1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass implements list scheduling within basic blocks. It is
23 run twice: (1) after flow analysis, but before register allocation,
24 and (2) after register allocation.
26 The first run performs interblock scheduling, moving insns between
27 different blocks in the same "region", and the second runs only
28 basic block scheduling.
30 Interblock motions performed are useful motions and speculative
31 motions, including speculative loads. Motions requiring code
32 duplication are not supported. The identification of motion type
33 and the check for validity of speculative motions requires
34 construction and analysis of the function's control flow graph.
36 The main entry point for this pass is schedule_insns(), called for
37 each function. The work of the scheduler is organized in three
38 levels: (1) function level: insns are subject to splitting,
39 control-flow-graph is constructed, regions are computed (after
40 reload, each region is of one block), (2) region level: control
41 flow graph attributes required for interblock scheduling are
42 computed (dominators, reachability, etc.), data dependences and
43 priorities are computed, and (3) block level: insns in the block
44 are actually scheduled. */
48 #include "coretypes.h"
50 #include "diagnostic-core.h"
53 #include "hard-reg-set.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
62 #include "sched-int.h"
63 #include "sel-sched.h"
65 #include "tree-pass.h"
68 #ifdef INSN_SCHEDULING
70 /* Some accessor macros for h_i_d members only used within this file. */
71 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
72 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
74 /* nr_inter/spec counts interblock/speculative motion for the function. */
75 static int nr_inter
, nr_spec
;
77 static int is_cfg_nonregular (void);
79 /* Number of regions in the procedure. */
82 /* Same as above before adding any new regions. */
83 static int nr_regions_initial
= 0;
85 /* Table of region descriptions. */
86 region
*rgn_table
= NULL
;
88 /* Array of lists of regions' blocks. */
89 int *rgn_bb_table
= NULL
;
91 /* Topological order of blocks in the region (if b2 is reachable from
92 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
93 always referred to by either block or b, while its topological
94 order name (in the region) is referred to by bb. */
95 int *block_to_bb
= NULL
;
97 /* The number of the region containing a block. */
98 int *containing_rgn
= NULL
;
100 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
101 Currently we can get a ebb only through splitting of currently
102 scheduling block, therefore, we don't need ebb_head array for every region,
103 hence, its sufficient to hold it for current one only. */
104 int *ebb_head
= NULL
;
106 /* The minimum probability of reaching a source block so that it will be
107 considered for speculative scheduling. */
108 static int min_spec_prob
;
110 static void find_single_block_region (bool);
111 static void find_rgns (void);
112 static bool too_large (int, int *, int *);
114 /* Blocks of the current region being scheduled. */
115 int current_nr_blocks
;
118 /* A speculative motion requires checking live information on the path
119 from 'source' to 'target'. The split blocks are those to be checked.
120 After a speculative motion, live information should be modified in
123 Lists of split and update blocks for each candidate of the current
124 target are in array bblst_table. */
125 static basic_block
*bblst_table
;
126 static int bblst_size
, bblst_last
;
128 /* Arrays that hold the DFA state at the end of a basic block, to re-use
129 as the initial state at the start of successor blocks. The BB_STATE
130 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
131 into BB_STATE for basic block I. FIXME: This should be a vec. */
132 static char *bb_state_array
= NULL
;
133 static state_t
*bb_state
= NULL
;
135 /* Target info declarations.
137 The block currently being scheduled is referred to as the "target" block,
138 while other blocks in the region from which insns can be moved to the
139 target are called "source" blocks. The candidate structure holds info
140 about such sources: are they valid? Speculative? Etc. */
143 basic_block
*first_member
;
158 static candidate
*candidate_table
;
159 #define IS_VALID(src) (candidate_table[src].is_valid)
160 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
161 #define IS_SPECULATIVE_INSN(INSN) \
162 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
163 #define SRC_PROB(src) ( candidate_table[src].src_prob )
165 /* The bb being currently scheduled. */
176 static edge
*edgelst_table
;
177 static int edgelst_last
;
179 static void extract_edgelst (sbitmap
, edgelst
*);
181 /* Target info functions. */
182 static void split_edges (int, int, edgelst
*);
183 static void compute_trg_info (int);
184 void debug_candidate (int);
185 void debug_candidates (int);
187 /* Dominators array: dom[i] contains the sbitmap of dominators of
188 bb i in the region. */
191 /* bb 0 is the only region entry. */
192 #define IS_RGN_ENTRY(bb) (!bb)
194 /* Is bb_src dominated by bb_trg. */
195 #define IS_DOMINATED(bb_src, bb_trg) \
196 ( bitmap_bit_p (dom[bb_src], bb_trg) )
198 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
199 the probability of bb i relative to the region entry. */
202 /* Bit-set of edges, where bit i stands for edge i. */
203 typedef sbitmap edgeset
;
205 /* Number of edges in the region. */
206 static int rgn_nr_edges
;
208 /* Array of size rgn_nr_edges. */
209 static edge
*rgn_edges
;
211 /* Mapping from each edge in the graph to its number in the rgn. */
212 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
213 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
215 /* The split edges of a source bb is different for each target
216 bb. In order to compute this efficiently, the 'potential-split edges'
217 are computed for each bb prior to scheduling a region. This is actually
218 the split edges of each bb relative to the region entry.
220 pot_split[bb] is the set of potential split edges of bb. */
221 static edgeset
*pot_split
;
223 /* For every bb, a set of its ancestor edges. */
224 static edgeset
*ancestor_edges
;
226 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
228 /* Speculative scheduling functions. */
229 static int check_live_1 (int, rtx
);
230 static void update_live_1 (int, rtx
);
231 static int is_pfree (rtx
, int, int);
232 static int find_conditional_protection (rtx
, int);
233 static int is_conditionally_protected (rtx
, int, int);
234 static int is_prisky (rtx
, int, int);
235 static int is_exception_free (rtx
, int, int);
237 static bool sets_likely_spilled (rtx
);
238 static void sets_likely_spilled_1 (rtx
, const_rtx
, void *);
239 static void add_branch_dependences (rtx
, rtx
);
240 static void compute_block_dependences (int);
242 static void schedule_region (int);
243 static void concat_insn_mem_list (rtx
, rtx
, rtx
*, rtx
*);
244 static void propagate_deps (int, struct deps_desc
*);
245 static void free_pending_lists (void);
247 /* Functions for construction of the control flow graph. */
249 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
251 We decide not to build the control flow graph if there is possibly more
252 than one entry to the function, if computed branches exist, if we
253 have nonlocal gotos, or if we have an unreachable loop. */
256 is_cfg_nonregular (void)
261 /* If we have a label that could be the target of a nonlocal goto, then
262 the cfg is not well structured. */
263 if (nonlocal_goto_handler_labels
)
266 /* If we have any forced labels, then the cfg is not well structured. */
270 /* If we have exception handlers, then we consider the cfg not well
271 structured. ?!? We should be able to handle this now that we
272 compute an accurate cfg for EH. */
273 if (current_function_has_exception_handlers ())
276 /* If we have insns which refer to labels as non-jumped-to operands,
277 then we consider the cfg not well structured. */
278 FOR_EACH_BB_FN (b
, cfun
)
279 FOR_BB_INSNS (b
, insn
)
281 rtx note
, next
, set
, dest
;
283 /* If this function has a computed jump, then we consider the cfg
284 not well structured. */
285 if (JUMP_P (insn
) && computed_jump_p (insn
))
291 note
= find_reg_note (insn
, REG_LABEL_OPERAND
, NULL_RTX
);
292 if (note
== NULL_RTX
)
295 /* For that label not to be seen as a referred-to label, this
296 must be a single-set which is feeding a jump *only*. This
297 could be a conditional jump with the label split off for
298 machine-specific reasons or a casesi/tablejump. */
299 next
= next_nonnote_insn (insn
);
302 || (JUMP_LABEL (next
) != XEXP (note
, 0)
303 && find_reg_note (next
, REG_LABEL_TARGET
,
304 XEXP (note
, 0)) == NULL_RTX
)
305 || BLOCK_FOR_INSN (insn
) != BLOCK_FOR_INSN (next
))
308 set
= single_set (insn
);
312 dest
= SET_DEST (set
);
313 if (!REG_P (dest
) || !dead_or_set_p (next
, dest
))
317 /* Unreachable loops with more than one basic block are detected
318 during the DFS traversal in find_rgns.
320 Unreachable loops with a single block are detected here. This
321 test is redundant with the one in find_rgns, but it's much
322 cheaper to go ahead and catch the trivial case here. */
323 FOR_EACH_BB_FN (b
, cfun
)
325 if (EDGE_COUNT (b
->preds
) == 0
326 || (single_pred_p (b
)
327 && single_pred (b
) == b
))
331 /* All the tests passed. Consider the cfg well structured. */
335 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
338 extract_edgelst (sbitmap set
, edgelst
*el
)
341 sbitmap_iterator sbi
;
343 /* edgelst table space is reused in each call to extract_edgelst. */
346 el
->first_member
= &edgelst_table
[edgelst_last
];
349 /* Iterate over each word in the bitset. */
350 EXECUTE_IF_SET_IN_BITMAP (set
, 0, i
, sbi
)
352 edgelst_table
[edgelst_last
++] = rgn_edges
[i
];
357 /* Functions for the construction of regions. */
359 /* Print the regions, for debugging purposes. Callable from debugger. */
366 fprintf (sched_dump
, "\n;; ------------ REGIONS ----------\n\n");
367 for (rgn
= 0; rgn
< nr_regions
; rgn
++)
369 fprintf (sched_dump
, ";;\trgn %d nr_blocks %d:\n", rgn
,
370 rgn_table
[rgn
].rgn_nr_blocks
);
371 fprintf (sched_dump
, ";;\tbb/block: ");
373 /* We don't have ebb_head initialized yet, so we can't use
375 current_blocks
= RGN_BLOCKS (rgn
);
377 for (bb
= 0; bb
< rgn_table
[rgn
].rgn_nr_blocks
; bb
++)
378 fprintf (sched_dump
, " %d/%d ", bb
, rgn_bb_table
[current_blocks
+ bb
]);
380 fprintf (sched_dump
, "\n\n");
384 /* Print the region's basic blocks. */
387 debug_region (int rgn
)
391 fprintf (stderr
, "\n;; ------------ REGION %d ----------\n\n", rgn
);
392 fprintf (stderr
, ";;\trgn %d nr_blocks %d:\n", rgn
,
393 rgn_table
[rgn
].rgn_nr_blocks
);
394 fprintf (stderr
, ";;\tbb/block: ");
396 /* We don't have ebb_head initialized yet, so we can't use
398 current_blocks
= RGN_BLOCKS (rgn
);
400 for (bb
= 0; bb
< rgn_table
[rgn
].rgn_nr_blocks
; bb
++)
401 fprintf (stderr
, " %d/%d ", bb
, rgn_bb_table
[current_blocks
+ bb
]);
403 fprintf (stderr
, "\n\n");
405 for (bb
= 0; bb
< rgn_table
[rgn
].rgn_nr_blocks
; bb
++)
408 BASIC_BLOCK_FOR_FN (cfun
, rgn_bb_table
[current_blocks
+ bb
]),
409 0, TDF_SLIM
| TDF_BLOCKS
);
410 fprintf (stderr
, "\n");
413 fprintf (stderr
, "\n");
417 /* True when a bb with index BB_INDEX contained in region RGN. */
419 bb_in_region_p (int bb_index
, int rgn
)
423 for (i
= 0; i
< rgn_table
[rgn
].rgn_nr_blocks
; i
++)
424 if (rgn_bb_table
[current_blocks
+ i
] == bb_index
)
430 /* Dump region RGN to file F using dot syntax. */
432 dump_region_dot (FILE *f
, int rgn
)
436 fprintf (f
, "digraph Region_%d {\n", rgn
);
438 /* We don't have ebb_head initialized yet, so we can't use
440 current_blocks
= RGN_BLOCKS (rgn
);
442 for (i
= 0; i
< rgn_table
[rgn
].rgn_nr_blocks
; i
++)
446 int src_bb_num
= rgn_bb_table
[current_blocks
+ i
];
447 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, src_bb_num
);
449 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
450 if (bb_in_region_p (e
->dest
->index
, rgn
))
451 fprintf (f
, "\t%d -> %d\n", src_bb_num
, e
->dest
->index
);
456 /* The same, but first open a file specified by FNAME. */
458 dump_region_dot_file (const char *fname
, int rgn
)
460 FILE *f
= fopen (fname
, "wt");
461 dump_region_dot (f
, rgn
);
465 /* Build a single block region for each basic block in the function.
