Use rtx_insn in more places in sel-sched.c
[official-gcc.git] / gcc / sel-sched.c
blob1bbdd355886a93e74de66f455ff69d1c7ed4dcee
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h"
44 #include "ira.h"
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 #include "sel-sched-dump.h"
49 #include "sel-sched.h"
50 #include "dbgcnt.h"
52 /* Implementation of selective scheduling approach.
53 The below implementation follows the original approach with the following
54 changes:
56 o the scheduler works after register allocation (but can be also tuned
57 to work before RA);
58 o some instructions are not copied or register renamed;
59 o conditional jumps are not moved with code duplication;
60 o several jumps in one parallel group are not supported;
61 o when pipelining outer loops, code motion through inner loops
62 is not supported;
63 o control and data speculation are supported;
64 o some improvements for better compile time/performance were made.
66 Terminology
67 ===========
69 A vinsn, or virtual insn, is an insn with additional data characterizing
70 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
71 Vinsns also act as smart pointers to save memory by reusing them in
72 different expressions. A vinsn is described by vinsn_t type.
74 An expression is a vinsn with additional data characterizing its properties
75 at some point in the control flow graph. The data may be its usefulness,
76 priority, speculative status, whether it was renamed/subsituted, etc.
77 An expression is described by expr_t type.
79 Availability set (av_set) is a set of expressions at a given control flow
80 point. It is represented as av_set_t. The expressions in av sets are kept
81 sorted in the terms of expr_greater_p function. It allows to truncate
82 the set while leaving the best expressions.
84 A fence is a point through which code motion is prohibited. On each step,
85 we gather a parallel group of insns at a fence. It is possible to have
86 multiple fences. A fence is represented via fence_t.
88 A boundary is the border between the fence group and the rest of the code.
89 Currently, we never have more than one boundary per fence, as we finalize
90 the fence group when a jump is scheduled. A boundary is represented
91 via bnd_t.
93 High-level overview
94 ===================
96 The scheduler finds regions to schedule, schedules each one, and finalizes.
97 The regions are formed starting from innermost loops, so that when the inner
98 loop is pipelined, its prologue can be scheduled together with yet unprocessed
99 outer loop. The rest of acyclic regions are found using extend_rgns:
100 the blocks that are not yet allocated to any regions are traversed in top-down
101 order, and a block is added to a region to which all its predecessors belong;
102 otherwise, the block starts its own region.
104 The main scheduling loop (sel_sched_region_2) consists of just
105 scheduling on each fence and updating fences. For each fence,
106 we fill a parallel group of insns (fill_insns) until some insns can be added.
107 First, we compute available exprs (av-set) at the boundary of the current
108 group. Second, we choose the best expression from it. If the stall is
109 required to schedule any of the expressions, we advance the current cycle
110 appropriately. So, the final group does not exactly correspond to a VLIW
111 word. Third, we move the chosen expression to the boundary (move_op)
112 and update the intermediate av sets and liveness sets. We quit fill_insns
113 when either no insns left for scheduling or we have scheduled enough insns
114 so we feel like advancing a scheduling point.
116 Computing available expressions
117 ===============================
119 The computation (compute_av_set) is a bottom-up traversal. At each insn,
120 we're moving the union of its successors' sets through it via
121 moveup_expr_set. The dependent expressions are removed. Local
122 transformations (substitution, speculation) are applied to move more
123 exprs. Then the expr corresponding to the current insn is added.
124 The result is saved on each basic block header.
126 When traversing the CFG, we're moving down for no more than max_ws insns.
127 Also, we do not move down to ineligible successors (is_ineligible_successor),
128 which include moving along a back-edge, moving to already scheduled code,
129 and moving to another fence. The first two restrictions are lifted during
130 pipelining, which allows us to move insns along a back-edge. We always have
131 an acyclic region for scheduling because we forbid motion through fences.
133 Choosing the best expression
134 ============================
136 We sort the final availability set via sel_rank_for_schedule, then we remove
137 expressions which are not yet ready (tick_check_p) or which dest registers
138 cannot be used. For some of them, we choose another register via
139 find_best_reg. To do this, we run find_used_regs to calculate the set of
140 registers which cannot be used. The find_used_regs function performs
141 a traversal of code motion paths for an expr. We consider for renaming
142 only registers which are from the same regclass as the original one and
143 using which does not interfere with any live ranges. Finally, we convert
144 the resulting set to the ready list format and use max_issue and reorder*
145 hooks similarly to the Haifa scheduler.
147 Scheduling the best expression
148 ==============================
150 We run the move_op routine to perform the same type of code motion paths
151 traversal as in find_used_regs. (These are working via the same driver,
152 code_motion_path_driver.) When moving down the CFG, we look for original
153 instruction that gave birth to a chosen expression. We undo
154 the transformations performed on an expression via the history saved in it.
155 When found, we remove the instruction or leave a reg-reg copy/speculation
156 check if needed. On a way up, we insert bookkeeping copies at each join
157 point. If a copy is not needed, it will be removed later during this
158 traversal. We update the saved av sets and liveness sets on the way up, too.
160 Finalizing the schedule
161 =======================
163 When pipelining, we reschedule the blocks from which insns were pipelined
164 to get a tighter schedule. On Itanium, we also perform bundling via
165 the same routine from ia64.c.
167 Dependence analysis changes
168 ===========================
170 We augmented the sched-deps.c with hooks that get called when a particular
171 dependence is found in a particular part of an insn. Using these hooks, we
172 can do several actions such as: determine whether an insn can be moved through
173 another (has_dependence_p, moveup_expr); find out whether an insn can be
174 scheduled on the current cycle (tick_check_p); find out registers that
175 are set/used/clobbered by an insn and find out all the strange stuff that
176 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
177 init_global_and_expr_for_insn).
