2186 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
2187 bool check_reduction, bool *double_reduc,
2188 bool modify)
2190 struct loop *loop = (gimple_bb (phi))->loop_father;
2191 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2192 edge latch_e = loop_latch_edge (loop);
2193 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2194 gimple def_stmt, def1 = NULL, def2 = NULL;
2195 enum tree_code orig_code, code;
2196 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2197 tree type;
2198 int nloop_uses;
2199 tree name;
2200 imm_use_iterator imm_iter;
2201 use_operand_p use_p;
2202 bool phi_def;
2204 *double_reduc = false;
2206 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2207 otherwise, we assume outer loop vectorization. */
2208 gcc_assert ((check_reduction && loop == vect_loop)
2209 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2211 name = PHI_RESULT (phi);
2212 /* ??? If there are no uses of the PHI result the inner loop reduction
2213 won't be detected as possibly double-reduction by vectorizable_reduction
2214 because that tries to walk the PHI arg from the preheader edge which
2215 can be constant. See PR60382. */
2216 if (has_zero_uses (name))
2217 return NULL;
2218 nloop_uses = 0;
2219 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2221 gimple use_stmt = USE_STMT (use_p);
2222 if (is_gimple_debug (use_stmt))
2223 continue;
2225 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2227 if (dump_enabled_p ())
2228 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2229 "intermediate value used outside loop.\n");
2231 return NULL;
2234 if (vinfo_for_stmt (use_stmt)
2235 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2236 nloop_uses++;
2237 if (nloop_uses > 1)
2239 if (dump_enabled_p ())
2240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2241 "reduction used in loop.\n");
2242 return NULL;
2246 if (TREE_CODE (loop_arg) != SSA_NAME)
2248 if (dump_enabled_p ())
2250 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2251 "reduction: not ssa_name: ");
2252 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2253 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2255 return NULL;
2258 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2259 if (!def_stmt)
2261 if (dump_enabled_p ())
2262 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2263 "reduction: no def_stmt.\n");
2264 return NULL;
2267 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2269 if (dump_enabled_p ())
2271 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2272 dump_printf (MSG_NOTE, "\n");
2274 return NULL;
2277 if (is_gimple_assign (def_stmt))
2279 name = gimple_assign_lhs (def_stmt);
2280 phi_def = false;
2282 else
2284 name = PHI_RESULT (def_stmt);
2285 phi_def = true;
2288 nloop_uses = 0;
2289 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2291 gimple use_stmt = USE_STMT (use_p);
2292 if (is_gimple_debug (use_stmt))
2293 continue;
2294 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2295 && vinfo_for_stmt (use_stmt)
2296 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2297 nloop_uses++;
2298 if (nloop_uses > 1)
2300 if (dump_enabled_p ())
2301 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2302 "reduction used in loop.\n");
2303 return NULL;
2307 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2308 defined in the inner loop. */
2309 if (phi_def)
2311 op1 = PHI_ARG_DEF (def_stmt, 0);
2313 if (gimple_phi_num_args (def_stmt) != 1
2314 || TREE_CODE (op1) != SSA_NAME)
2316 if (dump_enabled_p ())
2317 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2318 "unsupported phi node definition.\n");
2320 return NULL;
2323 def1 = SSA_NAME_DEF_STMT (op1);
2324 if (gimple_bb (def1)
2325 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2326 && loop->inner
2327 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2328 && is_gimple_assign (def1))
2330 if (dump_enabled_p ())
2331 report_vect_op (MSG_NOTE, def_stmt,
2332 "detected double reduction: ");
2334 *double_reduc = true;
2335 return def_stmt;
2338 return NULL;
2341 code = orig_code = gimple_assign_rhs_code (def_stmt);
2343 /* We can handle "res -= x[i]", which is non-associative by
2344 simply rewriting this into "res += -x[i]". Avoid changing
2345 gimple instruction for the first simple tests and only do this
2346 if we're allowed to change code at all. */
2347 if (code == MINUS_EXPR
2348 && modify
2349 && (op1 = gimple_assign_rhs1 (def_stmt))
2350 && TREE_CODE (op1) == SSA_NAME
2351 && SSA_NAME_DEF_STMT (op1) == phi)
2352 code = PLUS_EXPR;
2354 if (check_reduction
2355 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2357 if (dump_enabled_p ())
2358 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2359 "reduction: not commutative/associative: ");
2360 return NULL;
2363 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2365 if (code != COND_EXPR)
2367 if (dump_enabled_p ())
2368 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2369 "reduction: not binary operation: ");
2371 return NULL;
2374 op3 = gimple_assign_rhs1 (def_stmt);
2375 if (COMPARISON_CLASS_P (op3))
2377 op4 = TREE_OPERAND (op3, 1);
2378 op3 = TREE_OPERAND (op3, 0);
2381 op1 = gimple_assign_rhs2 (def_stmt);
2382 op2 = gimple_assign_rhs3 (def_stmt);
2384 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2386 if (dump_enabled_p ())
2387 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2388 "reduction: uses not ssa_names: ");
2390 return NULL;
2393 else
2395 op1 = gimple_assign_rhs1 (def_stmt);
2396 op2 = gimple_assign_rhs2 (def_stmt);
2398 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2400 if (dump_enabled_p ())
2401 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2402 "reduction: uses not ssa_names: ");
2404 return NULL;
2408 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2409 if ((TREE_CODE (op1) == SSA_NAME
2410 && !types_compatible_p (type,TREE_TYPE (op1)))
2411 || (TREE_CODE (op2) == SSA_NAME
2412 && !types_compatible_p (type, TREE_TYPE (op2)))
2413 || (op3 && TREE_CODE (op3) == SSA_NAME
2414 && !types_compatible_p (type, TREE_TYPE (op3)))
2415 || (op4 && TREE_CODE (op4) == SSA_NAME
2416 && !types_compatible_p (type, TREE_TYPE (op4))))
2418 if (dump_enabled_p ())
2420 dump_printf_loc (MSG_NOTE, vect_location,
2421 "reduction: multiple types: operation type: ");
2422 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2423 dump_printf (MSG_NOTE, ", operands types: ");
2424 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2425 TREE_TYPE (op1));
2426 dump_printf (MSG_NOTE, ",");
2427 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2428 TREE_TYPE (op2));
2429 if (op3)
2431 dump_printf (MSG_NOTE, ",");
2432 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2433 TREE_TYPE (op3));
2436 if (op4)
2438 dump_printf (MSG_NOTE, ",");
2439 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2440 TREE_TYPE (op4));
2442 dump_printf (MSG_NOTE, "\n");
2445 return NULL;
2448 /* Check that it's ok to change the order of the computation.
2449 Generally, when vectorizing a reduction we change the order of the
2450 computation. This may change the behavior of the program in some
2451 cases, so we need to check that this is ok. One exception is when
2452 vectorizing an outer-loop: the inner-loop is executed sequentially,
2453 and therefore vectorizing reductions in the inner-loop during
2454 outer-loop vectorization is safe. */
2456 /* CHECKME: check for !flag_finite_math_only too? */
2457 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2458 && check_reduction)
2460 /* Changing the order of operations changes the semantics. */
2461 if (dump_enabled_p ())
2462 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2463 "reduction: unsafe fp math optimization: ");
2464 return NULL;
2466 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2467 && check_reduction)
2469 /* Changing the order of operations changes the semantics. */
2470 if (dump_enabled_p ())
2471 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2472 "reduction: unsafe int math optimization: ");
2473 return NULL;
2475 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2477 /* Changing the order of operations changes the semantics. */
2478 if (dump_enabled_p ())
2479 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2480 "reduction: unsafe fixed-point math optimization: ");
2481 return NULL;
2484 /* If we detected "res -= x[i]" earlier, rewrite it into
2485 "res += -x[i]" now. If this turns out to be useless reassoc
2486 will clean it up again. */
2487 if (orig_code == MINUS_EXPR)
2489 tree rhs = gimple_assign_rhs2 (def_stmt);
2490 tree negrhs = make_ssa_name (TREE_TYPE (rhs), NULL);
2491 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2492 rhs, NULL);
2493 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2494 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2495 loop_info, NULL));
2496 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2497 gimple_assign_set_rhs2 (def_stmt, negrhs);
2498 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2499 update_stmt (def_stmt);
2502 /* Reduction is safe. We're dealing with one of the following:
2503 1) integer arithmetic and no trapv
2504 2) floating point arithmetic, and special flags permit this optimization
2505 3) nested cycle (i.e., outer loop vectorization). */
2506 if (TREE_CODE (op1) == SSA_NAME)
2507 def1 = SSA_NAME_DEF_STMT (op1);
2509 if (TREE_CODE (op2) == SSA_NAME)
2510 def2 = SSA_NAME_DEF_STMT (op2);
2512 if (code != COND_EXPR
2513 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2515 if (dump_enabled_p ())
2516 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2517 return NULL;
2520 /* Check that one def is the reduction def, defined by PHI,
2521 the other def is either defined in the loop ("vect_internal_def"),
2522 or it's an induction (defined by a loop-header phi-node). */
2524 if (def2 && def2 == phi
2525 && (code == COND_EXPR
2526 || !def1 || gimple_nop_p (def1)
2527 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
2528 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2529 && (is_gimple_assign (def1)
2530 || is_gimple_call (def1)
2531 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2532 == vect_induction_def
2533 || (gimple_code (def1) == GIMPLE_PHI
2534 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2535 == vect_internal_def
2536 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2538 if (dump_enabled_p ())
2539 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2540 return def_stmt;
2543 if (def1 && def1 == phi
2544 && (code == COND_EXPR
2545 || !def2 || gimple_nop_p (def2)
2546 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
2547 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2548 && (is_gimple_assign (def2)
2549 || is_gimple_call (def2)
2550 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2551 == vect_induction_def
2552 || (gimple_code (def2) == GIMPLE_PHI
2553 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2554 == vect_internal_def
2555 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2557 if (check_reduction)
2559 /* Swap operands (just for simplicity - so that the rest of the code
2560 can assume that the reduction variable is always the last (second)
2561 argument). */
2562 if (dump_enabled_p ())
2563 report_vect_op (MSG_NOTE, def_stmt,
2564 "detected reduction: need to swap operands: ");
2566 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2567 gimple_assign_rhs2_ptr (def_stmt));
2569 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2570 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2572 else
2574 if (dump_enabled_p ())
2575 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2578 return def_stmt;
2581 /* Try to find SLP reduction chain. */
2582 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2584 if (dump_enabled_p ())
2585 report_vect_op (MSG_NOTE, def_stmt,
2586 "reduction: detected reduction chain: ");
2588 return def_stmt;
2591 if (dump_enabled_p ())
2592 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2593 "reduction: unknown pattern: ");
2595 return NULL;
2598 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2599 in-place. Arguments as there. */
2601 static gimple
2602 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2603 bool check_reduction, bool *double_reduc)
2605 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2606 double_reduc, false);
2609 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2610 in-place if it enables detection of more reductions. Arguments
2611 as there. */
2613 gimple
2614 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2615 bool check_reduction, bool *double_reduc)
2617 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2618 double_reduc, true);
2621 /* Calculate the cost of one scalar iteration of the loop. */
2623 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
2625 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2626 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2627 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2628 int innerloop_iters, i, stmt_cost;
2630 /* Count statements in scalar loop. Using this as scalar cost for a single
2631 iteration for now.
2633 TODO: Add outer loop support.
2635 TODO: Consider assigning different costs to different scalar
2636 statements. */
2638 /* FORNOW. */
2639 innerloop_iters = 1;
2640 if (loop->inner)
2641 innerloop_iters = 50; /* FIXME */
2643 for (i = 0; i < nbbs; i++)
2645 gimple_stmt_iterator si;
2646 basic_block bb = bbs[i];
2648 if (bb->loop_father == loop->inner)
2649 factor = innerloop_iters;
2650 else
2651 factor = 1;
2653 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2655 gimple stmt = gsi_stmt (si);
2656 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2658 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2659 continue;
2661 /* Skip stmts that are not vectorized inside the loop. */
2662 if (stmt_info
2663 && !STMT_VINFO_RELEVANT_P (stmt_info)
2664 && (!STMT_VINFO_LIVE_P (stmt_info)
2665 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
2666 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
2667 continue;
2669 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2671 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2672 stmt_cost = vect_get_stmt_cost (scalar_load);
2673 else
2674 stmt_cost = vect_get_stmt_cost (scalar_store);
2676 else
2677 stmt_cost = vect_get_stmt_cost (scalar_stmt);
2679 scalar_single_iter_cost += stmt_cost * factor;
2682 return scalar_single_iter_cost;
2685 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2687 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2688 int *peel_iters_epilogue,
2689 int scalar_single_iter_cost,
2690 stmt_vector_for_cost *prologue_cost_vec,
2691 stmt_vector_for_cost *epilogue_cost_vec)
2693 int retval = 0;
2694 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2696 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2698 *peel_iters_epilogue = vf/2;
2699 if (dump_enabled_p ())
2700 dump_printf_loc (MSG_NOTE, vect_location,
2701 "cost model: epilogue peel iters set to vf/2 "
2702 "because loop iterations are unknown .\n");
2704 /* If peeled iterations are known but number of scalar loop
2705 iterations are unknown, count a taken branch per peeled loop. */
2706 retval = record_stmt_cost (prologue_cost_vec, 2, cond_branch_taken,
2707 NULL, 0, vect_prologue);
2709 else
2711 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2712 peel_iters_prologue = niters < peel_iters_prologue ?