466 This allows for using the same code for interblock and basic block
470 find_single_block_region (bool ebbs_p
)
472 basic_block bb
, ebb_start
;
478 int probability_cutoff
;
479 if (profile_info
&& flag_branch_probabilities
)
480 probability_cutoff
= PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK
);
482 probability_cutoff
= PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY
);
483 probability_cutoff
= REG_BR_PROB_BASE
/ 100 * probability_cutoff
;
485 FOR_EACH_BB_FN (ebb_start
, cfun
)
487 RGN_NR_BLOCKS (nr_regions
) = 0;
488 RGN_BLOCKS (nr_regions
) = i
;
489 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
490 RGN_HAS_REAL_EBB (nr_regions
) = 0;
492 for (bb
= ebb_start
; ; bb
= bb
->next_bb
)
496 rgn_bb_table
[i
] = bb
->index
;
497 RGN_NR_BLOCKS (nr_regions
)++;
498 CONTAINING_RGN (bb
->index
) = nr_regions
;
499 BLOCK_TO_BB (bb
->index
) = i
- RGN_BLOCKS (nr_regions
);
502 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
503 || LABEL_P (BB_HEAD (bb
->next_bb
)))
506 e
= find_fallthru_edge (bb
->succs
);
509 if (e
->probability
<= probability_cutoff
)
518 FOR_EACH_BB_FN (bb
, cfun
)
520 rgn_bb_table
[nr_regions
] = bb
->index
;
521 RGN_NR_BLOCKS (nr_regions
) = 1;
522 RGN_BLOCKS (nr_regions
) = nr_regions
;
523 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
524 RGN_HAS_REAL_EBB (nr_regions
) = 0;
526 CONTAINING_RGN (bb
->index
) = nr_regions
;
527 BLOCK_TO_BB (bb
->index
) = 0;
532 /* Estimate number of the insns in the BB. */
534 rgn_estimate_number_of_insns (basic_block bb
)
538 count
= INSN_LUID (BB_END (bb
)) - INSN_LUID (BB_HEAD (bb
));
540 if (MAY_HAVE_DEBUG_INSNS
)
544 FOR_BB_INSNS (bb
, insn
)
545 if (DEBUG_INSN_P (insn
))
552 /* Update number of blocks and the estimate for number of insns
553 in the region. Return true if the region is "too large" for interblock
554 scheduling (compile time considerations). */
557 too_large (int block
, int *num_bbs
, int *num_insns
)
560 (*num_insns
) += (common_sched_info
->estimate_number_of_insns
561 (BASIC_BLOCK_FOR_FN (cfun
, block
)));
563 return ((*num_bbs
> PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS
))
564 || (*num_insns
> PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS
)));
567 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
568 is still an inner loop. Put in max_hdr[blk] the header of the most inner
569 loop containing blk. */
570 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
572 if (max_hdr[blk] == -1) \
573 max_hdr[blk] = hdr; \
574 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
575 bitmap_clear_bit (inner, hdr); \
576 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
578 bitmap_clear_bit (inner,max_hdr[blk]); \
579 max_hdr[blk] = hdr; \
583 /* Find regions for interblock scheduling.
585 A region for scheduling can be:
587 * A loop-free procedure, or
589 * A reducible inner loop, or
591 * A basic block not contained in any other region.
593 ?!? In theory we could build other regions based on extended basic
594 blocks or reverse extended basic blocks. Is it worth the trouble?
596 Loop blocks that form a region are put into the region's block list
597 in topological order.
599 This procedure stores its results into the following global (ick) variables
607 We use dominator relationships to avoid making regions out of non-reducible
610 This procedure needs to be converted to work on pred/succ lists instead
611 of edge tables. That would simplify it somewhat. */
614 haifa_find_rgns (void)
616 int *max_hdr
, *dfs_nr
, *degree
;
618 int node
, child
, loop_head
, i
, head
, tail
;
619 int count
= 0, sp
, idx
= 0;
620 edge_iterator current_edge
;
621 edge_iterator
*stack
;
622 int num_bbs
, num_insns
, unreachable
;
623 int too_large_failure
;
626 /* Note if a block is a natural loop header. */
629 /* Note if a block is a natural inner loop header. */
632 /* Note if a block is in the block queue. */
635 /* Note if a block is in the block queue. */
638 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
639 and a mapping from block to its loop header (if the block is contained
642 Store results in HEADER, INNER, and MAX_HDR respectively, these will
643 be used as inputs to the second traversal.
645 STACK, SP and DFS_NR are only used during the first traversal. */
647 /* Allocate and initialize variables for the first traversal. */
648 max_hdr
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
649 dfs_nr
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
650 stack
= XNEWVEC (edge_iterator
, n_edges_for_fn (cfun
));
652 inner
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
655 header
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
656 bitmap_clear (header
);
658 in_queue
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
659 bitmap_clear (in_queue
);
661 in_stack
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
662 bitmap_clear (in_stack
);
664 for (i
= 0; i
< last_basic_block_for_fn (cfun
); i
++)
667 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
668 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
670 /* DFS traversal to find inner loops in the cfg. */
672 current_edge
= ei_start (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->succs
);
677 if (EDGE_PASSED (current_edge
))
679 /* We have reached a leaf node or a node that was already
680 processed. Pop edges off the stack until we find
681 an edge that has not yet been processed. */
682 while (sp
>= 0 && EDGE_PASSED (current_edge
))
684 /* Pop entry off the stack. */
685 current_edge
= stack
[sp
--];
686 node
= ei_edge (current_edge
)->src
->index
;
687 gcc_assert (node
!= ENTRY_BLOCK
);
688 child
= ei_edge (current_edge
)->dest
->index
;
689 gcc_assert (child
!= EXIT_BLOCK
);
690 bitmap_clear_bit (in_stack
, child
);
691 if (max_hdr
[child
] >= 0 && bitmap_bit_p (in_stack
, max_hdr
[child
]))
692 UPDATE_LOOP_RELATIONS (node
, max_hdr
[child
]);
693 ei_next (¤t_edge
);
696 /* See if have finished the DFS tree traversal. */
697 if (sp
< 0 && EDGE_PASSED (current_edge
))
700 /* Nope, continue the traversal with the popped node. */
704 /* Process a node. */
705 node
= ei_edge (current_edge
)->src
->index
;
706 gcc_assert (node
!= ENTRY_BLOCK
);
707 bitmap_set_bit (in_stack
, node
);
708 dfs_nr
[node
] = ++count
;
710 /* We don't traverse to the exit block. */
711 child
= ei_edge (current_edge
)->dest
->index
;
712 if (child
== EXIT_BLOCK
)
714 SET_EDGE_PASSED (current_edge
);
715 ei_next (¤t_edge
);
719 /* If the successor is in the stack, then we've found a loop.
720 Mark the loop, if it is not a natural loop, then it will
721 be rejected during the second traversal. */
722 if (bitmap_bit_p (in_stack
, child
))
725 bitmap_set_bit (header
, child
);
726 UPDATE_LOOP_RELATIONS (node
, child
);
727 SET_EDGE_PASSED (current_edge
);
728 ei_next (¤t_edge
);
732 /* If the child was already visited, then there is no need to visit
733 it again. Just update the loop relationships and restart
737 if (max_hdr
[child
] >= 0 && bitmap_bit_p (in_stack
, max_hdr
[child
]))
738 UPDATE_LOOP_RELATIONS (node
, max_hdr
[child
]);
739 SET_EDGE_PASSED (current_edge
);
740 ei_next (¤t_edge
);
744 /* Push an entry on the stack and continue DFS traversal. */
745 stack
[++sp
] = current_edge
;
746 SET_EDGE_PASSED (current_edge
);
747 current_edge
= ei_start (ei_edge (current_edge
)->dest
->succs
);
750 /* Reset ->aux field used by EDGE_PASSED. */
751 FOR_ALL_BB_FN (bb
, cfun
)
755 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
760 /* Another check for unreachable blocks. The earlier test in
761 is_cfg_nonregular only finds unreachable blocks that do not
764 The DFS traversal will mark every block that is reachable from
765 the entry node by placing a nonzero value in dfs_nr. Thus if
766 dfs_nr is zero for any block, then it must be unreachable. */
768 FOR_EACH_BB_FN (bb
, cfun
)
769 if (dfs_nr
[bb
->index
] == 0)
775 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
776 to hold degree counts. */
779 FOR_EACH_BB_FN (bb
, cfun
)
780 degree
[bb
->index
] = EDGE_COUNT (bb
->preds
);
782 /* Do not perform region scheduling if there are any unreachable
786 int *queue
, *degree1
= NULL
;
787 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
788 there basic blocks, which are forced to be region heads.
789 This is done to try to assemble few smaller regions
790 from a too_large region. */
791 sbitmap extended_rgn_header
= NULL
;
792 bool extend_regions_p
;
795 bitmap_set_bit (header
, 0);
797 /* Second traversal:find reducible inner loops and topologically sort
798 block of each region. */
800 queue
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
802 extend_regions_p
= PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS
) > 0;
803 if (extend_regions_p
)
805 degree1
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
806 extended_rgn_header
=
807 sbitmap_alloc (last_basic_block_for_fn (cfun
));
808 bitmap_clear (extended_rgn_header
);
811 /* Find blocks which are inner loop headers. We still have non-reducible
812 loops to consider at this point. */
813 FOR_EACH_BB_FN (bb
, cfun
)
815 if (bitmap_bit_p (header
, bb
->index
) && bitmap_bit_p (inner
, bb
->index
))
821 /* Now check that the loop is reducible. We do this separate
822 from finding inner loops so that we do not find a reducible
823 loop which contains an inner non-reducible loop.
825 A simple way to find reducible/natural loops is to verify
826 that each block in the loop is dominated by the loop
829 If there exists a block that is not dominated by the loop
830 header, then the block is reachable from outside the loop
831 and thus the loop is not a natural loop. */
832 FOR_EACH_BB_FN (jbb
, cfun
)
834 /* First identify blocks in the loop, except for the loop
836 if (bb
->index
== max_hdr
[jbb
->index
] && bb
!= jbb
)
838 /* Now verify that the block is dominated by the loop
840 if (!dominated_by_p (CDI_DOMINATORS
, jbb
, bb
))
845 /* If we exited the loop early, then I is the header of
846 a non-reducible loop and we should quit processing it
848 if (jbb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
851 /* I is a header of an inner loop, or block 0 in a subroutine
852 with no loops at all. */
854 too_large_failure
= 0;
855 loop_head
= max_hdr
[bb
->index
];
857 if (extend_regions_p
)
858 /* We save degree in case when we meet a too_large region
859 and cancel it. We need a correct degree later when
860 calling extend_rgns. */
861 memcpy (degree1
, degree
,
862 last_basic_block_for_fn (cfun
) * sizeof (int));
864 /* Decrease degree of all I's successors for topological
866 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
867 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
868 --degree
[e
->dest
->index
];
870 /* Estimate # insns, and count # blocks in the region. */
872 num_insns
= common_sched_info
->estimate_number_of_insns (bb
);
874 /* Find all loop latches (blocks with back edges to the loop
875 header) or all the leaf blocks in the cfg has no loops.
877 Place those blocks into the queue. */
880 FOR_EACH_BB_FN (jbb
, cfun
)
881 /* Leaf nodes have only a single successor which must
883 if (single_succ_p (jbb
)
884 && single_succ (jbb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
886 queue
[++tail
] = jbb
->index
;
887 bitmap_set_bit (in_queue
, jbb
->index
);
889 if (too_large (jbb
->index
, &num_bbs
, &num_insns
))
891 too_large_failure
= 1;
900 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
902 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
905 node
= e
->src
->index
;
907 if (max_hdr
[node
] == loop_head
&& node
!= bb
->index
)
909 /* This is a loop latch. */
910 queue
[++tail
] = node
;
911 bitmap_set_bit (in_queue
, node
);
913 if (too_large (node
, &num_bbs
, &num_insns
))
915 too_large_failure
= 1;
922 /* Now add all the blocks in the loop to the queue.
924 We know the loop is a natural loop; however the algorithm
925 above will not always mark certain blocks as being in the
933 The algorithm in the DFS traversal may not mark B & D as part
934 of the loop (i.e. they will not have max_hdr set to A).
936 We know they can not be loop latches (else they would have
937 had max_hdr set since they'd have a backedge to a dominator
938 block). So we don't need them on the initial queue.
940 We know they are part of the loop because they are dominated
941 by the loop header and can be reached by a backwards walk of
942 the edges starting with nodes on the initial queue.
944 It is safe and desirable to include those nodes in the
945 loop/scheduling region. To do so we would need to decrease
946 the degree of a node if it is the target of a backedge
947 within the loop itself as the node is placed in the queue.
949 We do not do this because I'm not sure that the actual
950 scheduling code will properly handle this case. ?!? */
952 while (head
< tail
&& !too_large_failure
)
955 child
= queue
[++head
];
957 FOR_EACH_EDGE (e
, ei
,
958 BASIC_BLOCK_FOR_FN (cfun
, child
)->preds
)
960 node
= e
->src
->index
;
962 /* See discussion above about nodes not marked as in
963 this loop during the initial DFS traversal. */
964 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
965 || max_hdr
[node
] != loop_head
)
970 else if (!bitmap_bit_p (in_queue
, node
) && node
!= bb
->index
)
972 queue
[++tail
] = node
;
973 bitmap_set_bit (in_queue
, node
);
975 if (too_large (node
, &num_bbs
, &num_insns
))
977 too_large_failure
= 1;
984 if (tail
>= 0 && !too_large_failure
)
986 /* Place the loop header into list of region blocks. */
987 degree
[bb
->index
] = -1;
988 rgn_bb_table
[idx
] = bb
->index
;
989 RGN_NR_BLOCKS (nr_regions
) = num_bbs
;
990 RGN_BLOCKS (nr_regions
) = idx
++;
991 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
992 RGN_HAS_REAL_EBB (nr_regions
) = 0;
993 CONTAINING_RGN (bb
->index
) = nr_regions
;
994 BLOCK_TO_BB (bb
->index
) = count
= 0;
996 /* Remove blocks from queue[] when their in degree
997 becomes zero. Repeat until no blocks are left on the
998 list. This produces a topological list of blocks in
1004 child
= queue
[head
];
1005 if (degree
[child
] == 0)
1010 rgn_bb_table
[idx
++] = child
;
1011 BLOCK_TO_BB (child
) = ++count
;
1012 CONTAINING_RGN (child
) = nr_regions
;
1013 queue
[head
] = queue
[tail
--];
1015 FOR_EACH_EDGE (e
, ei
,
1016 BASIC_BLOCK_FOR_FN (cfun
,
1018 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1019 --degree
[e
->dest
->index
];
1026 else if (extend_regions_p
)
1028 /* Restore DEGREE. */
1034 /* And force successors of BB to be region heads.