179 Initialization changes
180 ======================
182 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
183 reused in all of the schedulers. We have split up the initialization of data
184 of such parts into different functions prefixed with scheduler type and
185 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
186 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
187 The same splitting is done with current_sched_info structure:
188 dependence-related parts are in sched_deps_info, common part is in
189 common_sched_info, and haifa/sel/etc part is in current_sched_info.
191 Target contexts
192 ===============
194 As we now have multiple-point scheduling, this would not work with backends
195 which save some of the scheduler state to use it in the target hooks.
196 For this purpose, we introduce a concept of target contexts, which
197 encapsulate such information. The backend should implement simple routines
198 of allocating/freeing/setting such a context. The scheduler calls these
199 as target hooks and handles the target context as an opaque pointer (similar
200 to the DFA state type, state_t).
202 Various speedups
203 ================
205 As the correct data dependence graph is not supported during scheduling (which
206 is to be changed in mid-term), we cache as much of the dependence analysis
207 results as possible to avoid reanalyzing. This includes: bitmap caches on
208 each insn in stream of the region saying yes/no for a query with a pair of
209 UIDs; hashtables with the previously done transformations on each insn in
210 stream; a vector keeping a history of transformations on each expr.
212 Also, we try to minimize the dependence context used on each fence to check
213 whether the given expression is ready for scheduling by removing from it
214 insns that are definitely completed the execution. The results of
215 tick_check_p checks are also cached in a vector on each fence.
217 We keep a valid liveness set on each insn in a region to avoid the high
218 cost of recomputation on large basic blocks.
220 Finally, we try to minimize the number of needed updates to the availability
221 sets. The updates happen in two cases: when fill_insns terminates,
222 we advance all fences and increase the stage number to show that the region
223 has changed and the sets are to be recomputed; and when the next iteration
224 of a loop in fill_insns happens (but this one reuses the saved av sets
225 on bb headers.) Thus, we try to break the fill_insns loop only when
226 "significant" number of insns from the current scheduling window was
227 scheduled. This should be made a target param.
230 TODO: correctly support the data dependence graph at all stages and get rid
231 of all caches. This should speed up the scheduler.
232 TODO: implement moving cond jumps with bookkeeping copies on both targets.
233 TODO: tune the scheduler before RA so it does not create too much pseudos.
236 References:
237 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
238 selective scheduling and software pipelining.
239 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
241 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
242 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
243 for GCC. In Proceedings of GCC Developers' Summit 2006.
245 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
246 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
247 http://rogue.colorado.edu/EPIC7/.
251 /* True when pipelining is enabled. */
252 bool pipelining_p;
254 /* True if bookkeeping is enabled. */
255 bool bookkeeping_p;
257 /* Maximum number of insns that are eligible for renaming. */
258 int max_insns_to_rename;
261 /* Definitions of local types and macros. */
263 /* Represents possible outcomes of moving an expression through an insn. */
264 enum MOVEUP_EXPR_CODE
266 /* The expression is not changed. */
267 MOVEUP_EXPR_SAME,
269 /* Not changed, but requires a new destination register. */
270 MOVEUP_EXPR_AS_RHS,
272 /* Cannot be moved. */
273 MOVEUP_EXPR_NULL,
275 /* Changed (substituted or speculated). */
276 MOVEUP_EXPR_CHANGED
279 /* The container to be passed into rtx search & replace functions. */
280 struct rtx_search_arg
282 /* What we are searching for. */
283 rtx x;
285 /* The occurrence counter. */
286 int n;
289 typedef struct rtx_search_arg *rtx_search_arg_p;
291 /* This struct contains precomputed hard reg sets that are needed when
292 computing registers available for renaming. */
293 struct hard_regs_data
295 /* For every mode, this stores registers available for use with
296 that mode. */
297 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
299 /* True when regs_for_mode[mode] is initialized. */
300 bool regs_for_mode_ok[NUM_MACHINE_MODES];
302 /* For every register, it has regs that are ok to rename into it.
