* include/bits/basic_string.h (getline): Qualify call to prevent ADL
[official-gcc.git] / gcc / sel-sched-ir.c
blob0399efa5c7cb5919396fc756eec3d43ebfa1fcd5
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
45 #ifdef INSN_SCHEDULING
46 #include "sel-sched-ir.h"
47 /* We don't have to use it except for sel_print_insn. */
48 #include "sel-sched-dump.h"
50 /* A vector holding bb info for whole scheduling pass. */
51 vec<sel_global_bb_info_def>
52 sel_global_bb_info = vNULL;
54 /* A vector holding bb info. */
55 vec<sel_region_bb_info_def>
56 sel_region_bb_info = vNULL;
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static vec<loop_p> loop_nests = vNULL;
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
88 /* A regset pool structure. */
89 static struct
91 /* The stack to which regsets are returned. */
92 regset *v;
94 /* Its pointer. */
95 int n;
97 /* Its size. */
98 int s;
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
105 /* The pointer of VV stack. */
106 int nn;
108 /* Its size. */
109 int ss;
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115 /* This represents the nop pool. */
116 static struct
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
121 /* Its pointer. */
122 int n;
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool;
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX;
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (vec<expr_history_def> &);
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_merge_blocks (basic_block, basic_block);
156 static void sel_remove_loop_preheader (void);
157 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
159 static bool insn_is_the_only_one_in_bb_p (insn_t);
160 static void create_initial_data_sets (basic_block);
162 static void free_av_set (basic_block);
163 static void invalidate_av_set (basic_block);
164 static void extend_insn_data (void);
165 static void sel_init_new_insn (insn_t, int, int = -1);
166 static void finish_insns (void);
168 /* Various list functions. */
170 /* Copy an instruction list L. */
171 ilist_t
172 ilist_copy (ilist_t l)
174 ilist_t head = NULL, *tailp = &head;
176 while (l)
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
183 return head;
186 /* Invert an instruction list L. */
187 ilist_t
188 ilist_invert (ilist_t l)
190 ilist_t res = NULL;
192 while (l)
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
198 return res;
201 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202 void
203 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205 bnd_t bnd;
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
217 /* Remove the list note pointed to by LP. */
218 void
219 blist_remove (blist_t *lp)
221 bnd_t b = BLIST_BND (*lp);
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
227 _list_remove (lp);
230 /* Init a fence tail L. */
231 void
232 flist_tail_init (flist_tail_t l)
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
238 /* Try to find fence corresponding to INSN in L. */
239 fence_t
240 flist_lookup (flist_t l, insn_t insn)
242 while (l)
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
247 l = FLIST_NEXT (l);
250 return NULL;
253 /* Init the fields of F before running fill_insns. */
254 static void
255 init_fence_for_scheduling (fence_t f)
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
262 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263 static void
264 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267 int cycle, int cycle_issued_insns, int issue_more,
268 bool starts_cycle_p, bool after_stall_p)
270 fence_t f;
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
275 FENCE_INSN (f) = insn;
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292 FENCE_ISSUE_MORE (f) = issue_more;
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
298 init_fence_for_scheduling (f);
301 /* Remove the head node of the list pointed to by LP. */
302 static void
303 flist_remove (flist_t *lp)
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
310 /* Clear the fence list pointed to by LP. */
311 void
312 flist_clear (flist_t *lp)
314 while (*lp)
315 flist_remove (lp);
318 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319 void
320 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322 def_t d;
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
332 /* Functions to work with target contexts. */
334 /* Bulk target context. It is convenient for debugging purposes to ensure
335 that there are no uninitialized (null) target contexts. */
336 static tc_t bulk_tc = (tc_t) 1;
338 /* Target hooks wrappers. In the future we can provide some default
339 implementations for them. */
341 /* Allocate a store for the target context. */
342 static tc_t
343 alloc_target_context (void)
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
349 /* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352 static void
353 init_target_context (tc_t tc, bool clean_p)
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
359 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361 tc_t
362 create_target_context (bool clean_p)
364 tc_t tc = alloc_target_context ();
366 init_target_context (tc, clean_p);
367 return tc;
370 /* Copy TC to the current backend context. */
371 void
372 set_target_context (tc_t tc)
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
378 /* TC is about to be destroyed. Free any internal data. */
379 static void
380 clear_target_context (tc_t tc)
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
386 /* Clear and free it. */
387 static void
388 delete_target_context (tc_t tc)
390 clear_target_context (tc);
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
396 /* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398 static void
399 copy_target_context (tc_t to, tc_t from)
401 tc_t tmp = create_target_context (false);
403 set_target_context (from);
404 init_target_context (to, false);
406 set_target_context (tmp);
407 delete_target_context (tmp);
410 /* Create a copy of TC. */
411 static tc_t
412 create_copy_of_target_context (tc_t tc)
414 tc_t copy = alloc_target_context ();
416 copy_target_context (copy, tc);
418 return copy;
421 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423 void
424 reset_target_context (tc_t tc, bool clean_p)
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
430 /* Functions to work with dependence contexts.
431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
435 /* Make a copy of FROM in TO. */
436 static void
437 copy_deps_context (deps_t to, deps_t from)
439 init_deps (to, false);
440 deps_join (to, from);
443 /* Allocate store for dep context. */
444 static deps_t
445 alloc_deps_context (void)
447 return XNEW (struct deps_desc);
450 /* Allocate and initialize dep context. */
451 static deps_t
452 create_deps_context (void)
454 deps_t dc = alloc_deps_context ();
456 init_deps (dc, false);
457 return dc;
460 /* Create a copy of FROM. */
461 static deps_t
462 create_copy_of_deps_context (deps_t from)
464 deps_t to = alloc_deps_context ();
466 copy_deps_context (to, from);
467 return to;
470 /* Clean up internal data of DC. */
471 static void
472 clear_deps_context (deps_t dc)
474 free_deps (dc);
477 /* Clear and free DC. */
478 static void
479 delete_deps_context (deps_t dc)
481 clear_deps_context (dc);
482 free (dc);
485 /* Clear and init DC. */
486 static void
487 reset_deps_context (deps_t dc)
489 clear_deps_context (dc);
490 init_deps (dc, false);
493 /* This structure describes the dependence analysis hooks for advancing
494 dependence context. */
495 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497 NULL,
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
511 0, 0, 0
514 /* Process INSN and add its impact on DC. */
515 void
516 advance_deps_context (deps_t dc, insn_t insn)
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
523 /* Functions to work with DFA states. */
525 /* Allocate store for a DFA state. */
526 static state_t
527 state_alloc (void)
529 return xmalloc (dfa_state_size);
532 /* Allocate and initialize DFA state. */
533 static state_t
534 state_create (void)
536 state_t state = state_alloc ();
538 state_reset (state);
539 advance_state (state);
540 return state;
543 /* Free DFA state. */
544 static void
545 state_free (state_t state)
547 free (state);
550 /* Make a copy of FROM in TO. */
551 static void
552 state_copy (state_t to, state_t from)
554 memcpy (to, from, dfa_state_size);
557 /* Create a copy of FROM. */
558 static state_t
559 state_create_copy (state_t from)
561 state_t to = state_alloc ();
563 state_copy (to, from);
564 return to;
568 /* Functions to work with fences. */
570 /* Clear the fence. */
571 static void
572 fence_clear (fence_t f)
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
578 ilist_clear (&FENCE_BNDS (f));
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
583 free (s);
585 if (dc != NULL)
586 delete_deps_context (dc);
588 if (tc != NULL)
589 delete_target_context (tc);
590 vec_free (FENCE_EXECUTING_INSNS (f));
591 free (FENCE_READY_TICKS (f));
592 FENCE_READY_TICKS (f) = NULL;
595 /* Init a list of fences with successors of OLD_FENCE. */
596 void
597 init_fences (insn_t old_fence)
599 insn_t succ;
600 succ_iterator si;
601 bool first = true;
602 int ready_ticks_size = get_max_uid () + 1;
604 FOR_EACH_SUCC_1 (succ, si, old_fence,
605 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
608 if (first)
609 first = false;
610 else
611 gcc_assert (flag_sel_sched_pipelining_outer_loops);
613 flist_add (&fences, succ,
614 state_create (),
615 create_deps_context () /* dc */,
616 create_target_context (true) /* tc */,
617 NULL_RTX /* last_scheduled_insn */,
618 NULL, /* executing_insns */
619 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
620 ready_ticks_size,
621 NULL_RTX /* sched_next */,
622 1 /* cycle */, 0 /* cycle_issued_insns */,
623 issue_rate, /* issue_more */
624 1 /* starts_cycle_p */, 0 /* after_stall_p */);
628 /* Merges two fences (filling fields of fence F with resulting values) by
629 following rules: 1) state, target context and last scheduled insn are
630 propagated from fallthrough edge if it is available;
631 2) deps context and cycle is propagated from more probable edge;
632 3) all other fields are set to corresponding constant values.
634 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
635 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
636 and AFTER_STALL_P are the corresponding fields of the second fence. */
637 static void
638 merge_fences (fence_t f, insn_t insn,
639 state_t state, deps_t dc, void *tc,
640 rtx last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
641 int *ready_ticks, int ready_ticks_size,
642 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
644 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
647 && !sched_next && !FENCE_SCHED_NEXT (f));
649 /* Check if we can decide which path fences came.
650 If we can't (or don't want to) - reset all. */
651 if (last_scheduled_insn == NULL
652 || last_scheduled_insn_old == NULL
653 /* This is a case when INSN is reachable on several paths from
654 one insn (this can happen when pipelining of outer loops is on and
655 there are two edges: one going around of inner loop and the other -
656 right through it; in such case just reset everything). */
657 || last_scheduled_insn == last_scheduled_insn_old)
659 state_reset (FENCE_STATE (f));
660 state_free (state);
662 reset_deps_context (FENCE_DC (f));
663 delete_deps_context (dc);
665 reset_target_context (FENCE_TC (f), true);
666 delete_target_context (tc);
668 if (cycle > FENCE_CYCLE (f))
669 FENCE_CYCLE (f) = cycle;
671 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
672 FENCE_ISSUE_MORE (f) = issue_rate;
673 vec_free (executing_insns);
674 free (ready_ticks);
675 if (FENCE_EXECUTING_INSNS (f))
676 FENCE_EXECUTING_INSNS (f)->block_remove (0,
677 FENCE_EXECUTING_INSNS (f)->length ());
678 if (FENCE_READY_TICKS (f))
679 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681 else
683 edge edge_old = NULL, edge_new = NULL;
684 edge candidate;
685 succ_iterator si;
686 insn_t succ;
688 /* Find fallthrough edge. */
689 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
690 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
692 if (!candidate
693 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
694 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696 /* No fallthrough edge leading to basic block of INSN. */
697 state_reset (FENCE_STATE (f));
698 state_free (state);
700 reset_target_context (FENCE_TC (f), true);
701 delete_target_context (tc);
703 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
704 FENCE_ISSUE_MORE (f) = issue_rate;
706 else
707 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709 /* Would be weird if same insn is successor of several fallthrough
710 edges. */
711 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
712 != BLOCK_FOR_INSN (last_scheduled_insn_old));
714 state_free (FENCE_STATE (f));
715 FENCE_STATE (f) = state;
717 delete_target_context (FENCE_TC (f));
718 FENCE_TC (f) = tc;
720 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
721 FENCE_ISSUE_MORE (f) = issue_more;
723 else
725 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
726 state_free (state);
727 delete_target_context (tc);
729 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
730 != BLOCK_FOR_INSN (last_scheduled_insn));
733 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
734 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
735 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737 if (succ == insn)
739 /* No same successor allowed from several edges. */
740 gcc_assert (!edge_old);
741 edge_old = si.e1;
744 /* Find edge of second predecessor (last_scheduled_insn->insn). */
745 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
746 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748 if (succ == insn)
750 /* No same successor allowed from several edges. */
751 gcc_assert (!edge_new);
752 edge_new = si.e1;
756 /* Check if we can choose most probable predecessor. */
757 if (edge_old == NULL || edge_new == NULL)
759 reset_deps_context (FENCE_DC (f));
760 delete_deps_context (dc);
761 vec_free (executing_insns);
762 free (ready_ticks);
764 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
765 if (FENCE_EXECUTING_INSNS (f))
766 FENCE_EXECUTING_INSNS (f)->block_remove (0,
767 FENCE_EXECUTING_INSNS (f)->length ());
768 if (FENCE_READY_TICKS (f))
769 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771 else
772 if (edge_new->probability > edge_old->probability)
774 delete_deps_context (FENCE_DC (f));
775 FENCE_DC (f) = dc;
776 vec_free (FENCE_EXECUTING_INSNS (f));
777 FENCE_EXECUTING_INSNS (f) = executing_insns;
778 free (FENCE_READY_TICKS (f));
779 FENCE_READY_TICKS (f) = ready_ticks;
780 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
781 FENCE_CYCLE (f) = cycle;
783 else
785 /* Leave DC and CYCLE untouched. */
786 delete_deps_context (dc);
787 vec_free (executing_insns);
788 free (ready_ticks);
792 /* Fill remaining invariant fields. */
793 if (after_stall_p)
794 FENCE_AFTER_STALL_P (f) = 1;
796 FENCE_ISSUED_INSNS (f) = 0;
797 FENCE_STARTS_CYCLE_P (f) = 1;
798 FENCE_SCHED_NEXT (f) = NULL;
801 /* Add a new fence to NEW_FENCES list, initializing it from all
802 other parameters. */
803 static void
804 add_to_fences (flist_tail_t new_fences, insn_t insn,
805 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
806 vec<rtx, va_gc> *executing_insns, int *ready_ticks,
807 int ready_ticks_size, rtx sched_next, int cycle,
808 int cycle_issued_insns, int issue_rate,
809 bool starts_cycle_p, bool after_stall_p)
811 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813 if (! f)
815 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
816 last_scheduled_insn, executing_insns, ready_ticks,
817 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
818 issue_rate, starts_cycle_p, after_stall_p);
820 FLIST_TAIL_TAILP (new_fences)
821 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823 else
825 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
826 executing_insns, ready_ticks, ready_ticks_size,
827 sched_next, cycle, issue_rate, after_stall_p);
831 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
832 void
833 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835 fence_t f, old;
836 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838 old = FLIST_FENCE (old_fences);
839 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
840 FENCE_INSN (FLIST_FENCE (old_fences)));
841 if (f)
843 merge_fences (f, old->insn, old->state, old->dc, old->tc,
844 old->last_scheduled_insn, old->executing_insns,
845 old->ready_ticks, old->ready_ticks_size,
846 old->sched_next, old->cycle, old->issue_more,
847 old->after_stall_p);
849 else
851 _list_add (tailp);
852 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
853 *FLIST_FENCE (*tailp) = *old;
854 init_fence_for_scheduling (FLIST_FENCE (*tailp));
856 FENCE_INSN (old) = NULL;
859 /* Add a new fence to NEW_FENCES list and initialize most of its data
860 as a clean one. */
861 void
862 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864 int ready_ticks_size = get_max_uid () + 1;
866 add_to_fences (new_fences,
867 succ, state_create (), create_deps_context (),
868 create_target_context (true),
869 NULL_RTX, NULL,
870 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
871 NULL_RTX, FENCE_CYCLE (fence) + 1,
872 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
875 /* Add a new fence to NEW_FENCES list and initialize all of its data
876 from FENCE and SUCC. */
877 void
878 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880 int * new_ready_ticks
881 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
883 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
884 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
885 add_to_fences (new_fences,
886 succ, state_create_copy (FENCE_STATE (fence)),
887 create_copy_of_deps_context (FENCE_DC (fence)),
888 create_copy_of_target_context (FENCE_TC (fence)),
889 FENCE_LAST_SCHEDULED_INSN (fence),
890 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
891 new_ready_ticks,
892 FENCE_READY_TICKS_SIZE (fence),
893 FENCE_SCHED_NEXT (fence),
894 FENCE_CYCLE (fence),
895 FENCE_ISSUED_INSNS (fence),
896 FENCE_ISSUE_MORE (fence),
897 FENCE_STARTS_CYCLE_P (fence),
898 FENCE_AFTER_STALL_P (fence));
902 /* Functions to work with regset and nop pools. */
904 /* Returns the new regset from pool. It might have some of the bits set
905 from the previous usage. */
906 regset
907 get_regset_from_pool (void)
909 regset rs;
911 if (regset_pool.n != 0)
912 rs = regset_pool.v[--regset_pool.n];
913 else
914 /* We need to create the regset. */
916 rs = ALLOC_REG_SET (&reg_obstack);
918 if (regset_pool.nn == regset_pool.ss)
919 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
920 (regset_pool.ss = 2 * regset_pool.ss + 1));
921 regset_pool.vv[regset_pool.nn++] = rs;
924 regset_pool.diff++;
926 return rs;
929 /* Same as above, but returns the empty regset. */
930 regset
931 get_clear_regset_from_pool (void)
933 regset rs = get_regset_from_pool ();
935 CLEAR_REG_SET (rs);
936 return rs;
939 /* Return regset RS to the pool for future use. */
940 void
941 return_regset_to_pool (regset rs)
943 gcc_assert (rs);
944 regset_pool.diff--;
946 if (regset_pool.n == regset_pool.s)
947 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
948 (regset_pool.s = 2 * regset_pool.s + 1));
949 regset_pool.v[regset_pool.n++] = rs;
952 #ifdef ENABLE_CHECKING
953 /* This is used as a qsort callback for sorting regset pool stacks.