2713 niters : peel_iters_prologue;
2714 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2715 /* If we need to peel for gaps, but no peeling is required, we have to
2716 peel VF iterations. */
2717 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2718 *peel_iters_epilogue = vf;
2721 if (peel_iters_prologue)
2722 retval += record_stmt_cost (prologue_cost_vec,
2723 peel_iters_prologue * scalar_single_iter_cost,
2724 scalar_stmt, NULL, 0, vect_prologue);
2725 if (*peel_iters_epilogue)
2726 retval += record_stmt_cost (epilogue_cost_vec,
2727 *peel_iters_epilogue * scalar_single_iter_cost,
2728 scalar_stmt, NULL, 0, vect_epilogue);
2729 return retval;
2732 /* Function vect_estimate_min_profitable_iters
2734 Return the number of iterations required for the vector version of the
2735 loop to be profitable relative to the cost of the scalar version of the
2736 loop. */
2738 static void
2739 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
2740 int *ret_min_profitable_niters,
2741 int *ret_min_profitable_estimate)
2743 int min_profitable_iters;
2744 int min_profitable_estimate;
2745 int peel_iters_prologue;
2746 int peel_iters_epilogue;
2747 unsigned vec_inside_cost = 0;
2748 int vec_outside_cost = 0;
2749 unsigned vec_prologue_cost = 0;
2750 unsigned vec_epilogue_cost = 0;
2751 int scalar_single_iter_cost = 0;
2752 int scalar_outside_cost = 0;
2753 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2754 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2755 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2757 /* Cost model disabled. */
2758 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
2760 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
2761 *ret_min_profitable_niters = 0;
2762 *ret_min_profitable_estimate = 0;
2763 return;
2766 /* Requires loop versioning tests to handle misalignment. */
2767 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2769 /* FIXME: Make cost depend on complexity of individual check. */
2770 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
2771 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2772 vect_prologue);
2773 dump_printf (MSG_NOTE,
2774 "cost model: Adding cost of checks for loop "
2775 "versioning to treat misalignment.\n");
2778 /* Requires loop versioning with alias checks. */
2779 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2781 /* FIXME: Make cost depend on complexity of individual check. */
2782 unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
2783 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2784 vect_prologue);
2785 dump_printf (MSG_NOTE,
2786 "cost model: Adding cost of checks for loop "
2787 "versioning aliasing.\n");
2790 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2791 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2792 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
2793 vect_prologue);
2795 /* Count statements in scalar loop. Using this as scalar cost for a single
2796 iteration for now.
2798 TODO: Add outer loop support.
2800 TODO: Consider assigning different costs to different scalar
2801 statements. */
2803 scalar_single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
2805 /* Add additional cost for the peeled instructions in prologue and epilogue
2806 loop.
2808 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2809 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2811 TODO: Build an expression that represents peel_iters for prologue and
2812 epilogue to be used in a run-time test. */
2814 if (npeel < 0)
2816 peel_iters_prologue = vf/2;
2817 dump_printf (MSG_NOTE, "cost model: "
2818 "prologue peel iters set to vf/2.\n");
2820 /* If peeling for alignment is unknown, loop bound of main loop becomes
2821 unknown. */
2822 peel_iters_epilogue = vf/2;
2823 dump_printf (MSG_NOTE, "cost model: "
2824 "epilogue peel iters set to vf/2 because "
2825 "peeling for alignment is unknown.\n");
2827 /* If peeled iterations are unknown, count a taken branch and a not taken
2828 branch per peeled loop. Even if scalar loop iterations are known,
2829 vector iterations are not known since peeled prologue iterations are
2830 not known. Hence guards remain the same. */
2831 (void) add_stmt_cost (target_cost_data, 2, cond_branch_taken,
2832 NULL, 0, vect_prologue);
2833 (void) add_stmt_cost (target_cost_data, 2, cond_branch_not_taken,
2834 NULL, 0, vect_prologue);
2835 /* FORNOW: Don't attempt to pass individual scalar instructions to
2836 the model; just assume linear cost for scalar iterations. */
2837 (void) add_stmt_cost (target_cost_data,
2838 peel_iters_prologue * scalar_single_iter_cost,
2839 scalar_stmt, NULL, 0, vect_prologue);
2840 (void) add_stmt_cost (target_cost_data,
2841 peel_iters_epilogue * scalar_single_iter_cost,
2842 scalar_stmt, NULL, 0, vect_epilogue);
2844 else
2846 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2847 stmt_info_for_cost *si;
2848 int j;
2849 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2851 prologue_cost_vec.create (2);
2852 epilogue_cost_vec.create (2);
2853 peel_iters_prologue = npeel;
2855 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
2856 &peel_iters_epilogue,
2857 scalar_single_iter_cost,
2858 &prologue_cost_vec,
2859 &epilogue_cost_vec);
2861 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
2863 struct _stmt_vec_info *stmt_info
2864 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2865 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2866 si->misalign, vect_prologue);
2869 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
2871 struct _stmt_vec_info *stmt_info
2872 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2873 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2874 si->misalign, vect_epilogue);
2877 prologue_cost_vec.release ();
2878 epilogue_cost_vec.release ();
2881 /* FORNOW: The scalar outside cost is incremented in one of the
2882 following ways:
2884 1. The vectorizer checks for alignment and aliasing and generates
2885 a condition that allows dynamic vectorization. A cost model
2886 check is ANDED with the versioning condition. Hence scalar code
2887 path now has the added cost of the versioning check.
2889 if (cost > th & versioning_check)
2890 jmp to vector code
2892 Hence run-time scalar is incremented by not-taken branch cost.
2894 2. The vectorizer then checks if a prologue is required. If the
2895 cost model check was not done before during versioning, it has to
2896 be done before the prologue check.
2898 if (cost <= th)
2899 prologue = scalar_iters
2900 if (prologue == 0)
2901 jmp to vector code
2902 else
2903 execute prologue
2904 if (prologue == num_iters)
2905 go to exit
2907 Hence the run-time scalar cost is incremented by a taken branch,
2908 plus a not-taken branch, plus a taken branch cost.
2910 3. The vectorizer then checks if an epilogue is required. If the
2911 cost model check was not done before during prologue check, it
2912 has to be done with the epilogue check.
2914 if (prologue == 0)
2915 jmp to vector code
2916 else
2917 execute prologue
2918 if (prologue == num_iters)
2919 go to exit
2920 vector code:
2921 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2922 jmp to epilogue
2924 Hence the run-time scalar cost should be incremented by 2 taken
2925 branches.
2927 TODO: The back end may reorder the BBS's differently and reverse
2928 conditions/branch directions. Change the estimates below to
2929 something more reasonable. */
2931 /* If the number of iterations is known and we do not do versioning, we can
2932 decide whether to vectorize at compile time. Hence the scalar version
2933 do not carry cost model guard costs. */
2934 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2935 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2936 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2938 /* Cost model check occurs at versioning. */
2939 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2940 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2941 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
2942 else
2944 /* Cost model check occurs at prologue generation. */
2945 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2946 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
2947 + vect_get_stmt_cost (cond_branch_not_taken);
2948 /* Cost model check occurs at epilogue generation. */
2949 else
2950 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
2954 /* Complete the target-specific cost calculations. */
2955 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
2956 &vec_inside_cost, &vec_epilogue_cost);
2958 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
2960 /* Calculate number of iterations required to make the vector version
2961 profitable, relative to the loop bodies only. The following condition
2962 must hold true:
2963 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2964 where
2965 SIC = scalar iteration cost, VIC = vector iteration cost,
2966 VOC = vector outside cost, VF = vectorization factor,
2967 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2968 SOC = scalar outside cost for run time cost model check. */
2970 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
2972 if (vec_outside_cost <= 0)
2973 min_profitable_iters = 1;
2974 else
2976 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2977 - vec_inside_cost * peel_iters_prologue
2978 - vec_inside_cost * peel_iters_epilogue)
2979 / ((scalar_single_iter_cost * vf)
2980 - vec_inside_cost);
2982 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2983 <= (((int) vec_inside_cost * min_profitable_iters)
2984 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
2985 min_profitable_iters++;
2988 /* vector version will never be profitable. */
2989 else
2991 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
2992 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
2993 "did not happen for a simd loop");
2995 if (dump_enabled_p ())
2996 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2997 "cost model: the vector iteration cost = %d "
2998 "divided by the scalar iteration cost = %d "
2999 "is greater or equal to the vectorization factor = %d"
3000 ".\n",
3001 vec_inside_cost, scalar_single_iter_cost, vf);
3002 *ret_min_profitable_niters = -1;
3003 *ret_min_profitable_estimate = -1;
3004 return;
3007 if (dump_enabled_p ())
3009 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3010 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3011 vec_inside_cost);
3012 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3013 vec_prologue_cost);
3014 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3015 vec_epilogue_cost);
3016 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3017 scalar_single_iter_cost);
3018 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3019 scalar_outside_cost);
3020 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3021 vec_outside_cost);
3022 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3023 peel_iters_prologue);
3024 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3025 peel_iters_epilogue);
3026 dump_printf (MSG_NOTE,
3027 " Calculated minimum iters for profitability: %d\n",
3028 min_profitable_iters);
3029 dump_printf (MSG_NOTE, "\n");
3032 min_profitable_iters =
3033 min_profitable_iters < vf ? vf : min_profitable_iters;
3035 /* Because the condition we create is:
3036 if (niters <= min_profitable_iters)
3037 then skip the vectorized loop. */
3038 min_profitable_iters--;
3040 if (dump_enabled_p ())
3041 dump_printf_loc (MSG_NOTE, vect_location,
3042 " Runtime profitability threshold = %d\n",
3043 min_profitable_iters);
3045 *ret_min_profitable_niters = min_profitable_iters;
3047 /* Calculate number of iterations required to make the vector version
3048 profitable, relative to the loop bodies only.
3050 Non-vectorized variant is SIC * niters and it must win over vector
3051 variant on the expected loop trip count. The following condition must hold true:
3052 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3054 if (vec_outside_cost <= 0)
3055 min_profitable_estimate = 1;
3056 else
3058 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3059 - vec_inside_cost * peel_iters_prologue
3060 - vec_inside_cost * peel_iters_epilogue)
3061 / ((scalar_single_iter_cost * vf)
3062 - vec_inside_cost);
3064 min_profitable_estimate --;
3065 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3066 if (dump_enabled_p ())
3067 dump_printf_loc (MSG_NOTE, vect_location,
3068 " Static estimate profitability threshold = %d\n",
3069 min_profitable_iters);
3071 *ret_min_profitable_estimate = min_profitable_estimate;
3075 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3076 functions. Design better to avoid maintenance issues. */
3078 /* Function vect_model_reduction_cost.
3080 Models cost for a reduction operation, including the vector ops
3081 generated within the strip-mine loop, the initial definition before
3082 the loop, and the epilogue code that must be generated. */
3084 static bool
3085 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3086 int ncopies)
3088 int prologue_cost = 0, epilogue_cost = 0;
3089 enum tree_code code;
3090 optab optab;
3091 tree vectype;
3092 gimple stmt, orig_stmt;
3093 tree reduction_op;
3094 enum machine_mode mode;
3095 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3096 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3097 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3099 /* Cost of reduction op inside loop. */
3100 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3101 stmt_info, 0, vect_body);
3102 stmt = STMT_VINFO_STMT (stmt_info);
3104 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3106 case GIMPLE_SINGLE_RHS:
3107 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
3108 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
3109 break;
3110 case GIMPLE_UNARY_RHS:
3111 reduction_op = gimple_assign_rhs1 (stmt);
3112 break;
3113 case GIMPLE_BINARY_RHS:
3114 reduction_op = gimple_assign_rhs2 (stmt);
3115 break;
3116 case GIMPLE_TERNARY_RHS:
3117 reduction_op = gimple_assign_rhs3 (stmt);
3118 break;
3119 default:
3120 gcc_unreachable ();
3123 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3124 if (!vectype)
3126 if (dump_enabled_p ())
3128 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3129 "unsupported data-type ");
3130 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3131 TREE_TYPE (reduction_op));
3132 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3134 return false;
3137 mode = TYPE_MODE (vectype);
3138 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3140 if (!orig_stmt)
3141 orig_stmt = STMT_VINFO_STMT (stmt_info);
3143 code = gimple_assign_rhs_code (orig_stmt);
3145 /* Add in cost for initial definition. */
3146 prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
3147 stmt_info, 0, vect_prologue);
3149 /* Determine cost of epilogue code.
3151 We have a reduction operator that will reduce the vector in one statement.
3152 Also requires scalar extract. */
3154 if (!nested_in_vect_loop_p (loop, orig_stmt))
3156 if (reduc_code != ERROR_MARK)
3158 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3159 stmt_info, 0, vect_epilogue);
3160 epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
3161 stmt_info, 0, vect_epilogue);
3163 else
3165 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3166 tree bitsize =
3167 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3168 int element_bitsize = tree_to_uhwi (bitsize);
3169 int nelements = vec_size_in_bits / element_bitsize;
3171 optab = optab_for_tree_code (code, vectype, optab_default);
3173 /* We have a whole vector shift available. */
3174 if (VECTOR_MODE_P (mode)
3175 && optab_handler (optab, mode) != CODE_FOR_nothing
3176 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3178 /* Final reduction via vector shifts and the reduction operator.
3179 Also requires scalar extract. */
3180 epilogue_cost += add_stmt_cost (target_cost_data,
3181 exact_log2 (nelements) * 2,
3182 vector_stmt, stmt_info, 0,
3183 vect_epilogue);
3184 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3185 vec_to_scalar, stmt_info, 0,
3186 vect_epilogue);
3188 else
3189 /* Use extracts and reduction op for final reduction. For N
3190 elements, we have N extracts and N-1 reduction ops. */
3191 epilogue_cost += add_stmt_cost (target_cost_data,
3192 nelements + nelements - 1,
3193 vector_stmt, stmt_info, 0,
3194 vect_epilogue);
3198 if (dump_enabled_p ())
3199 dump_printf (MSG_NOTE,
3200 "vect_model_reduction_cost: inside_cost = %d, "
3201 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3202 prologue_cost, epilogue_cost);
3204 return true;
3208 /* Function vect_model_induction_cost.