303 The register in question is always set. If not, this means
304 that the whole set is not computed yet. */
305 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
307 /* For every mode, this stores registers not available due to
308 call clobbering. */
309 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
311 /* All registers that are used or call used. */
312 HARD_REG_SET regs_ever_used;
314 #ifdef STACK_REGS
315 /* Stack registers. */
316 HARD_REG_SET stack_regs;
317 #endif
320 /* Holds the results of computation of available for renaming and
321 unavailable hard registers. */
322 struct reg_rename
324 /* These are unavailable due to calls crossing, globalness, etc. */
325 HARD_REG_SET unavailable_hard_regs;
327 /* These are *available* for renaming. */
328 HARD_REG_SET available_for_renaming;
330 /* Whether this code motion path crosses a call. */
331 bool crosses_call;
334 /* A global structure that contains the needed information about harg
335 regs. */
336 static struct hard_regs_data sel_hrd;
339 /* This structure holds local data used in code_motion_path_driver hooks on
340 the same or adjacent levels of recursion. Here we keep those parameters
341 that are not used in code_motion_path_driver routine itself, but only in
342 its hooks. Moreover, all parameters that can be modified in hooks are
343 in this structure, so all other parameters passed explicitly to hooks are
344 read-only. */
345 struct cmpd_local_params
347 /* Local params used in move_op_* functions. */
349 /* Edges for bookkeeping generation. */
350 edge e1, e2;
352 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
353 expr_t c_expr_merged, c_expr_local;
355 /* Local params used in fur_* functions. */
356 /* Copy of the ORIGINAL_INSN list, stores the original insns already
357 found before entering the current level of code_motion_path_driver. */
358 def_list_t old_original_insns;
360 /* Local params used in move_op_* functions. */
361 /* True when we have removed last insn in the block which was
362 also a boundary. Do not update anything or create bookkeeping copies. */
363 BOOL_BITFIELD removed_last_insn : 1;
366 /* Stores the static parameters for move_op_* calls. */
367 struct moveop_static_params
369 /* Destination register. */
370 rtx dest;
372 /* Current C_EXPR. */
373 expr_t c_expr;
375 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
376 they are to be removed. */
377 int uid;
379 #ifdef ENABLE_CHECKING
380 /* This is initialized to the insn on which the driver stopped its traversal. */
381 insn_t failed_insn;
382 #endif
384 /* True if we scheduled an insn with different register. */
385 bool was_renamed;
388 /* Stores the static parameters for fur_* calls. */
389 struct fur_static_params
391 /* Set of registers unavailable on the code motion path. */
392 regset used_regs;
394 /* Pointer to the list of original insns definitions. */
395 def_list_t *original_insns;
397 /* True if a code motion path contains a CALL insn. */
398 bool crosses_call;
401 typedef struct fur_static_params *fur_static_params_p;
402 typedef struct cmpd_local_params *cmpd_local_params_p;
403 typedef struct moveop_static_params *moveop_static_params_p;
405 /* Set of hooks and parameters that determine behaviour specific to
406 move_op or find_used_regs functions. */
407 struct code_motion_path_driver_info_def
409 /* Called on enter to the basic block. */
410 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
412 /* Called when original expr is found. */
413 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
415 /* Called while descending current basic block if current insn is not
416 the original EXPR we're searching for. */
417 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
419 /* Function to merge C_EXPRes from different successors. */
420 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
422 /* Function to finalize merge from different successors and possibly
423 deallocate temporary data structures used for merging. */
424 void (*after_merge_succs) (cmpd_local_params_p, void *);
426 /* Called on the backward stage of recursion to do moveup_expr.
427 Used only with move_op_*. */
428 void (*ascend) (insn_t, void *);
430 /* Called on the ascending pass, before returning from the current basic
431 block or from the whole traversal. */
432 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
434 /* When processing successors in move_op we need only descend into
435 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
436 int succ_flags;
438 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
439 const char *routine_name;
442 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
443 FUR_HOOKS. */
444 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
446 /* Set of hooks for performing move_op and find_used_regs routines with
447 code_motion_path_driver. */
448 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
450 /* True if/when we want to emulate Haifa scheduler in the common code.
451 This is used in sched_rgn_local_init and in various places in
452 sched-deps.c. */
453 int sched_emulate_haifa_p;
455 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
456 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
457 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
458 scheduling window. */
459 int global_level;
461 /* Current fences. */
462 flist_t fences;
464 /* True when separable insns should be scheduled as RHSes. */
465 static bool enable_schedule_as_rhs_p;
467 /* Used in verify_target_availability to assert that target reg is reported
468 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
469 we haven't scheduled anything on the previous fence.
470 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
471 have more conservative value than the one returned by the
472 find_used_regs, thus we shouldn't assert that these values are equal. */
473 static bool scheduled_something_on_previous_fence;
475 /* All newly emitted insns will have their uids greater than this value. */
476 static int first_emitted_uid;
478 /* Set of basic blocks that are forced to start new ebbs. This is a subset
479 of all the ebb heads. */
480 static bitmap_head _forced_ebb_heads;
481 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
483 /* Blocks that need to be rescheduled after pipelining. */
484 bitmap blocks_to_reschedule = NULL;
486 /* True when the first lv set should be ignored when updating liveness. */
487 static bool ignore_first = false;
489 /* Number of insns max_issue has initialized data structures for. */
490 static int max_issue_size = 0;
492 /* Whether we can issue more instructions. */
493 static int can_issue_more;
495 /* Maximum software lookahead window size, reduced when rescheduling after
496 pipelining. */
497 static int max_ws;
499 /* Number of insns scheduled in current region. */
500 static int num_insns_scheduled;
502 /* A vector of expressions is used to be able to sort them. */
503 static vec<expr_t> vec_av_set = vNULL;
505 /* A vector of vinsns is used to hold temporary lists of vinsns. */
506 typedef vec<vinsn_t> vinsn_vec_t;
508 /* This vector has the exprs which may still present in av_sets, but actually
509 can't be moved up due to bookkeeping created during code motion to another