954 X and XX are addresses of two regsets. They are never equal. */
955 static int
956 cmp_v_in_regset_pool (const void *x, const void *xx)
958 uintptr_t r1 = (uintptr_t) *((const regset *) x);
959 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
960 if (r1 > r2)
961 return 1;
962 else if (r1 < r2)
963 return -1;
964 gcc_unreachable ();
966 #endif
968 /* Free the regset pool possibly checking for memory leaks. */
969 void
970 free_regset_pool (void)
972 #ifdef ENABLE_CHECKING
974 regset *v = regset_pool.v;
975 int i = 0;
976 int n = regset_pool.n;
978 regset *vv = regset_pool.vv;
979 int ii = 0;
980 int nn = regset_pool.nn;
982 int diff = 0;
984 gcc_assert (n <= nn);
986 /* Sort both vectors so it will be possible to compare them. */
987 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
988 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
990 while (ii < nn)
992 if (v[i] == vv[ii])
993 i++;
994 else
995 /* VV[II] was lost. */
996 diff++;
998 ii++;
1001 gcc_assert (diff == regset_pool.diff);
1003 #endif
1005 /* If not true - we have a memory leak. */
1006 gcc_assert (regset_pool.diff == 0);
1008 while (regset_pool.n)
1010 --regset_pool.n;
1011 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1014 free (regset_pool.v);
1015 regset_pool.v = NULL;
1016 regset_pool.s = 0;
1018 free (regset_pool.vv);
1019 regset_pool.vv = NULL;
1020 regset_pool.nn = 0;
1021 regset_pool.ss = 0;
1023 regset_pool.diff = 0;
1027 /* Functions to work with nop pools. NOP insns are used as temporary
1028 placeholders of the insns being scheduled to allow correct update of
1029 the data sets. When update is finished, NOPs are deleted. */
1031 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1032 nops sel-sched generates. */
1033 static vinsn_t nop_vinsn = NULL;
1035 /* Emit a nop before INSN, taking it from pool. */
1036 insn_t
1037 get_nop_from_pool (insn_t insn)
1039 insn_t nop;
1040 bool old_p = nop_pool.n != 0;
1041 int flags;
1043 if (old_p)
1044 nop = nop_pool.v[--nop_pool.n];
1045 else
1046 nop = nop_pattern;
1048 nop = emit_insn_before (nop, insn);
1050 if (old_p)
1051 flags = INSN_INIT_TODO_SSID;
1052 else
1053 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1055 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1056 sel_init_new_insn (nop, flags);
1058 return nop;
1061 /* Remove NOP from the instruction stream and return it to the pool. */
1062 void
1063 return_nop_to_pool (insn_t nop, bool full_tidying)
1065 gcc_assert (INSN_IN_STREAM_P (nop));
1066 sel_remove_insn (nop, false, full_tidying);
1068 /* We'll recycle this nop. */
1069 INSN_DELETED_P (nop) = 0;
1071 if (nop_pool.n == nop_pool.s)
1072 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1073 (nop_pool.s = 2 * nop_pool.s + 1));
1074 nop_pool.v[nop_pool.n++] = nop;
1077 /* Free the nop pool. */
1078 void
1079 free_nop_pool (void)
1081 nop_pool.n = 0;
1082 nop_pool.s = 0;
1083 free (nop_pool.v);
1084 nop_pool.v = NULL;
1088 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1089 The callback is given two rtxes XX and YY and writes the new rtxes
1090 to NX and NY in case some needs to be skipped. */
1091 static int
1092 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1094 const_rtx x = *xx;
1095 const_rtx y = *yy;
1097 if (GET_CODE (x) == UNSPEC
1098 && (targetm.sched.skip_rtx_p == NULL
1099 || targetm.sched.skip_rtx_p (x)))
1101 *nx = XVECEXP (x, 0, 0);
1102 *ny = CONST_CAST_RTX (y);
1103 return 1;
1106 if (GET_CODE (y) == UNSPEC
1107 && (targetm.sched.skip_rtx_p == NULL
1108 || targetm.sched.skip_rtx_p (y)))
1110 *nx = CONST_CAST_RTX (x);
1111 *ny = XVECEXP (y, 0, 0);
1112 return 1;
1115 return 0;
1118 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1119 to support ia64 speculation. When changes are needed, new rtx X and new mode
1120 NMODE are written, and the callback returns true. */
1121 static int
1122 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1123 rtx *nx, enum machine_mode* nmode)
1125 if (GET_CODE (x) == UNSPEC
1126 && targetm.sched.skip_rtx_p
1127 && targetm.sched.skip_rtx_p (x))
1129 *nx = XVECEXP (x, 0 ,0);
1130 *nmode = VOIDmode;
1131 return 1;
1134 return 0;
1137 /* Returns LHS and RHS are ok to be scheduled separately. */
1138 static bool
1139 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1141 if (lhs == NULL || rhs == NULL)
1142 return false;
1144 /* Do not schedule constants as rhs: no point to use reg, if const
1145 can be used. Moreover, scheduling const as rhs may lead to mode
1146 mismatch cause consts don't have modes but they could be merged
1147 from branches where the same const used in different modes. */
1148 if (CONSTANT_P (rhs))
1149 return false;
1151 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1152 if (COMPARISON_P (rhs))
1153 return false;
1155 /* Do not allow single REG to be an rhs. */
1156 if (REG_P (rhs))
1157 return false;
1159 /* See comment at find_used_regs_1 (*1) for explanation of this
1160 restriction. */
1161 /* FIXME: remove this later. */
1162 if (MEM_P (lhs))
1163 return false;
1165 /* This will filter all tricky things like ZERO_EXTRACT etc.
1166 For now we don't handle it. */
1167 if (!REG_P (lhs) && !MEM_P (lhs))
1168 return false;
1170 return true;
1173 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1174 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1175 used e.g. for insns from recovery blocks. */
1176 static void
1177 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1179 hash_rtx_callback_function hrcf;
1180 int insn_class;
1182 VINSN_INSN_RTX (vi) = insn;
1183 VINSN_COUNT (vi) = 0;
1184 vi->cost = -1;
1186 if (INSN_NOP_P (insn))
1187 return;
1189 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1190 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1191 else
1192 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1194 /* Hash vinsn depending on whether it is separable or not. */
1195 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1196 if (VINSN_SEPARABLE_P (vi))
1198 rtx rhs = VINSN_RHS (vi);
1200 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1203 VOIDmode, NULL, NULL,
1204 false, hrcf);
1206 else
1208 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1209 NULL, NULL, false, hrcf);
1210 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1213 insn_class = haifa_classify_insn (insn);
1214 if (insn_class >= 2
1215 && (!targetm.sched.get_insn_spec_ds
1216 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1217 == 0)))
1218 VINSN_MAY_TRAP_P (vi) = true;
1219 else
1220 VINSN_MAY_TRAP_P (vi) = false;
1223 /* Indicate that VI has become the part of an rtx object. */
1224 void
1225 vinsn_attach (vinsn_t vi)
1227 /* Assert that VI is not pending for deletion. */
1228 gcc_assert (VINSN_INSN_RTX (vi));
1230 VINSN_COUNT (vi)++;
1233 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1234 VINSN_TYPE (VI). */
1235 static vinsn_t
1236 vinsn_create (insn_t insn, bool force_unique_p)
1238 vinsn_t vi = XCNEW (struct vinsn_def);
1240 vinsn_init (vi, insn, force_unique_p);
1241 return vi;
1244 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1245 the copy. */
1246 vinsn_t
1247 vinsn_copy (vinsn_t vi, bool reattach_p)
1249 rtx copy;
1250 bool unique = VINSN_UNIQUE_P (vi);
1251 vinsn_t new_vi;
1253 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1254 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1255 if (reattach_p)
1257 vinsn_detach (vi);
1258 vinsn_attach (new_vi);
1261 return new_vi;
1264 /* Delete the VI vinsn and free its data. */
1265 static void
1266 vinsn_delete (vinsn_t vi)
1268 gcc_assert (VINSN_COUNT (vi) == 0);
1270 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1272 return_regset_to_pool (VINSN_REG_SETS (vi));
1273 return_regset_to_pool (VINSN_REG_USES (vi));
1274 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1277 free (vi);
1280 /* Indicate that VI is no longer a part of some rtx object.
1281 Remove VI if it is no longer needed. */
1282 void
1283 vinsn_detach (vinsn_t vi)
1285 gcc_assert (VINSN_COUNT (vi) > 0);
1287 if (--VINSN_COUNT (vi) == 0)
1288 vinsn_delete (vi);
1291 /* Returns TRUE if VI is a branch. */
1292 bool
1293 vinsn_cond_branch_p (vinsn_t vi)
1295 insn_t insn;
1297 if (!VINSN_UNIQUE_P (vi))
1298 return false;
1300 insn = VINSN_INSN_RTX (vi);
1301 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1302 return false;
1304 return control_flow_insn_p (insn);
1307 /* Return latency of INSN. */
1308 static int
1309 sel_insn_rtx_cost (rtx insn)
1311 int cost;
1313 /* A USE insn, or something else we don't need to
1314 understand. We can't pass these directly to
1315 result_ready_cost or insn_default_latency because it will
1316 trigger a fatal error for unrecognizable insns. */
1317 if (recog_memoized (insn) < 0)
1318 cost = 0;
1319 else
1321 cost = insn_default_latency (insn);
1323 if (cost < 0)
1324 cost = 0;
1327 return cost;
1330 /* Return the cost of the VI.
1331 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1333 sel_vinsn_cost (vinsn_t vi)
1335 int cost = vi->cost;
1337 if (cost < 0)
1339 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1340 vi->cost = cost;
1343 return cost;
1347 /* Functions for insn emitting. */
1349 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1350 EXPR and SEQNO. */
1351 insn_t
1352 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1354 insn_t new_insn;
1356 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1358 new_insn = emit_insn_after (pattern, after);
1359 set_insn_init (expr, NULL, seqno);
1360 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1362 return new_insn;
1365 /* Force newly generated vinsns to be unique. */
1366 static bool init_insn_force_unique_p = false;
1368 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1369 initialize its data from EXPR and SEQNO. */
1370 insn_t
1371 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1372 insn_t after)
1374 insn_t insn;
1376 gcc_assert (!init_insn_force_unique_p);
1378 init_insn_force_unique_p = true;
1379 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1380 CANT_MOVE (insn) = 1;
1381 init_insn_force_unique_p = false;
1383 return insn;
1386 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1387 take it as a new vinsn instead of EXPR's vinsn.
1388 We simplify insns later, after scheduling region in
1389 simplify_changed_insns. */
1390 insn_t
1391 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1392 insn_t after)
1394 expr_t emit_expr;
1395 insn_t insn;
1396 int flags;
1398 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1399 seqno);
1400 insn = EXPR_INSN_RTX (emit_expr);
1402 /* The insn may come from the transformation cache, which may hold already
1403 deleted insns, so mark it as not deleted. */
1404 INSN_DELETED_P (insn) = 0;
1406 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1408 flags = INSN_INIT_TODO_SSID;
1409 if (INSN_LUID (insn) == 0)
1410 flags |= INSN_INIT_TODO_LUID;
1411 sel_init_new_insn (insn, flags);
1413 return insn;
1416 /* Move insn from EXPR after AFTER. */
1417 insn_t
1418 sel_move_insn (expr_t expr, int seqno, insn_t after)
1420 insn_t insn = EXPR_INSN_RTX (expr);
1421 basic_block bb = BLOCK_FOR_INSN (after);
1422 insn_t next = NEXT_INSN (after);
1424 /* Assert that in move_op we disconnected this insn properly. */
1425 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1426 PREV_INSN (insn) = after;
1427 NEXT_INSN (insn) = next;
1429 NEXT_INSN (after) = insn;
1430 PREV_INSN (next) = insn;
1432 /* Update links from insn to bb and vice versa. */
1433 df_insn_change_bb (insn, bb);
1434 if (BB_END (bb) == after)
1435 BB_END (bb) = insn;
1437 prepare_insn_expr (insn, seqno);
1438 return insn;
1442 /* Functions to work with right-hand sides. */
1444 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1445 VECT and return true when found. Use NEW_VINSN for comparison only when
1446 COMPARE_VINSNS is true. Write to INDP the index on which
1447 the search has stopped, such that inserting the new element at INDP will
1448 retain VECT's sort order. */
1449 static bool
1450 find_in_history_vect_1 (vec<expr_history_def> vect,
1451 unsigned uid, vinsn_t new_vinsn,
1452 bool compare_vinsns, int *indp)
1454 expr_history_def *arr;
1455 int i, j, len = vect.length ();
1457 if (len == 0)
1459 *indp = 0;
1460 return false;
1463 arr = vect.address ();
1464 i = 0, j = len - 1;
1466 while (i <= j)
1468 unsigned auid = arr[i].uid;
1469 vinsn_t avinsn = arr[i].new_expr_vinsn;
1471 if (auid == uid
1472 /* When undoing transformation on a bookkeeping copy, the new vinsn
1473 may not be exactly equal to the one that is saved in the vector.
1474 This is because the insn whose copy we're checking was possibly
1475 substituted itself. */
1476 && (! compare_vinsns
1477 || vinsn_equal_p (avinsn, new_vinsn)))
1479 *indp = i;
1480 return true;
1482 else if (auid > uid)
1483 break;
1484 i++;
1487 *indp = i;
1488 return false;
1491 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1492 the position found or -1, if no such value is in vector.
1493 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1495 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1496 vinsn_t new_vinsn, bool originators_p)
1498 int ind;
1500 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1501 false, &ind))
1502 return ind;
1504 if (INSN_ORIGINATORS (insn) && originators_p)
1506 unsigned uid;
1507 bitmap_iterator bi;
1509 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1510 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1511 return ind;
1514 return -1;
1517 /* Insert new element in a sorted history vector pointed to by PVECT,
1518 if it is not there already. The element is searched using
1519 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1520 the history of a transformation. */
1521 void
1522 insert_in_history_vect (vec<expr_history_def> *pvect,
1523 unsigned uid, enum local_trans_type type,
1524 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1525 ds_t spec_ds)
1527 vec<expr_history_def> vect = *pvect;
1528 expr_history_def temp;
1529 bool res;
1530 int ind;
1532 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1534 if (res)
1536 expr_history_def *phist = &vect[ind];
1538 /* It is possible that speculation types of expressions that were
1539 propagated through different paths will be different here. In this
1540 case, merge the status to get the correct check later. */
1541 if (phist->spec_ds != spec_ds)
1542 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1543 return;
1546 temp.uid = uid;
1547 temp.old_expr_vinsn = old_expr_vinsn;
1548 temp.new_expr_vinsn = new_expr_vinsn;
1549 temp.spec_ds = spec_ds;
1550 temp.type = type;
1552 vinsn_attach (old_expr_vinsn);
1553 vinsn_attach (new_expr_vinsn);
1554 vect.safe_insert (ind, temp);
1555 *pvect = vect;
1558 /* Free history vector PVECT. */
1559 static void
1560 free_history_vect (vec<expr_history_def> &pvect)
1562 unsigned i;
1563 expr_history_def *phist;
1565 if (! pvect.exists ())
1566 return;
1568 for (i = 0; pvect.iterate (i, &phist); i++)
1570 vinsn_detach (phist->old_expr_vinsn);
1571 vinsn_detach (phist->new_expr_vinsn);
1574 pvect.release ();
1577 /* Merge vector FROM to PVECT. */
1578 static void
1579 merge_history_vect (vec<expr_history_def> *pvect,
1580 vec<expr_history_def> from)
1582 expr_history_def *phist;
1583 int i;
1585 /* We keep this vector sorted. */
1586 for (i = 0; from.iterate (i, &phist); i++)
1587 insert_in_history_vect (pvect, phist->uid, phist->type,
1588 phist->old_expr_vinsn, phist->new_expr_vinsn,
1589 phist->spec_ds);
1592 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1593 bool
1594 vinsn_equal_p (vinsn_t x, vinsn_t y)
1596 rtx_equal_p_callback_function repcf;
1598 if (x == y)
1599 return true;
1601 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1602 return false;
1604 if (VINSN_HASH (x) != VINSN_HASH (y))
1605 return false;
1607 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1608 if (VINSN_SEPARABLE_P (x))
1610 /* Compare RHSes of VINSNs. */
1611 gcc_assert (VINSN_RHS (x));
1612 gcc_assert (VINSN_RHS (y));
1614 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1617 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1621 /* Functions for working with expressions. */
1623 /* Initialize EXPR. */
1624 static void
1625 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1626 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1627 ds_t spec_to_check_ds, int orig_sched_cycle,
1628 vec<expr_history_def> history,
1629 signed char target_available,
1630 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1631 bool cant_move)
1633 vinsn_attach (vi);
1635 EXPR_VINSN (expr) = vi;
1636 EXPR_SPEC (expr) = spec;
1637 EXPR_USEFULNESS (expr) = use;
1638 EXPR_PRIORITY (expr) = priority;
1639 EXPR_PRIORITY_ADJ (expr) = 0;
1640 EXPR_SCHED_TIMES (expr) = sched_times;
1641 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1642 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1643 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1644 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1646 if (history.exists ())
1647 EXPR_HISTORY_OF_CHANGES (expr) = history;
1648 else
1649 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1651 EXPR_TARGET_AVAILABLE (expr) = target_available;
1652 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1653 EXPR_WAS_RENAMED (expr) = was_renamed;
1654 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1655 EXPR_CANT_MOVE (expr) = cant_move;
1658 /* Make a copy of the expr FROM into the expr TO. */
1659 void
1660 copy_expr (expr_t to, expr_t from)
1662 vec<expr_history_def> temp = vNULL;
1664 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1666 unsigned i;
1667 expr_history_def *phist;
1669 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1670 for (i = 0;
1671 temp.iterate (i, &phist);
1672 i++)
1674 vinsn_attach (phist->old_expr_vinsn);
1675 vinsn_attach (phist->new_expr_vinsn);
1679 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1680 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1681 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1682 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1683 EXPR_ORIG_SCHED_CYCLE (from), temp,
1684 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1685 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1686 EXPR_CANT_MOVE (from));
1689 /* Same, but the final expr will not ever be in av sets, so don't copy
1690 "uninteresting" data such as bitmap cache. */
1691 void
1692 copy_expr_onside (expr_t to, expr_t from)
1694 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1695 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1696 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1697 vNULL,
1698 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1699 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1700 EXPR_CANT_MOVE (from));
1703 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1704 initializing new insns. */
1705 static void
1706 prepare_insn_expr (insn_t insn, int seqno)
1708 expr_t expr = INSN_EXPR (insn);
1709 ds_t ds;
1711 INSN_SEQNO (insn) = seqno;
1712 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1713 EXPR_SPEC (expr) = 0;
1714 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1715 EXPR_WAS_SUBSTITUTED (expr) = 0;
1716 EXPR_WAS_RENAMED (expr) = 0;
1717 EXPR_TARGET_AVAILABLE (expr) = 1;
1718 INSN_LIVE_VALID_P (insn) = false;
1720 /* ??? If this expression is speculative, make its dependence
1721 as weak as possible. We can filter this expression later
1722 in process_spec_exprs, because we do not distinguish
1723 between the status we got during compute_av_set and the
1724 existing status. To be fixed. */
1725 ds = EXPR_SPEC_DONE_DS (expr);
1726 if (ds)
1727 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1729 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1732 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1733 is non-null when expressions are merged from different successors at
1734 a split point. */
1735 static void
1736 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1738 if (EXPR_TARGET_AVAILABLE (to) < 0
1739 || EXPR_TARGET_AVAILABLE (from) < 0)
1740 EXPR_TARGET_AVAILABLE (to) = -1;
1741 else
1743 /* We try to detect the case when one of the expressions
1744 can only be reached through another one. In this case,
1745 we can do better. */
1746 if (split_point == NULL)
1748 int toind, fromind;
1750 toind = EXPR_ORIG_BB_INDEX (to);
1751 fromind = EXPR_ORIG_BB_INDEX (from);
1753 if (toind && toind == fromind)
1754 /* Do nothing -- everything is done in
1755 merge_with_other_exprs. */
1757 else
1758 EXPR_TARGET_AVAILABLE (to) = -1;
1760 else if (EXPR_TARGET_AVAILABLE (from) == 0
1761 && EXPR_LHS (from)
1762 && REG_P (EXPR_LHS (from))
1763 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1764 EXPR_TARGET_AVAILABLE (to) = -1;
1765 else
1766 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1770 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1771 is non-null when expressions are merged from different successors at
1772 a split point. */
1773 static void
1774 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1776 ds_t old_to_ds, old_from_ds;
1778 old_to_ds = EXPR_SPEC_DONE_DS (to);
1779 old_from_ds = EXPR_SPEC_DONE_DS (from);
1781 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1782 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1783 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1785 /* When merging e.g. control & data speculative exprs, or a control
1786 speculative with a control&data speculative one, we really have
1787 to change vinsn too. Also, when speculative status is changed,
1788 we also need to record this as a transformation in expr's history. */
1789 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1791 old_to_ds = ds_get_speculation_types (old_to_ds);
1792 old_from_ds = ds_get_speculation_types (old_from_ds);
1794 if (old_to_ds != old_from_ds)
1796 ds_t record_ds;
1798 /* When both expressions are speculative, we need to change
1799 the vinsn first. */
1800 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1802 int res;
1804 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1805 gcc_assert (res >= 0);
1808 if (split_point != NULL)
1810 /* Record the change with proper status. */
1811 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1812 record_ds &= ~(old_to_ds & SPECULATIVE);
1813 record_ds &= ~(old_from_ds & SPECULATIVE);
1815 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1816 INSN_UID (split_point), TRANS_SPECULATION,
1817 EXPR_VINSN (from), EXPR_VINSN (to),
1818 record_ds);
1825 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1826 this is done along different paths. */
1827 void
1828 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1830 /* Choose the maximum of the specs of merged exprs. This is required
1831 for correctness of bookkeeping. */
1832 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1833 EXPR_SPEC (to) = EXPR_SPEC (from);
1835 if (split_point)
1836 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1837 else
1838 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1839 EXPR_USEFULNESS (from));
1841 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1842 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1844 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1845 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1847 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1848 EXPR_ORIG_BB_INDEX (to) = 0;
1850 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1851 EXPR_ORIG_SCHED_CYCLE (from));
1853 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1854 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1855 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1857 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1858 EXPR_HISTORY_OF_CHANGES (from));
1859 update_target_availability (to, from, split_point);
1860 update_speculative_bits (to, from, split_point);
1863 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1864 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1865 are merged from different successors at a split point. */
1866 void
1867 merge_expr (expr_t to, expr_t from, insn_t split_point)
1869 vinsn_t to_vi = EXPR_VINSN (to);
1870 vinsn_t from_vi = EXPR_VINSN (from);
1872 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1874 /* Make sure that speculative pattern is propagated into exprs that
1875 have non-speculative one. This will provide us with consistent
1876 speculative bits and speculative patterns inside expr. */
1877 if ((EXPR_SPEC_DONE_DS (from) != 0
1878 && EXPR_SPEC_DONE_DS (to) == 0)
1879 /* Do likewise for volatile insns, so that we always retain
1880 the may_trap_p bit on the resulting expression. */
1881 || (VINSN_MAY_TRAP_P (EXPR_VINSN (from))
1882 && !VINSN_MAY_TRAP_P (EXPR_VINSN (to))))
1883 change_vinsn_in_expr (to, EXPR_VINSN (from));
1885 merge_expr_data (to, from, split_point);
1886 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1889 /* Clear the information of this EXPR. */
1890 void
1891 clear_expr (expr_t expr)
1894 vinsn_detach (EXPR_VINSN (expr));
1895 EXPR_VINSN (expr) = NULL;
1897 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1900 /* For a given LV_SET, mark EXPR having unavailable target register. */
1901 static void
1902 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1904 if (EXPR_SEPARABLE_P (expr))
1906 if (REG_P (EXPR_LHS (expr))
1907 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1909 /* If it's an insn like r1 = use (r1, ...), and it exists in
1910 different forms in each of the av_sets being merged, we can't say
1911 whether original destination register is available or not.
