1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calulates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloringh we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
254 * After allono assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is impelemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initilized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
368 #include "coretypes.h"
378 #include "hard-reg-set.h"
379 #include "basic-block.h"
384 #include "tree-pass.h"
388 #include "diagnostic-core.h"
389 #include "function.h"
396 struct target_ira default_target_ira
;
397 struct target_ira_int default_target_ira_int
;
398 #if SWITCHABLE_TARGET
399 struct target_ira
*this_target_ira
= &default_target_ira
;
400 struct target_ira_int
*this_target_ira_int
= &default_target_ira_int
;
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose
;
406 /* Dump file of the allocator if it is not NULL. */
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num
;
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 struct ira_spilled_reg_stack_slot
*ira_spilled_reg_stack_slots
;
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
421 int ira_overall_cost
, overall_cost_before
;
422 int ira_reg_cost
, ira_mem_cost
;
423 int ira_load_cost
, ira_store_cost
, ira_shuffle_cost
;
424 int ira_move_loops_num
, ira_additional_jumps_num
;
426 /* All registers that can be eliminated. */
428 HARD_REG_SET eliminable_regset
;
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
433 static int max_regno_before_ira
;
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset
;
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
444 setup_reg_mode_hard_regset (void)
446 int i
, m
, hard_regno
;
448 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
449 for (hard_regno
= 0; hard_regno
< FIRST_PSEUDO_REGISTER
; hard_regno
++)
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset
[hard_regno
][m
]);
452 for (i
= hard_regno_nregs
[hard_regno
][m
] - 1; i
>= 0; i
--)
453 if (hard_regno
+ i
< FIRST_PSEUDO_REGISTER
)
454 SET_HARD_REG_BIT (ira_reg_mode_hard_regset
[hard_regno
][m
],
460 #define no_unit_alloc_regs \
461 (this_target_ira_int->x_no_unit_alloc_regs)
463 /* The function sets up the three arrays declared above. */
465 setup_class_hard_regs (void)
467 int cl
, i
, hard_regno
, n
;
468 HARD_REG_SET processed_hard_reg_set
;
470 ira_assert (SHRT_MAX
>= FIRST_PSEUDO_REGISTER
);
471 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
473 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
474 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
475 CLEAR_HARD_REG_SET (processed_hard_reg_set
);
476 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
478 ira_non_ordered_class_hard_regs
[cl
][i
] = -1;
479 ira_class_hard_reg_index
[cl
][i
] = -1;
481 for (n
= 0, i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
483 #ifdef REG_ALLOC_ORDER
484 hard_regno
= reg_alloc_order
[i
];
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set
, hard_regno
))
490 SET_HARD_REG_BIT (processed_hard_reg_set
, hard_regno
);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset
, hard_regno
))
492 ira_class_hard_reg_index
[cl
][hard_regno
] = -1;
495 ira_class_hard_reg_index
[cl
][hard_regno
] = n
;
496 ira_class_hard_regs
[cl
][n
++] = hard_regno
;
499 ira_class_hard_regs_num
[cl
] = n
;
500 for (n
= 0, i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset
, i
))
502 ira_non_ordered_class_hard_regs
[cl
][n
++] = i
;
503 ira_assert (ira_class_hard_regs_num
[cl
] == n
);
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
511 setup_alloc_regs (bool use_hard_frame_p
)
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER
;
516 COPY_HARD_REG_SET (no_unit_alloc_regs
, fixed_reg_set
);
517 if (! use_hard_frame_p
)
518 SET_HARD_REG_BIT (no_unit_alloc_regs
, HARD_FRAME_POINTER_REGNUM
);
519 setup_class_hard_regs ();
524 #define alloc_reg_class_subclasses \
525 (this_target_ira_int->x_alloc_reg_class_subclasses)
527 /* Initialize the table of subclasses of each reg class. */
529 setup_reg_subclasses (void)
532 HARD_REG_SET temp_hard_regset2
;
534 for (i
= 0; i
< N_REG_CLASSES
; i
++)
535 for (j
= 0; j
< N_REG_CLASSES
; j
++)
536 alloc_reg_class_subclasses
[i
][j
] = LIM_REG_CLASSES
;
538 for (i
= 0; i
< N_REG_CLASSES
; i
++)
540 if (i
== (int) NO_REGS
)
543 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[i
]);
544 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
545 if (hard_reg_set_empty_p (temp_hard_regset
))
547 for (j
= 0; j
< N_REG_CLASSES
; j
++)
552 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[j
]);
553 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
554 if (! hard_reg_set_subset_p (temp_hard_regset
,
557 p
= &alloc_reg_class_subclasses
[j
][0];
558 while (*p
!= LIM_REG_CLASSES
) p
++;
559 *p
= (enum reg_class
) i
;
566 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
568 setup_class_subset_and_memory_move_costs (void)
570 int cl
, cl2
, mode
, cost
;
571 HARD_REG_SET temp_hard_regset2
;
573 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
574 ira_memory_move_cost
[mode
][NO_REGS
][0]
575 = ira_memory_move_cost
[mode
][NO_REGS
][1] = SHRT_MAX
;
576 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
578 if (cl
!= (int) NO_REGS
)
579 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
581 ira_max_memory_move_cost
[mode
][cl
][0]
582 = ira_memory_move_cost
[mode
][cl
][0]
583 = memory_move_cost ((enum machine_mode
) mode
,
584 (reg_class_t
) cl
, false);
585 ira_max_memory_move_cost
[mode
][cl
][1]
586 = ira_memory_move_cost
[mode
][cl
][1]
587 = memory_move_cost ((enum machine_mode
) mode
,
588 (reg_class_t
) cl
, true);
589 /* Costs for NO_REGS are used in cost calculation on the
590 1st pass when the preferred register classes are not
591 known yet. In this case we take the best scenario. */
592 if (ira_memory_move_cost
[mode
][NO_REGS
][0]
593 > ira_memory_move_cost
[mode
][cl
][0])
594 ira_max_memory_move_cost
[mode
][NO_REGS
][0]
595 = ira_memory_move_cost
[mode
][NO_REGS
][0]
596 = ira_memory_move_cost
[mode
][cl
][0];
597 if (ira_memory_move_cost
[mode
][NO_REGS
][1]
598 > ira_memory_move_cost
[mode
][cl
][1])
599 ira_max_memory_move_cost
[mode
][NO_REGS
][1]
600 = ira_memory_move_cost
[mode
][NO_REGS
][1]
601 = ira_memory_move_cost
[mode
][cl
][1];
604 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
605 for (cl2
= (int) N_REG_CLASSES
- 1; cl2
>= 0; cl2
--)
607 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
608 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
609 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl2
]);
610 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
611 ira_class_subset_p
[cl
][cl2
]
612 = hard_reg_set_subset_p (temp_hard_regset
, temp_hard_regset2
);
613 if (! hard_reg_set_empty_p (temp_hard_regset2
)
614 && hard_reg_set_subset_p (reg_class_contents
[cl2
],
615 reg_class_contents
[cl
]))
616 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
618 cost
= ira_memory_move_cost
[mode
][cl2
][0];
619 if (cost
> ira_max_memory_move_cost
[mode
][cl
][0])
620 ira_max_memory_move_cost
[mode
][cl
][0] = cost
;
621 cost
= ira_memory_move_cost
[mode
][cl2
][1];
622 if (cost
> ira_max_memory_move_cost
[mode
][cl
][1])
623 ira_max_memory_move_cost
[mode
][cl
][1] = cost
;
626 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
627 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
629 ira_memory_move_cost
[mode
][cl
][0]
630 = ira_max_memory_move_cost
[mode
][cl
][0];
631 ira_memory_move_cost
[mode
][cl
][1]
632 = ira_max_memory_move_cost
[mode
][cl
][1];
634 setup_reg_subclasses ();
639 /* Define the following macro if allocation through malloc if
641 #define IRA_NO_OBSTACK
643 #ifndef IRA_NO_OBSTACK
644 /* Obstack used for storing all dynamic data (except bitmaps) of the
646 static struct obstack ira_obstack
;
649 /* Obstack used for storing all bitmaps of the IRA. */
650 static struct bitmap_obstack ira_bitmap_obstack
;
652 /* Allocate memory of size LEN for IRA data. */
654 ira_allocate (size_t len
)
658 #ifndef IRA_NO_OBSTACK
659 res
= obstack_alloc (&ira_obstack
, len
);
666 /* Free memory ADDR allocated for IRA data. */
668 ira_free (void *addr ATTRIBUTE_UNUSED
)
670 #ifndef IRA_NO_OBSTACK
678 /* Allocate and returns bitmap for IRA. */
680 ira_allocate_bitmap (void)
682 return BITMAP_ALLOC (&ira_bitmap_obstack
);
685 /* Free bitmap B allocated for IRA. */
687 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED
)
694 /* Output information about allocation of all allocnos (except for
695 caps) into file F. */
697 ira_print_disposition (FILE *f
)
703 fprintf (f
, "Disposition:");
704 max_regno
= max_reg_num ();
705 for (n
= 0, i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
706 for (a
= ira_regno_allocno_map
[i
];
708 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
713 fprintf (f
, " %4d:r%-4d", ALLOCNO_NUM (a
), ALLOCNO_REGNO (a
));
714 if ((bb
= ALLOCNO_LOOP_TREE_NODE (a
)->bb
) != NULL
)
715 fprintf (f
, "b%-3d", bb
->index
);
717 fprintf (f
, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a
)->loop_num
);
718 if (ALLOCNO_HARD_REGNO (a
) >= 0)
719 fprintf (f
, " %3d", ALLOCNO_HARD_REGNO (a
));
726 /* Outputs information about allocation of all allocnos into
729 ira_debug_disposition (void)
731 ira_print_disposition (stderr
);
736 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
737 register class containing stack registers or NO_REGS if there are
738 no stack registers. To find this class, we iterate through all
739 register pressure classes and choose the first register pressure
740 class containing all the stack registers and having the biggest
743 setup_stack_reg_pressure_class (void)
745 ira_stack_reg_pressure_class
= NO_REGS
;
750 HARD_REG_SET temp_hard_regset2
;
752 CLEAR_HARD_REG_SET (temp_hard_regset
);
753 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
754 SET_HARD_REG_BIT (temp_hard_regset
, i
);
756 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
758 cl
= ira_pressure_classes
[i
];
759 COPY_HARD_REG_SET (temp_hard_regset2
, temp_hard_regset
);
760 AND_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
761 size
= hard_reg_set_size (temp_hard_regset2
);
765 ira_stack_reg_pressure_class
= cl
;
772 /* Find pressure classes which are register classes for which we
773 calculate register pressure in IRA, register pressure sensitive
774 insn scheduling, and register pressure sensitive loop invariant
777 To make register pressure calculation easy, we always use
778 non-intersected register pressure classes. A move of hard
779 registers from one register pressure class is not more expensive
780 than load and store of the hard registers. Most likely an allocno
781 class will be a subset of a register pressure class and in many
782 cases a register pressure class. That makes usage of register
783 pressure classes a good approximation to find a high register
786 setup_pressure_classes (void)
788 int cost
, i
, n
, curr
;
790 enum reg_class pressure_classes
[N_REG_CLASSES
];
792 HARD_REG_SET temp_hard_regset2
;
796 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
798 if (ira_class_hard_regs_num
[cl
] == 0)
800 if (ira_class_hard_regs_num
[cl
] != 1
801 /* A register class without subclasses may contain a few
802 hard registers and movement between them is costly
803 (e.g. SPARC FPCC registers). We still should consider it
804 as a candidate for a pressure class. */
805 && alloc_reg_class_subclasses
[cl
][0] < cl
)
807 /* Check that the moves between any hard registers of the
808 current class are not more expensive for a legal mode
809 than load/store of the hard registers of the current
810 class. Such class is a potential candidate to be a
811 register pressure class. */
812 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
814 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
816 AND_COMPL_HARD_REG_SET (temp_hard_regset
,
817 ira_prohibited_class_mode_regs
[cl
][m
]);
818 if (hard_reg_set_empty_p (temp_hard_regset
))
820 ira_init_register_move_cost_if_necessary ((enum machine_mode
) m
);
821 cost
= ira_register_move_cost
[m
][cl
][cl
];
822 if (cost
<= ira_max_memory_move_cost
[m
][cl
][1]
823 || cost
<= ira_max_memory_move_cost
[m
][cl
][0])
826 if (m
>= NUM_MACHINE_MODES
)
831 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
832 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
833 /* Remove so far added pressure classes which are subset of the
834 current candidate class. Prefer GENERAL_REGS as a pressure
835 register class to another class containing the same
836 allocatable hard registers. We do this because machine
837 dependent cost hooks might give wrong costs for the latter
838 class but always give the right cost for the former class
840 for (i
= 0; i
< n
; i
++)
842 cl2
= pressure_classes
[i
];
843 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl2
]);
844 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
845 if (hard_reg_set_subset_p (temp_hard_regset
, temp_hard_regset2
)
846 && (! hard_reg_set_equal_p (temp_hard_regset
, temp_hard_regset2
)
847 || cl2
== (int) GENERAL_REGS
))
849 pressure_classes
[curr
++] = (enum reg_class
) cl2
;
853 if (hard_reg_set_subset_p (temp_hard_regset2
, temp_hard_regset
)
854 && (! hard_reg_set_equal_p (temp_hard_regset2
, temp_hard_regset
)
855 || cl
== (int) GENERAL_REGS
))
857 if (hard_reg_set_equal_p (temp_hard_regset2
, temp_hard_regset
))
859 pressure_classes
[curr
++] = (enum reg_class
) cl2
;
861 /* If the current candidate is a subset of a so far added
862 pressure class, don't add it to the list of the pressure
865 pressure_classes
[curr
++] = (enum reg_class
) cl
;
868 #ifdef ENABLE_IRA_CHECKING
870 HARD_REG_SET ignore_hard_regs
;
872 /* Check pressure classes correctness: here we check that hard
873 registers from all register pressure classes contains all hard
874 registers available for the allocation. */
875 CLEAR_HARD_REG_SET (temp_hard_regset
);
876 CLEAR_HARD_REG_SET (temp_hard_regset2
);
877 COPY_HARD_REG_SET (ignore_hard_regs
, no_unit_alloc_regs
);
878 for (cl
= 0; cl
< LIM_REG_CLASSES
; cl
++)
880 /* For some targets (like MIPS with MD_REGS), there are some
881 classes with hard registers available for allocation but
882 not able to hold value of any mode. */
883 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
884 if (contains_reg_of_mode
[cl
][m
])
886 if (m
>= NUM_MACHINE_MODES
)
888 IOR_HARD_REG_SET (ignore_hard_regs
, reg_class_contents
[cl
]);
891 for (i
= 0; i
< n
; i
++)
892 if ((int) pressure_classes
[i
] == cl
)
894 IOR_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
896 IOR_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
898 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
899 /* Some targets (like SPARC with ICC reg) have alocatable regs
900 for which no reg class is defined. */
901 if (REGNO_REG_CLASS (i
) == NO_REGS
)
902 SET_HARD_REG_BIT (ignore_hard_regs
, i
);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset
, ignore_hard_regs
);
904 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, ignore_hard_regs
);
905 ira_assert (hard_reg_set_subset_p (temp_hard_regset2
, temp_hard_regset
));
908 ira_pressure_classes_num
= 0;
909 for (i
= 0; i
< n
; i
++)
911 cl
= (int) pressure_classes
[i
];
912 ira_reg_pressure_class_p
[cl
] = true;
913 ira_pressure_classes
[ira_pressure_classes_num
++] = (enum reg_class
) cl
;
915 setup_stack_reg_pressure_class ();
918 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
919 whose register move cost between any registers of the class is the
920 same as for all its subclasses. We use the data to speed up the
921 2nd pass of calculations of allocno costs. */
923 setup_uniform_class_p (void)
927 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
929 ira_uniform_class_p
[cl
] = false;
930 if (ira_class_hard_regs_num
[cl
] == 0)
932 /* We can not use alloc_reg_class_subclasses here because move
933 cost hooks does not take into account that some registers are
934 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
935 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 because SSE regs are unavailable. */
937 for (i
= 0; (cl2
= reg_class_subclasses
[cl
][i
]) != LIM_REG_CLASSES
; i
++)
939 if (ira_class_hard_regs_num
[cl2
] == 0)
941 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
942 if (contains_reg_of_mode
[cl
][m
] && contains_reg_of_mode
[cl2
][m
])
944 ira_init_register_move_cost_if_necessary ((enum machine_mode
) m
);
945 if (ira_register_move_cost
[m
][cl
][cl
]
946 != ira_register_move_cost
[m
][cl2
][cl2
])
949 if (m
< NUM_MACHINE_MODES
)
952 if (cl2
== LIM_REG_CLASSES
)
953 ira_uniform_class_p
[cl
] = true;
957 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
960 Target may have many subtargets and not all target hard regiters can
961 be used for allocation, e.g. x86 port in 32-bit mode can not use
962 hard registers introduced in x86-64 like r8-r15). Some classes
963 might have the same allocatable hard registers, e.g. INDEX_REGS
964 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
965 calculations efforts we introduce allocno classes which contain
966 unique non-empty sets of allocatable hard-registers.