3210 Models cost for induction operations. */
3212 static void
3213 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3215 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3216 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3217 unsigned inside_cost, prologue_cost;
3219 /* loop cost for vec_loop. */
3220 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3221 stmt_info, 0, vect_body);
3223 /* prologue cost for vec_init and vec_step. */
3224 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3225 stmt_info, 0, vect_prologue);
3227 if (dump_enabled_p ())
3228 dump_printf_loc (MSG_NOTE, vect_location,
3229 "vect_model_induction_cost: inside_cost = %d, "
3230 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3234 /* Function get_initial_def_for_induction
3236 Input:
3237 STMT - a stmt that performs an induction operation in the loop.
3238 IV_PHI - the initial value of the induction variable
3240 Output:
3241 Return a vector variable, initialized with the first VF values of
3242 the induction variable. E.g., for an iv with IV_PHI='X' and
3243 evolution S, for a vector of 4 units, we want to return:
3244 [X, X + S, X + 2*S, X + 3*S]. */
3246 static tree
3247 get_initial_def_for_induction (gimple iv_phi)
3249 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3250 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3251 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3252 tree vectype;
3253 int nunits;
3254 edge pe = loop_preheader_edge (loop);
3255 struct loop *iv_loop;
3256 basic_block new_bb;
3257 tree new_vec, vec_init, vec_step, t;
3258 tree new_var;
3259 tree new_name;
3260 gimple init_stmt, induction_phi, new_stmt;
3261 tree induc_def, vec_def, vec_dest;
3262 tree init_expr, step_expr;
3263 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3264 int i;
3265 int ncopies;
3266 tree expr;
3267 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3268 bool nested_in_vect_loop = false;
3269 gimple_seq stmts = NULL;
3270 imm_use_iterator imm_iter;
3271 use_operand_p use_p;
3272 gimple exit_phi;
3273 edge latch_e;
3274 tree loop_arg;
3275 gimple_stmt_iterator si;
3276 basic_block bb = gimple_bb (iv_phi);
3277 tree stepvectype;
3278 tree resvectype;
3280 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3281 if (nested_in_vect_loop_p (loop, iv_phi))
3283 nested_in_vect_loop = true;
3284 iv_loop = loop->inner;
3286 else
3287 iv_loop = loop;
3288 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3290 latch_e = loop_latch_edge (iv_loop);
3291 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3293 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
3294 gcc_assert (step_expr != NULL_TREE);
3296 pe = loop_preheader_edge (iv_loop);
3297 init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3298 loop_preheader_edge (iv_loop));
3300 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3301 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3302 gcc_assert (vectype);
3303 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3304 ncopies = vf / nunits;
3306 gcc_assert (phi_info);
3307 gcc_assert (ncopies >= 1);
3309 /* Convert the step to the desired type. */
3310 step_expr = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3311 step_expr),
3312 &stmts, true, NULL_TREE);
3313 if (stmts)
3315 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3316 gcc_assert (!new_bb);
3319 /* Find the first insertion point in the BB. */
3320 si = gsi_after_labels (bb);
3322 /* Create the vector that holds the initial_value of the induction. */
3323 if (nested_in_vect_loop)
3325 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3326 been created during vectorization of previous stmts. We obtain it
3327 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3328 vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi, NULL);
3329 /* If the initial value is not of proper type, convert it. */
3330 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3332 new_stmt = gimple_build_assign_with_ops
3333 (VIEW_CONVERT_EXPR,
3334 vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_"),
3335 build1 (VIEW_CONVERT_EXPR, vectype, vec_init), NULL_TREE);
3336 vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3337 gimple_assign_set_lhs (new_stmt, vec_init);
3338 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3339 new_stmt);
3340 gcc_assert (!new_bb);
3341 set_vinfo_for_stmt (new_stmt,
3342 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3345 else
3347 vec<constructor_elt, va_gc> *v;
3349 /* iv_loop is the loop to be vectorized. Create:
3350 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3351 new_var = vect_get_new_vect_var (TREE_TYPE (vectype),
3352 vect_scalar_var, "var_");
3353 new_name = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3354 init_expr),
3355 &stmts, false, new_var);
3356 if (stmts)
3358 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3359 gcc_assert (!new_bb);
3362 vec_alloc (v, nunits);
3363 bool constant_p = is_gimple_min_invariant (new_name);
3364 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3365 for (i = 1; i < nunits; i++)
3367 /* Create: new_name_i = new_name + step_expr */
3368 new_name = fold_build2 (PLUS_EXPR, TREE_TYPE (new_name),
3369 new_name, step_expr);
3370 if (!is_gimple_min_invariant (new_name))
3372 init_stmt = gimple_build_assign (new_var, new_name);
3373 new_name = make_ssa_name (new_var, init_stmt);
3374 gimple_assign_set_lhs (init_stmt, new_name);
3375 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3376 gcc_assert (!new_bb);
3377 if (dump_enabled_p ())
3379 dump_printf_loc (MSG_NOTE, vect_location,
3380 "created new init_stmt: ");
3381 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
3382 dump_printf (MSG_NOTE, "\n");
3384 constant_p = false;
3386 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3388 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3389 if (constant_p)
3390 new_vec = build_vector_from_ctor (vectype, v);
3391 else
3392 new_vec = build_constructor (vectype, v);
3393 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3397 /* Create the vector that holds the step of the induction. */
3398 if (nested_in_vect_loop)
3399 /* iv_loop is nested in the loop to be vectorized. Generate:
3400 vec_step = [S, S, S, S] */
3401 new_name = step_expr;
3402 else
3404 /* iv_loop is the loop to be vectorized. Generate:
3405 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3406 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3408 expr = build_int_cst (integer_type_node, vf);
3409 expr = fold_convert (TREE_TYPE (step_expr), expr);
3411 else
3412 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3413 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3414 expr, step_expr);
3415 if (TREE_CODE (step_expr) == SSA_NAME)
3416 new_name = vect_init_vector (iv_phi, new_name,
3417 TREE_TYPE (step_expr), NULL);
3420 t = unshare_expr (new_name);
3421 gcc_assert (CONSTANT_CLASS_P (new_name)
3422 || TREE_CODE (new_name) == SSA_NAME);
3423 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3424 gcc_assert (stepvectype);
3425 new_vec = build_vector_from_val (stepvectype, t);
3426 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3429 /* Create the following def-use cycle:
3430 loop prolog:
3431 vec_init = ...
3432 vec_step = ...
3433 loop:
3434 vec_iv = PHI <vec_init, vec_loop>
3436 STMT
3438 vec_loop = vec_iv + vec_step; */
3440 /* Create the induction-phi that defines the induction-operand. */
3441 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3442 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3443 set_vinfo_for_stmt (induction_phi,
3444 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3445 induc_def = PHI_RESULT (induction_phi);
3447 /* Create the iv update inside the loop */
3448 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3449 induc_def, vec_step);
3450 vec_def = make_ssa_name (vec_dest, new_stmt);
3451 gimple_assign_set_lhs (new_stmt, vec_def);
3452 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3453 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3454 NULL));
3456 /* Set the arguments of the phi node: */
3457 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3458 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3459 UNKNOWN_LOCATION);
3462 /* In case that vectorization factor (VF) is bigger than the number
3463 of elements that we can fit in a vectype (nunits), we have to generate
3464 more than one vector stmt - i.e - we need to "unroll" the
3465 vector stmt by a factor VF/nunits. For more details see documentation
3466 in vectorizable_operation. */
3468 if (ncopies > 1)
3470 stmt_vec_info prev_stmt_vinfo;
3471 /* FORNOW. This restriction should be relaxed. */
3472 gcc_assert (!nested_in_vect_loop);
3474 /* Create the vector that holds the step of the induction. */
3475 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3477 expr = build_int_cst (integer_type_node, nunits);
3478 expr = fold_convert (TREE_TYPE (step_expr), expr);
3480 else
3481 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3482 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3483 expr, step_expr);
3484 if (TREE_CODE (step_expr) == SSA_NAME)
3485 new_name = vect_init_vector (iv_phi, new_name,
3486 TREE_TYPE (step_expr), NULL);
3487 t = unshare_expr (new_name);
3488 gcc_assert (CONSTANT_CLASS_P (new_name)
3489 || TREE_CODE (new_name) == SSA_NAME);
3490 new_vec = build_vector_from_val (stepvectype, t);
3491 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3493 vec_def = induc_def;
3494 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3495 for (i = 1; i < ncopies; i++)
3497 /* vec_i = vec_prev + vec_step */
3498 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3499 vec_def, vec_step);
3500 vec_def = make_ssa_name (vec_dest, new_stmt);
3501 gimple_assign_set_lhs (new_stmt, vec_def);
3503 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3504 if (!useless_type_conversion_p (resvectype, vectype))
3506 new_stmt = gimple_build_assign_with_ops
3507 (VIEW_CONVERT_EXPR,
3508 vect_get_new_vect_var (resvectype, vect_simple_var,
3509 "vec_iv_"),
3510 build1 (VIEW_CONVERT_EXPR, resvectype,
3511 gimple_assign_lhs (new_stmt)), NULL_TREE);
3512 gimple_assign_set_lhs (new_stmt,
3513 make_ssa_name
3514 (gimple_assign_lhs (new_stmt), new_stmt));
3515 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3517 set_vinfo_for_stmt (new_stmt,
3518 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3519 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3520 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3524 if (nested_in_vect_loop)
3526 /* Find the loop-closed exit-phi of the induction, and record
3527 the final vector of induction results: */
3528 exit_phi = NULL;
3529 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3531 gimple use_stmt = USE_STMT (use_p);
3532 if (is_gimple_debug (use_stmt))
3533 continue;
3535 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
3537 exit_phi = use_stmt;
3538 break;
3541 if (exit_phi)
3543 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3544 /* FORNOW. Currently not supporting the case that an inner-loop induction
3545 is not used in the outer-loop (i.e. only outside the outer-loop). */
3546 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3547 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3549 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3550 if (dump_enabled_p ())
3552 dump_printf_loc (MSG_NOTE, vect_location,
3553 "vector of inductions after inner-loop:");
3554 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3555 dump_printf (MSG_NOTE, "\n");
3561 if (dump_enabled_p ())
3563 dump_printf_loc (MSG_NOTE, vect_location,
3564 "transform induction: created def-use cycle: ");
3565 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3566 dump_printf (MSG_NOTE, "\n");
3567 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3568 SSA_NAME_DEF_STMT (vec_def), 0);
3569 dump_printf (MSG_NOTE, "\n");
3572 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3573 if (!useless_type_conversion_p (resvectype, vectype))
3575 new_stmt = gimple_build_assign_with_ops
3576 (VIEW_CONVERT_EXPR,
3577 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3578 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3579 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3580 gimple_assign_set_lhs (new_stmt, induc_def);
3581 si = gsi_after_labels (bb);
3582 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3583 set_vinfo_for_stmt (new_stmt,
3584 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3585 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3586 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3589 return induc_def;
3593 /* Function get_initial_def_for_reduction
3595 Input:
3596 STMT - a stmt that performs a reduction operation in the loop.
3597 INIT_VAL - the initial value of the reduction variable
3599 Output:
3600 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3601 of the reduction (used for adjusting the epilog - see below).
3602 Return a vector variable, initialized according to the operation that STMT
3603 performs. This vector will be used as the initial value of the
3604 vector of partial results.
3606 Option1 (adjust in epilog): Initialize the vector as follows:
3607 add/bit or/xor: [0,0,...,0,0]
3608 mult/bit and: [1,1,...,1,1]
3609 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3610 and when necessary (e.g. add/mult case) let the caller know
3611 that it needs to adjust the result by init_val.
3613 Option2: Initialize the vector as follows:
3614 add/bit or/xor: [init_val,0,0,...,0]
3615 mult/bit and: [init_val,1,1,...,1]
3616 min/max/cond_expr: [init_val,init_val,...,init_val]
3617 and no adjustments are needed.
3619 For example, for the following code:
3621 s = init_val;
3622 for (i=0;i<n;i++)
3623 s = s + a[i];
3625 STMT is 's = s + a[i]', and the reduction variable is 's'.
3626 For a vector of 4 units, we want to return either [0,0,0,init_val],
3627 or [0,0,0,0] and let the caller know that it needs to adjust
3628 the result at the end by 'init_val'.