1912 However, this still works if destination register is not used
1913 in the original expression: if the branch at which LV_SET we're
1914 looking here is not actually 'other branch' in sense that same
1915 expression is available through it (but it can't be determined
1916 at computation stage because of transformations on one of the
1917 branches), it still won't affect the availability.
1918 Liveness of a register somewhere on a code motion path means
1919 it's either read somewhere on a codemotion path, live on
1920 'other' branch, live at the point immediately following
1921 the original operation, or is read by the original operation.
1922 The latter case is filtered out in the condition below.
1923 It still doesn't cover the case when register is defined and used
1924 somewhere within the code motion path, and in this case we could
1925 miss a unifying code motion along both branches using a renamed
1926 register, but it won't affect a code correctness since upon
1927 an actual code motion a bookkeeping code would be generated. */
1928 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1929 EXPR_LHS (expr)))
1930 EXPR_TARGET_AVAILABLE (expr) = -1;
1931 else
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1935 else
1937 unsigned regno;
1938 reg_set_iterator rsi;
1940 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1941 0, regno, rsi)
1942 if (bitmap_bit_p (lv_set, regno))
1944 EXPR_TARGET_AVAILABLE (expr) = false;
1945 break;
1948 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1949 0, regno, rsi)
1950 if (bitmap_bit_p (lv_set, regno))
1952 EXPR_TARGET_AVAILABLE (expr) = false;
1953 break;
1958 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1959 or dependence status have changed, 2 when also the target register
1960 became unavailable, 0 if nothing had to be changed. */
1962 speculate_expr (expr_t expr, ds_t ds)
1964 int res;
1965 rtx orig_insn_rtx;
1966 rtx spec_pat;
1967 ds_t target_ds, current_ds;
1969 /* Obtain the status we need to put on EXPR. */
1970 target_ds = (ds & SPECULATIVE);
1971 current_ds = EXPR_SPEC_DONE_DS (expr);
1972 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1974 orig_insn_rtx = EXPR_INSN_RTX (expr);
1976 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1978 switch (res)
1980 case 0:
1981 EXPR_SPEC_DONE_DS (expr) = ds;
1982 return current_ds != ds ? 1 : 0;
1984 case 1:
1986 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1987 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1989 change_vinsn_in_expr (expr, spec_vinsn);
1990 EXPR_SPEC_DONE_DS (expr) = ds;
1991 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1993 /* Do not allow clobbering the address register of speculative
1994 insns. */
1995 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1996 expr_dest_reg (expr)))
1998 EXPR_TARGET_AVAILABLE (expr) = false;
1999 return 2;
2002 return 1;
2005 case -1:
2006 return -1;
2008 default:
2009 gcc_unreachable ();
2010 return -1;
2014 /* Return a destination register, if any, of EXPR. */
2016 expr_dest_reg (expr_t expr)
2018 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2020 if (dest != NULL_RTX && REG_P (dest))
2021 return dest;
2023 return NULL_RTX;
2026 /* Returns the REGNO of the R's destination. */
2027 unsigned
2028 expr_dest_regno (expr_t expr)
2030 rtx dest = expr_dest_reg (expr);
2032 gcc_assert (dest != NULL_RTX);
2033 return REGNO (dest);
2036 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2037 AV_SET having unavailable target register. */
2038 void
2039 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2041 expr_t expr;
2042 av_set_iterator avi;
2044 FOR_EACH_EXPR (expr, avi, join_set)
2045 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2046 set_unavailable_target_for_expr (expr, lv_set);
2050 /* Returns true if REG (at least partially) is present in REGS. */
2051 bool
2052 register_unavailable_p (regset regs, rtx reg)
2054 unsigned regno, end_regno;
2056 regno = REGNO (reg);
2057 if (bitmap_bit_p (regs, regno))
2058 return true;
2060 end_regno = END_REGNO (reg);
2062 while (++regno < end_regno)
2063 if (bitmap_bit_p (regs, regno))
2064 return true;
2066 return false;
2069 /* Av set functions. */
2071 /* Add a new element to av set SETP.
2072 Return the element added. */
2073 static av_set_t
2074 av_set_add_element (av_set_t *setp)
2076 /* Insert at the beginning of the list. */
2077 _list_add (setp);
2078 return *setp;
2081 /* Add EXPR to SETP. */
2082 void
2083 av_set_add (av_set_t *setp, expr_t expr)
2085 av_set_t elem;
2087 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2088 elem = av_set_add_element (setp);
2089 copy_expr (_AV_SET_EXPR (elem), expr);
2092 /* Same, but do not copy EXPR. */
2093 static void
2094 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2096 av_set_t elem;
2098 elem = av_set_add_element (setp);
2099 *_AV_SET_EXPR (elem) = *expr;
2102 /* Remove expr pointed to by IP from the av_set. */
2103 void
2104 av_set_iter_remove (av_set_iterator *ip)
2106 clear_expr (_AV_SET_EXPR (*ip->lp));
2107 _list_iter_remove (ip);
2110 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2111 sense of vinsn_equal_p function. Return NULL if no such expr is
2112 in SET was found. */
2113 expr_t
2114 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2116 expr_t expr;
2117 av_set_iterator i;
2119 FOR_EACH_EXPR (expr, i, set)
2120 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2121 return expr;
2122 return NULL;
2125 /* Same, but also remove the EXPR found. */
2126 static expr_t
2127 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2129 expr_t expr;
2130 av_set_iterator i;
2132 FOR_EACH_EXPR_1 (expr, i, setp)
2133 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2135 _list_iter_remove_nofree (&i);
2136 return expr;
2138 return NULL;
2141 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2142 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2143 Returns NULL if no such expr is in SET was found. */
2144 static expr_t
2145 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2147 expr_t cur_expr;
2148 av_set_iterator i;
2150 FOR_EACH_EXPR (cur_expr, i, set)
2152 if (cur_expr == expr)
2153 continue;
2154 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2155 return cur_expr;
2158 return NULL;
2161 /* If other expression is already in AVP, remove one of them. */
2162 expr_t
2163 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2165 expr_t expr2;
2167 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2168 if (expr2 != NULL)
2170 /* Reset target availability on merge, since taking it only from one
2171 of the exprs would be controversial for different code. */
2172 EXPR_TARGET_AVAILABLE (expr2) = -1;
2173 EXPR_USEFULNESS (expr2) = 0;
2175 merge_expr (expr2, expr, NULL);
2177 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2178 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2180 av_set_iter_remove (ip);
2181 return expr2;
2184 return expr;
2187 /* Return true if there is an expr that correlates to VI in SET. */
2188 bool
2189 av_set_is_in_p (av_set_t set, vinsn_t vi)
2191 return av_set_lookup (set, vi) != NULL;
2194 /* Return a copy of SET. */
2195 av_set_t
2196 av_set_copy (av_set_t set)
2198 expr_t expr;
2199 av_set_iterator i;
2200 av_set_t res = NULL;
2202 FOR_EACH_EXPR (expr, i, set)
2203 av_set_add (&res, expr);
2205 return res;
2208 /* Join two av sets that do not have common elements by attaching second set
2209 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2210 _AV_SET_NEXT of first set's last element). */
2211 static void
2212 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2214 gcc_assert (*to_tailp == NULL);
2215 *to_tailp = *fromp;
2216 *fromp = NULL;
2219 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2220 pointed to by FROMP afterwards. */
2221 void
2222 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2224 expr_t expr1;
2225 av_set_iterator i;
2227 /* Delete from TOP all exprs, that present in FROMP. */
2228 FOR_EACH_EXPR_1 (expr1, i, top)
2230 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2232 if (expr2)
2234 merge_expr (expr2, expr1, insn);
2235 av_set_iter_remove (&i);
2239 join_distinct_sets (i.lp, fromp);
2242 /* Same as above, but also update availability of target register in
2243 TOP judging by TO_LV_SET and FROM_LV_SET. */
2244 void
2245 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2246 regset from_lv_set, insn_t insn)
2248 expr_t expr1;
2249 av_set_iterator i;
2250 av_set_t *to_tailp, in_both_set = NULL;
2252 /* Delete from TOP all expres, that present in FROMP. */
2253 FOR_EACH_EXPR_1 (expr1, i, top)
2255 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2257 if (expr2)
2259 /* It may be that the expressions have different destination
2260 registers, in which case we need to check liveness here. */
2261 if (EXPR_SEPARABLE_P (expr1))
2263 int regno1 = (REG_P (EXPR_LHS (expr1))
2264 ? (int) expr_dest_regno (expr1) : -1);
2265 int regno2 = (REG_P (EXPR_LHS (expr2))
2266 ? (int) expr_dest_regno (expr2) : -1);
2268 /* ??? We don't have a way to check restrictions for
2269 *other* register on the current path, we did it only
2270 for the current target register. Give up. */
2271 if (regno1 != regno2)
2272 EXPR_TARGET_AVAILABLE (expr2) = -1;
2274 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2275 EXPR_TARGET_AVAILABLE (expr2) = -1;
2277 merge_expr (expr2, expr1, insn);
2278 av_set_add_nocopy (&in_both_set, expr2);
2279 av_set_iter_remove (&i);
2281 else
2282 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2283 FROM_LV_SET. */
2284 set_unavailable_target_for_expr (expr1, from_lv_set);
2286 to_tailp = i.lp;
2288 /* These expressions are not present in TOP. Check liveness
2289 restrictions on TO_LV_SET. */
2290 FOR_EACH_EXPR (expr1, i, *fromp)
2291 set_unavailable_target_for_expr (expr1, to_lv_set);
2293 join_distinct_sets (i.lp, &in_both_set);
2294 join_distinct_sets (to_tailp, fromp);
2297 /* Clear av_set pointed to by SETP. */
2298 void
2299 av_set_clear (av_set_t *setp)
2301 expr_t expr;
2302 av_set_iterator i;
2304 FOR_EACH_EXPR_1 (expr, i, setp)
2305 av_set_iter_remove (&i);
2307 gcc_assert (*setp == NULL);
2310 /* Leave only one non-speculative element in the SETP. */
2311 void
2312 av_set_leave_one_nonspec (av_set_t *setp)
2314 expr_t expr;
2315 av_set_iterator i;
2316 bool has_one_nonspec = false;
2318 /* Keep all speculative exprs, and leave one non-speculative
2319 (the first one). */
2320 FOR_EACH_EXPR_1 (expr, i, setp)
2322 if (!EXPR_SPEC_DONE_DS (expr))
2324 if (has_one_nonspec)
2325 av_set_iter_remove (&i);
2326 else
2327 has_one_nonspec = true;
2332 /* Return the N'th element of the SET. */
2333 expr_t
2334 av_set_element (av_set_t set, int n)
2336 expr_t expr;
2337 av_set_iterator i;
2339 FOR_EACH_EXPR (expr, i, set)
2340 if (n-- == 0)
2341 return expr;
2343 gcc_unreachable ();
2344 return NULL;
2347 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2348 void
2349 av_set_substract_cond_branches (av_set_t *avp)
2351 av_set_iterator i;
2352 expr_t expr;
2354 FOR_EACH_EXPR_1 (expr, i, avp)
2355 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2356 av_set_iter_remove (&i);
2359 /* Multiplies usefulness attribute of each member of av-set *AVP by
2360 value PROB / ALL_PROB. */
2361 void
2362 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2364 av_set_iterator i;
2365 expr_t expr;
2367 FOR_EACH_EXPR (expr, i, av)
2368 EXPR_USEFULNESS (expr) = (all_prob
2369 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2370 : 0);
2373 /* Leave in AVP only those expressions, which are present in AV,
2374 and return it, merging history expressions. */
2375 void
2376 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2378 av_set_iterator i;
2379 expr_t expr, expr2;
2381 FOR_EACH_EXPR_1 (expr, i, avp)
2382 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2383 av_set_iter_remove (&i);
2384 else
2385 /* When updating av sets in bookkeeping blocks, we can add more insns
2386 there which will be transformed but the upper av sets will not
2387 reflect those transformations. We then fail to undo those
2388 when searching for such insns. So merge the history saved
2389 in the av set of the block we are processing. */
2390 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2391 EXPR_HISTORY_OF_CHANGES (expr2));
2396 /* Dependence hooks to initialize insn data. */
2398 /* This is used in hooks callable from dependence analysis when initializing
2399 instruction's data. */
2400 static struct
2402 /* Where the dependence was found (lhs/rhs). */
2403 deps_where_t where;
2405 /* The actual data object to initialize. */
2406 idata_t id;
2408 /* True when the insn should not be made clonable. */
2409 bool force_unique_p;
2411 /* True when insn should be treated as of type USE, i.e. never renamed. */
2412 bool force_use_p;
2413 } deps_init_id_data;
2416 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2417 clonable. */
2418 static void
2419 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2421 int type;
2423 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2424 That clonable insns which can be separated into lhs and rhs have type SET.