1035 This may provide several smaller regions instead
1036 of one too_large region. */
1037 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1038 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1039 bitmap_set_bit (extended_rgn_header
, e
->dest
->index
);
1045 if (extend_regions_p
)
1049 bitmap_ior (header
, header
, extended_rgn_header
);
1050 sbitmap_free (extended_rgn_header
);
1052 extend_rgns (degree
, &idx
, header
, max_hdr
);
1056 /* Any block that did not end up in a region is placed into a region
1058 FOR_EACH_BB_FN (bb
, cfun
)
1059 if (degree
[bb
->index
] >= 0)
1061 rgn_bb_table
[idx
] = bb
->index
;
1062 RGN_NR_BLOCKS (nr_regions
) = 1;
1063 RGN_BLOCKS (nr_regions
) = idx
++;
1064 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
1065 RGN_HAS_REAL_EBB (nr_regions
) = 0;
1066 CONTAINING_RGN (bb
->index
) = nr_regions
++;
1067 BLOCK_TO_BB (bb
->index
) = 0;
1073 sbitmap_free (header
);
1074 sbitmap_free (inner
);
1075 sbitmap_free (in_queue
);
1076 sbitmap_free (in_stack
);
1080 /* Wrapper function.
1081 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1082 regions. Otherwise just call find_rgns_haifa. */
1086 if (sel_sched_p () && flag_sel_sched_pipelining
)
1092 static int gather_region_statistics (int **);
1093 static void print_region_statistics (int *, int, int *, int);
1095 /* Calculate the histogram that shows the number of regions having the
1096 given number of basic blocks, and store it in the RSP array. Return
1097 the size of this array. */
1099 gather_region_statistics (int **rsp
)
1101 int i
, *a
= 0, a_sz
= 0;
1103 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1104 for (i
= 0; i
< nr_regions
; i
++)
1106 int nr_blocks
= RGN_NR_BLOCKS (i
);
1108 gcc_assert (nr_blocks
>= 1);
1110 if (nr_blocks
> a_sz
)
1112 a
= XRESIZEVEC (int, a
, nr_blocks
);
1115 while (a_sz
!= nr_blocks
);
1125 /* Print regions statistics. S1 and S2 denote the data before and after
1126 calling extend_rgns, respectively. */
1128 print_region_statistics (int *s1
, int s1_sz
, int *s2
, int s2_sz
)
1132 /* We iterate until s2_sz because extend_rgns does not decrease
1133 the maximal region size. */
1134 for (i
= 1; i
< s2_sz
; i
++)
1148 fprintf (sched_dump
, ";; Region extension statistics: size %d: " \
1149 "was %d + %d more\n", i
+ 1, n1
, n2
- n1
);
1154 DEGREE - Array of incoming edge count, considering only
1155 the edges, that don't have their sources in formed regions yet.
1156 IDXP - pointer to the next available index in rgn_bb_table.
1157 HEADER - set of all region heads.
1158 LOOP_HDR - mapping from block to the containing loop
1159 (two blocks can reside within one region if they have
1160 the same loop header). */
1162 extend_rgns (int *degree
, int *idxp
, sbitmap header
, int *loop_hdr
)
1164 int *order
, i
, rescan
= 0, idx
= *idxp
, iter
= 0, max_iter
, *max_hdr
;
1165 int nblocks
= n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
;
1167 max_iter
= PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS
);
1169 max_hdr
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1171 order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1172 post_order_compute (order
, false, false);
1174 for (i
= nblocks
- 1; i
>= 0; i
--)
1177 if (degree
[bbn
] >= 0)
1183 /* This block already was processed in find_rgns. */
1187 /* The idea is to topologically walk through CFG in top-down order.
1188 During the traversal, if all the predecessors of a node are
1189 marked to be in the same region (they all have the same max_hdr),
1190 then current node is also marked to be a part of that region.
1191 Otherwise the node starts its own region.
1192 CFG should be traversed until no further changes are made. On each
1193 iteration the set of the region heads is extended (the set of those
1194 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1195 set of all basic blocks, thus the algorithm is guaranteed to
1198 while (rescan
&& iter
< max_iter
)
1202 for (i
= nblocks
- 1; i
>= 0; i
--)
1208 if (max_hdr
[bbn
] != -1 && !bitmap_bit_p (header
, bbn
))
1212 FOR_EACH_EDGE (e
, ei
, BASIC_BLOCK_FOR_FN (cfun
, bbn
)->preds
)
1214 int predn
= e
->src
->index
;
1216 if (predn
!= ENTRY_BLOCK
1217 /* If pred wasn't processed in find_rgns. */
1218 && max_hdr
[predn
] != -1
1219 /* And pred and bb reside in the same loop.
1220 (Or out of any loop). */
1221 && loop_hdr
[bbn
] == loop_hdr
[predn
])
1224 /* Then bb extends the containing region of pred. */
1225 hdr
= max_hdr
[predn
];
1226 else if (hdr
!= max_hdr
[predn
])
1227 /* Too bad, there are at least two predecessors
1228 that reside in different regions. Thus, BB should
1229 begin its own region. */
1236 /* BB starts its own region. */
1245 /* If BB start its own region,
1246 update set of headers with BB. */
1247 bitmap_set_bit (header
, bbn
);
1251 gcc_assert (hdr
!= -1);
1260 /* Statistics were gathered on the SPEC2000 package of tests with
1261 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1263 Statistics for SPECint:
1264 1 iteration : 1751 cases (38.7%)
1265 2 iterations: 2770 cases (61.3%)
1266 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1267 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1268 (We don't count single block regions here).
1270 Statistics for SPECfp:
1271 1 iteration : 621 cases (35.9%)
1272 2 iterations: 1110 cases (64.1%)
1273 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1274 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1275 (We don't count single block regions here).
1277 By default we do at most 2 iterations.
1278 This can be overridden with max-sched-extend-regions-iters parameter:
1279 0 - disable region extension,
1280 N > 0 - do at most N iterations. */
1282 if (sched_verbose
&& iter
!= 0)
1283 fprintf (sched_dump
, ";; Region extension iterations: %d%s\n", iter
,
1284 rescan
? "... failed" : "");
1286 if (!rescan
&& iter
!= 0)
1288 int *s1
= NULL
, s1_sz
= 0;
1290 /* Save the old statistics for later printout. */
1291 if (sched_verbose
>= 6)
1292 s1_sz
= gather_region_statistics (&s1
);
1294 /* We have succeeded. Now assemble the regions. */
1295 for (i
= nblocks
- 1; i
>= 0; i
--)
1299 if (max_hdr
[bbn
] == bbn
)
1300 /* BBN is a region head. */
1304 int num_bbs
= 0, j
, num_insns
= 0, large
;
1306 large
= too_large (bbn
, &num_bbs
, &num_insns
);
1309 rgn_bb_table
[idx
] = bbn
;
1310 RGN_BLOCKS (nr_regions
) = idx
++;
1311 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
1312 RGN_HAS_REAL_EBB (nr_regions
) = 0;
1313 CONTAINING_RGN (bbn
) = nr_regions
;
1314 BLOCK_TO_BB (bbn
) = 0;
1316 FOR_EACH_EDGE (e
, ei
, BASIC_BLOCK_FOR_FN (cfun
, bbn
)->succs
)
1317 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1318 degree
[e
->dest
->index
]--;
1321 /* Here we check whether the region is too_large. */
1322 for (j
= i
- 1; j
>= 0; j
--)
1324 int succn
= order
[j
];
1325 if (max_hdr
[succn
] == bbn
)
1327 if ((large
= too_large (succn
, &num_bbs
, &num_insns
)))
1333 /* If the region is too_large, then wrap every block of
1334 the region into single block region.
1335 Here we wrap region head only. Other blocks are
1336 processed in the below cycle. */
1338 RGN_NR_BLOCKS (nr_regions
) = 1;
1344 for (j
= i
- 1; j
>= 0; j
--)
1346 int succn
= order
[j
];
1348 if (max_hdr
[succn
] == bbn
)
1349 /* This cycle iterates over all basic blocks, that
1350 are supposed to be in the region with head BBN,
1351 and wraps them into that region (or in single
1354 gcc_assert (degree
[succn
] == 0);
1357 rgn_bb_table
[idx
] = succn
;
1358 BLOCK_TO_BB (succn
) = large
? 0 : num_bbs
++;
1359 CONTAINING_RGN (succn
) = nr_regions
;
1362 /* Wrap SUCCN into single block region. */
1364 RGN_BLOCKS (nr_regions
) = idx
;
1365 RGN_NR_BLOCKS (nr_regions
) = 1;
1366 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
1367 RGN_HAS_REAL_EBB (nr_regions
) = 0;
1373 FOR_EACH_EDGE (e
, ei
,
1374 BASIC_BLOCK_FOR_FN (cfun
, succn
)->succs
)
1375 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1376 degree
[e
->dest
->index
]--;
1382 RGN_NR_BLOCKS (nr_regions
) = num_bbs
;
1388 if (sched_verbose
>= 6)
1392 /* Get the new statistics and print the comparison with the
1393 one before calling this function. */
1394 s2_sz
= gather_region_statistics (&s2
);
1395 print_region_statistics (s1
, s1_sz
, s2
, s2_sz
);
1407 /* Functions for regions scheduling information. */
1409 /* Compute dominators, probability, and potential-split-edges of bb.
1410 Assume that these values were already computed for bb's predecessors. */
1413 compute_dom_prob_ps (int bb
)
1415 edge_iterator in_ei
;
1418 /* We shouldn't have any real ebbs yet. */
1419 gcc_assert (ebb_head
[bb
] == bb
+ current_blocks
);
1421 if (IS_RGN_ENTRY (bb
))
1423 bitmap_set_bit (dom
[bb
], 0);
1424 prob
[bb
] = REG_BR_PROB_BASE
;
1430 /* Initialize dom[bb] to '111..1'. */
1431 bitmap_ones (dom
[bb
]);
1433 FOR_EACH_EDGE (in_edge
, in_ei
,
1434 BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (bb
))->preds
)
1438 edge_iterator out_ei
;
1440 if (in_edge
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1443 pred_bb
= BLOCK_TO_BB (in_edge
->src
->index
);
1444 bitmap_and (dom
[bb
], dom
[bb
], dom
[pred_bb
]);
1445 bitmap_ior (ancestor_edges
[bb
],
1446 ancestor_edges
[bb
], ancestor_edges
[pred_bb
]);
1448 bitmap_set_bit (ancestor_edges
[bb
], EDGE_TO_BIT (in_edge
));
1450 bitmap_ior (pot_split
[bb
], pot_split
[bb
], pot_split
[pred_bb
]);
1452 FOR_EACH_EDGE (out_edge
, out_ei
, in_edge
->src
->succs
)
1453 bitmap_set_bit (pot_split
[bb
], EDGE_TO_BIT (out_edge
));
1455 prob
[bb
] += combine_probabilities (prob
[pred_bb
], in_edge
->probability
);
1456 // The rounding divide in combine_probabilities can result in an extra
1457 // probability increment propagating along 50-50 edges. Eventually when
1458 // the edges re-merge, the accumulated probability can go slightly above
1459 // REG_BR_PROB_BASE.
1460 if (prob
[bb
] > REG_BR_PROB_BASE
)
1461 prob
[bb
] = REG_BR_PROB_BASE
;
1464 bitmap_set_bit (dom
[bb
], bb
);
1465 bitmap_and_compl (pot_split
[bb
], pot_split
[bb
], ancestor_edges
[bb
]);
1467 if (sched_verbose
>= 2)
1468 fprintf (sched_dump
, ";; bb_prob(%d, %d) = %3d\n", bb
, BB_TO_BLOCK (bb
),
1469 (100 * prob
[bb
]) / REG_BR_PROB_BASE
);
1472 /* Functions for target info. */
1474 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1475 Note that bb_trg dominates bb_src. */
1478 split_edges (int bb_src
, int bb_trg
, edgelst
*bl
)
1480 sbitmap src
= sbitmap_alloc (SBITMAP_SIZE (pot_split
[bb_src
]));
1481 bitmap_copy (src
, pot_split
[bb_src
]);
1483 bitmap_and_compl (src
, src
, pot_split
[bb_trg
]);
1484 extract_edgelst (src
, bl
);
1488 /* Find the valid candidate-source-blocks for the target block TRG, compute
1489 their probability, and check if they are speculative or not.
1490 For speculative sources, compute their update-blocks and split-blocks. */
1493 compute_trg_info (int trg
)
1496 edgelst el
= { NULL
, 0 };
1497 int i
, j
, k
, update_idx
;
1503 candidate_table
= XNEWVEC (candidate
, current_nr_blocks
);
1506 /* bblst_table holds split blocks and update blocks for each block after
1507 the current one in the region. split blocks and update blocks are
1508 the TO blocks of region edges, so there can be at most rgn_nr_edges
1510 bblst_size
= (current_nr_blocks
- target_bb
) * rgn_nr_edges
;
1511 bblst_table
= XNEWVEC (basic_block
, bblst_size
);
1514 edgelst_table
= XNEWVEC (edge
, rgn_nr_edges
);
1516 /* Define some of the fields for the target bb as well. */
1517 sp
= candidate_table
+ trg
;
1519 sp
->is_speculative
= 0;
1520 sp
->src_prob
= REG_BR_PROB_BASE
;
1522 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
1524 for (i
= trg
+ 1; i
< current_nr_blocks
; i
++)
1526 sp
= candidate_table
+ i
;
1528 sp
->is_valid
= IS_DOMINATED (i
, trg
);
1531 int tf
= prob
[trg
], cf
= prob
[i
];
1533 /* In CFGs with low probability edges TF can possibly be zero. */
1534 sp
->src_prob
= (tf
? GCOV_COMPUTE_SCALE (cf
, tf
) : 0);
1535 sp
->is_valid
= (sp
->src_prob
>= min_spec_prob
);
1540 split_edges (i
, trg
, &el
);
1541 sp
->is_speculative
= (el
.nr_members
) ? 1 : 0;
1542 if (sp
->is_speculative
&& !flag_schedule_speculative
)
1548 /* Compute split blocks and store them in bblst_table.