968 Pseudo class cost calculation in ira-costs.c is very expensive.
969 Therefore we are trying to decrease number of classes involved in
970 such calculation. Register classes used in the cost calculation
971 are called important classes. They are allocno classes and other
972 non-empty classes whose allocatable hard register sets are inside
973 of an allocno class hard register set. From the first sight, it
974 looks like that they are just allocno classes. It is not true. In
975 example of x86-port in 32-bit mode, allocno classes will contain
976 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977 registers are the same for the both classes). The important
978 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
979 because a machine description insn constraint may refers for
980 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
981 of the insn constraints. */
983 setup_allocno_and_important_classes (void)
987 HARD_REG_SET temp_hard_regset2
;
988 static enum reg_class classes
[LIM_REG_CLASSES
+ 1];
991 /* Collect classes which contain unique sets of allocatable hard
992 registers. Prefer GENERAL_REGS to other classes containing the
993 same set of hard registers. */
994 for (i
= 0; i
< LIM_REG_CLASSES
; i
++)
996 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[i
]);
997 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
998 for (j
= 0; j
< n
; j
++)
1001 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
1002 AND_COMPL_HARD_REG_SET (temp_hard_regset2
,
1003 no_unit_alloc_regs
);
1004 if (hard_reg_set_equal_p (temp_hard_regset
,
1009 classes
[n
++] = (enum reg_class
) i
;
1010 else if (i
== GENERAL_REGS
)
1011 /* Prefer general regs. For i386 example, it means that
1012 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1013 (all of them consists of the same available hard
1015 classes
[j
] = (enum reg_class
) i
;
1017 classes
[n
] = LIM_REG_CLASSES
;
1019 /* Set up classes which can be used for allocnos as classes
1020 conatining non-empty unique sets of allocatable hard
1022 ira_allocno_classes_num
= 0;
1023 for (i
= 0; (cl
= classes
[i
]) != LIM_REG_CLASSES
; i
++)
1024 if (ira_class_hard_regs_num
[cl
] > 0)
1025 ira_allocno_classes
[ira_allocno_classes_num
++] = (enum reg_class
) cl
;
1026 ira_important_classes_num
= 0;
1027 /* Add non-allocno classes containing to non-empty set of
1028 allocatable hard regs. */
1029 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1030 if (ira_class_hard_regs_num
[cl
] > 0)
1032 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1033 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1035 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1037 COPY_HARD_REG_SET (temp_hard_regset2
,
1038 reg_class_contents
[ira_allocno_classes
[j
]]);
1039 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
1040 if ((enum reg_class
) cl
== ira_allocno_classes
[j
])
1042 else if (hard_reg_set_subset_p (temp_hard_regset
,
1046 if (set_p
&& j
>= ira_allocno_classes_num
)
1047 ira_important_classes
[ira_important_classes_num
++]
1048 = (enum reg_class
) cl
;
1050 /* Now add allocno classes to the important classes. */
1051 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1052 ira_important_classes
[ira_important_classes_num
++]
1053 = ira_allocno_classes
[j
];
1054 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1056 ira_reg_allocno_class_p
[cl
] = false;
1057 ira_reg_pressure_class_p
[cl
] = false;
1059 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1060 ira_reg_allocno_class_p
[ira_allocno_classes
[j
]] = true;
1061 setup_pressure_classes ();
1062 setup_uniform_class_p ();
1065 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1066 given by array CLASSES of length CLASSES_NUM. The function is used
1067 make translation any reg class to an allocno class or to an
1068 pressure class. This translation is necessary for some
1069 calculations when we can use only allocno or pressure classes and
1070 such translation represents an approximate representation of all
1073 The translation in case when allocatable hard register set of a
1074 given class is subset of allocatable hard register set of a class
1075 in CLASSES is pretty simple. We use smallest classes from CLASSES
1076 containing a given class. If allocatable hard register set of a
1077 given class is not a subset of any corresponding set of a class
1078 from CLASSES, we use the cheapest (with load/store point of view)
1079 class from CLASSES whose set intersects with given class set */
1081 setup_class_translate_array (enum reg_class
*class_translate
,
1082 int classes_num
, enum reg_class
*classes
)
1085 enum reg_class aclass
, best_class
, *cl_ptr
;
1086 int i
, cost
, min_cost
, best_cost
;
1088 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1089 class_translate
[cl
] = NO_REGS
;
1091 for (i
= 0; i
< classes_num
; i
++)
1093 aclass
= classes
[i
];
1094 for (cl_ptr
= &alloc_reg_class_subclasses
[aclass
][0];
1095 (cl
= *cl_ptr
) != LIM_REG_CLASSES
;
1097 if (class_translate
[cl
] == NO_REGS
)
1098 class_translate
[cl
] = aclass
;
1099 class_translate
[aclass
] = aclass
;
1101 /* For classes which are not fully covered by one of given classes
1102 (in other words covered by more one given class), use the
1104 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1106 if (cl
== NO_REGS
|| class_translate
[cl
] != NO_REGS
)
1108 best_class
= NO_REGS
;
1109 best_cost
= INT_MAX
;
1110 for (i
= 0; i
< classes_num
; i
++)
1112 aclass
= classes
[i
];
1113 COPY_HARD_REG_SET (temp_hard_regset
,
1114 reg_class_contents
[aclass
]);
1115 AND_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1116 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1117 if (! hard_reg_set_empty_p (temp_hard_regset
))
1120 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
1122 cost
= (ira_memory_move_cost
[mode
][aclass
][0]
1123 + ira_memory_move_cost
[mode
][aclass
][1]);
1124 if (min_cost
> cost
)
1127 if (best_class
== NO_REGS
|| best_cost
> min_cost
)
1129 best_class
= aclass
;
1130 best_cost
= min_cost
;
1134 class_translate
[cl
] = best_class
;
1138 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1139 IRA_PRESSURE_CLASS_TRANSLATE. */
1141 setup_class_translate (void)
1143 setup_class_translate_array (ira_allocno_class_translate
,
1144 ira_allocno_classes_num
, ira_allocno_classes
);
1145 setup_class_translate_array (ira_pressure_class_translate
,
1146 ira_pressure_classes_num
, ira_pressure_classes
);
1149 /* Order numbers of allocno classes in original target allocno class
1150 array, -1 for non-allocno classes. */
1151 static int allocno_class_order
[N_REG_CLASSES
];
1153 /* The function used to sort the important classes. */
1155 comp_reg_classes_func (const void *v1p
, const void *v2p
)
1157 enum reg_class cl1
= *(const enum reg_class
*) v1p
;
1158 enum reg_class cl2
= *(const enum reg_class
*) v2p
;
1159 enum reg_class tcl1
, tcl2
;
1162 tcl1
= ira_allocno_class_translate
[cl1
];
1163 tcl2
= ira_allocno_class_translate
[cl2
];
1164 if (tcl1
!= NO_REGS
&& tcl2
!= NO_REGS
1165 && (diff
= allocno_class_order
[tcl1
] - allocno_class_order
[tcl2
]) != 0)
1167 return (int) cl1
- (int) cl2
;
1170 /* For correct work of function setup_reg_class_relation we need to
1171 reorder important classes according to the order of their allocno
1172 classes. It places important classes containing the same
1173 allocatable hard register set adjacent to each other and allocno
1174 class with the allocatable hard register set right after the other
1175 important classes with the same set.
1177 In example from comments of function
1178 setup_allocno_and_important_classes, it places LEGACY_REGS and
1179 GENERAL_REGS close to each other and GENERAL_REGS is after
1182 reorder_important_classes (void)
1186 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1187 allocno_class_order
[i
] = -1;
1188 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
1189 allocno_class_order
[ira_allocno_classes
[i
]] = i
;
1190 qsort (ira_important_classes
, ira_important_classes_num
,
1191 sizeof (enum reg_class
), comp_reg_classes_func
);
1192 for (i
= 0; i
< ira_important_classes_num
; i
++)
1193 ira_important_class_nums
[ira_important_classes
[i
]] = i
;
1196 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1197 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1198 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1199 please see corresponding comments in ira-int.h. */
1201 setup_reg_class_relations (void)
1203 int i
, cl1
, cl2
, cl3
;
1204 HARD_REG_SET intersection_set
, union_set
, temp_set2
;
1205 bool important_class_p
[N_REG_CLASSES
];
1207 memset (important_class_p
, 0, sizeof (important_class_p
));
1208 for (i
= 0; i
< ira_important_classes_num
; i
++)
1209 important_class_p
[ira_important_classes
[i
]] = true;
1210 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1212 ira_reg_class_super_classes
[cl1
][0] = LIM_REG_CLASSES
;
1213 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1215 ira_reg_classes_intersect_p
[cl1
][cl2
] = false;
1216 ira_reg_class_intersect
[cl1
][cl2
] = NO_REGS
;
1217 ira_reg_class_subset
[cl1
][cl2
] = NO_REGS
;
1218 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl1
]);
1219 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1220 COPY_HARD_REG_SET (temp_set2
, reg_class_contents
[cl2
]);
1221 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1222 if (hard_reg_set_empty_p (temp_hard_regset
)
1223 && hard_reg_set_empty_p (temp_set2
))
1225 /* The both classes have no allocatable hard registers
1226 -- take all class hard registers into account and use
1227 reg_class_subunion and reg_class_superunion. */
1230 cl3
= reg_class_subclasses
[cl1
][i
];
1231 if (cl3
== LIM_REG_CLASSES
)
1233 if (reg_class_subset_p (ira_reg_class_intersect
[cl1
][cl2
],
1234 (enum reg_class
) cl3
))
1235 ira_reg_class_intersect
[cl1
][cl2
] = (enum reg_class
) cl3
;
1237 ira_reg_class_subunion
[cl1
][cl2
] = reg_class_subunion
[cl1
][cl2
];
1238 ira_reg_class_superunion
[cl1
][cl2
] = reg_class_superunion
[cl1
][cl2
];
1241 ira_reg_classes_intersect_p
[cl1
][cl2
]
1242 = hard_reg_set_intersect_p (temp_hard_regset
, temp_set2
);
1243 if (important_class_p
[cl1
] && important_class_p
[cl2
]
1244 && hard_reg_set_subset_p (temp_hard_regset
, temp_set2
))
1246 /* CL1 and CL2 are important classes and CL1 allocatable
1247 hard register set is inside of CL2 allocatable hard
1248 registers -- make CL1 a superset of CL2. */
1251 p
= &ira_reg_class_super_classes
[cl1
][0];
1252 while (*p
!= LIM_REG_CLASSES
)
1254 *p
++ = (enum reg_class
) cl2
;
1255 *p
= LIM_REG_CLASSES
;
1257 ira_reg_class_subunion
[cl1
][cl2
] = NO_REGS
;
1258 ira_reg_class_superunion
[cl1
][cl2
] = NO_REGS
;
1259 COPY_HARD_REG_SET (intersection_set
, reg_class_contents
[cl1
]);
1260 AND_HARD_REG_SET (intersection_set
, reg_class_contents
[cl2
]);
1261 AND_COMPL_HARD_REG_SET (intersection_set
, no_unit_alloc_regs
);
1262 COPY_HARD_REG_SET (union_set
, reg_class_contents
[cl1
]);
1263 IOR_HARD_REG_SET (union_set
, reg_class_contents
[cl2
]);
1264 AND_COMPL_HARD_REG_SET (union_set
, no_unit_alloc_regs
);
1265 for (cl3
= 0; cl3
< N_REG_CLASSES
; cl3
++)
1267 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl3
]);
1268 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1269 if (hard_reg_set_subset_p (temp_hard_regset
, intersection_set
))
1271 /* CL3 allocatable hard register set is inside of
1272 intersection of allocatable hard register sets
1274 if (important_class_p
[cl3
])
1279 [(int) ira_reg_class_intersect
[cl1
][cl2
]]);
1280 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1281 if (! hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1282 /* If the allocatable hard register sets are
1283 the same, prefer GENERAL_REGS or the
1284 smallest class for debugging
1286 || (hard_reg_set_equal_p (temp_hard_regset
, temp_set2
)
1287 && (cl3
== GENERAL_REGS
1288 || ((ira_reg_class_intersect
[cl1
][cl2
]
1290 && hard_reg_set_subset_p
1291 (reg_class_contents
[cl3
],
1294 ira_reg_class_intersect
[cl1
][cl2
]])))))
1295 ira_reg_class_intersect
[cl1
][cl2
] = (enum reg_class
) cl3
;
1299 reg_class_contents
[(int) ira_reg_class_subset
[cl1
][cl2
]]);
1300 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1301 if (! hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1302 /* Ignore unavailable hard registers and prefer
1303 smallest class for debugging purposes. */
1304 || (hard_reg_set_equal_p (temp_hard_regset
, temp_set2
)
1305 && hard_reg_set_subset_p
1306 (reg_class_contents
[cl3
],
1308 [(int) ira_reg_class_subset
[cl1
][cl2
]])))
1309 ira_reg_class_subset
[cl1
][cl2
] = (enum reg_class
) cl3
;
1311 if (important_class_p
[cl3
]
1312 && hard_reg_set_subset_p (temp_hard_regset
, union_set
))
1314 /* CL3 allocatbale hard register set is inside of
1315 union of allocatable hard register sets of CL1
1319 reg_class_contents
[(int) ira_reg_class_subunion
[cl1
][cl2
]]);
1320 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1321 if (ira_reg_class_subunion
[cl1
][cl2
] == NO_REGS
1322 || (hard_reg_set_subset_p (temp_set2
, temp_hard_regset
)
1324 && (! hard_reg_set_equal_p (temp_set2
,
1326 || cl3
== GENERAL_REGS
1327 /* If the allocatable hard register sets are the
1328 same, prefer GENERAL_REGS or the smallest
1329 class for debugging purposes. */
1330 || (ira_reg_class_subunion
[cl1
][cl2
] != GENERAL_REGS
1331 && hard_reg_set_subset_p
1332 (reg_class_contents
[cl3
],
1334 [(int) ira_reg_class_subunion
[cl1
][cl2
]])))))
1335 ira_reg_class_subunion
[cl1
][cl2
] = (enum reg_class
) cl3
;
1337 if (hard_reg_set_subset_p (union_set
, temp_hard_regset
))
1339 /* CL3 allocatable hard register set contains union
1340 of allocatable hard register sets of CL1 and
1344 reg_class_contents
[(int) ira_reg_class_superunion
[cl1
][cl2
]]);
1345 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1346 if (ira_reg_class_superunion
[cl1
][cl2
] == NO_REGS
1347 || (hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1349 && (! hard_reg_set_equal_p (temp_set2
,
1351 || cl3
== GENERAL_REGS
1352 /* If the allocatable hard register sets are the
1353 same, prefer GENERAL_REGS or the smallest
1354 class for debugging purposes. */
1355 || (ira_reg_class_superunion
[cl1
][cl2
] != GENERAL_REGS
1356 && hard_reg_set_subset_p
1357 (reg_class_contents
[cl3
],
1359 [(int) ira_reg_class_superunion
[cl1
][cl2
]])))))
1360 ira_reg_class_superunion
[cl1
][cl2
] = (enum reg_class
) cl3
;
1367 /* Output all unifrom and important classes into file F. */
1369 print_unform_and_important_classes (FILE *f
)
1371 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
1374 fprintf (f
, "Uniform classes:\n");
1375 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1376 if (ira_uniform_class_p
[cl
])
1377 fprintf (f
, " %s", reg_class_names
[cl
]);
1378 fprintf (f
, "\nImportant classes:\n");
1379 for (i
= 0; i
< ira_important_classes_num
; i
++)
1380 fprintf (f
, " %s", reg_class_names
[ira_important_classes
[i
]]);
1384 /* Output all possible allocno or pressure classes and their
1385 translation map into file F. */
1387 print_translated_classes (FILE *f
, bool pressure_p
)
1389 int classes_num
= (pressure_p
1390 ? ira_pressure_classes_num
: ira_allocno_classes_num
);
1391 enum reg_class
*classes
= (pressure_p
1392 ? ira_pressure_classes
: ira_allocno_classes
);
1393 enum reg_class
*class_translate
= (pressure_p
1394 ? ira_pressure_class_translate
1395 : ira_allocno_class_translate
);
1396 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
1399 fprintf (f
, "%s classes:\n", pressure_p
? "Pressure" : "Allocno");
1400 for (i
= 0; i
< classes_num
; i
++)
1401 fprintf (f
, " %s", reg_class_names
[classes
[i
]]);
1402 fprintf (f
, "\nClass translation:\n");
1403 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1404 fprintf (f
, " %s -> %s\n", reg_class_names
[i
],
1405 reg_class_names
[class_translate
[i
]]);
1408 /* Output all possible allocno and translation classes and the
1409 translation maps into stderr. */
1411 ira_debug_allocno_classes (void)
1413 print_unform_and_important_classes (stderr
);
1414 print_translated_classes (stderr
, false);
1415 print_translated_classes (stderr
, true);
1418 /* Set up different arrays concerning class subsets, allocno and
1419 important classes. */
1421 find_reg_classes (void)
1423 setup_allocno_and_important_classes ();
1424 setup_class_translate ();
1425 reorder_important_classes ();
1426 setup_reg_class_relations ();
1431 /* Set up the array above. */
1433 setup_hard_regno_aclass (void)
1437 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1440 ira_hard_regno_allocno_class
[i
]
1441 = (TEST_HARD_REG_BIT (no_unit_alloc_regs
, i
)
1443 : ira_allocno_class_translate
[REGNO_REG_CLASS (i
)]);
1447 ira_hard_regno_allocno_class
[i
] = NO_REGS
;
1448 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1450 cl
= ira_allocno_classes
[j
];
1451 if (ira_class_hard_reg_index
[cl
][i
] >= 0)
1453 ira_hard_regno_allocno_class
[i
] = cl
;
1463 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1465 setup_reg_class_nregs (void)
1469 for (m
= 0; m
< MAX_MACHINE_MODE
; m
++)
1471 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1472 ira_reg_class_max_nregs
[cl
][m
]
1473 = ira_reg_class_min_nregs
[cl
][m
]
1474 = targetm
.class_max_nregs ((reg_class_t
) cl
, (enum machine_mode
) m
);
1475 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1477 (cl2
= alloc_reg_class_subclasses
[cl
][i
]) != LIM_REG_CLASSES
;
1479 if (ira_reg_class_min_nregs
[cl2
][m
]
1480 < ira_reg_class_min_nregs
[cl
][m
])
1481 ira_reg_class_min_nregs
[cl
][m
] = ira_reg_class_min_nregs
[cl2
][m
];
1487 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1488 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1490 setup_prohibited_class_mode_regs (void)
1492 int j
, k
, hard_regno
, cl
, last_hard_regno
, count
;
1494 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
1496 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1497 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1498 for (j
= 0; j
< NUM_MACHINE_MODES
; j
++)
1501 last_hard_regno
= -1;
1502 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs
[cl
][j
]);
1503 for (k
= ira_class_hard_regs_num
[cl
] - 1; k
>= 0; k
--)
1505 hard_regno
= ira_class_hard_regs
[cl
][k
];
1506 if (! HARD_REGNO_MODE_OK (hard_regno
, (enum machine_mode
) j
))
1507 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1509 else if (in_hard_reg_set_p (temp_hard_regset
,
1510 (enum machine_mode
) j
, hard_regno
))
1512 last_hard_regno
= hard_regno
;
1516 ira_class_singleton
[cl
][j
] = (count
== 1 ? last_hard_regno
: -1);
1521 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1522 spanning from one register pressure class to another one. It is
1523 called after defining the pressure classes. */
1525 clarify_prohibited_class_mode_regs (void)
1527 int j
, k
, hard_regno
, cl
, pclass
, nregs
;
1529 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
1530 for (j
= 0; j
< NUM_MACHINE_MODES
; j
++)
1532 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs
[cl
][j
]);
1533 for (k
= ira_class_hard_regs_num
[cl
] - 1; k
>= 0; k
--)
1535 hard_regno
= ira_class_hard_regs
[cl
][k
];
1536 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
], hard_regno
))
1538 nregs
= hard_regno_nregs
[hard_regno
][j
];
1539 if (hard_regno
+ nregs
> FIRST_PSEUDO_REGISTER
)
1541 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1545 pclass
= ira_pressure_class_translate
[REGNO_REG_CLASS (hard_regno
)];
1546 for (nregs
-- ;nregs
>= 0; nregs
--)
1547 if (((enum reg_class
) pclass
1548 != ira_pressure_class_translate
[REGNO_REG_CLASS
1549 (hard_regno
+ nregs
)]))
1551 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1555 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1557 add_to_hard_reg_set (&ira_useful_class_mode_regs
[cl
][j
],
1558 (enum machine_mode
) j