2425 Other clonable insns have type USE. */
2426 type = GET_CODE (insn);
2428 /* Only regular insns could be cloned. */
2429 if (type == INSN && !force_unique_p)
2430 type = SET;
2431 else if (type == JUMP_INSN && simplejump_p (insn))
2432 type = PC;
2433 else if (type == DEBUG_INSN)
2434 type = !force_unique_p ? USE : INSN;
2436 IDATA_TYPE (id) = type;
2437 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2438 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2439 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2442 /* Start initializing insn data. */
2443 static void
2444 deps_init_id_start_insn (insn_t insn)
2446 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2448 setup_id_for_insn (deps_init_id_data.id, insn,
2449 deps_init_id_data.force_unique_p);
2450 deps_init_id_data.where = DEPS_IN_INSN;
2453 /* Start initializing lhs data. */
2454 static void
2455 deps_init_id_start_lhs (rtx lhs)
2457 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2458 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2460 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2462 IDATA_LHS (deps_init_id_data.id) = lhs;
2463 deps_init_id_data.where = DEPS_IN_LHS;
2467 /* Finish initializing lhs data. */
2468 static void
2469 deps_init_id_finish_lhs (void)
2471 deps_init_id_data.where = DEPS_IN_INSN;
2474 /* Note a set of REGNO. */
2475 static void
2476 deps_init_id_note_reg_set (int regno)
2478 haifa_note_reg_set (regno);
2480 if (deps_init_id_data.where == DEPS_IN_RHS)
2481 deps_init_id_data.force_use_p = true;
2483 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2484 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2486 #ifdef STACK_REGS
2487 /* Make instructions that set stack registers to be ineligible for
2488 renaming to avoid issues with find_used_regs. */
2489 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2490 deps_init_id_data.force_use_p = true;
2491 #endif
2494 /* Note a clobber of REGNO. */
2495 static void
2496 deps_init_id_note_reg_clobber (int regno)
2498 haifa_note_reg_clobber (regno);
2500 if (deps_init_id_data.where == DEPS_IN_RHS)
2501 deps_init_id_data.force_use_p = true;
2503 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2504 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2507 /* Note a use of REGNO. */
2508 static void
2509 deps_init_id_note_reg_use (int regno)
2511 haifa_note_reg_use (regno);
2513 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2514 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2517 /* Start initializing rhs data. */
2518 static void
2519 deps_init_id_start_rhs (rtx rhs)
2521 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2523 /* And there was no sel_deps_reset_to_insn (). */
2524 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2526 IDATA_RHS (deps_init_id_data.id) = rhs;
2527 deps_init_id_data.where = DEPS_IN_RHS;
2531 /* Finish initializing rhs data. */
2532 static void
2533 deps_init_id_finish_rhs (void)
2535 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2536 || deps_init_id_data.where == DEPS_IN_INSN);
2537 deps_init_id_data.where = DEPS_IN_INSN;
2540 /* Finish initializing insn data. */
2541 static void
2542 deps_init_id_finish_insn (void)
2544 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2546 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2548 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2549 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2551 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2552 || deps_init_id_data.force_use_p)
2554 /* This should be a USE, as we don't want to schedule its RHS
2555 separately. However, we still want to have them recorded
2556 for the purposes of substitution. That's why we don't
2557 simply call downgrade_to_use () here. */
2558 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2559 gcc_assert (!lhs == !rhs);
2561 IDATA_TYPE (deps_init_id_data.id) = USE;
2565 deps_init_id_data.where = DEPS_IN_NOWHERE;
2568 /* This is dependence info used for initializing insn's data. */
2569 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2571 /* This initializes most of the static part of the above structure. */
2572 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2574 NULL,
2576 deps_init_id_start_insn,
2577 deps_init_id_finish_insn,
2578 deps_init_id_start_lhs,
2579 deps_init_id_finish_lhs,
2580 deps_init_id_start_rhs,
2581 deps_init_id_finish_rhs,
2582 deps_init_id_note_reg_set,
2583 deps_init_id_note_reg_clobber,
2584 deps_init_id_note_reg_use,
2585 NULL, /* note_mem_dep */
2586 NULL, /* note_dep */
2588 0, /* use_cselib */
2589 0, /* use_deps_list */
2590 0 /* generate_spec_deps */
2593 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2594 we don't actually need information about lhs and rhs. */
2595 static void
2596 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2598 rtx pat = PATTERN (insn);
2600 if (NONJUMP_INSN_P (insn)
2601 && GET_CODE (pat) == SET
2602 && !force_unique_p)
2604 IDATA_RHS (id) = SET_SRC (pat);
2605 IDATA_LHS (id) = SET_DEST (pat);
2607 else
2608 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2611 /* Possibly downgrade INSN to USE. */
2612 static void
2613 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2615 bool must_be_use = false;
2616 df_ref def;
2617 rtx lhs = IDATA_LHS (id);
2618 rtx rhs = IDATA_RHS (id);
2620 /* We downgrade only SETs. */
2621 if (IDATA_TYPE (id) != SET)
2622 return;
2624 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2626 IDATA_TYPE (id) = USE;
2627 return;
2630 FOR_EACH_INSN_DEF (def, insn)
2632 if (DF_REF_INSN (def)
2633 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2634 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2636 must_be_use = true;
2637 break;
2640 #ifdef STACK_REGS
2641 /* Make instructions that set stack registers to be ineligible for
2642 renaming to avoid issues with find_used_regs. */
2643 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2645 must_be_use = true;
2646 break;
2648 #endif
2651 if (must_be_use)
2652 IDATA_TYPE (id) = USE;
2655 /* Setup register sets describing INSN in ID. */
2656 static void
2657 setup_id_reg_sets (idata_t id, insn_t insn)
2659 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2660 df_ref def, use;
2661 regset tmp = get_clear_regset_from_pool ();
2663 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2665 unsigned int regno = DF_REF_REGNO (def);
2667 /* Post modifies are treated like clobbers by sched-deps.c. */
2668 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2669 | DF_REF_PRE_POST_MODIFY)))
2670 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2671 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2673 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2675 #ifdef STACK_REGS
2676 /* For stack registers, treat writes to them as writes
2677 to the first one to be consistent with sched-deps.c. */
2678 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2679 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2680 #endif
2682 /* Mark special refs that generate read/write def pair. */
2683 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2684 || regno == STACK_POINTER_REGNUM)
2685 bitmap_set_bit (tmp, regno);
2688 FOR_EACH_INSN_INFO_USE (use, insn_info)
2690 unsigned int regno = DF_REF_REGNO (use);
2692 /* When these refs are met for the first time, skip them, as
2693 these uses are just counterparts of some defs. */
2694 if (bitmap_bit_p (tmp, regno))
2695 bitmap_clear_bit (tmp, regno);
2696 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2698 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2700 #ifdef STACK_REGS
2701 /* For stack registers, treat reads from them as reads from
2702 the first one to be consistent with sched-deps.c. */
2703 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2704 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2705 #endif
2709 return_regset_to_pool (tmp);
2712 /* Initialize instruction data for INSN in ID using DF's data. */
2713 static void
2714 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2716 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2718 setup_id_for_insn (id, insn, force_unique_p);
2719 setup_id_lhs_rhs (id, insn, force_unique_p);
2721 if (INSN_NOP_P (insn))
2722 return;
2724 maybe_downgrade_id_to_use (id, insn);
2725 setup_id_reg_sets (id, insn);
2728 /* Initialize instruction data for INSN in ID. */
2729 static void
2730 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2732 struct deps_desc _dc, *dc = &_dc;
2734 deps_init_id_data.where = DEPS_IN_NOWHERE;
2735 deps_init_id_data.id = id;
2736 deps_init_id_data.force_unique_p = force_unique_p;
2737 deps_init_id_data.force_use_p = false;
2739 init_deps (dc, false);
2741 memcpy (&deps_init_id_sched_deps_info,
2742 &const_deps_init_id_sched_deps_info,
2743 sizeof (deps_init_id_sched_deps_info));
2745 if (spec_info != NULL)
2746 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2748 sched_deps_info = &deps_init_id_sched_deps_info;
2750 deps_analyze_insn (dc, insn);
2752 free_deps (dc);
2754 deps_init_id_data.id = NULL;
2758 struct sched_scan_info_def
2760 /* This hook notifies scheduler frontend to extend its internal per basic
2761 block data structures. This hook should be called once before a series of
2762 calls to bb_init (). */
2763 void (*extend_bb) (void);
2765 /* This hook makes scheduler frontend to initialize its internal data
2766 structures for the passed basic block. */
2767 void (*init_bb) (basic_block);
2769 /* This hook notifies scheduler frontend to extend its internal per insn data
2770 structures. This hook should be called once before a series of calls to
2771 insn_init (). */
2772 void (*extend_insn) (void);
2774 /* This hook makes scheduler frontend to initialize its internal data
2775 structures for the passed insn. */
2776 void (*init_insn) (rtx);
2779 /* A driver function to add a set of basic blocks (BBS) to the
2780 scheduling region. */
2781 static void
2782 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2784 unsigned i;
2785 basic_block bb;
2787 if (ssi->extend_bb)
2788 ssi->extend_bb ();
2790 if (ssi->init_bb)
2791 FOR_EACH_VEC_ELT (bbs, i, bb)
2792 ssi->init_bb (bb);
2794 if (ssi->extend_insn)
2795 ssi->extend_insn ();
2797 if (ssi->init_insn)
2798 FOR_EACH_VEC_ELT (bbs, i, bb)
2800 rtx insn;
2802 FOR_BB_INSNS (bb, insn)
2803 ssi->init_insn (insn);
2807 /* Implement hooks for collecting fundamental insn properties like if insn is
2808 an ASM or is within a SCHED_GROUP. */
2810 /* True when a "one-time init" data for INSN was already inited. */
2811 static bool
2812 first_time_insn_init (insn_t insn)
2814 return INSN_LIVE (insn) == NULL;
2817 /* Hash an entry in a transformed_insns hashtable. */
2818 static hashval_t
2819 hash_transformed_insns (const void *p)
2821 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2824 /* Compare the entries in a transformed_insns hashtable. */
2825 static int
2826 eq_transformed_insns (const void *p, const void *q)
2828 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2829 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2831 if (INSN_UID (i1) == INSN_UID (i2))
2832 return 1;
2833 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2836 /* Free an entry in a transformed_insns hashtable. */
2837 static void
2838 free_transformed_insns (void *p)
2840 struct transformed_insns *pti = (struct transformed_insns *) p;
2842 vinsn_detach (pti->vinsn_old);
2843 vinsn_detach (pti->vinsn_new);
2844 free (pti);
2847 /* Init the s_i_d data for INSN which should be inited just once, when
2848 we first see the insn. */
2849 static void
2850 init_first_time_insn_data (insn_t insn)
2852 /* This should not be set if this is the first time we init data for
2853 insn. */
2854 gcc_assert (first_time_insn_init (insn));
2856 /* These are needed for nops too. */
2857 INSN_LIVE (insn) = get_regset_from_pool ();
2858 INSN_LIVE_VALID_P (insn) = false;
2860 if (!INSN_NOP_P (insn))
2862 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2863 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2864 INSN_TRANSFORMED_INSNS (insn)
2865 = htab_create (16, hash_transformed_insns,
2866 eq_transformed_insns, free_transformed_insns);
2867 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2871 /* Free almost all above data for INSN that is scheduled already.
2872 Used for extra-large basic blocks. */
2873 void
2874 free_data_for_scheduled_insn (insn_t insn)
2876 gcc_assert (! first_time_insn_init (insn));
2878 if (! INSN_ANALYZED_DEPS (insn))
2879 return;
2881 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2882 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2883 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2885 /* This is allocated only for bookkeeping insns. */
2886 if (INSN_ORIGINATORS (insn))
2887 BITMAP_FREE (INSN_ORIGINATORS (insn));
2888 free_deps (&INSN_DEPS_CONTEXT (insn));
2890 INSN_ANALYZED_DEPS (insn) = NULL;
2892 /* Clear the readonly flag so we would ICE when trying to recalculate
2893 the deps context (as we believe that it should not happen). */
2894 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2897 /* Free the same data as above for INSN. */
2898 static void
2899 free_first_time_insn_data (insn_t insn)
2901 gcc_assert (! first_time_insn_init (insn));
2903 free_data_for_scheduled_insn (insn);
2904 return_regset_to_pool (INSN_LIVE (insn));
2905 INSN_LIVE (insn) = NULL;
2906 INSN_LIVE_VALID_P (insn) = false;
2909 /* Initialize region-scope data structures for basic blocks. */
2910 static void
2911 init_global_and_expr_for_bb (basic_block bb)
2913 if (sel_bb_empty_p (bb))
2914 return;
2916 invalidate_av_set (bb);
2919 /* Data for global dependency analysis (to initialize CANT_MOVE and
2920 SCHED_GROUP_P). */
2921 static struct
2923 /* Previous insn. */
2924 insn_t prev_insn;
2925 } init_global_data;
2927 /* Determine if INSN is in the sched_group, is an asm or should not be
2928 cloned. After that initialize its expr. */
2929 static void
2930 init_global_and_expr_for_insn (insn_t insn)
2932 if (LABEL_P (insn))
2933 return;
2935 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2937 init_global_data.prev_insn = NULL_RTX;
2938 return;
2941 gcc_assert (INSN_P (insn));
2943 if (SCHED_GROUP_P (insn))
2944 /* Setup a sched_group. */
2946 insn_t prev_insn = init_global_data.prev_insn;
2948 if (prev_insn)
2949 INSN_SCHED_NEXT (prev_insn) = insn;
2951 init_global_data.prev_insn = insn;
2953 else
2954 init_global_data.prev_insn = NULL_RTX;
2956 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2957 || asm_noperands (PATTERN (insn)) >= 0)
2958 /* Mark INSN as an asm. */
2959 INSN_ASM_P (insn) = true;
2962 bool force_unique_p;
2963 ds_t spec_done_ds;
2965 /* Certain instructions cannot be cloned, and frame related insns and
2966 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2967 their block. */
2968 if (prologue_epilogue_contains (insn))
2970 if (RTX_FRAME_RELATED_P (insn))
2971 CANT_MOVE (insn) = 1;
2972 else
2974 rtx note;
2975 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2976 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2977 && ((enum insn_note) INTVAL (XEXP (note, 0))
2978 == NOTE_INSN_EPILOGUE_BEG))
2980 CANT_MOVE (insn) = 1;
2981 break;
2984 force_unique_p = true;
2986 else
2987 if (CANT_MOVE (insn)
2988 || INSN_ASM_P (insn)
2989 || SCHED_GROUP_P (insn)
2990 || CALL_P (insn)
2991 /* Exception handling insns are always unique. */
2992 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2993 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2994 || control_flow_insn_p (insn)
2995 || volatile_insn_p (PATTERN (insn))
2996 || (targetm.cannot_copy_insn_p
2997 && targetm.cannot_copy_insn_p (insn)))
2998 force_unique_p = true;
2999 else
3000 force_unique_p = false;
3002 if (targetm.sched.get_insn_spec_ds)
3004 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3005 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3007 else
3008 spec_done_ds = 0;
3010 /* Initialize INSN's expr. */
3011 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3012 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3013 spec_done_ds, 0, 0, vNULL, true,
3014 false, false, false, CANT_MOVE (insn));
3017 init_first_time_insn_data (insn);
3020 /* Scan the region and initialize instruction data for basic blocks BBS. */
3021 void
3022 sel_init_global_and_expr (bb_vec_t bbs)
3024 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3025 const struct sched_scan_info_def ssi =
3027 NULL, /* extend_bb */
3028 init_global_and_expr_for_bb, /* init_bb */
3029 extend_insn_data, /* extend_insn */
3030 init_global_and_expr_for_insn /* init_insn */
3033 sched_scan (&ssi, bbs);
3036 /* Finalize region-scope data structures for basic blocks. */
3037 static void
3038 finish_global_and_expr_for_bb (basic_block bb)
3040 av_set_clear (&BB_AV_SET (bb));
3041 BB_AV_LEVEL (bb) = 0;
3044 /* Finalize INSN's data. */
3045 static void
3046 finish_global_and_expr_insn (insn_t insn)
3048 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3049 return;
3051 gcc_assert (INSN_P (insn));
3053 if (INSN_LUID (insn) > 0)
3055 free_first_time_insn_data (insn);
3056 INSN_WS_LEVEL (insn) = 0;
3057 CANT_MOVE (insn) = 0;
3059 /* We can no longer assert this, as vinsns of this insn could be
3060 easily live in other insn's caches. This should be changed to
3061 a counter-like approach among all vinsns. */
3062 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3063 clear_expr (INSN_EXPR (insn));
3067 /* Finalize per instruction data for the whole region. */
3068 void
3069 sel_finish_global_and_expr (void)
3072 bb_vec_t bbs;
3073 int i;
3075 bbs.create (current_nr_blocks);
3077 for (i = 0; i < current_nr_blocks; i++)
3078 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3080 /* Clear AV_SETs and INSN_EXPRs. */
3082 const struct sched_scan_info_def ssi =
3084 NULL, /* extend_bb */
3085 finish_global_and_expr_for_bb, /* init_bb */
3086 NULL, /* extend_insn */
3087 finish_global_and_expr_insn /* init_insn */
3090 sched_scan (&ssi, bbs);
3093 bbs.release ();
3096 finish_insns ();
3100 /* In the below hooks, we merely calculate whether or not a dependence
3101 exists, and in what part of insn. However, we will need more data
3102 when we'll start caching dependence requests. */
3104 /* Container to hold information for dependency analysis. */
3105 static struct
3107 deps_t dc;
3109 /* A variable to track which part of rtx we are scanning in
3110 sched-deps.c: sched_analyze_insn (). */
3111 deps_where_t where;
3113 /* Current producer. */
3114 insn_t pro;
3116 /* Current consumer. */
3117 vinsn_t con;
3119 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3120 X is from { INSN, LHS, RHS }. */
3121 ds_t has_dep_p[DEPS_IN_NOWHERE];
3122 } has_dependence_data;
3124 /* Start analyzing dependencies of INSN. */
3125 static void
3126 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3128 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3130 has_dependence_data.where = DEPS_IN_INSN;
3133 /* Finish analyzing dependencies of an insn. */
3134 static void
3135 has_dependence_finish_insn (void)
3137 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3139 has_dependence_data.where = DEPS_IN_NOWHERE;
3142 /* Start analyzing dependencies of LHS. */
3143 static void
3144 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3146 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3148 if (VINSN_LHS (has_dependence_data.con) != NULL)
3149 has_dependence_data.where = DEPS_IN_LHS;
3152 /* Finish analyzing dependencies of an lhs. */
3153 static void
3154 has_dependence_finish_lhs (void)
3156 has_dependence_data.where = DEPS_IN_INSN;
3159 /* Start analyzing dependencies of RHS. */
3160 static void
3161 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3163 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3165 if (VINSN_RHS (has_dependence_data.con) != NULL)
3166 has_dependence_data.where = DEPS_IN_RHS;
3169 /* Start analyzing dependencies of an rhs. */
3170 static void
3171 has_dependence_finish_rhs (void)
3173 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3174 || has_dependence_data.where == DEPS_IN_INSN);
3176 has_dependence_data.where = DEPS_IN_INSN;
3179 /* Note a set of REGNO. */
3180 static void
3181 has_dependence_note_reg_set (int regno)
3183 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3185 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3186 VINSN_INSN_RTX
3187 (has_dependence_data.con)))
3189 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3191 if (reg_last->sets != NULL
3192 || reg_last->clobbers != NULL)
3193 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3195 if (reg_last->uses || reg_last->implicit_sets)
3196 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3200 /* Note a clobber of REGNO. */
3201 static void
3202 has_dependence_note_reg_clobber (int regno)
3204 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3206 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3207 VINSN_INSN_RTX
3208 (has_dependence_data.con)))
3210 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3212 if (reg_last->sets)
3213 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3215 if (reg_last->uses || reg_last->implicit_sets)
3216 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3220 /* Note a use of REGNO. */
3221 static void
3222 has_dependence_note_reg_use (int regno)
3224 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3226 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3227 VINSN_INSN_RTX
3228 (has_dependence_data.con)))
3230 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3232 if (reg_last->sets)
3233 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3235 if (reg_last->clobbers || reg_last->implicit_sets)
3236 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3238 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3239 is actually a check insn. We need to do this for any register
3240 read-read dependency with the check unless we track properly
3241 all registers written by BE_IN_SPEC-speculated insns, as
3242 we don't have explicit dependence lists. See PR 53975. */
3243 if (reg_last->uses)
3245 ds_t pro_spec_checked_ds;
3247 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3248 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3250 if (pro_spec_checked_ds != 0)
3251 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3252 NULL_RTX, NULL_RTX);
3257 /* Note a memory dependence. */
3258 static void
3259 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3260 rtx pending_mem ATTRIBUTE_UNUSED,
3261 insn_t pending_insn ATTRIBUTE_UNUSED,
3262 ds_t ds ATTRIBUTE_UNUSED)
3264 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3265 VINSN_INSN_RTX (has_dependence_data.con)))
3267 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3269 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3273 /* Note a dependence. */
3274 static void
3275 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3276 ds_t ds ATTRIBUTE_UNUSED)
3278 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3279 VINSN_INSN_RTX (has_dependence_data.con)))
3281 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3283 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3287 /* Mark the insn as having a hard dependence that prevents speculation. */
3288 void
3289 sel_mark_hard_insn (rtx insn)
3291 int i;
3293 /* Only work when we're in has_dependence_p mode.
3294 ??? This is a hack, this should actually be a hook. */
3295 if (!has_dependence_data.dc || !has_dependence_data.pro)
3296 return;
3298 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3299 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3301 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3302 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3305 /* This structure holds the hooks for the dependency analysis used when
3306 actually processing dependencies in the scheduler. */
3307 static struct sched_deps_info_def has_dependence_sched_deps_info;
3309 /* This initializes most of the fields of the above structure. */
3310 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3312 NULL,
3314 has_dependence_start_insn,
3315 has_dependence_finish_insn,
3316 has_dependence_start_lhs,
3317 has_dependence_finish_lhs,
3318 has_dependence_start_rhs,
3319 has_dependence_finish_rhs,
3320 has_dependence_note_reg_set,
3321 has_dependence_note_reg_clobber,
3322 has_dependence_note_reg_use,
3323 has_dependence_note_mem_dep,
3324 has_dependence_note_dep,
3326 0, /* use_cselib */
3327 0, /* use_deps_list */
3328 0 /* generate_spec_deps */
3331 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3332 static void
3333 setup_has_dependence_sched_deps_info (void)
3335 memcpy (&has_dependence_sched_deps_info,
3336 &const_has_dependence_sched_deps_info,
3337 sizeof (has_dependence_sched_deps_info));
3339 if (spec_info != NULL)
3340 has_dependence_sched_deps_info.generate_spec_deps = 1;
3342 sched_deps_info = &has_dependence_sched_deps_info;
3345 /* Remove all dependences found and recorded in has_dependence_data array. */
3346 void
3347 sel_clear_has_dependence (void)
3349 int i;
3351 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3352 has_dependence_data.has_dep_p[i] = 0;
3355 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3356 to the dependence information array in HAS_DEP_PP. */
3357 ds_t
3358 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3360 int i;
3361 ds_t ds;
3362 struct deps_desc *dc;
3364 if (INSN_SIMPLEJUMP_P (pred))
3365 /* Unconditional jump is just a transfer of control flow.
3366 Ignore it. */
3367 return false;
3369 dc = &INSN_DEPS_CONTEXT (pred);
3371 /* We init this field lazily. */
3372 if (dc->reg_last == NULL)
3373 init_deps_reg_last (dc);
3375 if (!dc->readonly)
3377 has_dependence_data.pro = NULL;
3378 /* Initialize empty dep context with information about PRED. */
3379 advance_deps_context (dc, pred);
3380 dc->readonly = 1;
3383 has_dependence_data.where = DEPS_IN_NOWHERE;
3384 has_dependence_data.pro = pred;
3385 has_dependence_data.con = EXPR_VINSN (expr);
3386 has_dependence_data.dc = dc;
3388 sel_clear_has_dependence ();
3390 /* Now catch all dependencies that would be generated between PRED and
3391 INSN. */
3392 setup_has_dependence_sched_deps_info ();
3393 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3394 has_dependence_data.dc = NULL;
3396 /* When a barrier was found, set DEPS_IN_INSN bits. */
3397 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3398 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3399 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3400 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3402 /* Do not allow stores to memory to move through checks. Currently
3403 we don't move this to sched-deps.c as the check doesn't have
3404 obvious places to which this dependence can be attached.