1549 The TO block of every split edge is a split block. */
1550 sp
->split_bbs
.first_member
= &bblst_table
[bblst_last
];
1551 sp
->split_bbs
.nr_members
= el
.nr_members
;
1552 for (j
= 0; j
< el
.nr_members
; bblst_last
++, j
++)
1553 bblst_table
[bblst_last
] = el
.first_member
[j
]->dest
;
1554 sp
->update_bbs
.first_member
= &bblst_table
[bblst_last
];
1556 /* Compute update blocks and store them in bblst_table.
1557 For every split edge, look at the FROM block, and check
1558 all out edges. For each out edge that is not a split edge,
1559 add the TO block to the update block list. This list can end
1560 up with a lot of duplicates. We need to weed them out to avoid
1561 overrunning the end of the bblst_table. */
1564 bitmap_clear (visited
);
1565 for (j
= 0; j
< el
.nr_members
; j
++)
1567 block
= el
.first_member
[j
]->src
;
1568 FOR_EACH_EDGE (e
, ei
, block
->succs
)
1570 if (!bitmap_bit_p (visited
, e
->dest
->index
))
1572 for (k
= 0; k
< el
.nr_members
; k
++)
1573 if (e
== el
.first_member
[k
])
1576 if (k
>= el
.nr_members
)
1578 bblst_table
[bblst_last
++] = e
->dest
;
1579 bitmap_set_bit (visited
, e
->dest
->index
);
1585 sp
->update_bbs
.nr_members
= update_idx
;
1587 /* Make sure we didn't overrun the end of bblst_table. */
1588 gcc_assert (bblst_last
<= bblst_size
);
1592 sp
->split_bbs
.nr_members
= sp
->update_bbs
.nr_members
= 0;
1594 sp
->is_speculative
= 0;
1599 sbitmap_free (visited
);
1602 /* Free the computed target info. */
1604 free_trg_info (void)
1606 free (candidate_table
);
1608 free (edgelst_table
);
1611 /* Print candidates info, for debugging purposes. Callable from debugger. */
1614 debug_candidate (int i
)
1616 if (!candidate_table
[i
].is_valid
)
1619 if (candidate_table
[i
].is_speculative
)
1622 fprintf (sched_dump
, "src b %d bb %d speculative \n", BB_TO_BLOCK (i
), i
);
1624 fprintf (sched_dump
, "split path: ");
1625 for (j
= 0; j
< candidate_table
[i
].split_bbs
.nr_members
; j
++)
1627 int b
= candidate_table
[i
].split_bbs
.first_member
[j
]->index
;
1629 fprintf (sched_dump
, " %d ", b
);
1631 fprintf (sched_dump
, "\n");
1633 fprintf (sched_dump
, "update path: ");
1634 for (j
= 0; j
< candidate_table
[i
].update_bbs
.nr_members
; j
++)
1636 int b
= candidate_table
[i
].update_bbs
.first_member
[j
]->index
;
1638 fprintf (sched_dump
, " %d ", b
);
1640 fprintf (sched_dump
, "\n");
1644 fprintf (sched_dump
, " src %d equivalent\n", BB_TO_BLOCK (i
));
1648 /* Print candidates info, for debugging purposes. Callable from debugger. */
1651 debug_candidates (int trg
)
1655 fprintf (sched_dump
, "----------- candidate table: target: b=%d bb=%d ---\n",
1656 BB_TO_BLOCK (trg
), trg
);
1657 for (i
= trg
+ 1; i
< current_nr_blocks
; i
++)
1658 debug_candidate (i
);
1661 /* Functions for speculative scheduling. */
1663 static bitmap_head not_in_df
;
1665 /* Return 0 if x is a set of a register alive in the beginning of one
1666 of the split-blocks of src, otherwise return 1. */
1669 check_live_1 (int src
, rtx x
)
1673 rtx reg
= SET_DEST (x
);
1678 while (GET_CODE (reg
) == SUBREG
1679 || GET_CODE (reg
) == ZERO_EXTRACT
1680 || GET_CODE (reg
) == STRICT_LOW_PART
)
1681 reg
= XEXP (reg
, 0);
1683 if (GET_CODE (reg
) == PARALLEL
)
1687 for (i
= XVECLEN (reg
, 0) - 1; i
>= 0; i
--)
1688 if (XEXP (XVECEXP (reg
, 0, i
), 0) != 0)
1689 if (check_live_1 (src
, XEXP (XVECEXP (reg
, 0, i
), 0)))
1698 regno
= REGNO (reg
);
1700 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
1702 /* Global registers are assumed live. */
1707 if (regno
< FIRST_PSEUDO_REGISTER
)
1709 /* Check for hard registers. */
1710 int j
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
1713 for (i
= 0; i
< candidate_table
[src
].split_bbs
.nr_members
; i
++)
1715 basic_block b
= candidate_table
[src
].split_bbs
.first_member
[i
];
1716 int t
= bitmap_bit_p (¬_in_df
, b
->index
);
1718 /* We can have split blocks, that were recently generated.
1719 Such blocks are always outside current region. */
1720 gcc_assert (!t
|| (CONTAINING_RGN (b
->index
)
1721 != CONTAINING_RGN (BB_TO_BLOCK (src
))));
1723 if (t
|| REGNO_REG_SET_P (df_get_live_in (b
), regno
+ j
))
1730 /* Check for pseudo registers. */
1731 for (i
= 0; i
< candidate_table
[src
].split_bbs
.nr_members
; i
++)
1733 basic_block b
= candidate_table
[src
].split_bbs
.first_member
[i
];
1734 int t
= bitmap_bit_p (¬_in_df
, b
->index
);
1736 gcc_assert (!t
|| (CONTAINING_RGN (b
->index
)
1737 != CONTAINING_RGN (BB_TO_BLOCK (src
))));
1739 if (t
|| REGNO_REG_SET_P (df_get_live_in (b
), regno
))
1748 /* If x is a set of a register R, mark that R is alive in the beginning
1749 of every update-block of src. */
1752 update_live_1 (int src
, rtx x
)
1756 rtx reg
= SET_DEST (x
);
1761 while (GET_CODE (reg
) == SUBREG
1762 || GET_CODE (reg
) == ZERO_EXTRACT
1763 || GET_CODE (reg
) == STRICT_LOW_PART
)
1764 reg
= XEXP (reg
, 0);
1766 if (GET_CODE (reg
) == PARALLEL
)
1770 for (i
= XVECLEN (reg
, 0) - 1; i
>= 0; i
--)
1771 if (XEXP (XVECEXP (reg
, 0, i
), 0) != 0)
1772 update_live_1 (src
, XEXP (XVECEXP (reg
, 0, i
), 0));
1780 /* Global registers are always live, so the code below does not apply
1783 regno
= REGNO (reg
);
1785 if (! HARD_REGISTER_NUM_P (regno
)
1786 || !global_regs
[regno
])
1788 for (i
= 0; i
< candidate_table
[src
].update_bbs
.nr_members
; i
++)
1790 basic_block b
= candidate_table
[src
].update_bbs
.first_member
[i
];
1792 if (HARD_REGISTER_NUM_P (regno
))
1793 bitmap_set_range (df_get_live_in (b
), regno
,
1794 hard_regno_nregs
[regno
][GET_MODE (reg
)]);
1796 bitmap_set_bit (df_get_live_in (b
), regno
);
1801 /* Return 1 if insn can be speculatively moved from block src to trg,
1802 otherwise return 0. Called before first insertion of insn to
1803 ready-list or before the scheduling. */
1806 check_live (rtx insn
, int src
)
1808 /* Find the registers set by instruction. */
1809 if (GET_CODE (PATTERN (insn
)) == SET
1810 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
1811 return check_live_1 (src
, PATTERN (insn
));
1812 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1815 for (j
= XVECLEN (PATTERN (insn
), 0) - 1; j
>= 0; j
--)
1816 if ((GET_CODE (XVECEXP (PATTERN (insn
), 0, j
)) == SET
1817 || GET_CODE (XVECEXP (PATTERN (insn
), 0, j
)) == CLOBBER
)
1818 && !check_live_1 (src
, XVECEXP (PATTERN (insn
), 0, j
)))
1827 /* Update the live registers info after insn was moved speculatively from
1828 block src to trg. */
1831 update_live (rtx insn
, int src
)
1833 /* Find the registers set by instruction. */
1834 if (GET_CODE (PATTERN (insn
)) == SET
1835 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
1836 update_live_1 (src
, PATTERN (insn
));
1837 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1840 for (j
= XVECLEN (PATTERN (insn
), 0) - 1; j
>= 0; j
--)
1841 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, j
)) == SET
1842 || GET_CODE (XVECEXP (PATTERN (insn
), 0, j
)) == CLOBBER
)
1843 update_live_1 (src
, XVECEXP (PATTERN (insn
), 0, j
));
1847 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1848 #define IS_REACHABLE(bb_from, bb_to) \
1850 || IS_RGN_ENTRY (bb_from) \
1851 || (bitmap_bit_p (ancestor_edges[bb_to], \
1852 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK_FOR_FN (cfun, \
1853 BB_TO_BLOCK (bb_from)))))))
1855 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1858 set_spec_fed (rtx load_insn
)
1860 sd_iterator_def sd_it
;
1863 FOR_EACH_DEP (load_insn
, SD_LIST_FORW
, sd_it
, dep
)
1864 if (DEP_TYPE (dep
) == REG_DEP_TRUE
)
1865 FED_BY_SPEC_LOAD (DEP_CON (dep
)) = 1;
1868 /* On the path from the insn to load_insn_bb, find a conditional
1869 branch depending on insn, that guards the speculative load. */
1872 find_conditional_protection (rtx insn
, int load_insn_bb
)
1874 sd_iterator_def sd_it
;
1877 /* Iterate through DEF-USE forward dependences. */
1878 FOR_EACH_DEP (insn
, SD_LIST_FORW
, sd_it
, dep
)
1880 rtx next
= DEP_CON (dep
);
1882 if ((CONTAINING_RGN (BLOCK_NUM (next
)) ==
1883 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb
)))
1884 && IS_REACHABLE (INSN_BB (next
), load_insn_bb
)
1885 && load_insn_bb
!= INSN_BB (next
)
1886 && DEP_TYPE (dep
) == REG_DEP_TRUE
1888 || find_conditional_protection (next
, load_insn_bb
)))
1892 } /* find_conditional_protection */
1894 /* Returns 1 if the same insn1 that participates in the computation
1895 of load_insn's address is feeding a conditional branch that is
1896 guarding on load_insn. This is true if we find two DEF-USE
1898 insn1 -> ... -> conditional-branch
1899 insn1 -> ... -> load_insn,
1900 and if a flow path exists:
1901 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1902 and if insn1 is on the path
1903 region-entry -> ... -> bb_trg -> ... load_insn.
1905 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1906 Locate the branch by following INSN_FORW_DEPS from insn1. */
1909 is_conditionally_protected (rtx load_insn
, int bb_src
, int bb_trg
)
1911 sd_iterator_def sd_it
;
1914 FOR_EACH_DEP (load_insn
, SD_LIST_BACK
, sd_it
, dep
)
1916 rtx insn1
= DEP_PRO (dep
);
1918 /* Must be a DEF-USE dependence upon non-branch. */
1919 if (DEP_TYPE (dep
) != REG_DEP_TRUE
1923 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1924 if (INSN_BB (insn1
) == bb_src
1925 || (CONTAINING_RGN (BLOCK_NUM (insn1
))
1926 != CONTAINING_RGN (BB_TO_BLOCK (bb_src
)))
1927 || (!IS_REACHABLE (bb_trg
, INSN_BB (insn1
))
1928 && !IS_REACHABLE (INSN_BB (insn1
), bb_trg
)))
1931 /* Now search for the conditional-branch. */
1932 if (find_conditional_protection (insn1
, bb_src
))
1935 /* Recursive step: search another insn1, "above" current insn1. */
1936 return is_conditionally_protected (insn1
, bb_src
, bb_trg
);
1939 /* The chain does not exist. */
1941 } /* is_conditionally_protected */
1943 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1944 load_insn can move speculatively from bb_src to bb_trg. All the
1945 following must hold:
1947 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1948 (2) load_insn and load1 have a def-use dependence upon
1949 the same insn 'insn1'.