510 fence. See comment near the call to update_and_record_unavailable_insns
511 for the detailed explanations. */
512 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
514 /* This vector has vinsns which are scheduled with renaming on the first fence
515 and then seen on the second. For expressions with such vinsns, target
516 availability information may be wrong. */
517 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
519 /* Vector to store temporary nops inserted in move_op to prevent removal
520 of empty bbs. */
521 static vec<insn_t> vec_temp_moveop_nops = vNULL;
523 /* These bitmaps record original instructions scheduled on the current
524 iteration and bookkeeping copies created by them. */
525 static bitmap current_originators = NULL;
526 static bitmap current_copies = NULL;
528 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
529 visit them afterwards. */
530 static bitmap code_motion_visited_blocks = NULL;
532 /* Variables to accumulate different statistics. */
534 /* The number of bookkeeping copies created. */
535 static int stat_bookkeeping_copies;
537 /* The number of insns that required bookkeeiping for their scheduling. */
538 static int stat_insns_needed_bookkeeping;
540 /* The number of insns that got renamed. */
541 static int stat_renamed_scheduled;
543 /* The number of substitutions made during scheduling. */
544 static int stat_substitutions_total;
547 /* Forward declarations of static functions. */
548 static bool rtx_ok_for_substitution_p (rtx, rtx);
549 static int sel_rank_for_schedule (const void *, const void *);
550 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
551 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
553 static rtx get_dest_from_orig_ops (av_set_t);
554 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
555 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
556 def_list_t *);
557 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
558 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
559 cmpd_local_params_p, void *);
560 static void sel_sched_region_1 (void);
561 static void sel_sched_region_2 (int);
562 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
564 static void debug_state (state_t);
567 /* Functions that work with fences. */
569 /* Advance one cycle on FENCE. */
570 static void
571 advance_one_cycle (fence_t fence)
573 unsigned i;
574 int cycle;
575 rtx_insn *insn;
577 advance_state (FENCE_STATE (fence));
578 cycle = ++FENCE_CYCLE (fence);
579 FENCE_ISSUED_INSNS (fence) = 0;
580 FENCE_STARTS_CYCLE_P (fence) = 1;
581 can_issue_more = issue_rate;
582 FENCE_ISSUE_MORE (fence) = can_issue_more;
584 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
586 if (INSN_READY_CYCLE (insn) < cycle)
588 remove_from_deps (FENCE_DC (fence), insn);
589 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
590 continue;
592 i++;
594 if (sched_verbose >= 2)
596 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
597 debug_state (FENCE_STATE (fence));
601 /* Returns true when SUCC in a fallthru bb of INSN, possibly
602 skipping empty basic blocks. */
603 static bool
604 in_fallthru_bb_p (rtx insn, rtx succ)
606 basic_block bb = BLOCK_FOR_INSN (insn);
607 edge e;
609 if (bb == BLOCK_FOR_INSN (succ))
610 return true;
612 e = find_fallthru_edge_from (bb);
613 if (e)
614 bb = e->dest;
615 else
616 return false;
618 while (sel_bb_empty_p (bb))
619 bb = bb->next_bb;
621 return bb == BLOCK_FOR_INSN (succ);
624 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
625 When a successor will continue a ebb, transfer all parameters of a fence
626 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
627 of scheduling helping to distinguish between the old and the new code. */
628 static void
629 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
630 int orig_max_seqno)
632 bool was_here_p = false;
633 insn_t insn = NULL;
634 insn_t succ;
635 succ_iterator si;
636 ilist_iterator ii;
637 fence_t fence = FLIST_FENCE (old_fences);
638 basic_block bb;
640 /* Get the only element of FENCE_BNDS (fence). */
641 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
643 gcc_assert (!was_here_p);
644 was_here_p = true;
646 gcc_assert (was_here_p && insn != NULL_RTX);
648 /* When in the "middle" of the block, just move this fence
649 to the new list. */
650 bb = BLOCK_FOR_INSN (insn);
651 if (! sel_bb_end_p (insn)
652 || (single_succ_p (bb)
653 && single_pred_p (single_succ (bb))))
655 insn_t succ;
657 succ = (sel_bb_end_p (insn)
658 ? sel_bb_head (single_succ (bb))
659 : NEXT_INSN (insn));
661 if (INSN_SEQNO (succ) > 0
662 && INSN_SEQNO (succ) <= orig_max_seqno
663 && INSN_SCHED_TIMES (succ) <= 0)
665 FENCE_INSN (fence) = succ;
666 move_fence_to_fences (old_fences, new_fences);
668 if (sched_verbose >= 1)
669 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
670 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
672 return;
675 /* Otherwise copy fence's structures to (possibly) multiple successors. */
676 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
678 int seqno = INSN_SEQNO (succ);
680 if (0 < seqno && seqno <= orig_max_seqno
681 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
683 bool b = (in_same_ebb_p (insn, succ)
684 || in_fallthru_bb_p (insn, succ));
686 if (sched_verbose >= 1)
687 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
688 INSN_UID (insn), INSN_UID (succ),
689 BLOCK_NUM (succ), b ? "continue" : "reset");
691 if (b)
692 add_dirty_fence_to_fences (new_fences, succ, fence);
693 else
695 /* Mark block of the SUCC as head of the new ebb. */
696 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
697 add_clean_fence_to_fences (new_fences, succ, fence);
704 /* Functions to support substitution. */
706 /* Returns whether INSN with dependence status DS is eligible for
707 substitution, i.e. it's a copy operation x := y, and RHS that is
708 moved up through this insn should be substituted. */
709 static bool
710 can_substitute_through_p (insn_t insn, ds_t ds)
712 /* We can substitute only true dependencies. */
713 if ((ds & DEP_OUTPUT)
714 || (ds & DEP_ANTI)
715 || ! INSN_RHS (insn)
716 || ! INSN_LHS (insn))
717 return false;
719 /* Now we just need to make sure the INSN_RHS consists of only one
720 simple REG rtx. */
721 if (REG_P (INSN_LHS (insn))
722 && REG_P (INSN_RHS (insn)))
723 return true;
724 return false;
727 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
728 source (if INSN is eligible for substitution). Returns TRUE if
729 substitution was actually performed, FALSE otherwise. Substitution might
730 be not performed because it's either EXPR' vinsn doesn't contain INSN's
731 destination or the resulting insn is invalid for the target machine.
732 When UNDO is true, perform unsubstitution instead (the difference is in
733 the part of rtx on which validate_replace_rtx is called). */
734 static bool
735 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
737 rtx *where;
738 bool new_insn_valid;
739 vinsn_t *vi = &EXPR_VINSN (expr);
740 bool has_rhs = VINSN_RHS (*vi) != NULL;
741 rtx old, new_rtx;
743 /* Do not try to replace in SET_DEST. Although we'll choose new
744 register for the RHS, we don't want to change RHS' original reg.