3405 FIMXE: this should go to a hook. */
3406 if (EXPR_LHS (expr)
3407 && MEM_P (EXPR_LHS (expr))
3408 && sel_insn_is_speculation_check (pred))
3409 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3411 *has_dep_pp = has_dependence_data.has_dep_p;
3412 ds = 0;
3413 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3414 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3415 NULL_RTX, NULL_RTX);
3417 return ds;
3421 /* Dependence hooks implementation that checks dependence latency constraints
3422 on the insns being scheduled. The entry point for these routines is
3423 tick_check_p predicate. */
3425 static struct
3427 /* An expr we are currently checking. */
3428 expr_t expr;
3430 /* A minimal cycle for its scheduling. */
3431 int cycle;
3433 /* Whether we have seen a true dependence while checking. */
3434 bool seen_true_dep_p;
3435 } tick_check_data;
3437 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3438 on PRO with status DS and weight DW. */
3439 static void
3440 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3442 expr_t con_expr = tick_check_data.expr;
3443 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3445 if (con_insn != pro_insn)
3447 enum reg_note dt;
3448 int tick;
3450 if (/* PROducer was removed from above due to pipelining. */
3451 !INSN_IN_STREAM_P (pro_insn)
3452 /* Or PROducer was originally on the next iteration regarding the
3453 CONsumer. */
3454 || (INSN_SCHED_TIMES (pro_insn)
3455 - EXPR_SCHED_TIMES (con_expr)) > 1)
3456 /* Don't count this dependence. */
3457 return;
3459 dt = ds_to_dt (ds);
3460 if (dt == REG_DEP_TRUE)
3461 tick_check_data.seen_true_dep_p = true;
3463 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3466 dep_def _dep, *dep = &_dep;
3468 init_dep (dep, pro_insn, con_insn, dt);
3470 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3473 /* When there are several kinds of dependencies between pro and con,
3474 only REG_DEP_TRUE should be taken into account. */
3475 if (tick > tick_check_data.cycle
3476 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3477 tick_check_data.cycle = tick;
3481 /* An implementation of note_dep hook. */
3482 static void
3483 tick_check_note_dep (insn_t pro, ds_t ds)
3485 tick_check_dep_with_dw (pro, ds, 0);
3488 /* An implementation of note_mem_dep hook. */
3489 static void
3490 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3492 dw_t dw;
3494 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3495 ? estimate_dep_weak (mem1, mem2)
3496 : 0);
3498 tick_check_dep_with_dw (pro, ds, dw);
3501 /* This structure contains hooks for dependence analysis used when determining
3502 whether an insn is ready for scheduling. */
3503 static struct sched_deps_info_def tick_check_sched_deps_info =
3505 NULL,
3507 NULL,
3508 NULL,
3509 NULL,
3510 NULL,
3511 NULL,
3512 NULL,
3513 haifa_note_reg_set,
3514 haifa_note_reg_clobber,
3515 haifa_note_reg_use,
3516 tick_check_note_mem_dep,
3517 tick_check_note_dep,
3519 0, 0, 0
3522 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3523 scheduled. Return 0 if all data from producers in DC is ready. */
3525 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3527 int cycles_left;
3528 /* Initialize variables. */
3529 tick_check_data.expr = expr;
3530 tick_check_data.cycle = 0;
3531 tick_check_data.seen_true_dep_p = false;
3532 sched_deps_info = &tick_check_sched_deps_info;
3534 gcc_assert (!dc->readonly);
3535 dc->readonly = 1;
3536 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3537 dc->readonly = 0;
3539 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3541 return cycles_left >= 0 ? cycles_left : 0;
3545 /* Functions to work with insns. */
3547 /* Returns true if LHS of INSN is the same as DEST of an insn
3548 being moved. */
3549 bool
3550 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3552 rtx lhs = INSN_LHS (insn);
3554 if (lhs == NULL || dest == NULL)
3555 return false;
3557 return rtx_equal_p (lhs, dest);
3560 /* Return s_i_d entry of INSN. Callable from debugger. */
3561 sel_insn_data_def
3562 insn_sid (insn_t insn)
3564 return *SID (insn);
3567 /* True when INSN is a speculative check. We can tell this by looking
3568 at the data structures of the selective scheduler, not by examining
3569 the pattern. */
3570 bool
3571 sel_insn_is_speculation_check (rtx insn)
3573 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3576 /* Extracts machine mode MODE and destination location DST_LOC
3577 for given INSN. */
3578 void
3579 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3581 rtx pat = PATTERN (insn);
3583 gcc_assert (dst_loc);
3584 gcc_assert (GET_CODE (pat) == SET);
3586 *dst_loc = SET_DEST (pat);
3588 gcc_assert (*dst_loc);
3589 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3591 if (mode)
3592 *mode = GET_MODE (*dst_loc);
3595 /* Returns true when moving through JUMP will result in bookkeeping
3596 creation. */
3597 bool
3598 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3600 insn_t succ;
3601 succ_iterator si;
3603 FOR_EACH_SUCC (succ, si, jump)
3604 if (sel_num_cfg_preds_gt_1 (succ))
3605 return true;
3607 return false;
3610 /* Return 'true' if INSN is the only one in its basic block. */
3611 static bool
3612 insn_is_the_only_one_in_bb_p (insn_t insn)
3614 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3617 #ifdef ENABLE_CHECKING
3618 /* Check that the region we're scheduling still has at most one
3619 backedge. */
3620 static void
3621 verify_backedges (void)
3623 if (pipelining_p)
3625 int i, n = 0;
3626 edge e;
3627 edge_iterator ei;
3629 for (i = 0; i < current_nr_blocks; i++)
3630 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3631 if (in_current_region_p (e->dest)
3632 && BLOCK_TO_BB (e->dest->index) < i)
3633 n++;
3635 gcc_assert (n <= 1);
3638 #endif
3641 /* Functions to work with control flow. */
3643 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3644 are sorted in topological order (it might have been invalidated by
3645 redirecting an edge). */
3646 static void
3647 sel_recompute_toporder (void)
3649 int i, n, rgn;
3650 int *postorder, n_blocks;
3652 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3653 n_blocks = post_order_compute (postorder, false, false);
3655 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3656 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3657 if (CONTAINING_RGN (postorder[i]) == rgn)
3659 BLOCK_TO_BB (postorder[i]) = n;
3660 BB_TO_BLOCK (n) = postorder[i];
3661 n++;
3664 /* Assert that we updated info for all blocks. We may miss some blocks if
3665 this function is called when redirecting an edge made a block
3666 unreachable, but that block is not deleted yet. */
3667 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3670 /* Tidy the possibly empty block BB. */
3671 static bool
3672 maybe_tidy_empty_bb (basic_block bb)
3674 basic_block succ_bb, pred_bb, note_bb;
3675 vec<basic_block> dom_bbs;
3676 edge e;
3677 edge_iterator ei;
3678 bool rescan_p;
3680 /* Keep empty bb only if this block immediately precedes EXIT and
3681 has incoming non-fallthrough edge, or it has no predecessors or
3682 successors. Otherwise remove it. */
3683 if (!sel_bb_empty_p (bb)
3684 || (single_succ_p (bb)
3685 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3686 && (!single_pred_p (bb)
3687 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3688 || EDGE_COUNT (bb->preds) == 0
3689 || EDGE_COUNT (bb->succs) == 0)
3690 return false;
3692 /* Do not attempt to redirect complex edges. */
3693 FOR_EACH_EDGE (e, ei, bb->preds)
3694 if (e->flags & EDGE_COMPLEX)
3695 return false;
3696 else if (e->flags & EDGE_FALLTHRU)
3698 rtx note;
3699 /* If prev bb ends with asm goto, see if any of the
3700 ASM_OPERANDS_LABELs don't point to the fallthru
3701 label. Do not attempt to redirect it in that case. */
3702 if (JUMP_P (BB_END (e->src))
3703 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3705 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3707 for (i = 0; i < n; ++i)
3708 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3709 return false;
3713 free_data_sets (bb);
3715 /* Do not delete BB if it has more than one successor.
3716 That can occur when we moving a jump. */
3717 if (!single_succ_p (bb))
3719 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3720 sel_merge_blocks (bb->prev_bb, bb);
3721 return true;
3724 succ_bb = single_succ (bb);
3725 rescan_p = true;
3726 pred_bb = NULL;
3727 dom_bbs.create (0);
3729 /* Save a pred/succ from the current region to attach the notes to. */
3730 note_bb = NULL;
3731 FOR_EACH_EDGE (e, ei, bb->preds)
3732 if (in_current_region_p (e->src))
3734 note_bb = e->src;
3735 break;
3737 if (note_bb == NULL)
3738 note_bb = succ_bb;
3740 /* Redirect all non-fallthru edges to the next bb. */
3741 while (rescan_p)
3743 rescan_p = false;
3745 FOR_EACH_EDGE (e, ei, bb->preds)
3747 pred_bb = e->src;
3749 if (!(e->flags & EDGE_FALLTHRU))
3751 /* We can not invalidate computed topological order by moving
3752 the edge destination block (E->SUCC) along a fallthru edge.
3754 We will update dominators here only when we'll get
3755 an unreachable block when redirecting, otherwise
3756 sel_redirect_edge_and_branch will take care of it. */
3757 if (e->dest != bb
3758 && single_pred_p (e->dest))
3759 dom_bbs.safe_push (e->dest);
3760 sel_redirect_edge_and_branch (e, succ_bb);
3761 rescan_p = true;
3762 break;
3764 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3765 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3766 still have to adjust it. */
3767 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3769 /* If possible, try to remove the unneeded conditional jump. */
3770 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3771 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3773 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3774 tidy_fallthru_edge (e);
3776 else
3777 sel_redirect_edge_and_branch (e, succ_bb);
3778 rescan_p = true;
3779 break;
3784 if (can_merge_blocks_p (bb->prev_bb, bb))
3785 sel_merge_blocks (bb->prev_bb, bb);
3786 else
3788 /* This is a block without fallthru predecessor. Just delete it. */
3789 gcc_assert (note_bb);
3790 move_bb_info (note_bb, bb);
3791 remove_empty_bb (bb, true);
3794 if (!dom_bbs.is_empty ())
3796 dom_bbs.safe_push (succ_bb);
3797 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3798 dom_bbs.release ();
3801 return true;
3804 /* Tidy the control flow after we have removed original insn from
3805 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3806 is true, also try to optimize control flow on non-empty blocks. */
3807 bool
3808 tidy_control_flow (basic_block xbb, bool full_tidying)
3810 bool changed = true;
3811 insn_t first, last;
3813 /* First check whether XBB is empty. */
3814 changed = maybe_tidy_empty_bb (xbb);
3815 if (changed || !full_tidying)
3816 return changed;
3818 /* Check if there is a unnecessary jump after insn left. */
3819 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3820 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3821 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3823 if (sel_remove_insn (BB_END (xbb), false, false))
3824 return true;
3825 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3828 first = sel_bb_head (xbb);
3829 last = sel_bb_end (xbb);
3830 if (MAY_HAVE_DEBUG_INSNS)
3832 if (first != last && DEBUG_INSN_P (first))
3834 first = NEXT_INSN (first);
3835 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3837 if (first != last && DEBUG_INSN_P (last))
3839 last = PREV_INSN (last);
3840 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3842 /* Check if there is an unnecessary jump in previous basic block leading
3843 to next basic block left after removing INSN from stream.
3844 If it is so, remove that jump and redirect edge to current
3845 basic block (where there was INSN before deletion). This way
3846 when NOP will be deleted several instructions later with its
3847 basic block we will not get a jump to next instruction, which
3848 can be harmful. */
3849 if (first == last
3850 && !sel_bb_empty_p (xbb)
3851 && INSN_NOP_P (last)
3852 /* Flow goes fallthru from current block to the next. */
3853 && EDGE_COUNT (xbb->succs) == 1
3854 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3855 /* When successor is an EXIT block, it may not be the next block. */
3856 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3857 /* And unconditional jump in previous basic block leads to
3858 next basic block of XBB and this jump can be safely removed. */
3859 && in_current_region_p (xbb->prev_bb)
3860 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3861 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3862 /* Also this jump is not at the scheduling boundary. */
3863 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3865 bool recompute_toporder_p;
3866 /* Clear data structures of jump - jump itself will be removed
3867 by sel_redirect_edge_and_branch. */
3868 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3869 recompute_toporder_p
3870 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3872 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3874 /* It can turn out that after removing unused jump, basic block
3875 that contained that jump, becomes empty too. In such case
3876 remove it too. */
3877 if (sel_bb_empty_p (xbb->prev_bb))
3878 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3879 if (recompute_toporder_p)
3880 sel_recompute_toporder ();
3883 #ifdef ENABLE_CHECKING
3884 verify_backedges ();
3885 verify_dominators (CDI_DOMINATORS);
3886 #endif
3888 return changed;
3891 /* Purge meaningless empty blocks in the middle of a region. */
3892 void
3893 purge_empty_blocks (void)
3895 int i;
3897 /* Do not attempt to delete the first basic block in the region. */
3898 for (i = 1; i < current_nr_blocks; )
3900 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3902 if (maybe_tidy_empty_bb (b))
3903 continue;
3905 i++;
3909 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3910 do not delete insn's data, because it will be later re-emitted.
3911 Return true if we have removed some blocks afterwards. */
3912 bool
3913 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3915 basic_block bb = BLOCK_FOR_INSN (insn);
3917 gcc_assert (INSN_IN_STREAM_P (insn));
3919 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3921 expr_t expr;
3922 av_set_iterator i;
3924 /* When we remove a debug insn that is head of a BB, it remains
3925 in the AV_SET of the block, but it shouldn't. */
3926 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3927 if (EXPR_INSN_RTX (expr) == insn)
3929 av_set_iter_remove (&i);
3930 break;
3934 if (only_disconnect)
3935 remove_insn (insn);
3936 else
3938 delete_insn (insn);
3939 clear_expr (INSN_EXPR (insn));
3942 /* It is necessary to NULL these fields in case we are going to re-insert
3943 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3944 case, but also for NOPs that we will return to the nop pool. */
3945 PREV_INSN (insn) = NULL_RTX;
3946 NEXT_INSN (insn) = NULL_RTX;
3947 set_block_for_insn (insn, NULL);
3949 return tidy_control_flow (bb, full_tidying);
3952 /* Estimate number of the insns in BB. */
3953 static int
3954 sel_estimate_number_of_insns (basic_block bb)
3956 int res = 0;
3957 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3959 for (; insn != next_tail; insn = NEXT_INSN (insn))
3960 if (NONDEBUG_INSN_P (insn))
3961 res++;
3963 return res;
3966 /* We don't need separate luids for notes or labels. */
3967 static int
3968 sel_luid_for_non_insn (rtx x)
3970 gcc_assert (NOTE_P (x) || LABEL_P (x));
3972 return -1;
3975 /* Find the proper seqno for inserting at INSN by successors.
3976 Return -1 if no successors with positive seqno exist. */
3977 static int
3978 get_seqno_by_succs (rtx insn)
3980 basic_block bb = BLOCK_FOR_INSN (insn);
3981 rtx tmp = insn, end = BB_END (bb);
3982 int seqno;
3983 insn_t succ = NULL;
3984 succ_iterator si;
3986 while (tmp != end)
3988 tmp = NEXT_INSN (tmp);
3989 if (INSN_P (tmp))
3990 return INSN_SEQNO (tmp);
3993 seqno = INT_MAX;
3995 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
3996 if (INSN_SEQNO (succ) > 0)
3997 seqno = MIN (seqno, INSN_SEQNO (succ));
3999 if (seqno == INT_MAX)
4000 return -1;
4002 return seqno;
4005 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4006 seqno in corner cases. */
4007 static int
4008 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4010 int seqno;
4012 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4014 if (!sel_bb_head_p (insn))
4015 seqno = INSN_SEQNO (PREV_INSN (insn));
4016 else
4018 basic_block bb = BLOCK_FOR_INSN (insn);
4020 if (single_pred_p (bb)
4021 && !in_current_region_p (single_pred (bb)))
4023 /* We can have preds outside a region when splitting edges
4024 for pipelining of an outer loop. Use succ instead.
