* include/bits/basic_string.h (getline): Qualify call to prevent ADL
[official-gcc.git] / gcc / haifa-sched.c
blobaada6e479cc96dc395272170eacb3c4340421de0
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "function.h"
135 #include "flags.h"
136 #include "insn-config.h"
137 #include "insn-attr.h"
138 #include "except.h"
139 #include "recog.h"
140 #include "sched-int.h"
141 #include "target.h"
142 #include "common/common-target.h"
143 #include "params.h"
144 #include "dbgcnt.h"
145 #include "cfgloop.h"
146 #include "ira.h"
147 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
148 #include "hash-table.h"
149 #include "dumpfile.h"
151 #ifdef INSN_SCHEDULING
153 /* True if we do register pressure relief through live-range
154 shrinkage. */
155 static bool live_range_shrinkage_p;
157 /* Switch on live range shrinkage. */
158 void
159 initialize_live_range_shrinkage (void)
161 live_range_shrinkage_p = true;
164 /* Switch off live range shrinkage. */
165 void
166 finish_live_range_shrinkage (void)
168 live_range_shrinkage_p = false;
171 /* issue_rate is the number of insns that can be scheduled in the same
172 machine cycle. It can be defined in the config/mach/mach.h file,
173 otherwise we set it to 1. */
175 int issue_rate;
177 /* This can be set to true by a backend if the scheduler should not
178 enable a DCE pass. */
179 bool sched_no_dce;
181 /* The current initiation interval used when modulo scheduling. */
182 static int modulo_ii;
184 /* The maximum number of stages we are prepared to handle. */
185 static int modulo_max_stages;
187 /* The number of insns that exist in each iteration of the loop. We use this
188 to detect when we've scheduled all insns from the first iteration. */
189 static int modulo_n_insns;
191 /* The current count of insns in the first iteration of the loop that have
192 already been scheduled. */
193 static int modulo_insns_scheduled;
195 /* The maximum uid of insns from the first iteration of the loop. */
196 static int modulo_iter0_max_uid;
198 /* The number of times we should attempt to backtrack when modulo scheduling.
199 Decreased each time we have to backtrack. */
200 static int modulo_backtracks_left;
202 /* The stage in which the last insn from the original loop was
203 scheduled. */
204 static int modulo_last_stage;
206 /* sched-verbose controls the amount of debugging output the
207 scheduler prints. It is controlled by -fsched-verbose=N:
208 N>0 and no -DSR : the output is directed to stderr.
209 N>=10 will direct the printouts to stderr (regardless of -dSR).
210 N=1: same as -dSR.
211 N=2: bb's probabilities, detailed ready list info, unit/insn info.
212 N=3: rtl at abort point, control-flow, regions info.
213 N=5: dependences info. */
215 int sched_verbose = 0;
217 /* Debugging file. All printouts are sent to dump, which is always set,
218 either to stderr, or to the dump listing file (-dRS). */
219 FILE *sched_dump = 0;
221 /* This is a placeholder for the scheduler parameters common
222 to all schedulers. */
223 struct common_sched_info_def *common_sched_info;
225 #define INSN_TICK(INSN) (HID (INSN)->tick)
226 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
227 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
228 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
229 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
230 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
231 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
232 /* Cached cost of the instruction. Use insn_cost to get cost of the
233 insn. -1 here means that the field is not initialized. */
234 #define INSN_COST(INSN) (HID (INSN)->cost)
236 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
237 then it should be recalculated from scratch. */
238 #define INVALID_TICK (-(max_insn_queue_index + 1))
239 /* The minimal value of the INSN_TICK of an instruction. */
240 #define MIN_TICK (-max_insn_queue_index)
242 /* List of important notes we must keep around. This is a pointer to the
243 last element in the list. */
244 rtx note_list;
246 static struct spec_info_def spec_info_var;
247 /* Description of the speculative part of the scheduling.
248 If NULL - no speculation. */
249 spec_info_t spec_info = NULL;
251 /* True, if recovery block was added during scheduling of current block.
252 Used to determine, if we need to fix INSN_TICKs. */
253 static bool haifa_recovery_bb_recently_added_p;
255 /* True, if recovery block was added during this scheduling pass.
256 Used to determine if we should have empty memory pools of dependencies
257 after finishing current region. */
258 bool haifa_recovery_bb_ever_added_p;
260 /* Counters of different types of speculative instructions. */
261 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
263 /* Array used in {unlink, restore}_bb_notes. */
264 static rtx *bb_header = 0;
266 /* Basic block after which recovery blocks will be created. */
267 static basic_block before_recovery;
269 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
270 created it. */
271 basic_block after_recovery;
273 /* FALSE if we add bb to another region, so we don't need to initialize it. */
274 bool adding_bb_to_current_region_p = true;
276 /* Queues, etc. */
278 /* An instruction is ready to be scheduled when all insns preceding it
279 have already been scheduled. It is important to ensure that all
280 insns which use its result will not be executed until its result
281 has been computed. An insn is maintained in one of four structures:
283 (P) the "Pending" set of insns which cannot be scheduled until
284 their dependencies have been satisfied.
285 (Q) the "Queued" set of insns that can be scheduled when sufficient
286 time has passed.
287 (R) the "Ready" list of unscheduled, uncommitted insns.
288 (S) the "Scheduled" list of insns.
290 Initially, all insns are either "Pending" or "Ready" depending on
291 whether their dependencies are satisfied.
293 Insns move from the "Ready" list to the "Scheduled" list as they
294 are committed to the schedule. As this occurs, the insns in the
295 "Pending" list have their dependencies satisfied and move to either
296 the "Ready" list or the "Queued" set depending on whether
297 sufficient time has passed to make them ready. As time passes,
298 insns move from the "Queued" set to the "Ready" list.
300 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
301 unscheduled insns, i.e., those that are ready, queued, and pending.
302 The "Queued" set (Q) is implemented by the variable `insn_queue'.
303 The "Ready" list (R) is implemented by the variables `ready' and
304 `n_ready'.
305 The "Scheduled" list (S) is the new insn chain built by this pass.
307 The transition (R->S) is implemented in the scheduling loop in
308 `schedule_block' when the best insn to schedule is chosen.
309 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
310 insns move from the ready list to the scheduled list.
311 The transition (Q->R) is implemented in 'queue_to_insn' as time
312 passes or stalls are introduced. */
314 /* Implement a circular buffer to delay instructions until sufficient
315 time has passed. For the new pipeline description interface,
316 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
317 than maximal time of instruction execution computed by genattr.c on
318 the base maximal time of functional unit reservations and getting a
319 result. This is the longest time an insn may be queued. */
321 static rtx *insn_queue;
322 static int q_ptr = 0;
323 static int q_size = 0;
324 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
325 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
327 #define QUEUE_SCHEDULED (-3)
328 #define QUEUE_NOWHERE (-2)
329 #define QUEUE_READY (-1)
330 /* QUEUE_SCHEDULED - INSN is scheduled.
331 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
332 queue or ready list.
333 QUEUE_READY - INSN is in ready list.
334 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
336 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
338 /* The following variable value refers for all current and future
339 reservations of the processor units. */
340 state_t curr_state;
342 /* The following variable value is size of memory representing all
343 current and future reservations of the processor units. */
344 size_t dfa_state_size;
346 /* The following array is used to find the best insn from ready when
347 the automaton pipeline interface is used. */
348 signed char *ready_try = NULL;
350 /* The ready list. */
351 struct ready_list ready = {NULL, 0, 0, 0, 0};
353 /* The pointer to the ready list (to be removed). */
354 static struct ready_list *readyp = &ready;
356 /* Scheduling clock. */
357 static int clock_var;
359 /* Clock at which the previous instruction was issued. */
360 static int last_clock_var;
362 /* Set to true if, when queuing a shadow insn, we discover that it would be
363 scheduled too late. */
364 static bool must_backtrack;
366 /* The following variable value is number of essential insns issued on
367 the current cycle. An insn is essential one if it changes the
368 processors state. */
369 int cycle_issued_insns;
371 /* This records the actual schedule. It is built up during the main phase
372 of schedule_block, and afterwards used to reorder the insns in the RTL. */
373 static vec<rtx> scheduled_insns;
375 static int may_trap_exp (const_rtx, int);
377 /* Nonzero iff the address is comprised from at most 1 register. */
378 #define CONST_BASED_ADDRESS_P(x) \
379 (REG_P (x) \
380 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
381 || (GET_CODE (x) == LO_SUM)) \
382 && (CONSTANT_P (XEXP (x, 0)) \
383 || CONSTANT_P (XEXP (x, 1)))))
385 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
386 as found by analyzing insn's expression. */
389 static int haifa_luid_for_non_insn (rtx x);
391 /* Haifa version of sched_info hooks common to all headers. */
392 const struct common_sched_info_def haifa_common_sched_info =
394 NULL, /* fix_recovery_cfg */
395 NULL, /* add_block */
396 NULL, /* estimate_number_of_insns */
397 haifa_luid_for_non_insn, /* luid_for_non_insn */
398 SCHED_PASS_UNKNOWN /* sched_pass_id */
401 /* Mapping from instruction UID to its Logical UID. */
402 vec<int> sched_luids = vNULL;
404 /* Next LUID to assign to an instruction. */
405 int sched_max_luid = 1;
407 /* Haifa Instruction Data. */
408 vec<haifa_insn_data_def> h_i_d = vNULL;
410 void (* sched_init_only_bb) (basic_block, basic_block);
412 /* Split block function. Different schedulers might use different functions
413 to handle their internal data consistent. */
414 basic_block (* sched_split_block) (basic_block, rtx);
416 /* Create empty basic block after the specified block. */
417 basic_block (* sched_create_empty_bb) (basic_block);
419 /* Return the number of cycles until INSN is expected to be ready.
420 Return zero if it already is. */
421 static int
422 insn_delay (rtx insn)
424 return MAX (INSN_TICK (insn) - clock_var, 0);
427 static int
428 may_trap_exp (const_rtx x, int is_store)
430 enum rtx_code code;
432 if (x == 0)
433 return TRAP_FREE;
434 code = GET_CODE (x);
435 if (is_store)
437 if (code == MEM && may_trap_p (x))
438 return TRAP_RISKY;
439 else
440 return TRAP_FREE;
442 if (code == MEM)
444 /* The insn uses memory: a volatile load. */
445 if (MEM_VOLATILE_P (x))
446 return IRISKY;
447 /* An exception-free load. */
448 if (!may_trap_p (x))
449 return IFREE;
450 /* A load with 1 base register, to be further checked. */
451 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
452 return PFREE_CANDIDATE;
453 /* No info on the load, to be further checked. */
454 return PRISKY_CANDIDATE;
456 else
458 const char *fmt;
459 int i, insn_class = TRAP_FREE;
461 /* Neither store nor load, check if it may cause a trap. */
462 if (may_trap_p (x))
463 return TRAP_RISKY;
464 /* Recursive step: walk the insn... */
465 fmt = GET_RTX_FORMAT (code);
466 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
468 if (fmt[i] == 'e')
470 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
471 insn_class = WORST_CLASS (insn_class, tmp_class);
473 else if (fmt[i] == 'E')
475 int j;
476 for (j = 0; j < XVECLEN (x, i); j++)
478 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
479 insn_class = WORST_CLASS (insn_class, tmp_class);
480 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
481 break;
484 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
485 break;
487 return insn_class;
491 /* Classifies rtx X of an insn for the purpose of verifying that X can be
492 executed speculatively (and consequently the insn can be moved
493 speculatively), by examining X, returning:
494 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
495 TRAP_FREE: non-load insn.
496 IFREE: load from a globally safe location.
497 IRISKY: volatile load.
498 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
499 being either PFREE or PRISKY. */
501 static int
502 haifa_classify_rtx (const_rtx x)
504 int tmp_class = TRAP_FREE;
505 int insn_class = TRAP_FREE;
506 enum rtx_code code;
508 if (GET_CODE (x) == PARALLEL)
510 int i, len = XVECLEN (x, 0);
512 for (i = len - 1; i >= 0; i--)
514 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
515 insn_class = WORST_CLASS (insn_class, tmp_class);
516 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
517 break;
520 else
522 code = GET_CODE (x);
523 switch (code)
525 case CLOBBER:
526 /* Test if it is a 'store'. */
527 tmp_class = may_trap_exp (XEXP (x, 0), 1);
528 break;
529 case SET:
530 /* Test if it is a store. */
531 tmp_class = may_trap_exp (SET_DEST (x), 1);
532 if (tmp_class == TRAP_RISKY)
533 break;
534 /* Test if it is a load. */
535 tmp_class =
536 WORST_CLASS (tmp_class,
537 may_trap_exp (SET_SRC (x), 0));
538 break;
539 case COND_EXEC:
540 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
541 if (tmp_class == TRAP_RISKY)
542 break;
543 tmp_class = WORST_CLASS (tmp_class,
544 may_trap_exp (COND_EXEC_TEST (x), 0));
545 break;
546 case TRAP_IF:
547 tmp_class = TRAP_RISKY;
548 break;
549 default:;
551 insn_class = tmp_class;
554 return insn_class;
558 haifa_classify_insn (const_rtx insn)
560 return haifa_classify_rtx (PATTERN (insn));
563 /* After the scheduler initialization function has been called, this function
564 can be called to enable modulo scheduling. II is the initiation interval
565 we should use, it affects the delays for delay_pairs that were recorded as
566 separated by a given number of stages.
568 MAX_STAGES provides us with a limit
569 after which we give up scheduling; the caller must have unrolled at least
570 as many copies of the loop body and recorded delay_pairs for them.
572 INSNS is the number of real (non-debug) insns in one iteration of
573 the loop. MAX_UID can be used to test whether an insn belongs to
574 the first iteration of the loop; all of them have a uid lower than
575 MAX_UID. */
576 void
577 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
579 modulo_ii = ii;
580 modulo_max_stages = max_stages;
581 modulo_n_insns = insns;
582 modulo_iter0_max_uid = max_uid;
583 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
586 /* A structure to record a pair of insns where the first one is a real
587 insn that has delay slots, and the second is its delayed shadow.
588 I1 is scheduled normally and will emit an assembly instruction,
589 while I2 describes the side effect that takes place at the
590 transition between cycles CYCLES and (CYCLES + 1) after I1. */
591 struct delay_pair
593 struct delay_pair *next_same_i1;
594 rtx i1, i2;
595 int cycles;
596 /* When doing modulo scheduling, we a delay_pair can also be used to
597 show that I1 and I2 are the same insn in a different stage. If that
598 is the case, STAGES will be nonzero. */
599 int stages;
602 /* Helpers for delay hashing. */
604 struct delay_i1_hasher : typed_noop_remove <delay_pair>
606 typedef delay_pair value_type;
607 typedef void compare_type;
608 static inline hashval_t hash (const value_type *);
609 static inline bool equal (const value_type *, const compare_type *);
612 /* Returns a hash value for X, based on hashing just I1. */
614 inline hashval_t
615 delay_i1_hasher::hash (const value_type *x)
617 return htab_hash_pointer (x->i1);
620 /* Return true if I1 of pair X is the same as that of pair Y. */
622 inline bool
623 delay_i1_hasher::equal (const value_type *x, const compare_type *y)
625 return x->i1 == y;
628 struct delay_i2_hasher : typed_free_remove <delay_pair>
630 typedef delay_pair value_type;
631 typedef void compare_type;
632 static inline hashval_t hash (const value_type *);
633 static inline bool equal (const value_type *, const compare_type *);
636 /* Returns a hash value for X, based on hashing just I2. */
638 inline hashval_t
639 delay_i2_hasher::hash (const value_type *x)
641 return htab_hash_pointer (x->i2);
644 /* Return true if I2 of pair X is the same as that of pair Y. */
646 inline bool
647 delay_i2_hasher::equal (const value_type *x, const compare_type *y)
649 return x->i2 == y;
652 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
653 indexed by I2. */
654 static hash_table<delay_i1_hasher> *delay_htab;
655 static hash_table<delay_i2_hasher> *delay_htab_i2;
657 /* Called through htab_traverse. Walk the hashtable using I2 as
658 index, and delete all elements involving an UID higher than
659 that pointed to by *DATA. */
661 haifa_htab_i2_traverse (delay_pair **slot, int *data)
663 int maxuid = *data;
664 struct delay_pair *p = *slot;
665 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
667 delay_htab_i2->clear_slot (slot);
669 return 1;
672 /* Called through htab_traverse. Walk the hashtable using I2 as
673 index, and delete all elements involving an UID higher than
674 that pointed to by *DATA. */
676 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
678 int maxuid = *data;
679 struct delay_pair *p, *first, **pprev;
681 if (INSN_UID ((*pslot)->i1) >= maxuid)
683 delay_htab->clear_slot (pslot);
684 return 1;
686 pprev = &first;
687 for (p = *pslot; p; p = p->next_same_i1)
689 if (INSN_UID (p->i2) < maxuid)
691 *pprev = p;
692 pprev = &p->next_same_i1;
695 *pprev = NULL;
696 if (first == NULL)
697 delay_htab->clear_slot (pslot);
698 else
699 *pslot = first;
700 return 1;
703 /* Discard all delay pairs which involve an insn with an UID higher
704 than MAX_UID. */
705 void
706 discard_delay_pairs_above (int max_uid)
708 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
709 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
712 /* This function can be called by a port just before it starts the final
713 scheduling pass. It records the fact that an instruction with delay
714 slots has been split into two insns, I1 and I2. The first one will be
715 scheduled normally and initiates the operation. The second one is a
716 shadow which must follow a specific number of cycles after I1; its only
717 purpose is to show the side effect that occurs at that cycle in the RTL.
718 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
719 while I2 retains the original insn type.
721 There are two ways in which the number of cycles can be specified,
722 involving the CYCLES and STAGES arguments to this function. If STAGES
723 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
724 which is multiplied by MODULO_II to give the number of cycles. This is
725 only useful if the caller also calls set_modulo_params to enable modulo
726 scheduling. */
728 void
729 record_delay_slot_pair (rtx i1, rtx i2, int cycles, int stages)
731 struct delay_pair *p = XNEW (struct delay_pair);
732 struct delay_pair **slot;
734 p->i1 = i1;
735 p->i2 = i2;
736 p->cycles = cycles;
737 p->stages = stages;
739 if (!delay_htab)
741 delay_htab = new hash_table<delay_i1_hasher> (10);
742 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
744 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
745 p->next_same_i1 = *slot;
746 *slot = p;
747 slot = delay_htab_i2->find_slot (p, INSERT);
748 *slot = p;
751 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
752 and return the other insn if so. Return NULL otherwise. */
754 real_insn_for_shadow (rtx insn)
756 struct delay_pair *pair;
758 if (!delay_htab)
759 return NULL_RTX;
761 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
762 if (!pair || pair->stages > 0)
763 return NULL_RTX;
764 return pair->i1;
767 /* For a pair P of insns, return the fixed distance in cycles from the first
768 insn after which the second must be scheduled. */
769 static int
770 pair_delay (struct delay_pair *p)
772 if (p->stages == 0)
773 return p->cycles;
774 else
775 return p->stages * modulo_ii;
778 /* Given an insn INSN, add a dependence on its delayed shadow if it
779 has one. Also try to find situations where shadows depend on each other
780 and add dependencies to the real insns to limit the amount of backtracking
781 needed. */
782 void
783 add_delay_dependencies (rtx insn)
785 struct delay_pair *pair;
786 sd_iterator_def sd_it;
787 dep_t dep;
789 if (!delay_htab)
790 return;
792 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
793 if (!pair)
794 return;
795 add_dependence (insn, pair->i1, REG_DEP_ANTI);
796 if (pair->stages)
797 return;
799 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
801 rtx pro = DEP_PRO (dep);
802 struct delay_pair *other_pair
803 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
804 if (!other_pair || other_pair->stages)
805 continue;
806 if (pair_delay (other_pair) >= pair_delay (pair))
808 if (sched_verbose >= 4)
810 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
811 INSN_UID (other_pair->i1),
812 INSN_UID (pair->i1));
813 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
814 INSN_UID (pair->i1),
815 INSN_UID (pair->i2),
816 pair_delay (pair));
817 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
818 INSN_UID (other_pair->i1),
819 INSN_UID (other_pair->i2),
820 pair_delay (other_pair));
822 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
827 /* Forward declarations. */
829 static int priority (rtx);
830 static int rank_for_schedule (const void *, const void *);
831 static void swap_sort (rtx *, int);
832 static void queue_insn (rtx, int, const char *);
833 static int schedule_insn (rtx);
834 static void adjust_priority (rtx);
835 static void advance_one_cycle (void);
836 static void extend_h_i_d (void);
839 /* Notes handling mechanism:
840 =========================
841 Generally, NOTES are saved before scheduling and restored after scheduling.
842 The scheduler distinguishes between two types of notes:
844 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
845 Before scheduling a region, a pointer to the note is added to the insn
846 that follows or precedes it. (This happens as part of the data dependence
847 computation). After scheduling an insn, the pointer contained in it is
848 used for regenerating the corresponding note (in reemit_notes).
850 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
851 these notes are put in a list (in rm_other_notes() and
852 unlink_other_notes ()). After scheduling the block, these notes are
853 inserted at the beginning of the block (in schedule_block()). */
855 static void ready_add (struct ready_list *, rtx, bool);
856 static rtx ready_remove_first (struct ready_list *);
857 static rtx ready_remove_first_dispatch (struct ready_list *ready);
859 static void queue_to_ready (struct ready_list *);
860 static int early_queue_to_ready (state_t, struct ready_list *);
862 /* The following functions are used to implement multi-pass scheduling
863 on the first cycle. */
864 static rtx ready_remove (struct ready_list *, int);
865 static void ready_remove_insn (rtx);
867 static void fix_inter_tick (rtx, rtx);
868 static int fix_tick_ready (rtx);
869 static void change_queue_index (rtx, int);
871 /* The following functions are used to implement scheduling of data/control
872 speculative instructions. */
874 static void extend_h_i_d (void);
875 static void init_h_i_d (rtx);
876 static int haifa_speculate_insn (rtx, ds_t, rtx *);
877 static void generate_recovery_code (rtx);
878 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
879 static void begin_speculative_block (rtx);
880 static void add_to_speculative_block (rtx);
881 static void init_before_recovery (basic_block *);
882 static void create_check_block_twin (rtx, bool);
883 static void fix_recovery_deps (basic_block);
884 static bool haifa_change_pattern (rtx, rtx);
885 static void dump_new_block_header (int, basic_block, rtx, rtx);
886 static void restore_bb_notes (basic_block);
887 static void fix_jump_move (rtx);
888 static void move_block_after_check (rtx);
889 static void move_succs (vec<edge, va_gc> **, basic_block);
890 static void sched_remove_insn (rtx);
891 static void clear_priorities (rtx, rtx_vec_t *);
892 static void calc_priorities (rtx_vec_t);
893 static void add_jump_dependencies (rtx, rtx);
895 #endif /* INSN_SCHEDULING */
897 /* Point to state used for the current scheduling pass. */
898 struct haifa_sched_info *current_sched_info;
900 #ifndef INSN_SCHEDULING
901 void
902 schedule_insns (void)
905 #else
907 /* Do register pressure sensitive insn scheduling if the flag is set
908 up. */
909 enum sched_pressure_algorithm sched_pressure;
911 /* Map regno -> its pressure class. The map defined only when
912 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
913 enum reg_class *sched_regno_pressure_class;
915 /* The current register pressure. Only elements corresponding pressure
916 classes are defined. */
917 static int curr_reg_pressure[N_REG_CLASSES];
919 /* Saved value of the previous array. */
920 static int saved_reg_pressure[N_REG_CLASSES];
922 /* Register living at given scheduling point. */
923 static bitmap curr_reg_live;
925 /* Saved value of the previous array. */
926 static bitmap saved_reg_live;
928 /* Registers mentioned in the current region. */
929 static bitmap region_ref_regs;
931 /* Initiate register pressure relative info for scheduling the current
932 region. Currently it is only clearing register mentioned in the
933 current region. */
934 void
935 sched_init_region_reg_pressure_info (void)
937 bitmap_clear (region_ref_regs);
940 /* PRESSURE[CL] describes the pressure on register class CL. Update it
941 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
942 LIVE tracks the set of live registers; if it is null, assume that
943 every birth or death is genuine. */
944 static inline void
945 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
947 enum reg_class pressure_class;
949 pressure_class = sched_regno_pressure_class[regno];
950 if (regno >= FIRST_PSEUDO_REGISTER)
952 if (pressure_class != NO_REGS)
954 if (birth_p)
956 if (!live || bitmap_set_bit (live, regno))
957 pressure[pressure_class]
958 += (ira_reg_class_max_nregs
959 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
961 else
963 if (!live || bitmap_clear_bit (live, regno))
964 pressure[pressure_class]
965 -= (ira_reg_class_max_nregs
966 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
970 else if (pressure_class != NO_REGS
971 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
973 if (birth_p)
975 if (!live || bitmap_set_bit (live, regno))
976 pressure[pressure_class]++;
978 else
980 if (!live || bitmap_clear_bit (live, regno))
981 pressure[pressure_class]--;
986 /* Initiate current register pressure related info from living
987 registers given by LIVE. */
988 static void
989 initiate_reg_pressure_info (bitmap live)
991 int i;
992 unsigned int j;
993 bitmap_iterator bi;
995 for (i = 0; i < ira_pressure_classes_num; i++)
996 curr_reg_pressure[ira_pressure_classes[i]] = 0;
997 bitmap_clear (curr_reg_live);
998 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
999 if (sched_pressure == SCHED_PRESSURE_MODEL
1000 || current_nr_blocks == 1
1001 || bitmap_bit_p (region_ref_regs, j))
1002 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1005 /* Mark registers in X as mentioned in the current region. */
1006 static void
1007 setup_ref_regs (rtx x)
1009 int i, j, regno;
1010 const RTX_CODE code = GET_CODE (x);
1011 const char *fmt;
1013 if (REG_P (x))
1015 regno = REGNO (x);
1016 if (HARD_REGISTER_NUM_P (regno))
1017 bitmap_set_range (region_ref_regs, regno,
1018 hard_regno_nregs[regno][GET_MODE (x)]);
1019 else
1020 bitmap_set_bit (region_ref_regs, REGNO (x));
1021 return;
1023 fmt = GET_RTX_FORMAT (code);
1024 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1025 if (fmt[i] == 'e')
1026 setup_ref_regs (XEXP (x, i));
1027 else if (fmt[i] == 'E')
1029 for (j = 0; j < XVECLEN (x, i); j++)
1030 setup_ref_regs (XVECEXP (x, i, j));
1034 /* Initiate current register pressure related info at the start of
1035 basic block BB. */
1036 static void
1037 initiate_bb_reg_pressure_info (basic_block bb)
1039 unsigned int i ATTRIBUTE_UNUSED;
1040 rtx insn;
1042 if (current_nr_blocks > 1)
1043 FOR_BB_INSNS (bb, insn)
1044 if (NONDEBUG_INSN_P (insn))
1045 setup_ref_regs (PATTERN (insn));
1046 initiate_reg_pressure_info (df_get_live_in (bb));
1047 #ifdef EH_RETURN_DATA_REGNO
1048 if (bb_has_eh_pred (bb))
1049 for (i = 0; ; ++i)
1051 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1053 if (regno == INVALID_REGNUM)
1054 break;
1055 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1056 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1057 regno, true);
1059 #endif
1062 /* Save current register pressure related info. */
1063 static void
1064 save_reg_pressure (void)
1066 int i;
1068 for (i = 0; i < ira_pressure_classes_num; i++)
1069 saved_reg_pressure[ira_pressure_classes[i]]
1070 = curr_reg_pressure[ira_pressure_classes[i]];
1071 bitmap_copy (saved_reg_live, curr_reg_live);
1074 /* Restore saved register pressure related info. */
1075 static void
1076 restore_reg_pressure (void)
1078 int i;
1080 for (i = 0; i < ira_pressure_classes_num; i++)
1081 curr_reg_pressure[ira_pressure_classes[i]]
1082 = saved_reg_pressure[ira_pressure_classes[i]];
1083 bitmap_copy (curr_reg_live, saved_reg_live);
1086 /* Return TRUE if the register is dying after its USE. */
1087 static bool
1088 dying_use_p (struct reg_use_data *use)
1090 struct reg_use_data *next;
1092 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1093 if (NONDEBUG_INSN_P (next->insn)
1094 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1095 return false;
1096 return true;
1099 /* Print info about the current register pressure and its excess for
1100 each pressure class. */
1101 static void
1102 print_curr_reg_pressure (void)
1104 int i;
1105 enum reg_class cl;
1107 fprintf (sched_dump, ";;\t");
1108 for (i = 0; i < ira_pressure_classes_num; i++)
1110 cl = ira_pressure_classes[i];
1111 gcc_assert (curr_reg_pressure[cl] >= 0);
1112 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1113 curr_reg_pressure[cl],
1114 curr_reg_pressure[cl] - ira_class_hard_regs_num[cl]);
1116 fprintf (sched_dump, "\n");
1119 /* Determine if INSN has a condition that is clobbered if a register
1120 in SET_REGS is modified. */
1121 static bool
1122 cond_clobbered_p (rtx insn, HARD_REG_SET set_regs)
1124 rtx pat = PATTERN (insn);
1125 gcc_assert (GET_CODE (pat) == COND_EXEC);
1126 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1128 sd_iterator_def sd_it;
1129 dep_t dep;
1130 haifa_change_pattern (insn, ORIG_PAT (insn));
1131 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1132 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1133 TODO_SPEC (insn) = HARD_DEP;
1134 if (sched_verbose >= 2)
1135 fprintf (sched_dump,
1136 ";;\t\tdequeue insn %s because of clobbered condition\n",
1137 (*current_sched_info->print_insn) (insn, 0));
1138 return true;
1141 return false;
1144 /* This function should be called after modifying the pattern of INSN,
1145 to update scheduler data structures as needed. */
1146 static void
1147 update_insn_after_change (rtx insn)
1149 sd_iterator_def sd_it;
1150 dep_t dep;
1152 dfa_clear_single_insn_cache (insn);
1154 sd_it = sd_iterator_start (insn,
1155 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1156 while (sd_iterator_cond (&sd_it, &dep))
1158 DEP_COST (dep) = UNKNOWN_DEP_COST;
1159 sd_iterator_next (&sd_it);
1162 /* Invalidate INSN_COST, so it'll be recalculated. */
1163 INSN_COST (insn) = -1;
1164 /* Invalidate INSN_TICK, so it'll be recalculated. */
1165 INSN_TICK (insn) = INVALID_TICK;
1169 /* Two VECs, one to hold dependencies for which pattern replacements
1170 need to be applied or restored at the start of the next cycle, and
1171 another to hold an integer that is either one, to apply the
1172 corresponding replacement, or zero to restore it. */
1173 static vec<dep_t> next_cycle_replace_deps;
1174 static vec<int> next_cycle_apply;
1176 static void apply_replacement (dep_t, bool);
1177 static void restore_pattern (dep_t, bool);
1179 /* Look at the remaining dependencies for insn NEXT, and compute and return
1180 the TODO_SPEC value we should use for it. This is called after one of
1181 NEXT's dependencies has been resolved.
1182 We also perform pattern replacements for predication, and for broken
1183 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1184 false. */
1186 static ds_t
1187 recompute_todo_spec (rtx next, bool for_backtrack)
1189 ds_t new_ds;
1190 sd_iterator_def sd_it;
1191 dep_t dep, modify_dep = NULL;
1192 int n_spec = 0;
1193 int n_control = 0;
1194 int n_replace = 0;
1195 bool first_p = true;
1197 if (sd_lists_empty_p (next, SD_LIST_BACK))
1198 /* NEXT has all its dependencies resolved. */
1199 return 0;
1201 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1202 return HARD_DEP;
1204 /* Now we've got NEXT with speculative deps only.