, hard_regno
);
1563 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1564 and IRA_MAY_MOVE_OUT_COST for MODE. */
1566 ira_init_register_move_cost (enum machine_mode mode
)
1568 static unsigned short last_move_cost
[N_REG_CLASSES
][N_REG_CLASSES
];
1569 bool all_match
= true;
1570 unsigned int cl1
, cl2
;
1572 ira_assert (ira_register_move_cost
[mode
] == NULL
1573 && ira_may_move_in_cost
[mode
] == NULL
1574 && ira_may_move_out_cost
[mode
] == NULL
);
1575 ira_assert (have_regs_of_mode
[mode
]);
1576 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1577 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1580 if (!contains_reg_of_mode
[cl1
][mode
]
1581 || !contains_reg_of_mode
[cl2
][mode
])
1583 if ((ira_reg_class_max_nregs
[cl1
][mode
]
1584 > ira_class_hard_regs_num
[cl1
])
1585 || (ira_reg_class_max_nregs
[cl2
][mode
]
1586 > ira_class_hard_regs_num
[cl2
]))
1589 cost
= (ira_memory_move_cost
[mode
][cl1
][0]
1590 + ira_memory_move_cost
[mode
][cl2
][1]) * 2;
1594 cost
= register_move_cost (mode
, (enum reg_class
) cl1
,
1595 (enum reg_class
) cl2
);
1596 ira_assert (cost
< 65535);
1598 all_match
&= (last_move_cost
[cl1
][cl2
] == cost
);
1599 last_move_cost
[cl1
][cl2
] = cost
;
1601 if (all_match
&& last_mode_for_init_move_cost
!= -1)
1603 ira_register_move_cost
[mode
]
1604 = ira_register_move_cost
[last_mode_for_init_move_cost
];
1605 ira_may_move_in_cost
[mode
]
1606 = ira_may_move_in_cost
[last_mode_for_init_move_cost
];
1607 ira_may_move_out_cost
[mode
]
1608 = ira_may_move_out_cost
[last_mode_for_init_move_cost
];
1611 last_mode_for_init_move_cost
= mode
;
1612 ira_register_move_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1613 ira_may_move_in_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1614 ira_may_move_out_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1615 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1616 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1619 enum reg_class
*p1
, *p2
;
1621 if (last_move_cost
[cl1
][cl2
] == 65535)
1623 ira_register_move_cost
[mode
][cl1
][cl2
] = 65535;
1624 ira_may_move_in_cost
[mode
][cl1
][cl2
] = 65535;
1625 ira_may_move_out_cost
[mode
][cl1
][cl2
] = 65535;
1629 cost
= last_move_cost
[cl1
][cl2
];
1631 for (p2
= ®_class_subclasses
[cl2
][0];
1632 *p2
!= LIM_REG_CLASSES
; p2
++)
1633 if (ira_class_hard_regs_num
[*p2
] > 0
1634 && (ira_reg_class_max_nregs
[*p2
][mode
]
1635 <= ira_class_hard_regs_num
[*p2
]))
1636 cost
= MAX (cost
, ira_register_move_cost
[mode
][cl1
][*p2
]);
1638 for (p1
= ®_class_subclasses
[cl1
][0];
1639 *p1
!= LIM_REG_CLASSES
; p1
++)
1640 if (ira_class_hard_regs_num
[*p1
] > 0
1641 && (ira_reg_class_max_nregs
[*p1
][mode
]
1642 <= ira_class_hard_regs_num
[*p1
]))
1643 cost
= MAX (cost
, ira_register_move_cost
[mode
][*p1
][cl2
]);
1645 ira_assert (cost
<= 65535);
1646 ira_register_move_cost
[mode
][cl1
][cl2
] = cost
;
1648 if (ira_class_subset_p
[cl1
][cl2
])
1649 ira_may_move_in_cost
[mode
][cl1
][cl2
] = 0;
1651 ira_may_move_in_cost
[mode
][cl1
][cl2
] = cost
;
1653 if (ira_class_subset_p
[cl2
][cl1
])
1654 ira_may_move_out_cost
[mode
][cl1
][cl2
] = 0;
1656 ira_may_move_out_cost
[mode
][cl1
][cl2
] = cost
;
1663 /* This is called once during compiler work. It sets up
1664 different arrays whose values don't depend on the compiled
1667 ira_init_once (void)
1669 ira_init_costs_once ();
1673 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1674 ira_may_move_out_cost for each mode. */
1676 free_register_move_costs (void)
1680 /* Reset move_cost and friends, making sure we only free shared
1681 table entries once. */
1682 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
1683 if (ira_register_move_cost
[mode
])
1686 i
< mode
&& (ira_register_move_cost
[i
]
1687 != ira_register_move_cost
[mode
]);
1692 free (ira_register_move_cost
[mode
]);
1693 free (ira_may_move_in_cost
[mode
]);
1694 free (ira_may_move_out_cost
[mode
]);
1697 memset (ira_register_move_cost
, 0, sizeof ira_register_move_cost
);
1698 memset (ira_may_move_in_cost
, 0, sizeof ira_may_move_in_cost
);
1699 memset (ira_may_move_out_cost
, 0, sizeof ira_may_move_out_cost
);
1700 last_mode_for_init_move_cost
= -1;
1703 /* This is called every time when register related information is
1708 free_register_move_costs ();
1709 setup_reg_mode_hard_regset ();
1710 setup_alloc_regs (flag_omit_frame_pointer
!= 0);
1711 setup_class_subset_and_memory_move_costs ();
1712 setup_reg_class_nregs ();
1713 setup_prohibited_class_mode_regs ();
1714 find_reg_classes ();
1715 clarify_prohibited_class_mode_regs ();
1716 setup_hard_regno_aclass ();
1720 /* Function called once at the end of compiler work. */
1722 ira_finish_once (void)
1724 ira_finish_costs_once ();
1725 free_register_move_costs ();
1730 #define ira_prohibited_mode_move_regs_initialized_p \
1731 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1733 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1735 setup_prohibited_mode_move_regs (void)
1738 rtx test_reg1
, test_reg2
, move_pat
, move_insn
;
1740 if (ira_prohibited_mode_move_regs_initialized_p
)
1742 ira_prohibited_mode_move_regs_initialized_p
= true;
1743 test_reg1
= gen_rtx_REG (VOIDmode
, 0);
1744 test_reg2
= gen_rtx_REG (VOIDmode
, 0);
1745 move_pat
= gen_rtx_SET (VOIDmode
, test_reg1
, test_reg2
);
1746 move_insn
= gen_rtx_INSN (VOIDmode
, 0, 0, 0, move_pat
, 0, -1, 0);
1747 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
1749 SET_HARD_REG_SET (ira_prohibited_mode_move_regs
[i
]);
1750 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
1752 if (! HARD_REGNO_MODE_OK (j
, (enum machine_mode
) i
))
1754 SET_REGNO_RAW (test_reg1
, j
);
1755 PUT_MODE (test_reg1
, (enum machine_mode
) i
);
1756 SET_REGNO_RAW (test_reg2
, j
);
1757 PUT_MODE (test_reg2
, (enum machine_mode
) i
);
1758 INSN_CODE (move_insn
) = -1;
1759 recog_memoized (move_insn
);
1760 if (INSN_CODE (move_insn
) < 0)
1762 extract_insn (move_insn
);
1763 if (! constrain_operands (1))
1765 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs
[i
], j
);
1772 /* Setup possible alternatives in ALTS for INSN. */
1774 ira_setup_alts (rtx insn
, HARD_REG_SET
&alts
)
1776 /* MAP nalt * nop -> start of constraints for given operand and
1778 static vec
<const char *> insn_constraints
;
1783 int commutative
= -1;
1785 extract_insn (insn
);
1786 CLEAR_HARD_REG_SET (alts
);
1787 insn_constraints
.release ();
1788 insn_constraints
.safe_grow_cleared (recog_data
.n_operands
1789 * recog_data
.n_alternatives
+ 1);
1790 /* Check that the hard reg set is enough for holding all
1791 alternatives. It is hard to imagine the situation when the
1792 assertion is wrong. */
1793 ira_assert (recog_data
.n_alternatives
1794 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE
) * CHAR_BIT
,
1795 FIRST_PSEUDO_REGISTER
));
1796 for (curr_swapped
= false;; curr_swapped
= true)
1798 /* Calculate some data common for all alternatives to speed up the
1800 for (nop
= 0; nop
< recog_data
.n_operands
; nop
++)
1802 for (nalt
= 0, p
= recog_data
.constraints
[nop
];
1803 nalt
< recog_data
.n_alternatives
;
1806 insn_constraints
[nop
* recog_data
.n_alternatives
+ nalt
] = p
;
1807 while (*p
&& *p
!= ',')
1813 for (nalt
= 0; nalt
< recog_data
.n_alternatives
; nalt
++)
1815 if (!TEST_BIT (recog_data
.enabled_alternatives
, nalt
)
1816 || TEST_HARD_REG_BIT (alts
, nalt
))
1819 for (nop
= 0; nop
< recog_data
.n_operands
; nop
++)
1823 op
= recog_data
.operand
[nop
];
1824 p
= insn_constraints
[nop
* recog_data
.n_alternatives
+ nalt
];
1825 if (*p
== 0 || *p
== ',')
1829 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
1839 /* We only support one commutative marker, the
1840 first one. We already set commutative
1842 if (commutative
< 0)
1846 case '0': case '1': case '2': case '3': case '4':
1847 case '5': case '6': case '7': case '8': case '9':
1857 enum constraint_num cn
= lookup_constraint (p
);
1858 switch (get_constraint_type (cn
))
1861 if (reg_class_for_constraint (cn
) != NO_REGS
)
1866 if (CONST_INT_P (op
)
1867 && (insn_const_int_ok_for_constraint
1877 if (constraint_satisfied_p (op
, cn
))
1884 while (p
+= len
, c
);
1889 if (nop
>= recog_data
.n_operands
)
1890 SET_HARD_REG_BIT (alts
, nalt
);
1892 if (commutative
< 0)
1896 op
= recog_data
.operand
[commutative
];
1897 recog_data
.operand
[commutative
] = recog_data
.operand
[commutative
+ 1];
1898 recog_data
.operand
[commutative
+ 1] = op
;
1903 /* Return the number of the output non-early clobber operand which
1904 should be the same in any case as operand with number OP_NUM (or
1905 negative value if there is no such operand). The function takes
1906 only really possible alternatives into consideration. */
1908 ira_get_dup_out_num (int op_num
, HARD_REG_SET
&alts
)
1910 int curr_alt
, c
, original
, dup
;
1911 bool ignore_p
, use_commut_op_p
;
1914 if (op_num
< 0 || recog_data
.n_alternatives
== 0)
1916 /* We should find duplications only for input operands. */
1917 if (recog_data
.operand_type
[op_num
] != OP_IN
)
1919 str
= recog_data
.constraints
[op_num
];
1920 use_commut_op_p
= false;
1923 rtx op
= recog_data
.operand
[op_num
];
1925 for (curr_alt
= 0, ignore_p
= !TEST_HARD_REG_BIT (alts
, curr_alt
),
1936 ignore_p
= !TEST_HARD_REG_BIT (alts
, curr_alt
);
1938 else if (! ignore_p
)
1945 enum constraint_num cn
= lookup_constraint (str
);
1946 enum reg_class cl
= reg_class_for_constraint (cn
);
1948 && !targetm
.class_likely_spilled_p (cl
))
1950 if (constraint_satisfied_p (op
, cn
))
1955 case '0': case '1': case '2': case '3': case '4':
1956 case '5': case '6': case '7': case '8': case '9':
1957 if (original
!= -1 && original
!= c
)
1962 str
+= CONSTRAINT_LEN (c
, str
);
1967 for (ignore_p
= false, str
= recog_data
.constraints
[original
- '0'];
1975 else if (*str
== '#')
1977 else if (! ignore_p
)
1980 dup
= original
- '0';
1981 /* It is better ignore an alternative with early clobber. */
1982 else if (*str
== '&')
1988 if (use_commut_op_p
)
1990 use_commut_op_p
= true;
1991 if (recog_data
.constraints
[op_num
][0] == '%')
1992 str
= recog_data
.constraints
[op_num
+ 1];
1993 else if (op_num
> 0 && recog_data
.constraints
[op_num
- 1][0] == '%')
1994 str
= recog_data
.constraints
[op_num
- 1];
2003 /* Search forward to see if the source register of a copy insn dies
2004 before either it or the destination register is modified, but don't
2005 scan past the end of the basic block. If so, we can replace the
2006 source with the destination and let the source die in the copy
2009 This will reduce the number of registers live in that range and may
2010 enable the destination and the source coalescing, thus often saving
2011 one register in addition to a register-register copy. */
2014 decrease_live_ranges_number (void)
2017 rtx insn
, set
, src
, dest
, dest_death
, p
, q
, note
;
2020 if (! flag_expensive_optimizations
)
2024 fprintf (ira_dump_file
, "Starting decreasing number of live ranges...\n");
2026 FOR_EACH_BB_FN (bb
, cfun
)
2027 FOR_BB_INSNS (bb
, insn
)
2029 set
= single_set (insn
);
2032 src
= SET_SRC (set
);
2033 dest
= SET_DEST (set
);
2034 if (! REG_P (src
) || ! REG_P (dest
)
2035 || find_reg_note (insn
, REG_DEAD
, src
))
2037 sregno
= REGNO (src
);
2038 dregno
= REGNO (dest
);
2040 /* We don't want to mess with hard regs if register classes
2042 if (sregno
== dregno
2043 || (targetm
.small_register_classes_for_mode_p (GET_MODE (src
))
2044 && (sregno
< FIRST_PSEUDO_REGISTER
2045 || dregno
< FIRST_PSEUDO_REGISTER
))
2046 /* We don't see all updates to SP if they are in an
2047 auto-inc memory reference, so we must disallow this
2048 optimization on them. */
2049 || sregno
== STACK_POINTER_REGNUM
2050 || dregno
== STACK_POINTER_REGNUM
)
2053 dest_death
= NULL_RTX
;
2055 for (p
= NEXT_INSN (insn
); p
; p
= NEXT_INSN (p
))
2059 if (BLOCK_FOR_INSN (p
) != bb
)
2062 if (reg_set_p (src
, p
) || reg_set_p (dest
, p
)
2063 /* If SRC is an asm-declared register, it must not be
2064 replaced in any asm. Unfortunately, the REG_EXPR
2065 tree for the asm variable may be absent in the SRC
2066 rtx, so we can't check the actual register
2067 declaration easily (the asm operand will have it,
2068 though). To avoid complicating the test for a rare
2069 case, we just don't perform register replacement
2070 for a hard reg mentioned in an asm. */
2071 || (sregno
< FIRST_PSEUDO_REGISTER
2072 && asm_noperands (PATTERN (p
)) >= 0
2073 && reg_overlap_mentioned_p (src
, PATTERN (p
)))
2074 /* Don't change hard registers used by a call. */
2075 || (CALL_P (p
) && sregno
< FIRST_PSEUDO_REGISTER
2076 && find_reg_fusage (p
, USE
, src
))
2077 /* Don't change a USE of a register. */
2078 || (GET_CODE (PATTERN (p
)) == USE
2079 && reg_overlap_mentioned_p (src
, XEXP (PATTERN (p
), 0))))
2082 /* See if all of SRC dies in P. This test is slightly
2083 more conservative than it needs to be. */
2084 if ((note
= find_regno_note (p
, REG_DEAD
, sregno
))
2085 && GET_MODE (XEXP (note
, 0)) == GET_MODE (src
))
2089 /* We can do the optimization. Scan forward from INSN
2090 again, replacing regs as we go. Set FAILED if a
2091 replacement can't be done. In that case, we can't
2092 move the death note for SRC. This should be
2095 /* Set to stop at next insn. */
2096 for (q
= next_real_insn (insn
);
2097 q
!= next_real_insn (p
);
2098 q
= next_real_insn (q
))
2100 if (reg_overlap_mentioned_p (src
, PATTERN (q
)))
2102 /* If SRC is a hard register, we might miss
2103 some overlapping registers with
2104 validate_replace_rtx, so we would have to
2105 undo it. We can't if DEST is present in
2106 the insn, so fail in that combination of
2108 if (sregno
< FIRST_PSEUDO_REGISTER
2109 && reg_mentioned_p (dest
, PATTERN (q
)))
2112 /* Attempt to replace all uses. */
2113 else if (!validate_replace_rtx (src
, dest
, q
))
2116 /* If this succeeded, but some part of the
2117 register is still present, undo the
2119 else if (sregno
< FIRST_PSEUDO_REGISTER
2120 && reg_overlap_mentioned_p (src
, PATTERN (q
)))
2122 validate_replace_rtx (dest
, src
, q
);
2127 /* If DEST dies here, remove the death note and
2128 save it for later. Make sure ALL of DEST dies
2129 here; again, this is overly conservative. */
2131 && (dest_death
= find_regno_note (q
, REG_DEAD
, dregno
)))
2133 if (GET_MODE (XEXP (dest_death
, 0)) == GET_MODE (dest
))
2134 remove_note (q
, dest_death
);
2145 /* Move death note of SRC from P to INSN. */
2146 remove_note (p
, note
);
2147 XEXP (note
, 1) = REG_NOTES (insn
);
2148 REG_NOTES (insn
) = note
;
2151 /* DEST is also dead if INSN has a REG_UNUSED note for
2155 = find_regno_note (insn
, REG_UNUSED
, dregno
)))
2157 PUT_REG_NOTE_KIND (dest_death
, REG_DEAD
);
2158 remove_note (insn
, dest_death
);
2161 /* Put death note of DEST on P if we saw it die. */
2164 XEXP (dest_death
, 1) = REG_NOTES (p
);
2165 REG_NOTES (p
) = dest_death
;
2170 /* If SRC is a hard register which is set or killed in
2171 some other way, we can't do this optimization. */
2172 else if (sregno
< FIRST_PSEUDO_REGISTER
&& dead_or_set_p (p
, src
))
2180 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2182 ira_bad_reload_regno_1 (int regno
, rtx x
)
2186 enum reg_class pref
;
2188 /* We only deal with pseudo regs. */
2189 if (! x
|| GET_CODE (x
) != REG
)
2192 x_regno
= REGNO (x
);
2193 if (x_regno
< FIRST_PSEUDO_REGISTER
)
2196 /* If the pseudo prefers REGNO explicitly, then do not consider
2197 REGNO a bad spill choice. */
2198 pref
= reg_preferred_class (x_regno
);
2199 if (reg_class_size
[pref
] == 1)
2200 return !TEST_HARD_REG_BIT (reg_class_contents
[pref
], regno
);
2202 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2203 poor choice for a reload regno. */
2204 a
= ira_regno_allocno_map
[x_regno
];
2205 n
= ALLOCNO_NUM_OBJECTS (a
);
2206 for (i
= 0; i
< n
; i
++)
2208 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
2209 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
), regno
))
2215 /* Return nonzero if REGNO is a particularly bad choice for reloading
2218 ira_bad_reload_regno (int regno
, rtx in
, rtx out
)
2220 return (ira_bad_reload_regno_1 (regno
, in
)
2221 || ira_bad_reload_regno_1 (regno
, out
));
2224 /* Add register clobbers from asm statements. */
2226 compute_regs_asm_clobbered (void)
2230 FOR_EACH_BB_FN (bb
, cfun
)
2233 FOR_BB_INSNS_REVERSE (bb
, insn
)
2237 if (NONDEBUG_INSN_P (insn
) && extract_asm_operands (PATTERN (insn
)))
2238 FOR_EACH_INSN_DEF (def
, insn
)
2240 unsigned int dregno
= DF_REF_REGNO (def
);
2241 if (HARD_REGISTER_NUM_P (dregno
))
2242 add_to_hard_reg_set (&crtl
->asm_clobbers
,
2243 GET_MODE (DF_REF_REAL_REG (def
)),
2251 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2254 ira_setup_eliminable_regset (void)
2256 #ifdef ELIMINABLE_REGS
2258 static const struct {const int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
2260 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2261 sp for alloca. So we can't eliminate the frame pointer in that
2262 case. At some point, we should improve this by emitting the
2263 sp-adjusting insns for this case. */
2264 frame_pointer_needed
2265 = (! flag_omit_frame_pointer
2266 || (cfun
->calls_alloca
&& EXIT_IGNORE_STACK
)
2267 /* We need the frame pointer to catch stack overflow exceptions
2268 if the stack pointer is moving. */
2269 || (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
2270 || crtl
->accesses_prior_frames
2271 || (SUPPORTS_STACK_ALIGNMENT
&& crtl
->stack_realign_needed
)
2272 /* We need a frame pointer for all Cilk Plus functions that use
2274 || (flag_cilkplus
&& cfun
->is_cilk_function
)
2275 || targetm
.frame_pointer_required ());
2277 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2278 RTL is very small. So if we use frame pointer for RA and RTL
2279 actually prevents this, we will spill pseudos assigned to the
2280 frame pointer in LRA. */
2282 if (frame_pointer_needed
)
2283 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM
, true);
2285 COPY_HARD_REG_SET (ira_no_alloc_regs
, no_unit_alloc_regs
);
2286 CLEAR_HARD_REG_SET (eliminable_regset
);
2288 compute_regs_asm_clobbered ();
2290 /* Build the regset of all eliminable registers and show we can't
2291 use those that we already know won't be eliminated. */
2292 #ifdef ELIMINABLE_REGS
2293 for (i
= 0; i
< (int) ARRAY_SIZE (eliminables
); i
++)
2296 = (! targetm
.can_eliminate (eliminables
[i
].from
, eliminables
[i
].to
)
2297 || (eliminables
[i
].to
== STACK_POINTER_REGNUM
&& frame_pointer_needed
));
2299 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, eliminables
[i
].from
))
2301 SET_HARD_REG_BIT (eliminable_regset
, eliminables
[i
].from
);
2304 SET_HARD_REG_BIT (ira_no_alloc_regs
, eliminables
[i
].from
);
2306 else if (cannot_elim
)
2307 error ("%s cannot be used in asm here",
2308 reg_names
[eliminables
[i
].from
]);
2310 df_set_regs_ever_live (eliminables
[i
].from
, true);
2312 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2313 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, HARD_FRAME_POINTER_REGNUM
))
2315 SET_HARD_REG_BIT (eliminable_regset
, HARD_FRAME_POINTER_REGNUM
);
2316 if (frame_pointer_needed
)
2317 SET_HARD_REG_BIT (ira_no_alloc_regs
, HARD_FRAME_POINTER_REGNUM
);
2319 else if (frame_pointer_needed
)
2320 error ("%s cannot be used in asm here",
2321 reg_names
[HARD_FRAME_POINTER_REGNUM
]);
2323 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM
, true);
2327 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, HARD_FRAME_POINTER_REGNUM
))
2329 SET_HARD_REG_BIT (eliminable_regset
, FRAME_POINTER_REGNUM
);
2330 if (frame_pointer_needed
)
2331 SET_HARD_REG_BIT (ira_no_alloc_regs
, FRAME_POINTER_REGNUM
);
2333 else if (frame_pointer_needed
)
2334 error ("%s cannot be used in asm here", reg_names
[FRAME_POINTER_REGNUM
]);
2336 df_set_regs_ever_live (FRAME_POINTER_REGNUM
, true);
2342 /* Vector of substitutions of register numbers,
2343 used to map pseudo regs into hardware regs.