1950 (3) either load2 is in bb_trg, or:
1951 - there's only one split-block, and
1952 - load1 is on the escape path, and
1954 From all these we can conclude that the two loads access memory
1955 addresses that differ at most by a constant, and hence if moving
1956 load_insn would cause an exception, it would have been caused by
1960 is_pfree (rtx load_insn
, int bb_src
, int bb_trg
)
1962 sd_iterator_def back_sd_it
;
1964 candidate
*candp
= candidate_table
+ bb_src
;
1966 if (candp
->split_bbs
.nr_members
!= 1)
1967 /* Must have exactly one escape block. */
1970 FOR_EACH_DEP (load_insn
, SD_LIST_BACK
, back_sd_it
, back_dep
)
1972 rtx insn1
= DEP_PRO (back_dep
);
1974 if (DEP_TYPE (back_dep
) == REG_DEP_TRUE
)
1975 /* Found a DEF-USE dependence (insn1, load_insn). */
1977 sd_iterator_def fore_sd_it
;
1980 FOR_EACH_DEP (insn1
, SD_LIST_FORW
, fore_sd_it
, fore_dep
)
1982 rtx insn2
= DEP_CON (fore_dep
);
1984 if (DEP_TYPE (fore_dep
) == REG_DEP_TRUE
)
1986 /* Found a DEF-USE dependence (insn1, insn2). */
1987 if (haifa_classify_insn (insn2
) != PFREE_CANDIDATE
)
1988 /* insn2 not guaranteed to be a 1 base reg load. */
1991 if (INSN_BB (insn2
) == bb_trg
)
1992 /* insn2 is the similar load, in the target block. */
1995 if (*(candp
->split_bbs
.first_member
) == BLOCK_FOR_INSN (insn2
))
1996 /* insn2 is a similar load, in a split-block. */
2003 /* Couldn't find a similar load. */
2007 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
2008 a load moved speculatively, or if load_insn is protected by
2009 a compare on load_insn's address). */
2012 is_prisky (rtx load_insn
, int bb_src
, int bb_trg
)
2014 if (FED_BY_SPEC_LOAD (load_insn
))
2017 if (sd_lists_empty_p (load_insn
, SD_LIST_BACK
))
2018 /* Dependence may 'hide' out of the region. */
2021 if (is_conditionally_protected (load_insn
, bb_src
, bb_trg
))
2027 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2028 Return 1 if insn is exception-free (and the motion is valid)
2032 is_exception_free (rtx insn
, int bb_src
, int bb_trg
)
2034 int insn_class
= haifa_classify_insn (insn
);
2036 /* Handle non-load insns. */
2047 if (!flag_schedule_speculative_load
)
2049 IS_LOAD_INSN (insn
) = 1;
2056 case PFREE_CANDIDATE
:
2057 if (is_pfree (insn
, bb_src
, bb_trg
))
2059 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2060 case PRISKY_CANDIDATE
:
2061 if (!flag_schedule_speculative_load_dangerous
2062 || is_prisky (insn
, bb_src
, bb_trg
))
2068 return flag_schedule_speculative_load_dangerous
;
2071 /* The number of insns from the current block scheduled so far. */
2072 static int sched_target_n_insns
;
2073 /* The number of insns from the current block to be scheduled in total. */
2074 static int target_n_insns
;
2075 /* The number of insns from the entire region scheduled so far. */
2076 static int sched_n_insns
;
2078 /* Implementations of the sched_info functions for region scheduling. */
2079 static void init_ready_list (void);
2080 static int can_schedule_ready_p (rtx
);
2081 static void begin_schedule_ready (rtx
);
2082 static ds_t
new_ready (rtx
, ds_t
);
2083 static int schedule_more_p (void);
2084 static const char *rgn_print_insn (const_rtx
, int);
2085 static int rgn_rank (rtx
, rtx
);
2086 static void compute_jump_reg_dependencies (rtx
, regset
);
2088 /* Functions for speculative scheduling. */
2089 static void rgn_add_remove_insn (rtx
, int);
2090 static void rgn_add_block (basic_block
, basic_block
);
2091 static void rgn_fix_recovery_cfg (int, int, int);
2092 static basic_block
advance_target_bb (basic_block
, rtx
);
2094 /* Return nonzero if there are more insns that should be scheduled. */
2097 schedule_more_p (void)
2099 return sched_target_n_insns
< target_n_insns
;
2102 /* Add all insns that are initially ready to the ready list READY. Called
2103 once before scheduling a set of insns. */
2106 init_ready_list (void)
2108 rtx prev_head
= current_sched_info
->prev_head
;
2109 rtx next_tail
= current_sched_info
->next_tail
;
2114 sched_target_n_insns
= 0;
2117 /* Print debugging information. */
2118 if (sched_verbose
>= 5)
2119 debug_rgn_dependencies (target_bb
);
2121 /* Prepare current target block info. */
2122 if (current_nr_blocks
> 1)
2123 compute_trg_info (target_bb
);
2125 /* Initialize ready list with all 'ready' insns in target block.
2126 Count number of insns in the target block being scheduled. */
2127 for (insn
= NEXT_INSN (prev_head
); insn
!= next_tail
; insn
= NEXT_INSN (insn
))
2129 gcc_assert (TODO_SPEC (insn
) == HARD_DEP
|| TODO_SPEC (insn
) == DEP_POSTPONED
);
2130 TODO_SPEC (insn
) = HARD_DEP
;
2134 gcc_assert (!(TODO_SPEC (insn
) & BEGIN_CONTROL
));
2137 /* Add to ready list all 'ready' insns in valid source blocks.
2138 For speculative insns, check-live, exception-free, and
2140 for (bb_src
= target_bb
+ 1; bb_src
< current_nr_blocks
; bb_src
++)
2141 if (IS_VALID (bb_src
))
2147 get_ebb_head_tail (EBB_FIRST_BB (bb_src
), EBB_LAST_BB (bb_src
),
2149 src_next_tail
= NEXT_INSN (tail
);
2152 for (insn
= src_head
; insn
!= src_next_tail
; insn
= NEXT_INSN (insn
))
2155 gcc_assert (TODO_SPEC (insn
) == HARD_DEP
|| TODO_SPEC (insn
) == DEP_POSTPONED
);
2156 TODO_SPEC (insn
) = HARD_DEP
;
2162 /* Called after taking INSN from the ready list. Returns nonzero if this
2163 insn can be scheduled, nonzero if we should silently discard it. */
2166 can_schedule_ready_p (rtx insn
)
2168 /* An interblock motion? */
2169 if (INSN_BB (insn
) != target_bb
2170 && IS_SPECULATIVE_INSN (insn
)
2171 && !check_live (insn
, INSN_BB (insn
)))
2177 /* Updates counter and other information. Split from can_schedule_ready_p ()
2178 because when we schedule insn speculatively then insn passed to
2179 can_schedule_ready_p () differs from the one passed to
2180 begin_schedule_ready (). */
2182 begin_schedule_ready (rtx insn
)
2184 /* An interblock motion? */
2185 if (INSN_BB (insn
) != target_bb
)
2187 if (IS_SPECULATIVE_INSN (insn
))
2189 gcc_assert (check_live (insn
, INSN_BB (insn
)));
2191 update_live (insn
, INSN_BB (insn
));
2193 /* For speculative load, mark insns fed by it. */
2194 if (IS_LOAD_INSN (insn
) || FED_BY_SPEC_LOAD (insn
))
2195 set_spec_fed (insn
);
2203 /* In block motion. */
2204 sched_target_n_insns
++;
2209 /* Called after INSN has all its hard dependencies resolved and the speculation
2210 of type TS is enough to overcome them all.
2211 Return nonzero if it should be moved to the ready list or the queue, or zero
2212 if we should silently discard it. */
2214 new_ready (rtx next
, ds_t ts
)
2216 if (INSN_BB (next
) != target_bb
)
2218 int not_ex_free
= 0;
2220 /* For speculative insns, before inserting to ready/queue,
2221 check live, exception-free, and issue-delay. */
2222 if (!IS_VALID (INSN_BB (next
))
2224 || (IS_SPECULATIVE_INSN (next
)
2225 && ((recog_memoized (next
) >= 0
2226 && min_insn_conflict_delay (curr_state
, next
, next
)
2227 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY
))
2228 || IS_SPECULATION_CHECK_P (next
)
2229 || !check_live (next
, INSN_BB (next
))
2230 || (not_ex_free
= !is_exception_free (next
, INSN_BB (next
),
2234 /* We are here because is_exception_free () == false.
2235 But we possibly can handle that with control speculation. */
2236 && sched_deps_info
->generate_spec_deps
2237 && spec_info
->mask
& BEGIN_CONTROL
)
2241 /* Add control speculation to NEXT's dependency type. */
2242 new_ds
= set_dep_weak (ts
, BEGIN_CONTROL
, MAX_DEP_WEAK
);
2244 /* Check if NEXT can be speculated with new dependency type. */
2245 if (sched_insn_is_legitimate_for_speculation_p (next
, new_ds
))
2246 /* Here we got new control-speculative instruction. */
2249 /* NEXT isn't ready yet. */
2253 /* NEXT isn't ready yet. */
2261 /* Return a string that contains the insn uid and optionally anything else
2262 necessary to identify this insn in an output. It's valid to use a
2263 static buffer for this. The ALIGNED parameter should cause the string
2264 to be formatted so that multiple output lines will line up nicely. */
2267 rgn_print_insn (const_rtx insn
, int aligned
)
2269 static char tmp
[80];
2272 sprintf (tmp
, "b%3d: i%4d", INSN_BB (insn
), INSN_UID (insn
));
2275 if (current_nr_blocks
> 1 && INSN_BB (insn
) != target_bb
)
2276 sprintf (tmp
, "%d/b%d", INSN_UID (insn
), INSN_BB (insn
));
2278 sprintf (tmp
, "%d", INSN_UID (insn
));
2283 /* Compare priority of two insns. Return a positive number if the second
2284 insn is to be preferred for scheduling, and a negative one if the first
2285 is to be preferred. Zero if they are equally good. */
2288 rgn_rank (rtx insn1
, rtx insn2
)
2290 /* Some comparison make sense in interblock scheduling only. */
2291 if (INSN_BB (insn1
) != INSN_BB (insn2
))
2293 int spec_val
, prob_val
;
2295 /* Prefer an inblock motion on an interblock motion. */
2296 if ((INSN_BB (insn2
) == target_bb
) && (INSN_BB (insn1
) != target_bb
))
2298 if ((INSN_BB (insn1
) == target_bb
) && (INSN_BB (insn2
) != target_bb
))
2301 /* Prefer a useful motion on a speculative one. */
2302 spec_val
= IS_SPECULATIVE_INSN (insn1
) - IS_SPECULATIVE_INSN (insn2
);
2306 /* Prefer a more probable (speculative) insn. */
2307 prob_val
= INSN_PROBABILITY (insn2
) - INSN_PROBABILITY (insn1
);
2314 /* NEXT is an instruction that depends on INSN (a backward dependence);
2315 return nonzero if we should include this dependence in priority
2319 contributes_to_priority (rtx next
, rtx insn
)
2321 /* NEXT and INSN reside in one ebb. */
2322 return BLOCK_TO_BB (BLOCK_NUM (next
)) == BLOCK_TO_BB (BLOCK_NUM (insn
));
2325 /* INSN is a JUMP_INSN. Store the set of registers that must be
2326 considered as used by this jump in USED. */
2329 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED
,
2330 regset used ATTRIBUTE_UNUSED
)
2332 /* Nothing to do here, since we postprocess jumps in
2333 add_branch_dependences. */
2336 /* This variable holds common_sched_info hooks and data relevant to
2337 the interblock scheduler. */
2338 static struct common_sched_info_def rgn_common_sched_info
;
2341 /* This holds data for the dependence analysis relevant to
2342 the interblock scheduler. */
2343 static struct sched_deps_info_def rgn_sched_deps_info
;
2345 /* This holds constant data used for initializing the above structure
2346 for the Haifa scheduler. */
2347 static const struct sched_deps_info_def rgn_const_sched_deps_info
=
2349 compute_jump_reg_dependencies
,
2350 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2354 /* Same as above, but for the selective scheduler. */
2355 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info
=
2357 compute_jump_reg_dependencies
,
2358 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2362 /* Return true if scheduling INSN will trigger finish of scheduling
2365 rgn_insn_finishes_block_p (rtx insn
)
2367 if (INSN_BB (insn
) == target_bb
2368 && sched_target_n_insns
+ 1 == target_n_insns
)
2369 /* INSN is the last not-scheduled instruction in the current block. */
2375 /* Used in schedule_insns to initialize current_sched_info for scheduling
2376 regions (or single basic blocks). */
2378 static const struct haifa_sched_info rgn_const_sched_info
=
2381 can_schedule_ready_p
,
2386 contributes_to_priority
,
2387 rgn_insn_finishes_block_p
,
2393 rgn_add_remove_insn
,
2394 begin_schedule_ready
,
2401 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2402 for the interblock scheduler frontend. */
2403 static struct haifa_sched_info rgn_sched_info
;
2405 /* Returns maximum priority that an insn was assigned to. */
2408 get_rgn_sched_max_insns_priority (void)
2410 return rgn_sched_info
.sched_max_insns_priority
;
2413 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2416 sets_likely_spilled (rtx pat
)
2419 note_stores (pat
, sets_likely_spilled_1
, &ret
);
2424 sets_likely_spilled_1 (rtx x
, const_rtx pat
, void *data
)
2426 bool *ret
= (bool *) data
;
2428 if (GET_CODE (pat
) == SET
2430 && HARD_REGISTER_P (x
)
2431 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x
))))
2435 /* A bitmap to note insns that participate in any dependency. Used in
2436 add_branch_dependences. */
2437 static sbitmap insn_referenced
;
2439 /* Add dependences so that branches are scheduled to run last in their
2442 add_branch_dependences (rtx head
, rtx tail
)
2446 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2447 that can throw exceptions, force them to remain in order at the end of
2448 the block by adding dependencies and giving the last a high priority.
2449 There may be notes present, and prev_head may also be a note.
2451 Branches must obviously remain at the end. Calls should remain at the
2452 end since moving them results in worse register allocation. Uses remain
2453 at the end to ensure proper register allocation.