1205 1. Look at the deps to see what we have to do.
1206 2. Check if we can do 'todo'. */
1207 new_ds = 0;
1209 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1211 rtx pro = DEP_PRO (dep);
1212 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1214 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1215 continue;
1217 if (ds)
1219 n_spec++;
1220 if (first_p)
1222 first_p = false;
1224 new_ds = ds;
1226 else
1227 new_ds = ds_merge (new_ds, ds);
1229 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1231 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1233 n_control++;
1234 modify_dep = dep;
1236 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1238 else if (DEP_REPLACE (dep) != NULL)
1240 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1242 n_replace++;
1243 modify_dep = dep;
1245 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1249 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1251 if (!dbg_cnt (sched_breakdep))
1252 return HARD_DEP;
1253 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1255 struct dep_replacement *desc = DEP_REPLACE (dep);
1256 if (desc != NULL)
1258 if (desc->insn == next && !for_backtrack)
1260 gcc_assert (n_replace == 1);
1261 apply_replacement (dep, true);
1263 DEP_STATUS (dep) |= DEP_CANCELLED;
1266 return 0;
1269 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1271 rtx pro, other, new_pat;
1272 rtx cond = NULL_RTX;
1273 bool success;
1274 rtx prev = NULL_RTX;
1275 int i;
1276 unsigned regno;
1278 if ((current_sched_info->flags & DO_PREDICATION) == 0
1279 || (ORIG_PAT (next) != NULL_RTX
1280 && PREDICATED_PAT (next) == NULL_RTX))
1281 return HARD_DEP;
1283 pro = DEP_PRO (modify_dep);
1284 other = real_insn_for_shadow (pro);
1285 if (other != NULL_RTX)
1286 pro = other;
1288 cond = sched_get_reverse_condition_uncached (pro);
1289 regno = REGNO (XEXP (cond, 0));
1291 /* Find the last scheduled insn that modifies the condition register.
1292 We can stop looking once we find the insn we depend on through the
1293 REG_DEP_CONTROL; if the condition register isn't modified after it,
1294 we know that it still has the right value. */
1295 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1296 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1298 HARD_REG_SET t;
1300 find_all_hard_reg_sets (prev, &t, true);
1301 if (TEST_HARD_REG_BIT (t, regno))
1302 return HARD_DEP;
1303 if (prev == pro)
1304 break;
1306 if (ORIG_PAT (next) == NULL_RTX)
1308 ORIG_PAT (next) = PATTERN (next);
1310 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1311 success = haifa_change_pattern (next, new_pat);
1312 if (!success)
1313 return HARD_DEP;
1314 PREDICATED_PAT (next) = new_pat;
1316 else if (PATTERN (next) != PREDICATED_PAT (next))
1318 bool success = haifa_change_pattern (next,
1319 PREDICATED_PAT (next));
1320 gcc_assert (success);
1322 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1323 return DEP_CONTROL;
1326 if (PREDICATED_PAT (next) != NULL_RTX)
1328 int tick = INSN_TICK (next);
1329 bool success = haifa_change_pattern (next,
1330 ORIG_PAT (next));
1331 INSN_TICK (next) = tick;
1332 gcc_assert (success);
1335 /* We can't handle the case where there are both speculative and control
1336 dependencies, so we return HARD_DEP in such a case. Also fail if
1337 we have speculative dependencies with not enough points, or more than
1338 one control dependency. */
1339 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1340 || (n_spec > 0
1341 /* Too few points? */
1342 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1343 || n_control > 0
1344 || n_replace > 0)
1345 return HARD_DEP;
1347 return new_ds;
1350 /* Pointer to the last instruction scheduled. */
1351 static rtx last_scheduled_insn;
1353 /* Pointer to the last nondebug instruction scheduled within the
1354 block, or the prev_head of the scheduling block. Used by
1355 rank_for_schedule, so that insns independent of the last scheduled
1356 insn will be preferred over dependent instructions. */
1357 static rtx last_nondebug_scheduled_insn;
1359 /* Pointer that iterates through the list of unscheduled insns if we
1360 have a dbg_cnt enabled. It always points at an insn prior to the
1361 first unscheduled one. */
1362 static rtx nonscheduled_insns_begin;
1364 /* Compute cost of executing INSN.
1365 This is the number of cycles between instruction issue and
1366 instruction results. */
1368 insn_cost (rtx insn)
1370 int cost;
1372 if (sel_sched_p ())
1374 if (recog_memoized (insn) < 0)
1375 return 0;
1377 cost = insn_default_latency (insn);
1378 if (cost < 0)
1379 cost = 0;
1381 return cost;
1384 cost = INSN_COST (insn);
1386 if (cost < 0)
1388 /* A USE insn, or something else we don't need to
1389 understand. We can't pass these directly to
1390 result_ready_cost or insn_default_latency because it will
1391 trigger a fatal error for unrecognizable insns. */
1392 if (recog_memoized (insn) < 0)
1394 INSN_COST (insn) = 0;
1395 return 0;
1397 else
1399 cost = insn_default_latency (insn);
1400 if (cost < 0)
1401 cost = 0;
1403 INSN_COST (insn) = cost;
1407 return cost;
1410 /* Compute cost of dependence LINK.
1411 This is the number of cycles between instruction issue and
1412 instruction results.
1413 ??? We also use this function to call recog_memoized on all insns. */
1415 dep_cost_1 (dep_t link, dw_t dw)
1417 rtx insn = DEP_PRO (link);
1418 rtx used = DEP_CON (link);
1419 int cost;
1421 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1422 return DEP_COST (link);
1424 if (delay_htab)
1426 struct delay_pair *delay_entry;
1427 delay_entry
1428 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1429 if (delay_entry)
1431 if (delay_entry->i1 == insn)
1433 DEP_COST (link) = pair_delay (delay_entry);
1434 return DEP_COST (link);
1439 /* A USE insn should never require the value used to be computed.
1440 This allows the computation of a function's result and parameter
1441 values to overlap the return and call. We don't care about the
1442 dependence cost when only decreasing register pressure. */
1443 if (recog_memoized (used) < 0)
1445 cost = 0;
1446 recog_memoized (insn);
1448 else
1450 enum reg_note dep_type = DEP_TYPE (link);
1452 cost = insn_cost (insn);
1454 if (INSN_CODE (insn) >= 0)
1456 if (dep_type == REG_DEP_ANTI)
1457 cost = 0;
1458 else if (dep_type == REG_DEP_OUTPUT)
1460 cost = (insn_default_latency (insn)
1461 - insn_default_latency (used));
1462 if (cost <= 0)
1463 cost = 1;
1465 else if (bypass_p (insn))
1466 cost = insn_latency (insn, used);
1470 if (targetm.sched.adjust_cost_2)
1471 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1472 dw);
1473 else if (targetm.sched.adjust_cost != NULL)
1475 /* This variable is used for backward compatibility with the
1476 targets. */
1477 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
1479 /* Make it self-cycled, so that if some tries to walk over this
1480 incomplete list he/she will be caught in an endless loop. */
1481 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1483 /* Targets use only REG_NOTE_KIND of the link. */
1484 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1486 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1487 insn, cost);
1489 free_INSN_LIST_node (dep_cost_rtx_link);
1492 if (cost < 0)
1493 cost = 0;
1496 DEP_COST (link) = cost;
1497 return cost;
1500 /* Compute cost of dependence LINK.
1501 This is the number of cycles between instruction issue and
1502 instruction results. */
1504 dep_cost (dep_t link)
1506 return dep_cost_1 (link, 0);
1509 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1510 INSN_PRIORITY explicitly. */
1511 void
1512 increase_insn_priority (rtx insn, int amount)
1514 if (!sel_sched_p ())
1516 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1517 if (INSN_PRIORITY_KNOWN (insn))
1518 INSN_PRIORITY (insn) += amount;
1520 else
1522 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1523 Use EXPR_PRIORITY instead. */
1524 sel_add_to_insn_priority (insn, amount);
1528 /* Return 'true' if DEP should be included in priority calculations. */
1529 static bool
1530 contributes_to_priority_p (dep_t dep)
1532 if (DEBUG_INSN_P (DEP_CON (dep))
1533 || DEBUG_INSN_P (DEP_PRO (dep)))
1534 return false;
1536 /* Critical path is meaningful in block boundaries only. */
1537 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1538 DEP_PRO (dep)))
1539 return false;
1541 if (DEP_REPLACE (dep) != NULL)
1542 return false;
1544 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1545 then speculative instructions will less likely be
1546 scheduled. That is because the priority of
1547 their producers will increase, and, thus, the
1548 producers will more likely be scheduled, thus,
1549 resolving the dependence. */
1550 if (sched_deps_info->generate_spec_deps
1551 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1552 && (DEP_STATUS (dep) & SPECULATIVE))
1553 return false;
1555 return true;
1558 /* Compute the number of nondebug deps in list LIST for INSN. */
1560 static int
1561 dep_list_size (rtx insn, sd_list_types_def list)
1563 sd_iterator_def sd_it;
1564 dep_t dep;
1565 int dbgcount = 0, nodbgcount = 0;
1567 if (!MAY_HAVE_DEBUG_INSNS)
1568 return sd_lists_size (insn, list);
1570 FOR_EACH_DEP (insn, list, sd_it, dep)
1572 if (DEBUG_INSN_P (DEP_CON (dep)))
1573 dbgcount++;
1574 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1575 nodbgcount++;
1578 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1580 return nodbgcount;
1583 /* Compute the priority number for INSN. */
1584 static int
1585 priority (rtx insn)
1587 if (! INSN_P (insn))
1588 return 0;
1590 /* We should not be interested in priority of an already scheduled insn. */
1591 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1593 if (!INSN_PRIORITY_KNOWN (insn))
1595 int this_priority = -1;
1597 if (dep_list_size (insn, SD_LIST_FORW) == 0)
1598 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1599 some forward deps but all of them are ignored by
1600 contributes_to_priority hook. At the moment we set priority of
1601 such insn to 0. */
1602 this_priority = insn_cost (insn);
1603 else
1605 rtx prev_first, twin;
1606 basic_block rec;
1608 /* For recovery check instructions we calculate priority slightly
1609 different than that of normal instructions. Instead of walking
1610 through INSN_FORW_DEPS (check) list, we walk through
1611 INSN_FORW_DEPS list of each instruction in the corresponding
1612 recovery block. */
1614 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1615 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1616 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1618 prev_first = PREV_INSN (insn);
1619 twin = insn;
1621 else
1623 prev_first = NEXT_INSN (BB_HEAD (rec));
1624 twin = PREV_INSN (BB_END (rec));
1629 sd_iterator_def sd_it;
1630 dep_t dep;
1632 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1634 rtx next;
1635 int next_priority;
1637 next = DEP_CON (dep);
1639 if (BLOCK_FOR_INSN (next) != rec)
1641 int cost;
1643 if (!contributes_to_priority_p (dep))
1644 continue;
1646 if (twin == insn)
1647 cost = dep_cost (dep);
1648 else
1650 struct _dep _dep1, *dep1 = &_dep1;
1652 init_dep (dep1, insn, next, REG_DEP_ANTI);
1654 cost = dep_cost (dep1);
1657 next_priority = cost + priority (next);
1659 if (next_priority > this_priority)
1660 this_priority = next_priority;
1664 twin = PREV_INSN (twin);
1666 while (twin != prev_first);
1669 if (this_priority < 0)
1671 gcc_assert (this_priority == -1);
1673 this_priority = insn_cost (insn);
1676 INSN_PRIORITY (insn) = this_priority;
1677 INSN_PRIORITY_STATUS (insn) = 1;
1680 return INSN_PRIORITY (insn);
1683 /* Macros and functions for keeping the priority queue sorted, and
1684 dealing with queuing and dequeuing of instructions. */
1686 /* For each pressure class CL, set DEATH[CL] to the number of registers
1687 in that class that die in INSN. */
1689 static void
1690 calculate_reg_deaths (rtx insn, int *death)
1692 int i;
1693 struct reg_use_data *use;
1695 for (i = 0; i < ira_pressure_classes_num; i++)
1696 death[ira_pressure_classes[i]] = 0;
1697 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1698 if (dying_use_p (use))
1699 mark_regno_birth_or_death (0, death, use->regno, true);
1702 /* Setup info about the current register pressure impact of scheduling
1703 INSN at the current scheduling point. */
1704 static void
1705 setup_insn_reg_pressure_info (rtx insn)
1707 int i, change, before, after, hard_regno;
1708 int excess_cost_change;
1709 enum machine_mode mode;
1710 enum reg_class cl;
1711 struct reg_pressure_data *pressure_info;
1712 int *max_reg_pressure;
1713 static int death[N_REG_CLASSES];
1715 gcc_checking_assert (!DEBUG_INSN_P (insn));
1717 excess_cost_change = 0;
1718 calculate_reg_deaths (insn, death);
1719 pressure_info = INSN_REG_PRESSURE (insn);
1720 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1721 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1722 for (i = 0; i < ira_pressure_classes_num; i++)
1724 cl = ira_pressure_classes[i];
1725 gcc_assert (curr_reg_pressure[cl] >= 0);
1726 change = (int) pressure_info[i].set_increase - death[cl];
1727 before = MAX (0, max_reg_pressure[i] - ira_class_hard_regs_num[cl]);
1728 after = MAX (0, max_reg_pressure[i] + change
1729 - ira_class_hard_regs_num[cl]);
1730 hard_regno = ira_class_hard_regs[cl][0];
1731 gcc_assert (hard_regno >= 0);
1732 mode = reg_raw_mode[hard_regno];
1733 excess_cost_change += ((after - before)
1734 * (ira_memory_move_cost[mode][cl][0]
1735 + ira_memory_move_cost[mode][cl][1]));
1737 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1740 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1741 It tries to make the scheduler take register pressure into account
1742 without introducing too many unnecessary stalls. It hooks into the
1743 main scheduling algorithm at several points:
1745 - Before scheduling starts, model_start_schedule constructs a
1746 "model schedule" for the current block. This model schedule is
1747 chosen solely to keep register pressure down. It does not take the
1748 target's pipeline or the original instruction order into account,
1749 except as a tie-breaker. It also doesn't work to a particular
1750 pressure limit.
1752 This model schedule gives us an idea of what pressure can be
1753 achieved for the block and gives us an example of a schedule that
1754 keeps to that pressure. It also makes the final schedule less
1755 dependent on the original instruction order. This is important
1756 because the original order can either be "wide" (many values live
1757 at once, such as in user-scheduled code) or "narrow" (few values
1758 live at once, such as after loop unrolling, where several
1759 iterations are executed sequentially).
1761 We do not apply this model schedule to the rtx stream. We simply
1762 record it in model_schedule. We also compute the maximum pressure,
1763 MP, that was seen during this schedule.
1765 - Instructions are added to the ready queue even if they require
1766 a stall. The length of the stall is instead computed as:
1768 MAX (INSN_TICK (INSN) - clock_var, 0)
1770 (= insn_delay). This allows rank_for_schedule to choose between
1771 introducing a deliberate stall or increasing pressure.
1773 - Before sorting the ready queue, model_set_excess_costs assigns
1774 a pressure-based cost to each ready instruction in the queue.
1775 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1776 (ECC for short) and is effectively measured in cycles.
1778 - rank_for_schedule ranks instructions based on:
1780 ECC (insn) + insn_delay (insn)
1782 then as:
1784 insn_delay (insn)
1786 So, for example, an instruction X1 with an ECC of 1 that can issue
1787 now will win over an instruction X0 with an ECC of zero that would
1788 introduce a stall of one cycle. However, an instruction X2 with an
1789 ECC of 2 that can issue now will lose to both X0 and X1.
1791 - When an instruction is scheduled, model_recompute updates the model
1792 schedule with the new pressures (some of which might now exceed the
1793 original maximum pressure MP). model_update_limit_points then searches
1794 for the new point of maximum pressure, if not already known. */
1796 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1797 from surrounding debug information. */
1798 #define MODEL_BAR \
1799 ";;\t\t+------------------------------------------------------\n"
1801 /* Information about the pressure on a particular register class at a
1802 particular point of the model schedule. */
1803 struct model_pressure_data {
1804 /* The pressure at this point of the model schedule, or -1 if the
1805 point is associated with an instruction that has already been
1806 scheduled. */
1807 int ref_pressure;
1809 /* The maximum pressure during or after this point of the model schedule. */
1810 int max_pressure;
1813 /* Per-instruction information that is used while building the model
1814 schedule. Here, "schedule" refers to the model schedule rather
1815 than the main schedule. */
1816 struct model_insn_info {
1817 /* The instruction itself. */
1818 rtx insn;
1820 /* If this instruction is in model_worklist, these fields link to the
1821 previous (higher-priority) and next (lower-priority) instructions
1822 in the list. */
1823 struct model_insn_info *prev;
1824 struct model_insn_info *next;
1826 /* While constructing the schedule, QUEUE_INDEX describes whether an
1827 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1828 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1829 old_queue records the value that QUEUE_INDEX had before scheduling
1830 started, so that we can restore it once the schedule is complete. */
1831 int old_queue;
1833 /* The relative importance of an unscheduled instruction. Higher
1834 values indicate greater importance. */
1835 unsigned int model_priority;
1837 /* The length of the longest path of satisfied true dependencies
1838 that leads to this instruction. */
1839 unsigned int depth;
1841 /* The length of the longest path of dependencies of any kind
1842 that leads from this instruction. */
1843 unsigned int alap;
1845 /* The number of predecessor nodes that must still be scheduled. */
1846 int unscheduled_preds;
1849 /* Information about the pressure limit for a particular register class.
1850 This structure is used when applying a model schedule to the main
1851 schedule. */
1852 struct model_pressure_limit {
1853 /* The maximum register pressure seen in the original model schedule. */
1854 int orig_pressure;
1856 /* The maximum register pressure seen in the current model schedule
1857 (which excludes instructions that have already been scheduled). */
1858 int pressure;
1860 /* The point of the current model schedule at which PRESSURE is first
1861 reached. It is set to -1 if the value needs to be recomputed. */
1862 int point;
1865 /* Describes a particular way of measuring register pressure. */
1866 struct model_pressure_group {
1867 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1868 struct model_pressure_limit limits[N_REG_CLASSES];
1870 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1871 on register class ira_pressure_classes[PCI] at point POINT of the
1872 current model schedule. A POINT of model_num_insns describes the
1873 pressure at the end of the schedule. */
1874 struct model_pressure_data *model;
1877 /* Index POINT gives the instruction at point POINT of the model schedule.
1878 This array doesn't change during main scheduling. */
1879 static vec<rtx> model_schedule;
1881 /* The list of instructions in the model worklist, sorted in order of
1882 decreasing priority. */
1883 static struct model_insn_info *model_worklist;
1885 /* Index I describes the instruction with INSN_LUID I. */
1886 static struct model_insn_info *model_insns;
1888 /* The number of instructions in the model schedule. */
1889 static int model_num_insns;
1891 /* The index of the first instruction in model_schedule that hasn't yet been
1892 added to the main schedule, or model_num_insns if all of them have. */
1893 static int model_curr_point;
1895 /* Describes the pressure before each instruction in the model schedule. */
1896 static struct model_pressure_group model_before_pressure;
1898 /* The first unused model_priority value (as used in model_insn_info). */
1899 static unsigned int model_next_priority;
1902 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1903 at point POINT of the model schedule. */
1904 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1905 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1907 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1908 after point POINT of the model schedule. */
1909 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1910 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1912 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1913 of the model schedule. */
1914 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1915 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1917 /* Information about INSN that is used when creating the model schedule. */
1918 #define MODEL_INSN_INFO(INSN) \
1919 (&model_insns[INSN_LUID (INSN)])
1921 /* The instruction at point POINT of the model schedule. */
1922 #define MODEL_INSN(POINT) \
1923 (model_schedule[POINT])
1926 /* Return INSN's index in the model schedule, or model_num_insns if it
1927 doesn't belong to that schedule. */
1929 static int
1930 model_index (rtx insn)
1932 if (INSN_MODEL_INDEX (insn) == 0)
1933 return model_num_insns;
1934 return INSN_MODEL_INDEX (insn) - 1;
1937 /* Make sure that GROUP->limits is up-to-date for the current point
1938 of the model schedule. */
1940 static void
1941 model_update_limit_points_in_group (struct model_pressure_group *group)
1943 int pci, max_pressure, point;
1945 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1947 /* We may have passed the final point at which the pressure in
1948 group->limits[pci].pressure was reached. Update the limit if so. */
1949 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1950 group->limits[pci].pressure = max_pressure;
1952 /* Find the point at which MAX_PRESSURE is first reached. We need
1953 to search in three cases:
1955 - We've already moved past the previous pressure point.
1956 In this case we search forward from model_curr_point.
1958 - We scheduled the previous point of maximum pressure ahead of
1959 its position in the model schedule, but doing so didn't bring
1960 the pressure point earlier. In this case we search forward
1961 from that previous pressure point.
1963 - Scheduling an instruction early caused the maximum pressure
1964 to decrease. In this case we will have set the pressure
1965 point to -1, and we search forward from model_curr_point. */
1966 point = MAX (group->limits[pci].point, model_curr_point);
1967 while (point < model_num_insns
1968 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1969 point++;
1970 group->limits[pci].point = point;
1972 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1973 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1977 /* Make sure that all register-pressure limits are up-to-date for the
1978 current position in the model schedule. */
1980 static void
1981 model_update_limit_points (void)
1983 model_update_limit_points_in_group (&model_before_pressure);
1986 /* Return the model_index of the last unscheduled use in chain USE
1987 outside of USE's instruction. Return -1 if there are no other uses,
1988 or model_num_insns if the register is live at the end of the block. */
1990 static int
1991 model_last_use_except (struct reg_use_data *use)
1993 struct reg_use_data *next;
1994 int last, index;
1996 last = -1;
1997 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1998 if (NONDEBUG_INSN_P (next->insn)
1999 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2001 index = model_index (next->insn);
2002 if (index == model_num_insns)
2003 return model_num_insns;
2004 if (last < index)
2005 last = index;
2007 return last;
2010 /* An instruction with model_index POINT has just been scheduled, and it
2011 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2012 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2013 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2015 static void
2016 model_start_update_pressure (struct model_pressure_group *group,
2017 int point, int pci, int delta)
2019 int next_max_pressure;
2021 if (point == model_num_insns)
2023 /* The instruction wasn't part of the model schedule; it was moved
2024 from a different block. Update the pressure for the end of
2025 the model schedule. */
2026 MODEL_REF_PRESSURE (group, point, pci) += delta;
2027 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2029 else
2031 /* Record that this instruction has been scheduled. Nothing now
2032 changes between POINT and POINT + 1, so get the maximum pressure
2033 from the latter. If the maximum pressure decreases, the new
2034 pressure point may be before POINT. */
2035 MODEL_REF_PRESSURE (group, point, pci) = -1;
2036 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2037 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2039 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2040 if (group->limits[pci].point == point)
2041 group->limits[pci].point = -1;
2046 /* Record that scheduling a later instruction has changed the pressure
2047 at point POINT of the model schedule by DELTA (which might be 0).
2048 Update GROUP accordingly. Return nonzero if these changes might
2049 trigger changes to previous points as well. */
2051 static int
2052 model_update_pressure (struct model_pressure_group *group,
2053 int point, int pci, int delta)
2055 int ref_pressure, max_pressure, next_max_pressure;
2057 /* If POINT hasn't yet been scheduled, update its pressure. */
2058 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2059 if (ref_pressure >= 0 && delta != 0)
2061 ref_pressure += delta;
2062 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2064 /* Check whether the maximum pressure in the overall schedule
2065 has increased. (This means that the MODEL_MAX_PRESSURE of
2066 every point <= POINT will need to increae too; see below.) */
2067 if (group->limits[pci].pressure < ref_pressure)
2068 group->limits[pci].pressure = ref_pressure;
2070 /* If we are at maximum pressure, and the maximum pressure
2071 point was previously unknown or later than POINT,
2072 bring it forward. */
2073 if (group->limits[pci].pressure == ref_pressure
2074 && !IN_RANGE (group->limits[pci].point, 0, point))
2075 group->limits[pci].point = point;
2077 /* If POINT used to be the point of maximum pressure, but isn't
2078 any longer, we need to recalculate it using a forward walk. */
2079 if (group->limits[pci].pressure > ref_pressure
2080 && group->limits[pci].point == point)
2081 group->limits[pci].point = -1;
2084 /* Update the maximum pressure at POINT. Changes here might also
2085 affect the maximum pressure at POINT - 1. */
2086 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2087 max_pressure = MAX (ref_pressure, next_max_pressure);
2088 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2090 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2091 return 1;
2093 return 0;
2096 /* INSN has just been scheduled. Update the model schedule accordingly. */
2098 static void
2099 model_recompute (rtx insn)
2101 struct {
2102 int last_use;
2103 int regno;
2104 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2105 struct reg_use_data *use;
2106 struct reg_pressure_data *reg_pressure;
2107 int delta[N_REG_CLASSES];
2108 int pci, point, mix, new_last, cl, ref_pressure, queue;
2109 unsigned int i, num_uses, num_pending_births;
2110 bool print_p;
2112 /* The destinations of INSN were previously live from POINT onwards, but are
2113 now live from model_curr_point onwards. Set up DELTA accordingly. */
2114 point = model_index (insn);
2115 reg_pressure = INSN_REG_PRESSURE (insn);
2116 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2118 cl = ira_pressure_classes[pci];
2119 delta[cl] = reg_pressure[pci].set_increase;
2122 /* Record which registers previously died at POINT, but which now die
2123 before POINT. Adjust DELTA so that it represents the effect of
2124 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2125 registers that will be born in the range [model_curr_point, POINT). */
2126 num_uses = 0;
2127 num_pending_births = 0;
2128 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2130 new_last = model_last_use_except (use);
2131 if (new_last < point)
2133 gcc_assert (num_uses < ARRAY_SIZE (uses));
2134 uses[num_uses].last_use = new_last;
2135 uses[num_uses].regno = use->regno;
2136 /* This register is no longer live after POINT - 1. */
2137 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2138 num_uses++;
2139 if (new_last >= 0)
2140 num_pending_births++;
2144 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2145 Also set each group pressure limit for POINT. */
2146 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2148 cl = ira_pressure_classes[pci];
2149 model_start_update_pressure (&model_before_pressure,
2150 point, pci, delta[cl]);
2153 /* Walk the model schedule backwards, starting immediately before POINT. */
2154 print_p = false;
2155 if (point != model_curr_point)
2158 point--;
2159 insn = MODEL_INSN (point);
2160 queue = QUEUE_INDEX (insn);
2162 if (queue != QUEUE_SCHEDULED)
2164 /* DELTA describes the effect of the move on the register pressure
2165 after POINT. Make it describe the effect on the pressure
2166 before POINT. */
2167 i = 0;
2168 while (i < num_uses)
2170 if (uses[i].last_use == point)
2172 /* This register is now live again. */
2173 mark_regno_birth_or_death (NULL, delta,
2174 uses[i].regno, true);
2176 /* Remove this use from the array. */
2177 uses[i] = uses[num_uses - 1];
2178 num_uses--;
2179 num_pending_births--;
2181 else
2182 i++;
2185 if (sched_verbose >= 5)
2187 if (!print_p)
2189 fprintf (sched_dump, MODEL_BAR);
2190 fprintf (sched_dump, ";;\t\t| New pressure for model"
2191 " schedule\n");
2192 fprintf (sched_dump, MODEL_BAR);
2193 print_p = true;
2196 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2197 point, INSN_UID (insn),
2198 str_pattern_slim (PATTERN (insn)));
2199 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2201 cl = ira_pressure_classes[pci];
2202 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2203 point, pci);
2204 fprintf (sched_dump, " %s:[%d->%d]",
2205 reg_class_names[ira_pressure_classes[pci]],
2206 ref_pressure, ref_pressure + delta[cl]);
2208 fprintf (sched_dump, "\n");
2212 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2213 might have changed as well. */
2214 mix = num_pending_births;
2215 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2217 cl = ira_pressure_classes[pci];
2218 mix |= delta[cl];
2219 mix |= model_update_pressure (&model_before_pressure,
2220 point, pci, delta[cl]);
2223 while (mix && point > model_curr_point);
2225 if (print_p)
2226 fprintf (sched_dump, MODEL_BAR);
2229 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2230 check whether the insn's pattern needs restoring. */
2231 static bool
2232 must_restore_pattern_p (rtx next, dep_t dep)
2234 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2235 return false;
2237 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2239 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2240 gcc_assert (next == DEP_CON (dep));
2242 else
2244 struct dep_replacement *desc = DEP_REPLACE (dep);
2245 if (desc->insn != next)
2247 gcc_assert (*desc->loc == desc->orig);
2248 return false;
2251 return true;
2254 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2255 pressure on CL from P to P'. We use this to calculate a "base ECC",
2256 baseECC (CL, X), for each pressure class CL and each instruction X.