745 If the insn is not SET, we may still be able to substitute something
746 in it, and if we're here (don't have deps), it doesn't write INSN's
747 dest. */
748 where = (has_rhs
749 ? &VINSN_RHS (*vi)
750 : &PATTERN (VINSN_INSN_RTX (*vi)));
751 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
753 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
754 if (rtx_ok_for_substitution_p (old, *where))
756 rtx_insn *new_insn;
757 rtx *where_replace;
759 /* We should copy these rtxes before substitution. */
760 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
761 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
763 /* Where we'll replace.
764 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
765 used instead of SET_SRC. */
766 where_replace = (has_rhs
767 ? &SET_SRC (PATTERN (new_insn))
768 : &PATTERN (new_insn));
770 new_insn_valid
771 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
772 new_insn);
774 /* ??? Actually, constrain_operands result depends upon choice of
775 destination register. E.g. if we allow single register to be an rhs,
776 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
777 in invalid insn dx=dx, so we'll loose this rhs here.
778 Just can't come up with significant testcase for this, so just
779 leaving it for now. */
780 if (new_insn_valid)
782 change_vinsn_in_expr (expr,
783 create_vinsn_from_insn_rtx (new_insn, false));
785 /* Do not allow clobbering the address register of speculative
786 insns. */
787 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
788 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
789 expr_dest_reg (expr)))
790 EXPR_TARGET_AVAILABLE (expr) = false;
792 return true;
794 else
795 return false;
797 else
798 return false;
801 /* Helper function for count_occurences_equiv. */
802 static int
803 count_occurrences_1 (rtx *cur_rtx, void *arg)
805 rtx_search_arg_p p = (rtx_search_arg_p) arg;
807 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
809 /* Bail out if mode is different or more than one register is used. */
810 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
811 || (HARD_REGISTER_P (*cur_rtx)
812 && hard_regno_nregs[REGNO (*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
814 p->n = 0;
815 return 1;
818 p->n++;
820 /* Do not traverse subexprs. */
821 return -1;
824 if (GET_CODE (*cur_rtx) == SUBREG
825 && (!REG_P (SUBREG_REG (*cur_rtx))
826 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
828 /* ??? Do not support substituting regs inside subregs. In that case,
829 simplify_subreg will be called by validate_replace_rtx, and
830 unsubstitution will fail later. */
831 p->n = 0;
832 return 1;
835 /* Continue search. */
836 return 0;
839 /* Return the number of places WHAT appears within WHERE.
840 Bail out when we found a reference occupying several hard registers. */
841 static int
842 count_occurrences_equiv (rtx what, rtx where)
844 struct rtx_search_arg arg;
846 gcc_assert (REG_P (what));
847 arg.x = what;
848 arg.n = 0;
850 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
852 return arg.n;
855 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
856 static bool
857 rtx_ok_for_substitution_p (rtx what, rtx where)
859 return (count_occurrences_equiv (what, where) > 0);
863 /* Functions to support register renaming. */
865 /* Substitute VI's set source with REGNO. Returns newly created pattern
866 that has REGNO as its source. */
867 static rtx_insn *
868 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
870 rtx lhs_rtx;
871 rtx pattern;
872 rtx_insn *insn_rtx;
874 lhs_rtx = copy_rtx (VINSN_LHS (vi));
876 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
877 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
879 return insn_rtx;
882 /* Returns whether INSN's src can be replaced with register number
883 NEW_SRC_REG. E.g. the following insn is valid for i386:
885 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
886 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
887 (reg:SI 0 ax [orig:770 c1 ] [770]))
888 (const_int 288 [0x120])) [0 str S1 A8])
889 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
890 (nil))
892 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
893 because of operand constraints:
895 (define_insn "*movqi_1"
896 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
897 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
900 So do constrain_operands here, before choosing NEW_SRC_REG as best
901 reg for rhs. */
903 static bool
904 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
906 vinsn_t vi = INSN_VINSN (insn);
907 enum machine_mode mode;
908 rtx dst_loc;
909 bool res;
911 gcc_assert (VINSN_SEPARABLE_P (vi));
913 get_dest_and_mode (insn, &dst_loc, &mode);
914 gcc_assert (mode == GET_MODE (new_src_reg));
916 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
917 return true;
919 /* See whether SET_SRC can be replaced with this register. */
920 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
921 res = verify_changes (0);
922 cancel_changes (0);
924 return res;
927 /* Returns whether INSN still be valid after replacing it's DEST with
928 register NEW_REG. */
929 static bool
930 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
932 vinsn_t vi = INSN_VINSN (insn);
933 bool res;
935 /* We should deal here only with separable insns. */
936 gcc_assert (VINSN_SEPARABLE_P (vi));
937 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
939 /* See whether SET_DEST can be replaced with this register. */
940 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
941 res = verify_changes (0);
942 cancel_changes (0);
944 return res;
947 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
948 static rtx_insn *
949 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
951 rtx rhs_rtx;
952 rtx pattern;
953 rtx_insn *insn_rtx;
955 rhs_rtx = copy_rtx (VINSN_RHS (vi));
957 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
958 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
960 return insn_rtx;
963 /* Substitute lhs in the given expression EXPR for the register with number
964 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
965 static void
966 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
968 rtx_insn *insn_rtx;
969 vinsn_t vinsn;
971 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
972 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
974 change_vinsn_in_expr (expr, vinsn);
975 EXPR_WAS_RENAMED (expr) = 1;
976 EXPR_TARGET_AVAILABLE (expr) = 1;
979 /* Returns whether VI writes either one of the USED_REGS registers or,
980 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
981 static bool
982 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
983 HARD_REG_SET unavailable_hard_regs)
985 unsigned regno;
986 reg_set_iterator rsi;
988 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
990 if (REGNO_REG_SET_P (used_regs, regno))
991 return true;
992 if (HARD_REGISTER_NUM_P (regno)
993 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
994 return true;
997 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
999 if (REGNO_REG_SET_P (used_regs, regno))
1000 return true;
1001 if (HARD_REGISTER_NUM_P (regno)
1002 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1003 return true;
1006 return false;
1009 /* Returns register class of the output register in INSN.