2455 cc0 setters remain at the end because they can't be moved away from
2458 Predecessors of SCHED_GROUP_P instructions at the end remain at the end.
2460 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2462 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2463 values) are not moved before reload because we can wind up with register
2464 allocation failures. */
2466 while (tail
!= head
&& DEBUG_INSN_P (tail
))
2467 tail
= PREV_INSN (tail
);
2471 while (CALL_P (insn
)
2472 || JUMP_P (insn
) || JUMP_TABLE_DATA_P (insn
)
2473 || (NONJUMP_INSN_P (insn
)
2474 && (GET_CODE (PATTERN (insn
)) == USE
2475 || GET_CODE (PATTERN (insn
)) == CLOBBER
2476 || can_throw_internal (insn
)
2478 || sets_cc0_p (PATTERN (insn
))
2480 || (!reload_completed
2481 && sets_likely_spilled (PATTERN (insn
)))))
2483 || (last
!= 0 && SCHED_GROUP_P (last
)))
2488 && sd_find_dep_between (insn
, last
, false) == NULL
)
2490 if (! sched_insns_conditions_mutex_p (last
, insn
))
2491 add_dependence (last
, insn
, REG_DEP_ANTI
);
2492 bitmap_set_bit (insn_referenced
, INSN_LUID (insn
));
2495 CANT_MOVE (insn
) = 1;
2500 /* Don't overrun the bounds of the basic block. */
2505 insn
= PREV_INSN (insn
);
2506 while (insn
!= head
&& DEBUG_INSN_P (insn
));
2509 /* Make sure these insns are scheduled last in their block. */
2512 while (insn
!= head
)
2514 insn
= prev_nonnote_insn (insn
);
2516 if (bitmap_bit_p (insn_referenced
, INSN_LUID (insn
))
2517 || DEBUG_INSN_P (insn
))
2520 if (! sched_insns_conditions_mutex_p (last
, insn
))
2521 add_dependence (last
, insn
, REG_DEP_ANTI
);
2524 if (!targetm
.have_conditional_execution ())
2527 /* Finally, if the block ends in a jump, and we are doing intra-block
2528 scheduling, make sure that the branch depends on any COND_EXEC insns
2529 inside the block to avoid moving the COND_EXECs past the branch insn.
2531 We only have to do this after reload, because (1) before reload there
2532 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2533 scheduler after reload.
2535 FIXME: We could in some cases move COND_EXEC insns past the branch if
2536 this scheduler would be a little smarter. Consider this code:
2544 On a target with a one cycle stall on a memory access the optimal
2553 We don't want to put the 'X += 12' before the branch because it just
2554 wastes a cycle of execution time when the branch is taken.
2556 Note that in the example "!C" will always be true. That is another
2557 possible improvement for handling COND_EXECs in this scheduler: it
2558 could remove always-true predicates. */
2560 if (!reload_completed
|| ! (JUMP_P (tail
) || JUMP_TABLE_DATA_P (tail
)))
2564 while (insn
!= head
)
2566 insn
= PREV_INSN (insn
);
2568 /* Note that we want to add this dependency even when
2569 sched_insns_conditions_mutex_p returns true. The whole point
2570 is that we _want_ this dependency, even if these insns really
2572 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2573 add_dependence (tail
, insn
, REG_DEP_ANTI
);
2577 /* Data structures for the computation of data dependences in a regions. We
2578 keep one `deps' structure for every basic block. Before analyzing the
2579 data dependences for a bb, its variables are initialized as a function of
2580 the variables of its predecessors. When the analysis for a bb completes,
2581 we save the contents to the corresponding bb_deps[bb] variable. */
2583 static struct deps_desc
*bb_deps
;
2586 concat_insn_mem_list (rtx copy_insns
, rtx copy_mems
, rtx
*old_insns_p
,
2589 rtx new_insns
= *old_insns_p
;
2590 rtx new_mems
= *old_mems_p
;
2594 new_insns
= alloc_INSN_LIST (XEXP (copy_insns
, 0), new_insns
);
2595 new_mems
= alloc_EXPR_LIST (VOIDmode
, XEXP (copy_mems
, 0), new_mems
);
2596 copy_insns
= XEXP (copy_insns
, 1);
2597 copy_mems
= XEXP (copy_mems
, 1);
2600 *old_insns_p
= new_insns
;
2601 *old_mems_p
= new_mems
;
2604 /* Join PRED_DEPS to the SUCC_DEPS. */
2606 deps_join (struct deps_desc
*succ_deps
, struct deps_desc
*pred_deps
)
2609 reg_set_iterator rsi
;
2611 /* The reg_last lists are inherited by successor. */
2612 EXECUTE_IF_SET_IN_REG_SET (&pred_deps
->reg_last_in_use
, 0, reg
, rsi
)
2614 struct deps_reg
*pred_rl
= &pred_deps
->reg_last
[reg
];
2615 struct deps_reg
*succ_rl
= &succ_deps
->reg_last
[reg
];
2617 succ_rl
->uses
= concat_INSN_LIST (pred_rl
->uses
, succ_rl
->uses
);
2618 succ_rl
->sets
= concat_INSN_LIST (pred_rl
->sets
, succ_rl
->sets
);
2619 succ_rl
->implicit_sets
2620 = concat_INSN_LIST (pred_rl
->implicit_sets
, succ_rl
->implicit_sets
);
2621 succ_rl
->clobbers
= concat_INSN_LIST (pred_rl
->clobbers
,
2623 succ_rl
->uses_length
+= pred_rl
->uses_length
;
2624 succ_rl
->clobbers_length
+= pred_rl
->clobbers_length
;
2626 IOR_REG_SET (&succ_deps
->reg_last_in_use
, &pred_deps
->reg_last_in_use
);
2628 /* Mem read/write lists are inherited by successor. */
2629 concat_insn_mem_list (pred_deps
->pending_read_insns
,
2630 pred_deps
->pending_read_mems
,
2631 &succ_deps
->pending_read_insns
,
2632 &succ_deps
->pending_read_mems
);
2633 concat_insn_mem_list (pred_deps
->pending_write_insns
,
2634 pred_deps
->pending_write_mems
,
2635 &succ_deps
->pending_write_insns
,
2636 &succ_deps
->pending_write_mems
);
2638 succ_deps
->pending_jump_insns
2639 = concat_INSN_LIST (pred_deps
->pending_jump_insns
,
2640 succ_deps
->pending_jump_insns
);
2641 succ_deps
->last_pending_memory_flush
2642 = concat_INSN_LIST (pred_deps
->last_pending_memory_flush
,
2643 succ_deps
->last_pending_memory_flush
);
2645 succ_deps
->pending_read_list_length
+= pred_deps
->pending_read_list_length
;
2646 succ_deps
->pending_write_list_length
+= pred_deps
->pending_write_list_length
;
2647 succ_deps
->pending_flush_length
+= pred_deps
->pending_flush_length
;
2649 /* last_function_call is inherited by successor. */
2650 succ_deps
->last_function_call
2651 = concat_INSN_LIST (pred_deps
->last_function_call
,
2652 succ_deps
->last_function_call
);
2654 /* last_function_call_may_noreturn is inherited by successor. */
2655 succ_deps
->last_function_call_may_noreturn
2656 = concat_INSN_LIST (pred_deps
->last_function_call_may_noreturn
,
2657 succ_deps
->last_function_call_may_noreturn
);
2659 /* sched_before_next_call is inherited by successor. */
2660 succ_deps
->sched_before_next_call
2661 = concat_INSN_LIST (pred_deps
->sched_before_next_call
,
2662 succ_deps
->sched_before_next_call
);
2665 /* After computing the dependencies for block BB, propagate the dependencies
2666 found in TMP_DEPS to the successors of the block. */
2668 propagate_deps (int bb
, struct deps_desc
*pred_deps
)
2670 basic_block block
= BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (bb
));
2674 /* bb's structures are inherited by its successors. */
2675 FOR_EACH_EDGE (e
, ei
, block
->succs
)
2677 /* Only bbs "below" bb, in the same region, are interesting. */
2678 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
2679 || CONTAINING_RGN (block
->index
) != CONTAINING_RGN (e
->dest
->index
)
2680 || BLOCK_TO_BB (e
->dest
->index
) <= bb
)
2683 deps_join (bb_deps
+ BLOCK_TO_BB (e
->dest
->index
), pred_deps
);
2686 /* These lists should point to the right place, for correct
2688 bb_deps
[bb
].pending_read_insns
= pred_deps
->pending_read_insns
;
2689 bb_deps
[bb
].pending_read_mems
= pred_deps
->pending_read_mems
;
2690 bb_deps
[bb
].pending_write_insns
= pred_deps
->pending_write_insns
;
2691 bb_deps
[bb
].pending_write_mems
= pred_deps
->pending_write_mems
;
2692 bb_deps
[bb
].pending_jump_insns
= pred_deps
->pending_jump_insns
;
2694 /* Can't allow these to be freed twice. */
2695 pred_deps
->pending_read_insns
= 0;
2696 pred_deps
->pending_read_mems
= 0;
2697 pred_deps
->pending_write_insns
= 0;
2698 pred_deps
->pending_write_mems
= 0;
2699 pred_deps
->pending_jump_insns
= 0;
2702 /* Compute dependences inside bb. In a multiple blocks region:
2703 (1) a bb is analyzed after its predecessors, and (2) the lists in
2704 effect at the end of bb (after analyzing for bb) are inherited by
2707 Specifically for reg-reg data dependences, the block insns are
2708 scanned by sched_analyze () top-to-bottom. Three lists are
2709 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2710 reg_last[].implicit_sets for implicit hard register DEFs, and
2711 reg_last[].uses for register USEs.
2713 When analysis is completed for bb, we update for its successors:
2714 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2715 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2716 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2718 The mechanism for computing mem-mem data dependence is very
2719 similar, and the result is interblock dependences in the region. */
2722 compute_block_dependences (int bb
)
2725 struct deps_desc tmp_deps
;
2727 tmp_deps
= bb_deps
[bb
];
2729 /* Do the analysis for this block. */
2730 gcc_assert (EBB_FIRST_BB (bb
) == EBB_LAST_BB (bb
));
2731 get_ebb_head_tail (EBB_FIRST_BB (bb
), EBB_LAST_BB (bb
), &head
, &tail
);
2733 sched_analyze (&tmp_deps
, head
, tail
);
2735 /* Selective scheduling handles control dependencies by itself. */
2736 if (!sel_sched_p ())
2737 add_branch_dependences (head
, tail
);
2739 if (current_nr_blocks
> 1)
2740 propagate_deps (bb
, &tmp_deps
);
2742 /* Free up the INSN_LISTs. */
2743 free_deps (&tmp_deps
);
2745 if (targetm
.sched
.dependencies_evaluation_hook
)
2746 targetm
.sched
.dependencies_evaluation_hook (head
, tail
);
2749 /* Free dependencies of instructions inside BB. */
2751 free_block_dependencies (int bb
)
2756 get_ebb_head_tail (EBB_FIRST_BB (bb
), EBB_LAST_BB (bb
), &head
, &tail
);
2758 if (no_real_insns_p (head
, tail
))
2761 sched_free_deps (head
, tail
, true);
2764 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2765 them to the unused_*_list variables, so that they can be reused. */
2768 free_pending_lists (void)
2772 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
2774 free_INSN_LIST_list (&bb_deps
[bb
].pending_read_insns
);
2775 free_INSN_LIST_list (&bb_deps
[bb
].pending_write_insns
);
2776 free_EXPR_LIST_list (&bb_deps
[bb
].pending_read_mems
);
2777 free_EXPR_LIST_list (&bb_deps
[bb
].pending_write_mems
);
2778 free_INSN_LIST_list (&bb_deps
[bb
].pending_jump_insns
);
2782 /* Print dependences for debugging starting from FROM_BB.
2783 Callable from debugger. */
2784 /* Print dependences for debugging starting from FROM_BB.
2785 Callable from debugger. */
2787 debug_rgn_dependencies (int from_bb
)
2791 fprintf (sched_dump
,
2792 ";; --------------- forward dependences: ------------ \n");
2794 for (bb
= from_bb
; bb
< current_nr_blocks
; bb
++)
2798 get_ebb_head_tail (EBB_FIRST_BB (bb
), EBB_LAST_BB (bb
), &head
, &tail
);
2799 fprintf (sched_dump
, "\n;; --- Region Dependences --- b %d bb %d \n",
2800 BB_TO_BLOCK (bb
), bb
);
2802 debug_dependencies (head
, tail
);
2806 /* Print dependencies information for instructions between HEAD and TAIL.