2257 Supposing X changes the pressure on CL from P to P', and that the
2258 maximum pressure on CL in the current model schedule is MP', then:
2260 * if X occurs before or at the next point of maximum pressure in
2261 the model schedule and P' > MP', then:
2263 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2265 The idea is that the pressure after scheduling a fixed set of
2266 instructions -- in this case, the set up to and including the
2267 next maximum pressure point -- is going to be the same regardless
2268 of the order; we simply want to keep the intermediate pressure
2269 under control. Thus X has a cost of zero unless scheduling it
2270 now would exceed MP'.
2272 If all increases in the set are by the same amount, no zero-cost
2273 instruction will ever cause the pressure to exceed MP'. However,
2274 if X is instead moved past an instruction X' with pressure in the
2275 range (MP' - (P' - P), MP'), the pressure at X' will increase
2276 beyond MP'. Since baseECC is very much a heuristic anyway,
2277 it doesn't seem worth the overhead of tracking cases like these.
2279 The cost of exceeding MP' is always based on the original maximum
2280 pressure MP. This is so that going 2 registers over the original
2281 limit has the same cost regardless of whether it comes from two
2282 separate +1 deltas or from a single +2 delta.
2284 * if X occurs after the next point of maximum pressure in the model
2285 schedule and P' > P, then:
2287 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2289 That is, if we move X forward across a point of maximum pressure,
2290 and if X increases the pressure by P' - P, then we conservatively
2291 assume that scheduling X next would increase the maximum pressure
2292 by P' - P. Again, the cost of doing this is based on the original
2293 maximum pressure MP, for the same reason as above.
2295 * if P' < P, P > MP, and X occurs at or after the next point of
2296 maximum pressure, then:
2298 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2300 That is, if we have already exceeded the original maximum pressure MP,
2301 and if X might reduce the maximum pressure again -- or at least push
2302 it further back, and thus allow more scheduling freedom -- it is given
2303 a negative cost to reflect the improvement.
2305 * otherwise,
2307 baseECC (CL, X) = 0
2309 In this case, X is not expected to affect the maximum pressure MP',
2310 so it has zero cost.
2312 We then create a combined value baseECC (X) that is the sum of
2313 baseECC (CL, X) for each pressure class CL.
2315 baseECC (X) could itself be used as the ECC value described above.
2316 However, this is often too conservative, in the sense that it
2317 tends to make high-priority instructions that increase pressure
2318 wait too long in cases where introducing a spill would be better.
2319 For this reason the final ECC is a priority-adjusted form of
2320 baseECC (X). Specifically, we calculate:
2322 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2323 baseP = MAX { P (X) | baseECC (X) <= 0 }
2325 Then:
2327 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2329 Thus an instruction's effect on pressure is ignored if it has a high
2330 enough priority relative to the ones that don't increase pressure.
2331 Negative values of baseECC (X) do not increase the priority of X
2332 itself, but they do make it harder for other instructions to
2333 increase the pressure further.
2335 This pressure cost is deliberately timid. The intention has been
2336 to choose a heuristic that rarely interferes with the normal list
2337 scheduler in cases where that scheduler would produce good code.
2338 We simply want to curb some of its worst excesses. */
2340 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2342 Here we use the very simplistic cost model that every register above
2343 ira_class_hard_regs_num[CL] has a spill cost of 1. We could use other
2344 measures instead, such as one based on MEMORY_MOVE_COST. However:
2346 (1) In order for an instruction to be scheduled, the higher cost
2347 would need to be justified in a single saving of that many stalls.
2348 This is overly pessimistic, because the benefit of spilling is
2349 often to avoid a sequence of several short stalls rather than
2350 a single long one.
2352 (2) The cost is still arbitrary. Because we are not allocating
2353 registers during scheduling, we have no way of knowing for
2354 sure how many memory accesses will be required by each spill,
2355 where the spills will be placed within the block, or even
2356 which block(s) will contain the spills.
2358 So a higher cost than 1 is often too conservative in practice,
2359 forcing blocks to contain unnecessary stalls instead of spill code.
2360 The simple cost below seems to be the best compromise. It reduces
2361 the interference with the normal list scheduler, which helps make
2362 it more suitable for a default-on option. */
2364 static int
2365 model_spill_cost (int cl, int from, int to)
2367 from = MAX (from, ira_class_hard_regs_num[cl]);
2368 return MAX (to, from) - from;
2371 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2372 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2373 P' = P + DELTA. */
2375 static int
2376 model_excess_group_cost (struct model_pressure_group *group,
2377 int point, int pci, int delta)
2379 int pressure, cl;
2381 cl = ira_pressure_classes[pci];
2382 if (delta < 0 && point >= group->limits[pci].point)
2384 pressure = MAX (group->limits[pci].orig_pressure,
2385 curr_reg_pressure[cl] + delta);
2386 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2389 if (delta > 0)
2391 if (point > group->limits[pci].point)
2392 pressure = group->limits[pci].pressure + delta;
2393 else
2394 pressure = curr_reg_pressure[cl] + delta;
2396 if (pressure > group->limits[pci].pressure)
2397 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2398 pressure);
2401 return 0;
2404 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2405 if PRINT_P. */
2407 static int
2408 model_excess_cost (rtx insn, bool print_p)
2410 int point, pci, cl, cost, this_cost, delta;
2411 struct reg_pressure_data *insn_reg_pressure;
2412 int insn_death[N_REG_CLASSES];
2414 calculate_reg_deaths (insn, insn_death);
2415 point = model_index (insn);
2416 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2417 cost = 0;
2419 if (print_p)
2420 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2421 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2423 /* Sum up the individual costs for each register class. */
2424 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2426 cl = ira_pressure_classes[pci];
2427 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2428 this_cost = model_excess_group_cost (&model_before_pressure,
2429 point, pci, delta);
2430 cost += this_cost;
2431 if (print_p)
2432 fprintf (sched_dump, " %s:[%d base cost %d]",
2433 reg_class_names[cl], delta, this_cost);
2436 if (print_p)
2437 fprintf (sched_dump, "\n");
2439 return cost;
2442 /* Dump the next points of maximum pressure for GROUP. */
2444 static void
2445 model_dump_pressure_points (struct model_pressure_group *group)
2447 int pci, cl;
2449 fprintf (sched_dump, ";;\t\t| pressure points");
2450 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2452 cl = ira_pressure_classes[pci];
2453 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2454 curr_reg_pressure[cl], group->limits[pci].pressure);
2455 if (group->limits[pci].point < model_num_insns)
2456 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2457 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2458 else
2459 fprintf (sched_dump, "end]");
2461 fprintf (sched_dump, "\n");
2464 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2466 static void
2467 model_set_excess_costs (rtx *insns, int count)
2469 int i, cost, priority_base, priority;
2470 bool print_p;
2472 /* Record the baseECC value for each instruction in the model schedule,
2473 except that negative costs are converted to zero ones now rather thatn
2474 later. Do not assign a cost to debug instructions, since they must
2475 not change code-generation decisions. Experiments suggest we also
2476 get better results by not assigning a cost to instructions from
2477 a different block.
2479 Set PRIORITY_BASE to baseP in the block comment above. This is the
2480 maximum priority of the "cheap" instructions, which should always
2481 include the next model instruction. */
2482 priority_base = 0;
2483 print_p = false;
2484 for (i = 0; i < count; i++)
2485 if (INSN_MODEL_INDEX (insns[i]))
2487 if (sched_verbose >= 6 && !print_p)
2489 fprintf (sched_dump, MODEL_BAR);
2490 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2491 model_dump_pressure_points (&model_before_pressure);
2492 fprintf (sched_dump, MODEL_BAR);
2493 print_p = true;
2495 cost = model_excess_cost (insns[i], print_p);
2496 if (cost <= 0)
2498 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2499 priority_base = MAX (priority_base, priority);
2500 cost = 0;
2502 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2504 if (print_p)
2505 fprintf (sched_dump, MODEL_BAR);
2507 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2508 instruction. */
2509 for (i = 0; i < count; i++)
2511 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2512 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2513 if (cost > 0 && priority > priority_base)
2515 cost += priority_base - priority;
2516 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2522 /* Enum of rank_for_schedule heuristic decisions. */
2523 enum rfs_decision {
2524 RFS_DEBUG, RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2525 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2526 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2527 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2528 RFS_DEP_COUNT, RFS_TIE, RFS_N };
2530 /* Corresponding strings for print outs. */
2531 static const char *rfs_str[RFS_N] = {
2532 "RFS_DEBUG", "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2533 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2534 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2535 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2536 "RFS_DEP_COUNT", "RFS_TIE" };
2538 /* Statistical breakdown of rank_for_schedule decisions. */
2539 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2540 static rank_for_schedule_stats_t rank_for_schedule_stats;
2542 static int
2543 rfs_result (enum rfs_decision decision, int result)
2545 ++rank_for_schedule_stats.stats[decision];
2546 return result;
2549 /* Returns a positive value if x is preferred; returns a negative value if
2550 y is preferred. Should never return 0, since that will make the sort
2551 unstable. */
2553 static int
2554 rank_for_schedule (const void *x, const void *y)
2556 rtx tmp = *(const rtx *) y;
2557 rtx tmp2 = *(const rtx *) x;
2558 int tmp_class, tmp2_class;
2559 int val, priority_val, info_val, diff;
2561 if (MAY_HAVE_DEBUG_INSNS)
2563 /* Schedule debug insns as early as possible. */
2564 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2565 return rfs_result (RFS_DEBUG, -1);
2566 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2567 return rfs_result (RFS_DEBUG, 1);
2568 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2569 return rfs_result (RFS_DEBUG, INSN_LUID (tmp) - INSN_LUID (tmp2));
2572 if (live_range_shrinkage_p)
2574 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2575 code. */
2576 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2577 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2578 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2579 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2580 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2581 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff);
2582 /* Sort by INSN_LUID (original insn order), so that we make the
2583 sort stable. This minimizes instruction movement, thus
2584 minimizing sched's effect on debugging and cross-jumping. */
2585 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2586 INSN_LUID (tmp) - INSN_LUID (tmp2));
2589 /* The insn in a schedule group should be issued the first. */
2590 if (flag_sched_group_heuristic &&
2591 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2592 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1);
2594 /* Make sure that priority of TMP and TMP2 are initialized. */
2595 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2597 if (sched_pressure != SCHED_PRESSURE_NONE)
2599 /* Prefer insn whose scheduling results in the smallest register
2600 pressure excess. */
2601 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2602 + insn_delay (tmp)
2603 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2604 - insn_delay (tmp2))))
2605 return rfs_result (RFS_PRESSURE_DELAY, diff);
2608 if (sched_pressure != SCHED_PRESSURE_NONE
2609 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2610 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2612 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2613 return rfs_result (RFS_PRESSURE_TICK, diff);
2616 /* If we are doing backtracking in this schedule, prefer insns that
2617 have forward dependencies with negative cost against an insn that
2618 was already scheduled. */
2619 if (current_sched_info->flags & DO_BACKTRACKING)
2621 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2622 if (priority_val)
2623 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val);
2626 /* Prefer insn with higher priority. */
2627 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2629 if (flag_sched_critical_path_heuristic && priority_val)
2630 return rfs_result (RFS_PRIORITY, priority_val);
2632 /* Prefer speculative insn with greater dependencies weakness. */
2633 if (flag_sched_spec_insn_heuristic && spec_info)
2635 ds_t ds1, ds2;
2636 dw_t dw1, dw2;
2637 int dw;
2639 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2640 if (ds1)
2641 dw1 = ds_weak (ds1);
2642 else
2643 dw1 = NO_DEP_WEAK;
2645 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2646 if (ds2)
2647 dw2 = ds_weak (ds2);
2648 else
2649 dw2 = NO_DEP_WEAK;
2651 dw = dw2 - dw1;
2652 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2653 return rfs_result (RFS_SPECULATION, dw);
2656 info_val = (*current_sched_info->rank) (tmp, tmp2);
2657 if (flag_sched_rank_heuristic && info_val)
2658 return rfs_result (RFS_SCHED_RANK, info_val);
2660 /* Compare insns based on their relation to the last scheduled
2661 non-debug insn. */
2662 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2664 dep_t dep1;
2665 dep_t dep2;
2666 rtx last = last_nondebug_scheduled_insn;
2668 /* Classify the instructions into three classes:
2669 1) Data dependent on last schedule insn.
2670 2) Anti/Output dependent on last scheduled insn.
2671 3) Independent of last scheduled insn, or has latency of one.
2672 Choose the insn from the highest numbered class if different. */
2673 dep1 = sd_find_dep_between (last, tmp, true);
2675 if (dep1 == NULL || dep_cost (dep1) == 1)
2676 tmp_class = 3;
2677 else if (/* Data dependence. */
2678 DEP_TYPE (dep1) == REG_DEP_TRUE)
2679 tmp_class = 1;
2680 else
2681 tmp_class = 2;
2683 dep2 = sd_find_dep_between (last, tmp2, true);
2685 if (dep2 == NULL || dep_cost (dep2) == 1)
2686 tmp2_class = 3;
2687 else if (/* Data dependence. */
2688 DEP_TYPE (dep2) == REG_DEP_TRUE)
2689 tmp2_class = 1;
2690 else
2691 tmp2_class = 2;
2693 if ((val = tmp2_class - tmp_class))
2694 return rfs_result (RFS_LAST_INSN, val);
2697 /* Prefer instructions that occur earlier in the model schedule. */
2698 if (sched_pressure == SCHED_PRESSURE_MODEL
2699 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2701 diff = model_index (tmp) - model_index (tmp2);
2702 gcc_assert (diff != 0);
2703 return rfs_result (RFS_PRESSURE_INDEX, diff);
2706 /* Prefer the insn which has more later insns that depend on it.
2707 This gives the scheduler more freedom when scheduling later
2708 instructions at the expense of added register pressure. */
2710 val = (dep_list_size (tmp2, SD_LIST_FORW)
2711 - dep_list_size (tmp, SD_LIST_FORW));
2713 if (flag_sched_dep_count_heuristic && val != 0)
2714 return rfs_result (RFS_DEP_COUNT, val);
2716 /* If insns are equally good, sort by INSN_LUID (original insn order),
2717 so that we make the sort stable. This minimizes instruction movement,
2718 thus minimizing sched's effect on debugging and cross-jumping. */
2719 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2));
2722 /* Resort the array A in which only element at index N may be out of order. */
2724 HAIFA_INLINE static void
2725 swap_sort (rtx *a, int n)
2727 rtx insn = a[n - 1];
2728 int i = n - 2;
2730 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2732 a[i + 1] = a[i];
2733 i -= 1;
2735 a[i + 1] = insn;
2738 /* Add INSN to the insn queue so that it can be executed at least
2739 N_CYCLES after the currently executing insn. Preserve insns
2740 chain for debugging purposes. REASON will be printed in debugging
2741 output. */
2743 HAIFA_INLINE static void
2744 queue_insn (rtx insn, int n_cycles, const char *reason)
2746 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2747 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2748 int new_tick;
2750 gcc_assert (n_cycles <= max_insn_queue_index);
2751 gcc_assert (!DEBUG_INSN_P (insn));
2753 insn_queue[next_q] = link;
2754 q_size += 1;
2756 if (sched_verbose >= 2)
2758 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2759 (*current_sched_info->print_insn) (insn, 0));
2761 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2764 QUEUE_INDEX (insn) = next_q;
2766 if (current_sched_info->flags & DO_BACKTRACKING)
2768 new_tick = clock_var + n_cycles;
2769 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2770 INSN_TICK (insn) = new_tick;
2772 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2773 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2775 must_backtrack = true;
2776 if (sched_verbose >= 2)
2777 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2782 /* Remove INSN from queue. */
2783 static void
2784 queue_remove (rtx insn)
2786 gcc_assert (QUEUE_INDEX (insn) >= 0);
2787 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2788 q_size--;
2789 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2792 /* Return a pointer to the bottom of the ready list, i.e. the insn
2793 with the lowest priority. */
2795 rtx *
2796 ready_lastpos (struct ready_list *ready)
2798 gcc_assert (ready->n_ready >= 1);
2799 return ready->vec + ready->first - ready->n_ready + 1;
2802 /* Add an element INSN to the ready list so that it ends up with the
2803 lowest/highest priority depending on FIRST_P. */
2805 HAIFA_INLINE static void
2806 ready_add (struct ready_list *ready, rtx insn, bool first_p)
2808 if (!first_p)
2810 if (ready->first == ready->n_ready)
2812 memmove (ready->vec + ready->veclen - ready->n_ready,
2813 ready_lastpos (ready),
2814 ready->n_ready * sizeof (rtx));
2815 ready->first = ready->veclen - 1;
2817 ready->vec[ready->first - ready->n_ready] = insn;
2819 else
2821 if (ready->first == ready->veclen - 1)
2823 if (ready->n_ready)
2824 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2825 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2826 ready_lastpos (ready),
2827 ready->n_ready * sizeof (rtx));
2828 ready->first = ready->veclen - 2;
2830 ready->vec[++(ready->first)] = insn;
2833 ready->n_ready++;
2834 if (DEBUG_INSN_P (insn))
2835 ready->n_debug++;
2837 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2838 QUEUE_INDEX (insn) = QUEUE_READY;
2840 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2841 && INSN_EXACT_TICK (insn) < clock_var)
2843 must_backtrack = true;
2847 /* Remove the element with the highest priority from the ready list and
2848 return it. */
2850 HAIFA_INLINE static rtx
2851 ready_remove_first (struct ready_list *ready)
2853 rtx t;
2855 gcc_assert (ready->n_ready);
2856 t = ready->vec[ready->first--];
2857 ready->n_ready--;
2858 if (DEBUG_INSN_P (t))
2859 ready->n_debug--;
2860 /* If the queue becomes empty, reset it. */
2861 if (ready->n_ready == 0)
2862 ready->first = ready->veclen - 1;
2864 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2865 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2867 return t;
2870 /* The following code implements multi-pass scheduling for the first
2871 cycle. In other words, we will try to choose ready insn which
2872 permits to start maximum number of insns on the same cycle. */
2874 /* Return a pointer to the element INDEX from the ready. INDEX for
2875 insn with the highest priority is 0, and the lowest priority has
2876 N_READY - 1. */
2879 ready_element (struct ready_list *ready, int index)
2881 gcc_assert (ready->n_ready && index < ready->n_ready);
2883 return ready->vec[ready->first - index];
2886 /* Remove the element INDEX from the ready list and return it. INDEX
2887 for insn with the highest priority is 0, and the lowest priority
2888 has N_READY - 1. */
2890 HAIFA_INLINE static rtx
2891 ready_remove (struct ready_list *ready, int index)
2893 rtx t;
2894 int i;
2896 if (index == 0)
2897 return ready_remove_first (ready);
2898 gcc_assert (ready->n_ready && index < ready->n_ready);
2899 t = ready->vec[ready->first - index];
2900 ready->n_ready--;
2901 if (DEBUG_INSN_P (t))
2902 ready->n_debug--;
2903 for (i = index; i < ready->n_ready; i++)
2904 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2905 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2906 return t;
2909 /* Remove INSN from the ready list. */
2910 static void
2911 ready_remove_insn (rtx insn)
2913 int i;
2915 for (i = 0; i < readyp->n_ready; i++)
2916 if (ready_element (readyp, i) == insn)
2918 ready_remove (readyp, i);
2919 return;
2921 gcc_unreachable ();
2924 /* Calculate difference of two statistics set WAS and NOW.
2925 Result returned in WAS. */
2926 static void
2927 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
2928 const rank_for_schedule_stats_t *now)
2930 for (int i = 0; i < RFS_N; ++i)
2931 was->stats[i] = now->stats[i] - was->stats[i];
2934 /* Print rank_for_schedule statistics. */
2935 static void
2936 print_rank_for_schedule_stats (const char *prefix,
2937 const rank_for_schedule_stats_t *stats)
2939 for (int i = 0; i < RFS_N; ++i)
2940 if (stats->stats[i])
2941 fprintf (sched_dump, "%s%20s: %u\n", prefix, rfs_str[i], stats->stats[i]);
2944 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
2945 macro. */
2947 void
2948 ready_sort (struct ready_list *ready)
2950 int i;
2951 rtx *first = ready_lastpos (ready);
2953 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2955 for (i = 0; i < ready->n_ready; i++)
2956 if (!DEBUG_INSN_P (first[i]))
2957 setup_insn_reg_pressure_info (first[i]);
2959 if (sched_pressure == SCHED_PRESSURE_MODEL
2960 && model_curr_point < model_num_insns)
2961 model_set_excess_costs (first, ready->n_ready);
2963 rank_for_schedule_stats_t stats1;
2964 if (sched_verbose >= 4)
2965 stats1 = rank_for_schedule_stats;
2967 if (ready->n_ready == 2)
2968 swap_sort (first, ready->n_ready);
2969 else if (ready->n_ready > 2)
2970 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule);
2972 if (sched_verbose >= 4)
2974 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
2975 print_rank_for_schedule_stats (";;\t\t", &stats1);
2979 /* PREV is an insn that is ready to execute. Adjust its priority if that
2980 will help shorten or lengthen register lifetimes as appropriate. Also
2981 provide a hook for the target to tweak itself. */
2983 HAIFA_INLINE static void
2984 adjust_priority (rtx prev)
2986 /* ??? There used to be code here to try and estimate how an insn
2987 affected register lifetimes, but it did it by looking at REG_DEAD
2988 notes, which we removed in schedule_region. Nor did it try to
2989 take into account register pressure or anything useful like that.
2991 Revisit when we have a machine model to work with and not before. */
2993 if (targetm.sched.adjust_priority)
2994 INSN_PRIORITY (prev) =
2995 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
2998 /* Advance DFA state STATE on one cycle. */
2999 void
3000 advance_state (state_t state)
3002 if (targetm.sched.dfa_pre_advance_cycle)
3003 targetm.sched.dfa_pre_advance_cycle ();
3005 if (targetm.sched.dfa_pre_cycle_insn)
3006 state_transition (state,
3007 targetm.sched.dfa_pre_cycle_insn ());
3009 state_transition (state, NULL);
3011 if (targetm.sched.dfa_post_cycle_insn)
3012 state_transition (state,
3013 targetm.sched.dfa_post_cycle_insn ());
3015 if (targetm.sched.dfa_post_advance_cycle)
3016 targetm.sched.dfa_post_advance_cycle ();
3019 /* Advance time on one cycle. */
3020 HAIFA_INLINE static void
3021 advance_one_cycle (void)
3023 advance_state (curr_state);
3024 if (sched_verbose >= 4)
3025 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3028 /* Update register pressure after scheduling INSN. */
3029 static void
3030 update_register_pressure (rtx insn)
3032 struct reg_use_data *use;
3033 struct reg_set_data *set;
3035 gcc_checking_assert (!DEBUG_INSN_P (insn));
3037 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3038 if (dying_use_p (use))
3039 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3040 use->regno, false);
3041 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3042 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3043 set->regno, true);
3046 /* Set up or update (if UPDATE_P) max register pressure (see its
3047 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3048 after insn AFTER. */
3049 static void
3050 setup_insn_max_reg_pressure (rtx after, bool update_p)
3052 int i, p;
3053 bool eq_p;
3054 rtx insn;
3055 static int max_reg_pressure[N_REG_CLASSES];
3057 save_reg_pressure ();
3058 for (i = 0; i < ira_pressure_classes_num; i++)
3059 max_reg_pressure[ira_pressure_classes[i]]
3060 = curr_reg_pressure[ira_pressure_classes[i]];
3061 for (insn = NEXT_INSN (after);
3062 insn != NULL_RTX && ! BARRIER_P (insn)
3063 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3064 insn = NEXT_INSN (insn))
3065 if (NONDEBUG_INSN_P (insn))
3067 eq_p = true;
3068 for (i = 0; i < ira_pressure_classes_num; i++)
3070 p = max_reg_pressure[ira_pressure_classes[i]];
3071 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3073 eq_p = false;
3074 INSN_MAX_REG_PRESSURE (insn)[i]
3075 = max_reg_pressure[ira_pressure_classes[i]];
3078 if (update_p && eq_p)
3079 break;
3080 update_register_pressure (insn);
3081 for (i = 0; i < ira_pressure_classes_num; i++)
3082 if (max_reg_pressure[ira_pressure_classes[i]]
3083 < curr_reg_pressure[ira_pressure_classes[i]])
3084 max_reg_pressure[ira_pressure_classes[i]]
3085 = curr_reg_pressure[ira_pressure_classes[i]];
3087 restore_reg_pressure ();
3090 /* Update the current register pressure after scheduling INSN. Update
3091 also max register pressure for unscheduled insns of the current
3092 BB. */
3093 static void
3094 update_reg_and_insn_max_reg_pressure (rtx insn)
3096 int i;
3097 int before[N_REG_CLASSES];
3099 for (i = 0; i < ira_pressure_classes_num; i++)
3100 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3101 update_register_pressure (insn);
3102 for (i = 0; i < ira_pressure_classes_num; i++)
3103 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3104 break;
3105 if (i < ira_pressure_classes_num)
3106 setup_insn_max_reg_pressure (insn, true);
3109 /* Set up register pressure at the beginning of basic block BB whose
3110 insns starting after insn AFTER. Set up also max register pressure
3111 for all insns of the basic block. */
3112 void
3113 sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
3115 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3116 initiate_bb_reg_pressure_info (bb);
3117 setup_insn_max_reg_pressure (after, false);
3120 /* If doing predication while scheduling, verify whether INSN, which
3121 has just been scheduled, clobbers the conditions of any
3122 instructions that must be predicated in order to break their
3123 dependencies. If so, remove them from the queues so that they will
3124 only be scheduled once their control dependency is resolved. */
3126 static void
3127 check_clobbered_conditions (rtx insn)
3129 HARD_REG_SET t;
3130 int i;
3132 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3133 return;
3135 find_all_hard_reg_sets (insn, &t, true);
3137 restart:
3138 for (i = 0; i < ready.n_ready; i++)
3140 rtx x = ready_element (&ready, i);
3141 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3143 ready_remove_insn (x);
3144 goto restart;
3147 for (i = 0; i <= max_insn_queue_index; i++)
3149 rtx link;
3150 int q = NEXT_Q_AFTER (q_ptr, i);
3152 restart_queue:
3153 for (link = insn_queue[q]; link; link = XEXP (link, 1))
3155 rtx x = XEXP (link, 0);
3156 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3158 queue_remove (x);
3159 goto restart_queue;
3165 /* Return (in order):
3167 - positive if INSN adversely affects the pressure on one
3168 register class
3170 - negative if INSN reduces the pressure on one register class
3172 - 0 if INSN doesn't affect the pressure on any register class. */
3174 static int
3175 model_classify_pressure (struct model_insn_info *insn)
3177 struct reg_pressure_data *reg_pressure;
3178 int death[N_REG_CLASSES];
3179 int pci, cl, sum;
3181 calculate_reg_deaths (insn->insn, death);
3182 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3183 sum = 0;
3184 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3186 cl = ira_pressure_classes[pci];
3187 if (death[cl] < reg_pressure[pci].set_increase)
3188 return 1;
3189 sum += reg_pressure[pci].set_increase - death[cl];
3191 return sum;
3194 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3196 static int
3197 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3199 unsigned int height1, height2;
3200 unsigned int priority1, priority2;
3202 /* Prefer instructions with a higher model priority. */
3203 if (insn1->model_priority != insn2->model_priority)
3204 return insn1->model_priority > insn2->model_priority;
3206 /* Combine the length of the longest path of satisfied true dependencies
3207 that leads to each instruction (depth) with the length of the longest
3208 path of any dependencies that leads from the instruction (alap).
3209 Prefer instructions with the greatest combined length. If the combined
3210 lengths are equal, prefer instructions with the greatest depth.
3212 The idea is that, if we have a set S of "equal" instructions that each
3213 have ALAP value X, and we pick one such instruction I, any true-dependent
3214 successors of I that have ALAP value X - 1 should be preferred over S.