1010 Returns NO_REGS for call insns because some targets have constraints on
1011 destination register of a call insn.
1013 Code adopted from regrename.c::build_def_use. */
1014 static enum reg_class
1015 get_reg_class (rtx insn)
1017 int i, n_ops;
1019 extract_insn (insn);
1020 if (! constrain_operands (1))
1021 fatal_insn_not_found (insn);
1022 preprocess_constraints (insn);
1023 n_ops = recog_data.n_operands;
1025 const operand_alternative *op_alt = which_op_alt ();
1026 if (asm_noperands (PATTERN (insn)) > 0)
1028 for (i = 0; i < n_ops; i++)
1029 if (recog_data.operand_type[i] == OP_OUT)
1031 rtx *loc = recog_data.operand_loc[i];
1032 rtx op = *loc;
1033 enum reg_class cl = alternative_class (op_alt, i);
1035 if (REG_P (op)
1036 && REGNO (op) == ORIGINAL_REGNO (op))
1037 continue;
1039 return cl;
1042 else if (!CALL_P (insn))
1044 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1046 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1047 enum reg_class cl = alternative_class (op_alt, opn);
1049 if (recog_data.operand_type[opn] == OP_OUT ||
1050 recog_data.operand_type[opn] == OP_INOUT)
1051 return cl;
1055 /* Insns like
1056 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1057 may result in returning NO_REGS, cause flags is written implicitly through
1058 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1059 return NO_REGS;
1062 #ifdef HARD_REGNO_RENAME_OK
1063 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1064 static void
1065 init_hard_regno_rename (int regno)
1067 int cur_reg;
1069 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1071 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1073 /* We are not interested in renaming in other regs. */
1074 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1075 continue;
1077 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1078 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1081 #endif
1083 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1084 data first. */
1085 static inline bool
1086 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1088 #ifdef HARD_REGNO_RENAME_OK
1089 /* Check whether this is all calculated. */
1090 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1091 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1093 init_hard_regno_rename (from);
1095 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1096 #else
1097 return true;
1098 #endif
1101 /* Calculate set of registers that are capable of holding MODE. */
1102 static void
1103 init_regs_for_mode (enum machine_mode mode)
1105 int cur_reg;
1107 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1108 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1110 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1112 int nregs;
1113 int i;
1115 /* See whether it accepts all modes that occur in
1116 original insns. */
1117 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1118 continue;
1120 nregs = hard_regno_nregs[cur_reg][mode];
1122 for (i = nregs - 1; i >= 0; --i)
1123 if (fixed_regs[cur_reg + i]
1124 || global_regs[cur_reg + i]
1125 /* Can't use regs which aren't saved by
1126 the prologue. */
1127 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1128 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1129 it affects aliasing globally and invalidates all AV sets. */
1130 || get_reg_base_value (cur_reg + i)
1131 #ifdef LEAF_REGISTERS
1132 /* We can't use a non-leaf register if we're in a
1133 leaf function. */
1134 || (crtl->is_leaf
1135 && !LEAF_REGISTERS[cur_reg + i])
1136 #endif
1138 break;
1140 if (i >= 0)
1141 continue;
1143 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1144 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1145 cur_reg);
1147 /* If the CUR_REG passed all the checks above,
1148 then it's ok. */
1149 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1152 sel_hrd.regs_for_mode_ok[mode] = true;
1155 /* Init all register sets gathered in HRD. */
1156 static void
1157 init_hard_regs_data (void)
1159 int cur_reg = 0;
1160 int cur_mode = 0;
1162 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1163 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1164 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1165 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1167 /* Initialize registers that are valid based on mode when this is
1168 really needed. */
1169 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1170 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1172 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1173 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1174 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1176 #ifdef STACK_REGS
1177 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1179 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1180 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1181 #endif
1184 /* Mark hardware regs in REG_RENAME_P that are not suitable
1185 for renaming rhs in INSN due to hardware restrictions (register class,
1186 modes compatibility etc). This doesn't affect original insn's dest reg,
1187 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1188 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1189 Registers that are in used_regs are always marked in
1190 unavailable_hard_regs as well. */
1192 static void
1193 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1194 regset used_regs ATTRIBUTE_UNUSED)
1196 enum machine_mode mode;
1197 enum reg_class cl = NO_REGS;
1198 rtx orig_dest;
1199 unsigned cur_reg, regno;
1200 hard_reg_set_iterator hrsi;
1202 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1203 gcc_assert (reg_rename_p);
1205 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1207 /* We have decided not to rename 'mem = something;' insns, as 'something'
1208 is usually a register. */
1209 if (!REG_P (orig_dest))
1210 return;
1212 regno = REGNO (orig_dest);
1214 /* If before reload, don't try to work with pseudos. */
1215 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1216 return;
1218 if (reload_completed)
1219 cl = get_reg_class (def->orig_insn);
1221 /* Stop if the original register is one of the fixed_regs, global_regs or
1222 frame pointer, or we could not discover its class. */
1223 if (fixed_regs[regno]
1224 || global_regs[regno]
1225 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1226 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1227 #else
1228 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1229 #endif
1230 || (reload_completed && cl == NO_REGS))
1232 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1234 /* Give a chance for original register, if it isn't in used_regs. */
1235 if (!def->crosses_call)
1236 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1238 return;
1241 /* If something allocated on stack in this function, mark frame pointer
1242 register unavailable, considering also modes.