2807 ??? This function would probably fit best in haifa-sched.c. */
2808 void debug_dependencies (rtx head
, rtx tail
)
2811 rtx next_tail
= NEXT_INSN (tail
);
2813 fprintf (sched_dump
, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2814 "insn", "code", "bb", "dep", "prio", "cost",
2816 fprintf (sched_dump
, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2817 "----", "----", "--", "---", "----", "----",
2820 for (insn
= head
; insn
!= next_tail
; insn
= NEXT_INSN (insn
))
2822 if (! INSN_P (insn
))
2825 fprintf (sched_dump
, ";; %6d ", INSN_UID (insn
));
2828 n
= NOTE_KIND (insn
);
2829 fprintf (sched_dump
, "%s\n", GET_NOTE_INSN_NAME (n
));
2832 fprintf (sched_dump
, " {%s}\n", GET_RTX_NAME (GET_CODE (insn
)));
2836 fprintf (sched_dump
,
2837 ";; %s%5d%6d%6d%6d%6d%6d ",
2838 (SCHED_GROUP_P (insn
) ? "+" : " "),
2842 sched_emulate_haifa_p
? -1 : sd_lists_size (insn
, SD_LIST_BACK
),
2843 (sel_sched_p () ? (sched_emulate_haifa_p
? -1
2844 : INSN_PRIORITY (insn
))
2845 : INSN_PRIORITY (insn
)),
2846 (sel_sched_p () ? (sched_emulate_haifa_p
? -1
2848 : insn_cost (insn
)));
2850 if (recog_memoized (insn
) < 0)
2851 fprintf (sched_dump
, "nothing");
2853 print_reservation (sched_dump
, insn
);
2855 fprintf (sched_dump
, "\t: ");
2857 sd_iterator_def sd_it
;
2860 FOR_EACH_DEP (insn
, SD_LIST_FORW
, sd_it
, dep
)
2861 fprintf (sched_dump
, "%d%s%s ", INSN_UID (DEP_CON (dep
)),
2862 DEP_NONREG (dep
) ? "n" : "",
2863 DEP_MULTIPLE (dep
) ? "m" : "");
2865 fprintf (sched_dump
, "\n");
2868 fprintf (sched_dump
, "\n");
2871 /* Returns true if all the basic blocks of the current region have
2872 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2874 sched_is_disabled_for_current_region_p (void)
2878 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
2879 if (!(BASIC_BLOCK_FOR_FN (cfun
,
2880 BB_TO_BLOCK (bb
))->flags
& BB_DISABLE_SCHEDULE
))
2886 /* Free all region dependencies saved in INSN_BACK_DEPS and
2887 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2888 when scheduling, so this function is supposed to be called from
2889 the selective scheduling only. */
2891 free_rgn_deps (void)
2895 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
2899 gcc_assert (EBB_FIRST_BB (bb
) == EBB_LAST_BB (bb
));
2900 get_ebb_head_tail (EBB_FIRST_BB (bb
), EBB_LAST_BB (bb
), &head
, &tail
);
2902 sched_free_deps (head
, tail
, false);
2906 static int rgn_n_insns
;
2908 /* Compute insn priority for a current region. */
2910 compute_priorities (void)
2914 current_sched_info
->sched_max_insns_priority
= 0;
2915 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
2919 gcc_assert (EBB_FIRST_BB (bb
) == EBB_LAST_BB (bb
));
2920 get_ebb_head_tail (EBB_FIRST_BB (bb
), EBB_LAST_BB (bb
), &head
, &tail
);
2922 if (no_real_insns_p (head
, tail
))
2925 rgn_n_insns
+= set_priorities (head
, tail
);
2927 current_sched_info
->sched_max_insns_priority
++;
2930 /* (Re-)initialize the arrays of DFA states at the end of each basic block.
2932 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
2933 zero for the first call to this function, to allocate the arrays for the
2936 This function is called once during initialization of the scheduler, and
2937 called again to resize the arrays if new basic blocks have been created,
2938 for example for speculation recovery code. */
2941 realloc_bb_state_array (int saved_last_basic_block
)
2943 char *old_bb_state_array
= bb_state_array
;
2944 size_t lbb
= (size_t) last_basic_block_for_fn (cfun
);
2945 size_t slbb
= (size_t) saved_last_basic_block
;
2947 /* Nothing to do if nothing changed since the last time this was called. */
2948 if (saved_last_basic_block
== last_basic_block_for_fn (cfun
))
2951 /* The selective scheduler doesn't use the state arrays. */
2954 gcc_assert (bb_state_array
== NULL
&& bb_state
== NULL
);
2958 gcc_checking_assert (saved_last_basic_block
== 0
2959 || (bb_state_array
!= NULL
&& bb_state
!= NULL
));
2961 bb_state_array
= XRESIZEVEC (char, bb_state_array
, lbb
* dfa_state_size
);
2962 bb_state
= XRESIZEVEC (state_t
, bb_state
, lbb
);
2964 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
2965 Otherwise only fixup the newly allocated ones. For the state
2966 array itself, only initialize the new entries. */
2967 bool bb_state_array_moved
= (bb_state_array
!= old_bb_state_array
);
2968 for (size_t i
= bb_state_array_moved
? 0 : slbb
; i
< lbb
; i
++)
2969 bb_state
[i
] = (state_t
) (bb_state_array
+ i
* dfa_state_size
);
2970 for (size_t i
= slbb
; i
< lbb
; i
++)
2971 state_reset (bb_state
[i
]);
2974 /* Free the arrays of DFA states at the end of each basic block. */
2977 free_bb_state_array (void)
2979 free (bb_state_array
);
2981 bb_state_array
= NULL
;
2985 /* Schedule a region. A region is either an inner loop, a loop-free
2986 subroutine, or a single basic block. Each bb in the region is
2987 scheduled after its flow predecessors. */
2990 schedule_region (int rgn
)
2993 int sched_rgn_n_insns
= 0;
2997 /* Do not support register pressure sensitive scheduling for the new regions
2998 as we don't update the liveness info for them. */
2999 if (sched_pressure
!= SCHED_PRESSURE_NONE
3000 && rgn
>= nr_regions_initial
)
3002 free_global_sched_pressure_data ();
3003 sched_pressure
= SCHED_PRESSURE_NONE
;
3006 rgn_setup_region (rgn
);
3008 /* Don't schedule region that is marked by
3009 NOTE_DISABLE_SCHED_OF_BLOCK. */
3010 if (sched_is_disabled_for_current_region_p ())
3013 sched_rgn_compute_dependencies (rgn
);
3015 sched_rgn_local_init (rgn
);
3017 /* Set priorities. */
3018 compute_priorities ();
3020 sched_extend_ready_list (rgn_n_insns
);
3022 if (sched_pressure
== SCHED_PRESSURE_WEIGHTED
)
3024 sched_init_region_reg_pressure_info ();
3025 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3027 basic_block first_bb
, last_bb
;
3030 first_bb
= EBB_FIRST_BB (bb
);
3031 last_bb
= EBB_LAST_BB (bb
);
3033 get_ebb_head_tail (first_bb
, last_bb
, &head
, &tail
);
3035 if (no_real_insns_p (head
, tail
))
3037 gcc_assert (first_bb
== last_bb
);
3040 sched_setup_bb_reg_pressure_info (first_bb
, PREV_INSN (head
));
3044 /* Now we can schedule all blocks. */
3045 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3047 basic_block first_bb
, last_bb
, curr_bb
;
3050 first_bb
= EBB_FIRST_BB (bb
);
3051 last_bb
= EBB_LAST_BB (bb
);
3053 get_ebb_head_tail (first_bb
, last_bb
, &head
, &tail
);
3055 if (no_real_insns_p (head
, tail
))
3057 gcc_assert (first_bb
== last_bb
);
3061 current_sched_info
->prev_head
= PREV_INSN (head
);
3062 current_sched_info
->next_tail
= NEXT_INSN (tail
);
3064 remove_notes (head
, tail
);
3066 unlink_bb_notes (first_bb
, last_bb
);
3070 gcc_assert (flag_schedule_interblock
|| current_nr_blocks
== 1);
3071 current_sched_info
->queue_must_finish_empty
= current_nr_blocks
== 1;
3074 if (dbg_cnt (sched_block
))
3077 int saved_last_basic_block
= last_basic_block_for_fn (cfun
);
3079 schedule_block (&curr_bb
, bb_state
[first_bb
->index
]);
3080 gcc_assert (EBB_FIRST_BB (bb
) == first_bb
);
3081 sched_rgn_n_insns
+= sched_n_insns
;
3082 realloc_bb_state_array (saved_last_basic_block
);
3083 f
= find_fallthru_edge (last_bb
->succs
);
3084 if (f
&& f
->probability
* 100 / REG_BR_PROB_BASE
>=
3085 PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF
))
3087 memcpy (bb_state
[f
->dest
->index
], curr_state
,
3089 if (sched_verbose
>= 5)
3090 fprintf (sched_dump
, "saving state for edge %d->%d\n",
3091 f
->src
->index
, f
->dest
->index
);
3096 sched_rgn_n_insns
+= rgn_n_insns
;
3100 if (current_nr_blocks
> 1)
3104 /* Sanity check: verify that all region insns were scheduled. */
3105 gcc_assert (sched_rgn_n_insns
== rgn_n_insns
);
3107 sched_finish_ready_list ();
3109 /* Done with this region. */
3110 sched_rgn_local_finish ();
3112 /* Free dependencies. */
3113 for (bb
= 0; bb
< current_nr_blocks
; ++bb
)
3114 free_block_dependencies (bb
);
3116 gcc_assert (haifa_recovery_bb_ever_added_p
3117 || deps_pools_are_empty_p ());
3120 /* Initialize data structures for region scheduling. */
3123 sched_rgn_init (bool single_blocks_p
)
3125 min_spec_prob
= ((PARAM_VALUE (PARAM_MIN_SPEC_PROB
) * REG_BR_PROB_BASE
)
3133 CONTAINING_RGN (ENTRY_BLOCK
) = -1;
3134 CONTAINING_RGN (EXIT_BLOCK
) = -1;
3136 realloc_bb_state_array (0);
3138 /* Compute regions for scheduling. */
3140 || n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
+ 1
3141 || !flag_schedule_interblock
3142 || is_cfg_nonregular ())
3144 find_single_block_region (sel_sched_p ());
3148 /* Compute the dominators and post dominators. */
3149 if (!sel_sched_p ())
3150 calculate_dominance_info (CDI_DOMINATORS
);
3155 if (sched_verbose
>= 3)
3158 /* For now. This will move as more and more of haifa is converted
3159 to using the cfg code. */
3160 if (!sel_sched_p ())
3161 free_dominance_info (CDI_DOMINATORS
);
3164 gcc_assert (0 < nr_regions
&& nr_regions
<= n_basic_blocks_for_fn (cfun
));
3166 RGN_BLOCKS (nr_regions
) = (RGN_BLOCKS (nr_regions
- 1) +
3167 RGN_NR_BLOCKS (nr_regions
- 1));
3168 nr_regions_initial
= nr_regions
;
3171 /* Free data structures for region scheduling. */
3173 sched_rgn_finish (void)
3175 free_bb_state_array ();
3177 /* Reposition the prologue and epilogue notes in case we moved the
3178 prologue/epilogue insns. */
3179 if (reload_completed
)
3180 reposition_prologue_and_epilogue_notes ();
3184 if (reload_completed
== 0
3185 && flag_schedule_interblock
)
3187 fprintf (sched_dump
,
3188 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3192 gcc_assert (nr_inter
<= 0);
3193 fprintf (sched_dump
, "\n\n");
3201 free (rgn_bb_table
);
3202 rgn_bb_table
= NULL
;
3207 free (containing_rgn
);
3208 containing_rgn
= NULL
;
3214 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3215 point to the region RGN. */
3217 rgn_setup_region (int rgn
)
3221 /* Set variables for the current region. */
3222 current_nr_blocks
= RGN_NR_BLOCKS (rgn
);
3223 current_blocks
= RGN_BLOCKS (rgn
);
3225 /* EBB_HEAD is a region-scope structure. But we realloc it for
3226 each region to save time/memory/something else.
3227 See comments in add_block1, for what reasons we allocate +1 element. */
3228 ebb_head
= XRESIZEVEC (int, ebb_head
, current_nr_blocks
+ 1);
3229 for (bb
= 0; bb
<= current_nr_blocks
; bb
++)
3230 ebb_head
[bb
] = current_blocks
+ bb
;
3233 /* Compute instruction dependencies in region RGN. */
3235 sched_rgn_compute_dependencies (int rgn
)
3237 if (!RGN_DONT_CALC_DEPS (rgn
))
3242 sched_emulate_haifa_p
= 1;
3244 init_deps_global ();
3246 /* Initializations for region data dependence analysis. */
3247 bb_deps
= XNEWVEC (struct deps_desc
, current_nr_blocks
);
3248 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3249 init_deps (bb_deps
+ bb
, false);
3251 /* Initialize bitmap used in add_branch_dependences. */
3252 insn_referenced
= sbitmap_alloc (sched_max_luid
);
3253 bitmap_clear (insn_referenced
);
3255 /* Compute backward dependencies. */
3256 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3257 compute_block_dependences (bb
);
3259 sbitmap_free (insn_referenced
);
3260 free_pending_lists ();
3261 finish_deps_global ();
3264 /* We don't want to recalculate this twice. */
3265 RGN_DONT_CALC_DEPS (rgn
) = 1;
3268 sched_emulate_haifa_p
= 0;
3271 /* (This is a recovery block. It is always a single block region.)