3630 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3631 initialization vector is simpler (same element in all entries), if
3632 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3634 A cost model should help decide between these two schemes. */
3636 tree
3637 get_initial_def_for_reduction (gimple stmt, tree init_val,
3638 tree *adjustment_def)
3640 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3641 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3642 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3643 tree scalar_type = TREE_TYPE (init_val);
3644 tree vectype = get_vectype_for_scalar_type (scalar_type);
3645 int nunits;
3646 enum tree_code code = gimple_assign_rhs_code (stmt);
3647 tree def_for_init;
3648 tree init_def;
3649 tree *elts;
3650 int i;
3651 bool nested_in_vect_loop = false;
3652 tree init_value;
3653 REAL_VALUE_TYPE real_init_val = dconst0;
3654 int int_init_val = 0;
3655 gimple def_stmt = NULL;
3657 gcc_assert (vectype);
3658 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3660 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3661 || SCALAR_FLOAT_TYPE_P (scalar_type));
3663 if (nested_in_vect_loop_p (loop, stmt))
3664 nested_in_vect_loop = true;
3665 else
3666 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3668 /* In case of double reduction we only create a vector variable to be put
3669 in the reduction phi node. The actual statement creation is done in
3670 vect_create_epilog_for_reduction. */
3671 if (adjustment_def && nested_in_vect_loop
3672 && TREE_CODE (init_val) == SSA_NAME
3673 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3674 && gimple_code (def_stmt) == GIMPLE_PHI
3675 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3676 && vinfo_for_stmt (def_stmt)
3677 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3678 == vect_double_reduction_def)
3680 *adjustment_def = NULL;
3681 return vect_create_destination_var (init_val, vectype);
3684 if (TREE_CONSTANT (init_val))
3686 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3687 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3688 else
3689 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3691 else
3692 init_value = init_val;
3694 switch (code)
3696 case WIDEN_SUM_EXPR:
3697 case DOT_PROD_EXPR:
3698 case SAD_EXPR:
3699 case PLUS_EXPR:
3700 case MINUS_EXPR:
3701 case BIT_IOR_EXPR:
3702 case BIT_XOR_EXPR:
3703 case MULT_EXPR:
3704 case BIT_AND_EXPR:
3705 /* ADJUSMENT_DEF is NULL when called from
3706 vect_create_epilog_for_reduction to vectorize double reduction. */
3707 if (adjustment_def)
3709 if (nested_in_vect_loop)
3710 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3711 NULL);
3712 else
3713 *adjustment_def = init_val;
3716 if (code == MULT_EXPR)
3718 real_init_val = dconst1;
3719 int_init_val = 1;
3722 if (code == BIT_AND_EXPR)
3723 int_init_val = -1;
3725 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3726 def_for_init = build_real (scalar_type, real_init_val);
3727 else
3728 def_for_init = build_int_cst (scalar_type, int_init_val);
3730 /* Create a vector of '0' or '1' except the first element. */
3731 elts = XALLOCAVEC (tree, nunits);
3732 for (i = nunits - 2; i >= 0; --i)
3733 elts[i + 1] = def_for_init;
3735 /* Option1: the first element is '0' or '1' as well. */
3736 if (adjustment_def)
3738 elts[0] = def_for_init;
3739 init_def = build_vector (vectype, elts);
3740 break;
3743 /* Option2: the first element is INIT_VAL. */
3744 elts[0] = init_val;
3745 if (TREE_CONSTANT (init_val))
3746 init_def = build_vector (vectype, elts);
3747 else
3749 vec<constructor_elt, va_gc> *v;
3750 vec_alloc (v, nunits);
3751 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
3752 for (i = 1; i < nunits; ++i)
3753 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
3754 init_def = build_constructor (vectype, v);
3757 break;
3759 case MIN_EXPR:
3760 case MAX_EXPR:
3761 case COND_EXPR:
3762 if (adjustment_def)
3764 *adjustment_def = NULL_TREE;
3765 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3766 break;
3769 init_def = build_vector_from_val (vectype, init_value);
3770 break;
3772 default:
3773 gcc_unreachable ();
3776 return init_def;
3780 /* Function vect_create_epilog_for_reduction
3782 Create code at the loop-epilog to finalize the result of a reduction
3783 computation.
3785 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3786 reduction statements.
3787 STMT is the scalar reduction stmt that is being vectorized.
3788 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3789 number of elements that we can fit in a vectype (nunits). In this case
3790 we have to generate more than one vector stmt - i.e - we need to "unroll"
3791 the vector stmt by a factor VF/nunits. For more details see documentation
3792 in vectorizable_operation.
3793 REDUC_CODE is the tree-code for the epilog reduction.
3794 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3795 computation.
3796 REDUC_INDEX is the index of the operand in the right hand side of the
3797 statement that is defined by REDUCTION_PHI.
3798 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3799 SLP_NODE is an SLP node containing a group of reduction statements. The
3800 first one in this group is STMT.
3802 This function:
3803 1. Creates the reduction def-use cycles: sets the arguments for
3804 REDUCTION_PHIS:
3805 The loop-entry argument is the vectorized initial-value of the reduction.
3806 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3807 sums.
3808 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3809 by applying the operation specified by REDUC_CODE if available, or by
3810 other means (whole-vector shifts or a scalar loop).
3811 The function also creates a new phi node at the loop exit to preserve
3812 loop-closed form, as illustrated below.
3814 The flow at the entry to this function:
3816 loop:
3817 vec_def = phi <null, null> # REDUCTION_PHI
3818 VECT_DEF = vector_stmt # vectorized form of STMT
3819 s_loop = scalar_stmt # (scalar) STMT
3820 loop_exit:
3821 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3822 use <s_out0>
3823 use <s_out0>
3825 The above is transformed by this function into:
3827 loop:
3828 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3829 VECT_DEF = vector_stmt # vectorized form of STMT
3830 s_loop = scalar_stmt # (scalar) STMT
3831 loop_exit:
3832 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3833 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3834 v_out2 = reduce <v_out1>
3835 s_out3 = extract_field <v_out2, 0>
3836 s_out4 = adjust_result <s_out3>
3837 use <s_out4>
3838 use <s_out4>
3841 static void
3842 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
3843 int ncopies, enum tree_code reduc_code,
3844 vec<gimple> reduction_phis,
3845 int reduc_index, bool double_reduc,
3846 slp_tree slp_node)
3848 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3849 stmt_vec_info prev_phi_info;
3850 tree vectype;
3851 enum machine_mode mode;
3852 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3853 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3854 basic_block exit_bb;
3855 tree scalar_dest;
3856 tree scalar_type;
3857 gimple new_phi = NULL, phi;
3858 gimple_stmt_iterator exit_gsi;
3859 tree vec_dest;
3860 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3861 gimple epilog_stmt = NULL;
3862 enum tree_code code = gimple_assign_rhs_code (stmt);
3863 gimple exit_phi;
3864 tree bitsize, bitpos;
3865 tree adjustment_def = NULL;
3866 tree vec_initial_def = NULL;
3867 tree reduction_op, expr, def;
3868 tree orig_name, scalar_result;
3869 imm_use_iterator imm_iter, phi_imm_iter;
3870 use_operand_p use_p, phi_use_p;
3871 bool extract_scalar_result = false;
3872 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3873 bool nested_in_vect_loop = false;
3874 auto_vec<gimple> new_phis;
3875 auto_vec<gimple> inner_phis;
3876 enum vect_def_type dt = vect_unknown_def_type;
3877 int j, i;
3878 auto_vec<tree> scalar_results;
3879 unsigned int group_size = 1, k, ratio;
3880 auto_vec<tree> vec_initial_defs;
3881 auto_vec<gimple> phis;
3882 bool slp_reduc = false;
3883 tree new_phi_result;
3884 gimple inner_phi = NULL;
3886 if (slp_node)
3887 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
3889 if (nested_in_vect_loop_p (loop, stmt))
3891 outer_loop = loop;
3892 loop = loop->inner;
3893 nested_in_vect_loop = true;
3894 gcc_assert (!slp_node);
3897 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3899 case GIMPLE_SINGLE_RHS:
3900 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3901 == ternary_op);
3902 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3903 break;
3904 case GIMPLE_UNARY_RHS:
3905 reduction_op = gimple_assign_rhs1 (stmt);
3906 break;
3907 case GIMPLE_BINARY_RHS:
3908 reduction_op = reduc_index ?
3909 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3910 break;
3911 case GIMPLE_TERNARY_RHS:
3912 reduction_op = gimple_op (stmt, reduc_index + 1);
3913 break;
3914 default:
3915 gcc_unreachable ();
3918 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3919 gcc_assert (vectype);
3920 mode = TYPE_MODE (vectype);
3922 /* 1. Create the reduction def-use cycle:
3923 Set the arguments of REDUCTION_PHIS, i.e., transform
3925 loop:
3926 vec_def = phi <null, null> # REDUCTION_PHI
3927 VECT_DEF = vector_stmt # vectorized form of STMT
3930 into:
3932 loop:
3933 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3934 VECT_DEF = vector_stmt # vectorized form of STMT
3937 (in case of SLP, do it for all the phis). */
3939 /* Get the loop-entry arguments. */
3940 if (slp_node)
3941 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
3942 NULL, slp_node, reduc_index);
3943 else
3945 vec_initial_defs.create (1);
3946 /* For the case of reduction, vect_get_vec_def_for_operand returns
3947 the scalar def before the loop, that defines the initial value
3948 of the reduction variable. */
3949 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3950 &adjustment_def);
3951 vec_initial_defs.quick_push (vec_initial_def);
3954 /* Set phi nodes arguments. */
3955 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
3957 tree vec_init_def, def;
3958 gimple_seq stmts;
3959 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
3960 true, NULL_TREE);
3961 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
3962 def = vect_defs[i];
3963 for (j = 0; j < ncopies; j++)
3965 /* Set the loop-entry arg of the reduction-phi. */
3966 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3967 UNKNOWN_LOCATION);
3969 /* Set the loop-latch arg for the reduction-phi. */
3970 if (j > 0)
3971 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3973 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3975 if (dump_enabled_p ())
3977 dump_printf_loc (MSG_NOTE, vect_location,
3978 "transform reduction: created def-use cycle: ");
3979 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
3980 dump_printf (MSG_NOTE, "\n");
3981 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
3982 dump_printf (MSG_NOTE, "\n");
3985 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3989 /* 2. Create epilog code.
3990 The reduction epilog code operates across the elements of the vector
3991 of partial results computed by the vectorized loop.
3992 The reduction epilog code consists of:
3994 step 1: compute the scalar result in a vector (v_out2)
3995 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3996 step 3: adjust the scalar result (s_out3) if needed.
3998 Step 1 can be accomplished using one the following three schemes:
3999 (scheme 1) using reduc_code, if available.
4000 (scheme 2) using whole-vector shifts, if available.
4001 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4002 combined.
4004 The overall epilog code looks like this:
4006 s_out0 = phi <s_loop> # original EXIT_PHI
4007 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4008 v_out2 = reduce <v_out1> # step 1
4009 s_out3 = extract_field <v_out2, 0> # step 2
4010 s_out4 = adjust_result <s_out3> # step 3
4012 (step 3 is optional, and steps 1 and 2 may be combined).
4013 Lastly, the uses of s_out0 are replaced by s_out4. */
4016 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4017 v_out1 = phi <VECT_DEF>
4018 Store them in NEW_PHIS. */
4020 exit_bb = single_exit (loop)->dest;
4021 prev_phi_info = NULL;
4022 new_phis.create (vect_defs.length ());
4023 FOR_EACH_VEC_ELT (vect_defs, i, def)
4025 for (j = 0; j < ncopies; j++)
4027 tree new_def = copy_ssa_name (def, NULL);
4028 phi = create_phi_node (new_def, exit_bb);
4029 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
4030 if (j == 0)
4031 new_phis.quick_push (phi);
4032 else
4034 def = vect_get_vec_def_for_stmt_copy (dt, def);
4035 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4038 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4039 prev_phi_info = vinfo_for_stmt (phi);
4043 /* The epilogue is created for the outer-loop, i.e., for the loop being
4044 vectorized. Create exit phis for the outer loop. */
4045 if (double_reduc)
4047 loop = outer_loop;
4048 exit_bb = single_exit (loop)->dest;
4049 inner_phis.create (vect_defs.length ());
4050 FOR_EACH_VEC_ELT (new_phis, i, phi)
4052 tree new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
4053 gimple outer_phi = create_phi_node (new_result, exit_bb);
4054 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4055 PHI_RESULT (phi));
4056 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4057 loop_vinfo, NULL));
4058 inner_phis.quick_push (phi);
4059 new_phis[i] = outer_phi;
4060 prev_phi_info = vinfo_for_stmt (outer_phi);
4061 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4063 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4064 new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
4065 outer_phi = create_phi_node (new_result, exit_bb);
4066 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4067 PHI_RESULT (phi));
4068 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4069 loop_vinfo, NULL));
4070 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4071 prev_phi_info = vinfo_for_stmt (outer_phi);
4076 exit_gsi = gsi_after_labels (exit_bb);
4078 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4079 (i.e. when reduc_code is not available) and in the final adjustment
4080 code (if needed). Also get the original scalar reduction variable as
4081 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4082 represents a reduction pattern), the tree-code and scalar-def are
4083 taken from the original stmt that the pattern-stmt (STMT) replaces.