1243 FIXME: it is enough to do this once per all original defs. */
1244 if (frame_pointer_needed)
1246 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1247 Pmode, FRAME_POINTER_REGNUM);
1249 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1250 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1251 Pmode, HARD_FRAME_POINTER_REGNUM);
1254 #ifdef STACK_REGS
1255 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1256 is equivalent to as if all stack regs were in this set.
1257 I.e. no stack register can be renamed, and even if it's an original
1258 register here we make sure it won't be lifted over it's previous def
1259 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1260 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1261 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1262 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1263 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1264 sel_hrd.stack_regs);
1265 #endif
1267 /* If there's a call on this path, make regs from call_used_reg_set
1268 unavailable. */
1269 if (def->crosses_call)
1270 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1271 call_used_reg_set);
1273 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1274 but not register classes. */
1275 if (!reload_completed)
1276 return;
1278 /* Leave regs as 'available' only from the current
1279 register class. */
1280 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1281 reg_class_contents[cl]);
1283 mode = GET_MODE (orig_dest);
1285 /* Leave only registers available for this mode. */
1286 if (!sel_hrd.regs_for_mode_ok[mode])
1287 init_regs_for_mode (mode);
1288 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1289 sel_hrd.regs_for_mode[mode]);
1291 /* Exclude registers that are partially call clobbered. */
1292 if (def->crosses_call
1293 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1294 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1295 sel_hrd.regs_for_call_clobbered[mode]);
1297 /* Leave only those that are ok to rename. */
1298 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1299 0, cur_reg, hrsi)
1301 int nregs;
1302 int i;
1304 nregs = hard_regno_nregs[cur_reg][mode];
1305 gcc_assert (nregs > 0);
1307 for (i = nregs - 1; i >= 0; --i)
1308 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1309 break;
1311 if (i >= 0)
1312 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1313 cur_reg);
1316 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1317 reg_rename_p->unavailable_hard_regs);
1319 /* Regno is always ok from the renaming part of view, but it really
1320 could be in *unavailable_hard_regs already, so set it here instead
1321 of there. */
1322 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1325 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1326 best register more recently than REG2. */
1327 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1329 /* Indicates the number of times renaming happened before the current one. */
1330 static int reg_rename_this_tick;
1332 /* Choose the register among free, that is suitable for storing
1333 the rhs value.
1335 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1336 originally appears. There could be multiple original operations
1337 for single rhs since we moving it up and merging along different
1338 paths.
1340 Some code is adapted from regrename.c (regrename_optimize).
1341 If original register is available, function returns it.
1342 Otherwise it performs the checks, so the new register should
1343 comply with the following:
1344 - it should not violate any live ranges (such registers are in
1345 REG_RENAME_P->available_for_renaming set);
1346 - it should not be in the HARD_REGS_USED regset;
1347 - it should be in the class compatible with original uses;
1348 - it should not be clobbered through reference with different mode;
1349 - if we're in the leaf function, then the new register should
1350 not be in the LEAF_REGISTERS;
1351 - etc.
1353 If several registers meet the conditions, the register with smallest
1354 tick is returned to achieve more even register allocation.
1356 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1358 If no register satisfies the above conditions, NULL_RTX is returned. */
1359 static rtx
1360 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1361 struct reg_rename *reg_rename_p,
1362 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1364 int best_new_reg;
1365 unsigned cur_reg;
1366 enum machine_mode mode = VOIDmode;
1367 unsigned regno, i, n;
1368 hard_reg_set_iterator hrsi;
1369 def_list_iterator di;
1370 def_t def;
1372 /* If original register is available, return it. */
1373 *is_orig_reg_p_ptr = true;
1375 FOR_EACH_DEF (def, di, original_insns)
1377 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1379 gcc_assert (REG_P (orig_dest));
1381 /* Check that all original operations have the same mode.
1382 This is done for the next loop; if we'd return from this
1383 loop, we'd check only part of them, but in this case
1384 it doesn't matter. */
1385 if (mode == VOIDmode)
1386 mode = GET_MODE (orig_dest);
1387 gcc_assert (mode == GET_MODE (orig_dest));
1389 regno = REGNO (orig_dest);
1390 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1391 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1392 break;
1394 /* All hard registers are available. */
1395 if (i == n)
1397 gcc_assert (mode != VOIDmode);
1399 /* Hard registers should not be shared. */
1400 return gen_rtx_REG (mode, regno);
1404 *is_orig_reg_p_ptr = false;
1405 best_new_reg = -1;
1407 /* Among all available regs choose the register that was
1408 allocated earliest. */
1409 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1410 0, cur_reg, hrsi)
1411 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1413 /* Check that all hard regs for mode are available. */
1414 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1415 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1416 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1417 cur_reg + i))
1418 break;
1420 if (i < n)
1421 continue;
1423 /* All hard registers are available. */
1424 if (best_new_reg < 0
1425 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1427 best_new_reg = cur_reg;
1429 /* Return immediately when we know there's no better reg. */
1430 if (! reg_rename_tick[best_new_reg])
1431 break;
1435 if (best_new_reg >= 0)
1437 /* Use the check from the above loop. */
1438 gcc_assert (mode != VOIDmode);
1439 return gen_rtx_REG (mode, best_new_reg);
1442 return NULL_RTX;
1445 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1446 assumptions about available registers in the function. */
1447 static rtx
1448 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1449 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1451 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1452 original_insns, is_orig_reg_p_ptr);
1454 /* FIXME loop over hard_regno_nregs here. */
1455 gcc_assert (best_reg == NULL_RTX
1456 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1458 return best_reg;
1461 /* Choose the pseudo register for storing rhs value. As this is supposed
1462 to work before reload, we return either the original register or make
1463 the new one. The parameters are the same that in choose_nest_reg_1
1464 functions, except that USED_REGS may contain pseudos.