2344 This is set up as a result of register allocation.
2345 Element N is the hard reg assigned to pseudo reg N,
2346 or is -1 if no hard reg was assigned.
2347 If N is a hard reg number, element N is N. */
2348 short *reg_renumber
;
2350 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2351 the allocation found by IRA. */
2353 setup_reg_renumber (void)
2355 int regno
, hard_regno
;
2357 ira_allocno_iterator ai
;
2359 caller_save_needed
= 0;
2360 FOR_EACH_ALLOCNO (a
, ai
)
2362 if (ira_use_lra_p
&& ALLOCNO_CAP_MEMBER (a
) != NULL
)
2364 /* There are no caps at this point. */
2365 ira_assert (ALLOCNO_CAP_MEMBER (a
) == NULL
);
2366 if (! ALLOCNO_ASSIGNED_P (a
))
2367 /* It can happen if A is not referenced but partially anticipated
2368 somewhere in a region. */
2369 ALLOCNO_ASSIGNED_P (a
) = true;
2370 ira_free_allocno_updated_costs (a
);
2371 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2372 regno
= ALLOCNO_REGNO (a
);
2373 reg_renumber
[regno
] = (hard_regno
< 0 ? -1 : hard_regno
);
2374 if (hard_regno
>= 0)
2377 enum reg_class pclass
;
2380 pclass
= ira_pressure_class_translate
[REGNO_REG_CLASS (hard_regno
)];
2381 nwords
= ALLOCNO_NUM_OBJECTS (a
);
2382 for (i
= 0; i
< nwords
; i
++)
2384 obj
= ALLOCNO_OBJECT (a
, i
);
2385 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
2386 reg_class_contents
[pclass
]);
2388 if (ALLOCNO_CALLS_CROSSED_NUM (a
) != 0
2389 && ira_hard_reg_set_intersection_p (hard_regno
, ALLOCNO_MODE (a
),
2392 ira_assert (!optimize
|| flag_caller_saves
2393 || (ALLOCNO_CALLS_CROSSED_NUM (a
)
2394 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
))
2395 || regno
>= ira_reg_equiv_len
2396 || ira_equiv_no_lvalue_p (regno
));
2397 caller_save_needed
= 1;
2403 /* Set up allocno assignment flags for further allocation
2406 setup_allocno_assignment_flags (void)
2410 ira_allocno_iterator ai
;
2412 FOR_EACH_ALLOCNO (a
, ai
)
2414 if (! ALLOCNO_ASSIGNED_P (a
))
2415 /* It can happen if A is not referenced but partially anticipated
2416 somewhere in a region. */
2417 ira_free_allocno_updated_costs (a
);
2418 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2419 /* Don't assign hard registers to allocnos which are destination
2420 of removed store at the end of loop. It has no sense to keep
2421 the same value in different hard registers. It is also
2422 impossible to assign hard registers correctly to such
2423 allocnos because the cost info and info about intersected
2424 calls are incorrect for them. */
2425 ALLOCNO_ASSIGNED_P (a
) = (hard_regno
>= 0
2426 || ALLOCNO_EMIT_DATA (a
)->mem_optimized_dest_p
2427 || (ALLOCNO_MEMORY_COST (a
)
2428 - ALLOCNO_CLASS_COST (a
)) < 0);
2431 || ira_hard_reg_in_set_p (hard_regno
, ALLOCNO_MODE (a
),
2432 reg_class_contents
[ALLOCNO_CLASS (a
)]));
2436 /* Evaluate overall allocation cost and the costs for using hard
2437 registers and memory for allocnos. */
2439 calculate_allocation_cost (void)
2441 int hard_regno
, cost
;
2443 ira_allocno_iterator ai
;
2445 ira_overall_cost
= ira_reg_cost
= ira_mem_cost
= 0;
2446 FOR_EACH_ALLOCNO (a
, ai
)
2448 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2449 ira_assert (hard_regno
< 0
2450 || (ira_hard_reg_in_set_p
2451 (hard_regno
, ALLOCNO_MODE (a
),
2452 reg_class_contents
[ALLOCNO_CLASS (a
)])));
2455 cost
= ALLOCNO_MEMORY_COST (a
);
2456 ira_mem_cost
+= cost
;
2458 else if (ALLOCNO_HARD_REG_COSTS (a
) != NULL
)
2460 cost
= (ALLOCNO_HARD_REG_COSTS (a
)
2461 [ira_class_hard_reg_index
2462 [ALLOCNO_CLASS (a
)][hard_regno
]]);
2463 ira_reg_cost
+= cost
;
2467 cost
= ALLOCNO_CLASS_COST (a
);
2468 ira_reg_cost
+= cost
;
2470 ira_overall_cost
+= cost
;
2473 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
2475 fprintf (ira_dump_file
,
2476 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2477 ira_overall_cost
, ira_reg_cost
, ira_mem_cost
,
2478 ira_load_cost
, ira_store_cost
, ira_shuffle_cost
);
2479 fprintf (ira_dump_file
, "+++ move loops %d, new jumps %d\n",
2480 ira_move_loops_num
, ira_additional_jumps_num
);
2485 #ifdef ENABLE_IRA_CHECKING
2486 /* Check the correctness of the allocation. We do need this because
2487 of complicated code to transform more one region internal
2488 representation into one region representation. */
2490 check_allocation (void)
2493 int hard_regno
, nregs
, conflict_nregs
;
2494 ira_allocno_iterator ai
;
2496 FOR_EACH_ALLOCNO (a
, ai
)
2498 int n
= ALLOCNO_NUM_OBJECTS (a
);
2501 if (ALLOCNO_CAP_MEMBER (a
) != NULL
2502 || (hard_regno
= ALLOCNO_HARD_REGNO (a
)) < 0)
2504 nregs
= hard_regno_nregs
[hard_regno
][ALLOCNO_MODE (a
)];
2506 /* We allocated a single hard register. */
2509 /* We allocated multiple hard registers, and we will test
2510 conflicts in a granularity of single hard regs. */
2513 for (i
= 0; i
< n
; i
++)
2515 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
2516 ira_object_t conflict_obj
;
2517 ira_object_conflict_iterator oci
;
2518 int this_regno
= hard_regno
;
2521 if (REG_WORDS_BIG_ENDIAN
)
2522 this_regno
+= n
- i
- 1;
2526 FOR_EACH_OBJECT_CONFLICT (obj
, conflict_obj
, oci
)
2528 ira_allocno_t conflict_a
= OBJECT_ALLOCNO (conflict_obj
);
2529 int conflict_hard_regno
= ALLOCNO_HARD_REGNO (conflict_a
);
2530 if (conflict_hard_regno
< 0)
2535 [conflict_hard_regno
][ALLOCNO_MODE (conflict_a
)]);
2537 if (ALLOCNO_NUM_OBJECTS (conflict_a
) > 1
2538 && conflict_nregs
== ALLOCNO_NUM_OBJECTS (conflict_a
))
2540 if (REG_WORDS_BIG_ENDIAN
)
2541 conflict_hard_regno
+= (ALLOCNO_NUM_OBJECTS (conflict_a
)
2542 - OBJECT_SUBWORD (conflict_obj
) - 1);
2544 conflict_hard_regno
+= OBJECT_SUBWORD (conflict_obj
);
2548 if ((conflict_hard_regno
<= this_regno
2549 && this_regno
< conflict_hard_regno
+ conflict_nregs
)
2550 || (this_regno
<= conflict_hard_regno
2551 && conflict_hard_regno
< this_regno
+ nregs
))
2553 fprintf (stderr
, "bad allocation for %d and %d\n",
2554 ALLOCNO_REGNO (a
), ALLOCNO_REGNO (conflict_a
));
2563 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2564 be already calculated. */
2566 setup_reg_equiv_init (void)
2569 int max_regno
= max_reg_num ();
2571 for (i
= 0; i
< max_regno
; i
++)
2572 reg_equiv_init (i
) = ira_reg_equiv
[i
].init_insns
;
2575 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2576 are insns which were generated for such movement. It is assumed
2577 that FROM_REGNO and TO_REGNO always have the same value at the
2578 point of any move containing such registers. This function is used
2579 to update equiv info for register shuffles on the region borders
2580 and for caller save/restore insns. */
2582 ira_update_equiv_info_by_shuffle_insn (int to_regno
, int from_regno
, rtx insns
)
2586 if (! ira_reg_equiv
[from_regno
].defined_p
2587 && (! ira_reg_equiv
[to_regno
].defined_p
2588 || ((x
= ira_reg_equiv
[to_regno
].memory
) != NULL_RTX
2589 && ! MEM_READONLY_P (x
))))
2592 if (NEXT_INSN (insn
) != NULL_RTX
)
2594 if (! ira_reg_equiv
[to_regno
].defined_p
)
2596 ira_assert (ira_reg_equiv
[to_regno
].init_insns
== NULL_RTX
);
2599 ira_reg_equiv
[to_regno
].defined_p
= false;
2600 ira_reg_equiv
[to_regno
].memory
2601 = ira_reg_equiv
[to_regno
].constant
2602 = ira_reg_equiv
[to_regno
].invariant
2603 = ira_reg_equiv
[to_regno
].init_insns
= NULL_RTX
;
2604 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2605 fprintf (ira_dump_file
,
2606 " Invalidating equiv info for reg %d\n", to_regno
);
2609 /* It is possible that FROM_REGNO still has no equivalence because
2610 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2611 insn was not processed yet. */
2612 if (ira_reg_equiv
[from_regno
].defined_p
)
2614 ira_reg_equiv
[to_regno
].defined_p
= true;
2615 if ((x
= ira_reg_equiv
[from_regno
].memory
) != NULL_RTX
)
2617 ira_assert (ira_reg_equiv
[from_regno
].invariant
== NULL_RTX
2618 && ira_reg_equiv
[from_regno
].constant
== NULL_RTX
);
2619 ira_assert (ira_reg_equiv
[to_regno
].memory
== NULL_RTX
2620 || rtx_equal_p (ira_reg_equiv
[to_regno
].memory
, x
));
2621 ira_reg_equiv
[to_regno
].memory
= x
;
2622 if (! MEM_READONLY_P (x
))
2623 /* We don't add the insn to insn init list because memory
2624 equivalence is just to say what memory is better to use
2625 when the pseudo is spilled. */
2628 else if ((x
= ira_reg_equiv
[from_regno
].constant
) != NULL_RTX
)
2630 ira_assert (ira_reg_equiv
[from_regno
].invariant
== NULL_RTX
);
2631 ira_assert (ira_reg_equiv
[to_regno
].constant
== NULL_RTX
2632 || rtx_equal_p (ira_reg_equiv
[to_regno
].constant
, x
));
2633 ira_reg_equiv
[to_regno
].constant
= x
;
2637 x
= ira_reg_equiv
[from_regno
].invariant
;
2638 ira_assert (x
!= NULL_RTX
);
2639 ira_assert (ira_reg_equiv
[to_regno
].invariant
== NULL_RTX
2640 || rtx_equal_p (ira_reg_equiv
[to_regno
].invariant
, x
));
2641 ira_reg_equiv
[to_regno
].invariant
= x
;
2643 if (find_reg_note (insn
, REG_EQUIV
, x
) == NULL_RTX
)
2645 note
= set_unique_reg_note (insn
, REG_EQUIV
, x
);
2646 gcc_assert (note
!= NULL_RTX
);
2647 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2649 fprintf (ira_dump_file
,
2650 " Adding equiv note to insn %u for reg %d ",
2651 INSN_UID (insn
), to_regno
);
2652 dump_value_slim (ira_dump_file
, x
, 1);
2653 fprintf (ira_dump_file
, "\n");
2657 ira_reg_equiv
[to_regno
].init_insns
2658 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
2659 ira_reg_equiv
[to_regno
].init_insns
);
2660 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2661 fprintf (ira_dump_file
,
2662 " Adding equiv init move insn %u to reg %d\n",
2663 INSN_UID (insn
), to_regno
);
2666 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2669 fix_reg_equiv_init (void)
2671 int max_regno
= max_reg_num ();
2672 int i
, new_regno
, max
;
2673 rtx x
, prev
, next
, insn
, set
;
2675 if (max_regno_before_ira
< max_regno
)
2677 max
= vec_safe_length (reg_equivs
);
2679 for (i
= FIRST_PSEUDO_REGISTER
; i
< max
; i
++)
2680 for (prev
= NULL_RTX
, x
= reg_equiv_init (i
);
2686 set
= single_set (insn
);
2687 ira_assert (set
!= NULL_RTX
2688 && (REG_P (SET_DEST (set
)) || REG_P (SET_SRC (set
))));
2689 if (REG_P (SET_DEST (set
))
2690 && ((int) REGNO (SET_DEST (set
)) == i
2691 || (int) ORIGINAL_REGNO (SET_DEST (set
)) == i
))
2692 new_regno
= REGNO (SET_DEST (set
));
2693 else if (REG_P (SET_SRC (set
))
2694 && ((int) REGNO (SET_SRC (set
)) == i
2695 || (int) ORIGINAL_REGNO (SET_SRC (set
)) == i
))
2696 new_regno
= REGNO (SET_SRC (set
));
2703 /* Remove the wrong list element. */
2704 if (prev
== NULL_RTX
)
2705 reg_equiv_init (i
) = next
;
2707 XEXP (prev
, 1) = next
;
2708 XEXP (x
, 1) = reg_equiv_init (new_regno
);
2709 reg_equiv_init (new_regno
) = x
;
2715 #ifdef ENABLE_IRA_CHECKING
2716 /* Print redundant memory-memory copies. */
2718 print_redundant_copies (void)
2722 ira_copy_t cp
, next_cp
;
2723 ira_allocno_iterator ai
;
2725 FOR_EACH_ALLOCNO (a
, ai
)
2727 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
2730 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2731 if (hard_regno
>= 0)
2733 for (cp
= ALLOCNO_COPIES (a
); cp
!= NULL
; cp
= next_cp
)
2735 next_cp
= cp
->next_first_allocno_copy
;
2738 next_cp
= cp
->next_second_allocno_copy
;
2739 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
2740 && cp
->insn
!= NULL_RTX
2741 && ALLOCNO_HARD_REGNO (cp
->first
) == hard_regno
)
2742 fprintf (ira_dump_file
,
2743 " Redundant move from %d(freq %d):%d\n",
2744 INSN_UID (cp
->insn
), cp
->freq
, hard_regno
);
2750 /* Setup preferred and alternative classes for new pseudo-registers
2751 created by IRA starting with START. */
2753 setup_preferred_alternate_classes_for_new_pseudos (int start
)
2756 int max_regno
= max_reg_num ();
2758 for (i
= start
; i
< max_regno
; i
++)
2760 old_regno
= ORIGINAL_REGNO (regno_reg_rtx
[i
]);
2761 ira_assert (i
!= old_regno
);
2762 setup_reg_classes (i
, reg_preferred_class (old_regno
),
2763 reg_alternate_class (old_regno
),
2764 reg_allocno_class (old_regno
));
2765 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
2766 fprintf (ira_dump_file
,
2767 " New r%d: setting preferred %s, alternative %s\n",
2768 i
, reg_class_names
[reg_preferred_class (old_regno
)],
2769 reg_class_names
[reg_alternate_class (old_regno
)]);
2774 /* The number of entries allocated in teg_info. */
2775 static int allocated_reg_info_size
;
2777 /* Regional allocation can create new pseudo-registers. This function
2778 expands some arrays for pseudo-registers. */
2780 expand_reg_info (void)
2783 int size
= max_reg_num ();
2786 for (i
= allocated_reg_info_size
; i
< size
; i
++)
2787 setup_reg_classes (i
, GENERAL_REGS
, ALL_REGS
, GENERAL_REGS
);
2788 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size
);
2789 allocated_reg_info_size
= size
;
2792 /* Return TRUE if there is too high register pressure in the function.