4084 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4085 are taken from STMT. */
4087 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4088 if (!orig_stmt)
4090 /* Regular reduction */
4091 orig_stmt = stmt;
4093 else
4095 /* Reduction pattern */
4096 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4097 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4098 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4101 code = gimple_assign_rhs_code (orig_stmt);
4102 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4103 partial results are added and not subtracted. */
4104 if (code == MINUS_EXPR)
4105 code = PLUS_EXPR;
4107 scalar_dest = gimple_assign_lhs (orig_stmt);
4108 scalar_type = TREE_TYPE (scalar_dest);
4109 scalar_results.create (group_size);
4110 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4111 bitsize = TYPE_SIZE (scalar_type);
4113 /* In case this is a reduction in an inner-loop while vectorizing an outer
4114 loop - we don't need to extract a single scalar result at the end of the
4115 inner-loop (unless it is double reduction, i.e., the use of reduction is
4116 outside the outer-loop). The final vector of partial results will be used
4117 in the vectorized outer-loop, or reduced to a scalar result at the end of
4118 the outer-loop. */
4119 if (nested_in_vect_loop && !double_reduc)
4120 goto vect_finalize_reduction;
4122 /* SLP reduction without reduction chain, e.g.,
4123 # a1 = phi <a2, a0>
4124 # b1 = phi <b2, b0>
4125 a2 = operation (a1)
4126 b2 = operation (b1) */
4127 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4129 /* In case of reduction chain, e.g.,
4130 # a1 = phi <a3, a0>
4131 a2 = operation (a1)
4132 a3 = operation (a2),
4134 we may end up with more than one vector result. Here we reduce them to
4135 one vector. */
4136 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4138 tree first_vect = PHI_RESULT (new_phis[0]);
4139 tree tmp;
4140 gimple new_vec_stmt = NULL;
4142 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4143 for (k = 1; k < new_phis.length (); k++)
4145 gimple next_phi = new_phis[k];
4146 tree second_vect = PHI_RESULT (next_phi);
4148 tmp = build2 (code, vectype, first_vect, second_vect);
4149 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4150 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4151 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4152 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4155 new_phi_result = first_vect;
4156 if (new_vec_stmt)
4158 new_phis.truncate (0);
4159 new_phis.safe_push (new_vec_stmt);
4162 else
4163 new_phi_result = PHI_RESULT (new_phis[0]);
4165 /* 2.3 Create the reduction code, using one of the three schemes described
4166 above. In SLP we simply need to extract all the elements from the
4167 vector (without reducing them), so we use scalar shifts. */
4168 if (reduc_code != ERROR_MARK && !slp_reduc)
4170 tree tmp;
4172 /*** Case 1: Create:
4173 v_out2 = reduc_expr <v_out1> */
4175 if (dump_enabled_p ())
4176 dump_printf_loc (MSG_NOTE, vect_location,
4177 "Reduce using direct vector reduction.\n");
4179 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4180 tmp = build1 (reduc_code, vectype, new_phi_result);
4181 epilog_stmt = gimple_build_assign (vec_dest, tmp);
4182 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4183 gimple_assign_set_lhs (epilog_stmt, new_temp);
4184 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4186 extract_scalar_result = true;
4188 else
4190 enum tree_code shift_code = ERROR_MARK;
4191 bool have_whole_vector_shift = true;
4192 int bit_offset;
4193 int element_bitsize = tree_to_uhwi (bitsize);
4194 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4195 tree vec_temp;
4197 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
4198 shift_code = VEC_RSHIFT_EXPR;
4199 else
4200 have_whole_vector_shift = false;
4202 /* Regardless of whether we have a whole vector shift, if we're
4203 emulating the operation via tree-vect-generic, we don't want
4204 to use it. Only the first round of the reduction is likely
4205 to still be profitable via emulation. */
4206 /* ??? It might be better to emit a reduction tree code here, so that
4207 tree-vect-generic can expand the first round via bit tricks. */
4208 if (!VECTOR_MODE_P (mode))
4209 have_whole_vector_shift = false;
4210 else
4212 optab optab = optab_for_tree_code (code, vectype, optab_default);
4213 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4214 have_whole_vector_shift = false;
4217 if (have_whole_vector_shift && !slp_reduc)
4219 /*** Case 2: Create:
4220 for (offset = VS/2; offset >= element_size; offset/=2)
4222 Create: va' = vec_shift <va, offset>
4223 Create: va = vop <va, va'>
4224 } */
4226 if (dump_enabled_p ())
4227 dump_printf_loc (MSG_NOTE, vect_location,
4228 "Reduce using vector shifts\n");
4230 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4231 new_temp = new_phi_result;
4232 for (bit_offset = vec_size_in_bits/2;
4233 bit_offset >= element_bitsize;
4234 bit_offset /= 2)
4236 tree bitpos = size_int (bit_offset);
4238 epilog_stmt = gimple_build_assign_with_ops (shift_code,
4239 vec_dest, new_temp, bitpos);
4240 new_name = make_ssa_name (vec_dest, epilog_stmt);
4241 gimple_assign_set_lhs (epilog_stmt, new_name);
4242 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4244 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
4245 new_name, new_temp);
4246 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4247 gimple_assign_set_lhs (epilog_stmt, new_temp);
4248 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4251 extract_scalar_result = true;
4253 else
4255 tree rhs;
4257 /*** Case 3: Create:
4258 s = extract_field <v_out2, 0>
4259 for (offset = element_size;
4260 offset < vector_size;
4261 offset += element_size;)
4263 Create: s' = extract_field <v_out2, offset>
4264 Create: s = op <s, s'> // For non SLP cases
4265 } */
4267 if (dump_enabled_p ())
4268 dump_printf_loc (MSG_NOTE, vect_location,
4269 "Reduce using scalar code.\n");
4271 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4272 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4274 if (gimple_code (new_phi) == GIMPLE_PHI)
4275 vec_temp = PHI_RESULT (new_phi);
4276 else
4277 vec_temp = gimple_assign_lhs (new_phi);
4278 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4279 bitsize_zero_node);
4280 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4281 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4282 gimple_assign_set_lhs (epilog_stmt, new_temp);
4283 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4285 /* In SLP we don't need to apply reduction operation, so we just
4286 collect s' values in SCALAR_RESULTS. */
4287 if (slp_reduc)
4288 scalar_results.safe_push (new_temp);
4290 for (bit_offset = element_bitsize;
4291 bit_offset < vec_size_in_bits;
4292 bit_offset += element_bitsize)
4294 tree bitpos = bitsize_int (bit_offset);
4295 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4296 bitsize, bitpos);
4298 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4299 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4300 gimple_assign_set_lhs (epilog_stmt, new_name);
4301 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4303 if (slp_reduc)
4305 /* In SLP we don't need to apply reduction operation, so
4306 we just collect s' values in SCALAR_RESULTS. */
4307 new_temp = new_name;
4308 scalar_results.safe_push (new_name);
4310 else
4312 epilog_stmt = gimple_build_assign_with_ops (code,
4313 new_scalar_dest, new_name, new_temp);
4314 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4315 gimple_assign_set_lhs (epilog_stmt, new_temp);
4316 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4321 /* The only case where we need to reduce scalar results in SLP, is
4322 unrolling. If the size of SCALAR_RESULTS is greater than
4323 GROUP_SIZE, we reduce them combining elements modulo
4324 GROUP_SIZE. */
4325 if (slp_reduc)
4327 tree res, first_res, new_res;
4328 gimple new_stmt;
4330 /* Reduce multiple scalar results in case of SLP unrolling. */
4331 for (j = group_size; scalar_results.iterate (j, &res);
4332 j++)
4334 first_res = scalar_results[j % group_size];
4335 new_stmt = gimple_build_assign_with_ops (code,
4336 new_scalar_dest, first_res, res);
4337 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4338 gimple_assign_set_lhs (new_stmt, new_res);
4339 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4340 scalar_results[j % group_size] = new_res;
4343 else
4344 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4345 scalar_results.safe_push (new_temp);
4347 extract_scalar_result = false;
4351 /* 2.4 Extract the final scalar result. Create:
4352 s_out3 = extract_field <v_out2, bitpos> */
4354 if (extract_scalar_result)
4356 tree rhs;
4358 if (dump_enabled_p ())
4359 dump_printf_loc (MSG_NOTE, vect_location,
4360 "extract scalar result\n");
4362 if (BYTES_BIG_ENDIAN)
4363 bitpos = size_binop (MULT_EXPR,
4364 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
4365 TYPE_SIZE (scalar_type));
4366 else
4367 bitpos = bitsize_zero_node;
4369 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
4370 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4371 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4372 gimple_assign_set_lhs (epilog_stmt, new_temp);
4373 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4374 scalar_results.safe_push (new_temp);
4377 vect_finalize_reduction:
4379 if (double_reduc)
4380 loop = loop->inner;
4382 /* 2.5 Adjust the final result by the initial value of the reduction
4383 variable. (When such adjustment is not needed, then
4384 'adjustment_def' is zero). For example, if code is PLUS we create:
4385 new_temp = loop_exit_def + adjustment_def */
4387 if (adjustment_def)
4389 gcc_assert (!slp_reduc);
4390 if (nested_in_vect_loop)
4392 new_phi = new_phis[0];
4393 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4394 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4395 new_dest = vect_create_destination_var (scalar_dest, vectype);
4397 else
4399 new_temp = scalar_results[0];
4400 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4401 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4402 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4405 epilog_stmt = gimple_build_assign (new_dest, expr);
4406 new_temp = make_ssa_name (new_dest, epilog_stmt);
4407 gimple_assign_set_lhs (epilog_stmt, new_temp);
4408 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4409 if (nested_in_vect_loop)
4411 set_vinfo_for_stmt (epilog_stmt,
4412 new_stmt_vec_info (epilog_stmt, loop_vinfo,
4413 NULL));
4414 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4415 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4417 if (!double_reduc)
4418 scalar_results.quick_push (new_temp);
4419 else
4420 scalar_results[0] = new_temp;
4422 else
4423 scalar_results[0] = new_temp;
4425 new_phis[0] = epilog_stmt;
4428 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4429 phis with new adjusted scalar results, i.e., replace use <s_out0>
4430 with use <s_out4>.
4432 Transform:
4433 loop_exit:
4434 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4435 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4436 v_out2 = reduce <v_out1>
4437 s_out3 = extract_field <v_out2, 0>
4438 s_out4 = adjust_result <s_out3>
4439 use <s_out0>
4440 use <s_out0>
4442 into:
4444 loop_exit:
4445 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4446 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4447 v_out2 = reduce <v_out1>
4448 s_out3 = extract_field <v_out2, 0>
4449 s_out4 = adjust_result <s_out3>
4450 use <s_out4>
4451 use <s_out4> */
4454 /* In SLP reduction chain we reduce vector results into one vector if
4455 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4456 the last stmt in the reduction chain, since we are looking for the loop
4457 exit phi node. */
4458 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4460 scalar_dest = gimple_assign_lhs (
4461 SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
4462 group_size = 1;
4465 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4466 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4467 need to match SCALAR_RESULTS with corresponding statements. The first
4468 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4469 the first vector stmt, etc.
4470 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4471 if (group_size > new_phis.length ())
4473 ratio = group_size / new_phis.length ();
4474 gcc_assert (!(group_size % new_phis.length ()));
4476 else
4477 ratio = 1;
4479 for (k = 0; k < group_size; k++)
4481 if (k % ratio == 0)
4483 epilog_stmt = new_phis[k / ratio];
4484 reduction_phi = reduction_phis[k / ratio];
4485 if (double_reduc)
4486 inner_phi = inner_phis[k / ratio];
4489 if (slp_reduc)
4491 gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4493 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4494 /* SLP statements can't participate in patterns. */
4495 gcc_assert (!orig_stmt);
4496 scalar_dest = gimple_assign_lhs (current_stmt);
4499 phis.create (3);
4500 /* Find the loop-closed-use at the loop exit of the original scalar
4501 result. (The reduction result is expected to have two immediate uses -
4502 one at the latch block, and one at the loop exit). */
4503 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4504 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
4505 && !is_gimple_debug (USE_STMT (use_p)))
4506 phis.safe_push (USE_STMT (use_p));
4508 /* While we expect to have found an exit_phi because of loop-closed-ssa
4509 form we can end up without one if the scalar cycle is dead. */
4511 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4513 if (outer_loop)
4515 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4516 gimple vect_phi;
4518 /* FORNOW. Currently not supporting the case that an inner-loop
4519 reduction is not used in the outer-loop (but only outside the
4520 outer-loop), unless it is double reduction. */
4521 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4522 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4523 || double_reduc);
4525 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4526 if (!double_reduc
4527 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4528 != vect_double_reduction_def)
4529 continue;
4531 /* Handle double reduction:
4533 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4534 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4535 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4536 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4538 At that point the regular reduction (stmt2 and stmt3) is
4539 already vectorized, as well as the exit phi node, stmt4.
4540 Here we vectorize the phi node of double reduction, stmt1, and
4541 update all relevant statements. */
4543 /* Go through all the uses of s2 to find double reduction phi
4544 node, i.e., stmt1 above. */
4545 orig_name = PHI_RESULT (exit_phi);
4546 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4548 stmt_vec_info use_stmt_vinfo;
4549 stmt_vec_info new_phi_vinfo;
4550 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4551 basic_block bb = gimple_bb (use_stmt);
4552 gimple use;
4554 /* Check that USE_STMT is really double reduction phi
4555 node. */
4556 if (gimple_code (use_stmt) != GIMPLE_PHI
4557 || gimple_phi_num_args (use_stmt) != 2
4558 || bb->loop_father != outer_loop)
4559 continue;
4560 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4561 if (!use_stmt_vinfo
4562 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4563 != vect_double_reduction_def)
4564 continue;
4566 /* Create vector phi node for double reduction:
4567 vs1 = phi <vs0, vs2>
4568 vs1 was created previously in this function by a call to
4569 vect_get_vec_def_for_operand and is stored in
4570 vec_initial_def;
4571 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4572 vs0 is created here. */
4574 /* Create vector phi node. */
4575 vect_phi = create_phi_node (vec_initial_def, bb);
4576 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4577 loop_vec_info_for_loop (outer_loop), NULL);
4578 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4580 /* Create vs0 - initial def of the double reduction phi. */
4581 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4582 loop_preheader_edge (outer_loop));
4583 init_def = get_initial_def_for_reduction (stmt,
4584 preheader_arg, NULL);
4585 vect_phi_init = vect_init_vector (use_stmt, init_def,
4586 vectype, NULL);
4588 /* Update phi node arguments with vs0 and vs2. */
4589 add_phi_arg (vect_phi, vect_phi_init,
4590 loop_preheader_edge (outer_loop),
4591 UNKNOWN_LOCATION);
4592 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
4593 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4594 if (dump_enabled_p ())
4596 dump_printf_loc (MSG_NOTE, vect_location,
4597 "created double reduction phi node: ");
4598 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
4599 dump_printf (MSG_NOTE, "\n");
4602 vect_phi_res = PHI_RESULT (vect_phi);
4604 /* Replace the use, i.e., set the correct vs1 in the regular
4605 reduction phi node. FORNOW, NCOPIES is always 1, so the
4606 loop is redundant. */
4607 use = reduction_phi;
4608 for (j = 0; j < ncopies; j++)
4610 edge pr_edge = loop_preheader_edge (loop);
4611 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4612 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4618 phis.release ();
4619 if (nested_in_vect_loop)
4621 if (double_reduc)
4622 loop = outer_loop;
4623 else
4624 continue;
4627 phis.create (3);
4628 /* Find the loop-closed-use at the loop exit of the original scalar
4629 result. (The reduction result is expected to have two immediate uses,
4630 one at the latch block, and one at the loop exit). For double
4631 reductions we are looking for exit phis of the outer loop. */
4632 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4634 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4636 if (!is_gimple_debug (USE_STMT (use_p)))
4637 phis.safe_push (USE_STMT (use_p));
4639 else
4641 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4643 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4645 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4647 if (!flow_bb_inside_loop_p (loop,
4648 gimple_bb (USE_STMT (phi_use_p)))
4649 && !is_gimple_debug (USE_STMT (phi_use_p)))
4650 phis.safe_push (USE_STMT (phi_use_p));
4656 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4658 /* Replace the uses: */
4659 orig_name = PHI_RESULT (exit_phi);
4660 scalar_result = scalar_results[k];
4661 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4662 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4663 SET_USE (use_p, scalar_result);
4666 phis.release ();
4671 /* Function vectorizable_reduction.