3215 This encourages the schedule to be "narrow" rather than "wide".
3216 However, if I is a low-priority instruction that we decided to
3217 schedule because of its model_classify_pressure, and if there
3218 is a set of higher-priority instructions T, the aforementioned
3219 successors of I should not have the edge over T. */
3220 height1 = insn1->depth + insn1->alap;
3221 height2 = insn2->depth + insn2->alap;
3222 if (height1 != height2)
3223 return height1 > height2;
3224 if (insn1->depth != insn2->depth)
3225 return insn1->depth > insn2->depth;
3227 /* We have no real preference between INSN1 an INSN2 as far as attempts
3228 to reduce pressure go. Prefer instructions with higher priorities. */
3229 priority1 = INSN_PRIORITY (insn1->insn);
3230 priority2 = INSN_PRIORITY (insn2->insn);
3231 if (priority1 != priority2)
3232 return priority1 > priority2;
3234 /* Use the original rtl sequence as a tie-breaker. */
3235 return insn1 < insn2;
3238 /* Add INSN to the model worklist immediately after PREV. Add it to the
3239 beginning of the list if PREV is null. */
3241 static void
3242 model_add_to_worklist_at (struct model_insn_info *insn,
3243 struct model_insn_info *prev)
3245 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3246 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3248 insn->prev = prev;
3249 if (prev)
3251 insn->next = prev->next;
3252 prev->next = insn;
3254 else
3256 insn->next = model_worklist;
3257 model_worklist = insn;
3259 if (insn->next)
3260 insn->next->prev = insn;
3263 /* Remove INSN from the model worklist. */
3265 static void
3266 model_remove_from_worklist (struct model_insn_info *insn)
3268 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3269 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3271 if (insn->prev)
3272 insn->prev->next = insn->next;
3273 else
3274 model_worklist = insn->next;
3275 if (insn->next)
3276 insn->next->prev = insn->prev;
3279 /* Add INSN to the model worklist. Start looking for a suitable position
3280 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3281 insns either side. A null PREV indicates the beginning of the list and
3282 a null NEXT indicates the end. */
3284 static void
3285 model_add_to_worklist (struct model_insn_info *insn,
3286 struct model_insn_info *prev,
3287 struct model_insn_info *next)
3289 int count;
3291 count = MAX_SCHED_READY_INSNS;
3292 if (count > 0 && prev && model_order_p (insn, prev))
3295 count--;
3296 prev = prev->prev;
3298 while (count > 0 && prev && model_order_p (insn, prev));
3299 else
3300 while (count > 0 && next && model_order_p (next, insn))
3302 count--;
3303 prev = next;
3304 next = next->next;
3306 model_add_to_worklist_at (insn, prev);
3309 /* INSN may now have a higher priority (in the model_order_p sense)
3310 than before. Move it up the worklist if necessary. */
3312 static void
3313 model_promote_insn (struct model_insn_info *insn)
3315 struct model_insn_info *prev;
3316 int count;
3318 prev = insn->prev;
3319 count = MAX_SCHED_READY_INSNS;
3320 while (count > 0 && prev && model_order_p (insn, prev))
3322 count--;
3323 prev = prev->prev;
3325 if (prev != insn->prev)
3327 model_remove_from_worklist (insn);
3328 model_add_to_worklist_at (insn, prev);
3332 /* Add INSN to the end of the model schedule. */
3334 static void
3335 model_add_to_schedule (rtx insn)
3337 unsigned int point;
3339 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3340 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3342 point = model_schedule.length ();
3343 model_schedule.quick_push (insn);
3344 INSN_MODEL_INDEX (insn) = point + 1;
3347 /* Analyze the instructions that are to be scheduled, setting up
3348 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3349 instructions to model_worklist. */
3351 static void
3352 model_analyze_insns (void)
3354 rtx start, end, iter;
3355 sd_iterator_def sd_it;
3356 dep_t dep;
3357 struct model_insn_info *insn, *con;
3359 model_num_insns = 0;
3360 start = PREV_INSN (current_sched_info->next_tail);
3361 end = current_sched_info->prev_head;
3362 for (iter = start; iter != end; iter = PREV_INSN (iter))
3363 if (NONDEBUG_INSN_P (iter))
3365 insn = MODEL_INSN_INFO (iter);
3366 insn->insn = iter;
3367 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3369 con = MODEL_INSN_INFO (DEP_CON (dep));
3370 if (con->insn && insn->alap < con->alap + 1)
3371 insn->alap = con->alap + 1;
3374 insn->old_queue = QUEUE_INDEX (iter);
3375 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3377 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3378 if (insn->unscheduled_preds == 0)
3379 model_add_to_worklist (insn, NULL, model_worklist);
3381 model_num_insns++;
3385 /* The global state describes the register pressure at the start of the
3386 model schedule. Initialize GROUP accordingly. */
3388 static void
3389 model_init_pressure_group (struct model_pressure_group *group)
3391 int pci, cl;
3393 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3395 cl = ira_pressure_classes[pci];
3396 group->limits[pci].pressure = curr_reg_pressure[cl];
3397 group->limits[pci].point = 0;
3399 /* Use index model_num_insns to record the state after the last
3400 instruction in the model schedule. */
3401 group->model = XNEWVEC (struct model_pressure_data,
3402 (model_num_insns + 1) * ira_pressure_classes_num);
3405 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3406 Update the maximum pressure for the whole schedule. */
3408 static void
3409 model_record_pressure (struct model_pressure_group *group,
3410 int point, int pci, int pressure)
3412 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3413 if (group->limits[pci].pressure < pressure)
3415 group->limits[pci].pressure = pressure;
3416 group->limits[pci].point = point;
3420 /* INSN has just been added to the end of the model schedule. Record its
3421 register-pressure information. */
3423 static void
3424 model_record_pressures (struct model_insn_info *insn)
3426 struct reg_pressure_data *reg_pressure;
3427 int point, pci, cl, delta;
3428 int death[N_REG_CLASSES];
3430 point = model_index (insn->insn);
3431 if (sched_verbose >= 2)
3433 if (point == 0)
3435 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3436 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3438 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3439 point, INSN_UID (insn->insn), insn->model_priority,
3440 insn->depth + insn->alap, insn->depth,
3441 INSN_PRIORITY (insn->insn),
3442 str_pattern_slim (PATTERN (insn->insn)));
3444 calculate_reg_deaths (insn->insn, death);
3445 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3446 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3448 cl = ira_pressure_classes[pci];
3449 delta = reg_pressure[pci].set_increase - death[cl];
3450 if (sched_verbose >= 2)
3451 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3452 curr_reg_pressure[cl], delta);
3453 model_record_pressure (&model_before_pressure, point, pci,
3454 curr_reg_pressure[cl]);
3456 if (sched_verbose >= 2)
3457 fprintf (sched_dump, "\n");
3460 /* All instructions have been added to the model schedule. Record the
3461 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3463 static void
3464 model_record_final_pressures (struct model_pressure_group *group)
3466 int point, pci, max_pressure, ref_pressure, cl;
3468 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3470 /* Record the final pressure for this class. */
3471 cl = ira_pressure_classes[pci];
3472 point = model_num_insns;
3473 ref_pressure = curr_reg_pressure[cl];
3474 model_record_pressure (group, point, pci, ref_pressure);
3476 /* Record the original maximum pressure. */
3477 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3479 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3480 max_pressure = ref_pressure;
3481 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3482 while (point > 0)
3484 point--;
3485 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3486 max_pressure = MAX (max_pressure, ref_pressure);
3487 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3492 /* Update all successors of INSN, given that INSN has just been scheduled. */
3494 static void
3495 model_add_successors_to_worklist (struct model_insn_info *insn)
3497 sd_iterator_def sd_it;
3498 struct model_insn_info *con;
3499 dep_t dep;
3501 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3503 con = MODEL_INSN_INFO (DEP_CON (dep));
3504 /* Ignore debug instructions, and instructions from other blocks. */
3505 if (con->insn)
3507 con->unscheduled_preds--;
3509 /* Update the depth field of each true-dependent successor.
3510 Increasing the depth gives them a higher priority than
3511 before. */
3512 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3514 con->depth = insn->depth + 1;
3515 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3516 model_promote_insn (con);
3519 /* If this is a true dependency, or if there are no remaining
3520 dependencies for CON (meaning that CON only had non-true
3521 dependencies), make sure that CON is on the worklist.
3522 We don't bother otherwise because it would tend to fill the
3523 worklist with a lot of low-priority instructions that are not
3524 yet ready to issue. */
3525 if ((con->depth > 0 || con->unscheduled_preds == 0)
3526 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3527 model_add_to_worklist (con, insn, insn->next);
3532 /* Give INSN a higher priority than any current instruction, then give
3533 unscheduled predecessors of INSN a higher priority still. If any of
3534 those predecessors are not on the model worklist, do the same for its
3535 predecessors, and so on. */
3537 static void
3538 model_promote_predecessors (struct model_insn_info *insn)
3540 struct model_insn_info *pro, *first;
3541 sd_iterator_def sd_it;
3542 dep_t dep;
3544 if (sched_verbose >= 7)
3545 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3546 INSN_UID (insn->insn), model_next_priority);
3547 insn->model_priority = model_next_priority++;
3548 model_remove_from_worklist (insn);
3549 model_add_to_worklist_at (insn, NULL);
3551 first = NULL;
3552 for (;;)
3554 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3556 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3557 /* The first test is to ignore debug instructions, and instructions
3558 from other blocks. */
3559 if (pro->insn
3560 && pro->model_priority != model_next_priority
3561 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3563 pro->model_priority = model_next_priority;
3564 if (sched_verbose >= 7)
3565 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3566 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3568 /* PRO is already in the worklist, but it now has
3569 a higher priority than before. Move it at the
3570 appropriate place. */
3571 model_remove_from_worklist (pro);
3572 model_add_to_worklist (pro, NULL, model_worklist);
3574 else
3576 /* PRO isn't in the worklist. Recursively process
3577 its predecessors until we find one that is. */
3578 pro->next = first;
3579 first = pro;
3583 if (!first)
3584 break;
3585 insn = first;
3586 first = insn->next;
3588 if (sched_verbose >= 7)
3589 fprintf (sched_dump, " = %d\n", model_next_priority);
3590 model_next_priority++;
3593 /* Pick one instruction from model_worklist and process it. */
3595 static void
3596 model_choose_insn (void)
3598 struct model_insn_info *insn, *fallback;
3599 int count;
3601 if (sched_verbose >= 7)
3603 fprintf (sched_dump, ";;\t+--- worklist:\n");
3604 insn = model_worklist;
3605 count = MAX_SCHED_READY_INSNS;
3606 while (count > 0 && insn)
3608 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3609 INSN_UID (insn->insn), insn->model_priority,
3610 insn->depth + insn->alap, insn->depth,
3611 INSN_PRIORITY (insn->insn));
3612 count--;
3613 insn = insn->next;
3617 /* Look for a ready instruction whose model_classify_priority is zero
3618 or negative, picking the highest-priority one. Adding such an
3619 instruction to the schedule now should do no harm, and may actually
3620 do some good.
3622 Failing that, see whether there is an instruction with the highest
3623 extant model_priority that is not yet ready, but which would reduce
3624 pressure if it became ready. This is designed to catch cases like:
3626 (set (mem (reg R1)) (reg R2))
3628 where the instruction is the last remaining use of R1 and where the
3629 value of R2 is not yet available (or vice versa). The death of R1
3630 means that this instruction already reduces pressure. It is of
3631 course possible that the computation of R2 involves other registers
3632 that are hard to kill, but such cases are rare enough for this
3633 heuristic to be a win in general.
3635 Failing that, just pick the highest-priority instruction in the
3636 worklist. */
3637 count = MAX_SCHED_READY_INSNS;
3638 insn = model_worklist;
3639 fallback = 0;
3640 for (;;)
3642 if (count == 0 || !insn)
3644 insn = fallback ? fallback : model_worklist;
3645 break;
3647 if (insn->unscheduled_preds)
3649 if (model_worklist->model_priority == insn->model_priority
3650 && !fallback
3651 && model_classify_pressure (insn) < 0)
3652 fallback = insn;
3654 else
3656 if (model_classify_pressure (insn) <= 0)
3657 break;
3659 count--;
3660 insn = insn->next;
3663 if (sched_verbose >= 7 && insn != model_worklist)
3665 if (insn->unscheduled_preds)
3666 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3667 INSN_UID (insn->insn));
3668 else
3669 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3670 INSN_UID (insn->insn));
3672 if (insn->unscheduled_preds)
3673 /* INSN isn't yet ready to issue. Give all its predecessors the
3674 highest priority. */
3675 model_promote_predecessors (insn);
3676 else
3678 /* INSN is ready. Add it to the end of model_schedule and
3679 process its successors. */
3680 model_add_successors_to_worklist (insn);
3681 model_remove_from_worklist (insn);
3682 model_add_to_schedule (insn->insn);
3683 model_record_pressures (insn);
3684 update_register_pressure (insn->insn);
3688 /* Restore all QUEUE_INDEXs to the values that they had before
3689 model_start_schedule was called. */
3691 static void
3692 model_reset_queue_indices (void)
3694 unsigned int i;
3695 rtx insn;
3697 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3698 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3701 /* We have calculated the model schedule and spill costs. Print a summary
3702 to sched_dump. */
3704 static void
3705 model_dump_pressure_summary (void)
3707 int pci, cl;
3709 fprintf (sched_dump, ";; Pressure summary:");
3710 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3712 cl = ira_pressure_classes[pci];
3713 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3714 model_before_pressure.limits[pci].pressure);
3716 fprintf (sched_dump, "\n\n");
3719 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3720 scheduling region. */
3722 static void
3723 model_start_schedule (void)
3725 basic_block bb;
3727 model_next_priority = 1;
3728 model_schedule.create (sched_max_luid);
3729 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3731 bb = BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head));
3732 initiate_reg_pressure_info (df_get_live_in (bb));
3734 model_analyze_insns ();
3735 model_init_pressure_group (&model_before_pressure);
3736 while (model_worklist)
3737 model_choose_insn ();
3738 gcc_assert (model_num_insns == (int) model_schedule.length ());
3739 if (sched_verbose >= 2)
3740 fprintf (sched_dump, "\n");
3742 model_record_final_pressures (&model_before_pressure);
3743 model_reset_queue_indices ();
3745 XDELETEVEC (model_insns);
3747 model_curr_point = 0;
3748 initiate_reg_pressure_info (df_get_live_in (bb));
3749 if (sched_verbose >= 1)
3750 model_dump_pressure_summary ();
3753 /* Free the information associated with GROUP. */
3755 static void
3756 model_finalize_pressure_group (struct model_pressure_group *group)
3758 XDELETEVEC (group->model);
3761 /* Free the information created by model_start_schedule. */
3763 static void
3764 model_end_schedule (void)
3766 model_finalize_pressure_group (&model_before_pressure);
3767 model_schedule.release ();
3770 /* A structure that holds local state for the loop in schedule_block. */
3771 struct sched_block_state
3773 /* True if no real insns have been scheduled in the current cycle. */
3774 bool first_cycle_insn_p;
3775 /* True if a shadow insn has been scheduled in the current cycle, which
3776 means that no more normal insns can be issued. */
3777 bool shadows_only_p;
3778 /* True if we're winding down a modulo schedule, which means that we only
3779 issue insns with INSN_EXACT_TICK set. */
3780 bool modulo_epilogue;
3781 /* Initialized with the machine's issue rate every cycle, and updated
3782 by calls to the variable_issue hook. */
3783 int can_issue_more;
3786 /* INSN is the "currently executing insn". Launch each insn which was
3787 waiting on INSN. READY is the ready list which contains the insns
3788 that are ready to fire. CLOCK is the current cycle. The function
3789 returns necessary cycle advance after issuing the insn (it is not
3790 zero for insns in a schedule group). */
3792 static int
3793 schedule_insn (rtx insn)
3795 sd_iterator_def sd_it;
3796 dep_t dep;
3797 int i;
3798 int advance = 0;
3800 if (sched_verbose >= 1)
3802 struct reg_pressure_data *pressure_info;
3803 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3804 clock_var, (*current_sched_info->print_insn) (insn, 1),
3805 str_pattern_slim (PATTERN (insn)));
3807 if (recog_memoized (insn) < 0)
3808 fprintf (sched_dump, "nothing");
3809 else
3810 print_reservation (sched_dump, insn);
3811 pressure_info = INSN_REG_PRESSURE (insn);
3812 if (pressure_info != NULL)
3814 fputc (':', sched_dump);
3815 for (i = 0; i < ira_pressure_classes_num; i++)
3816 fprintf (sched_dump, "%s%s%+d(%d)",
3817 scheduled_insns.length () > 1
3818 && INSN_LUID (insn)
3819 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3820 reg_class_names[ira_pressure_classes[i]],
3821 pressure_info[i].set_increase, pressure_info[i].change);
3823 if (sched_pressure == SCHED_PRESSURE_MODEL
3824 && model_curr_point < model_num_insns
3825 && model_index (insn) == model_curr_point)
3826 fprintf (sched_dump, ":model %d", model_curr_point);
3827 fputc ('\n', sched_dump);
3830 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
3831 update_reg_and_insn_max_reg_pressure (insn);
3833 /* Scheduling instruction should have all its dependencies resolved and
3834 should have been removed from the ready list. */
3835 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
3837 /* Reset debug insns invalidated by moving this insn. */
3838 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
3839 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
3840 sd_iterator_cond (&sd_it, &dep);)
3842 rtx dbg = DEP_PRO (dep);
3843 struct reg_use_data *use, *next;
3845 if (DEP_STATUS (dep) & DEP_CANCELLED)
3847 sd_iterator_next (&sd_it);
3848 continue;
3851 gcc_assert (DEBUG_INSN_P (dbg));
3853 if (sched_verbose >= 6)
3854 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
3855 INSN_UID (dbg));
3857 /* ??? Rather than resetting the debug insn, we might be able
3858 to emit a debug temp before the just-scheduled insn, but
3859 this would involve checking that the expression at the
3860 point of the debug insn is equivalent to the expression
3861 before the just-scheduled insn. They might not be: the
3862 expression in the debug insn may depend on other insns not
3863 yet scheduled that set MEMs, REGs or even other debug
3864 insns. It's not clear that attempting to preserve debug
3865 information in these cases is worth the effort, given how
3866 uncommon these resets are and the likelihood that the debug
3867 temps introduced won't survive the schedule change. */
3868 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
3869 df_insn_rescan (dbg);
3871 /* Unknown location doesn't use any registers. */
3872 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
3874 struct reg_use_data *prev = use;
3876 /* Remove use from the cyclic next_regno_use chain first. */
3877 while (prev->next_regno_use != use)
3878 prev = prev->next_regno_use;
3879 prev->next_regno_use = use->next_regno_use;
3880 next = use->next_insn_use;
3881 free (use);
3883 INSN_REG_USE_LIST (dbg) = NULL;
3885 /* We delete rather than resolve these deps, otherwise we
3886 crash in sched_free_deps(), because forward deps are
3887 expected to be released before backward deps. */
3888 sd_delete_dep (sd_it);
3891 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3892 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3894 if (sched_pressure == SCHED_PRESSURE_MODEL
3895 && model_curr_point < model_num_insns
3896 && NONDEBUG_INSN_P (insn))
3898 if (model_index (insn) == model_curr_point)
3900 model_curr_point++;
3901 while (model_curr_point < model_num_insns
3902 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
3903 == QUEUE_SCHEDULED));
3904 else
3905 model_recompute (insn);
3906 model_update_limit_points ();
3907 update_register_pressure (insn);
3908 if (sched_verbose >= 2)
3909 print_curr_reg_pressure ();
3912 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
3913 if (INSN_TICK (insn) > clock_var)
3914 /* INSN has been prematurely moved from the queue to the ready list.
3915 This is possible only if following flag is set. */
3916 gcc_assert (flag_sched_stalled_insns);
3918 /* ??? Probably, if INSN is scheduled prematurely, we should leave
3919 INSN_TICK untouched. This is a machine-dependent issue, actually. */
3920 INSN_TICK (insn) = clock_var;
3922 check_clobbered_conditions (insn);
3924 /* Update dependent instructions. First, see if by scheduling this insn
3925 now we broke a dependence in a way that requires us to change another
3926 insn. */
3927 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3928 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
3930 struct dep_replacement *desc = DEP_REPLACE (dep);
3931 rtx pro = DEP_PRO (dep);
3932 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
3933 && desc != NULL && desc->insn == pro)
3934 apply_replacement (dep, false);
3937 /* Go through and resolve forward dependencies. */
3938 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
3939 sd_iterator_cond (&sd_it, &dep);)
3941 rtx next = DEP_CON (dep);
3942 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
3944 /* Resolve the dependence between INSN and NEXT.
3945 sd_resolve_dep () moves current dep to another list thus
3946 advancing the iterator. */
3947 sd_resolve_dep (sd_it);
3949 if (cancelled)
3951 if (must_restore_pattern_p (next, dep))
3952 restore_pattern (dep, false);
3953 continue;
3956 /* Don't bother trying to mark next as ready if insn is a debug
3957 insn. If insn is the last hard dependency, it will have
3958 already been discounted. */
3959 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
3960 continue;
3962 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
3964 int effective_cost;
3966 effective_cost = try_ready (next);
3968 if (effective_cost >= 0
3969 && SCHED_GROUP_P (next)
3970 && advance < effective_cost)
3971 advance = effective_cost;
3973 else
3974 /* Check always has only one forward dependence (to the first insn in
3975 the recovery block), therefore, this will be executed only once. */
3977 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
3978 fix_recovery_deps (RECOVERY_BLOCK (insn));
3982 /* Annotate the instruction with issue information -- TImode
3983 indicates that the instruction is expected not to be able
3984 to issue on the same cycle as the previous insn. A machine
3985 may use this information to decide how the instruction should
3986 be aligned. */
3987 if (issue_rate > 1
3988 && GET_CODE (PATTERN (insn)) != USE
3989 && GET_CODE (PATTERN (insn)) != CLOBBER
3990 && !DEBUG_INSN_P (insn))
3992 if (reload_completed)
3993 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
3994 last_clock_var = clock_var;
3997 if (nonscheduled_insns_begin != NULL_RTX)
3998 /* Indicate to debug counters that INSN is scheduled. */
3999 nonscheduled_insns_begin = insn;
4001 return advance;
4004 /* Functions for handling of notes. */
4006 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4007 void
4008 concat_note_lists (rtx from_end, rtx *to_endp)
4010 rtx from_start;
4012 /* It's easy when have nothing to concat. */
4013 if (from_end == NULL)
4014 return;
4016 /* It's also easy when destination is empty. */
4017 if (*to_endp == NULL)
4019 *to_endp = from_end;
4020 return;
4023 from_start = from_end;
4024 while (PREV_INSN (from_start) != NULL)
4025 from_start = PREV_INSN (from_start);
4027 PREV_INSN (from_start) = *to_endp;
4028 NEXT_INSN (*to_endp) = from_start;
4029 *to_endp = from_end;
4032 /* Delete notes between HEAD and TAIL and put them in the chain
4033 of notes ended by NOTE_LIST. */
4034 void
4035 remove_notes (rtx head, rtx tail)
4037 rtx next_tail, insn, next;
4039 note_list = 0;
4040 if (head == tail && !INSN_P (head))
4041 return;
4043 next_tail = NEXT_INSN (tail);
4044 for (insn = head; insn != next_tail; insn = next)
4046 next = NEXT_INSN (insn);
4047 if (!NOTE_P (insn))
4048 continue;
4050 switch (NOTE_KIND (insn))
4052 case NOTE_INSN_BASIC_BLOCK:
4053 continue;
4055 case NOTE_INSN_EPILOGUE_BEG:
4056 if (insn != tail)
4058 remove_insn (insn);
4059 add_reg_note (next, REG_SAVE_NOTE,
4060 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4061 break;
4063 /* FALLTHRU */
4065 default:
4066 remove_insn (insn);
4068 /* Add the note to list that ends at NOTE_LIST. */
4069 PREV_INSN (insn) = note_list;
4070 NEXT_INSN (insn) = NULL_RTX;
4071 if (note_list)
4072 NEXT_INSN (note_list) = insn;
4073 note_list = insn;
4074 break;
4077 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4081 /* A structure to record enough data to allow us to backtrack the scheduler to
4082 a previous state. */
4083 struct haifa_saved_data
4085 /* Next entry on the list. */
4086 struct haifa_saved_data *next;
4088 /* Backtracking is associated with scheduling insns that have delay slots.
4089 DELAY_PAIR points to the structure that contains the insns involved, and
4090 the number of cycles between them. */
4091 struct delay_pair *delay_pair;
4093 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4094 void *fe_saved_data;
4095 /* Data used by the backend. */
4096 void *be_saved_data;
4098 /* Copies of global state. */
4099 int clock_var, last_clock_var;
4100 struct ready_list ready;
4101 state_t curr_state;
4103 rtx last_scheduled_insn;
4104 rtx last_nondebug_scheduled_insn;
4105 rtx nonscheduled_insns_begin;
4106 int cycle_issued_insns;
4108 /* Copies of state used in the inner loop of schedule_block. */
4109 struct sched_block_state sched_block;
4111 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4112 to 0 when restoring. */
4113 int q_size;
4114 rtx *insn_queue;
4116 /* Describe pattern replacements that occurred since this backtrack point
4117 was queued. */
4118 vec<dep_t> replacement_deps;
4119 vec<int> replace_apply;
4121 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4122 point. */
4123 vec<dep_t> next_cycle_deps;
4124 vec<int> next_cycle_apply;
4127 /* A record, in reverse order, of all scheduled insns which have delay slots
4128 and may require backtracking. */
4129 static struct haifa_saved_data *backtrack_queue;
4131 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4132 to SET_P. */
4133 static void
4134 mark_backtrack_feeds (rtx insn, int set_p)
4136 sd_iterator_def sd_it;
4137 dep_t dep;
4138 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4140 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4144 /* Save the current scheduler state so that we can backtrack to it
4145 later if necessary. PAIR gives the insns that make it necessary to
4146 save this point. SCHED_BLOCK is the local state of schedule_block
4147 that need to be saved. */
4148 static void
4149 save_backtrack_point (struct delay_pair *pair,
4150 struct sched_block_state sched_block)
4152 int i;
4153 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4155 save->curr_state = xmalloc (dfa_state_size);
4156 memcpy (save->curr_state, curr_state, dfa_state_size);
4158 save->ready.first = ready.first;
4159 save->ready.n_ready = ready.n_ready;
4160 save->ready.n_debug = ready.n_debug;
4161 save->ready.veclen = ready.veclen;
4162 save->ready.vec = XNEWVEC (rtx, ready.veclen);
4163 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4165 save->insn_queue = XNEWVEC (rtx, max_insn_queue_index + 1);
4166 save->q_size = q_size;
4167 for (i = 0; i <= max_insn_queue_index; i++)
4169 int q = NEXT_Q_AFTER (q_ptr, i);
4170 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4173 save->clock_var = clock_var;
4174 save->last_clock_var = last_clock_var;
4175 save->cycle_issued_insns = cycle_issued_insns;
4176 save->last_scheduled_insn = last_scheduled_insn;
4177 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4178 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4180 save->sched_block = sched_block;
4182 save->replacement_deps.create (0);
4183 save->replace_apply.create (0);
4184 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4185 save->next_cycle_apply = next_cycle_apply.copy ();
4187 if (current_sched_info->save_state)
4188 save->fe_saved_data = (*current_sched_info->save_state) ();
4190 if (targetm.sched.alloc_sched_context)
4192 save->be_saved_data = targetm.sched.alloc_sched_context ();
4193 targetm.sched.init_sched_context (save->be_saved_data, false);
4195 else
4196 save->be_saved_data = NULL;
4198 save->delay_pair = pair;
4200 save->next = backtrack_queue;
4201 backtrack_queue = save;
4203 while (pair)
4205 mark_backtrack_feeds (pair->i2, 1);
4206 INSN_TICK (pair->i2) = INVALID_TICK;
4207 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4208 SHADOW_P (pair->i2) = pair->stages == 0;
4209 pair = pair->next_same_i1;
4213 /* Walk the ready list and all queues. If any insns have unresolved backwards
4214 dependencies, these must be cancelled deps, broken by predication. Set or
4215 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4217 static void
4218 toggle_cancelled_flags (bool set)
4220 int i;
4221 sd_iterator_def sd_it;
4222 dep_t dep;
4224 if (ready.n_ready > 0)
4226 rtx *first = ready_lastpos (&ready);
4227 for (i = 0; i < ready.n_ready; i++)
4228 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4229 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4231 if (set)
4232 DEP_STATUS (dep) |= DEP_CANCELLED;
4233 else
4234 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4237 for (i = 0; i <= max_insn_queue_index; i++)
4239 int q = NEXT_Q_AFTER (q_ptr, i);
4240 rtx link;
4241 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4243 rtx insn = XEXP (link, 0);
4244 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4245 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4247 if (set)
4248 DEP_STATUS (dep) |= DEP_CANCELLED;
4249 else
4250 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4256 /* Undo the replacements that have occurred after backtrack point SAVE
4257 was placed. */
4258 static void
4259 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4261 while (!save->replacement_deps.is_empty ())
4263 dep_t dep = save->replacement_deps.pop ();
4264 int apply_p = save->replace_apply.pop ();
4266 if (apply_p)
4267 restore_pattern (dep, true);
4268 else
4269 apply_replacement (dep, true);
4271 save->replacement_deps.release ();
4272 save->replace_apply.release ();
4275 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4276 Restore their dependencies to an unresolved state, and mark them as
4277 queued nowhere. */
4279 static void
4280 unschedule_insns_until (rtx insn)
4282 auto_vec<rtx> recompute_vec;
4284 /* Make two passes over the insns to be unscheduled. First, we clear out
4285 dependencies and other trivial bookkeeping. */
4286 for (;;)
4288 rtx last;
4289 sd_iterator_def sd_it;
4290 dep_t dep;
4292 last = scheduled_insns.pop ();
4294 /* This will be changed by restore_backtrack_point if the insn is in
4295 any queue. */
4296 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4297 if (last != insn)
4298 INSN_TICK (last) = INVALID_TICK;
4300 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4301 modulo_insns_scheduled--;
4303 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4304 sd_iterator_cond (&sd_it, &dep);)
4306 rtx con = DEP_CON (dep);
4307 sd_unresolve_dep (sd_it);
4308 if (!MUST_RECOMPUTE_SPEC_P (con))
4310 MUST_RECOMPUTE_SPEC_P (con) = 1;
4311 recompute_vec.safe_push (con);
4315 if (last == insn)
4316 break;
4319 /* A second pass, to update ready and speculation status for insns
4320 depending on the unscheduled ones. The first pass must have
4321 popped the scheduled_insns vector up to the point where we
4322 restart scheduling, as recompute_todo_spec requires it to be
4323 up-to-date. */
4324 while (!recompute_vec.is_empty ())
4326 rtx con;
4328 con = recompute_vec.pop ();
4329 MUST_RECOMPUTE_SPEC_P (con) = 0;
4330 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4332 TODO_SPEC (con) = HARD_DEP;
4333 INSN_TICK (con) = INVALID_TICK;
4334 if (PREDICATED_PAT (con) != NULL_RTX)
4335 haifa_change_pattern (con, ORIG_PAT (con));
4337 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4338 TODO_SPEC (con) = recompute_todo_spec (con, true);
4342 /* Restore scheduler state from the topmost entry on the backtracking queue.