2793 It is used to decide when stack slot sharing is worth to do. */
2795 too_high_register_pressure_p (void)
2798 enum reg_class pclass
;
2800 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
2802 pclass
= ira_pressure_classes
[i
];
2803 if (ira_loop_tree_root
->reg_pressure
[pclass
] > 10000)
2811 /* Indicate that hard register number FROM was eliminated and replaced with
2812 an offset from hard register number TO. The status of hard registers live
2813 at the start of a basic block is updated by replacing a use of FROM with
2817 mark_elimination (int from
, int to
)
2822 FOR_EACH_BB_FN (bb
, cfun
)
2825 if (bitmap_bit_p (r
, from
))
2827 bitmap_clear_bit (r
, from
);
2828 bitmap_set_bit (r
, to
);
2832 r
= DF_LIVE_IN (bb
);
2833 if (bitmap_bit_p (r
, from
))
2835 bitmap_clear_bit (r
, from
);
2836 bitmap_set_bit (r
, to
);
2843 /* The length of the following array. */
2844 int ira_reg_equiv_len
;
2846 /* Info about equiv. info for each register. */
2847 struct ira_reg_equiv_s
*ira_reg_equiv
;
2849 /* Expand ira_reg_equiv if necessary. */
2851 ira_expand_reg_equiv (void)
2853 int old
= ira_reg_equiv_len
;
2855 if (ira_reg_equiv_len
> max_reg_num ())
2857 ira_reg_equiv_len
= max_reg_num () * 3 / 2 + 1;
2859 = (struct ira_reg_equiv_s
*) xrealloc (ira_reg_equiv
,
2861 * sizeof (struct ira_reg_equiv_s
));
2862 gcc_assert (old
< ira_reg_equiv_len
);
2863 memset (ira_reg_equiv
+ old
, 0,
2864 sizeof (struct ira_reg_equiv_s
) * (ira_reg_equiv_len
- old
));
2868 init_reg_equiv (void)
2870 ira_reg_equiv_len
= 0;
2871 ira_reg_equiv
= NULL
;
2872 ira_expand_reg_equiv ();
2876 finish_reg_equiv (void)
2878 free (ira_reg_equiv
);
2885 /* Set when a REG_EQUIV note is found or created. Use to
2886 keep track of what memory accesses might be created later,
2890 /* The list of each instruction which initializes this register. */
2892 /* Loop depth is used to recognize equivalences which appear
2893 to be present within the same loop (or in an inner loop). */
2895 /* Nonzero if this had a preexisting REG_EQUIV note. */
2896 int is_arg_equivalence
;
2897 /* Set when an attempt should be made to replace a register
2898 with the associated src_p entry. */
2902 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2903 structure for that register. */
2904 static struct equivalence
*reg_equiv
;
2906 /* Used for communication between the following two functions: contains
2907 a MEM that we wish to ensure remains unchanged. */
2908 static rtx equiv_mem
;
2910 /* Set nonzero if EQUIV_MEM is modified. */
2911 static int equiv_mem_modified
;
2913 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2914 Called via note_stores. */
2916 validate_equiv_mem_from_store (rtx dest
, const_rtx set ATTRIBUTE_UNUSED
,
2917 void *data ATTRIBUTE_UNUSED
)
2920 && reg_overlap_mentioned_p (dest
, equiv_mem
))
2922 && anti_dependence (equiv_mem
, dest
)))
2923 equiv_mem_modified
= 1;
2926 /* Verify that no store between START and the death of REG invalidates
2927 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2928 by storing into an overlapping memory location, or with a non-const
2931 Return 1 if MEMREF remains valid. */
2933 validate_equiv_mem (rtx start
, rtx reg
, rtx memref
)
2939 equiv_mem_modified
= 0;
2941 /* If the memory reference has side effects or is volatile, it isn't a
2942 valid equivalence. */
2943 if (side_effects_p (memref
))
2946 for (insn
= start
; insn
&& ! equiv_mem_modified
; insn
= NEXT_INSN (insn
))
2948 if (! INSN_P (insn
))
2951 if (find_reg_note (insn
, REG_DEAD
, reg
))
2954 /* This used to ignore readonly memory and const/pure calls. The problem
2955 is the equivalent form may reference a pseudo which gets assigned a
2956 call clobbered hard reg. When we later replace REG with its
2957 equivalent form, the value in the call-clobbered reg has been
2958 changed and all hell breaks loose. */
2962 note_stores (PATTERN (insn
), validate_equiv_mem_from_store
, NULL
);
2964 /* If a register mentioned in MEMREF is modified via an
2965 auto-increment, we lose the equivalence. Do the same if one
2966 dies; although we could extend the life, it doesn't seem worth
2969 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2970 if ((REG_NOTE_KIND (note
) == REG_INC
2971 || REG_NOTE_KIND (note
) == REG_DEAD
)
2972 && REG_P (XEXP (note
, 0))
2973 && reg_overlap_mentioned_p (XEXP (note
, 0), memref
))
2980 /* Returns zero if X is known to be invariant. */
2982 equiv_init_varies_p (rtx x
)
2984 RTX_CODE code
= GET_CODE (x
);
2991 return !MEM_READONLY_P (x
) || equiv_init_varies_p (XEXP (x
, 0));
3000 return reg_equiv
[REGNO (x
)].replace
== 0 && rtx_varies_p (x
, 0);
3003 if (MEM_VOLATILE_P (x
))
3012 fmt
= GET_RTX_FORMAT (code
);
3013 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3016 if (equiv_init_varies_p (XEXP (x
, i
)))
3019 else if (fmt
[i
] == 'E')
3022 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3023 if (equiv_init_varies_p (XVECEXP (x
, i
, j
)))
3030 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3031 X is only movable if the registers it uses have equivalent initializations
3032 which appear to be within the same loop (or in an inner loop) and movable
3033 or if they are not candidates for local_alloc and don't vary. */
3035 equiv_init_movable_p (rtx x
, int regno
)
3039 enum rtx_code code
= GET_CODE (x
);
3044 return equiv_init_movable_p (SET_SRC (x
), regno
);
3059 return ((reg_equiv
[REGNO (x
)].loop_depth
>= reg_equiv
[regno
].loop_depth
3060 && reg_equiv
[REGNO (x
)].replace
)
3061 || (REG_BASIC_BLOCK (REGNO (x
)) < NUM_FIXED_BLOCKS
3062 && ! rtx_varies_p (x
, 0)));
3064 case UNSPEC_VOLATILE
:
3068 if (MEM_VOLATILE_P (x
))
3077 fmt
= GET_RTX_FORMAT (code
);
3078 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3082 if (! equiv_init_movable_p (XEXP (x
, i
), regno
))
3086 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3087 if (! equiv_init_movable_p (XVECEXP (x
, i
, j
), regno
))
3095 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3098 contains_replace_regs (rtx x
)
3102 enum rtx_code code
= GET_CODE (x
);
3116 return reg_equiv
[REGNO (x
)].replace
;
3122 fmt
= GET_RTX_FORMAT (code
);
3123 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3127 if (contains_replace_regs (XEXP (x
, i
)))
3131 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3132 if (contains_replace_regs (XVECEXP (x
, i
, j
)))
3140 /* TRUE if X references a memory location that would be affected by a store
3143 memref_referenced_p (rtx memref
, rtx x
)
3147 enum rtx_code code
= GET_CODE (x
);
3162 return (reg_equiv
[REGNO (x
)].replacement
3163 && memref_referenced_p (memref
,
3164 reg_equiv
[REGNO (x
)].replacement
));
3167 if (true_dependence (memref
, VOIDmode
, x
))
3172 /* If we are setting a MEM, it doesn't count (its address does), but any
3173 other SET_DEST that has a MEM in it is referencing the MEM. */
3174 if (MEM_P (SET_DEST (x
)))
3176 if (memref_referenced_p (memref
, XEXP (SET_DEST (x
), 0)))
3179 else if (memref_referenced_p (memref
, SET_DEST (x
)))
3182 return memref_referenced_p (memref
, SET_SRC (x
));
3188 fmt
= GET_RTX_FORMAT (code
);
3189 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3193 if (memref_referenced_p (memref
, XEXP (x
, i
)))
3197 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3198 if (memref_referenced_p (memref
, XVECEXP (x
, i
, j
)))
3206 /* TRUE if some insn in the range (START, END] references a memory location
3207 that would be affected by a store to MEMREF. */
3209 memref_used_between_p (rtx memref
, rtx start
, rtx end
)
3213 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
3214 insn
= NEXT_INSN (insn
))
3216 if (!NONDEBUG_INSN_P (insn
))
3219 if (memref_referenced_p (memref
, PATTERN (insn
)))
3222 /* Nonconst functions may access memory. */
3223 if (CALL_P (insn
) && (! RTL_CONST_CALL_P (insn
)))
3230 /* Mark REG as having no known equivalence.
3231 Some instructions might have been processed before and furnished
3232 with REG_EQUIV notes for this register; these notes will have to be
3234 STORE is the piece of RTL that does the non-constant / conflicting
3235 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3236 but needs to be there because this function is called from note_stores. */
3238 no_equiv (rtx reg
, const_rtx store ATTRIBUTE_UNUSED
,
3239 void *data ATTRIBUTE_UNUSED
)
3246 regno
= REGNO (reg
);
3247 list
= reg_equiv
[regno
].init_insns
;
3248 if (list
== const0_rtx
)
3250 reg_equiv
[regno
].init_insns
= const0_rtx
;
3251 reg_equiv
[regno
].replacement
= NULL_RTX
;
3252 /* This doesn't matter for equivalences made for argument registers, we
3253 should keep their initialization insns. */
3254 if (reg_equiv
[regno
].is_arg_equivalence
)
3256 ira_reg_equiv
[regno
].defined_p
= false;
3257 ira_reg_equiv
[regno
].init_insns
= NULL_RTX
;
3258 for (; list
; list
= XEXP (list
, 1))
3260 rtx insn
= XEXP (list
, 0);
3261 remove_note (insn
, find_reg_note (insn
, REG_EQUIV
, NULL_RTX
));
3265 /* Check whether the SUBREG is a paradoxical subreg and set the result
3269 set_paradoxical_subreg (rtx
*subreg
, void *pdx_subregs
)
3273 if ((*subreg
) == NULL_RTX
)
3275 if (GET_CODE (*subreg
) != SUBREG
)
3277 reg
= SUBREG_REG (*subreg
);
3281 if (paradoxical_subreg_p (*subreg
))
3282 ((bool *)pdx_subregs
)[REGNO (reg
)] = true;
3287 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3288 equivalent replacement. */
3291 adjust_cleared_regs (rtx loc
, const_rtx old_rtx ATTRIBUTE_UNUSED
, void *data
)
3295 bitmap cleared_regs
= (bitmap
) data
;
3296 if (bitmap_bit_p (cleared_regs
, REGNO (loc
)))
3297 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv
[REGNO (loc
)].src_p
),
3298 NULL_RTX
, adjust_cleared_regs
, data
);
3303 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3304 static int recorded_label_ref
;
3306 /* Find registers that are equivalent to a single value throughout the
3307 compilation (either because they can be referenced in memory or are
3308 set once from a single constant). Lower their priority for a
3311 If such a register is only referenced once, try substituting its
3312 value into the using insn. If it succeeds, we can eliminate the
3313 register completely.
3315 Initialize init_insns in ira_reg_equiv array.
3317 Return non-zero if jump label rebuilding should be done. */
3319 update_equiv_regs (void)
3324 bitmap cleared_regs
;
3327 /* We need to keep track of whether or not we recorded a LABEL_REF so
3328 that we know if the jump optimizer needs to be rerun. */
3329 recorded_label_ref
= 0;
3331 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3333 pdx_subregs
= XCNEWVEC (bool, max_regno
);
3335 reg_equiv
= XCNEWVEC (struct equivalence
, max_regno
);
3338 init_alias_analysis ();
3340 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3341 paradoxical subreg. Don't set such reg sequivalent to a mem,
3342 because lra will not substitute such equiv memory in order to
3343 prevent access beyond allocated memory for paradoxical memory subreg. */
3344 FOR_EACH_BB_FN (bb
, cfun
)
3345 FOR_BB_INSNS (bb
, insn
)
3346 if (NONDEBUG_INSN_P (insn
))
3347 for_each_rtx (&insn
, set_paradoxical_subreg
, (void *) pdx_subregs
);
3349 /* Scan the insns and find which registers have equivalences. Do this
3350 in a separate scan of the insns because (due to -fcse-follow-jumps)
3351 a register can be set below its use. */
3352 FOR_EACH_BB_FN (bb
, cfun
)
3354 loop_depth
= bb_loop_depth (bb
);
3356 for (insn
= BB_HEAD (bb
);
3357 insn
!= NEXT_INSN (BB_END (bb
));
3358 insn
= NEXT_INSN (insn
))
3365 if (! INSN_P (insn
))
3368 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
3369 if (REG_NOTE_KIND (note
) == REG_INC
)
3370 no_equiv (XEXP (note
, 0), note
, NULL
);
3372 set
= single_set (insn
);
3374 /* If this insn contains more (or less) than a single SET,
3375 only mark all destinations as having no known equivalence. */
3378 note_stores (PATTERN (insn
), no_equiv
, NULL
);
3381 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
3385 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
3387 rtx part
= XVECEXP (PATTERN (insn
), 0, i
);
3389 note_stores (part
, no_equiv
, NULL
);
3393 dest
= SET_DEST (set
);
3394 src
= SET_SRC (set
);
3396 /* See if this is setting up the equivalence between an argument
3397 register and its stack slot. */
3398 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
3401 gcc_assert (REG_P (dest
));
3402 regno
= REGNO (dest
);
3404 /* Note that we don't want to clear init_insns in
3405 ira_reg_equiv even if there are multiple sets of this
3407 reg_equiv
[regno
].is_arg_equivalence
= 1;
3409 /* The insn result can have equivalence memory although
3410 the equivalence is not set up by the insn. We add
3411 this insn to init insns as it is a flag for now that
3412 regno has an equivalence. We will remove the insn
3413 from init insn list later. */
3414 if (rtx_equal_p (src
, XEXP (note
, 0)) || MEM_P (XEXP (note
, 0)))
3415 ira_reg_equiv
[regno
].init_insns
3416 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
3417 ira_reg_equiv
[regno
].init_insns
);
3419 /* Continue normally in case this is a candidate for
3426 /* We only handle the case of a pseudo register being set
3427 once, or always to the same value. */
3428 /* ??? The mn10200 port breaks if we add equivalences for
3429 values that need an ADDRESS_REGS register and set them equivalent
3430 to a MEM of a pseudo. The actual problem is in the over-conservative
3431 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3432 calculate_needs, but we traditionally work around this problem
3433 here by rejecting equivalences when the destination is in a register
3434 that's likely spilled. This is fragile, of course, since the
3435 preferred class of a pseudo depends on all instructions that set
3439 || (regno
= REGNO (dest
)) < FIRST_PSEUDO_REGISTER
3440 || reg_equiv
[regno
].init_insns
== const0_rtx
3441 || (targetm
.class_likely_spilled_p (reg_preferred_class (regno
))
3442 && MEM_P (src
) && ! reg_equiv
[regno
].is_arg_equivalence
))
3444 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3445 also set somewhere else to a constant. */
3446 note_stores (set
, no_equiv
, NULL
);
3450 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3451 if (MEM_P (src
) && pdx_subregs
[regno
])
3453 note_stores (set
, no_equiv
, NULL
);
3457 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
3459 /* cse sometimes generates function invariants, but doesn't put a
3460 REG_EQUAL note on the insn. Since this note would be redundant,
3461 there's no point creating it earlier than here. */
3462 if (! note
&& ! rtx_varies_p (src
, 0))
3463 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
3465 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3466 since it represents a function call */
3467 if (note
&& GET_CODE (XEXP (note
, 0)) == EXPR_LIST
)
3470 if (DF_REG_DEF_COUNT (regno
) != 1
3472 || rtx_varies_p (XEXP (note
, 0), 0)
3473 || (reg_equiv
[regno
].replacement
3474 && ! rtx_equal_p (XEXP (note
, 0),
3475 reg_equiv
[regno
].replacement
))))
3477 no_equiv (dest
, set
, NULL
);
3480 /* Record this insn as initializing this register. */
3481 reg_equiv
[regno
].init_insns
3482 = gen_rtx_INSN_LIST (VOIDmode
, insn
, reg_equiv
[regno
].init_insns
);
3484 /* If this register is known to be equal to a constant, record that
3485 it is always equivalent to the constant. */
3486 if (DF_REG_DEF_COUNT (regno
) == 1
3487 && note
&& ! rtx_varies_p (XEXP (note
, 0), 0))
3489 rtx note_value
= XEXP (note
, 0);
3490 remove_note (insn
, note
);
3491 set_unique_reg_note (insn
, REG_EQUIV
, note_value
);
3494 /* If this insn introduces a "constant" register, decrease the priority
3495 of that register. Record this insn if the register is only used once
3496 more and the equivalence value is the same as our source.
3498 The latter condition is checked for two reasons: First, it is an
3499 indication that it may be more efficient to actually emit the insn
3500 as written (if no registers are available, reload will substitute
3501 the equivalence). Secondly, it avoids problems with any registers
3502 dying in this insn whose death notes would be missed.
3504 If we don't have a REG_EQUIV note, see if this insn is loading
3505 a register used only in one basic block from a MEM. If so, and the
3506 MEM remains unchanged for the life of the register, add a REG_EQUIV
3509 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
3511 if (note
== 0 && REG_BASIC_BLOCK (regno
) >= NUM_FIXED_BLOCKS
3512 && MEM_P (SET_SRC (set
))
3513 && validate_equiv_mem (insn
, dest
, SET_SRC (set
)))
3514 note
= set_unique_reg_note (insn
, REG_EQUIV
, copy_rtx (SET_SRC (set
)));
3518 int regno
= REGNO (dest
);
3519 rtx x
= XEXP (note
, 0);
3521 /* If we haven't done so, record for reload that this is an
3522 equivalencing insn. */
3523 if (!reg_equiv
[regno
].is_arg_equivalence
)
3524 ira_reg_equiv
[regno
].init_insns
3525 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
3526 ira_reg_equiv
[regno
].init_insns
);
3528 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3529 We might end up substituting the LABEL_REF for uses of the
3530 pseudo here or later. That kind of transformation may turn an
3531 indirect jump into a direct jump, in which case we must rerun the
3532 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3533 if (GET_CODE (x
) == LABEL_REF
3534 || (GET_CODE (x
) == CONST
3535 && GET_CODE (XEXP (x
, 0)) == PLUS
3536 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == LABEL_REF
)))
3537 recorded_label_ref
= 1;
3539 reg_equiv
[regno
].replacement
= x
;
3540 reg_equiv
[regno
].src_p
= &SET_SRC (set
);
3541 reg_equiv
[regno
].loop_depth
= loop_depth
;
3543 /* Don't mess with things live during setjmp. */
3544 if (REG_LIVE_LENGTH (regno
) >= 0 && optimize
)
3546 /* Note that the statement below does not affect the priority
3548 REG_LIVE_LENGTH (regno
) *= 2;
3550 /* If the register is referenced exactly twice, meaning it is
3551 set once and used once, indicate that the reference may be
3552 replaced by the equivalence we computed above. Do this
3553 even if the register is only used in one block so that
3554 dependencies can be handled where the last register is
3555 used in a different block (i.e. HIGH / LO_SUM sequences)
3556 and to reduce the number of registers alive across
3559 if (REG_N_REFS (regno
) == 2
3560 && (rtx_equal_p (x
, src
)
3561 || ! equiv_init_varies_p (src
))
3562 && NONJUMP_INSN_P (insn
)
3563 && equiv_init_movable_p (PATTERN (insn
), regno
))
3564 reg_equiv
[regno
].replace
= 1;
3573 /* A second pass, to gather additional equivalences with memory. This needs
3574 to be done after we know which registers we are going to replace. */
3576 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3581 if (! INSN_P (insn
))
3584 set
= single_set (insn
);
3588 dest
= SET_DEST (set
);
3589 src
= SET_SRC (set
);