4673 Check if STMT performs a reduction operation that can be vectorized.
4674 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4675 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4676 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4678 This function also handles reduction idioms (patterns) that have been
4679 recognized in advance during vect_pattern_recog. In this case, STMT may be
4680 of this form:
4681 X = pattern_expr (arg0, arg1, ..., X)
4682 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4683 sequence that had been detected and replaced by the pattern-stmt (STMT).
4685 In some cases of reduction patterns, the type of the reduction variable X is
4686 different than the type of the other arguments of STMT.
4687 In such cases, the vectype that is used when transforming STMT into a vector
4688 stmt is different than the vectype that is used to determine the
4689 vectorization factor, because it consists of a different number of elements
4690 than the actual number of elements that are being operated upon in parallel.
4692 For example, consider an accumulation of shorts into an int accumulator.
4693 On some targets it's possible to vectorize this pattern operating on 8
4694 shorts at a time (hence, the vectype for purposes of determining the
4695 vectorization factor should be V8HI); on the other hand, the vectype that
4696 is used to create the vector form is actually V4SI (the type of the result).
4698 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4699 indicates what is the actual level of parallelism (V8HI in the example), so
4700 that the right vectorization factor would be derived. This vectype
4701 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4702 be used to create the vectorized stmt. The right vectype for the vectorized
4703 stmt is obtained from the type of the result X:
4704 get_vectype_for_scalar_type (TREE_TYPE (X))
4706 This means that, contrary to "regular" reductions (or "regular" stmts in
4707 general), the following equation:
4708 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4709 does *NOT* necessarily hold for reduction patterns. */
4711 bool
4712 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4713 gimple *vec_stmt, slp_tree slp_node)
4715 tree vec_dest;
4716 tree scalar_dest;
4717 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4718 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4719 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4720 tree vectype_in = NULL_TREE;
4721 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4722 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4723 enum tree_code code, orig_code, epilog_reduc_code;
4724 enum machine_mode vec_mode;
4725 int op_type;
4726 optab optab, reduc_optab;
4727 tree new_temp = NULL_TREE;
4728 tree def;
4729 gimple def_stmt;
4730 enum vect_def_type dt;
4731 gimple new_phi = NULL;
4732 tree scalar_type;
4733 bool is_simple_use;
4734 gimple orig_stmt;
4735 stmt_vec_info orig_stmt_info;
4736 tree expr = NULL_TREE;
4737 int i;
4738 int ncopies;
4739 int epilog_copies;
4740 stmt_vec_info prev_stmt_info, prev_phi_info;
4741 bool single_defuse_cycle = false;
4742 tree reduc_def = NULL_TREE;
4743 gimple new_stmt = NULL;
4744 int j;
4745 tree ops[3];
4746 bool nested_cycle = false, found_nested_cycle_def = false;
4747 gimple reduc_def_stmt = NULL;
4748 /* The default is that the reduction variable is the last in statement. */
4749 int reduc_index = 2;
4750 bool double_reduc = false, dummy;
4751 basic_block def_bb;
4752 struct loop * def_stmt_loop, *outer_loop = NULL;
4753 tree def_arg;
4754 gimple def_arg_stmt;
4755 auto_vec<tree> vec_oprnds0;
4756 auto_vec<tree> vec_oprnds1;
4757 auto_vec<tree> vect_defs;
4758 auto_vec<gimple> phis;
4759 int vec_num;
4760 tree def0, def1, tem, op0, op1 = NULL_TREE;
4762 /* In case of reduction chain we switch to the first stmt in the chain, but
4763 we don't update STMT_INFO, since only the last stmt is marked as reduction
4764 and has reduction properties. */
4765 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4766 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4768 if (nested_in_vect_loop_p (loop, stmt))
4770 outer_loop = loop;
4771 loop = loop->inner;
4772 nested_cycle = true;
4775 /* 1. Is vectorizable reduction? */
4776 /* Not supportable if the reduction variable is used in the loop, unless
4777 it's a reduction chain. */
4778 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4779 && !GROUP_FIRST_ELEMENT (stmt_info))
4780 return false;
4782 /* Reductions that are not used even in an enclosing outer-loop,
4783 are expected to be "live" (used out of the loop). */
4784 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4785 && !STMT_VINFO_LIVE_P (stmt_info))
4786 return false;
4788 /* Make sure it was already recognized as a reduction computation. */
4789 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4790 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4791 return false;
4793 /* 2. Has this been recognized as a reduction pattern?
4795 Check if STMT represents a pattern that has been recognized
4796 in earlier analysis stages. For stmts that represent a pattern,
4797 the STMT_VINFO_RELATED_STMT field records the last stmt in
4798 the original sequence that constitutes the pattern. */
4800 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4801 if (orig_stmt)
4803 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4804 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4805 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4808 /* 3. Check the operands of the operation. The first operands are defined
4809 inside the loop body. The last operand is the reduction variable,
4810 which is defined by the loop-header-phi. */
4812 gcc_assert (is_gimple_assign (stmt));
4814 /* Flatten RHS. */
4815 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4817 case GIMPLE_SINGLE_RHS:
4818 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4819 if (op_type == ternary_op)
4821 tree rhs = gimple_assign_rhs1 (stmt);
4822 ops[0] = TREE_OPERAND (rhs, 0);
4823 ops[1] = TREE_OPERAND (rhs, 1);
4824 ops[2] = TREE_OPERAND (rhs, 2);
4825 code = TREE_CODE (rhs);
4827 else
4828 return false;
4829 break;
4831 case GIMPLE_BINARY_RHS:
4832 code = gimple_assign_rhs_code (stmt);
4833 op_type = TREE_CODE_LENGTH (code);
4834 gcc_assert (op_type == binary_op);
4835 ops[0] = gimple_assign_rhs1 (stmt);
4836 ops[1] = gimple_assign_rhs2 (stmt);
4837 break;
4839 case GIMPLE_TERNARY_RHS:
4840 code = gimple_assign_rhs_code (stmt);
4841 op_type = TREE_CODE_LENGTH (code);
4842 gcc_assert (op_type == ternary_op);
4843 ops[0] = gimple_assign_rhs1 (stmt);
4844 ops[1] = gimple_assign_rhs2 (stmt);
4845 ops[2] = gimple_assign_rhs3 (stmt);
4846 break;
4848 case GIMPLE_UNARY_RHS:
4849 return false;
4851 default:
4852 gcc_unreachable ();
4855 if (code == COND_EXPR && slp_node)
4856 return false;
4858 scalar_dest = gimple_assign_lhs (stmt);
4859 scalar_type = TREE_TYPE (scalar_dest);
4860 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4861 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4862 return false;
4864 /* Do not try to vectorize bit-precision reductions. */
4865 if ((TYPE_PRECISION (scalar_type)
4866 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4867 return false;
4869 /* All uses but the last are expected to be defined in the loop.
4870 The last use is the reduction variable. In case of nested cycle this
4871 assumption is not true: we use reduc_index to record the index of the
4872 reduction variable. */
4873 for (i = 0; i < op_type - 1; i++)
4875 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4876 if (i == 0 && code == COND_EXPR)
4877 continue;
4879 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4880 &def_stmt, &def, &dt, &tem);
4881 if (!vectype_in)
4882 vectype_in = tem;
4883 gcc_assert (is_simple_use);
4885 if (dt != vect_internal_def
4886 && dt != vect_external_def
4887 && dt != vect_constant_def
4888 && dt != vect_induction_def
4889 && !(dt == vect_nested_cycle && nested_cycle))
4890 return false;
4892 if (dt == vect_nested_cycle)
4894 found_nested_cycle_def = true;
4895 reduc_def_stmt = def_stmt;
4896 reduc_index = i;
4900 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4901 &def_stmt, &def, &dt, &tem);
4902 if (!vectype_in)
4903 vectype_in = tem;
4904 gcc_assert (is_simple_use);
4905 if (!(dt == vect_reduction_def
4906 || dt == vect_nested_cycle
4907 || ((dt == vect_internal_def || dt == vect_external_def
4908 || dt == vect_constant_def || dt == vect_induction_def)
4909 && nested_cycle && found_nested_cycle_def)))
4911 /* For pattern recognized stmts, orig_stmt might be a reduction,
4912 but some helper statements for the pattern might not, or
4913 might be COND_EXPRs with reduction uses in the condition. */
4914 gcc_assert (orig_stmt);
4915 return false;
4917 if (!found_nested_cycle_def)
4918 reduc_def_stmt = def_stmt;
4920 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4921 if (orig_stmt)
4922 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4923 reduc_def_stmt,
4924 !nested_cycle,
4925 &dummy));
4926 else
4928 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4929 !nested_cycle, &dummy);
4930 /* We changed STMT to be the first stmt in reduction chain, hence we
4931 check that in this case the first element in the chain is STMT. */
4932 gcc_assert (stmt == tmp
4933 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4936 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4937 return false;
4939 if (slp_node || PURE_SLP_STMT (stmt_info))
4940 ncopies = 1;
4941 else
4942 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4943 / TYPE_VECTOR_SUBPARTS (vectype_in));
4945 gcc_assert (ncopies >= 1);
4947 vec_mode = TYPE_MODE (vectype_in);
4949 if (code == COND_EXPR)
4951 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
4953 if (dump_enabled_p ())
4954 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4955 "unsupported condition in reduction\n");
4957 return false;
4960 else
4962 /* 4. Supportable by target? */
4964 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
4965 || code == LROTATE_EXPR || code == RROTATE_EXPR)
4967 /* Shifts and rotates are only supported by vectorizable_shifts,
4968 not vectorizable_reduction. */
4969 if (dump_enabled_p ())
4970 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4971 "unsupported shift or rotation.\n");
4972 return false;
4975 /* 4.1. check support for the operation in the loop */
4976 optab = optab_for_tree_code (code, vectype_in, optab_default);
4977 if (!optab)
4979 if (dump_enabled_p ())
4980 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4981 "no optab.\n");
4983 return false;
4986 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4988 if (dump_enabled_p ())
4989 dump_printf (MSG_NOTE, "op not supported by target.\n");
4991 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4992 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4993 < vect_min_worthwhile_factor (code))
4994 return false;
4996 if (dump_enabled_p ())
4997 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
5000 /* Worthwhile without SIMD support? */
5001 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
5002 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5003 < vect_min_worthwhile_factor (code))
5005 if (dump_enabled_p ())
5006 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5007 "not worthwhile without SIMD support.\n");
5009 return false;
5013 /* 4.2. Check support for the epilog operation.
5015 If STMT represents a reduction pattern, then the type of the
5016 reduction variable may be different than the type of the rest
5017 of the arguments. For example, consider the case of accumulation
5018 of shorts into an int accumulator; The original code:
5019 S1: int_a = (int) short_a;
5020 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
5022 was replaced with:
5023 STMT: int_acc = widen_sum <short_a, int_acc>
5025 This means that:
5026 1. The tree-code that is used to create the vector operation in the
5027 epilog code (that reduces the partial results) is not the
5028 tree-code of STMT, but is rather the tree-code of the original
5029 stmt from the pattern that STMT is replacing. I.e, in the example
5030 above we want to use 'widen_sum' in the loop, but 'plus' in the
5031 epilog.
5032 2. The type (mode) we use to check available target support
5033 for the vector operation to be created in the *epilog*, is
5034 determined by the type of the reduction variable (in the example
5035 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
5036 However the type (mode) we use to check available target support
5037 for the vector operation to be created *inside the loop*, is
5038 determined by the type of the other arguments to STMT (in the
5039 example we'd check this: optab_handler (widen_sum_optab,
5040 vect_short_mode)).
5042 This is contrary to "regular" reductions, in which the types of all
5043 the arguments are the same as the type of the reduction variable.