4025 There should be only one of them. */
4026 insn_t succ = NULL;
4027 succ_iterator si;
4028 bool first = true;
4030 gcc_assert (flag_sel_sched_pipelining_outer_loops
4031 && current_loop_nest);
4032 FOR_EACH_SUCC_1 (succ, si, insn,
4033 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4035 gcc_assert (first);
4036 first = false;
4039 gcc_assert (succ != NULL);
4040 seqno = INSN_SEQNO (succ);
4042 else
4044 insn_t *preds;
4045 int n;
4047 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4049 gcc_assert (n > 0);
4050 /* For one predecessor, use simple method. */
4051 if (n == 1)
4052 seqno = INSN_SEQNO (preds[0]);
4053 else
4054 seqno = get_seqno_by_preds (insn);
4056 free (preds);
4060 /* We were unable to find a good seqno among preds. */
4061 if (seqno < 0)
4062 seqno = get_seqno_by_succs (insn);
4064 if (seqno < 0)
4066 /* The only case where this could be here legally is that the only
4067 unscheduled insn was a conditional jump that got removed and turned
4068 into this unconditional one. Initialize from the old seqno
4069 of that jump passed down to here. */
4070 seqno = old_seqno;
4073 gcc_assert (seqno >= 0);
4074 return seqno;
4077 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4078 with positive seqno exist. */
4080 get_seqno_by_preds (rtx insn)
4082 basic_block bb = BLOCK_FOR_INSN (insn);
4083 rtx tmp = insn, head = BB_HEAD (bb);
4084 insn_t *preds;
4085 int n, i, seqno;
4087 while (tmp != head)
4089 tmp = PREV_INSN (tmp);
4090 if (INSN_P (tmp))
4091 return INSN_SEQNO (tmp);
4094 cfg_preds (bb, &preds, &n);
4095 for (i = 0, seqno = -1; i < n; i++)
4096 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4098 return seqno;
4103 /* Extend pass-scope data structures for basic blocks. */
4104 void
4105 sel_extend_global_bb_info (void)
4107 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4110 /* Extend region-scope data structures for basic blocks. */
4111 static void
4112 extend_region_bb_info (void)
4114 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4117 /* Extend all data structures to fit for all basic blocks. */
4118 static void
4119 extend_bb_info (void)
4121 sel_extend_global_bb_info ();
4122 extend_region_bb_info ();
4125 /* Finalize pass-scope data structures for basic blocks. */
4126 void
4127 sel_finish_global_bb_info (void)
4129 sel_global_bb_info.release ();
4132 /* Finalize region-scope data structures for basic blocks. */
4133 static void
4134 finish_region_bb_info (void)
4136 sel_region_bb_info.release ();
4140 /* Data for each insn in current region. */
4141 vec<sel_insn_data_def> s_i_d = vNULL;
4143 /* Extend data structures for insns from current region. */
4144 static void
4145 extend_insn_data (void)
4147 int reserve;
4149 sched_extend_target ();
4150 sched_deps_init (false);
4152 /* Extend data structures for insns from current region. */
4153 reserve = (sched_max_luid + 1 - s_i_d.length ());
4154 if (reserve > 0 && ! s_i_d.space (reserve))
4156 int size;
4158 if (sched_max_luid / 2 > 1024)
4159 size = sched_max_luid + 1024;
4160 else
4161 size = 3 * sched_max_luid / 2;
4164 s_i_d.safe_grow_cleared (size);
4168 /* Finalize data structures for insns from current region. */
4169 static void
4170 finish_insns (void)
4172 unsigned i;
4174 /* Clear here all dependence contexts that may have left from insns that were
4175 removed during the scheduling. */
4176 for (i = 0; i < s_i_d.length (); i++)
4178 sel_insn_data_def *sid_entry = &s_i_d[i];
4180 if (sid_entry->live)
4181 return_regset_to_pool (sid_entry->live);
4182 if (sid_entry->analyzed_deps)
4184 BITMAP_FREE (sid_entry->analyzed_deps);
4185 BITMAP_FREE (sid_entry->found_deps);
4186 htab_delete (sid_entry->transformed_insns);
4187 free_deps (&sid_entry->deps_context);
4189 if (EXPR_VINSN (&sid_entry->expr))
4191 clear_expr (&sid_entry->expr);
4193 /* Also, clear CANT_MOVE bit here, because we really don't want it
4194 to be passed to the next region. */
4195 CANT_MOVE_BY_LUID (i) = 0;
4199 s_i_d.release ();
4202 /* A proxy to pass initialization data to init_insn (). */
4203 static sel_insn_data_def _insn_init_ssid;
4204 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4206 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4207 static bool insn_init_create_new_vinsn_p;
4209 /* Set all necessary data for initialization of the new insn[s]. */
4210 static expr_t
4211 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4213 expr_t x = &insn_init_ssid->expr;
4215 copy_expr_onside (x, expr);
4216 if (vi != NULL)
4218 insn_init_create_new_vinsn_p = false;
4219 change_vinsn_in_expr (x, vi);
4221 else
4222 insn_init_create_new_vinsn_p = true;
4224 insn_init_ssid->seqno = seqno;
4225 return x;
4228 /* Init data for INSN. */
4229 static void
4230 init_insn_data (insn_t insn)
4232 expr_t expr;
4233 sel_insn_data_t ssid = insn_init_ssid;
4235 /* The fields mentioned below are special and hence are not being
4236 propagated to the new insns. */
4237 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4238 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4239 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4241 expr = INSN_EXPR (insn);
4242 copy_expr (expr, &ssid->expr);
4243 prepare_insn_expr (insn, ssid->seqno);
4245 if (insn_init_create_new_vinsn_p)
4246 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4248 if (first_time_insn_init (insn))
4249 init_first_time_insn_data (insn);
4252 /* This is used to initialize spurious jumps generated by
4253 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4254 in corner cases within get_seqno_for_a_jump. */
4255 static void
4256 init_simplejump_data (insn_t insn, int old_seqno)
4258 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4259 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4260 vNULL, true, false, false,
4261 false, true);
4262 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4263 init_first_time_insn_data (insn);
4266 /* Perform deferred initialization of insns. This is used to process
4267 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4268 for initializing simplejumps in init_simplejump_data. */
4269 static void
4270 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4272 /* We create data structures for bb when the first insn is emitted in it. */
4273 if (INSN_P (insn)
4274 && INSN_IN_STREAM_P (insn)
4275 && insn_is_the_only_one_in_bb_p (insn))
4277 extend_bb_info ();
4278 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4281 if (flags & INSN_INIT_TODO_LUID)
4283 sched_extend_luids ();
4284 sched_init_insn_luid (insn);
4287 if (flags & INSN_INIT_TODO_SSID)
4289 extend_insn_data ();
4290 init_insn_data (insn);
4291 clear_expr (&insn_init_ssid->expr);
4294 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4296 extend_insn_data ();
4297 init_simplejump_data (insn, old_seqno);
4300 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4301 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4305 /* Functions to init/finish work with lv sets. */
4307 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4308 static void
4309 init_lv_set (basic_block bb)
4311 gcc_assert (!BB_LV_SET_VALID_P (bb));
4313 BB_LV_SET (bb) = get_regset_from_pool ();
4314 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4315 BB_LV_SET_VALID_P (bb) = true;
4318 /* Copy liveness information to BB from FROM_BB. */
4319 static void
4320 copy_lv_set_from (basic_block bb, basic_block from_bb)
4322 gcc_assert (!BB_LV_SET_VALID_P (bb));
4324 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4325 BB_LV_SET_VALID_P (bb) = true;
4328 /* Initialize lv set of all bb headers. */
4329 void
4330 init_lv_sets (void)
4332 basic_block bb;
4334 /* Initialize of LV sets. */
4335 FOR_EACH_BB_FN (bb, cfun)
4336 init_lv_set (bb);
4338 /* Don't forget EXIT_BLOCK. */
4339 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4342 /* Release lv set of HEAD. */
4343 static void
4344 free_lv_set (basic_block bb)
4346 gcc_assert (BB_LV_SET (bb) != NULL);
4348 return_regset_to_pool (BB_LV_SET (bb));
4349 BB_LV_SET (bb) = NULL;
4350 BB_LV_SET_VALID_P (bb) = false;
4353 /* Finalize lv sets of all bb headers. */
4354 void
4355 free_lv_sets (void)
4357 basic_block bb;
4359 /* Don't forget EXIT_BLOCK. */
4360 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4362 /* Free LV sets. */
4363 FOR_EACH_BB_FN (bb, cfun)
4364 if (BB_LV_SET (bb))
4365 free_lv_set (bb);
4368 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4369 compute_av() processes BB. This function is called when creating new basic
4370 blocks, as well as for blocks (either new or existing) where new jumps are
4371 created when the control flow is being updated. */
4372 static void
4373 invalidate_av_set (basic_block bb)
4375 BB_AV_LEVEL (bb) = -1;
4378 /* Create initial data sets for BB (they will be invalid). */
4379 static void
4380 create_initial_data_sets (basic_block bb)
4382 if (BB_LV_SET (bb))
4383 BB_LV_SET_VALID_P (bb) = false;
4384 else
4385 BB_LV_SET (bb) = get_regset_from_pool ();
4386 invalidate_av_set (bb);
4389 /* Free av set of BB. */
4390 static void
4391 free_av_set (basic_block bb)
4393 av_set_clear (&BB_AV_SET (bb));
4394 BB_AV_LEVEL (bb) = 0;
4397 /* Free data sets of BB. */
4398 void
4399 free_data_sets (basic_block bb)
4401 free_lv_set (bb);
4402 free_av_set (bb);
4405 /* Exchange lv sets of TO and FROM. */
4406 static void
4407 exchange_lv_sets (basic_block to, basic_block from)
4410 regset to_lv_set = BB_LV_SET (to);
4412 BB_LV_SET (to) = BB_LV_SET (from);
4413 BB_LV_SET (from) = to_lv_set;
4417 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4419 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4420 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4425 /* Exchange av sets of TO and FROM. */
4426 static void
4427 exchange_av_sets (basic_block to, basic_block from)
4430 av_set_t to_av_set = BB_AV_SET (to);
4432 BB_AV_SET (to) = BB_AV_SET (from);
4433 BB_AV_SET (from) = to_av_set;
4437 int to_av_level = BB_AV_LEVEL (to);
4439 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4440 BB_AV_LEVEL (from) = to_av_level;
4444 /* Exchange data sets of TO and FROM. */
4445 void
4446 exchange_data_sets (basic_block to, basic_block from)
4448 exchange_lv_sets (to, from);
4449 exchange_av_sets (to, from);
4452 /* Copy data sets of FROM to TO. */
4453 void
4454 copy_data_sets (basic_block to, basic_block from)
4456 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4457 gcc_assert (BB_AV_SET (to) == NULL);
4459 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4460 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4462 if (BB_AV_SET_VALID_P (from))
4464 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4466 if (BB_LV_SET_VALID_P (from))
4468 gcc_assert (BB_LV_SET (to) != NULL);
4469 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4473 /* Return an av set for INSN, if any. */
4474 av_set_t
4475 get_av_set (insn_t insn)
4477 av_set_t av_set;
4479 gcc_assert (AV_SET_VALID_P (insn));
4481 if (sel_bb_head_p (insn))
4482 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4483 else
4484 av_set = NULL;
4486 return av_set;
4489 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4491 get_av_level (insn_t insn)
4493 int av_level;
4495 gcc_assert (INSN_P (insn));
4497 if (sel_bb_head_p (insn))
4498 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4499 else
4500 av_level = INSN_WS_LEVEL (insn);
4502 return av_level;
4507 /* Variables to work with control-flow graph. */
4509 /* The basic block that already has been processed by the sched_data_update (),
4510 but hasn't been in sel_add_bb () yet. */
4511 static vec<basic_block>
4512 last_added_blocks = vNULL;
4514 /* A pool for allocating successor infos. */
4515 static struct
4517 /* A stack for saving succs_info structures. */
4518 struct succs_info *stack;
4520 /* Its size. */
4521 int size;
4523 /* Top of the stack. */
4524 int top;
4526 /* Maximal value of the top. */
4527 int max_top;
4528 } succs_info_pool;
4530 /* Functions to work with control-flow graph. */
4532 /* Return basic block note of BB. */
4533 insn_t
4534 sel_bb_head (basic_block bb)
4536 insn_t head;
4538 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4540 gcc_assert (exit_insn != NULL_RTX);
4541 head = exit_insn;
4543 else
4545 insn_t note;
4547 note = bb_note (bb);
4548 head = next_nonnote_insn (note);
4550 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4551 head = NULL_RTX;
4554 return head;
4557 /* Return true if INSN is a basic block header. */
4558 bool
4559 sel_bb_head_p (insn_t insn)
4561 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4564 /* Return last insn of BB. */
4565 insn_t
4566 sel_bb_end (basic_block bb)
4568 if (sel_bb_empty_p (bb))
4569 return NULL_RTX;
4571 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4573 return BB_END (bb);
4576 /* Return true if INSN is the last insn in its basic block. */
4577 bool
4578 sel_bb_end_p (insn_t insn)
4580 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4583 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4584 bool
4585 sel_bb_empty_p (basic_block bb)
4587 return sel_bb_head (bb) == NULL;
4590 /* True when BB belongs to the current scheduling region. */
4591 bool
4592 in_current_region_p (basic_block bb)
4594 if (bb->index < NUM_FIXED_BLOCKS)
4595 return false;
4597 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4600 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4601 basic_block
4602 fallthru_bb_of_jump (rtx jump)
4604 if (!JUMP_P (jump))
4605 return NULL;
4607 if (!any_condjump_p (jump))
4608 return NULL;
4610 /* A basic block that ends with a conditional jump may still have one successor
4611 (and be followed by a barrier), we are not interested. */
4612 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4613 return NULL;
4615 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4618 /* Remove all notes from BB. */
4619 static void
4620 init_bb (basic_block bb)
4622 remove_notes (bb_note (bb), BB_END (bb));
4623 BB_NOTE_LIST (bb) = note_list;
4626 void
4627 sel_init_bbs (bb_vec_t bbs)
4629 const struct sched_scan_info_def ssi =
4631 extend_bb_info, /* extend_bb */
4632 init_bb, /* init_bb */
4633 NULL, /* extend_insn */
4634 NULL /* init_insn */
4637 sched_scan (&ssi, bbs);
4640 /* Restore notes for the whole region. */
4641 static void
4642 sel_restore_notes (void)
4644 int bb;
4645 insn_t insn;
4647 for (bb = 0; bb < current_nr_blocks; bb++)
4649 basic_block first, last;
4651 first = EBB_FIRST_BB (bb);
4652 last = EBB_LAST_BB (bb)->next_bb;
4656 note_list = BB_NOTE_LIST (first);
4657 restore_other_notes (NULL, first);
4658 BB_NOTE_LIST (first) = NULL_RTX;
4660 FOR_BB_INSNS (first, insn)
4661 if (NONDEBUG_INSN_P (insn))
4662 reemit_notes (insn);
4664 first = first->next_bb;
4666 while (first != last);
4670 /* Free per-bb data structures. */
4671 void
4672 sel_finish_bbs (void)
4674 sel_restore_notes ();
4676 /* Remove current loop preheader from this loop. */
4677 if (current_loop_nest)
4678 sel_remove_loop_preheader ();
4680 finish_region_bb_info ();
4683 /* Return true if INSN has a single successor of type FLAGS. */
4684 bool
4685 sel_insn_has_single_succ_p (insn_t insn, int flags)
4687 insn_t succ;
4688 succ_iterator si;
4689 bool first_p = true;
4691 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4693 if (first_p)
4694 first_p = false;
4695 else
4696 return false;
4699 return true;
4702 /* Allocate successor's info. */
4703 static struct succs_info *
4704 alloc_succs_info (void)
4706 if (succs_info_pool.top == succs_info_pool.max_top)
4708 int i;
4710 if (++succs_info_pool.max_top >= succs_info_pool.size)
4711 gcc_unreachable ();
4713 i = ++succs_info_pool.top;
4714 succs_info_pool.stack[i].succs_ok.create (10);
4715 succs_info_pool.stack[i].succs_other.create (10);
4716 succs_info_pool.stack[i].probs_ok.create (10);
4718 else
4719 succs_info_pool.top++;
4721 return &succs_info_pool.stack[succs_info_pool.top];
4724 /* Free successor's info. */
4725 void
4726 free_succs_info (struct succs_info * sinfo)
4728 gcc_assert (succs_info_pool.top >= 0
4729 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4730 succs_info_pool.top--;
4732 /* Clear stale info. */
4733 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4734 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4735 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4736 sinfo->all_prob = 0;
4737 sinfo->succs_ok_n = 0;
4738 sinfo->all_succs_n = 0;
4741 /* Compute successor info for INSN. FLAGS are the flags passed
4742 to the FOR_EACH_SUCC_1 iterator. */
4743 struct succs_info *
4744 compute_succs_info (insn_t insn, short flags)
4746 succ_iterator si;
4747 insn_t succ;
4748 struct succs_info *sinfo = alloc_succs_info ();
4750 /* Traverse *all* successors and decide what to do with each. */
4751 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4753 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4754 perform code motion through inner loops. */
4755 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4757 if (current_flags & flags)
4759 sinfo->succs_ok.safe_push (succ);
4760 sinfo->probs_ok.safe_push (
4761 /* FIXME: Improve calculation when skipping
4762 inner loop to exits. */
4763 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4764 sinfo->succs_ok_n++;
4766 else
4767 sinfo->succs_other.safe_push (succ);
4769 /* Compute all_prob. */
4770 if (!si.bb_end)
4771 sinfo->all_prob = REG_BR_PROB_BASE;
4772 else
4773 sinfo->all_prob += si.e1->probability;
4775 sinfo->all_succs_n++;
4778 return sinfo;
4781 /* Return the predecessors of BB in PREDS and their number in N.
4782 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4783 static void
4784 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4786 edge e;
4787 edge_iterator ei;
4789 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4791 FOR_EACH_EDGE (e, ei, bb->preds)
4793 basic_block pred_bb = e->src;
4794 insn_t bb_end = BB_END (pred_bb);
4796 if (!in_current_region_p (pred_bb))
4798 gcc_assert (flag_sel_sched_pipelining_outer_loops
4799 && current_loop_nest);
4800 continue;
4803 if (sel_bb_empty_p (pred_bb))
4804 cfg_preds_1 (pred_bb, preds, n, size);
4805 else
4807 if (*n == *size)
4808 *preds = XRESIZEVEC (insn_t, *preds,
4809 (*size = 2 * *size + 1));
4810 (*preds)[(*n)++] = bb_end;
4814 gcc_assert (*n != 0
4815 || (flag_sel_sched_pipelining_outer_loops
4816 && current_loop_nest));
4819 /* Find all predecessors of BB and record them in PREDS and their number
4820 in N. Empty blocks are skipped, and only normal (forward in-region)
4821 edges are processed. */
4822 static void
4823 cfg_preds (basic_block bb, insn_t **preds, int *n)
4825 int size = 0;
4827 *preds = NULL;
4828 *n = 0;
4829 cfg_preds_1 (bb, preds, n, &size);
4832 /* Returns true if we are moving INSN through join point. */
4833 bool
4834 sel_num_cfg_preds_gt_1 (insn_t insn)
4836 basic_block bb;
4838 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4839 return false;
4841 bb = BLOCK_FOR_INSN (insn);
4843 while (1)
4845 if (EDGE_COUNT (bb->preds) > 1)
4846 return true;
4848 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4849 bb = EDGE_PRED (bb, 0)->src;
4851 if (!sel_bb_empty_p (bb))
4852 break;
4855 return false;
4858 /* Returns true when BB should be the end of an ebb. Adapted from the
4859 code in sched-ebb.c. */
4860 bool
4861 bb_ends_ebb_p (basic_block bb)
4863 basic_block next_bb = bb_next_bb (bb);
4864 edge e;
4866 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4867 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4868 || (LABEL_P (BB_HEAD (next_bb))
4869 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4870 Work around that. */
4871 && !single_pred_p (next_bb)))
4872 return true;
4874 if (!in_current_region_p (next_bb))
4875 return true;
4877 e = find_fallthru_edge (bb->succs);
4878 if (e)
4880 gcc_assert (e->dest == next_bb);
4882 return false;
4885 return true;
4888 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4889 successor of INSN. */
4890 bool
4891 in_same_ebb_p (insn_t insn, insn_t succ)
4893 basic_block ptr = BLOCK_FOR_INSN (insn);
4895 for (;;)
4897 if (ptr == BLOCK_FOR_INSN (succ))
4898 return true;
4900 if (bb_ends_ebb_p (ptr))
4901 return false;
4903 ptr = bb_next_bb (ptr);
4906 gcc_unreachable ();
4907 return false;
4910 /* Recomputes the reverse topological order for the function and
4911 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4912 modified appropriately. */
4913 static void
4914 recompute_rev_top_order (void)
4916 int *postorder;
4917 int n_blocks, i;
4919 if (!rev_top_order_index
4920 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4922 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4923 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4924 rev_top_order_index_len);
4927 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4929 n_blocks = post_order_compute (postorder, true, false);
4930 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4932 /* Build reverse function: for each basic block with BB->INDEX == K
4933 rev_top_order_index[K] is it's reverse topological sort number. */
4934 for (i = 0; i < n_blocks; i++)
4936 gcc_assert (postorder[i] < rev_top_order_index_len);
4937 rev_top_order_index[postorder[i]] = i;
4940 free (postorder);
4943 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4944 void
4945 clear_outdated_rtx_info (basic_block bb)
4947 rtx insn;
4949 FOR_BB_INSNS (bb, insn)
4950 if (INSN_P (insn))
4952 SCHED_GROUP_P (insn) = 0;
4953 INSN_AFTER_STALL_P (insn) = 0;
4954 INSN_SCHED_TIMES (insn) = 0;
4955 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4957 /* We cannot use the changed caches, as previously we could ignore
4958 the LHS dependence due to enabled renaming and transform
4959 the expression, and currently we'll be unable to do this. */
4960 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4964 /* Add BB_NOTE to the pool of available basic block notes. */
4965 static void
4966 return_bb_to_pool (basic_block bb)
4968 rtx note = bb_note (bb);
4970 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4971 && bb->aux == NULL);
4973 /* It turns out that current cfg infrastructure does not support
4974 reuse of basic blocks. Don't bother for now. */
4975 /*bb_note_pool.safe_push (note);*/
4978 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4979 static rtx
4980 get_bb_note_from_pool (void)
4982 if (bb_note_pool.is_empty ())
4983 return NULL_RTX;
4984 else
4986 rtx note = bb_note_pool.pop ();
4988 PREV_INSN (note) = NULL_RTX;
4989 NEXT_INSN (note) = NULL_RTX;
4991 return note;
4995 /* Free bb_note_pool. */
4996 void
4997 free_bb_note_pool (void)
4999 bb_note_pool.release ();
5002 /* Setup scheduler pool and successor structure. */
5003 void
5004 alloc_sched_pools (void)
5006 int succs_size;
5008 succs_size = MAX_WS + 1;
5009 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5010 succs_info_pool.size = succs_size;
5011 succs_info_pool.top = -1;
5012 succs_info_pool.max_top = -1;
5014 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
5015 sizeof (struct _list_node), 500);
5018 /* Free the pools. */
5019 void
5020 free_sched_pools (void)
5022 int i;
5024 free_alloc_pool (sched_lists_pool);
5025 gcc_assert (succs_info_pool.top == -1);
5026 for (i = 0; i <= succs_info_pool.max_top; i++)
5028 succs_info_pool.stack[i].succs_ok.release ();
5029 succs_info_pool.stack[i].succs_other.release ();
5030 succs_info_pool.stack[i].probs_ok.release ();
5032 free (succs_info_pool.stack);
5036 /* Returns a position in RGN where BB can be inserted retaining
5037 topological order. */
5038 static int
5039 find_place_to_insert_bb (basic_block bb, int rgn)
5041 bool has_preds_outside_rgn = false;
5042 edge e;
5043 edge_iterator ei;
5045 /* Find whether we have preds outside the region. */
5046 FOR_EACH_EDGE (e, ei, bb->preds)
5047 if (!in_current_region_p (e->src))
5049 has_preds_outside_rgn = true;
5050 break;
5053 /* Recompute the top order -- needed when we have > 1 pred
5054 and in case we don't have preds outside. */
5055 if (flag_sel_sched_pipelining_outer_loops
5056 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5058 int i, bbi = bb->index, cur_bbi;
5060 recompute_rev_top_order ();
5061 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5063 cur_bbi = BB_TO_BLOCK (i);
5064 if (rev_top_order_index[bbi]
5065 < rev_top_order_index[cur_bbi])
5066 break;
5069 /* We skipped the right block, so we increase i. We accommodate
5070 it for increasing by step later, so we decrease i. */
5071 return (i + 1) - 1;
5073 else if (has_preds_outside_rgn)
5075 /* This is the case when we generate an extra empty block
5076 to serve as region head during pipelining. */
5077 e = EDGE_SUCC (bb, 0);
5078 gcc_assert (EDGE_COUNT (bb->succs) == 1
5079 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5080 && (BLOCK_TO_BB (e->dest->index) == 0));
5081 return -1;
5084 /* We don't have preds outside the region. We should have
5085 the only pred, because the multiple preds case comes from
5086 the pipelining of outer loops, and that is handled above.