4343 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4344 overwrite with the saved data.
4345 The caller must already have called unschedule_insns_until. */
4347 static void
4348 restore_last_backtrack_point (struct sched_block_state *psched_block)
4350 rtx link;
4351 int i;
4352 struct haifa_saved_data *save = backtrack_queue;
4354 backtrack_queue = save->next;
4356 if (current_sched_info->restore_state)
4357 (*current_sched_info->restore_state) (save->fe_saved_data);
4359 if (targetm.sched.alloc_sched_context)
4361 targetm.sched.set_sched_context (save->be_saved_data);
4362 targetm.sched.free_sched_context (save->be_saved_data);
4365 /* Do this first since it clobbers INSN_TICK of the involved
4366 instructions. */
4367 undo_replacements_for_backtrack (save);
4369 /* Clear the QUEUE_INDEX of everything in the ready list or one
4370 of the queues. */
4371 if (ready.n_ready > 0)
4373 rtx *first = ready_lastpos (&ready);
4374 for (i = 0; i < ready.n_ready; i++)
4376 rtx insn = first[i];
4377 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4378 INSN_TICK (insn) = INVALID_TICK;
4381 for (i = 0; i <= max_insn_queue_index; i++)
4383 int q = NEXT_Q_AFTER (q_ptr, i);
4385 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4387 rtx x = XEXP (link, 0);
4388 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4389 INSN_TICK (x) = INVALID_TICK;
4391 free_INSN_LIST_list (&insn_queue[q]);
4394 free (ready.vec);
4395 ready = save->ready;
4397 if (ready.n_ready > 0)
4399 rtx *first = ready_lastpos (&ready);
4400 for (i = 0; i < ready.n_ready; i++)
4402 rtx insn = first[i];
4403 QUEUE_INDEX (insn) = QUEUE_READY;
4404 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4405 INSN_TICK (insn) = save->clock_var;
4409 q_ptr = 0;
4410 q_size = save->q_size;
4411 for (i = 0; i <= max_insn_queue_index; i++)
4413 int q = NEXT_Q_AFTER (q_ptr, i);
4415 insn_queue[q] = save->insn_queue[q];
4417 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4419 rtx x = XEXP (link, 0);
4420 QUEUE_INDEX (x) = i;
4421 TODO_SPEC (x) = recompute_todo_spec (x, true);
4422 INSN_TICK (x) = save->clock_var + i;
4425 free (save->insn_queue);
4427 toggle_cancelled_flags (true);
4429 clock_var = save->clock_var;
4430 last_clock_var = save->last_clock_var;
4431 cycle_issued_insns = save->cycle_issued_insns;
4432 last_scheduled_insn = save->last_scheduled_insn;
4433 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4434 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4436 *psched_block = save->sched_block;
4438 memcpy (curr_state, save->curr_state, dfa_state_size);
4439 free (save->curr_state);
4441 mark_backtrack_feeds (save->delay_pair->i2, 0);
4443 gcc_assert (next_cycle_replace_deps.is_empty ());
4444 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4445 next_cycle_apply = save->next_cycle_apply.copy ();
4447 free (save);
4449 for (save = backtrack_queue; save; save = save->next)
4451 mark_backtrack_feeds (save->delay_pair->i2, 1);
4455 /* Discard all data associated with the topmost entry in the backtrack
4456 queue. If RESET_TICK is false, we just want to free the data. If true,
4457 we are doing this because we discovered a reason to backtrack. In the
4458 latter case, also reset the INSN_TICK for the shadow insn. */
4459 static void
4460 free_topmost_backtrack_point (bool reset_tick)
4462 struct haifa_saved_data *save = backtrack_queue;
4463 int i;
4465 backtrack_queue = save->next;
4467 if (reset_tick)
4469 struct delay_pair *pair = save->delay_pair;
4470 while (pair)
4472 INSN_TICK (pair->i2) = INVALID_TICK;
4473 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4474 pair = pair->next_same_i1;
4476 undo_replacements_for_backtrack (save);
4478 else
4480 save->replacement_deps.release ();
4481 save->replace_apply.release ();
4484 if (targetm.sched.free_sched_context)
4485 targetm.sched.free_sched_context (save->be_saved_data);
4486 if (current_sched_info->restore_state)
4487 free (save->fe_saved_data);
4488 for (i = 0; i <= max_insn_queue_index; i++)
4489 free_INSN_LIST_list (&save->insn_queue[i]);
4490 free (save->insn_queue);
4491 free (save->curr_state);
4492 free (save->ready.vec);
4493 free (save);
4496 /* Free the entire backtrack queue. */
4497 static void
4498 free_backtrack_queue (void)
4500 while (backtrack_queue)
4501 free_topmost_backtrack_point (false);
4504 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4505 may have to postpone the replacement until the start of the next cycle,
4506 at which point we will be called again with IMMEDIATELY true. This is
4507 only done for machines which have instruction packets with explicit
4508 parallelism however. */
4509 static void
4510 apply_replacement (dep_t dep, bool immediately)
4512 struct dep_replacement *desc = DEP_REPLACE (dep);
4513 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4515 next_cycle_replace_deps.safe_push (dep);
4516 next_cycle_apply.safe_push (1);
4518 else
4520 bool success;
4522 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4523 return;
4525 if (sched_verbose >= 5)
4526 fprintf (sched_dump, "applying replacement for insn %d\n",
4527 INSN_UID (desc->insn));
4529 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4530 gcc_assert (success);
4532 update_insn_after_change (desc->insn);
4533 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4534 fix_tick_ready (desc->insn);
4536 if (backtrack_queue != NULL)
4538 backtrack_queue->replacement_deps.safe_push (dep);
4539 backtrack_queue->replace_apply.safe_push (1);
4544 /* We have determined that a pattern involved in DEP must be restored.
4545 If IMMEDIATELY is false, we may have to postpone the replacement
4546 until the start of the next cycle, at which point we will be called
4547 again with IMMEDIATELY true. */
4548 static void
4549 restore_pattern (dep_t dep, bool immediately)
4551 rtx next = DEP_CON (dep);
4552 int tick = INSN_TICK (next);
4554 /* If we already scheduled the insn, the modified version is
4555 correct. */
4556 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4557 return;
4559 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4561 next_cycle_replace_deps.safe_push (dep);
4562 next_cycle_apply.safe_push (0);
4563 return;
4567 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4569 if (sched_verbose >= 5)
4570 fprintf (sched_dump, "restoring pattern for insn %d\n",
4571 INSN_UID (next));
4572 haifa_change_pattern (next, ORIG_PAT (next));
4574 else
4576 struct dep_replacement *desc = DEP_REPLACE (dep);
4577 bool success;
4579 if (sched_verbose >= 5)
4580 fprintf (sched_dump, "restoring pattern for insn %d\n",
4581 INSN_UID (desc->insn));
4582 tick = INSN_TICK (desc->insn);
4584 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4585 gcc_assert (success);
4586 update_insn_after_change (desc->insn);
4587 if (backtrack_queue != NULL)
4589 backtrack_queue->replacement_deps.safe_push (dep);
4590 backtrack_queue->replace_apply.safe_push (0);
4593 INSN_TICK (next) = tick;
4594 if (TODO_SPEC (next) == DEP_POSTPONED)
4595 return;
4597 if (sd_lists_empty_p (next, SD_LIST_BACK))
4598 TODO_SPEC (next) = 0;
4599 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4600 TODO_SPEC (next) = HARD_DEP;
4603 /* Perform pattern replacements that were queued up until the next
4604 cycle. */
4605 static void
4606 perform_replacements_new_cycle (void)
4608 int i;
4609 dep_t dep;
4610 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4612 int apply_p = next_cycle_apply[i];
4613 if (apply_p)
4614 apply_replacement (dep, true);
4615 else
4616 restore_pattern (dep, true);
4618 next_cycle_replace_deps.truncate (0);
4619 next_cycle_apply.truncate (0);
4622 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4623 instructions we've previously encountered, a set bit prevents
4624 recursion. BUDGET is a limit on how far ahead we look, it is
4625 reduced on recursive calls. Return true if we produced a good
4626 estimate, or false if we exceeded the budget. */
4627 static bool
4628 estimate_insn_tick (bitmap processed, rtx insn, int budget)
4630 sd_iterator_def sd_it;
4631 dep_t dep;
4632 int earliest = INSN_TICK (insn);
4634 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4636 rtx pro = DEP_PRO (dep);
4637 int t;
4639 if (DEP_STATUS (dep) & DEP_CANCELLED)
4640 continue;
4642 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4643 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4644 else
4646 int cost = dep_cost (dep);
4647 if (cost >= budget)
4648 return false;
4649 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4651 if (!estimate_insn_tick (processed, pro, budget - cost))
4652 return false;
4654 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4655 t = INSN_TICK_ESTIMATE (pro) + cost;
4656 if (earliest == INVALID_TICK || t > earliest)
4657 earliest = t;
4660 bitmap_set_bit (processed, INSN_LUID (insn));
4661 INSN_TICK_ESTIMATE (insn) = earliest;
4662 return true;
4665 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4666 infinite resources) the cycle in which the delayed shadow can be issued.
4667 Return the number of cycles that must pass before the real insn can be
4668 issued in order to meet this constraint. */
4669 static int
4670 estimate_shadow_tick (struct delay_pair *p)
4672 bitmap_head processed;
4673 int t;
4674 bool cutoff;
4675 bitmap_initialize (&processed, 0);
4677 cutoff = !estimate_insn_tick (&processed, p->i2,
4678 max_insn_queue_index + pair_delay (p));
4679 bitmap_clear (&processed);
4680 if (cutoff)
4681 return max_insn_queue_index;
4682 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4683 if (t > 0)
4684 return t;
4685 return 0;
4688 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4689 recursively resolve all its forward dependencies. */
4690 static void
4691 resolve_dependencies (rtx insn)
4693 sd_iterator_def sd_it;
4694 dep_t dep;
4696 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4697 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4698 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4699 return;
4701 if (sched_verbose >= 4)
4702 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4704 if (QUEUE_INDEX (insn) >= 0)
4705 queue_remove (insn);
4707 scheduled_insns.safe_push (insn);
4709 /* Update dependent instructions. */
4710 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4711 sd_iterator_cond (&sd_it, &dep);)
4713 rtx next = DEP_CON (dep);
4715 if (sched_verbose >= 4)
4716 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4717 INSN_UID (next));
4719 /* Resolve the dependence between INSN and NEXT.
4720 sd_resolve_dep () moves current dep to another list thus
4721 advancing the iterator. */
4722 sd_resolve_dep (sd_it);
4724 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4726 resolve_dependencies (next);
4728 else
4729 /* Check always has only one forward dependence (to the first insn in
4730 the recovery block), therefore, this will be executed only once. */
4732 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4738 /* Return the head and tail pointers of ebb starting at BEG and ending
4739 at END. */
4740 void
4741 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
4743 rtx beg_head = BB_HEAD (beg);
4744 rtx beg_tail = BB_END (beg);
4745 rtx end_head = BB_HEAD (end);
4746 rtx end_tail = BB_END (end);
4748 /* Don't include any notes or labels at the beginning of the BEG
4749 basic block, or notes at the end of the END basic blocks. */
4751 if (LABEL_P (beg_head))
4752 beg_head = NEXT_INSN (beg_head);
4754 while (beg_head != beg_tail)
4755 if (NOTE_P (beg_head))
4756 beg_head = NEXT_INSN (beg_head);
4757 else if (DEBUG_INSN_P (beg_head))
4759 rtx note, next;
4761 for (note = NEXT_INSN (beg_head);
4762 note != beg_tail;
4763 note = next)
4765 next = NEXT_INSN (note);
4766 if (NOTE_P (note))
4768 if (sched_verbose >= 9)
4769 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4771 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4773 if (BLOCK_FOR_INSN (note) != beg)
4774 df_insn_change_bb (note, beg);
4776 else if (!DEBUG_INSN_P (note))
4777 break;
4780 break;
4782 else
4783 break;
4785 *headp = beg_head;
4787 if (beg == end)
4788 end_head = beg_head;
4789 else if (LABEL_P (end_head))
4790 end_head = NEXT_INSN (end_head);
4792 while (end_head != end_tail)
4793 if (NOTE_P (end_tail))
4794 end_tail = PREV_INSN (end_tail);
4795 else if (DEBUG_INSN_P (end_tail))
4797 rtx note, prev;
4799 for (note = PREV_INSN (end_tail);
4800 note != end_head;
4801 note = prev)
4803 prev = PREV_INSN (note);
4804 if (NOTE_P (note))
4806 if (sched_verbose >= 9)
4807 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4809 reorder_insns_nobb (note, note, end_tail);
4811 if (end_tail == BB_END (end))
4812 BB_END (end) = note;
4814 if (BLOCK_FOR_INSN (note) != end)
4815 df_insn_change_bb (note, end);
4817 else if (!DEBUG_INSN_P (note))
4818 break;
4821 break;
4823 else
4824 break;
4826 *tailp = end_tail;
4829 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
4832 no_real_insns_p (const_rtx head, const_rtx tail)
4834 while (head != NEXT_INSN (tail))
4836 if (!NOTE_P (head) && !LABEL_P (head))
4837 return 0;
4838 head = NEXT_INSN (head);
4840 return 1;
4843 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
4844 previously found among the insns. Insert them just before HEAD. */
4846 restore_other_notes (rtx head, basic_block head_bb)
4848 if (note_list != 0)
4850 rtx note_head = note_list;
4852 if (head)
4853 head_bb = BLOCK_FOR_INSN (head);
4854 else
4855 head = NEXT_INSN (bb_note (head_bb));
4857 while (PREV_INSN (note_head))
4859 set_block_for_insn (note_head, head_bb);
4860 note_head = PREV_INSN (note_head);
4862 /* In the above cycle we've missed this note. */
4863 set_block_for_insn (note_head, head_bb);
4865 PREV_INSN (note_head) = PREV_INSN (head);
4866 NEXT_INSN (PREV_INSN (head)) = note_head;
4867 PREV_INSN (head) = note_list;
4868 NEXT_INSN (note_list) = head;
4870 if (BLOCK_FOR_INSN (head) != head_bb)
4871 BB_END (head_bb) = note_list;
4873 head = note_head;
4876 return head;
4879 /* When we know we are going to discard the schedule due to a failed attempt
4880 at modulo scheduling, undo all replacements. */
4881 static void
4882 undo_all_replacements (void)
4884 rtx insn;
4885 int i;
4887 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
4889 sd_iterator_def sd_it;
4890 dep_t dep;
4892 /* See if we must undo a replacement. */
4893 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
4894 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4896 struct dep_replacement *desc = DEP_REPLACE (dep);
4897 if (desc != NULL)
4898 validate_change (desc->insn, desc->loc, desc->orig, 0);
4903 /* Return first non-scheduled insn in the current scheduling block.
4904 This is mostly used for debug-counter purposes. */
4905 static rtx
4906 first_nonscheduled_insn (void)
4908 rtx insn = (nonscheduled_insns_begin != NULL_RTX
4909 ? nonscheduled_insns_begin
4910 : current_sched_info->prev_head);
4914 insn = next_nonnote_nondebug_insn (insn);
4916 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
4918 return insn;
4921 /* Move insns that became ready to fire from queue to ready list. */
4923 static void
4924 queue_to_ready (struct ready_list *ready)
4926 rtx insn;
4927 rtx link;
4928 rtx skip_insn;
4930 q_ptr = NEXT_Q (q_ptr);
4932 if (dbg_cnt (sched_insn) == false)
4933 /* If debug counter is activated do not requeue the first
4934 nonscheduled insn. */
4935 skip_insn = first_nonscheduled_insn ();
4936 else
4937 skip_insn = NULL_RTX;
4939 /* Add all pending insns that can be scheduled without stalls to the
4940 ready list. */
4941 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
4943 insn = XEXP (link, 0);
4944 q_size -= 1;
4946 if (sched_verbose >= 2)
4947 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4948 (*current_sched_info->print_insn) (insn, 0));
4950 /* If the ready list is full, delay the insn for 1 cycle.
4951 See the comment in schedule_block for the rationale. */
4952 if (!reload_completed
4953 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
4954 || (sched_pressure == SCHED_PRESSURE_MODEL
4955 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
4956 instructions too. */
4957 && model_index (insn) > (model_curr_point
4958 + MAX_SCHED_READY_INSNS)))
4959 && !(sched_pressure == SCHED_PRESSURE_MODEL
4960 && model_curr_point < model_num_insns
4961 /* Always allow the next model instruction to issue. */
4962 && model_index (insn) == model_curr_point)
4963 && !SCHED_GROUP_P (insn)
4964 && insn != skip_insn)
4966 if (sched_verbose >= 2)
4967 fprintf (sched_dump, "keeping in queue, ready full\n");
4968 queue_insn (insn, 1, "ready full");
4970 else
4972 ready_add (ready, insn, false);
4973 if (sched_verbose >= 2)
4974 fprintf (sched_dump, "moving to ready without stalls\n");
4977 free_INSN_LIST_list (&insn_queue[q_ptr]);
4979 /* If there are no ready insns, stall until one is ready and add all
4980 of the pending insns at that point to the ready list. */
4981 if (ready->n_ready == 0)
4983 int stalls;
4985 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
4987 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
4989 for (; link; link = XEXP (link, 1))
4991 insn = XEXP (link, 0);
4992 q_size -= 1;
4994 if (sched_verbose >= 2)
4995 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4996 (*current_sched_info->print_insn) (insn, 0));
4998 ready_add (ready, insn, false);
4999 if (sched_verbose >= 2)
5000 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5002 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5004 advance_one_cycle ();
5006 break;
5009 advance_one_cycle ();
5012 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5013 clock_var += stalls;
5014 if (sched_verbose >= 2)
5015 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5016 stalls, clock_var);
5020 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5021 prematurely move INSN from the queue to the ready list. Currently,
5022 if a target defines the hook 'is_costly_dependence', this function
5023 uses the hook to check whether there exist any dependences which are
5024 considered costly by the target, between INSN and other insns that
5025 have already been scheduled. Dependences are checked up to Y cycles
5026 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5027 controlling this value.
5028 (Other considerations could be taken into account instead (or in
5029 addition) depending on user flags and target hooks. */
5031 static bool
5032 ok_for_early_queue_removal (rtx insn)
5034 if (targetm.sched.is_costly_dependence)
5036 rtx prev_insn;
5037 int n_cycles;
5038 int i = scheduled_insns.length ();
5039 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5041 while (i-- > 0)
5043 int cost;
5045 prev_insn = scheduled_insns[i];
5047 if (!NOTE_P (prev_insn))
5049 dep_t dep;
5051 dep = sd_find_dep_between (prev_insn, insn, true);
5053 if (dep != NULL)
5055 cost = dep_cost (dep);
5057 if (targetm.sched.is_costly_dependence (dep, cost,
5058 flag_sched_stalled_insns_dep - n_cycles))
5059 return false;
5063 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5064 break;
5067 if (i == 0)
5068 break;
5072 return true;
5076 /* Remove insns from the queue, before they become "ready" with respect
5077 to FU latency considerations. */
5079 static int
5080 early_queue_to_ready (state_t state, struct ready_list *ready)
5082 rtx insn;
5083 rtx link;
5084 rtx next_link;
5085 rtx prev_link;
5086 bool move_to_ready;
5087 int cost;
5088 state_t temp_state = alloca (dfa_state_size);
5089 int stalls;
5090 int insns_removed = 0;
5093 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5094 function:
5096 X == 0: There is no limit on how many queued insns can be removed
5097 prematurely. (flag_sched_stalled_insns = -1).
5099 X >= 1: Only X queued insns can be removed prematurely in each
5100 invocation. (flag_sched_stalled_insns = X).
5102 Otherwise: Early queue removal is disabled.
5103 (flag_sched_stalled_insns = 0)
5106 if (! flag_sched_stalled_insns)
5107 return 0;
5109 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5111 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5113 if (sched_verbose > 6)
5114 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5116 prev_link = 0;
5117 while (link)
5119 next_link = XEXP (link, 1);
5120 insn = XEXP (link, 0);
5121 if (insn && sched_verbose > 6)
5122 print_rtl_single (sched_dump, insn);
5124 memcpy (temp_state, state, dfa_state_size);
5125 if (recog_memoized (insn) < 0)
5126 /* non-negative to indicate that it's not ready
5127 to avoid infinite Q->R->Q->R... */
5128 cost = 0;
5129 else
5130 cost = state_transition (temp_state, insn);
5132 if (sched_verbose >= 6)
5133 fprintf (sched_dump, "transition cost = %d\n", cost);
5135 move_to_ready = false;
5136 if (cost < 0)
5138 move_to_ready = ok_for_early_queue_removal (insn);
5139 if (move_to_ready == true)
5141 /* move from Q to R */
5142 q_size -= 1;
5143 ready_add (ready, insn, false);
5145 if (prev_link)
5146 XEXP (prev_link, 1) = next_link;
5147 else
5148 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5150 free_INSN_LIST_node (link);
5152 if (sched_verbose >= 2)
5153 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5154 (*current_sched_info->print_insn) (insn, 0));
5156 insns_removed++;
5157 if (insns_removed == flag_sched_stalled_insns)
5158 /* Remove no more than flag_sched_stalled_insns insns
5159 from Q at a time. */
5160 return insns_removed;
5164 if (move_to_ready == false)
5165 prev_link = link;
5167 link = next_link;
5168 } /* while link */
5169 } /* if link */
5171 } /* for stalls.. */
5173 return insns_removed;
5177 /* Print the ready list for debugging purposes.
5178 If READY_TRY is non-zero then only print insns that max_issue
5179 will consider. */
5180 static void
5181 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5183 rtx *p;
5184 int i;
5186 if (ready->n_ready == 0)
5188 fprintf (sched_dump, "\n");
5189 return;
5192 p = ready_lastpos (ready);
5193 for (i = 0; i < ready->n_ready; i++)
5195 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5196 continue;
5198 fprintf (sched_dump, " %s:%d",
5199 (*current_sched_info->print_insn) (p[i], 0),
5200 INSN_LUID (p[i]));
5201 if (sched_pressure != SCHED_PRESSURE_NONE)
5202 fprintf (sched_dump, "(cost=%d",
5203 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5204 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5205 if (INSN_TICK (p[i]) > clock_var)
5206 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5207 if (sched_pressure != SCHED_PRESSURE_NONE)
5208 fprintf (sched_dump, ")");
5210 fprintf (sched_dump, "\n");
5213 /* Print the ready list. Callable from debugger. */
5214 static void
5215 debug_ready_list (struct ready_list *ready)
5217 debug_ready_list_1 (ready, NULL);
5220 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5221 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5222 replaces the epilogue note in the correct basic block. */
5223 void
5224 reemit_notes (rtx insn)
5226 rtx note, last = insn;
5228 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5230 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5232 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5234 last = emit_note_before (note_type, last);
5235 remove_note (insn, note);
5240 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5241 static void
5242 move_insn (rtx insn, rtx last, rtx nt)
5244 if (PREV_INSN (insn) != last)
5246 basic_block bb;
5247 rtx note;
5248 int jump_p = 0;
5250 bb = BLOCK_FOR_INSN (insn);
5252 /* BB_HEAD is either LABEL or NOTE. */
5253 gcc_assert (BB_HEAD (bb) != insn);
5255 if (BB_END (bb) == insn)
5256 /* If this is last instruction in BB, move end marker one
5257 instruction up. */
5259 /* Jumps are always placed at the end of basic block. */
5260 jump_p = control_flow_insn_p (insn);
5262 gcc_assert (!jump_p
5263 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5264 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5265 || (common_sched_info->sched_pass_id
5266 == SCHED_EBB_PASS));
5268 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5270 BB_END (bb) = PREV_INSN (insn);
5273 gcc_assert (BB_END (bb) != last);
5275 if (jump_p)
5276 /* We move the block note along with jump. */
5278 gcc_assert (nt);
5280 note = NEXT_INSN (insn);
5281 while (NOTE_NOT_BB_P (note) && note != nt)
5282 note = NEXT_INSN (note);
5284 if (note != nt
5285 && (LABEL_P (note)
5286 || BARRIER_P (note)))
5287 note = NEXT_INSN (note);
5289 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5291 else
5292 note = insn;
5294 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5295 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5297 NEXT_INSN (note) = NEXT_INSN (last);
5298 PREV_INSN (NEXT_INSN (last)) = note;
5300 NEXT_INSN (last) = insn;
5301 PREV_INSN (insn) = last;
5303 bb = BLOCK_FOR_INSN (last);
5305 if (jump_p)
5307 fix_jump_move (insn);
5309 if (BLOCK_FOR_INSN (insn) != bb)
5310 move_block_after_check (insn);
5312 gcc_assert (BB_END (bb) == last);
5315 df_insn_change_bb (insn, bb);
5317 /* Update BB_END, if needed. */
5318 if (BB_END (bb) == last)
5319 BB_END (bb) = insn;
5322 SCHED_GROUP_P (insn) = 0;
5325 /* Return true if scheduling INSN will finish current clock cycle. */
5326 static bool
5327 insn_finishes_cycle_p (rtx insn)
5329 if (SCHED_GROUP_P (insn))
5330 /* After issuing INSN, rest of the sched_group will be forced to issue
5331 in order. Don't make any plans for the rest of cycle. */
5332 return true;
5334 /* Finishing the block will, apparently, finish the cycle. */
5335 if (current_sched_info->insn_finishes_block_p
5336 && current_sched_info->insn_finishes_block_p (insn))
5337 return true;
5339 return false;
5342 /* Define type for target data used in multipass scheduling. */
5343 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5344 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5345 #endif
5346 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5348 /* The following structure describe an entry of the stack of choices. */
5349 struct choice_entry
5351 /* Ordinal number of the issued insn in the ready queue. */
5352 int index;
5353 /* The number of the rest insns whose issues we should try. */
5354 int rest;
5355 /* The number of issued essential insns. */
5356 int n;
5357 /* State after issuing the insn. */
5358 state_t state;
5359 /* Target-specific data. */
5360 first_cycle_multipass_data_t target_data;
5363 /* The following array is used to implement a stack of choices used in
5364 function max_issue. */
5365 static struct choice_entry *choice_stack;
5367 /* This holds the value of the target dfa_lookahead hook. */
5368 int dfa_lookahead;
5370 /* The following variable value is maximal number of tries of issuing
5371 insns for the first cycle multipass insn scheduling. We define
5372 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5373 need this constraint if all real insns (with non-negative codes)
5374 had reservations because in this case the algorithm complexity is
5375 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5376 might be incomplete and such insn might occur. For such
5377 descriptions, the complexity of algorithm (without the constraint)
5378 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5379 static int max_lookahead_tries;
5381 /* The following value is value of hook
5382 `first_cycle_multipass_dfa_lookahead' at the last call of
5383 `max_issue'. */
5384 static int cached_first_cycle_multipass_dfa_lookahead = 0;
5386 /* The following value is value of `issue_rate' at the last call of
5387 `sched_init'. */
5388 static int cached_issue_rate = 0;
5390 /* The following function returns maximal (or close to maximal) number
5391 of insns which can be issued on the same cycle and one of which
5392 insns is insns with the best rank (the first insn in READY). To
5393 make this function tries different samples of ready insns. READY
5394 is current queue `ready'. Global array READY_TRY reflects what
5395 insns are already issued in this try. The function stops immediately,
5396 if it reached the such a solution, that all instruction can be issued.
5397 INDEX will contain index of the best insn in READY. The following
5398 function is used only for first cycle multipass scheduling.