3591 /* If this sets a MEM to the contents of a REG that is only used
3592 in a single basic block, see if the register is always equivalent
3593 to that memory location and if moving the store from INSN to the
3594 insn that set REG is safe. If so, put a REG_EQUIV note on the
3597 Don't add a REG_EQUIV note if the insn already has one. The existing
3598 REG_EQUIV is likely more useful than the one we are adding.
3600 If one of the regs in the address has reg_equiv[REGNO].replace set,
3601 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3602 optimization may move the set of this register immediately before
3603 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3604 the mention in the REG_EQUIV note would be to an uninitialized
3607 if (MEM_P (dest
) && REG_P (src
)
3608 && (regno
= REGNO (src
)) >= FIRST_PSEUDO_REGISTER
3609 && REG_BASIC_BLOCK (regno
) >= NUM_FIXED_BLOCKS
3610 && DF_REG_DEF_COUNT (regno
) == 1
3611 && reg_equiv
[regno
].init_insns
!= 0
3612 && reg_equiv
[regno
].init_insns
!= const0_rtx
3613 && ! find_reg_note (XEXP (reg_equiv
[regno
].init_insns
, 0),
3614 REG_EQUIV
, NULL_RTX
)
3615 && ! contains_replace_regs (XEXP (dest
, 0))
3616 && ! pdx_subregs
[regno
])
3618 rtx init_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
3619 if (validate_equiv_mem (init_insn
, src
, dest
)
3620 && ! memref_used_between_p (dest
, init_insn
, insn
)
3621 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3623 && set_unique_reg_note (init_insn
, REG_EQUIV
, copy_rtx (dest
)))
3625 /* This insn makes the equivalence, not the one initializing
3627 ira_reg_equiv
[regno
].init_insns
3628 = gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
3629 df_notes_rescan (init_insn
);
3634 cleared_regs
= BITMAP_ALLOC (NULL
);
3635 /* Now scan all regs killed in an insn to see if any of them are
3636 registers only used that once. If so, see if we can replace the
3637 reference with the equivalent form. If we can, delete the
3638 initializing reference and this register will go away. If we
3639 can't replace the reference, and the initializing reference is
3640 within the same loop (or in an inner loop), then move the register
3641 initialization just before the use, so that they are in the same
3643 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
3645 loop_depth
= bb_loop_depth (bb
);
3646 for (insn
= BB_END (bb
);
3647 insn
!= PREV_INSN (BB_HEAD (bb
));
3648 insn
= PREV_INSN (insn
))
3652 if (! INSN_P (insn
))
3655 /* Don't substitute into a non-local goto, this confuses CFG. */
3657 && find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
3660 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
3662 if (REG_NOTE_KIND (link
) == REG_DEAD
3663 /* Make sure this insn still refers to the register. */
3664 && reg_mentioned_p (XEXP (link
, 0), PATTERN (insn
)))
3666 int regno
= REGNO (XEXP (link
, 0));
3669 if (! reg_equiv
[regno
].replace
3670 || reg_equiv
[regno
].loop_depth
< loop_depth
3671 /* There is no sense to move insns if live range
3672 shrinkage or register pressure-sensitive
3673 scheduling were done because it will not
3674 improve allocation but worsen insn schedule
3675 with a big probability. */
3676 || flag_live_range_shrinkage
3677 || (flag_sched_pressure
&& flag_schedule_insns
))
3680 /* reg_equiv[REGNO].replace gets set only when
3681 REG_N_REFS[REGNO] is 2, i.e. the register is set
3682 once and used once. (If it were only set, but
3683 not used, flow would have deleted the setting
3684 insns.) Hence there can only be one insn in
3685 reg_equiv[REGNO].init_insns. */
3686 gcc_assert (reg_equiv
[regno
].init_insns
3687 && !XEXP (reg_equiv
[regno
].init_insns
, 1));
3688 equiv_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
3690 /* We may not move instructions that can throw, since
3691 that changes basic block boundaries and we are not
3692 prepared to adjust the CFG to match. */
3693 if (can_throw_internal (equiv_insn
))
3696 if (asm_noperands (PATTERN (equiv_insn
)) < 0
3697 && validate_replace_rtx (regno_reg_rtx
[regno
],
3698 *(reg_equiv
[regno
].src_p
), insn
))
3704 /* Find the last note. */
3705 for (last_link
= link
; XEXP (last_link
, 1);
3706 last_link
= XEXP (last_link
, 1))
3709 /* Append the REG_DEAD notes from equiv_insn. */
3710 equiv_link
= REG_NOTES (equiv_insn
);
3714 equiv_link
= XEXP (equiv_link
, 1);
3715 if (REG_NOTE_KIND (note
) == REG_DEAD
)
3717 remove_note (equiv_insn
, note
);
3718 XEXP (last_link
, 1) = note
;
3719 XEXP (note
, 1) = NULL_RTX
;
3724 remove_death (regno
, insn
);
3725 SET_REG_N_REFS (regno
, 0);
3726 REG_FREQ (regno
) = 0;
3727 delete_insn (equiv_insn
);
3729 reg_equiv
[regno
].init_insns
3730 = XEXP (reg_equiv
[regno
].init_insns
, 1);
3732 ira_reg_equiv
[regno
].init_insns
= NULL_RTX
;
3733 bitmap_set_bit (cleared_regs
, regno
);
3735 /* Move the initialization of the register to just before
3736 INSN. Update the flow information. */
3737 else if (prev_nondebug_insn (insn
) != equiv_insn
)
3741 new_insn
= emit_insn_before (PATTERN (equiv_insn
), insn
);
3742 REG_NOTES (new_insn
) = REG_NOTES (equiv_insn
);
3743 REG_NOTES (equiv_insn
) = 0;
3744 /* Rescan it to process the notes. */
3745 df_insn_rescan (new_insn
);
3747 /* Make sure this insn is recognized before
3748 reload begins, otherwise
3749 eliminate_regs_in_insn will die. */
3750 INSN_CODE (new_insn
) = INSN_CODE (equiv_insn
);
3752 delete_insn (equiv_insn
);
3754 XEXP (reg_equiv
[regno
].init_insns
, 0) = new_insn
;
3756 REG_BASIC_BLOCK (regno
) = bb
->index
;
3757 REG_N_CALLS_CROSSED (regno
) = 0;
3758 REG_FREQ_CALLS_CROSSED (regno
) = 0;
3759 REG_N_THROWING_CALLS_CROSSED (regno
) = 0;
3760 REG_LIVE_LENGTH (regno
) = 2;
3762 if (insn
== BB_HEAD (bb
))
3763 BB_HEAD (bb
) = PREV_INSN (insn
);
3765 ira_reg_equiv
[regno
].init_insns
3766 = gen_rtx_INSN_LIST (VOIDmode
, new_insn
, NULL_RTX
);
3767 bitmap_set_bit (cleared_regs
, regno
);
3774 if (!bitmap_empty_p (cleared_regs
))
3776 FOR_EACH_BB_FN (bb
, cfun
)
3778 bitmap_and_compl_into (DF_LR_IN (bb
), cleared_regs
);
3779 bitmap_and_compl_into (DF_LR_OUT (bb
), cleared_regs
);
3782 bitmap_and_compl_into (DF_LIVE_IN (bb
), cleared_regs
);
3783 bitmap_and_compl_into (DF_LIVE_OUT (bb
), cleared_regs
);
3786 /* Last pass - adjust debug insns referencing cleared regs. */
3787 if (MAY_HAVE_DEBUG_INSNS
)
3788 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3789 if (DEBUG_INSN_P (insn
))
3791 rtx old_loc
= INSN_VAR_LOCATION_LOC (insn
);
3792 INSN_VAR_LOCATION_LOC (insn
)
3793 = simplify_replace_fn_rtx (old_loc
, NULL_RTX
,
3794 adjust_cleared_regs
,
3795 (void *) cleared_regs
);
3796 if (old_loc
!= INSN_VAR_LOCATION_LOC (insn
))
3797 df_insn_rescan (insn
);
3801 BITMAP_FREE (cleared_regs
);
3806 end_alias_analysis ();
3809 return recorded_label_ref
;
3814 /* Set up fields memory, constant, and invariant from init_insns in
3815 the structures of array ira_reg_equiv. */
3817 setup_reg_equiv (void)
3820 rtx elem
, prev_elem
, next_elem
, insn
, set
, x
;
3822 for (i
= FIRST_PSEUDO_REGISTER
; i
< ira_reg_equiv_len
; i
++)
3823 for (prev_elem
= NULL
, elem
= ira_reg_equiv
[i
].init_insns
;
3825 prev_elem
= elem
, elem
= next_elem
)
3827 next_elem
= XEXP (elem
, 1);
3828 insn
= XEXP (elem
, 0);
3829 set
= single_set (insn
);
3831 /* Init insns can set up equivalence when the reg is a destination or
3832 a source (in this case the destination is memory). */
3833 if (set
!= 0 && (REG_P (SET_DEST (set
)) || REG_P (SET_SRC (set
))))
3835 if ((x
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != NULL
)
3838 if (REG_P (SET_DEST (set
))
3839 && REGNO (SET_DEST (set
)) == (unsigned int) i
3840 && ! rtx_equal_p (SET_SRC (set
), x
) && MEM_P (x
))
3842 /* This insn reporting the equivalence but
3843 actually not setting it. Remove it from the
3845 if (prev_elem
== NULL
)
3846 ira_reg_equiv
[i
].init_insns
= next_elem
;
3848 XEXP (prev_elem
, 1) = next_elem
;
3852 else if (REG_P (SET_DEST (set
))
3853 && REGNO (SET_DEST (set
)) == (unsigned int) i
)
3857 gcc_assert (REG_P (SET_SRC (set
))
3858 && REGNO (SET_SRC (set
)) == (unsigned int) i
);
3861 if (! function_invariant_p (x
)
3863 /* A function invariant is often CONSTANT_P but may
3864 include a register. We promise to only pass
3865 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3866 || (CONSTANT_P (x
) && LEGITIMATE_PIC_OPERAND_P (x
)))
3868 /* It can happen that a REG_EQUIV note contains a MEM
3869 that is not a legitimate memory operand. As later
3870 stages of reload assume that all addresses found in
3871 the lra_regno_equiv_* arrays were originally
3872 legitimate, we ignore such REG_EQUIV notes. */
3873 if (memory_operand (x
, VOIDmode
))
3875 ira_reg_equiv
[i
].defined_p
= true;
3876 ira_reg_equiv
[i
].memory
= x
;
3879 else if (function_invariant_p (x
))
3881 enum machine_mode mode
;
3883 mode
= GET_MODE (SET_DEST (set
));
3884 if (GET_CODE (x
) == PLUS
3885 || x
== frame_pointer_rtx
|| x
== arg_pointer_rtx
)
3886 /* This is PLUS of frame pointer and a constant,
3888 ira_reg_equiv
[i
].invariant
= x
;
3889 else if (targetm
.legitimate_constant_p (mode
, x
))
3890 ira_reg_equiv
[i
].constant
= x
;
3893 ira_reg_equiv
[i
].memory
= force_const_mem (mode
, x
);
3894 if (ira_reg_equiv
[i
].memory
== NULL_RTX
)
3896 ira_reg_equiv
[i
].defined_p
= false;
3897 ira_reg_equiv
[i
].init_insns
= NULL_RTX
;
3901 ira_reg_equiv
[i
].defined_p
= true;
3906 ira_reg_equiv
[i
].defined_p
= false;
3907 ira_reg_equiv
[i
].init_insns
= NULL_RTX
;
3914 /* Print chain C to FILE. */
3916 print_insn_chain (FILE *file
, struct insn_chain
*c
)
3918 fprintf (file
, "insn=%d, ", INSN_UID (c
->insn
));
3919 bitmap_print (file
, &c
->live_throughout
, "live_throughout: ", ", ");
3920 bitmap_print (file
, &c
->dead_or_set
, "dead_or_set: ", "\n");
3924 /* Print all reload_insn_chains to FILE. */
3926 print_insn_chains (FILE *file
)
3928 struct insn_chain
*c
;
3929 for (c
= reload_insn_chain
; c
; c
= c
->next
)
3930 print_insn_chain (file
, c
);
3933 /* Return true if pseudo REGNO should be added to set live_throughout
3934 or dead_or_set of the insn chains for reload consideration. */
3936 pseudo_for_reload_consideration_p (int regno
)
3938 /* Consider spilled pseudos too for IRA because they still have a
3939 chance to get hard-registers in the reload when IRA is used. */
3940 return (reg_renumber
[regno
] >= 0 || ira_conflicts_p
);
3943 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3944 REG to the number of nregs, and INIT_VALUE to get the
3945 initialization. ALLOCNUM need not be the regno of REG. */
3947 init_live_subregs (bool init_value
, sbitmap
*live_subregs
,
3948 bitmap live_subregs_used
, int allocnum
, rtx reg
)
3950 unsigned int regno
= REGNO (SUBREG_REG (reg
));
3951 int size
= GET_MODE_SIZE (GET_MODE (regno_reg_rtx
[regno
]));
3953 gcc_assert (size
> 0);
3955 /* Been there, done that. */
3956 if (bitmap_bit_p (live_subregs_used
, allocnum
))
3959 /* Create a new one. */
3960 if (live_subregs
[allocnum
] == NULL
)
3961 live_subregs
[allocnum
] = sbitmap_alloc (size
);
3963 /* If the entire reg was live before blasting into subregs, we need
3964 to init all of the subregs to ones else init to 0. */
3966 bitmap_ones (live_subregs
[allocnum
]);
3968 bitmap_clear (live_subregs
[allocnum
]);
3970 bitmap_set_bit (live_subregs_used
, allocnum
);
3973 /* Walk the insns of the current function and build reload_insn_chain,
3974 and record register life information. */
3976 build_insn_chain (void)
3979 struct insn_chain
**p
= &reload_insn_chain
;
3981 struct insn_chain
*c
= NULL
;
3982 struct insn_chain
*next
= NULL
;
3983 bitmap live_relevant_regs
= BITMAP_ALLOC (NULL
);
3984 bitmap elim_regset
= BITMAP_ALLOC (NULL
);
3985 /* live_subregs is a vector used to keep accurate information about
3986 which hardregs are live in multiword pseudos. live_subregs and
3987 live_subregs_used are indexed by pseudo number. The live_subreg
3988 entry for a particular pseudo is only used if the corresponding
3989 element is non zero in live_subregs_used. The sbitmap size of
3990 live_subreg[allocno] is number of bytes that the pseudo can
3992 sbitmap
*live_subregs
= XCNEWVEC (sbitmap
, max_regno
);
3993 bitmap live_subregs_used
= BITMAP_ALLOC (NULL
);
3995 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3996 if (TEST_HARD_REG_BIT (eliminable_regset
, i
))
3997 bitmap_set_bit (elim_regset
, i
);
3998 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
4003 CLEAR_REG_SET (live_relevant_regs
);
4004 bitmap_clear (live_subregs_used
);
4006 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb
), 0, i
, bi
)
4008 if (i
>= FIRST_PSEUDO_REGISTER
)
4010 bitmap_set_bit (live_relevant_regs
, i
);
4013 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb
),
4014 FIRST_PSEUDO_REGISTER
, i
, bi
)
4016 if (pseudo_for_reload_consideration_p (i
))
4017 bitmap_set_bit (live_relevant_regs
, i
);
4020 FOR_BB_INSNS_REVERSE (bb
, insn
)
4022 if (!NOTE_P (insn
) && !BARRIER_P (insn
))
4024 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
4027 c
= new_insn_chain ();
4034 c
->block
= bb
->index
;
4036 if (NONDEBUG_INSN_P (insn
))
4037 FOR_EACH_INSN_INFO_DEF (def
, insn_info
)
4039 unsigned int regno
= DF_REF_REGNO (def
);
4041 /* Ignore may clobbers because these are generated
4042 from calls. However, every other kind of def is
4043 added to dead_or_set. */
4044 if (!DF_REF_FLAGS_IS_SET (def
, DF_REF_MAY_CLOBBER
))
4046 if (regno
< FIRST_PSEUDO_REGISTER
)
4048 if (!fixed_regs
[regno
])
4049 bitmap_set_bit (&c
->dead_or_set
, regno
);
4051 else if (pseudo_for_reload_consideration_p (regno
))
4052 bitmap_set_bit (&c
->dead_or_set
, regno
);
4055 if ((regno
< FIRST_PSEUDO_REGISTER
4056 || reg_renumber
[regno
] >= 0
4058 && (!DF_REF_FLAGS_IS_SET (def
, DF_REF_CONDITIONAL
)))
4060 rtx reg
= DF_REF_REG (def
);
4062 /* We can model subregs, but not if they are
4063 wrapped in ZERO_EXTRACTS. */
4064 if (GET_CODE (reg
) == SUBREG
4065 && !DF_REF_FLAGS_IS_SET (def
, DF_REF_ZERO_EXTRACT
))
4067 unsigned int start
= SUBREG_BYTE (reg
);
4068 unsigned int last
= start
4069 + GET_MODE_SIZE (GET_MODE (reg
));
4072 (bitmap_bit_p (live_relevant_regs
, regno
),
4073 live_subregs
, live_subregs_used
, regno
, reg
);
4075 if (!DF_REF_FLAGS_IS_SET
4076 (def
, DF_REF_STRICT_LOW_PART
))
4078 /* Expand the range to cover entire words.