5087 Just take the bbi of this single pred. */
5088 if (EDGE_COUNT (bb->succs) > 0)
5090 int pred_bbi;
5092 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5094 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5095 return BLOCK_TO_BB (pred_bbi);
5097 else
5098 /* BB has no successors. It is safe to put it in the end. */
5099 return current_nr_blocks - 1;
5102 /* Deletes an empty basic block freeing its data. */
5103 static void
5104 delete_and_free_basic_block (basic_block bb)
5106 gcc_assert (sel_bb_empty_p (bb));
5108 if (BB_LV_SET (bb))
5109 free_lv_set (bb);
5111 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5113 /* Can't assert av_set properties because we use sel_aremove_bb
5114 when removing loop preheader from the region. At the point of
5115 removing the preheader we already have deallocated sel_region_bb_info. */
5116 gcc_assert (BB_LV_SET (bb) == NULL
5117 && !BB_LV_SET_VALID_P (bb)
5118 && BB_AV_LEVEL (bb) == 0
5119 && BB_AV_SET (bb) == NULL);
5121 delete_basic_block (bb);
5124 /* Add BB to the current region and update the region data. */
5125 static void
5126 add_block_to_current_region (basic_block bb)
5128 int i, pos, bbi = -2, rgn;
5130 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5131 bbi = find_place_to_insert_bb (bb, rgn);
5132 bbi += 1;
5133 pos = RGN_BLOCKS (rgn) + bbi;
5135 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5136 && ebb_head[bbi] == pos);
5138 /* Make a place for the new block. */
5139 extend_regions ();
5141 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5142 BLOCK_TO_BB (rgn_bb_table[i])++;
5144 memmove (rgn_bb_table + pos + 1,
5145 rgn_bb_table + pos,
5146 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5148 /* Initialize data for BB. */
5149 rgn_bb_table[pos] = bb->index;
5150 BLOCK_TO_BB (bb->index) = bbi;
5151 CONTAINING_RGN (bb->index) = rgn;
5153 RGN_NR_BLOCKS (rgn)++;
5155 for (i = rgn + 1; i <= nr_regions; i++)
5156 RGN_BLOCKS (i)++;
5159 /* Remove BB from the current region and update the region data. */
5160 static void
5161 remove_bb_from_region (basic_block bb)
5163 int i, pos, bbi = -2, rgn;
5165 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5166 bbi = BLOCK_TO_BB (bb->index);
5167 pos = RGN_BLOCKS (rgn) + bbi;
5169 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5170 && ebb_head[bbi] == pos);
5172 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5173 BLOCK_TO_BB (rgn_bb_table[i])--;
5175 memmove (rgn_bb_table + pos,
5176 rgn_bb_table + pos + 1,
5177 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5179 RGN_NR_BLOCKS (rgn)--;
5180 for (i = rgn + 1; i <= nr_regions; i++)
5181 RGN_BLOCKS (i)--;
5184 /* Add BB to the current region and update all data. If BB is NULL, add all
5185 blocks from last_added_blocks vector. */
5186 static void
5187 sel_add_bb (basic_block bb)
5189 /* Extend luids so that new notes will receive zero luids. */
5190 sched_extend_luids ();
5191 sched_init_bbs ();
5192 sel_init_bbs (last_added_blocks);
5194 /* When bb is passed explicitly, the vector should contain
5195 the only element that equals to bb; otherwise, the vector
5196 should not be NULL. */
5197 gcc_assert (last_added_blocks.exists ());
5199 if (bb != NULL)
5201 gcc_assert (last_added_blocks.length () == 1
5202 && last_added_blocks[0] == bb);
5203 add_block_to_current_region (bb);
5205 /* We associate creating/deleting data sets with the first insn
5206 appearing / disappearing in the bb. */
5207 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5208 create_initial_data_sets (bb);
5210 last_added_blocks.release ();
5212 else
5213 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5215 int i;
5216 basic_block temp_bb = NULL;
5218 for (i = 0;
5219 last_added_blocks.iterate (i, &bb); i++)
5221 add_block_to_current_region (bb);
5222 temp_bb = bb;
5225 /* We need to fetch at least one bb so we know the region
5226 to update. */
5227 gcc_assert (temp_bb != NULL);
5228 bb = temp_bb;
5230 last_added_blocks.release ();
5233 rgn_setup_region (CONTAINING_RGN (bb->index));
5236 /* Remove BB from the current region and update all data.
5237 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5238 static void
5239 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5241 unsigned idx = bb->index;
5243 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5245 remove_bb_from_region (bb);
5246 return_bb_to_pool (bb);
5247 bitmap_clear_bit (blocks_to_reschedule, idx);
5249 if (remove_from_cfg_p)
5251 basic_block succ = single_succ (bb);
5252 delete_and_free_basic_block (bb);
5253 set_immediate_dominator (CDI_DOMINATORS, succ,
5254 recompute_dominator (CDI_DOMINATORS, succ));
5257 rgn_setup_region (CONTAINING_RGN (idx));
5260 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5261 static void
5262 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5264 if (in_current_region_p (merge_bb))
5265 concat_note_lists (BB_NOTE_LIST (empty_bb),
5266 &BB_NOTE_LIST (merge_bb));
5267 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5271 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5272 region, but keep it in CFG. */
5273 static void
5274 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5276 /* The block should contain just a note or a label.
5277 We try to check whether it is unused below. */
5278 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5279 || LABEL_P (BB_HEAD (empty_bb)));
5281 /* If basic block has predecessors or successors, redirect them. */
5282 if (remove_from_cfg_p
5283 && (EDGE_COUNT (empty_bb->preds) > 0
5284 || EDGE_COUNT (empty_bb->succs) > 0))
5286 basic_block pred;
5287 basic_block succ;
5289 /* We need to init PRED and SUCC before redirecting edges. */
5290 if (EDGE_COUNT (empty_bb->preds) > 0)
5292 edge e;
5294 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5296 e = EDGE_PRED (empty_bb, 0);
5297 gcc_assert (e->src == empty_bb->prev_bb
5298 && (e->flags & EDGE_FALLTHRU));
5300 pred = empty_bb->prev_bb;
5302 else
5303 pred = NULL;
5305 if (EDGE_COUNT (empty_bb->succs) > 0)
5307 /* We do not check fallthruness here as above, because
5308 after removing a jump the edge may actually be not fallthru. */
5309 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5310 succ = EDGE_SUCC (empty_bb, 0)->dest;
5312 else
5313 succ = NULL;
5315 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5317 edge e = EDGE_PRED (empty_bb, 0);
5319 if (e->flags & EDGE_FALLTHRU)
5320 redirect_edge_succ_nodup (e, succ);
5321 else
5322 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5325 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5327 edge e = EDGE_SUCC (empty_bb, 0);
5329 if (find_edge (pred, e->dest) == NULL)
5330 redirect_edge_pred (e, pred);
5334 /* Finish removing. */
5335 sel_remove_bb (empty_bb, remove_from_cfg_p);
5338 /* An implementation of create_basic_block hook, which additionally updates
5339 per-bb data structures. */
5340 static basic_block
5341 sel_create_basic_block (void *headp, void *endp, basic_block after)
5343 basic_block new_bb;
5344 insn_t new_bb_note;
5346 gcc_assert (flag_sel_sched_pipelining_outer_loops
5347 || !last_added_blocks.exists ());
5349 new_bb_note = get_bb_note_from_pool ();
5351 if (new_bb_note == NULL_RTX)
5352 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5353 else
5355 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5356 new_bb_note, after);
5357 new_bb->aux = NULL;
5360 last_added_blocks.safe_push (new_bb);
5362 return new_bb;
5365 /* Implement sched_init_only_bb (). */
5366 static void
5367 sel_init_only_bb (basic_block bb, basic_block after)
5369 gcc_assert (after == NULL);
5371 extend_regions ();
5372 rgn_make_new_region_out_of_new_block (bb);
5375 /* Update the latch when we've splitted or merged it from FROM block to TO.
5376 This should be checked for all outer loops, too. */
5377 static void
5378 change_loops_latches (basic_block from, basic_block to)
5380 gcc_assert (from != to);
5382 if (current_loop_nest)
5384 struct loop *loop;
5386 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5387 if (considered_for_pipelining_p (loop) && loop->latch == from)
5389 gcc_assert (loop == current_loop_nest);
5390 loop->latch = to;
5391 gcc_assert (loop_latch_edge (loop));
5396 /* Splits BB on two basic blocks, adding it to the region and extending
5397 per-bb data structures. Returns the newly created bb. */
5398 static basic_block
5399 sel_split_block (basic_block bb, rtx after)
5401 basic_block new_bb;
5402 insn_t insn;
5404 new_bb = sched_split_block_1 (bb, after);
5405 sel_add_bb (new_bb);
5407 /* This should be called after sel_add_bb, because this uses
5408 CONTAINING_RGN for the new block, which is not yet initialized.
5409 FIXME: this function may be a no-op now. */
5410 change_loops_latches (bb, new_bb);
5412 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5413 FOR_BB_INSNS (new_bb, insn)
5414 if (INSN_P (insn))
5415 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5417 if (sel_bb_empty_p (bb))
5419 gcc_assert (!sel_bb_empty_p (new_bb));
5421 /* NEW_BB has data sets that need to be updated and BB holds
5422 data sets that should be removed. Exchange these data sets
5423 so that we won't lose BB's valid data sets. */
5424 exchange_data_sets (new_bb, bb);
5425 free_data_sets (bb);
5428 if (!sel_bb_empty_p (new_bb)
5429 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5430 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5432 return new_bb;
5435 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5436 Otherwise returns NULL. */
5437 static rtx
5438 check_for_new_jump (basic_block bb, int prev_max_uid)
5440 rtx end;
5442 end = sel_bb_end (bb);
5443 if (end && INSN_UID (end) >= prev_max_uid)
5444 return end;
5445 return NULL;
5448 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5449 New means having UID at least equal to PREV_MAX_UID. */
5450 static rtx
5451 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5453 rtx jump;
5455 /* Return immediately if no new insns were emitted. */
5456 if (get_max_uid () == prev_max_uid)
5457 return NULL;
5459 /* Now check both blocks for new jumps. It will ever be only one. */
5460 if ((jump = check_for_new_jump (from, prev_max_uid)))
5461 return jump;
5463 if (jump_bb != NULL
5464 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5465 return jump;
5466 return NULL;
5469 /* Splits E and adds the newly created basic block to the current region.
5470 Returns this basic block. */
5471 basic_block
5472 sel_split_edge (edge e)
5474 basic_block new_bb, src, other_bb = NULL;
5475 int prev_max_uid;
5476 rtx jump;
5478 src = e->src;
5479 prev_max_uid = get_max_uid ();
5480 new_bb = split_edge (e);
5482 if (flag_sel_sched_pipelining_outer_loops
5483 && current_loop_nest)
5485 int i;
5486 basic_block bb;
5488 /* Some of the basic blocks might not have been added to the loop.
5489 Add them here, until this is fixed in force_fallthru. */
5490 for (i = 0;
5491 last_added_blocks.iterate (i, &bb); i++)
5492 if (!bb->loop_father)
5494 add_bb_to_loop (bb, e->dest->loop_father);
5496 gcc_assert (!other_bb && (new_bb->index != bb->index));
5497 other_bb = bb;
5501 /* Add all last_added_blocks to the region. */
5502 sel_add_bb (NULL);
5504 jump = find_new_jump (src, new_bb, prev_max_uid);
5505 if (jump)
5506 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5508 /* Put the correct lv set on this block. */
5509 if (other_bb && !sel_bb_empty_p (other_bb))
5510 compute_live (sel_bb_head (other_bb));
5512 return new_bb;
5515 /* Implement sched_create_empty_bb (). */
5516 static basic_block
5517 sel_create_empty_bb (basic_block after)
5519 basic_block new_bb;
5521 new_bb = sched_create_empty_bb_1 (after);
5523 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5524 later. */
5525 gcc_assert (last_added_blocks.length () == 1
5526 && last_added_blocks[0] == new_bb);
5528 last_added_blocks.release ();
5529 return new_bb;
5532 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5533 will be splitted to insert a check. */
5534 basic_block
5535 sel_create_recovery_block (insn_t orig_insn)
5537 basic_block first_bb, second_bb, recovery_block;
5538 basic_block before_recovery = NULL;
5539 rtx jump;
5541 first_bb = BLOCK_FOR_INSN (orig_insn);
5542 if (sel_bb_end_p (orig_insn))
5544 /* Avoid introducing an empty block while splitting. */
5545 gcc_assert (single_succ_p (first_bb));
5546 second_bb = single_succ (first_bb);
5548 else
5549 second_bb = sched_split_block (first_bb, orig_insn);
5551 recovery_block = sched_create_recovery_block (&before_recovery);
5552 if (before_recovery)
5553 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5555 gcc_assert (sel_bb_empty_p (recovery_block));
5556 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5557 if (current_loops != NULL)
5558 add_bb_to_loop (recovery_block, first_bb->loop_father);
5560 sel_add_bb (recovery_block);
5562 jump = BB_END (recovery_block);
5563 gcc_assert (sel_bb_head (recovery_block) == jump);
5564 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5566 return recovery_block;
5569 /* Merge basic block B into basic block A. */
5570 static void
5571 sel_merge_blocks (basic_block a, basic_block b)
5573 gcc_assert (sel_bb_empty_p (b)
5574 && EDGE_COUNT (b->preds) == 1
5575 && EDGE_PRED (b, 0)->src == b->prev_bb);
5577 move_bb_info (b->prev_bb, b);
5578 remove_empty_bb (b, false);
5579 merge_blocks (a, b);
5580 change_loops_latches (b, a);
5583 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5584 data structures for possibly created bb and insns. */
5585 void
5586 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5588 basic_block jump_bb, src, orig_dest = e->dest;
5589 int prev_max_uid;
5590 rtx jump;
5591 int old_seqno = -1;
5593 /* This function is now used only for bookkeeping code creation, where
5594 we'll never get the single pred of orig_dest block and thus will not
5595 hit unreachable blocks when updating dominator info. */
5596 gcc_assert (!sel_bb_empty_p (e->src)
5597 && !single_pred_p (orig_dest));
5598 src = e->src;
5599 prev_max_uid = get_max_uid ();
5600 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5601 when the conditional jump being redirected may become unconditional. */
5602 if (any_condjump_p (BB_END (src))
5603 && INSN_SEQNO (BB_END (src)) >= 0)
5604 old_seqno = INSN_SEQNO (BB_END (src));
5606 jump_bb = redirect_edge_and_branch_force (e, to);
5607 if (jump_bb != NULL)
5608 sel_add_bb (jump_bb);
5610 /* This function could not be used to spoil the loop structure by now,
5611 thus we don't care to update anything. But check it to be sure. */
5612 if (current_loop_nest
5613 && pipelining_p)
5614 gcc_assert (loop_latch_edge (current_loop_nest));
5616 jump = find_new_jump (src, jump_bb, prev_max_uid);
5617 if (jump)
5618 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5619 old_seqno);
5620 set_immediate_dominator (CDI_DOMINATORS, to,
5621 recompute_dominator (CDI_DOMINATORS, to));
5622 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5623 recompute_dominator (CDI_DOMINATORS, orig_dest));
5626 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5627 redirected edge are in reverse topological order. */
5628 bool
5629 sel_redirect_edge_and_branch (edge e, basic_block to)
5631 bool latch_edge_p;
5632 basic_block src, orig_dest = e->dest;
5633 int prev_max_uid;
5634 rtx jump;
5635 edge redirected;
5636 bool recompute_toporder_p = false;
5637 bool maybe_unreachable = single_pred_p (orig_dest);
5638 int old_seqno = -1;
5640 latch_edge_p = (pipelining_p
5641 && current_loop_nest
5642 && e == loop_latch_edge (current_loop_nest));
5644 src = e->src;
5645 prev_max_uid = get_max_uid ();
5647 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5648 when the conditional jump being redirected may become unconditional. */
5649 if (any_condjump_p (BB_END (src))
5650 && INSN_SEQNO (BB_END (src)) >= 0)
5651 old_seqno = INSN_SEQNO (BB_END (src));
5653 redirected = redirect_edge_and_branch (e, to);
5655 gcc_assert (redirected && !last_added_blocks.exists ());
5657 /* When we've redirected a latch edge, update the header. */
5658 if (latch_edge_p)
5660 current_loop_nest->header = to;
5661 gcc_assert (loop_latch_edge (current_loop_nest));
5664 /* In rare situations, the topological relation between the blocks connected
5665 by the redirected edge can change (see PR42245 for an example). Update
5666 block_to_bb/bb_to_block. */
5667 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5668 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5669 recompute_toporder_p = true;
5671 jump = find_new_jump (src, NULL, prev_max_uid);
5672 if (jump)
5673 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5675 /* Only update dominator info when we don't have unreachable blocks.