5400 PRIVILEGED_N >= 0
5402 This function expects recognized insns only. All USEs,
5403 CLOBBERs, etc must be filtered elsewhere. */
5405 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5406 bool first_cycle_insn_p, int *index)
5408 int n, i, all, n_ready, best, delay, tries_num;
5409 int more_issue;
5410 struct choice_entry *top;
5411 rtx insn;
5413 n_ready = ready->n_ready;
5414 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5415 && privileged_n <= n_ready);
5417 /* Init MAX_LOOKAHEAD_TRIES. */
5418 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
5420 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
5421 max_lookahead_tries = 100;
5422 for (i = 0; i < issue_rate; i++)
5423 max_lookahead_tries *= dfa_lookahead;
5426 /* Init max_points. */
5427 more_issue = issue_rate - cycle_issued_insns;
5428 gcc_assert (more_issue >= 0);
5430 /* The number of the issued insns in the best solution. */
5431 best = 0;
5433 top = choice_stack;
5435 /* Set initial state of the search. */
5436 memcpy (top->state, state, dfa_state_size);
5437 top->rest = dfa_lookahead;
5438 top->n = 0;
5439 if (targetm.sched.first_cycle_multipass_begin)
5440 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5441 ready_try, n_ready,
5442 first_cycle_insn_p);
5444 /* Count the number of the insns to search among. */
5445 for (all = i = 0; i < n_ready; i++)
5446 if (!ready_try [i])
5447 all++;
5449 if (sched_verbose >= 2)
5451 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5452 debug_ready_list_1 (ready, ready_try);
5455 /* I is the index of the insn to try next. */
5456 i = 0;
5457 tries_num = 0;
5458 for (;;)
5460 if (/* If we've reached a dead end or searched enough of what we have
5461 been asked... */
5462 top->rest == 0
5463 /* or have nothing else to try... */
5464 || i >= n_ready
5465 /* or should not issue more. */
5466 || top->n >= more_issue)
5468 /* ??? (... || i == n_ready). */
5469 gcc_assert (i <= n_ready);
5471 /* We should not issue more than issue_rate instructions. */
5472 gcc_assert (top->n <= more_issue);
5474 if (top == choice_stack)
5475 break;
5477 if (best < top - choice_stack)
5479 if (privileged_n)
5481 n = privileged_n;
5482 /* Try to find issued privileged insn. */
5483 while (n && !ready_try[--n])
5487 if (/* If all insns are equally good... */
5488 privileged_n == 0
5489 /* Or a privileged insn will be issued. */
5490 || ready_try[n])
5491 /* Then we have a solution. */
5493 best = top - choice_stack;
5494 /* This is the index of the insn issued first in this
5495 solution. */
5496 *index = choice_stack [1].index;
5497 if (top->n == more_issue || best == all)
5498 break;
5502 /* Set ready-list index to point to the last insn
5503 ('i++' below will advance it to the next insn). */
5504 i = top->index;
5506 /* Backtrack. */
5507 ready_try [i] = 0;
5509 if (targetm.sched.first_cycle_multipass_backtrack)
5510 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5511 ready_try, n_ready);
5513 top--;
5514 memcpy (state, top->state, dfa_state_size);
5516 else if (!ready_try [i])
5518 tries_num++;
5519 if (tries_num > max_lookahead_tries)
5520 break;
5521 insn = ready_element (ready, i);
5522 delay = state_transition (state, insn);
5523 if (delay < 0)
5525 if (state_dead_lock_p (state)
5526 || insn_finishes_cycle_p (insn))
5527 /* We won't issue any more instructions in the next
5528 choice_state. */
5529 top->rest = 0;
5530 else
5531 top->rest--;
5533 n = top->n;
5534 if (memcmp (top->state, state, dfa_state_size) != 0)
5535 n++;
5537 /* Advance to the next choice_entry. */
5538 top++;
5539 /* Initialize it. */
5540 top->rest = dfa_lookahead;
5541 top->index = i;
5542 top->n = n;
5543 memcpy (top->state, state, dfa_state_size);
5544 ready_try [i] = 1;
5546 if (targetm.sched.first_cycle_multipass_issue)
5547 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5548 ready_try, n_ready,
5549 insn,
5550 &((top - 1)
5551 ->target_data));
5553 i = -1;
5557 /* Increase ready-list index. */
5558 i++;
5561 if (targetm.sched.first_cycle_multipass_end)
5562 targetm.sched.first_cycle_multipass_end (best != 0
5563 ? &choice_stack[1].target_data
5564 : NULL);
5566 /* Restore the original state of the DFA. */
5567 memcpy (state, choice_stack->state, dfa_state_size);
5569 return best;
5572 /* The following function chooses insn from READY and modifies
5573 READY. The following function is used only for first
5574 cycle multipass scheduling.
5575 Return:
5576 -1 if cycle should be advanced,
5577 0 if INSN_PTR is set to point to the desirable insn,
5578 1 if choose_ready () should be restarted without advancing the cycle. */
5579 static int
5580 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
5581 rtx *insn_ptr)
5583 int lookahead;
5585 if (dbg_cnt (sched_insn) == false)
5587 if (nonscheduled_insns_begin == NULL_RTX)
5588 nonscheduled_insns_begin = current_sched_info->prev_head;
5590 rtx insn = first_nonscheduled_insn ();
5592 if (QUEUE_INDEX (insn) == QUEUE_READY)
5593 /* INSN is in the ready_list. */
5595 ready_remove_insn (insn);
5596 *insn_ptr = insn;
5597 return 0;
5600 /* INSN is in the queue. Advance cycle to move it to the ready list. */
5601 gcc_assert (QUEUE_INDEX (insn) >= 0);
5602 return -1;
5605 lookahead = 0;
5607 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
5608 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
5609 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
5610 || DEBUG_INSN_P (ready_element (ready, 0)))
5612 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
5613 *insn_ptr = ready_remove_first_dispatch (ready);
5614 else
5615 *insn_ptr = ready_remove_first (ready);
5617 return 0;
5619 else
5621 /* Try to choose the best insn. */
5622 int index = 0, i;
5623 rtx insn;
5625 insn = ready_element (ready, 0);
5626 if (INSN_CODE (insn) < 0)
5628 *insn_ptr = ready_remove_first (ready);
5629 return 0;
5632 /* Filter the search space. */
5633 for (i = 0; i < ready->n_ready; i++)
5635 ready_try[i] = 0;
5637 insn = ready_element (ready, i);
5639 /* If this insn is recognizable we should have already
5640 recognized it earlier.
5641 ??? Not very clear where this is supposed to be done.
5642 See dep_cost_1. */
5643 gcc_checking_assert (INSN_CODE (insn) >= 0
5644 || recog_memoized (insn) < 0);
5645 if (INSN_CODE (insn) < 0)
5647 /* Non-recognized insns at position 0 are handled above. */
5648 gcc_assert (i > 0);
5649 ready_try[i] = 1;
5650 continue;
5653 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
5655 ready_try[i]
5656 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5657 (insn, i));
5659 if (ready_try[i] < 0)
5660 /* Queue instruction for several cycles.
5661 We need to restart choose_ready as we have changed
5662 the ready list. */
5664 change_queue_index (insn, -ready_try[i]);
5665 return 1;
5668 /* Make sure that we didn't end up with 0'th insn filtered out.
5669 Don't be tempted to make life easier for backends and just
5670 requeue 0'th insn if (ready_try[0] == 0) and restart
5671 choose_ready. Backends should be very considerate about
5672 requeueing instructions -- especially the highest priority
5673 one at position 0. */
5674 gcc_assert (ready_try[i] == 0 || i > 0);
5675 if (ready_try[i])
5676 continue;
5679 gcc_assert (ready_try[i] == 0);
5680 /* INSN made it through the scrutiny of filters! */
5683 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
5685 *insn_ptr = ready_remove_first (ready);
5686 if (sched_verbose >= 4)
5687 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
5688 (*current_sched_info->print_insn) (*insn_ptr, 0));
5689 return 0;
5691 else
5693 if (sched_verbose >= 4)
5694 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
5695 (*current_sched_info->print_insn)
5696 (ready_element (ready, index), 0));
5698 *insn_ptr = ready_remove (ready, index);
5699 return 0;
5704 /* This function is called when we have successfully scheduled a
5705 block. It uses the schedule stored in the scheduled_insns vector
5706 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
5707 append the scheduled insns; TAIL is the insn after the scheduled
5708 block. TARGET_BB is the argument passed to schedule_block. */
5710 static void
5711 commit_schedule (rtx prev_head, rtx tail, basic_block *target_bb)
5713 unsigned int i;
5714 rtx insn;
5716 last_scheduled_insn = prev_head;
5717 for (i = 0;
5718 scheduled_insns.iterate (i, &insn);
5719 i++)
5721 if (control_flow_insn_p (last_scheduled_insn)
5722 || current_sched_info->advance_target_bb (*target_bb, insn))
5724 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
5726 if (sched_verbose)
5728 rtx x;
5730 x = next_real_insn (last_scheduled_insn);
5731 gcc_assert (x);
5732 dump_new_block_header (1, *target_bb, x, tail);
5735 last_scheduled_insn = bb_note (*target_bb);
5738 if (current_sched_info->begin_move_insn)
5739 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
5740 move_insn (insn, last_scheduled_insn,
5741 current_sched_info->next_tail);
5742 if (!DEBUG_INSN_P (insn))
5743 reemit_notes (insn);
5744 last_scheduled_insn = insn;
5747 scheduled_insns.truncate (0);
5750 /* Examine all insns on the ready list and queue those which can't be
5751 issued in this cycle. TEMP_STATE is temporary scheduler state we
5752 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
5753 have been issued for the current cycle, which means it is valid to
5754 issue an asm statement.
5756 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
5757 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
5758 we only leave insns which have an INSN_EXACT_TICK. */
5760 static void
5761 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
5762 bool shadows_only_p, bool modulo_epilogue_p)
5764 int i, pass;
5765 bool sched_group_found = false;
5766 int min_cost_group = 1;
5768 for (i = 0; i < ready.n_ready; i++)
5770 rtx insn = ready_element (&ready, i);
5771 if (SCHED_GROUP_P (insn))
5773 sched_group_found = true;
5774 break;
5778 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
5779 such an insn first and note its cost, then schedule all other insns
5780 for one cycle later. */
5781 for (pass = sched_group_found ? 0 : 1; pass < 2; )
5783 int n = ready.n_ready;
5784 for (i = 0; i < n; i++)
5786 rtx insn = ready_element (&ready, i);
5787 int cost = 0;
5788 const char *reason = "resource conflict";
5790 if (DEBUG_INSN_P (insn))
5791 continue;
5793 if (sched_group_found && !SCHED_GROUP_P (insn))
5795 if (pass == 0)
5796 continue;
5797 cost = min_cost_group;
5798 reason = "not in sched group";
5800 else if (modulo_epilogue_p
5801 && INSN_EXACT_TICK (insn) == INVALID_TICK)
5803 cost = max_insn_queue_index;
5804 reason = "not an epilogue insn";
5806 else if (shadows_only_p && !SHADOW_P (insn))
5808 cost = 1;
5809 reason = "not a shadow";
5811 else if (recog_memoized (insn) < 0)
5813 if (!first_cycle_insn_p
5814 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
5815 || asm_noperands (PATTERN (insn)) >= 0))
5816 cost = 1;
5817 reason = "asm";
5819 else if (sched_pressure != SCHED_PRESSURE_NONE)
5821 if (sched_pressure == SCHED_PRESSURE_MODEL
5822 && INSN_TICK (insn) <= clock_var)
5824 memcpy (temp_state, curr_state, dfa_state_size);
5825 if (state_transition (temp_state, insn) >= 0)
5826 INSN_TICK (insn) = clock_var + 1;
5828 cost = 0;
5830 else
5832 int delay_cost = 0;
5834 if (delay_htab)
5836 struct delay_pair *delay_entry;
5837 delay_entry
5838 = delay_htab->find_with_hash (insn,
5839 htab_hash_pointer (insn));
5840 while (delay_entry && delay_cost == 0)
5842 delay_cost = estimate_shadow_tick (delay_entry);
5843 if (delay_cost > max_insn_queue_index)
5844 delay_cost = max_insn_queue_index;
5845 delay_entry = delay_entry->next_same_i1;
5849 memcpy (temp_state, curr_state, dfa_state_size);
5850 cost = state_transition (temp_state, insn);
5851 if (cost < 0)
5852 cost = 0;
5853 else if (cost == 0)
5854 cost = 1;
5855 if (cost < delay_cost)
5857 cost = delay_cost;
5858 reason = "shadow tick";
5861 if (cost >= 1)
5863 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
5864 min_cost_group = cost;
5865 ready_remove (&ready, i);
5866 queue_insn (insn, cost, reason);
5867 if (i + 1 < n)
5868 break;
5871 if (i == n)
5872 pass++;
5876 /* Called when we detect that the schedule is impossible. We examine the
5877 backtrack queue to find the earliest insn that caused this condition. */
5879 static struct haifa_saved_data *
5880 verify_shadows (void)
5882 struct haifa_saved_data *save, *earliest_fail = NULL;
5883 for (save = backtrack_queue; save; save = save->next)
5885 int t;
5886 struct delay_pair *pair = save->delay_pair;
5887 rtx i1 = pair->i1;
5889 for (; pair; pair = pair->next_same_i1)
5891 rtx i2 = pair->i2;
5893 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
5894 continue;
5896 t = INSN_TICK (i1) + pair_delay (pair);
5897 if (t < clock_var)
5899 if (sched_verbose >= 2)
5900 fprintf (sched_dump,
5901 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
5902 ", not ready\n",
5903 INSN_UID (pair->i1), INSN_UID (pair->i2),
5904 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5905 earliest_fail = save;
5906 break;
5908 if (QUEUE_INDEX (i2) >= 0)
5910 int queued_for = INSN_TICK (i2);
5912 if (t < queued_for)
5914 if (sched_verbose >= 2)
5915 fprintf (sched_dump,
5916 ";;\t\tfailed delay requirements for %d/%d"
5917 " (%d->%d), queued too late\n",
5918 INSN_UID (pair->i1), INSN_UID (pair->i2),
5919 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5920 earliest_fail = save;
5921 break;
5927 return earliest_fail;
5930 /* Print instructions together with useful scheduling information between
5931 HEAD and TAIL (inclusive). */
5932 static void
5933 dump_insn_stream (rtx head, rtx tail)
5935 fprintf (sched_dump, ";;\t| insn | prio |\n");
5937 rtx next_tail = NEXT_INSN (tail);
5938 for (rtx insn = head; insn != next_tail; insn = NEXT_INSN (insn))
5940 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
5941 const char *pattern = (NOTE_P (insn)
5942 ? "note"
5943 : str_pattern_slim (PATTERN (insn)));
5945 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
5946 INSN_UID (insn), priority, pattern);
5948 if (sched_verbose >= 4)
5950 if (NOTE_P (insn) || recog_memoized (insn) < 0)
5951 fprintf (sched_dump, "nothing");
5952 else
5953 print_reservation (sched_dump, insn);
5955 fprintf (sched_dump, "\n");
5959 /* Use forward list scheduling to rearrange insns of block pointed to by
5960 TARGET_BB, possibly bringing insns from subsequent blocks in the same
5961 region. */
5963 bool
5964 schedule_block (basic_block *target_bb, state_t init_state)
5966 int i;
5967 bool success = modulo_ii == 0;
5968 struct sched_block_state ls;
5969 state_t temp_state = NULL; /* It is used for multipass scheduling. */
5970 int sort_p, advance, start_clock_var;
5972 /* Head/tail info for this block. */
5973 rtx prev_head = current_sched_info->prev_head;
5974 rtx next_tail = current_sched_info->next_tail;
5975 rtx head = NEXT_INSN (prev_head);
5976 rtx tail = PREV_INSN (next_tail);
5978 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
5979 && sched_pressure != SCHED_PRESSURE_MODEL)
5980 find_modifiable_mems (head, tail);
5982 /* We used to have code to avoid getting parameters moved from hard
5983 argument registers into pseudos.
5985 However, it was removed when it proved to be of marginal benefit
5986 and caused problems because schedule_block and compute_forward_dependences
5987 had different notions of what the "head" insn was. */
5989 gcc_assert (head != tail || INSN_P (head));
5991 haifa_recovery_bb_recently_added_p = false;
5993 backtrack_queue = NULL;
5995 /* Debug info. */
5996 if (sched_verbose)
5998 dump_new_block_header (0, *target_bb, head, tail);
6000 if (sched_verbose >= 2)
6002 dump_insn_stream (head, tail);
6003 memset (&rank_for_schedule_stats, 0,
6004 sizeof (rank_for_schedule_stats));
6008 if (init_state == NULL)
6009 state_reset (curr_state);
6010 else
6011 memcpy (curr_state, init_state, dfa_state_size);
6013 /* Clear the ready list. */
6014 ready.first = ready.veclen - 1;
6015 ready.n_ready = 0;
6016 ready.n_debug = 0;
6018 /* It is used for first cycle multipass scheduling. */
6019 temp_state = alloca (dfa_state_size);
6021 if (targetm.sched.init)
6022 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6024 /* We start inserting insns after PREV_HEAD. */
6025 last_scheduled_insn = prev_head;
6026 last_nondebug_scheduled_insn = NULL_RTX;
6027 nonscheduled_insns_begin = NULL_RTX;
6029 gcc_assert ((NOTE_P (last_scheduled_insn)
6030 || DEBUG_INSN_P (last_scheduled_insn))
6031 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6033 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6034 queue. */
6035 q_ptr = 0;
6036 q_size = 0;
6038 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
6039 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6041 /* Start just before the beginning of time. */
6042 clock_var = -1;
6044 /* We need queue and ready lists and clock_var be initialized
6045 in try_ready () (which is called through init_ready_list ()). */
6046 (*current_sched_info->init_ready_list) ();
6048 if (sched_pressure == SCHED_PRESSURE_MODEL)
6049 model_start_schedule ();
6051 /* The algorithm is O(n^2) in the number of ready insns at any given
6052 time in the worst case. Before reload we are more likely to have
6053 big lists so truncate them to a reasonable size. */
6054 if (!reload_completed
6055 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6057 ready_sort (&ready);
6059 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6060 If there are debug insns, we know they're first. */
6061 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6062 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6063 break;
6065 if (sched_verbose >= 2)
6067 fprintf (sched_dump,
6068 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
6069 fprintf (sched_dump,
6070 ";;\t\t before reload => truncated to %d insns\n", i);
6073 /* Delay all insns past it for 1 cycle. If debug counter is
6074 activated make an exception for the insn right after
6075 nonscheduled_insns_begin. */
6077 rtx skip_insn;
6079 if (dbg_cnt (sched_insn) == false)
6080 skip_insn = first_nonscheduled_insn ();
6081 else
6082 skip_insn = NULL_RTX;
6084 while (i < ready.n_ready)
6086 rtx insn;
6088 insn = ready_remove (&ready, i);
6090 if (insn != skip_insn)
6091 queue_insn (insn, 1, "list truncated");
6093 if (skip_insn)
6094 ready_add (&ready, skip_insn, true);
6098 /* Now we can restore basic block notes and maintain precise cfg. */
6099 restore_bb_notes (*target_bb);
6101 last_clock_var = -1;
6103 advance = 0;
6105 gcc_assert (scheduled_insns.length () == 0);
6106 sort_p = TRUE;
6107 must_backtrack = false;
6108 modulo_insns_scheduled = 0;
6110 ls.modulo_epilogue = false;
6111 ls.first_cycle_insn_p = true;
6113 /* Loop until all the insns in BB are scheduled. */
6114 while ((*current_sched_info->schedule_more_p) ())
6116 perform_replacements_new_cycle ();
6119 start_clock_var = clock_var;
6121 clock_var++;
6123 advance_one_cycle ();
6125 /* Add to the ready list all pending insns that can be issued now.
6126 If there are no ready insns, increment clock until one
6127 is ready and add all pending insns at that point to the ready
6128 list. */
6129 queue_to_ready (&ready);
6131 gcc_assert (ready.n_ready);
6133 if (sched_verbose >= 2)
6135 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6136 debug_ready_list (&ready);
6138 advance -= clock_var - start_clock_var;
6140 while (advance > 0);
6142 if (ls.modulo_epilogue)
6144 int stage = clock_var / modulo_ii;
6145 if (stage > modulo_last_stage * 2 + 2)
6147 if (sched_verbose >= 2)
6148 fprintf (sched_dump,
6149 ";;\t\tmodulo scheduled succeeded at II %d\n",
6150 modulo_ii);
6151 success = true;
6152 goto end_schedule;
6155 else if (modulo_ii > 0)
6157 int stage = clock_var / modulo_ii;
6158 if (stage > modulo_max_stages)
6160 if (sched_verbose >= 2)
6161 fprintf (sched_dump,
6162 ";;\t\tfailing schedule due to excessive stages\n");
6163 goto end_schedule;
6165 if (modulo_n_insns == modulo_insns_scheduled
6166 && stage > modulo_last_stage)
6168 if (sched_verbose >= 2)
6169 fprintf (sched_dump,
6170 ";;\t\tfound kernel after %d stages, II %d\n",
6171 stage, modulo_ii);
6172 ls.modulo_epilogue = true;
6176 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6177 if (ready.n_ready == 0)
6178 continue;
6179 if (must_backtrack)
6180 goto do_backtrack;
6182 ls.shadows_only_p = false;
6183 cycle_issued_insns = 0;
6184 ls.can_issue_more = issue_rate;
6185 for (;;)
6187 rtx insn;
6188 int cost;
6189 bool asm_p;
6191 if (sort_p && ready.n_ready > 0)
6193 /* Sort the ready list based on priority. This must be
6194 done every iteration through the loop, as schedule_insn
6195 may have readied additional insns that will not be
6196 sorted correctly. */
6197 ready_sort (&ready);
6199 if (sched_verbose >= 2)
6201 fprintf (sched_dump,
6202 ";;\t\tReady list after ready_sort: ");
6203 debug_ready_list (&ready);
6207 /* We don't want md sched reorder to even see debug isns, so put
6208 them out right away. */
6209 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6210 && (*current_sched_info->schedule_more_p) ())
6212 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6214 rtx insn = ready_remove_first (&ready);
6215 gcc_assert (DEBUG_INSN_P (insn));
6216 (*current_sched_info->begin_schedule_ready) (insn);
6217 scheduled_insns.safe_push (insn);
6218 last_scheduled_insn = insn;
6219 advance = schedule_insn (insn);
6220 gcc_assert (advance == 0);
6221 if (ready.n_ready > 0)
6222 ready_sort (&ready);
6226 if (ls.first_cycle_insn_p && !ready.n_ready)
6227 break;
6229 resume_after_backtrack:
6230 /* Allow the target to reorder the list, typically for
6231 better instruction bundling. */
6232 if (sort_p
6233 && (ready.n_ready == 0
6234 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6236 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6237 ls.can_issue_more
6238 = targetm.sched.reorder (sched_dump, sched_verbose,
6239 ready_lastpos (&ready),
6240 &ready.n_ready, clock_var);
6241 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6242 ls.can_issue_more
6243 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6244 ready.n_ready
6245 ? ready_lastpos (&ready) : NULL,
6246 &ready.n_ready, clock_var);
6249 restart_choose_ready:
6250 if (sched_verbose >= 2)
6252 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6253 clock_var);
6254 debug_ready_list (&ready);
6255 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6256 print_curr_reg_pressure ();
6259 if (ready.n_ready == 0
6260 && ls.can_issue_more
6261 && reload_completed)
6263 /* Allow scheduling insns directly from the queue in case
6264 there's nothing better to do (ready list is empty) but
6265 there are still vacant dispatch slots in the current cycle. */
6266 if (sched_verbose >= 6)
6267 fprintf (sched_dump,";;\t\tSecond chance\n");
6268 memcpy (temp_state, curr_state, dfa_state_size);
6269 if (early_queue_to_ready (temp_state, &ready))
6270 ready_sort (&ready);
6273 if (ready.n_ready == 0
6274 || !ls.can_issue_more
6275 || state_dead_lock_p (curr_state)
6276 || !(*current_sched_info->schedule_more_p) ())
6277 break;
6279 /* Select and remove the insn from the ready list. */
6280 if (sort_p)
6282 int res;
6284 insn = NULL_RTX;
6285 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6287 if (res < 0)
6288 /* Finish cycle. */
6289 break;
6290 if (res > 0)
6291 goto restart_choose_ready;
6293 gcc_assert (insn != NULL_RTX);
6295 else
6296 insn = ready_remove_first (&ready);
6298 if (sched_pressure != SCHED_PRESSURE_NONE
6299 && INSN_TICK (insn) > clock_var)
6301 ready_add (&ready, insn, true);
6302 advance = 1;
6303 break;
6306 if (targetm.sched.dfa_new_cycle
6307 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6308 insn, last_clock_var,
6309 clock_var, &sort_p))
6310 /* SORT_P is used by the target to override sorting
6311 of the ready list. This is needed when the target
6312 has modified its internal structures expecting that
6313 the insn will be issued next. As we need the insn
6314 to have the highest priority (so it will be returned by
6315 the ready_remove_first call above), we invoke
6316 ready_add (&ready, insn, true).
6317 But, still, there is one issue: INSN can be later
6318 discarded by scheduler's front end through
6319 current_sched_info->can_schedule_ready_p, hence, won't
6320 be issued next. */
6322 ready_add (&ready, insn, true);
6323 break;
6326 sort_p = TRUE;
6328 if (current_sched_info->can_schedule_ready_p
6329 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6330 /* We normally get here only if we don't want to move
6331 insn from the split block. */
6333 TODO_SPEC (insn) = DEP_POSTPONED;
6334 goto restart_choose_ready;
6337 if (delay_htab)
6339 /* If this insn is the first part of a delay-slot pair, record a
6340 backtrack point. */
6341 struct delay_pair *delay_entry;
6342 delay_entry
6343 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6344 if (delay_entry)
6346 save_backtrack_point (delay_entry, ls);
6347 if (sched_verbose >= 2)
6348 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6352 /* DECISION is made. */
6354 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6356 modulo_insns_scheduled++;
6357 modulo_last_stage = clock_var / modulo_ii;
6359 if (TODO_SPEC (insn) & SPECULATIVE)
6360 generate_recovery_code (insn);
6362 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
6363 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6365 /* Update counters, etc in the scheduler's front end. */
6366 (*current_sched_info->begin_schedule_ready) (insn);
6367 scheduled_insns.safe_push (insn);
6368 gcc_assert (NONDEBUG_INSN_P (insn));
6369 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6371 if (recog_memoized (insn) >= 0)
6373 memcpy (temp_state, curr_state, dfa_state_size);
6374 cost = state_transition (curr_state, insn);
6375 if (sched_pressure != SCHED_PRESSURE_WEIGHTED)
6376 gcc_assert (cost < 0);
6377 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6378 cycle_issued_insns++;
6379 asm_p = false;
6381 else
6382 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6383 || asm_noperands (PATTERN (insn)) >= 0);
6385 if (targetm.sched.variable_issue)
6386 ls.can_issue_more =
6387 targetm.sched.variable_issue (sched_dump, sched_verbose,
6388 insn, ls.can_issue_more);
6389 /* A naked CLOBBER or USE generates no instruction, so do
6390 not count them against the issue rate. */
6391 else if (GET_CODE (PATTERN (insn)) != USE
6392 && GET_CODE (PATTERN (insn)) != CLOBBER)
6393 ls.can_issue_more--;
6394 advance = schedule_insn (insn);
6396 if (SHADOW_P (insn))
6397 ls.shadows_only_p = true;
6399 /* After issuing an asm insn we should start a new cycle. */
6400 if (advance == 0 && asm_p)
6401 advance = 1;
6403 if (must_backtrack)
6404 break;
6406 if (advance != 0)
6407 break;
6409 ls.first_cycle_insn_p = false;
6410 if (ready.n_ready > 0)
6411 prune_ready_list (temp_state, false, ls.shadows_only_p,
6412 ls.modulo_epilogue);
6415 do_backtrack:
6416 if (!must_backtrack)
6417 for (i = 0; i < ready.n_ready; i++)
6419 rtx insn = ready_element (&ready, i);
6420 if (INSN_EXACT_TICK (insn) == clock_var)
6422 must_backtrack = true;
6423 clock_var++;
6424 break;
6427 if (must_backtrack && modulo_ii > 0)
6429 if (modulo_backtracks_left == 0)
6430 goto end_schedule;
6431 modulo_backtracks_left--;
6433 while (must_backtrack)
6435 struct haifa_saved_data *failed;
6436 rtx failed_insn;
6438 must_backtrack = false;
6439 failed = verify_shadows ();
6440 gcc_assert (failed);
6442 failed_insn = failed->delay_pair->i1;
6443 /* Clear these queues. */
6444 perform_replacements_new_cycle ();
6445 toggle_cancelled_flags (false);
6446 unschedule_insns_until (failed_insn);
6447 while (failed != backtrack_queue)
6448 free_topmost_backtrack_point (true);
6449 restore_last_backtrack_point (&ls);
6450 if (sched_verbose >= 2)
6451 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6452 /* Delay by at least a cycle. This could cause additional
6453 backtracking. */
6454 queue_insn (failed_insn, 1, "backtracked");
6455 advance = 0;
6456 if (must_backtrack)
6457 continue;
6458 if (ready.n_ready > 0)
6459 goto resume_after_backtrack;
6460 else
6462 if (clock_var == 0 && ls.first_cycle_insn_p)
6463 goto end_schedule;
6464 advance = 1;
6465 break;
6468 ls.first_cycle_insn_p = true;
6470 if (ls.modulo_epilogue)
6471 success = true;
6472 end_schedule:
6473 if (!ls.first_cycle_insn_p)
6474 advance_one_cycle ();
6475 perform_replacements_new_cycle ();
6476 if (modulo_ii > 0)
6478 /* Once again, debug insn suckiness: they can be on the ready list
6479 even if they have unresolved dependencies. To make our view
6480 of the world consistent, remove such "ready" insns. */
6481 restart_debug_insn_loop:
6482 for (i = ready.n_ready - 1; i >= 0; i--)
6484 rtx x;
6486 x = ready_element (&ready, i);
6487 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6488 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6490 ready_remove (&ready, i);
6491 goto restart_debug_insn_loop;
6494 for (i = ready.n_ready - 1; i >= 0; i--)
6496 rtx x;
6498 x = ready_element (&ready, i);
6499 resolve_dependencies (x);
6501 for (i = 0; i <= max_insn_queue_index; i++)
6503 rtx link;
6504 while ((link = insn_queue[i]) != NULL)
6506 rtx x = XEXP (link, 0);
6507 insn_queue[i] = XEXP (link, 1);
6508 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6509 free_INSN_LIST_node (link);
6510 resolve_dependencies (x);
6515 if (!success)
6516 undo_all_replacements ();
6518 /* Debug info. */
6519 if (sched_verbose)
6521 fprintf (sched_dump, ";;\tReady list (final): ");
6522 debug_ready_list (&ready);
6525 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6526 /* Sanity check -- queue must be empty now. Meaningless if region has
6527 multiple bbs. */
6528 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6529 else if (modulo_ii == 0)
6531 /* We must maintain QUEUE_INDEX between blocks in region. */
6532 for (i = ready.n_ready - 1; i >= 0; i--)
6534 rtx x;
6536 x = ready_element (&ready, i);
6537 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6538 TODO_SPEC (x) = HARD_DEP;
6541 if (q_size)
6542 for (i = 0; i <= max_insn_queue_index; i++)
6544 rtx link;
6545 for (link = insn_queue[i]; link; link = XEXP (link, 1))
6547 rtx x;
6549 x = XEXP (link, 0);
6550 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6551 TODO_SPEC (x) = HARD_DEP;
6553 free_INSN_LIST_list (&insn_queue[i]);
6557 if (sched_pressure == SCHED_PRESSURE_MODEL)
6558 model_end_schedule ();
6560 if (success)
6562 commit_schedule (prev_head, tail, target_bb);
6563 if (sched_verbose)
6564 fprintf (sched_dump, ";; total time = %d\n", clock_var);
6566 else
6567 last_scheduled_insn = tail;
6569 scheduled_insns.truncate (0);
6571 if (!current_sched_info->queue_must_finish_empty
6572 || haifa_recovery_bb_recently_added_p)
6574 /* INSN_TICK (minimum clock tick at which the insn becomes
6575 ready) may be not correct for the insn in the subsequent
6576 blocks of the region. We should use a correct value of
6577 `clock_var' or modify INSN_TICK. It is better to keep
6578 clock_var value equal to 0 at the start of a basic block.