3272 OR (We use selective scheduling.) */
3273 gcc_assert (current_nr_blocks
== 1 || sel_sched_p ());
3276 /* Init region data structures. Returns true if this region should
3277 not be scheduled. */
3279 sched_rgn_local_init (int rgn
)
3283 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3284 if (current_nr_blocks
> 1)
3290 prob
= XNEWVEC (int, current_nr_blocks
);
3292 dom
= sbitmap_vector_alloc (current_nr_blocks
, current_nr_blocks
);
3293 bitmap_vector_clear (dom
, current_nr_blocks
);
3295 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3297 FOR_EACH_BB_FN (block
, cfun
)
3299 if (CONTAINING_RGN (block
->index
) != rgn
)
3301 FOR_EACH_EDGE (e
, ei
, block
->succs
)
3302 SET_EDGE_TO_BIT (e
, rgn_nr_edges
++);
3305 rgn_edges
= XNEWVEC (edge
, rgn_nr_edges
);
3307 FOR_EACH_BB_FN (block
, cfun
)
3309 if (CONTAINING_RGN (block
->index
) != rgn
)
3311 FOR_EACH_EDGE (e
, ei
, block
->succs
)
3312 rgn_edges
[rgn_nr_edges
++] = e
;
3316 pot_split
= sbitmap_vector_alloc (current_nr_blocks
, rgn_nr_edges
);
3317 bitmap_vector_clear (pot_split
, current_nr_blocks
);
3318 ancestor_edges
= sbitmap_vector_alloc (current_nr_blocks
, rgn_nr_edges
);
3319 bitmap_vector_clear (ancestor_edges
, current_nr_blocks
);
3321 /* Compute probabilities, dominators, split_edges. */
3322 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
3323 compute_dom_prob_ps (bb
);
3325 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3326 /* We don't need them anymore. But we want to avoid duplication of
3327 aux fields in the newly created edges. */
3328 FOR_EACH_BB_FN (block
, cfun
)
3330 if (CONTAINING_RGN (block
->index
) != rgn
)
3332 FOR_EACH_EDGE (e
, ei
, block
->succs
)
3338 /* Free data computed for the finished region. */
3340 sched_rgn_local_free (void)
3343 sbitmap_vector_free (dom
);
3344 sbitmap_vector_free (pot_split
);
3345 sbitmap_vector_free (ancestor_edges
);
3349 /* Free data computed for the finished region. */
3351 sched_rgn_local_finish (void)
3353 if (current_nr_blocks
> 1 && !sel_sched_p ())
3355 sched_rgn_local_free ();
3359 /* Setup scheduler infos. */
3361 rgn_setup_common_sched_info (void)
3363 memcpy (&rgn_common_sched_info
, &haifa_common_sched_info
,
3364 sizeof (rgn_common_sched_info
));
3366 rgn_common_sched_info
.fix_recovery_cfg
= rgn_fix_recovery_cfg
;
3367 rgn_common_sched_info
.add_block
= rgn_add_block
;
3368 rgn_common_sched_info
.estimate_number_of_insns
3369 = rgn_estimate_number_of_insns
;
3370 rgn_common_sched_info
.sched_pass_id
= SCHED_RGN_PASS
;
3372 common_sched_info
= &rgn_common_sched_info
;
3375 /* Setup all *_sched_info structures (for the Haifa frontend
3376 and for the dependence analysis) in the interblock scheduler. */
3378 rgn_setup_sched_infos (void)
3380 if (!sel_sched_p ())
3381 memcpy (&rgn_sched_deps_info
, &rgn_const_sched_deps_info
,
3382 sizeof (rgn_sched_deps_info
));
3384 memcpy (&rgn_sched_deps_info
, &rgn_const_sel_sched_deps_info
,
3385 sizeof (rgn_sched_deps_info
));
3387 sched_deps_info
= &rgn_sched_deps_info
;
3389 memcpy (&rgn_sched_info
, &rgn_const_sched_info
, sizeof (rgn_sched_info
));
3390 current_sched_info
= &rgn_sched_info
;
3393 /* The one entry point in this file. */
3395 schedule_insns (void)
3399 /* Taking care of this degenerate case makes the rest of
3400 this code simpler. */
3401 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
3404 rgn_setup_common_sched_info ();
3405 rgn_setup_sched_infos ();
3407 haifa_sched_init ();
3408 sched_rgn_init (reload_completed
);
3410 bitmap_initialize (¬_in_df
, 0);
3411 bitmap_clear (¬_in_df
);
3413 /* Schedule every region in the subroutine. */
3414 for (rgn
= 0; rgn
< nr_regions
; rgn
++)
3415 if (dbg_cnt (sched_region
))
3416 schedule_region (rgn
);
3419 sched_rgn_finish ();
3420 bitmap_clear (¬_in_df
);
3422 haifa_sched_finish ();
3425 /* INSN has been added to/removed from current region. */
3427 rgn_add_remove_insn (rtx insn
, int remove_p
)
3434 if (INSN_BB (insn
) == target_bb
)
3443 /* Extend internal data structures. */
3445 extend_regions (void)
3447 rgn_table
= XRESIZEVEC (region
, rgn_table
, n_basic_blocks_for_fn (cfun
));
3448 rgn_bb_table
= XRESIZEVEC (int, rgn_bb_table
,
3449 n_basic_blocks_for_fn (cfun
));
3450 block_to_bb
= XRESIZEVEC (int, block_to_bb
,
3451 last_basic_block_for_fn (cfun
));
3452 containing_rgn
= XRESIZEVEC (int, containing_rgn
,
3453 last_basic_block_for_fn (cfun
));
3457 rgn_make_new_region_out_of_new_block (basic_block bb
)
3461 i
= RGN_BLOCKS (nr_regions
);
3462 /* I - first free position in rgn_bb_table. */
3464 rgn_bb_table
[i
] = bb
->index
;
3465 RGN_NR_BLOCKS (nr_regions
) = 1;
3466 RGN_HAS_REAL_EBB (nr_regions
) = 0;
3467 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
3468 CONTAINING_RGN (bb
->index
) = nr_regions
;
3469 BLOCK_TO_BB (bb
->index
) = 0;
3473 RGN_BLOCKS (nr_regions
) = i
+ 1;
3476 /* BB was added to ebb after AFTER. */
3478 rgn_add_block (basic_block bb
, basic_block after
)
3481 bitmap_set_bit (¬_in_df
, bb
->index
);
3483 if (after
== 0 || after
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
3485 rgn_make_new_region_out_of_new_block (bb
);
3486 RGN_DONT_CALC_DEPS (nr_regions
- 1) = (after
3487 == EXIT_BLOCK_PTR_FOR_FN (cfun
));
3493 /* We need to fix rgn_table, block_to_bb, containing_rgn
3496 BLOCK_TO_BB (bb
->index
) = BLOCK_TO_BB (after
->index
);
3498 /* We extend ebb_head to one more position to
3499 easily find the last position of the last ebb in
3500 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3501 is _always_ valid for access. */
3503 i
= BLOCK_TO_BB (after
->index
) + 1;
3504 pos
= ebb_head
[i
] - 1;
3505 /* Now POS is the index of the last block in the region. */
3507 /* Find index of basic block AFTER. */
3508 for (; rgn_bb_table
[pos
] != after
->index
; pos
--)
3512 gcc_assert (pos
> ebb_head
[i
- 1]);
3514 /* i - ebb right after "AFTER". */
3515 /* ebb_head[i] - VALID. */
3517 /* Source position: ebb_head[i]
3518 Destination position: ebb_head[i] + 1
3520 RGN_BLOCKS (nr_regions) - 1
3521 Number of elements to copy: (last_position) - (source_position) + 1
3524 memmove (rgn_bb_table
+ pos
+ 1,
3526 ((RGN_BLOCKS (nr_regions
) - 1) - (pos
) + 1)
3527 * sizeof (*rgn_bb_table
));
3529 rgn_bb_table
[pos
] = bb
->index
;
3531 for (; i
<= current_nr_blocks
; i
++)
3534 i
= CONTAINING_RGN (after
->index
);
3535 CONTAINING_RGN (bb
->index
) = i
;
3537 RGN_HAS_REAL_EBB (i
) = 1;
3539 for (++i
; i
<= nr_regions
; i
++)
3544 /* Fix internal data after interblock movement of jump instruction.
3545 For parameter meaning please refer to
3546 sched-int.h: struct sched_info: fix_recovery_cfg. */
3548 rgn_fix_recovery_cfg (int bbi
, int check_bbi
, int check_bb_nexti
)
3550 int old_pos
, new_pos
, i
;
3552 BLOCK_TO_BB (check_bb_nexti
) = BLOCK_TO_BB (bbi
);
3554 for (old_pos
= ebb_head
[BLOCK_TO_BB (check_bbi
) + 1] - 1;
3555 rgn_bb_table
[old_pos
] != check_bb_nexti
;
3558 gcc_assert (old_pos
> ebb_head
[BLOCK_TO_BB (check_bbi
)]);
3560 for (new_pos
= ebb_head
[BLOCK_TO_BB (bbi
) + 1] - 1;
3561 rgn_bb_table
[new_pos
] != bbi
;
3565 gcc_assert (new_pos
> ebb_head
[BLOCK_TO_BB (bbi
)]);
3567 gcc_assert (new_pos
< old_pos
);
3569 memmove (rgn_bb_table
+ new_pos
+ 1,
3570 rgn_bb_table
+ new_pos
,
3571 (old_pos
- new_pos
) * sizeof (*rgn_bb_table
));
3573 rgn_bb_table
[new_pos
] = check_bb_nexti
;
3575 for (i
= BLOCK_TO_BB (bbi
) + 1; i
<= BLOCK_TO_BB (check_bbi
); i
++)
3579 /* Return next block in ebb chain. For parameter meaning please refer to
3580 sched-int.h: struct sched_info: advance_target_bb. */
3582 advance_target_bb (basic_block bb
, rtx insn
)
3587 gcc_assert (BLOCK_TO_BB (bb
->index
) == target_bb
3588 && BLOCK_TO_BB (bb
->next_bb
->index
) == target_bb
);
3594 /* Run instruction scheduler. */
3596 rest_of_handle_live_range_shrinkage (void)
3598 #ifdef INSN_SCHEDULING
3601 initialize_live_range_shrinkage ();
3602 saved
= flag_schedule_interblock
;
3603 flag_schedule_interblock
= false;
3605 flag_schedule_interblock
= saved
;
3606 finish_live_range_shrinkage ();
3611 /* Run instruction scheduler. */
3613 rest_of_handle_sched (void)
3615 #ifdef INSN_SCHEDULING
3616 if (flag_selective_scheduling
3617 && ! maybe_skip_selective_scheduling ())
3618 run_selective_scheduling ();
3625 /* Run second scheduling pass after reload. */
3627 rest_of_handle_sched2 (void)
3629 #ifdef INSN_SCHEDULING
3630 if (flag_selective_scheduling2
3631 && ! maybe_skip_selective_scheduling ())
3632 run_selective_scheduling ();
3635 /* Do control and data sched analysis again,
3636 and write some more of the results to dump file. */
3637 if (flag_sched2_use_superblocks
)
3648 const pass_data pass_data_live_range_shrinkage
=
3650 RTL_PASS
, /* type */
3651 "lr_shrinkage", /* name */
3652 OPTGROUP_NONE
, /* optinfo_flags */
3653 TV_LIVE_RANGE_SHRINKAGE
, /* tv_id */
3654 0, /* properties_required */
3655 0, /* properties_provided */
3656 0, /* properties_destroyed */
3657 0, /* todo_flags_start */
3658 TODO_df_finish
, /* todo_flags_finish */
3661 class pass_live_range_shrinkage
: public rtl_opt_pass
3664 pass_live_range_shrinkage(gcc::context
*ctxt
)
3665 : rtl_opt_pass(pass_data_live_range_shrinkage
, ctxt
)
3668 /* opt_pass methods: */
3669 virtual bool gate (function
*)
3671 #ifdef INSN_SCHEDULING
3672 return flag_live_range_shrinkage
;
3678 virtual unsigned int execute (function
*)
3680 return rest_of_handle_live_range_shrinkage ();
3683 }; // class pass_live_range_shrinkage
3688 make_pass_live_range_shrinkage (gcc::context
*ctxt
)
3690 return new pass_live_range_shrinkage (ctxt
);
3695 const pass_data pass_data_sched
=
3697 RTL_PASS
, /* type */
3698 "sched1", /* name */
3699 OPTGROUP_NONE
, /* optinfo_flags */
3700 TV_SCHED
, /* tv_id */
3701 0, /* properties_required */
3702 0, /* properties_provided */
3703 0, /* properties_destroyed */
3704 0, /* todo_flags_start */
3705 TODO_df_finish
, /* todo_flags_finish */
3708 class pass_sched
: public rtl_opt_pass
3711 pass_sched (gcc::context
*ctxt
)
3712 : rtl_opt_pass (pass_data_sched
, ctxt
)
3715 /* opt_pass methods: */
3716 virtual bool gate (function
*);
3717 virtual unsigned int execute (function
*) { return rest_of_handle_sched (); }
3719 }; // class pass_sched
3722 pass_sched::gate (function
*)
3724 #ifdef INSN_SCHEDULING
3725 return optimize
> 0 && flag_schedule_insns
&& dbg_cnt (sched_func
);
3734 make_pass_sched (gcc::context
*ctxt
)
3736 return new pass_sched (ctxt
);
3741 const pass_data pass_data_sched2
=
3743 RTL_PASS
, /* type */
3744 "sched2", /* name */
3745 OPTGROUP_NONE
, /* optinfo_flags */
3746 TV_SCHED2
, /* tv_id */
3747 0, /* properties_required */
3748 0, /* properties_provided */
3749 0, /* properties_destroyed */
3750 0, /* todo_flags_start */
3751 TODO_df_finish
, /* todo_flags_finish */
3754 class pass_sched2
: public rtl_opt_pass
3757 pass_sched2 (gcc::context
*ctxt
)
3758 : rtl_opt_pass (pass_data_sched2
, ctxt
)
3761 /* opt_pass methods: */
3762 virtual bool gate (function
*);
3763 virtual unsigned int execute (function
*)
3765 return rest_of_handle_sched2 ();
3768 }; // class pass_sched2
3771 pass_sched2::gate (function
*)
3773 #ifdef INSN_SCHEDULING
3774 return optimize
> 0 && flag_schedule_insns_after_reload
3775 && !targetm
.delay_sched2
&& dbg_cnt (sched2_func
);
3784 make_pass_sched2 (gcc::context
*ctxt
)
3786 return new pass_sched2 (ctxt
);