4079 Bytes added here are "don't care". */
4081 = start
/ UNITS_PER_WORD
* UNITS_PER_WORD
;
4082 last
= ((last
+ UNITS_PER_WORD
- 1)
4083 / UNITS_PER_WORD
* UNITS_PER_WORD
);
4086 /* Ignore the paradoxical bits. */
4087 if (last
> SBITMAP_SIZE (live_subregs
[regno
]))
4088 last
= SBITMAP_SIZE (live_subregs
[regno
]);
4090 while (start
< last
)
4092 bitmap_clear_bit (live_subregs
[regno
], start
);
4096 if (bitmap_empty_p (live_subregs
[regno
]))
4098 bitmap_clear_bit (live_subregs_used
, regno
);
4099 bitmap_clear_bit (live_relevant_regs
, regno
);
4102 /* Set live_relevant_regs here because
4103 that bit has to be true to get us to
4104 look at the live_subregs fields. */
4105 bitmap_set_bit (live_relevant_regs
, regno
);
4109 /* DF_REF_PARTIAL is generated for
4110 subregs, STRICT_LOW_PART, and
4111 ZERO_EXTRACT. We handle the subreg
4112 case above so here we have to keep from
4113 modeling the def as a killing def. */
4114 if (!DF_REF_FLAGS_IS_SET (def
, DF_REF_PARTIAL
))
4116 bitmap_clear_bit (live_subregs_used
, regno
);
4117 bitmap_clear_bit (live_relevant_regs
, regno
);
4123 bitmap_and_compl_into (live_relevant_regs
, elim_regset
);
4124 bitmap_copy (&c
->live_throughout
, live_relevant_regs
);
4126 if (NONDEBUG_INSN_P (insn
))
4127 FOR_EACH_INSN_INFO_USE (use
, insn_info
)
4129 unsigned int regno
= DF_REF_REGNO (use
);
4130 rtx reg
= DF_REF_REG (use
);
4132 /* DF_REF_READ_WRITE on a use means that this use
4133 is fabricated from a def that is a partial set
4134 to a multiword reg. Here, we only model the
4135 subreg case that is not wrapped in ZERO_EXTRACT
4136 precisely so we do not need to look at the
4138 if (DF_REF_FLAGS_IS_SET (use
, DF_REF_READ_WRITE
)
4139 && !DF_REF_FLAGS_IS_SET (use
, DF_REF_ZERO_EXTRACT
)
4140 && DF_REF_FLAGS_IS_SET (use
, DF_REF_SUBREG
))
4143 /* Add the last use of each var to dead_or_set. */
4144 if (!bitmap_bit_p (live_relevant_regs
, regno
))
4146 if (regno
< FIRST_PSEUDO_REGISTER
)
4148 if (!fixed_regs
[regno
])
4149 bitmap_set_bit (&c
->dead_or_set
, regno
);
4151 else if (pseudo_for_reload_consideration_p (regno
))
4152 bitmap_set_bit (&c
->dead_or_set
, regno
);
4155 if (regno
< FIRST_PSEUDO_REGISTER
4156 || pseudo_for_reload_consideration_p (regno
))
4158 if (GET_CODE (reg
) == SUBREG
4159 && !DF_REF_FLAGS_IS_SET (use
,
4161 | DF_REF_ZERO_EXTRACT
))
4163 unsigned int start
= SUBREG_BYTE (reg
);
4164 unsigned int last
= start
4165 + GET_MODE_SIZE (GET_MODE (reg
));
4168 (bitmap_bit_p (live_relevant_regs
, regno
),
4169 live_subregs
, live_subregs_used
, regno
, reg
);
4171 /* Ignore the paradoxical bits. */
4172 if (last
> SBITMAP_SIZE (live_subregs
[regno
]))
4173 last
= SBITMAP_SIZE (live_subregs
[regno
]);
4175 while (start
< last
)
4177 bitmap_set_bit (live_subregs
[regno
], start
);
4182 /* Resetting the live_subregs_used is
4183 effectively saying do not use the subregs
4184 because we are reading the whole
4186 bitmap_clear_bit (live_subregs_used
, regno
);
4187 bitmap_set_bit (live_relevant_regs
, regno
);
4193 /* FIXME!! The following code is a disaster. Reload needs to see the
4194 labels and jump tables that are just hanging out in between
4195 the basic blocks. See pr33676. */
4196 insn
= BB_HEAD (bb
);
4198 /* Skip over the barriers and cruft. */
4199 while (insn
&& (BARRIER_P (insn
) || NOTE_P (insn
)
4200 || BLOCK_FOR_INSN (insn
) == bb
))
4201 insn
= PREV_INSN (insn
);
4203 /* While we add anything except barriers and notes, the focus is
4204 to get the labels and jump tables into the
4205 reload_insn_chain. */
4208 if (!NOTE_P (insn
) && !BARRIER_P (insn
))
4210 if (BLOCK_FOR_INSN (insn
))
4213 c
= new_insn_chain ();
4219 /* The block makes no sense here, but it is what the old
4221 c
->block
= bb
->index
;
4223 bitmap_copy (&c
->live_throughout
, live_relevant_regs
);
4225 insn
= PREV_INSN (insn
);
4229 reload_insn_chain
= c
;
4232 for (i
= 0; i
< (unsigned int) max_regno
; i
++)
4233 if (live_subregs
[i
] != NULL
)
4234 sbitmap_free (live_subregs
[i
]);
4235 free (live_subregs
);
4236 BITMAP_FREE (live_subregs_used
);
4237 BITMAP_FREE (live_relevant_regs
);
4238 BITMAP_FREE (elim_regset
);
4241 print_insn_chains (dump_file
);
4244 /* Examine the rtx found in *LOC, which is read or written to as determined
4245 by TYPE. Return false if we find a reason why an insn containing this
4246 rtx should not be moved (such as accesses to non-constant memory), true
4249 rtx_moveable_p (rtx
*loc
, enum op_type type
)
4253 enum rtx_code code
= GET_CODE (x
);
4256 code
= GET_CODE (x
);
4266 return type
== OP_IN
;
4272 if (x
== frame_pointer_rtx
)
4274 if (HARD_REGISTER_P (x
))
4280 if (type
== OP_IN
&& MEM_READONLY_P (x
))
4281 return rtx_moveable_p (&XEXP (x
, 0), OP_IN
);
4285 return (rtx_moveable_p (&SET_SRC (x
), OP_IN
)
4286 && rtx_moveable_p (&SET_DEST (x
), OP_OUT
));
4288 case STRICT_LOW_PART
:
4289 return rtx_moveable_p (&XEXP (x
, 0), OP_OUT
);
4293 return (rtx_moveable_p (&XEXP (x
, 0), type
)
4294 && rtx_moveable_p (&XEXP (x
, 1), OP_IN
)
4295 && rtx_moveable_p (&XEXP (x
, 2), OP_IN
));
4298 return rtx_moveable_p (&SET_DEST (x
), OP_OUT
);
4304 fmt
= GET_RTX_FORMAT (code
);
4305 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4309 if (!rtx_moveable_p (&XEXP (x
, i
), type
))
4312 else if (fmt
[i
] == 'E')
4313 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4315 if (!rtx_moveable_p (&XVECEXP (x
, i
, j
), type
))
4322 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4323 to give dominance relationships between two insns I1 and I2. */
4325 insn_dominated_by_p (rtx i1
, rtx i2
, int *uid_luid
)
4327 basic_block bb1
= BLOCK_FOR_INSN (i1
);
4328 basic_block bb2
= BLOCK_FOR_INSN (i2
);
4331 return uid_luid
[INSN_UID (i2
)] < uid_luid
[INSN_UID (i1
)];
4332 return dominated_by_p (CDI_DOMINATORS
, bb1
, bb2
);
4335 /* Record the range of register numbers added by find_moveable_pseudos. */
4336 int first_moveable_pseudo
, last_moveable_pseudo
;
4338 /* These two vectors hold data for every register added by
4339 find_movable_pseudos, with index 0 holding data for the
4340 first_moveable_pseudo. */
4341 /* The original home register. */
4342 static vec
<rtx
> pseudo_replaced_reg
;
4344 /* Look for instances where we have an instruction that is known to increase
4345 register pressure, and whose result is not used immediately. If it is
4346 possible to move the instruction downwards to just before its first use,
4347 split its lifetime into two ranges. We create a new pseudo to compute the
4348 value, and emit a move instruction just before the first use. If, after
4349 register allocation, the new pseudo remains unallocated, the function
4350 move_unallocated_pseudos then deletes the move instruction and places
4351 the computation just before the first use.
4353 Such a move is safe and profitable if all the input registers remain live
4354 and unchanged between the original computation and its first use. In such
4355 a situation, the computation is known to increase register pressure, and
4356 moving it is known to at least not worsen it.
4358 We restrict moves to only those cases where a register remains unallocated,
4359 in order to avoid interfering too much with the instruction schedule. As
4360 an exception, we may move insns which only modify their input register
4361 (typically induction variables), as this increases the freedom for our
4362 intended transformation, and does not limit the second instruction
4366 find_moveable_pseudos (void)
4369 int max_regs
= max_reg_num ();
4370 int max_uid
= get_max_uid ();
4372 int *uid_luid
= XNEWVEC (int, max_uid
);
4373 rtx
*closest_uses
= XNEWVEC (rtx
, max_regs
);
4374 /* A set of registers which are live but not modified throughout a block. */
4375 bitmap_head
*bb_transp_live
= XNEWVEC (bitmap_head
,
4376 last_basic_block_for_fn (cfun
));
4377 /* A set of registers which only exist in a given basic block. */
4378 bitmap_head
*bb_local
= XNEWVEC (bitmap_head
,
4379 last_basic_block_for_fn (cfun
));
4380 /* A set of registers which are set once, in an instruction that can be
4381 moved freely downwards, but are otherwise transparent to a block. */
4382 bitmap_head
*bb_moveable_reg_sets
= XNEWVEC (bitmap_head
,
4383 last_basic_block_for_fn (cfun
));
4384 bitmap_head live
, used
, set
, interesting
, unusable_as_input
;
4386 bitmap_initialize (&interesting
, 0);
4388 first_moveable_pseudo
= max_regs
;
4389 pseudo_replaced_reg
.release ();
4390 pseudo_replaced_reg
.safe_grow_cleared (max_regs
);
4393 calculate_dominance_info (CDI_DOMINATORS
);
4396 bitmap_initialize (&live
, 0);
4397 bitmap_initialize (&used
, 0);
4398 bitmap_initialize (&set
, 0);
4399 bitmap_initialize (&unusable_as_input
, 0);
4400 FOR_EACH_BB_FN (bb
, cfun
)
4403 bitmap transp
= bb_transp_live
+ bb
->index
;
4404 bitmap moveable
= bb_moveable_reg_sets
+ bb
->index
;
4405 bitmap local
= bb_local
+ bb
->index
;
4407 bitmap_initialize (local
, 0);
4408 bitmap_initialize (transp
, 0);
4409 bitmap_initialize (moveable
, 0);
4410 bitmap_copy (&live
, df_get_live_out (bb
));
4411 bitmap_and_into (&live
, df_get_live_in (bb
));
4412 bitmap_copy (transp
, &live
);
4413 bitmap_clear (moveable
);
4414 bitmap_clear (&live
);
4415 bitmap_clear (&used
);
4416 bitmap_clear (&set
);
4417 FOR_BB_INSNS (bb
, insn
)
4418 if (NONDEBUG_INSN_P (insn
))
4420 df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
4423 uid_luid
[INSN_UID (insn
)] = i
++;
4425 def
= df_single_def (insn_info
);
4426 use
= df_single_use (insn_info
);
4429 && DF_REF_REGNO (use
) == DF_REF_REGNO (def
)
4430 && !bitmap_bit_p (&set
, DF_REF_REGNO (use
))
4431 && rtx_moveable_p (&PATTERN (insn
), OP_IN
))
4433 unsigned regno
= DF_REF_REGNO (use
);
4434 bitmap_set_bit (moveable
, regno
);
4435 bitmap_set_bit (&set
, regno
);
4436 bitmap_set_bit (&used
, regno
);
4437 bitmap_clear_bit (transp
, regno
);
4440 FOR_EACH_INSN_INFO_USE (use
, insn_info
)
4442 unsigned regno
= DF_REF_REGNO (use
);
4443 bitmap_set_bit (&used
, regno
);
4444 if (bitmap_clear_bit (moveable
, regno
))
4445 bitmap_clear_bit (transp
, regno
);
4448 FOR_EACH_INSN_INFO_DEF (def
, insn_info
)
4450 unsigned regno
= DF_REF_REGNO (def
);
4451 bitmap_set_bit (&set
, regno
);
4452 bitmap_clear_bit (transp
, regno
);
4453 bitmap_clear_bit (moveable
, regno
);
4458 bitmap_clear (&live
);
4459 bitmap_clear (&used
);
4460 bitmap_clear (&set
);
4462 FOR_EACH_BB_FN (bb
, cfun
)
4464 bitmap local
= bb_local
+ bb
->index
;
4467 FOR_BB_INSNS (bb
, insn
)
4468 if (NONDEBUG_INSN_P (insn
))
4470 df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
4471 rtx def_insn
, closest_use
, note
;
4474 bool all_dominated
, all_local
;
4475 enum machine_mode mode
;
4477 def
= df_single_def (insn_info
);
4478 /* There must be exactly one def in this insn. */
4479 if (!def
|| !single_set (insn
))
4481 /* This must be the only definition of the reg. We also limit
4482 which modes we deal with so that we can assume we can generate
4483 move instructions. */
4484 regno
= DF_REF_REGNO (def
);
4485 mode
= GET_MODE (DF_REF_REG (def
));
4486 if (DF_REG_DEF_COUNT (regno
) != 1
4487 || !DF_REF_INSN_INFO (def
)
4488 || HARD_REGISTER_NUM_P (regno
)
4489 || DF_REG_EQ_USE_COUNT (regno
) > 0
4490 || (!INTEGRAL_MODE_P (mode
) && !FLOAT_MODE_P (mode
)))
4492 def_insn
= DF_REF_INSN (def
);
4494 for (note
= REG_NOTES (def_insn
); note
; note
= XEXP (note
, 1))
4495 if (REG_NOTE_KIND (note
) == REG_EQUIV
&& MEM_P (XEXP (note
, 0)))
4501 fprintf (dump_file
, "Ignoring reg %d, has equiv memory\n",
4503 bitmap_set_bit (&unusable_as_input
, regno
);
4507 use
= DF_REG_USE_CHAIN (regno
);
4508 all_dominated
= true;
4510 closest_use
= NULL_RTX
;
4511 for (; use
; use
= DF_REF_NEXT_REG (use
))
4514 if (!DF_REF_INSN_INFO (use
))
4516 all_dominated
= false;
4520 insn
= DF_REF_INSN (use
);
4521 if (DEBUG_INSN_P (insn
))
4523 if (BLOCK_FOR_INSN (insn
) != BLOCK_FOR_INSN (def_insn
))
4525 if (!insn_dominated_by_p (insn
, def_insn
, uid_luid
))
4526 all_dominated
= false;
4527 if (closest_use
!= insn
&& closest_use
!= const0_rtx
)
4529 if (closest_use
== NULL_RTX
)
4531 else if (insn_dominated_by_p (closest_use
, insn
, uid_luid
))
4533 else if (!insn_dominated_by_p (insn
, closest_use
, uid_luid
))
4534 closest_use
= const0_rtx
;
4540 fprintf (dump_file
, "Reg %d not all uses dominated by set\n",
4545 bitmap_set_bit (local
, regno
);
4546 if (closest_use
== const0_rtx
|| closest_use
== NULL
4547 || next_nonnote_nondebug_insn (def_insn
) == closest_use
)
4550 fprintf (dump_file
, "Reg %d uninteresting%s\n", regno
,
4551 closest_use
== const0_rtx
|| closest_use
== NULL
4552 ? " (no unique first use)" : "");
4556 if (reg_referenced_p (cc0_rtx
, PATTERN (closest_use
)))
4559 fprintf (dump_file
, "Reg %d: closest user uses cc0\n",
4564 bitmap_set_bit (&interesting
, regno
);
4565 closest_uses
[regno
] = closest_use
;
4567 if (dump_file
&& (all_local
|| all_dominated
))
4569 fprintf (dump_file
, "Reg %u:", regno
);
4571 fprintf (dump_file
, " local to bb %d", bb
->index
);
4573 fprintf (dump_file
, " def dominates all uses");
4574 if (closest_use
!= const0_rtx
)
4575 fprintf (dump_file
, " has unique first use");
4576 fputs ("\n", dump_file
);
4581 EXECUTE_IF_SET_IN_BITMAP (&interesting
, 0, i
, bi
)
4583 df_ref def
= DF_REG_DEF_CHAIN (i
);
4584 rtx def_insn
= DF_REF_INSN (def
);
4585 basic_block def_block
= BLOCK_FOR_INSN (def_insn
);
4586 bitmap def_bb_local
= bb_local
+ def_block
->index
;
4587 bitmap def_bb_moveable
= bb_moveable_reg_sets
+ def_block
->index
;
4588 bitmap def_bb_transp
= bb_transp_live
+ def_block
->index
;
4589 bool local_to_bb_p
= bitmap_bit_p (def_bb_local
, i
);
4590 rtx use_insn
= closest_uses
[i
];
4593 bool all_transp
= true;
4595 if (!REG_P (DF_REF_REG (def
)))
4601 fprintf (dump_file
, "Reg %u not local to one basic block\n",
4605 if (reg_equiv_init (i
) != NULL_RTX
)
4608 fprintf (dump_file
, "Ignoring reg %u with equiv init insn\n",
4612 if (!rtx_moveable_p (&PATTERN (def_insn
), OP_IN
))
4615 fprintf (dump_file
, "Found def insn %d for %d to be not moveable\n",
4616 INSN_UID (def_insn
), i
);
4620 fprintf (dump_file
, "Examining insn %d, def for %d\n",
4621 INSN_UID (def_insn
), i
);
4622 FOR_EACH_INSN_USE (use
, def_insn
)
4624 unsigned regno
= DF_REF_REGNO (use
);
4625 if (bitmap_bit_p (&unusable_as_input
, regno
))
4629 fprintf (dump_file
, " found unusable input reg %u.\n", regno
);
4632 if (!bitmap_bit_p (def_bb_transp
, regno
))
4634 if (bitmap_bit_p (def_bb_moveable
, regno
)
4635 && !control_flow_insn_p (use_insn
)
4637 && !sets_cc0_p (use_insn
)
4641 if (modified_between_p (DF_REF_REG (use
), def_insn
, use_insn
))
4643 rtx x
= NEXT_INSN (def_insn
);
4644 while (!modified_in_p (DF_REF_REG (use
), x
))
4646 gcc_assert (x
!= use_insn
);
4650 fprintf (dump_file
, " input reg %u modified but insn %d moveable\n",
4651 regno
, INSN_UID (x
));
4652 emit_insn_after (PATTERN (x
), use_insn
);
4653 set_insn_deleted (x
);
4658 fprintf (dump_file
, " input reg %u modified between def and use\n",
4669 if (!dbg_cnt (ira_move
))
4672 fprintf (dump_file
, " all ok%s\n", all_transp
? " and transp" : "");
4676 rtx def_reg
= DF_REF_REG (def
);
4677 rtx newreg
= ira_create_new_reg (def_reg
);
4678 if (validate_change (def_insn
, DF_REF_REAL_LOC (def
), newreg
, 0))
4680 unsigned nregno
= REGNO (newreg
);
4681 emit_insn_before (gen_move_insn (def_reg
, newreg
), use_insn
);
4683 pseudo_replaced_reg
[nregno
] = def_reg
;
4688 FOR_EACH_BB_FN (bb
, cfun
)
4690 bitmap_clear (bb_local
+ bb
->index
);
4691 bitmap_clear (bb_transp_live
+ bb
->index
);
4692 bitmap_clear (bb_moveable_reg_sets
+ bb
->index
);
4694 bitmap_clear (&interesting
);
4695 bitmap_clear (&unusable_as_input
);
4697 free (closest_uses
);
4699 free (bb_transp_live
);
4700 free (bb_moveable_reg_sets
);
4702 last_moveable_pseudo
= max_reg_num ();
4704 fix_reg_equiv_init ();
4706 regstat_free_n_sets_and_refs ();
4708 regstat_init_n_sets_and_refs ();
4709 regstat_compute_ri ();
4710 free_dominance_info (CDI_DOMINATORS
);
4713 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4714 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4715 the destination. Otherwise return NULL. */
4718 interesting_dest_for_shprep_1 (rtx set
, basic_block call_dom
)
4720 rtx src
= SET_SRC (set
);
4721 rtx dest
= SET_DEST (set
);
4722 if (!REG_P (src
) || !HARD_REGISTER_P (src
)
4723 || !REG_P (dest
) || HARD_REGISTER_P (dest
)
4724 || (call_dom
&& !bitmap_bit_p (df_get_live_in (call_dom
), REGNO (dest
))))
4729 /* If insn is interesting for parameter range-splitting shring-wrapping
4730 preparation, i.e. it is a single set from a hard register to a pseudo, which
4731 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4732 parallel statement with only one such statement, return the destination.