5044 For "regular" reductions we can therefore use the same vector type
5045 (and also the same tree-code) when generating the epilog code and
5046 when generating the code inside the loop. */
5048 if (orig_stmt)
5050 /* This is a reduction pattern: get the vectype from the type of the
5051 reduction variable, and get the tree-code from orig_stmt. */
5052 orig_code = gimple_assign_rhs_code (orig_stmt);
5053 gcc_assert (vectype_out);
5054 vec_mode = TYPE_MODE (vectype_out);
5056 else
5058 /* Regular reduction: use the same vectype and tree-code as used for
5059 the vector code inside the loop can be used for the epilog code. */
5060 orig_code = code;
5063 if (nested_cycle)
5065 def_bb = gimple_bb (reduc_def_stmt);
5066 def_stmt_loop = def_bb->loop_father;
5067 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
5068 loop_preheader_edge (def_stmt_loop));
5069 if (TREE_CODE (def_arg) == SSA_NAME
5070 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
5071 && gimple_code (def_arg_stmt) == GIMPLE_PHI
5072 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
5073 && vinfo_for_stmt (def_arg_stmt)
5074 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
5075 == vect_double_reduction_def)
5076 double_reduc = true;
5079 epilog_reduc_code = ERROR_MARK;
5080 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
5082 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
5083 optab_default);
5084 if (!reduc_optab)
5086 if (dump_enabled_p ())
5087 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5088 "no optab for reduction.\n");
5090 epilog_reduc_code = ERROR_MARK;
5093 if (reduc_optab
5094 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5096 if (dump_enabled_p ())
5097 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5098 "reduc op not supported by target.\n");
5100 epilog_reduc_code = ERROR_MARK;
5103 else
5105 if (!nested_cycle || double_reduc)
5107 if (dump_enabled_p ())
5108 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5109 "no reduc code for scalar code.\n");
5111 return false;
5115 if (double_reduc && ncopies > 1)
5117 if (dump_enabled_p ())
5118 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5119 "multiple types in double reduction\n");
5121 return false;
5124 /* In case of widenning multiplication by a constant, we update the type
5125 of the constant to be the type of the other operand. We check that the
5126 constant fits the type in the pattern recognition pass. */
5127 if (code == DOT_PROD_EXPR
5128 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
5130 if (TREE_CODE (ops[0]) == INTEGER_CST)
5131 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
5132 else if (TREE_CODE (ops[1]) == INTEGER_CST)
5133 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
5134 else
5136 if (dump_enabled_p ())
5137 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5138 "invalid types in dot-prod\n");
5140 return false;
5144 if (!vec_stmt) /* transformation not required. */
5146 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
5147 return false;
5148 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5149 return true;
5152 /** Transform. **/
5154 if (dump_enabled_p ())
5155 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
5157 /* FORNOW: Multiple types are not supported for condition. */
5158 if (code == COND_EXPR)
5159 gcc_assert (ncopies == 1);
5161 /* Create the destination vector */
5162 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5164 /* In case the vectorization factor (VF) is bigger than the number
5165 of elements that we can fit in a vectype (nunits), we have to generate
5166 more than one vector stmt - i.e - we need to "unroll" the
5167 vector stmt by a factor VF/nunits. For more details see documentation
5168 in vectorizable_operation. */
5170 /* If the reduction is used in an outer loop we need to generate
5171 VF intermediate results, like so (e.g. for ncopies=2):
5172 r0 = phi (init, r0)
5173 r1 = phi (init, r1)
5174 r0 = x0 + r0;
5175 r1 = x1 + r1;
5176 (i.e. we generate VF results in 2 registers).
5177 In this case we have a separate def-use cycle for each copy, and therefore
5178 for each copy we get the vector def for the reduction variable from the
5179 respective phi node created for this copy.
5181 Otherwise (the reduction is unused in the loop nest), we can combine
5182 together intermediate results, like so (e.g. for ncopies=2):
5183 r = phi (init, r)
5184 r = x0 + r;
5185 r = x1 + r;
5186 (i.e. we generate VF/2 results in a single register).
5187 In this case for each copy we get the vector def for the reduction variable
5188 from the vectorized reduction operation generated in the previous iteration.
5191 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5193 single_defuse_cycle = true;
5194 epilog_copies = 1;
5196 else
5197 epilog_copies = ncopies;
5199 prev_stmt_info = NULL;
5200 prev_phi_info = NULL;
5201 if (slp_node)
5203 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5204 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
5205 == TYPE_VECTOR_SUBPARTS (vectype_in));
5207 else
5209 vec_num = 1;
5210 vec_oprnds0.create (1);
5211 if (op_type == ternary_op)
5212 vec_oprnds1.create (1);
5215 phis.create (vec_num);
5216 vect_defs.create (vec_num);
5217 if (!slp_node)
5218 vect_defs.quick_push (NULL_TREE);
5220 for (j = 0; j < ncopies; j++)
5222 if (j == 0 || !single_defuse_cycle)
5224 for (i = 0; i < vec_num; i++)
5226 /* Create the reduction-phi that defines the reduction
5227 operand. */
5228 new_phi = create_phi_node (vec_dest, loop->header);
5229 set_vinfo_for_stmt (new_phi,
5230 new_stmt_vec_info (new_phi, loop_vinfo,
5231 NULL));
5232 if (j == 0 || slp_node)
5233 phis.quick_push (new_phi);
5237 if (code == COND_EXPR)
5239 gcc_assert (!slp_node);
5240 vectorizable_condition (stmt, gsi, vec_stmt,
5241 PHI_RESULT (phis[0]),
5242 reduc_index, NULL);
5243 /* Multiple types are not supported for condition. */
5244 break;
5247 /* Handle uses. */
5248 if (j == 0)
5250 op0 = ops[!reduc_index];
5251 if (op_type == ternary_op)
5253 if (reduc_index == 0)
5254 op1 = ops[2];
5255 else
5256 op1 = ops[1];
5259 if (slp_node)
5260 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5261 slp_node, -1);
5262 else
5264 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5265 stmt, NULL);
5266 vec_oprnds0.quick_push (loop_vec_def0);
5267 if (op_type == ternary_op)
5269 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
5270 NULL);
5271 vec_oprnds1.quick_push (loop_vec_def1);
5275 else
5277 if (!slp_node)
5279 enum vect_def_type dt;
5280 gimple dummy_stmt;
5281 tree dummy;
5283 vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
5284 &dummy_stmt, &dummy, &dt);
5285 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5286 loop_vec_def0);
5287 vec_oprnds0[0] = loop_vec_def0;
5288 if (op_type == ternary_op)
5290 vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
5291 &dummy, &dt);
5292 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5293 loop_vec_def1);
5294 vec_oprnds1[0] = loop_vec_def1;
5298 if (single_defuse_cycle)
5299 reduc_def = gimple_assign_lhs (new_stmt);
5301 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5304 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5306 if (slp_node)
5307 reduc_def = PHI_RESULT (phis[i]);
5308 else
5310 if (!single_defuse_cycle || j == 0)
5311 reduc_def = PHI_RESULT (new_phi);
5314 def1 = ((op_type == ternary_op)
5315 ? vec_oprnds1[i] : NULL);
5316 if (op_type == binary_op)
5318 if (reduc_index == 0)
5319 expr = build2 (code, vectype_out, reduc_def, def0);
5320 else
5321 expr = build2 (code, vectype_out, def0, reduc_def);
5323 else
5325 if (reduc_index == 0)
5326 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5327 else
5329 if (reduc_index == 1)
5330 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5331 else
5332 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5336 new_stmt = gimple_build_assign (vec_dest, expr);
5337 new_temp = make_ssa_name (vec_dest, new_stmt);
5338 gimple_assign_set_lhs (new_stmt, new_temp);
5339 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5341 if (slp_node)
5343 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5344 vect_defs.quick_push (new_temp);
5346 else
5347 vect_defs[0] = new_temp;
5350 if (slp_node)
5351 continue;
5353 if (j == 0)
5354 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5355 else
5356 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5358 prev_stmt_info = vinfo_for_stmt (new_stmt);
5359 prev_phi_info = vinfo_for_stmt (new_phi);
5362 /* Finalize the reduction-phi (set its arguments) and create the
5363 epilog reduction code. */
5364 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
5366 new_temp = gimple_assign_lhs (*vec_stmt);
5367 vect_defs[0] = new_temp;
5370 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
5371 epilog_reduc_code, phis, reduc_index,
5372 double_reduc, slp_node);
5374 return true;
5377 /* Function vect_min_worthwhile_factor.
5379 For a loop where we could vectorize the operation indicated by CODE,
5380 return the minimum vectorization factor that makes it worthwhile
5381 to use generic vectors. */
5383 vect_min_worthwhile_factor (enum tree_code code)
5385 switch (code)
5387 case PLUS_EXPR:
5388 case MINUS_EXPR:
5389 case NEGATE_EXPR:
5390 return 4;
5392 case BIT_AND_EXPR:
5393 case BIT_IOR_EXPR:
5394 case BIT_XOR_EXPR:
5395 case BIT_NOT_EXPR:
5396 return 2;
5398 default:
5399 return INT_MAX;
5404 /* Function vectorizable_induction
5406 Check if PHI performs an induction computation that can be vectorized.
5407 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5408 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5409 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5411 bool
5412 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5413 gimple *vec_stmt)
5415 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
5416 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5417 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5418 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5419 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5420 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5421 tree vec_def;
5423 gcc_assert (ncopies >= 1);
5424 /* FORNOW. These restrictions should be relaxed. */
5425 if (nested_in_vect_loop_p (loop, phi))
5427 imm_use_iterator imm_iter;
5428 use_operand_p use_p;
5429 gimple exit_phi;
5430 edge latch_e;
5431 tree loop_arg;
5433 if (ncopies > 1)
5435 if (dump_enabled_p ())
5436 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5437 "multiple types in nested loop.\n");
5438 return false;
5441 exit_phi = NULL;
5442 latch_e = loop_latch_edge (loop->inner);
5443 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
5444 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
5446 gimple use_stmt = USE_STMT (use_p);
5447 if (is_gimple_debug (use_stmt))
5448 continue;
5450 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
5452 exit_phi = use_stmt;
5453 break;
5456 if (exit_phi)
5458 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5459 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5460 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
5462 if (dump_enabled_p ())
5463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5464 "inner-loop induction only used outside "
5465 "of the outer vectorized loop.\n");
5466 return false;
5471 if (!STMT_VINFO_RELEVANT_P (stmt_info))
5472 return false;
5474 /* FORNOW: SLP not supported. */
5475 if (STMT_SLP_TYPE (stmt_info))
5476 return false;
5478 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
5480 if (gimple_code (phi) != GIMPLE_PHI)
5481 return false;
5483 if (!vec_stmt) /* transformation not required. */
5485 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
5486 if (dump_enabled_p ())
5487 dump_printf_loc (MSG_NOTE, vect_location,
5488 "=== vectorizable_induction ===\n");
5489 vect_model_induction_cost (stmt_info, ncopies);
5490 return true;
5493 /** Transform. **/
5495 if (dump_enabled_p ())
5496 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
5498 vec_def = get_initial_def_for_induction (phi);
5499 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5500 return true;
5503 /* Function vectorizable_live_operation.
5505 STMT computes a value that is used outside the loop. Check if
5506 it can be supported. */
5508 bool
5509 vectorizable_live_operation (gimple stmt,
5510 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5511 gimple *vec_stmt)
5513 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5514 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5515 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5516 int i;
5517 int op_type;
5518 tree op;
5519 tree def;
5520 gimple def_stmt;
5521 enum vect_def_type dt;
5522 enum tree_code code;
5523 enum gimple_rhs_class rhs_class;
5525 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5527 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5528 return false;
5530 if (!is_gimple_assign (stmt))
5532 if (gimple_call_internal_p (stmt)
5533 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
5534 && gimple_call_lhs (stmt)
5535 && loop->simduid
5536 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
5537 && loop->simduid
5538 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
5540 edge e = single_exit (loop);
5541 basic_block merge_bb = e->dest;
5542 imm_use_iterator imm_iter;
5543 use_operand_p use_p;
5544 tree lhs = gimple_call_lhs (stmt);
5546 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
5548 gimple use_stmt = USE_STMT (use_p);
5549 if (gimple_code (use_stmt) == GIMPLE_PHI
5550 && gimple_bb (use_stmt) == merge_bb)
5552 if (vec_stmt)
5554 tree vfm1
5555 = build_int_cst (unsigned_type_node,
5556 loop_vinfo->vectorization_factor - 1);
5557 SET_PHI_ARG_DEF (use_stmt, e->dest_idx, vfm1);
5559 return true;
5564 return false;
5567 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5568 return false;
5570 /* FORNOW. CHECKME. */
5571 if (nested_in_vect_loop_p (loop, stmt))
5572 return false;
5574 code = gimple_assign_rhs_code (stmt);
5575 op_type = TREE_CODE_LENGTH (code);
5576 rhs_class = get_gimple_rhs_class (code);
5577 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5578 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5580 /* FORNOW: support only if all uses are invariant. This means
5581 that the scalar operations can remain in place, unvectorized.