6579 Therefore we modify INSN_TICK here. */
6580 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
6583 if (targetm.sched.finish)
6585 targetm.sched.finish (sched_dump, sched_verbose);
6586 /* Target might have added some instructions to the scheduled block
6587 in its md_finish () hook. These new insns don't have any data
6588 initialized and to identify them we extend h_i_d so that they'll
6589 get zero luids. */
6590 sched_extend_luids ();
6593 /* Update head/tail boundaries. */
6594 head = NEXT_INSN (prev_head);
6595 tail = last_scheduled_insn;
6597 if (sched_verbose)
6599 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
6600 INSN_UID (head), INSN_UID (tail));
6602 if (sched_verbose >= 2)
6604 dump_insn_stream (head, tail);
6605 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats);
6608 fprintf (sched_dump, "\n");
6611 head = restore_other_notes (head, NULL);
6613 current_sched_info->head = head;
6614 current_sched_info->tail = tail;
6616 free_backtrack_queue ();
6618 return success;
6621 /* Set_priorities: compute priority of each insn in the block. */
6624 set_priorities (rtx head, rtx tail)
6626 rtx insn;
6627 int n_insn;
6628 int sched_max_insns_priority =
6629 current_sched_info->sched_max_insns_priority;
6630 rtx prev_head;
6632 if (head == tail && ! INSN_P (head))
6633 gcc_unreachable ();
6635 n_insn = 0;
6637 prev_head = PREV_INSN (head);
6638 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
6640 if (!INSN_P (insn))
6641 continue;
6643 n_insn++;
6644 (void) priority (insn);
6646 gcc_assert (INSN_PRIORITY_KNOWN (insn));
6648 sched_max_insns_priority = MAX (sched_max_insns_priority,
6649 INSN_PRIORITY (insn));
6652 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
6654 return n_insn;
6657 /* Set dump and sched_verbose for the desired debugging output. If no
6658 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
6659 For -fsched-verbose=N, N>=10, print everything to stderr. */
6660 void
6661 setup_sched_dump (void)
6663 sched_verbose = sched_verbose_param;
6664 if (sched_verbose_param == 0 && dump_file)
6665 sched_verbose = 1;
6666 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
6667 ? stderr : dump_file);
6670 /* Allocate data for register pressure sensitive scheduling. */
6671 static void
6672 alloc_global_sched_pressure_data (void)
6674 if (sched_pressure != SCHED_PRESSURE_NONE)
6676 int i, max_regno = max_reg_num ();
6678 if (sched_dump != NULL)
6679 /* We need info about pseudos for rtl dumps about pseudo
6680 classes and costs. */
6681 regstat_init_n_sets_and_refs ();
6682 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
6683 sched_regno_pressure_class
6684 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
6685 for (i = 0; i < max_regno; i++)
6686 sched_regno_pressure_class[i]
6687 = (i < FIRST_PSEUDO_REGISTER
6688 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
6689 : ira_pressure_class_translate[reg_allocno_class (i)]);
6690 curr_reg_live = BITMAP_ALLOC (NULL);
6691 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6693 saved_reg_live = BITMAP_ALLOC (NULL);
6694 region_ref_regs = BITMAP_ALLOC (NULL);
6699 /* Free data for register pressure sensitive scheduling. Also called
6700 from schedule_region when stopping sched-pressure early. */
6701 void
6702 free_global_sched_pressure_data (void)
6704 if (sched_pressure != SCHED_PRESSURE_NONE)
6706 if (regstat_n_sets_and_refs != NULL)
6707 regstat_free_n_sets_and_refs ();
6708 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6710 BITMAP_FREE (region_ref_regs);
6711 BITMAP_FREE (saved_reg_live);
6713 BITMAP_FREE (curr_reg_live);
6714 free (sched_regno_pressure_class);
6718 /* Initialize some global state for the scheduler. This function works
6719 with the common data shared between all the schedulers. It is called
6720 from the scheduler specific initialization routine. */
6722 void
6723 sched_init (void)
6725 /* Disable speculative loads in their presence if cc0 defined. */
6726 #ifdef HAVE_cc0
6727 flag_schedule_speculative_load = 0;
6728 #endif
6730 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
6731 targetm.sched.dispatch_do (NULL_RTX, DISPATCH_INIT);
6733 if (live_range_shrinkage_p)
6734 sched_pressure = SCHED_PRESSURE_WEIGHTED;
6735 else if (flag_sched_pressure
6736 && !reload_completed
6737 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
6738 sched_pressure = ((enum sched_pressure_algorithm)
6739 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
6740 else
6741 sched_pressure = SCHED_PRESSURE_NONE;
6743 if (sched_pressure != SCHED_PRESSURE_NONE)
6744 ira_setup_eliminable_regset ();
6746 /* Initialize SPEC_INFO. */
6747 if (targetm.sched.set_sched_flags)
6749 spec_info = &spec_info_var;
6750 targetm.sched.set_sched_flags (spec_info);
6752 if (spec_info->mask != 0)
6754 spec_info->data_weakness_cutoff =
6755 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
6756 spec_info->control_weakness_cutoff =
6757 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
6758 * REG_BR_PROB_BASE) / 100;
6760 else
6761 /* So we won't read anything accidentally. */
6762 spec_info = NULL;
6765 else
6766 /* So we won't read anything accidentally. */
6767 spec_info = 0;
6769 /* Initialize issue_rate. */
6770 if (targetm.sched.issue_rate)
6771 issue_rate = targetm.sched.issue_rate ();
6772 else
6773 issue_rate = 1;
6775 if (cached_issue_rate != issue_rate)
6777 cached_issue_rate = issue_rate;
6778 /* To invalidate max_lookahead_tries: */
6779 cached_first_cycle_multipass_dfa_lookahead = 0;
6782 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
6783 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
6784 else
6785 dfa_lookahead = 0;
6787 if (targetm.sched.init_dfa_pre_cycle_insn)
6788 targetm.sched.init_dfa_pre_cycle_insn ();
6790 if (targetm.sched.init_dfa_post_cycle_insn)
6791 targetm.sched.init_dfa_post_cycle_insn ();
6793 dfa_start ();
6794 dfa_state_size = state_size ();
6796 init_alias_analysis ();
6798 if (!sched_no_dce)
6799 df_set_flags (DF_LR_RUN_DCE);
6800 df_note_add_problem ();
6802 /* More problems needed for interloop dep calculation in SMS. */
6803 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
6805 df_rd_add_problem ();
6806 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
6809 df_analyze ();
6811 /* Do not run DCE after reload, as this can kill nops inserted
6812 by bundling. */
6813 if (reload_completed)
6814 df_clear_flags (DF_LR_RUN_DCE);
6816 regstat_compute_calls_crossed ();
6818 if (targetm.sched.init_global)
6819 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
6821 alloc_global_sched_pressure_data ();
6823 curr_state = xmalloc (dfa_state_size);
6826 static void haifa_init_only_bb (basic_block, basic_block);
6828 /* Initialize data structures specific to the Haifa scheduler. */
6829 void
6830 haifa_sched_init (void)
6832 setup_sched_dump ();
6833 sched_init ();
6835 scheduled_insns.create (0);
6837 if (spec_info != NULL)
6839 sched_deps_info->use_deps_list = 1;
6840 sched_deps_info->generate_spec_deps = 1;
6843 /* Initialize luids, dependency caches, target and h_i_d for the
6844 whole function. */
6846 bb_vec_t bbs;
6847 bbs.create (n_basic_blocks_for_fn (cfun));
6848 basic_block bb;
6850 sched_init_bbs ();
6852 FOR_EACH_BB_FN (bb, cfun)
6853 bbs.quick_push (bb);
6854 sched_init_luids (bbs);
6855 sched_deps_init (true);
6856 sched_extend_target ();
6857 haifa_init_h_i_d (bbs);
6859 bbs.release ();
6862 sched_init_only_bb = haifa_init_only_bb;
6863 sched_split_block = sched_split_block_1;
6864 sched_create_empty_bb = sched_create_empty_bb_1;
6865 haifa_recovery_bb_ever_added_p = false;
6867 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
6868 before_recovery = 0;
6869 after_recovery = 0;
6871 modulo_ii = 0;
6874 /* Finish work with the data specific to the Haifa scheduler. */
6875 void
6876 haifa_sched_finish (void)
6878 sched_create_empty_bb = NULL;
6879 sched_split_block = NULL;
6880 sched_init_only_bb = NULL;
6882 if (spec_info && spec_info->dump)
6884 char c = reload_completed ? 'a' : 'b';
6886 fprintf (spec_info->dump,
6887 ";; %s:\n", current_function_name ());
6889 fprintf (spec_info->dump,
6890 ";; Procedure %cr-begin-data-spec motions == %d\n",
6891 c, nr_begin_data);
6892 fprintf (spec_info->dump,
6893 ";; Procedure %cr-be-in-data-spec motions == %d\n",
6894 c, nr_be_in_data);
6895 fprintf (spec_info->dump,
6896 ";; Procedure %cr-begin-control-spec motions == %d\n",
6897 c, nr_begin_control);
6898 fprintf (spec_info->dump,
6899 ";; Procedure %cr-be-in-control-spec motions == %d\n",
6900 c, nr_be_in_control);
6903 scheduled_insns.release ();
6905 /* Finalize h_i_d, dependency caches, and luids for the whole
6906 function. Target will be finalized in md_global_finish (). */
6907 sched_deps_finish ();
6908 sched_finish_luids ();
6909 current_sched_info = NULL;
6910 sched_finish ();
6913 /* Free global data used during insn scheduling. This function works with
6914 the common data shared between the schedulers. */
6916 void
6917 sched_finish (void)
6919 haifa_finish_h_i_d ();
6920 free_global_sched_pressure_data ();
6921 free (curr_state);
6923 if (targetm.sched.finish_global)
6924 targetm.sched.finish_global (sched_dump, sched_verbose);
6926 end_alias_analysis ();
6928 regstat_free_calls_crossed ();
6930 dfa_finish ();
6933 /* Free all delay_pair structures that were recorded. */
6934 void
6935 free_delay_pairs (void)
6937 if (delay_htab)
6939 delay_htab->empty ();
6940 delay_htab_i2->empty ();
6944 /* Fix INSN_TICKs of the instructions in the current block as well as
6945 INSN_TICKs of their dependents.
6946 HEAD and TAIL are the begin and the end of the current scheduled block. */
6947 static void
6948 fix_inter_tick (rtx head, rtx tail)
6950 /* Set of instructions with corrected INSN_TICK. */
6951 bitmap_head processed;
6952 /* ??? It is doubtful if we should assume that cycle advance happens on
6953 basic block boundaries. Basically insns that are unconditionally ready
6954 on the start of the block are more preferable then those which have
6955 a one cycle dependency over insn from the previous block. */
6956 int next_clock = clock_var + 1;
6958 bitmap_initialize (&processed, 0);
6960 /* Iterates over scheduled instructions and fix their INSN_TICKs and
6961 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
6962 across different blocks. */
6963 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
6965 if (INSN_P (head))
6967 int tick;
6968 sd_iterator_def sd_it;
6969 dep_t dep;
6971 tick = INSN_TICK (head);
6972 gcc_assert (tick >= MIN_TICK);
6974 /* Fix INSN_TICK of instruction from just scheduled block. */
6975 if (bitmap_set_bit (&processed, INSN_LUID (head)))
6977 tick -= next_clock;
6979 if (tick < MIN_TICK)
6980 tick = MIN_TICK;
6982 INSN_TICK (head) = tick;
6985 if (DEBUG_INSN_P (head))
6986 continue;
6988 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
6990 rtx next;
6992 next = DEP_CON (dep);
6993 tick = INSN_TICK (next);
6995 if (tick != INVALID_TICK
6996 /* If NEXT has its INSN_TICK calculated, fix it.
6997 If not - it will be properly calculated from
6998 scratch later in fix_tick_ready. */
6999 && bitmap_set_bit (&processed, INSN_LUID (next)))
7001 tick -= next_clock;
7003 if (tick < MIN_TICK)
7004 tick = MIN_TICK;
7006 if (tick > INTER_TICK (next))
7007 INTER_TICK (next) = tick;
7008 else
7009 tick = INTER_TICK (next);
7011 INSN_TICK (next) = tick;
7016 bitmap_clear (&processed);
7019 /* Check if NEXT is ready to be added to the ready or queue list.
7020 If "yes", add it to the proper list.
7021 Returns:
7022 -1 - is not ready yet,
7023 0 - added to the ready list,
7024 0 < N - queued for N cycles. */
7026 try_ready (rtx next)
7028 ds_t old_ts, new_ts;
7030 old_ts = TODO_SPEC (next);
7032 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7033 && (old_ts == HARD_DEP
7034 || old_ts == DEP_POSTPONED
7035 || (old_ts & SPECULATIVE)
7036 || old_ts == DEP_CONTROL));
7038 new_ts = recompute_todo_spec (next, false);
7040 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7041 gcc_assert (new_ts == old_ts
7042 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7043 else if (current_sched_info->new_ready)
7044 new_ts = current_sched_info->new_ready (next, new_ts);
7046 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7047 have its original pattern or changed (speculative) one. This is due
7048 to changing ebb in region scheduling.
7049 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7050 has speculative pattern.
7052 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7053 control-speculative NEXT could have been discarded by sched-rgn.c
7054 (the same case as when discarded by can_schedule_ready_p ()). */
7056 if ((new_ts & SPECULATIVE)
7057 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7058 need to change anything. */
7059 && new_ts != old_ts)
7061 int res;
7062 rtx new_pat;
7064 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7066 res = haifa_speculate_insn (next, new_ts, &new_pat);
7068 switch (res)
7070 case -1:
7071 /* It would be nice to change DEP_STATUS of all dependences,
7072 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7073 so we won't reanalyze anything. */
7074 new_ts = HARD_DEP;
7075 break;
7077 case 0:
7078 /* We follow the rule, that every speculative insn
7079 has non-null ORIG_PAT. */
7080 if (!ORIG_PAT (next))
7081 ORIG_PAT (next) = PATTERN (next);
7082 break;
7084 case 1:
7085 if (!ORIG_PAT (next))
7086 /* If we gonna to overwrite the original pattern of insn,
7087 save it. */
7088 ORIG_PAT (next) = PATTERN (next);
7090 res = haifa_change_pattern (next, new_pat);
7091 gcc_assert (res);
7092 break;
7094 default:
7095 gcc_unreachable ();
7099 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7100 either correct (new_ts & SPECULATIVE),
7101 or we simply don't care (new_ts & HARD_DEP). */
7103 gcc_assert (!ORIG_PAT (next)
7104 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7106 TODO_SPEC (next) = new_ts;
7108 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7110 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7111 control-speculative NEXT could have been discarded by sched-rgn.c
7112 (the same case as when discarded by can_schedule_ready_p ()). */
7113 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7115 change_queue_index (next, QUEUE_NOWHERE);
7117 return -1;
7119 else if (!(new_ts & BEGIN_SPEC)
7120 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7121 && !IS_SPECULATION_CHECK_P (next))
7122 /* We should change pattern of every previously speculative
7123 instruction - and we determine if NEXT was speculative by using
7124 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7125 pat too, so skip them. */
7127 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7128 gcc_assert (success);
7129 ORIG_PAT (next) = 0;
7132 if (sched_verbose >= 2)
7134 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7135 (*current_sched_info->print_insn) (next, 0));
7137 if (spec_info && spec_info->dump)
7139 if (new_ts & BEGIN_DATA)
7140 fprintf (spec_info->dump, "; data-spec;");
7141 if (new_ts & BEGIN_CONTROL)
7142 fprintf (spec_info->dump, "; control-spec;");
7143 if (new_ts & BE_IN_CONTROL)
7144 fprintf (spec_info->dump, "; in-control-spec;");
7146 if (TODO_SPEC (next) & DEP_CONTROL)
7147 fprintf (sched_dump, " predicated");
7148 fprintf (sched_dump, "\n");
7151 adjust_priority (next);
7153 return fix_tick_ready (next);
7156 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7157 static int
7158 fix_tick_ready (rtx next)
7160 int tick, delay;
7162 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7164 int full_p;
7165 sd_iterator_def sd_it;
7166 dep_t dep;
7168 tick = INSN_TICK (next);
7169 /* if tick is not equal to INVALID_TICK, then update
7170 INSN_TICK of NEXT with the most recent resolved dependence
7171 cost. Otherwise, recalculate from scratch. */
7172 full_p = (tick == INVALID_TICK);
7174 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7176 rtx pro = DEP_PRO (dep);
7177 int tick1;
7179 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7181 tick1 = INSN_TICK (pro) + dep_cost (dep);
7182 if (tick1 > tick)
7183 tick = tick1;
7185 if (!full_p)
7186 break;
7189 else
7190 tick = -1;
7192 INSN_TICK (next) = tick;
7194 delay = tick - clock_var;
7195 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE)
7196 delay = QUEUE_READY;
7198 change_queue_index (next, delay);
7200 return delay;
7203 /* Move NEXT to the proper queue list with (DELAY >= 1),
7204 or add it to the ready list (DELAY == QUEUE_READY),
7205 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7206 static void
7207 change_queue_index (rtx next, int delay)
7209 int i = QUEUE_INDEX (next);
7211 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7212 && delay != 0);
7213 gcc_assert (i != QUEUE_SCHEDULED);
7215 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7216 || (delay < 0 && delay == i))
7217 /* We have nothing to do. */
7218 return;
7220 /* Remove NEXT from wherever it is now. */
7221 if (i == QUEUE_READY)
7222 ready_remove_insn (next);
7223 else if (i >= 0)
7224 queue_remove (next);
7226 /* Add it to the proper place. */
7227 if (delay == QUEUE_READY)
7228 ready_add (readyp, next, false);
7229 else if (delay >= 1)
7230 queue_insn (next, delay, "change queue index");
7232 if (sched_verbose >= 2)
7234 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7235 (*current_sched_info->print_insn) (next, 0));
7237 if (delay == QUEUE_READY)
7238 fprintf (sched_dump, " into ready\n");
7239 else if (delay >= 1)
7240 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7241 else
7242 fprintf (sched_dump, " removed from ready or queue lists\n");
7246 static int sched_ready_n_insns = -1;
7248 /* Initialize per region data structures. */
7249 void
7250 sched_extend_ready_list (int new_sched_ready_n_insns)
7252 int i;
7254 if (sched_ready_n_insns == -1)
7255 /* At the first call we need to initialize one more choice_stack
7256 entry. */
7258 i = 0;
7259 sched_ready_n_insns = 0;
7260 scheduled_insns.reserve (new_sched_ready_n_insns);
7262 else
7263 i = sched_ready_n_insns + 1;
7265 ready.veclen = new_sched_ready_n_insns + issue_rate;
7266 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
7268 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7270 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7271 sched_ready_n_insns,
7272 sizeof (*ready_try));
7274 /* We allocate +1 element to save initial state in the choice_stack[0]
7275 entry. */
7276 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7277 new_sched_ready_n_insns + 1);
7279 for (; i <= new_sched_ready_n_insns; i++)
7281 choice_stack[i].state = xmalloc (dfa_state_size);
7283 if (targetm.sched.first_cycle_multipass_init)
7284 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7285 .target_data));
7288 sched_ready_n_insns = new_sched_ready_n_insns;
7291 /* Free per region data structures. */
7292 void
7293 sched_finish_ready_list (void)
7295 int i;
7297 free (ready.vec);
7298 ready.vec = NULL;
7299 ready.veclen = 0;
7301 free (ready_try);
7302 ready_try = NULL;
7304 for (i = 0; i <= sched_ready_n_insns; i++)
7306 if (targetm.sched.first_cycle_multipass_fini)
7307 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7308 .target_data));
7310 free (choice_stack [i].state);
7312 free (choice_stack);
7313 choice_stack = NULL;
7315 sched_ready_n_insns = -1;
7318 static int
7319 haifa_luid_for_non_insn (rtx x)
7321 gcc_assert (NOTE_P (x) || LABEL_P (x));
7323 return 0;
7326 /* Generates recovery code for INSN. */
7327 static void
7328 generate_recovery_code (rtx insn)
7330 if (TODO_SPEC (insn) & BEGIN_SPEC)
7331 begin_speculative_block (insn);
7333 /* Here we have insn with no dependencies to
7334 instructions other then CHECK_SPEC ones. */
7336 if (TODO_SPEC (insn) & BE_IN_SPEC)
7337 add_to_speculative_block (insn);
7340 /* Helper function.
7341 Tries to add speculative dependencies of type FS between instructions
7342 in deps_list L and TWIN. */
7343 static void
7344 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
7346 sd_iterator_def sd_it;
7347 dep_t dep;
7349 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7351 ds_t ds;
7352 rtx consumer;
7354 consumer = DEP_CON (dep);
7356 ds = DEP_STATUS (dep);
7358 if (/* If we want to create speculative dep. */
7360 /* And we can do that because this is a true dep. */
7361 && (ds & DEP_TYPES) == DEP_TRUE)
7363 gcc_assert (!(ds & BE_IN_SPEC));
7365 if (/* If this dep can be overcome with 'begin speculation'. */
7366 ds & BEGIN_SPEC)
7367 /* Then we have a choice: keep the dep 'begin speculative'
7368 or transform it into 'be in speculative'. */
7370 if (/* In try_ready we assert that if insn once became ready
7371 it can be removed from the ready (or queue) list only
7372 due to backend decision. Hence we can't let the
7373 probability of the speculative dep to decrease. */
7374 ds_weak (ds) <= ds_weak (fs))
7376 ds_t new_ds;
7378 new_ds = (ds & ~BEGIN_SPEC) | fs;
7380 if (/* consumer can 'be in speculative'. */
7381 sched_insn_is_legitimate_for_speculation_p (consumer,
7382 new_ds))
7383 /* Transform it to be in speculative. */
7384 ds = new_ds;
7387 else
7388 /* Mark the dep as 'be in speculative'. */
7389 ds |= fs;
7393 dep_def _new_dep, *new_dep = &_new_dep;
7395 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7396 sd_add_dep (new_dep, false);
7401 /* Generates recovery code for BEGIN speculative INSN. */
7402 static void
7403 begin_speculative_block (rtx insn)
7405 if (TODO_SPEC (insn) & BEGIN_DATA)
7406 nr_begin_data++;
7407 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7408 nr_begin_control++;
7410 create_check_block_twin (insn, false);
7412 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7415 static void haifa_init_insn (rtx);
7417 /* Generates recovery code for BE_IN speculative INSN. */
7418 static void
7419 add_to_speculative_block (rtx insn)
7421 ds_t ts;
7422 sd_iterator_def sd_it;
7423 dep_t dep;
7424 rtx twins = NULL;
7425 rtx_vec_t priorities_roots;
7427 ts = TODO_SPEC (insn);
7428 gcc_assert (!(ts & ~BE_IN_SPEC));
7430 if (ts & BE_IN_DATA)
7431 nr_be_in_data++;
7432 if (ts & BE_IN_CONTROL)
7433 nr_be_in_control++;
7435 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7436 gcc_assert (!TODO_SPEC (insn));
7438 DONE_SPEC (insn) |= ts;
7440 /* First we convert all simple checks to branchy. */
7441 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7442 sd_iterator_cond (&sd_it, &dep);)
7444 rtx check = DEP_PRO (dep);
7446 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7448 create_check_block_twin (check, true);
7450 /* Restart search. */
7451 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7453 else
7454 /* Continue search. */
7455 sd_iterator_next (&sd_it);
7458 priorities_roots.create (0);
7459 clear_priorities (insn, &priorities_roots);
7461 while (1)
7463 rtx check, twin;
7464 basic_block rec;
7466 /* Get the first backward dependency of INSN. */
7467 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7468 if (!sd_iterator_cond (&sd_it, &dep))
7469 /* INSN has no backward dependencies left. */
7470 break;
7472 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7473 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7474 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7476 check = DEP_PRO (dep);
7478 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7479 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7481 rec = BLOCK_FOR_INSN (check);
7483 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7484 haifa_init_insn (twin);
7486 sd_copy_back_deps (twin, insn, true);
7488 if (sched_verbose && spec_info->dump)
7489 /* INSN_BB (insn) isn't determined for twin insns yet.
7490 So we can't use current_sched_info->print_insn. */
7491 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7492 INSN_UID (twin), rec->index);
7494 twins = alloc_INSN_LIST (twin, twins);
7496 /* Add dependences between TWIN and all appropriate
7497 instructions from REC. */
7498 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7500 rtx pro = DEP_PRO (dep);
7502 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7504 /* INSN might have dependencies from the instructions from
7505 several recovery blocks. At this iteration we process those
7506 producers that reside in REC. */
7507 if (BLOCK_FOR_INSN (pro) == rec)
7509 dep_def _new_dep, *new_dep = &_new_dep;
7511 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7512 sd_add_dep (new_dep, false);
7516 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7518 /* Remove all dependencies between INSN and insns in REC. */
7519 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7520 sd_iterator_cond (&sd_it, &dep);)
7522 rtx pro = DEP_PRO (dep);
7524 if (BLOCK_FOR_INSN (pro) == rec)
7525 sd_delete_dep (sd_it);
7526 else
7527 sd_iterator_next (&sd_it);
7531 /* We couldn't have added the dependencies between INSN and TWINS earlier
7532 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7533 while (twins)
7535 rtx twin;
7537 twin = XEXP (twins, 0);
7540 dep_def _new_dep, *new_dep = &_new_dep;
7542 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7543 sd_add_dep (new_dep, false);
7546 twin = XEXP (twins, 1);
7547 free_INSN_LIST_node (twins);
7548 twins = twin;
7551 calc_priorities (priorities_roots);
7552 priorities_roots.release ();
7555 /* Extends and fills with zeros (only the new part) array pointed to by P. */
7556 void *
7557 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
7559 gcc_assert (new_nmemb >= old_nmemb);
7560 p = XRESIZEVAR (void, p, new_nmemb * size);
7561 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
7562 return p;
7565 /* Helper function.