4733 Otherwise return NULL. */
4736 interesting_dest_for_shprep (rtx insn
, basic_block call_dom
)
4740 rtx pat
= PATTERN (insn
);
4741 if (GET_CODE (pat
) == SET
)
4742 return interesting_dest_for_shprep_1 (pat
, call_dom
);
4744 if (GET_CODE (pat
) != PARALLEL
)
4747 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
4749 rtx sub
= XVECEXP (pat
, 0, i
);
4750 if (GET_CODE (sub
) == USE
|| GET_CODE (sub
) == CLOBBER
)
4752 if (GET_CODE (sub
) != SET
4753 || side_effects_p (sub
))
4755 rtx dest
= interesting_dest_for_shprep_1 (sub
, call_dom
);
4764 /* Split live ranges of pseudos that are loaded from hard registers in the
4765 first BB in a BB that dominates all non-sibling call if such a BB can be
4766 found and is not in a loop. Return true if the function has made any
4770 split_live_ranges_for_shrink_wrap (void)
4772 basic_block bb
, call_dom
= NULL
;
4773 basic_block first
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
4774 rtx insn
, last_interesting_insn
= NULL
;
4775 bitmap_head need_new
, reachable
;
4776 vec
<basic_block
> queue
;
4778 if (!flag_shrink_wrap
)
4781 bitmap_initialize (&need_new
, 0);
4782 bitmap_initialize (&reachable
, 0);
4783 queue
.create (n_basic_blocks_for_fn (cfun
));
4785 FOR_EACH_BB_FN (bb
, cfun
)
4786 FOR_BB_INSNS (bb
, insn
)
4787 if (CALL_P (insn
) && !SIBLING_CALL_P (insn
))
4791 bitmap_clear (&need_new
);
4792 bitmap_clear (&reachable
);
4797 bitmap_set_bit (&need_new
, bb
->index
);
4798 bitmap_set_bit (&reachable
, bb
->index
);
4799 queue
.quick_push (bb
);
4803 if (queue
.is_empty ())
4805 bitmap_clear (&need_new
);
4806 bitmap_clear (&reachable
);
4811 while (!queue
.is_empty ())
4817 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4818 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
4819 && bitmap_set_bit (&reachable
, e
->dest
->index
))
4820 queue
.quick_push (e
->dest
);
4824 FOR_BB_INSNS (first
, insn
)
4826 rtx dest
= interesting_dest_for_shprep (insn
, NULL
);
4830 if (DF_REG_DEF_COUNT (REGNO (dest
)) > 1)
4832 bitmap_clear (&need_new
);
4833 bitmap_clear (&reachable
);
4837 for (df_ref use
= DF_REG_USE_CHAIN (REGNO(dest
));
4839 use
= DF_REF_NEXT_REG (use
))
4841 int ubbi
= DF_REF_BB (use
)->index
;
4842 if (bitmap_bit_p (&reachable
, ubbi
))
4843 bitmap_set_bit (&need_new
, ubbi
);
4845 last_interesting_insn
= insn
;
4848 bitmap_clear (&reachable
);
4849 if (!last_interesting_insn
)
4851 bitmap_clear (&need_new
);
4855 call_dom
= nearest_common_dominator_for_set (CDI_DOMINATORS
, &need_new
);
4856 bitmap_clear (&need_new
);
4857 if (call_dom
== first
)
4860 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
4861 while (bb_loop_depth (call_dom
) > 0)
4862 call_dom
= get_immediate_dominator (CDI_DOMINATORS
, call_dom
);
4863 loop_optimizer_finalize ();
4865 if (call_dom
== first
)
4868 calculate_dominance_info (CDI_POST_DOMINATORS
);
4869 if (dominated_by_p (CDI_POST_DOMINATORS
, first
, call_dom
))
4871 free_dominance_info (CDI_POST_DOMINATORS
);
4874 free_dominance_info (CDI_POST_DOMINATORS
);
4877 fprintf (dump_file
, "Will split live ranges of parameters at BB %i\n",
4881 FOR_BB_INSNS (first
, insn
)
4883 rtx dest
= interesting_dest_for_shprep (insn
, call_dom
);
4887 rtx newreg
= NULL_RTX
;
4889 for (use
= DF_REG_USE_CHAIN (REGNO (dest
)); use
; use
= next
)
4891 rtx uin
= DF_REF_INSN (use
);
4892 next
= DF_REF_NEXT_REG (use
);
4894 basic_block ubb
= BLOCK_FOR_INSN (uin
);
4896 || dominated_by_p (CDI_DOMINATORS
, ubb
, call_dom
))
4899 newreg
= ira_create_new_reg (dest
);
4900 validate_change (uin
, DF_REF_REAL_LOC (use
), newreg
, true);
4906 rtx new_move
= gen_move_insn (newreg
, dest
);
4907 emit_insn_after (new_move
, bb_note (call_dom
));
4910 fprintf (dump_file
, "Split live-range of register ");
4911 print_rtl_single (dump_file
, dest
);
4916 if (insn
== last_interesting_insn
)
4919 apply_change_group ();
4923 /* Perform the second half of the transformation started in
4924 find_moveable_pseudos. We look for instances where the newly introduced
4925 pseudo remains unallocated, and remove it by moving the definition to
4926 just before its use, replacing the move instruction generated by
4927 find_moveable_pseudos. */
4929 move_unallocated_pseudos (void)
4932 for (i
= first_moveable_pseudo
; i
< last_moveable_pseudo
; i
++)
4933 if (reg_renumber
[i
] < 0)
4935 int idx
= i
- first_moveable_pseudo
;
4936 rtx other_reg
= pseudo_replaced_reg
[idx
];
4937 rtx def_insn
= DF_REF_INSN (DF_REG_DEF_CHAIN (i
));
4938 /* The use must follow all definitions of OTHER_REG, so we can
4939 insert the new definition immediately after any of them. */
4940 df_ref other_def
= DF_REG_DEF_CHAIN (REGNO (other_reg
));
4941 rtx move_insn
= DF_REF_INSN (other_def
);
4942 rtx newinsn
= emit_insn_after (PATTERN (def_insn
), move_insn
);
4947 fprintf (dump_file
, "moving def of %d (insn %d now) ",
4948 REGNO (other_reg
), INSN_UID (def_insn
));
4950 delete_insn (move_insn
);
4951 while ((other_def
= DF_REG_DEF_CHAIN (REGNO (other_reg
))))
4952 delete_insn (DF_REF_INSN (other_def
));
4953 delete_insn (def_insn
);
4955 set
= single_set (newinsn
);
4956 success
= validate_change (newinsn
, &SET_DEST (set
), other_reg
, 0);
4957 gcc_assert (success
);
4959 fprintf (dump_file
, " %d) rather than keep unallocated replacement %d\n",
4960 INSN_UID (newinsn
), i
);
4961 SET_REG_N_REFS (i
, 0);
4965 /* If the backend knows where to allocate pseudos for hard
4966 register initial values, register these allocations now. */
4968 allocate_initial_values (void)
4970 if (targetm
.allocate_initial_value
)
4975 for (i
= 0; HARD_REGISTER_NUM_P (i
); i
++)
4977 if (! initial_value_entry (i
, &hreg
, &preg
))
4980 x
= targetm
.allocate_initial_value (hreg
);
4981 regno
= REGNO (preg
);
4982 if (x
&& REG_N_SETS (regno
) <= 1)
4985 reg_equiv_memory_loc (regno
) = x
;
4991 gcc_assert (REG_P (x
));
4992 new_regno
= REGNO (x
);
4993 reg_renumber
[regno
] = new_regno
;
4994 /* Poke the regno right into regno_reg_rtx so that even
4995 fixed regs are accepted. */
4996 SET_REGNO (preg
, new_regno
);
4997 /* Update global register liveness information. */
4998 FOR_EACH_BB_FN (bb
, cfun
)
5000 if (REGNO_REG_SET_P (df_get_live_in (bb
), regno
))
5001 SET_REGNO_REG_SET (df_get_live_in (bb
), new_regno
);
5002 if (REGNO_REG_SET_P (df_get_live_out (bb
), regno
))
5003 SET_REGNO_REG_SET (df_get_live_out (bb
), new_regno
);
5009 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER
,
5015 /* True when we use LRA instead of reload pass for the current
5019 /* True if we have allocno conflicts. It is false for non-optimized
5020 mode or when the conflict table is too big. */
5021 bool ira_conflicts_p
;
5023 /* Saved between IRA and reload. */
5024 static int saved_flag_ira_share_spill_slots
;
5026 /* This is the main entry of IRA. */
5031 int ira_max_point_before_emit
;
5033 bool saved_flag_caller_saves
= flag_caller_saves
;
5034 enum ira_region saved_flag_ira_region
= flag_ira_region
;
5036 ira_conflicts_p
= optimize
> 0;
5038 ira_use_lra_p
= targetm
.lra_p ();
5039 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5040 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5041 use simplified and faster algorithms in LRA. */
5044 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun
));
5047 /* It permits to skip live range splitting in LRA. */
5048 flag_caller_saves
= false;
5049 /* There is no sense to do regional allocation when we use
5051 flag_ira_region
= IRA_REGION_ONE
;
5052 ira_conflicts_p
= false;
5055 #ifndef IRA_NO_OBSTACK
5056 gcc_obstack_init (&ira_obstack
);
5058 bitmap_obstack_initialize (&ira_bitmap_obstack
);
5060 /* LRA uses its own infrastructure to handle caller save registers. */
5061 if (flag_caller_saves
&& !ira_use_lra_p
)
5062 init_caller_save ();
5064 if (flag_ira_verbose
< 10)
5066 internal_flag_ira_verbose
= flag_ira_verbose
;
5071 internal_flag_ira_verbose
= flag_ira_verbose
- 10;
5072 ira_dump_file
= stderr
;
5075 setup_prohibited_mode_move_regs ();
5076 decrease_live_ranges_number ();
5077 df_note_add_problem ();
5079 /* DF_LIVE can't be used in the register allocator, too many other
5080 parts of the compiler depend on using the "classic" liveness
5081 interpretation of the DF_LR problem. See PR38711.
5082 Remove the problem, so that we don't spend time updating it in
5083 any of the df_analyze() calls during IRA/LRA. */
5085 df_remove_problem (df_live
);
5086 gcc_checking_assert (df_live
== NULL
);
5088 #ifdef ENABLE_CHECKING
5089 df
->changeable_flags
|= DF_VERIFY_SCHEDULED
;
5094 if (ira_conflicts_p
)
5096 calculate_dominance_info (CDI_DOMINATORS
);
5098 if (split_live_ranges_for_shrink_wrap ())
5101 free_dominance_info (CDI_DOMINATORS
);
5104 df_clear_flags (DF_NO_INSN_RESCAN
);
5106 regstat_init_n_sets_and_refs ();
5107 regstat_compute_ri ();
5109 /* If we are not optimizing, then this is the only place before
5110 register allocation where dataflow is done. And that is needed
5111 to generate these warnings. */
5113 generate_setjmp_warnings ();
5115 /* Determine if the current function is a leaf before running IRA
5116 since this can impact optimizations done by the prologue and
5117 epilogue thus changing register elimination offsets. */
5118 crtl
->is_leaf
= leaf_function_p ();
5120 if (resize_reg_info () && flag_ira_loop_pressure
)
5121 ira_set_pseudo_classes (true, ira_dump_file
);
5123 rebuild_p
= update_equiv_regs ();
5125 setup_reg_equiv_init ();
5127 if (optimize
&& rebuild_p
)
5129 timevar_push (TV_JUMP
);
5130 rebuild_jump_labels (get_insns ());
5131 if (purge_all_dead_edges ())
5132 delete_unreachable_blocks ();
5133 timevar_pop (TV_JUMP
);
5136 allocated_reg_info_size
= max_reg_num ();
5138 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5141 /* It is not worth to do such improvement when we use a simple
5142 allocation because of -O0 usage or because the function is too
5144 if (ira_conflicts_p
)
5145 find_moveable_pseudos ();
5147 max_regno_before_ira
= max_reg_num ();
5148 ira_setup_eliminable_regset ();
5150 ira_overall_cost
= ira_reg_cost
= ira_mem_cost
= 0;
5151 ira_load_cost
= ira_store_cost
= ira_shuffle_cost
= 0;
5152 ira_move_loops_num
= ira_additional_jumps_num
= 0;
5154 ira_assert (current_loops
== NULL
);
5155 if (flag_ira_region
== IRA_REGION_ALL
|| flag_ira_region
== IRA_REGION_MIXED
)
5156 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
| LOOPS_HAVE_RECORDED_EXITS
);
5158 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
5159 fprintf (ira_dump_file
, "Building IRA IR\n");
5160 loops_p
= ira_build ();
5162 ira_assert (ira_conflicts_p
|| !loops_p
);
5164 saved_flag_ira_share_spill_slots
= flag_ira_share_spill_slots
;
5165 if (too_high_register_pressure_p () || cfun
->calls_setjmp
)
5166 /* It is just wasting compiler's time to pack spilled pseudos into
5167 stack slots in this case -- prohibit it. We also do this if
5168 there is setjmp call because a variable not modified between
5169 setjmp and longjmp the compiler is required to preserve its
5170 value and sharing slots does not guarantee it. */
5171 flag_ira_share_spill_slots
= FALSE
;
5175 ira_max_point_before_emit
= ira_max_point
;
5177 ira_initiate_emit_data ();
5181 max_regno
= max_reg_num ();
5182 if (ira_conflicts_p
)
5186 if (! ira_use_lra_p
)
5187 ira_initiate_assign ();
5196 ira_allocno_iterator ai
;
5198 FOR_EACH_ALLOCNO (a
, ai
)
5199 ALLOCNO_REGNO (a
) = REGNO (ALLOCNO_EMIT_DATA (a
)->reg
);
5203 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
5204 fprintf (ira_dump_file
, "Flattening IR\n");
5205 ira_flattening (max_regno_before_ira
, ira_max_point_before_emit
);
5207 /* New insns were generated: add notes and recalculate live
5211 /* ??? Rebuild the loop tree, but why? Does the loop tree
5212 change if new insns were generated? Can that be handled
5213 by updating the loop tree incrementally? */
5214 loop_optimizer_finalize ();
5215 free_dominance_info (CDI_DOMINATORS
);
5216 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5217 | LOOPS_HAVE_RECORDED_EXITS
);
5219 if (! ira_use_lra_p
)
5221 setup_allocno_assignment_flags ();
5222 ira_initiate_assign ();
5223 ira_reassign_conflict_allocnos (max_regno
);
5228 ira_finish_emit_data ();
5230 setup_reg_renumber ();
5232 calculate_allocation_cost ();
5234 #ifdef ENABLE_IRA_CHECKING
5235 if (ira_conflicts_p
)
5236 check_allocation ();
5239 if (max_regno
!= max_regno_before_ira
)
5241 regstat_free_n_sets_and_refs ();
5243 regstat_init_n_sets_and_refs ();
5244 regstat_compute_ri ();
5247 overall_cost_before
= ira_overall_cost
;
5248 if (! ira_conflicts_p
)
5252 fix_reg_equiv_init ();
5254 #ifdef ENABLE_IRA_CHECKING
5255 print_redundant_copies ();
5258 ira_spilled_reg_stack_slots_num
= 0;
5259 ira_spilled_reg_stack_slots
5260 = ((struct ira_spilled_reg_stack_slot
*)
5261 ira_allocate (max_regno
5262 * sizeof (struct ira_spilled_reg_stack_slot
)));
5263 memset (ira_spilled_reg_stack_slots
, 0,
5264 max_regno
* sizeof (struct ira_spilled_reg_stack_slot
));
5266 allocate_initial_values ();
5268 /* See comment for find_moveable_pseudos call. */
5269 if (ira_conflicts_p
)
5270 move_unallocated_pseudos ();
5272 /* Restore original values. */
5275 flag_caller_saves
= saved_flag_caller_saves
;
5276 flag_ira_region
= saved_flag_ira_region
;
5286 if (flag_ira_verbose
< 10)
5287 ira_dump_file
= dump_file
;
5289 timevar_push (TV_RELOAD
);
5292 if (current_loops
!= NULL
)
5294 loop_optimizer_finalize ();
5295 free_dominance_info (CDI_DOMINATORS
);
5297 FOR_ALL_BB_FN (bb
, cfun
)
5298 bb
->loop_father
= NULL
;
5299 current_loops
= NULL
;
5301 if (ira_conflicts_p
)
5302 ira_free (ira_spilled_reg_stack_slots
);
5306 lra (ira_dump_file
);
5307 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5309 vec_free (reg_equivs
);
5315 df_set_flags (DF_NO_INSN_RESCAN
);
5316 build_insn_chain ();
5318 need_dce
= reload (get_insns (), ira_conflicts_p
);
5322 timevar_pop (TV_RELOAD
);
5324 timevar_push (TV_IRA
);
5326 if (ira_conflicts_p
&& ! ira_use_lra_p
)
5328 ira_free (ira_spilled_reg_stack_slots
);
5329 ira_finish_assign ();
5332 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
5333 && overall_cost_before
!= ira_overall_cost
)
5334 fprintf (ira_dump_file
, "+++Overall after reload %d\n", ira_overall_cost
);
5336 flag_ira_share_spill_slots
= saved_flag_ira_share_spill_slots
;
5338 if (! ira_use_lra_p
)
5341 if (current_loops
!= NULL
)
5343 loop_optimizer_finalize ();
5344 free_dominance_info (CDI_DOMINATORS
);
5346 FOR_ALL_BB_FN (bb
, cfun
)
5347 bb
->loop_father
= NULL
;
5348 current_loops
= NULL
;
5351 regstat_free_n_sets_and_refs ();
5355 cleanup_cfg (CLEANUP_EXPENSIVE
);
5357 finish_reg_equiv ();
5359 bitmap_obstack_release (&ira_bitmap_obstack
);
5360 #ifndef IRA_NO_OBSTACK
5361 obstack_free (&ira_obstack
, NULL
);
5364 /* The code after the reload has changed so much that at this point
5365 we might as well just rescan everything. Note that
5366 df_rescan_all_insns is not going to help here because it does not
5367 touch the artificial uses and defs. */
5368 df_finish_pass (true);
5369 df_scan_alloc (NULL
);
5374 df_live_add_problem ();
5375 df_live_set_all_dirty ();
5381 if (need_dce
&& optimize
)
5384 /* Diagnose uses of the hard frame pointer when it is used as a global
5385 register. Often we can get away with letting the user appropriate
5386 the frame pointer, but we should let them know when code generation
5387 makes that impossible. */
5388 if (global_regs
[HARD_FRAME_POINTER_REGNUM
] && frame_pointer_needed
)
5390 tree decl
= global_regs_decl
[HARD_FRAME_POINTER_REGNUM
];
5391 error_at (DECL_SOURCE_LOCATION (current_function_decl
),
5392 "frame pointer required, but reserved");
5393 inform (DECL_SOURCE_LOCATION (decl
), "for %qD", decl
);
5396 timevar_pop (TV_IRA
);
5399 /* Run the integrated register allocator. */
5403 const pass_data pass_data_ira
=
5405 RTL_PASS
, /* type */
5407 OPTGROUP_NONE
, /* optinfo_flags */
5409 0, /* properties_required */
5410 0, /* properties_provided */
5411 0, /* properties_destroyed */
5412 0, /* todo_flags_start */
5413 TODO_do_not_ggc_collect
, /* todo_flags_finish */
5416 class pass_ira
: public rtl_opt_pass
5419 pass_ira (gcc::context
*ctxt
)
5420 : rtl_opt_pass (pass_data_ira
, ctxt
)
5423 /* opt_pass methods: */
5424 virtual unsigned int execute (function
*)
5430 }; // class pass_ira
5435 make_pass_ira (gcc::context
*ctxt
)
5437 return new pass_ira (ctxt
);
5442 const pass_data pass_data_reload
=
5444 RTL_PASS
, /* type */
5445 "reload", /* name */
5446 OPTGROUP_NONE
, /* optinfo_flags */
5447 TV_RELOAD
, /* tv_id */
5448 0, /* properties_required */
5449 0, /* properties_provided */
5450 0, /* properties_destroyed */
5451 0, /* todo_flags_start */
5452 0, /* todo_flags_finish */
5455 class pass_reload
: public rtl_opt_pass
5458 pass_reload (gcc::context
*ctxt
)
5459 : rtl_opt_pass (pass_data_reload
, ctxt
)
5462 /* opt_pass methods: */
5463 virtual unsigned int execute (function
*)
5469 }; // class pass_reload
5474 make_pass_reload (gcc::context
*ctxt
)
5476 return new pass_reload (ctxt
);