5582 The original last scalar value that they compute will be used. */
5584 for (i = 0; i < op_type; i++)
5586 if (rhs_class == GIMPLE_SINGLE_RHS)
5587 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5588 else
5589 op = gimple_op (stmt, i + 1);
5590 if (op
5591 && !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
5592 &dt))
5594 if (dump_enabled_p ())
5595 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5596 "use not simple.\n");
5597 return false;
5600 if (dt != vect_external_def && dt != vect_constant_def)
5601 return false;
5604 /* No transformation is required for the cases we currently support. */
5605 return true;
5608 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5610 static void
5611 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5613 ssa_op_iter op_iter;
5614 imm_use_iterator imm_iter;
5615 def_operand_p def_p;
5616 gimple ustmt;
5618 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5620 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5622 basic_block bb;
5624 if (!is_gimple_debug (ustmt))
5625 continue;
5627 bb = gimple_bb (ustmt);
5629 if (!flow_bb_inside_loop_p (loop, bb))
5631 if (gimple_debug_bind_p (ustmt))
5633 if (dump_enabled_p ())
5634 dump_printf_loc (MSG_NOTE, vect_location,
5635 "killing debug use\n");
5637 gimple_debug_bind_reset_value (ustmt);
5638 update_stmt (ustmt);
5640 else
5641 gcc_unreachable ();
5648 /* This function builds ni_name = number of iterations. Statements
5649 are emitted on the loop preheader edge. */
5651 static tree
5652 vect_build_loop_niters (loop_vec_info loop_vinfo)
5654 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
5655 if (TREE_CODE (ni) == INTEGER_CST)
5656 return ni;
5657 else
5659 tree ni_name, var;
5660 gimple_seq stmts = NULL;
5661 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5663 var = create_tmp_var (TREE_TYPE (ni), "niters");
5664 ni_name = force_gimple_operand (ni, &stmts, false, var);
5665 if (stmts)
5666 gsi_insert_seq_on_edge_immediate (pe, stmts);
5668 return ni_name;
5673 /* This function generates the following statements:
5675 ni_name = number of iterations loop executes
5676 ratio = ni_name / vf
5677 ratio_mult_vf_name = ratio * vf
5679 and places them on the loop preheader edge. */
5681 static void
5682 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
5683 tree ni_name,
5684 tree *ratio_mult_vf_name_ptr,
5685 tree *ratio_name_ptr)
5687 tree ni_minus_gap_name;
5688 tree var;
5689 tree ratio_name;
5690 tree ratio_mult_vf_name;
5691 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5692 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5693 tree log_vf;
5695 log_vf = build_int_cst (TREE_TYPE (ni_name), exact_log2 (vf));
5697 /* If epilogue loop is required because of data accesses with gaps, we
5698 subtract one iteration from the total number of iterations here for
5699 correct calculation of RATIO. */
5700 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5702 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
5703 ni_name,
5704 build_one_cst (TREE_TYPE (ni_name)));
5705 if (!is_gimple_val (ni_minus_gap_name))
5707 var = create_tmp_var (TREE_TYPE (ni_name), "ni_gap");
5708 gimple stmts = NULL;
5709 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
5710 true, var);
5711 gsi_insert_seq_on_edge_immediate (pe, stmts);
5714 else
5715 ni_minus_gap_name = ni_name;
5717 /* Create: ratio = ni >> log2(vf) */
5718 /* ??? As we have ni == number of latch executions + 1, ni could
5719 have overflown to zero. So avoid computing ratio based on ni
5720 but compute it using the fact that we know ratio will be at least
5721 one, thus via (ni - vf) >> log2(vf) + 1. */
5722 ratio_name
5723 = fold_build2 (PLUS_EXPR, TREE_TYPE (ni_name),
5724 fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name),
5725 fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
5726 ni_minus_gap_name,
5727 build_int_cst
5728 (TREE_TYPE (ni_name), vf)),
5729 log_vf),
5730 build_int_cst (TREE_TYPE (ni_name), 1));
5731 if (!is_gimple_val (ratio_name))
5733 var = create_tmp_var (TREE_TYPE (ni_name), "bnd");
5734 gimple stmts = NULL;
5735 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
5736 gsi_insert_seq_on_edge_immediate (pe, stmts);
5738 *ratio_name_ptr = ratio_name;
5740 /* Create: ratio_mult_vf = ratio << log2 (vf). */
5742 if (ratio_mult_vf_name_ptr)
5744 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
5745 ratio_name, log_vf);
5746 if (!is_gimple_val (ratio_mult_vf_name))
5748 var = create_tmp_var (TREE_TYPE (ni_name), "ratio_mult_vf");
5749 gimple stmts = NULL;
5750 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
5751 true, var);
5752 gsi_insert_seq_on_edge_immediate (pe, stmts);
5754 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
5757 return;
5761 /* Function vect_transform_loop.
5763 The analysis phase has determined that the loop is vectorizable.
5764 Vectorize the loop - created vectorized stmts to replace the scalar
5765 stmts in the loop, and update the loop exit condition. */
5767 void
5768 vect_transform_loop (loop_vec_info loop_vinfo)
5770 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5771 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5772 int nbbs = loop->num_nodes;
5773 gimple_stmt_iterator si;
5774 int i;
5775 tree ratio = NULL;
5776 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5777 bool grouped_store;
5778 bool slp_scheduled = false;
5779 gimple stmt, pattern_stmt;
5780 gimple_seq pattern_def_seq = NULL;
5781 gimple_stmt_iterator pattern_def_si = gsi_none ();
5782 bool transform_pattern_stmt = false;
5783 bool check_profitability = false;
5784 int th;
5785 /* Record number of iterations before we started tampering with the profile. */
5786 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
5788 if (dump_enabled_p ())
5789 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
5791 /* If profile is inprecise, we have chance to fix it up. */
5792 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5793 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
5795 /* Use the more conservative vectorization threshold. If the number
5796 of iterations is constant assume the cost check has been performed
5797 by our caller. If the threshold makes all loops profitable that
5798 run at least the vectorization factor number of times checking
5799 is pointless, too. */
5800 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
5801 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
5802 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5804 if (dump_enabled_p ())
5805 dump_printf_loc (MSG_NOTE, vect_location,
5806 "Profitability threshold is %d loop iterations.\n",
5807 th);
5808 check_profitability = true;
5811 /* Version the loop first, if required, so the profitability check
5812 comes first. */
5814 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5815 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5817 vect_loop_versioning (loop_vinfo, th, check_profitability);
5818 check_profitability = false;
5821 tree ni_name = vect_build_loop_niters (loop_vinfo);
5822 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = ni_name;
5824 /* Peel the loop if there are data refs with unknown alignment.
5825 Only one data ref with unknown store is allowed. */
5827 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
5829 vect_do_peeling_for_alignment (loop_vinfo, ni_name,
5830 th, check_profitability);
5831 check_profitability = false;
5832 /* The above adjusts LOOP_VINFO_NITERS, so cause ni_name to
5833 be re-computed. */
5834 ni_name = NULL_TREE;
5837 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5838 compile time constant), or it is a constant that doesn't divide by the
5839 vectorization factor, then an epilog loop needs to be created.
5840 We therefore duplicate the loop: the original loop will be vectorized,
5841 and will compute the first (n/VF) iterations. The second copy of the loop
5842 will remain scalar and will compute the remaining (n%VF) iterations.
5843 (VF is the vectorization factor). */
5845 if (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
5846 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5848 tree ratio_mult_vf;
5849 if (!ni_name)
5850 ni_name = vect_build_loop_niters (loop_vinfo);
5851 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, &ratio_mult_vf,
5852 &ratio);
5853 vect_do_peeling_for_loop_bound (loop_vinfo, ni_name, ratio_mult_vf,
5854 th, check_profitability);
5856 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5857 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5858 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5859 else
5861 if (!ni_name)
5862 ni_name = vect_build_loop_niters (loop_vinfo);
5863 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, NULL, &ratio);
5866 /* 1) Make sure the loop header has exactly two entries
5867 2) Make sure we have a preheader basic block. */
5869 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5871 split_edge (loop_preheader_edge (loop));
5873 /* FORNOW: the vectorizer supports only loops which body consist
5874 of one basic block (header + empty latch). When the vectorizer will
5875 support more involved loop forms, the order by which the BBs are
5876 traversed need to be reconsidered. */
5878 for (i = 0; i < nbbs; i++)
5880 basic_block bb = bbs[i];
5881 stmt_vec_info stmt_info;
5882 gimple phi;
5884 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5886 phi = gsi_stmt (si);
5887 if (dump_enabled_p ())
5889 dump_printf_loc (MSG_NOTE, vect_location,
5890 "------>vectorizing phi: ");
5891 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
5892 dump_printf (MSG_NOTE, "\n");
5894 stmt_info = vinfo_for_stmt (phi);
5895 if (!stmt_info)
5896 continue;
5898 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5899 vect_loop_kill_debug_uses (loop, phi);
5901 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5902 && !STMT_VINFO_LIVE_P (stmt_info))
5903 continue;
5905 if (STMT_VINFO_VECTYPE (stmt_info)
5906 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5907 != (unsigned HOST_WIDE_INT) vectorization_factor)
5908 && dump_enabled_p ())
5909 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
5911 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5913 if (dump_enabled_p ())
5914 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
5915 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5919 pattern_stmt = NULL;
5920 for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
5922 bool is_store;
5924 if (transform_pattern_stmt)
5925 stmt = pattern_stmt;
5926 else
5928 stmt = gsi_stmt (si);
5929 /* During vectorization remove existing clobber stmts. */
5930 if (gimple_clobber_p (stmt))
5932 unlink_stmt_vdef (stmt);
5933 gsi_remove (&si, true);
5934 release_defs (stmt);
5935 continue;
5939 if (dump_enabled_p ())
5941 dump_printf_loc (MSG_NOTE, vect_location,
5942 "------>vectorizing statement: ");
5943 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5944 dump_printf (MSG_NOTE, "\n");
5947 stmt_info = vinfo_for_stmt (stmt);
5949 /* vector stmts created in the outer-loop during vectorization of
5950 stmts in an inner-loop may not have a stmt_info, and do not
5951 need to be vectorized. */
5952 if (!stmt_info)
5954 gsi_next (&si);
5955 continue;
5958 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5959 vect_loop_kill_debug_uses (loop, stmt);
5961 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5962 && !STMT_VINFO_LIVE_P (stmt_info))
5964 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5965 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5966 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5967 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5969 stmt = pattern_stmt;
5970 stmt_info = vinfo_for_stmt (stmt);
5972 else
5974 gsi_next (&si);
5975 continue;
5978 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5979 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5980 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5981 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5982 transform_pattern_stmt = true;
5984 /* If pattern statement has def stmts, vectorize them too. */
5985 if (is_pattern_stmt_p (stmt_info))
5987 if (pattern_def_seq == NULL)
5989 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
5990 pattern_def_si = gsi_start (pattern_def_seq);
5992 else if (!gsi_end_p (pattern_def_si))
5993 gsi_next (&pattern_def_si);
5994 if (pattern_def_seq != NULL)
5996 gimple pattern_def_stmt = NULL;
5997 stmt_vec_info pattern_def_stmt_info = NULL;
5999 while (!gsi_end_p (pattern_def_si))
6001 pattern_def_stmt = gsi_stmt (pattern_def_si);
6002 pattern_def_stmt_info
6003 = vinfo_for_stmt (pattern_def_stmt);
6004 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
6005 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
6006 break;
6007 gsi_next (&pattern_def_si);
6010 if (!gsi_end_p (pattern_def_si))
6012 if (dump_enabled_p ())
6014 dump_printf_loc (MSG_NOTE, vect_location,
6015 "==> vectorizing pattern def "
6016 "stmt: ");
6017 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
6018 pattern_def_stmt, 0);
6019 dump_printf (MSG_NOTE, "\n");
6022 stmt = pattern_def_stmt;
6023 stmt_info = pattern_def_stmt_info;
6025 else
6027 pattern_def_si = gsi_none ();
6028 transform_pattern_stmt = false;
6031 else
6032 transform_pattern_stmt = false;
6035 if (STMT_VINFO_VECTYPE (stmt_info))
6037 unsigned int nunits
6038 = (unsigned int)
6039 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
6040 if (!STMT_SLP_TYPE (stmt_info)
6041 && nunits != (unsigned int) vectorization_factor
6042 && dump_enabled_p ())
6043 /* For SLP VF is set according to unrolling factor, and not
6044 to vector size, hence for SLP this print is not valid. */
6045 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
6048 /* SLP. Schedule all the SLP instances when the first SLP stmt is
6049 reached. */
6050 if (STMT_SLP_TYPE (stmt_info))
6052 if (!slp_scheduled)
6054 slp_scheduled = true;
6056 if (dump_enabled_p ())
6057 dump_printf_loc (MSG_NOTE, vect_location,
6058 "=== scheduling SLP instances ===\n");
6060 vect_schedule_slp (loop_vinfo, NULL);
6063 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
6064 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
6066 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6068 pattern_def_seq = NULL;
6069 gsi_next (&si);
6071 continue;
6075 /* -------- vectorize statement ------------ */
6076 if (dump_enabled_p ())
6077 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
6079 grouped_store = false;
6080 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
6081 if (is_store)
6083 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
6085 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
6086 interleaving chain was completed - free all the stores in
6087 the chain. */
6088 gsi_next (&si);
6089 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
6091 else
6093 /* Free the attached stmt_vec_info and remove the stmt. */
6094 gimple store = gsi_stmt (si);
6095 free_stmt_vec_info (store);
6096 unlink_stmt_vdef (store);
6097 gsi_remove (&si, true);
6098 release_defs (store);
6101 /* Stores can only appear at the end of pattern statements. */
6102 gcc_assert (!transform_pattern_stmt);
6103 pattern_def_seq = NULL;
6105 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6107 pattern_def_seq = NULL;
6108 gsi_next (&si);
6110 } /* stmts in BB */
6111 } /* BBs in loop */
6113 slpeel_make_loop_iterate_ntimes (loop, ratio);
6115 /* Reduce loop iterations by the vectorization factor. */
6116 scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
6117 expected_iterations / vectorization_factor);
6118 loop->nb_iterations_upper_bound
6119 = wi::udiv_floor (loop->nb_iterations_upper_bound, vectorization_factor);
6120 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6121 && loop->nb_iterations_upper_bound != 0)
6122 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - 1;
6123 if (loop->any_estimate)
6125 loop->nb_iterations_estimate
6126 = wi::udiv_floor (loop->nb_iterations_estimate, vectorization_factor);
6127 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6128 && loop->nb_iterations_estimate != 0)
6129 loop->nb_iterations_estimate = loop->nb_iterations_estimate - 1;
6132 if (dump_enabled_p ())
6134 dump_printf_loc (MSG_NOTE, vect_location,
6135 "LOOP VECTORIZED\n");
6136 if (loop->inner)
6137 dump_printf_loc (MSG_NOTE, vect_location,
6138 "OUTER LOOP VECTORIZED\n");
6139 dump_printf (MSG_NOTE, "\n");