7566 Find fallthru edge from PRED. */
7567 edge
7568 find_fallthru_edge_from (basic_block pred)
7570 edge e;
7571 basic_block succ;
7573 succ = pred->next_bb;
7574 gcc_assert (succ->prev_bb == pred);
7576 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
7578 e = find_fallthru_edge (pred->succs);
7580 if (e)
7582 gcc_assert (e->dest == succ);
7583 return e;
7586 else
7588 e = find_fallthru_edge (succ->preds);
7590 if (e)
7592 gcc_assert (e->src == pred);
7593 return e;
7597 return NULL;
7600 /* Extend per basic block data structures. */
7601 static void
7602 sched_extend_bb (void)
7604 /* The following is done to keep current_sched_info->next_tail non null. */
7605 rtx end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
7606 rtx insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
7607 if (NEXT_INSN (end) == 0
7608 || (!NOTE_P (insn)
7609 && !LABEL_P (insn)
7610 /* Don't emit a NOTE if it would end up before a BARRIER. */
7611 && !BARRIER_P (NEXT_INSN (end))))
7613 rtx note = emit_note_after (NOTE_INSN_DELETED, end);
7614 /* Make note appear outside BB. */
7615 set_block_for_insn (note, NULL);
7616 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
7620 /* Init per basic block data structures. */
7621 void
7622 sched_init_bbs (void)
7624 sched_extend_bb ();
7627 /* Initialize BEFORE_RECOVERY variable. */
7628 static void
7629 init_before_recovery (basic_block *before_recovery_ptr)
7631 basic_block last;
7632 edge e;
7634 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7635 e = find_fallthru_edge_from (last);
7637 if (e)
7639 /* We create two basic blocks:
7640 1. Single instruction block is inserted right after E->SRC
7641 and has jump to
7642 2. Empty block right before EXIT_BLOCK.
7643 Between these two blocks recovery blocks will be emitted. */
7645 basic_block single, empty;
7646 rtx x, label;
7648 /* If the fallthrough edge to exit we've found is from the block we've
7649 created before, don't do anything more. */
7650 if (last == after_recovery)
7651 return;
7653 adding_bb_to_current_region_p = false;
7655 single = sched_create_empty_bb (last);
7656 empty = sched_create_empty_bb (single);
7658 /* Add new blocks to the root loop. */
7659 if (current_loops != NULL)
7661 add_bb_to_loop (single, (*current_loops->larray)[0]);
7662 add_bb_to_loop (empty, (*current_loops->larray)[0]);
7665 single->count = last->count;
7666 empty->count = last->count;
7667 single->frequency = last->frequency;
7668 empty->frequency = last->frequency;
7669 BB_COPY_PARTITION (single, last);
7670 BB_COPY_PARTITION (empty, last);
7672 redirect_edge_succ (e, single);
7673 make_single_succ_edge (single, empty, 0);
7674 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
7675 EDGE_FALLTHRU);
7677 label = block_label (empty);
7678 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
7679 JUMP_LABEL (x) = label;
7680 LABEL_NUSES (label)++;
7681 haifa_init_insn (x);
7683 emit_barrier_after (x);
7685 sched_init_only_bb (empty, NULL);
7686 sched_init_only_bb (single, NULL);
7687 sched_extend_bb ();
7689 adding_bb_to_current_region_p = true;
7690 before_recovery = single;
7691 after_recovery = empty;
7693 if (before_recovery_ptr)
7694 *before_recovery_ptr = before_recovery;
7696 if (sched_verbose >= 2 && spec_info->dump)
7697 fprintf (spec_info->dump,
7698 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
7699 last->index, single->index, empty->index);
7701 else
7702 before_recovery = last;
7705 /* Returns new recovery block. */
7706 basic_block
7707 sched_create_recovery_block (basic_block *before_recovery_ptr)
7709 rtx label;
7710 rtx barrier;
7711 basic_block rec;
7713 haifa_recovery_bb_recently_added_p = true;
7714 haifa_recovery_bb_ever_added_p = true;
7716 init_before_recovery (before_recovery_ptr);
7718 barrier = get_last_bb_insn (before_recovery);
7719 gcc_assert (BARRIER_P (barrier));
7721 label = emit_label_after (gen_label_rtx (), barrier);
7723 rec = create_basic_block (label, label, before_recovery);
7725 /* A recovery block always ends with an unconditional jump. */
7726 emit_barrier_after (BB_END (rec));
7728 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
7729 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
7731 if (sched_verbose && spec_info->dump)
7732 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
7733 rec->index);
7735 return rec;
7738 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
7739 and emit necessary jumps. */
7740 void
7741 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
7742 basic_block second_bb)
7744 rtx label;
7745 rtx jump;
7746 int edge_flags;
7748 /* This is fixing of incoming edge. */
7749 /* ??? Which other flags should be specified? */
7750 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
7751 /* Partition type is the same, if it is "unpartitioned". */
7752 edge_flags = EDGE_CROSSING;
7753 else
7754 edge_flags = 0;
7756 make_edge (first_bb, rec, edge_flags);
7757 label = block_label (second_bb);
7758 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
7759 JUMP_LABEL (jump) = label;
7760 LABEL_NUSES (label)++;
7762 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
7763 /* Partition type is the same, if it is "unpartitioned". */
7765 /* Rewritten from cfgrtl.c. */
7766 if (flag_reorder_blocks_and_partition
7767 && targetm_common.have_named_sections)
7769 /* We don't need the same note for the check because
7770 any_condjump_p (check) == true. */
7771 CROSSING_JUMP_P (jump) = 1;
7773 edge_flags = EDGE_CROSSING;
7775 else
7776 edge_flags = 0;
7778 make_single_succ_edge (rec, second_bb, edge_flags);
7779 if (dom_info_available_p (CDI_DOMINATORS))
7780 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
7783 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
7784 INSN is a simple check, that should be converted to branchy one. */
7785 static void
7786 create_check_block_twin (rtx insn, bool mutate_p)
7788 basic_block rec;
7789 rtx label, check, twin;
7790 ds_t fs;
7791 sd_iterator_def sd_it;
7792 dep_t dep;
7793 dep_def _new_dep, *new_dep = &_new_dep;
7794 ds_t todo_spec;
7796 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
7798 if (!mutate_p)
7799 todo_spec = TODO_SPEC (insn);
7800 else
7802 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
7803 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
7805 todo_spec = CHECK_SPEC (insn);
7808 todo_spec &= SPECULATIVE;
7810 /* Create recovery block. */
7811 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
7813 rec = sched_create_recovery_block (NULL);
7814 label = BB_HEAD (rec);
7816 else
7818 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
7819 label = NULL_RTX;
7822 /* Emit CHECK. */
7823 check = targetm.sched.gen_spec_check (insn, label, todo_spec);
7825 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7827 /* To have mem_reg alive at the beginning of second_bb,
7828 we emit check BEFORE insn, so insn after splitting
7829 insn will be at the beginning of second_bb, which will
7830 provide us with the correct life information. */
7831 check = emit_jump_insn_before (check, insn);
7832 JUMP_LABEL (check) = label;
7833 LABEL_NUSES (label)++;
7835 else
7836 check = emit_insn_before (check, insn);
7838 /* Extend data structures. */
7839 haifa_init_insn (check);
7841 /* CHECK is being added to current region. Extend ready list. */
7842 gcc_assert (sched_ready_n_insns != -1);
7843 sched_extend_ready_list (sched_ready_n_insns + 1);
7845 if (current_sched_info->add_remove_insn)
7846 current_sched_info->add_remove_insn (insn, 0);
7848 RECOVERY_BLOCK (check) = rec;
7850 if (sched_verbose && spec_info->dump)
7851 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
7852 (*current_sched_info->print_insn) (check, 0));
7854 gcc_assert (ORIG_PAT (insn));
7856 /* Initialize TWIN (twin is a duplicate of original instruction
7857 in the recovery block). */
7858 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7860 sd_iterator_def sd_it;
7861 dep_t dep;
7863 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
7864 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
7866 struct _dep _dep2, *dep2 = &_dep2;
7868 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
7870 sd_add_dep (dep2, true);
7873 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
7874 haifa_init_insn (twin);
7876 if (sched_verbose && spec_info->dump)
7877 /* INSN_BB (insn) isn't determined for twin insns yet.
7878 So we can't use current_sched_info->print_insn. */
7879 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7880 INSN_UID (twin), rec->index);
7882 else
7884 ORIG_PAT (check) = ORIG_PAT (insn);
7885 HAS_INTERNAL_DEP (check) = 1;
7886 twin = check;
7887 /* ??? We probably should change all OUTPUT dependencies to
7888 (TRUE | OUTPUT). */
7891 /* Copy all resolved back dependencies of INSN to TWIN. This will
7892 provide correct value for INSN_TICK (TWIN). */
7893 sd_copy_back_deps (twin, insn, true);
7895 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7896 /* In case of branchy check, fix CFG. */
7898 basic_block first_bb, second_bb;
7899 rtx jump;
7901 first_bb = BLOCK_FOR_INSN (check);
7902 second_bb = sched_split_block (first_bb, check);
7904 sched_create_recovery_edges (first_bb, rec, second_bb);
7906 sched_init_only_bb (second_bb, first_bb);
7907 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
7909 jump = BB_END (rec);
7910 haifa_init_insn (jump);
7913 /* Move backward dependences from INSN to CHECK and
7914 move forward dependences from INSN to TWIN. */
7916 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
7917 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
7919 rtx pro = DEP_PRO (dep);
7920 ds_t ds;
7922 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
7923 check --TRUE--> producer ??? or ANTI ???
7924 twin --TRUE--> producer
7925 twin --ANTI--> check
7927 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
7928 check --ANTI--> producer
7929 twin --ANTI--> producer
7930 twin --ANTI--> check
7932 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
7933 check ~~TRUE~~> producer
7934 twin ~~TRUE~~> producer
7935 twin --ANTI--> check */
7937 ds = DEP_STATUS (dep);
7939 if (ds & BEGIN_SPEC)
7941 gcc_assert (!mutate_p);
7942 ds &= ~BEGIN_SPEC;
7945 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
7946 sd_add_dep (new_dep, false);
7948 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7950 DEP_CON (new_dep) = twin;
7951 sd_add_dep (new_dep, false);
7955 /* Second, remove backward dependencies of INSN. */
7956 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7957 sd_iterator_cond (&sd_it, &dep);)
7959 if ((DEP_STATUS (dep) & BEGIN_SPEC)
7960 || mutate_p)
7961 /* We can delete this dep because we overcome it with
7962 BEGIN_SPECULATION. */
7963 sd_delete_dep (sd_it);
7964 else
7965 sd_iterator_next (&sd_it);
7968 /* Future Speculations. Determine what BE_IN speculations will be like. */
7969 fs = 0;
7971 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
7972 here. */
7974 gcc_assert (!DONE_SPEC (insn));
7976 if (!mutate_p)
7978 ds_t ts = TODO_SPEC (insn);
7980 DONE_SPEC (insn) = ts & BEGIN_SPEC;
7981 CHECK_SPEC (check) = ts & BEGIN_SPEC;
7983 /* Luckiness of future speculations solely depends upon initial
7984 BEGIN speculation. */
7985 if (ts & BEGIN_DATA)
7986 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
7987 if (ts & BEGIN_CONTROL)
7988 fs = set_dep_weak (fs, BE_IN_CONTROL,
7989 get_dep_weak (ts, BEGIN_CONTROL));
7991 else
7992 CHECK_SPEC (check) = CHECK_SPEC (insn);
7994 /* Future speculations: call the helper. */
7995 process_insn_forw_deps_be_in_spec (insn, twin, fs);
7997 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7999 /* Which types of dependencies should we use here is,
8000 generally, machine-dependent question... But, for now,
8001 it is not. */
8003 if (!mutate_p)
8005 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8006 sd_add_dep (new_dep, false);
8008 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8009 sd_add_dep (new_dep, false);
8011 else
8013 if (spec_info->dump)
8014 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8015 (*current_sched_info->print_insn) (insn, 0));
8017 /* Remove all dependencies of the INSN. */
8019 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8020 | SD_LIST_BACK
8021 | SD_LIST_RES_BACK));
8022 while (sd_iterator_cond (&sd_it, &dep))
8023 sd_delete_dep (sd_it);
8026 /* If former check (INSN) already was moved to the ready (or queue)
8027 list, add new check (CHECK) there too. */
8028 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8029 try_ready (check);
8031 /* Remove old check from instruction stream and free its
8032 data. */
8033 sched_remove_insn (insn);
8036 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8037 sd_add_dep (new_dep, false);
8039 else
8041 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8042 sd_add_dep (new_dep, false);
8045 if (!mutate_p)
8046 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8047 because it'll be done later in add_to_speculative_block. */
8049 rtx_vec_t priorities_roots = rtx_vec_t ();
8051 clear_priorities (twin, &priorities_roots);
8052 calc_priorities (priorities_roots);
8053 priorities_roots.release ();
8057 /* Removes dependency between instructions in the recovery block REC
8058 and usual region instructions. It keeps inner dependences so it
8059 won't be necessary to recompute them. */
8060 static void
8061 fix_recovery_deps (basic_block rec)
8063 rtx note, insn, jump, ready_list = 0;
8064 bitmap_head in_ready;
8065 rtx link;
8067 bitmap_initialize (&in_ready, 0);
8069 /* NOTE - a basic block note. */
8070 note = NEXT_INSN (BB_HEAD (rec));
8071 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8072 insn = BB_END (rec);
8073 gcc_assert (JUMP_P (insn));
8074 insn = PREV_INSN (insn);
8078 sd_iterator_def sd_it;
8079 dep_t dep;
8081 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8082 sd_iterator_cond (&sd_it, &dep);)
8084 rtx consumer = DEP_CON (dep);
8086 if (BLOCK_FOR_INSN (consumer) != rec)
8088 sd_delete_dep (sd_it);
8090 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8091 ready_list = alloc_INSN_LIST (consumer, ready_list);
8093 else
8095 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8097 sd_iterator_next (&sd_it);
8101 insn = PREV_INSN (insn);
8103 while (insn != note);
8105 bitmap_clear (&in_ready);
8107 /* Try to add instructions to the ready or queue list. */
8108 for (link = ready_list; link; link = XEXP (link, 1))
8109 try_ready (XEXP (link, 0));
8110 free_INSN_LIST_list (&ready_list);
8112 /* Fixing jump's dependences. */
8113 insn = BB_HEAD (rec);
8114 jump = BB_END (rec);
8116 gcc_assert (LABEL_P (insn));
8117 insn = NEXT_INSN (insn);
8119 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8120 add_jump_dependencies (insn, jump);
8123 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8124 instruction data. */
8125 static bool
8126 haifa_change_pattern (rtx insn, rtx new_pat)
8128 int t;
8130 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8131 if (!t)
8132 return false;
8134 update_insn_after_change (insn);
8135 return true;
8138 /* -1 - can't speculate,
8139 0 - for speculation with REQUEST mode it is OK to use
8140 current instruction pattern,
8141 1 - need to change pattern for *NEW_PAT to be speculative. */
8143 sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
8145 gcc_assert (current_sched_info->flags & DO_SPECULATION
8146 && (request & SPECULATIVE)
8147 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8149 if ((request & spec_info->mask) != request)
8150 return -1;
8152 if (request & BE_IN_SPEC
8153 && !(request & BEGIN_SPEC))
8154 return 0;
8156 return targetm.sched.speculate_insn (insn, request, new_pat);
8159 static int
8160 haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
8162 gcc_assert (sched_deps_info->generate_spec_deps
8163 && !IS_SPECULATION_CHECK_P (insn));
8165 if (HAS_INTERNAL_DEP (insn)
8166 || SCHED_GROUP_P (insn))
8167 return -1;
8169 return sched_speculate_insn (insn, request, new_pat);
8172 /* Print some information about block BB, which starts with HEAD and
8173 ends with TAIL, before scheduling it.
8174 I is zero, if scheduler is about to start with the fresh ebb. */
8175 static void
8176 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
8178 if (!i)
8179 fprintf (sched_dump,
8180 ";; ======================================================\n");
8181 else
8182 fprintf (sched_dump,
8183 ";; =====================ADVANCING TO=====================\n");
8184 fprintf (sched_dump,
8185 ";; -- basic block %d from %d to %d -- %s reload\n",
8186 bb->index, INSN_UID (head), INSN_UID (tail),
8187 (reload_completed ? "after" : "before"));
8188 fprintf (sched_dump,
8189 ";; ======================================================\n");
8190 fprintf (sched_dump, "\n");
8193 /* Unlink basic block notes and labels and saves them, so they
8194 can be easily restored. We unlink basic block notes in EBB to
8195 provide back-compatibility with the previous code, as target backends
8196 assume, that there'll be only instructions between
8197 current_sched_info->{head and tail}. We restore these notes as soon
8198 as we can.
8199 FIRST (LAST) is the first (last) basic block in the ebb.
8200 NB: In usual case (FIRST == LAST) nothing is really done. */
8201 void
8202 unlink_bb_notes (basic_block first, basic_block last)
8204 /* We DON'T unlink basic block notes of the first block in the ebb. */
8205 if (first == last)
8206 return;
8208 bb_header = XNEWVEC (rtx, last_basic_block_for_fn (cfun));
8210 /* Make a sentinel. */
8211 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8212 bb_header[last->next_bb->index] = 0;
8214 first = first->next_bb;
8217 rtx prev, label, note, next;
8219 label = BB_HEAD (last);
8220 if (LABEL_P (label))
8221 note = NEXT_INSN (label);
8222 else
8223 note = label;
8224 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8226 prev = PREV_INSN (label);
8227 next = NEXT_INSN (note);
8228 gcc_assert (prev && next);
8230 NEXT_INSN (prev) = next;
8231 PREV_INSN (next) = prev;
8233 bb_header[last->index] = label;
8235 if (last == first)
8236 break;
8238 last = last->prev_bb;
8240 while (1);
8243 /* Restore basic block notes.
8244 FIRST is the first basic block in the ebb. */
8245 static void
8246 restore_bb_notes (basic_block first)
8248 if (!bb_header)
8249 return;
8251 /* We DON'T unlink basic block notes of the first block in the ebb. */
8252 first = first->next_bb;
8253 /* Remember: FIRST is actually a second basic block in the ebb. */
8255 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8256 && bb_header[first->index])
8258 rtx prev, label, note, next;
8260 label = bb_header[first->index];
8261 prev = PREV_INSN (label);
8262 next = NEXT_INSN (prev);
8264 if (LABEL_P (label))
8265 note = NEXT_INSN (label);
8266 else
8267 note = label;
8268 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8270 bb_header[first->index] = 0;
8272 NEXT_INSN (prev) = label;
8273 NEXT_INSN (note) = next;
8274 PREV_INSN (next) = note;
8276 first = first->next_bb;
8279 free (bb_header);
8280 bb_header = 0;
8283 /* Helper function.
8284 Fix CFG after both in- and inter-block movement of
8285 control_flow_insn_p JUMP. */
8286 static void
8287 fix_jump_move (rtx jump)
8289 basic_block bb, jump_bb, jump_bb_next;
8291 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8292 jump_bb = BLOCK_FOR_INSN (jump);
8293 jump_bb_next = jump_bb->next_bb;
8295 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8296 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8298 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8299 /* if jump_bb_next is not empty. */
8300 BB_END (jump_bb) = BB_END (jump_bb_next);
8302 if (BB_END (bb) != PREV_INSN (jump))
8303 /* Then there are instruction after jump that should be placed
8304 to jump_bb_next. */
8305 BB_END (jump_bb_next) = BB_END (bb);
8306 else
8307 /* Otherwise jump_bb_next is empty. */
8308 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8310 /* To make assertion in move_insn happy. */
8311 BB_END (bb) = PREV_INSN (jump);
8313 update_bb_for_insn (jump_bb_next);
8316 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8317 static void
8318 move_block_after_check (rtx jump)
8320 basic_block bb, jump_bb, jump_bb_next;
8321 vec<edge, va_gc> *t;
8323 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8324 jump_bb = BLOCK_FOR_INSN (jump);
8325 jump_bb_next = jump_bb->next_bb;
8327 update_bb_for_insn (jump_bb);
8329 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8330 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8332 unlink_block (jump_bb_next);
8333 link_block (jump_bb_next, bb);
8335 t = bb->succs;
8336 bb->succs = 0;
8337 move_succs (&(jump_bb->succs), bb);
8338 move_succs (&(jump_bb_next->succs), jump_bb);
8339 move_succs (&t, jump_bb_next);
8341 df_mark_solutions_dirty ();
8343 common_sched_info->fix_recovery_cfg
8344 (bb->index, jump_bb->index, jump_bb_next->index);
8347 /* Helper function for move_block_after_check.
8348 This functions attaches edge vector pointed to by SUCCSP to
8349 block TO. */
8350 static void
8351 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8353 edge e;
8354 edge_iterator ei;
8356 gcc_assert (to->succs == 0);
8358 to->succs = *succsp;
8360 FOR_EACH_EDGE (e, ei, to->succs)
8361 e->src = to;
8363 *succsp = 0;
8366 /* Remove INSN from the instruction stream.
8367 INSN should have any dependencies. */
8368 static void
8369 sched_remove_insn (rtx insn)
8371 sd_finish_insn (insn);
8373 change_queue_index (insn, QUEUE_NOWHERE);
8374 current_sched_info->add_remove_insn (insn, 1);
8375 delete_insn (insn);
8378 /* Clear priorities of all instructions, that are forward dependent on INSN.
8379 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8380 be invoked to initialize all cleared priorities. */
8381 static void
8382 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
8384 sd_iterator_def sd_it;
8385 dep_t dep;
8386 bool insn_is_root_p = true;
8388 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8390 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8392 rtx pro = DEP_PRO (dep);
8394 if (INSN_PRIORITY_STATUS (pro) >= 0
8395 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8397 /* If DEP doesn't contribute to priority then INSN itself should
8398 be added to priority roots. */
8399 if (contributes_to_priority_p (dep))
8400 insn_is_root_p = false;
8402 INSN_PRIORITY_STATUS (pro) = -1;
8403 clear_priorities (pro, roots_ptr);
8407 if (insn_is_root_p)
8408 roots_ptr->safe_push (insn);
8411 /* Recompute priorities of instructions, whose priorities might have been
8412 changed. ROOTS is a vector of instructions whose priority computation will
8413 trigger initialization of all cleared priorities. */
8414 static void
8415 calc_priorities (rtx_vec_t roots)
8417 int i;
8418 rtx insn;
8420 FOR_EACH_VEC_ELT (roots, i, insn)
8421 priority (insn);
8425 /* Add dependences between JUMP and other instructions in the recovery
8426 block. INSN is the first insn the recovery block. */
8427 static void
8428 add_jump_dependencies (rtx insn, rtx jump)
8432 insn = NEXT_INSN (insn);
8433 if (insn == jump)
8434 break;
8436 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8438 dep_def _new_dep, *new_dep = &_new_dep;
8440 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8441 sd_add_dep (new_dep, false);
8444 while (1);
8446 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8449 /* Extend data structures for logical insn UID. */
8450 void
8451 sched_extend_luids (void)
8453 int new_luids_max_uid = get_max_uid () + 1;
8455 sched_luids.safe_grow_cleared (new_luids_max_uid);
8458 /* Initialize LUID for INSN. */
8459 void
8460 sched_init_insn_luid (rtx insn)
8462 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8463 int luid;
8465 if (i >= 0)
8467 luid = sched_max_luid;
8468 sched_max_luid += i;
8470 else
8471 luid = -1;
8473 SET_INSN_LUID (insn, luid);
8476 /* Initialize luids for BBS.
8477 The hook common_sched_info->luid_for_non_insn () is used to determine
8478 if notes, labels, etc. need luids. */
8479 void
8480 sched_init_luids (bb_vec_t bbs)
8482 int i;
8483 basic_block bb;
8485 sched_extend_luids ();
8486 FOR_EACH_VEC_ELT (bbs, i, bb)
8488 rtx insn;
8490 FOR_BB_INSNS (bb, insn)
8491 sched_init_insn_luid (insn);
8495 /* Free LUIDs. */
8496 void
8497 sched_finish_luids (void)
8499 sched_luids.release ();
8500 sched_max_luid = 1;
8503 /* Return logical uid of INSN. Helpful while debugging. */
8505 insn_luid (rtx insn)
8507 return INSN_LUID (insn);
8510 /* Extend per insn data in the target. */
8511 void
8512 sched_extend_target (void)
8514 if (targetm.sched.h_i_d_extended)
8515 targetm.sched.h_i_d_extended ();
8518 /* Extend global scheduler structures (those, that live across calls to
8519 schedule_block) to include information about just emitted INSN. */
8520 static void
8521 extend_h_i_d (void)
8523 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8524 if (reserve > 0
8525 && ! h_i_d.space (reserve))
8527 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8528 sched_extend_target ();
8532 /* Initialize h_i_d entry of the INSN with default values.
8533 Values, that are not explicitly initialized here, hold zero. */
8534 static void
8535 init_h_i_d (rtx insn)
8537 if (INSN_LUID (insn) > 0)
8539 INSN_COST (insn) = -1;
8540 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8541 INSN_TICK (insn) = INVALID_TICK;
8542 INSN_EXACT_TICK (insn) = INVALID_TICK;
8543 INTER_TICK (insn) = INVALID_TICK;
8544 TODO_SPEC (insn) = HARD_DEP;
8548 /* Initialize haifa_insn_data for BBS. */
8549 void
8550 haifa_init_h_i_d (bb_vec_t bbs)
8552 int i;
8553 basic_block bb;
8555 extend_h_i_d ();
8556 FOR_EACH_VEC_ELT (bbs, i, bb)
8558 rtx insn;
8560 FOR_BB_INSNS (bb, insn)
8561 init_h_i_d (insn);
8565 /* Finalize haifa_insn_data. */
8566 void
8567 haifa_finish_h_i_d (void)
8569 int i;
8570 haifa_insn_data_t data;
8571 struct reg_use_data *use, *next;
8573 FOR_EACH_VEC_ELT (h_i_d, i, data)
8575 free (data->max_reg_pressure);
8576 free (data->reg_pressure);
8577 for (use = data->reg_use_list; use != NULL; use = next)
8579 next = use->next_insn_use;
8580 free (use);
8583 h_i_d.release ();
8586 /* Init data for the new insn INSN. */
8587 static void
8588 haifa_init_insn (rtx insn)
8590 gcc_assert (insn != NULL);
8592 sched_extend_luids ();
8593 sched_init_insn_luid (insn);
8594 sched_extend_target ();
8595 sched_deps_init (false);
8596 extend_h_i_d ();
8597 init_h_i_d (insn);
8599 if (adding_bb_to_current_region_p)
8601 sd_init_insn (insn);
8603 /* Extend dependency caches by one element. */
8604 extend_dependency_caches (1, false);
8606 if (sched_pressure != SCHED_PRESSURE_NONE)
8607 init_insn_reg_pressure_info (insn);
8610 /* Init data for the new basic block BB which comes after AFTER. */
8611 static void
8612 haifa_init_only_bb (basic_block bb, basic_block after)
8614 gcc_assert (bb != NULL);
8616 sched_init_bbs ();
8618 if (common_sched_info->add_block)
8619 /* This changes only data structures of the front-end. */
8620 common_sched_info->add_block (bb, after);
8623 /* A generic version of sched_split_block (). */
8624 basic_block
8625 sched_split_block_1 (basic_block first_bb, rtx after)
8627 edge e;
8629 e = split_block (first_bb, after);
8630 gcc_assert (e->src == first_bb);
8632 /* sched_split_block emits note if *check == BB_END. Probably it
8633 is better to rip that note off. */
8635 return e->dest;
8638 /* A generic version of sched_create_empty_bb (). */
8639 basic_block
8640 sched_create_empty_bb_1 (basic_block after)
8642 return create_empty_bb (after);
8645 /* Insert PAT as an INSN into the schedule and update the necessary data
8646 structures to account for it. */
8648 sched_emit_insn (rtx pat)
8650 rtx insn = emit_insn_before (pat, first_nonscheduled_insn ());
8651 haifa_init_insn (insn);
8653 if (current_sched_info->add_remove_insn)
8654 current_sched_info->add_remove_insn (insn, 0);
8656 (*current_sched_info->begin_schedule_ready) (insn);
8657 scheduled_insns.safe_push (insn);
8659 last_scheduled_insn = insn;
8660 return insn;
8663 /* This function returns a candidate satisfying dispatch constraints from
8664 the ready list. */
8666 static rtx
8667 ready_remove_first_dispatch (struct ready_list *ready)
8669 int i;
8670 rtx insn = ready_element (ready, 0);
8672 if (ready->n_ready == 1
8673 || !INSN_P (insn)
8674 || INSN_CODE (insn) < 0
8675 || !active_insn_p (insn)
8676 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8677 return ready_remove_first (ready);
8679 for (i = 1; i < ready->n_ready; i++)
8681 insn = ready_element (ready, i);
8683 if (!INSN_P (insn)
8684 || INSN_CODE (insn) < 0
8685 || !active_insn_p (insn))
8686 continue;
8688 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8690 /* Return ith element of ready. */
8691 insn = ready_remove (ready, i);
8692 return insn;
8696 if (targetm.sched.dispatch (NULL_RTX, DISPATCH_VIOLATION))
8697 return ready_remove_first (ready);
8699 for (i = 1; i < ready->n_ready; i++)
8701 insn = ready_element (ready, i);
8703 if (!INSN_P (insn)
8704 || INSN_CODE (insn) < 0
8705 || !active_insn_p (insn))
8706 continue;
8708 /* Return i-th element of ready. */
8709 if (targetm.sched.dispatch (insn, IS_CMP))
8710 return ready_remove (ready, i);
8713 return ready_remove_first (ready);
8716 /* Get number of ready insn in the ready list. */
8719 number_in_ready (void)
8721 return ready.n_ready;
8724 /* Get number of ready's in the ready list. */
8727 get_ready_element (int i)
8729 return ready_element (&ready, i);
8732 #endif /* INSN_SCHEDULING */