5676 Otherwise we'll update in maybe_tidy_empty_bb. */
5677 if (!maybe_unreachable)
5679 set_immediate_dominator (CDI_DOMINATORS, to,
5680 recompute_dominator (CDI_DOMINATORS, to));
5681 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5682 recompute_dominator (CDI_DOMINATORS, orig_dest));
5684 return recompute_toporder_p;
5687 /* This variable holds the cfg hooks used by the selective scheduler. */
5688 static struct cfg_hooks sel_cfg_hooks;
5690 /* Register sel-sched cfg hooks. */
5691 void
5692 sel_register_cfg_hooks (void)
5694 sched_split_block = sel_split_block;
5696 orig_cfg_hooks = get_cfg_hooks ();
5697 sel_cfg_hooks = orig_cfg_hooks;
5699 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5701 set_cfg_hooks (sel_cfg_hooks);
5703 sched_init_only_bb = sel_init_only_bb;
5704 sched_split_block = sel_split_block;
5705 sched_create_empty_bb = sel_create_empty_bb;
5708 /* Unregister sel-sched cfg hooks. */
5709 void
5710 sel_unregister_cfg_hooks (void)
5712 sched_create_empty_bb = NULL;
5713 sched_split_block = NULL;
5714 sched_init_only_bb = NULL;
5716 set_cfg_hooks (orig_cfg_hooks);
5720 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5721 LABEL is where this jump should be directed. */
5723 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5725 rtx insn_rtx;
5727 gcc_assert (!INSN_P (pattern));
5729 start_sequence ();
5731 if (label == NULL_RTX)
5732 insn_rtx = emit_insn (pattern);
5733 else if (DEBUG_INSN_P (label))
5734 insn_rtx = emit_debug_insn (pattern);
5735 else
5737 insn_rtx = emit_jump_insn (pattern);
5738 JUMP_LABEL (insn_rtx) = label;
5739 ++LABEL_NUSES (label);
5742 end_sequence ();
5744 sched_extend_luids ();
5745 sched_extend_target ();
5746 sched_deps_init (false);
5748 /* Initialize INSN_CODE now. */
5749 recog_memoized (insn_rtx);
5750 return insn_rtx;
5753 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5754 must not be clonable. */
5755 vinsn_t
5756 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5758 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5760 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5761 return vinsn_create (insn_rtx, force_unique_p);
5764 /* Create a copy of INSN_RTX. */
5766 create_copy_of_insn_rtx (rtx insn_rtx)
5768 rtx res, link;
5770 if (DEBUG_INSN_P (insn_rtx))
5771 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5772 insn_rtx);
5774 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5776 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5777 NULL_RTX);
5779 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5780 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5781 there too, but are supposed to be sticky, so we copy them. */
5782 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5783 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5784 && REG_NOTE_KIND (link) != REG_EQUAL
5785 && REG_NOTE_KIND (link) != REG_EQUIV)
5787 if (GET_CODE (link) == EXPR_LIST)
5788 add_reg_note (res, REG_NOTE_KIND (link),
5789 copy_insn_1 (XEXP (link, 0)));
5790 else
5791 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5794 return res;
5797 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5798 void
5799 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5801 vinsn_detach (EXPR_VINSN (expr));
5803 EXPR_VINSN (expr) = new_vinsn;
5804 vinsn_attach (new_vinsn);
5807 /* Helpers for global init. */
5808 /* This structure is used to be able to call existing bundling mechanism
5809 and calculate insn priorities. */
5810 static struct haifa_sched_info sched_sel_haifa_sched_info =
5812 NULL, /* init_ready_list */
5813 NULL, /* can_schedule_ready_p */
5814 NULL, /* schedule_more_p */
5815 NULL, /* new_ready */
5816 NULL, /* rgn_rank */
5817 sel_print_insn, /* rgn_print_insn */
5818 contributes_to_priority,
5819 NULL, /* insn_finishes_block_p */
5821 NULL, NULL,
5822 NULL, NULL,
5823 0, 0,
5825 NULL, /* add_remove_insn */
5826 NULL, /* begin_schedule_ready */
5827 NULL, /* begin_move_insn */
5828 NULL, /* advance_target_bb */
5830 NULL,
5831 NULL,
5833 SEL_SCHED | NEW_BBS
5836 /* Setup special insns used in the scheduler. */
5837 void
5838 setup_nop_and_exit_insns (void)
5840 gcc_assert (nop_pattern == NULL_RTX
5841 && exit_insn == NULL_RTX);
5843 nop_pattern = constm1_rtx;
5845 start_sequence ();
5846 emit_insn (nop_pattern);
5847 exit_insn = get_insns ();
5848 end_sequence ();
5849 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5852 /* Free special insns used in the scheduler. */
5853 void
5854 free_nop_and_exit_insns (void)
5856 exit_insn = NULL_RTX;
5857 nop_pattern = NULL_RTX;
5860 /* Setup a special vinsn used in new insns initialization. */
5861 void
5862 setup_nop_vinsn (void)
5864 nop_vinsn = vinsn_create (exit_insn, false);
5865 vinsn_attach (nop_vinsn);
5868 /* Free a special vinsn used in new insns initialization. */
5869 void
5870 free_nop_vinsn (void)
5872 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5873 vinsn_detach (nop_vinsn);
5874 nop_vinsn = NULL;
5877 /* Call a set_sched_flags hook. */
5878 void
5879 sel_set_sched_flags (void)
5881 /* ??? This means that set_sched_flags were called, and we decided to
5882 support speculation. However, set_sched_flags also modifies flags
5883 on current_sched_info, doing this only at global init. And we
5884 sometimes change c_s_i later. So put the correct flags again. */
5885 if (spec_info && targetm.sched.set_sched_flags)
5886 targetm.sched.set_sched_flags (spec_info);
5889 /* Setup pointers to global sched info structures. */
5890 void
5891 sel_setup_sched_infos (void)
5893 rgn_setup_common_sched_info ();
5895 memcpy (&sel_common_sched_info, common_sched_info,
5896 sizeof (sel_common_sched_info));
5898 sel_common_sched_info.fix_recovery_cfg = NULL;
5899 sel_common_sched_info.add_block = NULL;
5900 sel_common_sched_info.estimate_number_of_insns
5901 = sel_estimate_number_of_insns;
5902 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5903 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5905 common_sched_info = &sel_common_sched_info;
5907 current_sched_info = &sched_sel_haifa_sched_info;
5908 current_sched_info->sched_max_insns_priority =
5909 get_rgn_sched_max_insns_priority ();
5911 sel_set_sched_flags ();
5915 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5916 *BB_ORD_INDEX after that is increased. */
5917 static void
5918 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5920 RGN_NR_BLOCKS (rgn) += 1;
5921 RGN_DONT_CALC_DEPS (rgn) = 0;
5922 RGN_HAS_REAL_EBB (rgn) = 0;
5923 CONTAINING_RGN (bb->index) = rgn;
5924 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5925 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5926 (*bb_ord_index)++;
5928 /* FIXME: it is true only when not scheduling ebbs. */
5929 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5932 /* Functions to support pipelining of outer loops. */
5934 /* Creates a new empty region and returns it's number. */
5935 static int
5936 sel_create_new_region (void)
5938 int new_rgn_number = nr_regions;
5940 RGN_NR_BLOCKS (new_rgn_number) = 0;
5942 /* FIXME: This will work only when EBBs are not created. */
5943 if (new_rgn_number != 0)
5944 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5945 RGN_NR_BLOCKS (new_rgn_number - 1);
5946 else
5947 RGN_BLOCKS (new_rgn_number) = 0;
5949 /* Set the blocks of the next region so the other functions may
5950 calculate the number of blocks in the region. */
5951 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5952 RGN_NR_BLOCKS (new_rgn_number);
5954 nr_regions++;
5956 return new_rgn_number;
5959 /* If X has a smaller topological sort number than Y, returns -1;
5960 if greater, returns 1. */
5961 static int
5962 bb_top_order_comparator (const void *x, const void *y)
5964 basic_block bb1 = *(const basic_block *) x;
5965 basic_block bb2 = *(const basic_block *) y;
5967 gcc_assert (bb1 == bb2
5968 || rev_top_order_index[bb1->index]
5969 != rev_top_order_index[bb2->index]);
5971 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5972 bbs with greater number should go earlier. */
5973 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5974 return -1;
5975 else
5976 return 1;
5979 /* Create a region for LOOP and return its number. If we don't want
5980 to pipeline LOOP, return -1. */
5981 static int
5982 make_region_from_loop (struct loop *loop)
5984 unsigned int i;
5985 int new_rgn_number = -1;
5986 struct loop *inner;
5988 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5989 int bb_ord_index = 0;
5990 basic_block *loop_blocks;
5991 basic_block preheader_block;
5993 if (loop->num_nodes
5994 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5995 return -1;
5997 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5998 for (inner = loop->inner; inner; inner = inner->inner)
5999 if (flow_bb_inside_loop_p (inner, loop->latch))
6000 return -1;
6002 loop->ninsns = num_loop_insns (loop);
6003 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6004 return -1;
6006 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6008 for (i = 0; i < loop->num_nodes; i++)
6009 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6011 free (loop_blocks);
6012 return -1;
6015 preheader_block = loop_preheader_edge (loop)->src;
6016 gcc_assert (preheader_block);
6017 gcc_assert (loop_blocks[0] == loop->header);
6019 new_rgn_number = sel_create_new_region ();
6021 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6022 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6024 for (i = 0; i < loop->num_nodes; i++)
6026 /* Add only those blocks that haven't been scheduled in the inner loop.
6027 The exception is the basic blocks with bookkeeping code - they should
6028 be added to the region (and they actually don't belong to the loop
6029 body, but to the region containing that loop body). */
6031 gcc_assert (new_rgn_number >= 0);
6033 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6035 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6036 new_rgn_number);
6037 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6041 free (loop_blocks);
6042 MARK_LOOP_FOR_PIPELINING (loop);
6044 return new_rgn_number;
6047 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6048 void
6049 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6051 unsigned int i;
6052 int new_rgn_number = -1;
6053 basic_block bb;
6055 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6056 int bb_ord_index = 0;
6058 new_rgn_number = sel_create_new_region ();
6060 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6062 gcc_assert (new_rgn_number >= 0);
6064 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6067 vec_free (loop_blocks);
6071 /* Create region(s) from loop nest LOOP, such that inner loops will be
6072 pipelined before outer loops. Returns true when a region for LOOP
6073 is created. */
6074 static bool
6075 make_regions_from_loop_nest (struct loop *loop)
6077 struct loop *cur_loop;
6078 int rgn_number;
6080 /* Traverse all inner nodes of the loop. */
6081 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6082 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6083 return false;
6085 /* At this moment all regular inner loops should have been pipelined.
6086 Try to create a region from this loop. */
6087 rgn_number = make_region_from_loop (loop);
6089 if (rgn_number < 0)
6090 return false;
6092 loop_nests.safe_push (loop);
6093 return true;
6096 /* Initalize data structures needed. */
6097 void
6098 sel_init_pipelining (void)
6100 /* Collect loop information to be used in outer loops pipelining. */
6101 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6102 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6103 | LOOPS_HAVE_RECORDED_EXITS
6104 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6105 current_loop_nest = NULL;
6107 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6108 bitmap_clear (bbs_in_loop_rgns);
6110 recompute_rev_top_order ();
6113 /* Returns a struct loop for region RGN. */
6114 loop_p
6115 get_loop_nest_for_rgn (unsigned int rgn)
6117 /* Regions created with extend_rgns don't have corresponding loop nests,
6118 because they don't represent loops. */
6119 if (rgn < loop_nests.length ())
6120 return loop_nests[rgn];
6121 else
6122 return NULL;
6125 /* True when LOOP was included into pipelining regions. */
6126 bool
6127 considered_for_pipelining_p (struct loop *loop)
6129 if (loop_depth (loop) == 0)
6130 return false;
6132 /* Now, the loop could be too large or irreducible. Check whether its
6133 region is in LOOP_NESTS.
6134 We determine the region number of LOOP as the region number of its
6135 latch. We can't use header here, because this header could be
6136 just removed preheader and it will give us the wrong region number.
6137 Latch can't be used because it could be in the inner loop too. */
6138 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6140 int rgn = CONTAINING_RGN (loop->latch->index);
6142 gcc_assert ((unsigned) rgn < loop_nests.length ());
6143 return true;
6146 return false;
6149 /* Makes regions from the rest of the blocks, after loops are chosen
6150 for pipelining. */
6151 static void
6152 make_regions_from_the_rest (void)
6154 int cur_rgn_blocks;
6155 int *loop_hdr;
6156 int i;
6158 basic_block bb;
6159 edge e;
6160 edge_iterator ei;
6161 int *degree;
6163 /* Index in rgn_bb_table where to start allocating new regions. */
6164 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6166 /* Make regions from all the rest basic blocks - those that don't belong to
6167 any loop or belong to irreducible loops. Prepare the data structures
6168 for extend_rgns. */
6170 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6171 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6172 loop. */
6173 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6174 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6177 /* For each basic block that belongs to some loop assign the number
6178 of innermost loop it belongs to. */
6179 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6180 loop_hdr[i] = -1;
6182 FOR_EACH_BB_FN (bb, cfun)
6184 if (bb->loop_father && !bb->loop_father->num == 0
6185 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6186 loop_hdr[bb->index] = bb->loop_father->num;
6189 /* For each basic block degree is calculated as the number of incoming
6190 edges, that are going out of bbs that are not yet scheduled.
6191 The basic blocks that are scheduled have degree value of zero. */
6192 FOR_EACH_BB_FN (bb, cfun)
6194 degree[bb->index] = 0;
6196 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6198 FOR_EACH_EDGE (e, ei, bb->preds)
6199 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6200 degree[bb->index]++;
6202 else
6203 degree[bb->index] = -1;
6206 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6208 /* Any block that did not end up in a region is placed into a region
6209 by itself. */
6210 FOR_EACH_BB_FN (bb, cfun)
6211 if (degree[bb->index] >= 0)
6213 rgn_bb_table[cur_rgn_blocks] = bb->index;
6214 RGN_NR_BLOCKS (nr_regions) = 1;
6215 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6216 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6217 RGN_HAS_REAL_EBB (nr_regions) = 0;
6218 CONTAINING_RGN (bb->index) = nr_regions++;
6219 BLOCK_TO_BB (bb->index) = 0;
6222 free (degree);
6223 free (loop_hdr);
6226 /* Free data structures used in pipelining of loops. */
6227 void sel_finish_pipelining (void)
6229 struct loop *loop;
6231 /* Release aux fields so we don't free them later by mistake. */
6232 FOR_EACH_LOOP (loop, 0)
6233 loop->aux = NULL;
6235 loop_optimizer_finalize ();
6237 loop_nests.release ();
6239 free (rev_top_order_index);
6240 rev_top_order_index = NULL;
6243 /* This function replaces the find_rgns when
6244 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6245 void
6246 sel_find_rgns (void)
6248 sel_init_pipelining ();
6249 extend_regions ();
6251 if (current_loops)
6253 loop_p loop;
6255 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6256 ? LI_FROM_INNERMOST
6257 : LI_ONLY_INNERMOST))
6258 make_regions_from_loop_nest (loop);
6261 /* Make regions from all the rest basic blocks and schedule them.
6262 These blocks include blocks that don't belong to any loop or belong
6263 to irreducible loops. */
6264 make_regions_from_the_rest ();
6266 /* We don't need bbs_in_loop_rgns anymore. */
6267 sbitmap_free (bbs_in_loop_rgns);
6268 bbs_in_loop_rgns = NULL;
6271 /* Add the preheader blocks from previous loop to current region taking
6272 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6273 This function is only used with -fsel-sched-pipelining-outer-loops. */
6274 void
6275 sel_add_loop_preheaders (bb_vec_t *bbs)
6277 int i;
6278 basic_block bb;
6279 vec<basic_block> *preheader_blocks
6280 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6282 if (!preheader_blocks)
6283 return;
6285 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6287 bbs->safe_push (bb);
6288 last_added_blocks.safe_push (bb);
6289 sel_add_bb (bb);
6292 vec_free (preheader_blocks);
6295 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6296 Please note that the function should also work when pipelining_p is
6297 false, because it is used when deciding whether we should or should
6298 not reschedule pipelined code. */
6299 bool
6300 sel_is_loop_preheader_p (basic_block bb)
6302 if (current_loop_nest)
6304 struct loop *outer;
6306 if (preheader_removed)
6307 return false;
6309 /* Preheader is the first block in the region. */
6310 if (BLOCK_TO_BB (bb->index) == 0)
6311 return true;
6313 /* We used to find a preheader with the topological information.
6314 Check that the above code is equivalent to what we did before. */
6316 if (in_current_region_p (current_loop_nest->header))
6317 gcc_assert (!(BLOCK_TO_BB (bb->index)
6318 < BLOCK_TO_BB (current_loop_nest->header->index)));
6320 /* Support the situation when the latch block of outer loop
6321 could be from here. */
6322 for (outer = loop_outer (current_loop_nest);
6323 outer;
6324 outer = loop_outer (outer))
6325 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6326 gcc_unreachable ();
6329 return false;
6332 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6333 can be removed, making the corresponding edge fallthrough (assuming that
6334 all basic blocks between JUMP_BB and DEST_BB are empty). */
6335 static bool
6336 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6338 if (!onlyjump_p (BB_END (jump_bb))
6339 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6340 return false;
6342 /* Several outgoing edges, abnormal edge or destination of jump is
6343 not DEST_BB. */
6344 if (EDGE_COUNT (jump_bb->succs) != 1
6345 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6346 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6347 return false;
6349 /* If not anything of the upper. */
6350 return true;
6353 /* Removes the loop preheader from the current region and saves it in
6354 PREHEADER_BLOCKS of the father loop, so they will be added later to
6355 region that represents an outer loop. */
6356 static void
6357 sel_remove_loop_preheader (void)
6359 int i, old_len;
6360 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6361 basic_block bb;
6362 bool all_empty_p = true;
6363 vec<basic_block> *preheader_blocks
6364 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6366 vec_check_alloc (preheader_blocks, 0);
6368 gcc_assert (current_loop_nest);
6369 old_len = preheader_blocks->length ();
6371 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6372 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6374 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6376 /* If the basic block belongs to region, but doesn't belong to
6377 corresponding loop, then it should be a preheader. */
6378 if (sel_is_loop_preheader_p (bb))
6380 preheader_blocks->safe_push (bb);
6381 if (BB_END (bb) != bb_note (bb))
6382 all_empty_p = false;
6386 /* Remove these blocks only after iterating over the whole region. */
6387 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6389 bb = (*preheader_blocks)[i];
6390 sel_remove_bb (bb, false);
6393 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6395 if (!all_empty_p)
6396 /* Immediately create new region from preheader. */
6397 make_region_from_loop_preheader (preheader_blocks);
6398 else
6400 /* If all preheader blocks are empty - dont create new empty region.
6401 Instead, remove them completely. */
6402 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6404 edge e;
6405 edge_iterator ei;
6406 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6408 /* Redirect all incoming edges to next basic block. */
6409 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6411 if (! (e->flags & EDGE_FALLTHRU))
6412 redirect_edge_and_branch (e, bb->next_bb);
6413 else
6414 redirect_edge_succ (e, bb->next_bb);
6416 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6417 delete_and_free_basic_block (bb);
6419 /* Check if after deleting preheader there is a nonconditional
6420 jump in PREV_BB that leads to the next basic block NEXT_BB.
6421 If it is so - delete this jump and clear data sets of its
6422 basic block if it becomes empty. */
6423 if (next_bb->prev_bb == prev_bb
6424 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6425 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6427 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6428 if (BB_END (prev_bb) == bb_note (prev_bb))
6429 free_data_sets (prev_bb);
6432 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6433 recompute_dominator (CDI_DOMINATORS,
6434 next_bb));
6437 vec_free (preheader_blocks);
6439 else
6440 /* Store preheader within the father's loop structure. */
6441 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6442 preheader_blocks);
6444 #endif