1465 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1467 TODO: take into account register pressure while doing this. Up to this
1468 moment, this function would never return NULL for pseudos, but we should
1469 not rely on this. */
1470 static rtx
1471 choose_best_pseudo_reg (regset used_regs,
1472 struct reg_rename *reg_rename_p,
1473 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1475 def_list_iterator i;
1476 def_t def;
1477 enum machine_mode mode = VOIDmode;
1478 bool bad_hard_regs = false;
1480 /* We should not use this after reload. */
1481 gcc_assert (!reload_completed);
1483 /* If original register is available, return it. */
1484 *is_orig_reg_p_ptr = true;
1486 FOR_EACH_DEF (def, i, original_insns)
1488 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1489 int orig_regno;
1491 gcc_assert (REG_P (dest));
1493 /* Check that all original operations have the same mode. */
1494 if (mode == VOIDmode)
1495 mode = GET_MODE (dest);
1496 else
1497 gcc_assert (mode == GET_MODE (dest));
1498 orig_regno = REGNO (dest);
1500 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1502 if (orig_regno < FIRST_PSEUDO_REGISTER)
1504 gcc_assert (df_regs_ever_live_p (orig_regno));
1506 /* For hard registers, we have to check hardware imposed
1507 limitations (frame/stack registers, calls crossed). */
1508 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1509 orig_regno))
1511 /* Don't let register cross a call if it doesn't already
1512 cross one. This condition is written in accordance with
1513 that in sched-deps.c sched_analyze_reg(). */
1514 if (!reg_rename_p->crosses_call
1515 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1516 return gen_rtx_REG (mode, orig_regno);
1519 bad_hard_regs = true;
1521 else
1522 return dest;
1526 *is_orig_reg_p_ptr = false;
1528 /* We had some original hard registers that couldn't be used.
1529 Those were likely special. Don't try to create a pseudo. */
1530 if (bad_hard_regs)
1531 return NULL_RTX;
1533 /* We haven't found a register from original operations. Get a new one.
1534 FIXME: control register pressure somehow. */
1536 rtx new_reg = gen_reg_rtx (mode);
1538 gcc_assert (mode != VOIDmode);
1540 max_regno = max_reg_num ();
1541 maybe_extend_reg_info_p ();
1542 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1544 return new_reg;
1548 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1549 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1550 static void
1551 verify_target_availability (expr_t expr, regset used_regs,
1552 struct reg_rename *reg_rename_p)
1554 unsigned n, i, regno;
1555 enum machine_mode mode;
1556 bool target_available, live_available, hard_available;
1558 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1559 return;
1561 regno = expr_dest_regno (expr);
1562 mode = GET_MODE (EXPR_LHS (expr));
1563 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1564 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1566 live_available = hard_available = true;
1567 for (i = 0; i < n; i++)
1569 if (bitmap_bit_p (used_regs, regno + i))
1570 live_available = false;
1571 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1572 hard_available = false;
1575 /* When target is not available, it may be due to hard register
1576 restrictions, e.g. crosses calls, so we check hard_available too. */
1577 if (target_available)
1578 gcc_assert (live_available);
1579 else
1580 /* Check only if we haven't scheduled something on the previous fence,
1581 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1582 and having more than one fence, we may end having targ_un in a block
1583 in which successors target register is actually available.
1585 The last condition handles the case when a dependence from a call insn
1586 was created in sched-deps.c for insns with destination registers that
1587 never crossed a call before, but do cross one after our code motion.
1589 FIXME: in the latter case, we just uselessly called find_used_regs,
1590 because we can't move this expression with any other register
1591 as well. */
1592 gcc_assert (scheduled_something_on_previous_fence || !live_available
1593 || !hard_available
1594 || (!reload_completed && reg_rename_p->crosses_call
1595 && REG_N_CALLS_CROSSED (regno) == 0));
1598 /* Collect unavailable registers due to liveness for EXPR from BNDS
1599 into USED_REGS. Save additional information about available
1600 registers and unavailable due to hardware restriction registers
1601 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1602 list. */
1603 static void
1604 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1605 struct reg_rename *reg_rename_p,
1606 def_list_t *original_insns)
1608 for (; bnds; bnds = BLIST_NEXT (bnds))
1610 bool res;
1611 av_set_t orig_ops = NULL;
1612 bnd_t bnd = BLIST_BND (bnds);
1614 /* If the chosen best expr doesn't belong to current boundary,
1615 skip it. */
1616 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1617 continue;
1619 /* Put in ORIG_OPS all exprs from this boundary that became
1620 RES on top. */
1621 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1623 /* Compute used regs and OR it into the USED_REGS. */
1624 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1625 reg_rename_p, original_insns);
1627 /* FIXME: the assert is true until we'd have several boundaries. */
1628 gcc_assert (res);
1629 av_set_clear (&orig_ops);
1633 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1634 If BEST_REG is valid, replace LHS of EXPR with it. */
1635 static bool
1636 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1638 /* Try whether we'll be able to generate the insn
1639 'dest := best_reg' at the place of the original operation. */
1640 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1642 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1644 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1646 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1647 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1648 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1649 return false;
1652 /* Make sure that EXPR has the right destination
1653 register. */
1654 if (expr_dest_regno (expr) != REGNO (best_reg))
1655 replace_dest_with_reg_in_expr (expr, best_reg);
1656 else
1657 EXPR_TARGET_AVAILABLE (expr) = 1;
1659 return true;
1662 /* Select and assign best register to EXPR searching from BNDS.
1663 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1664 Return FALSE if no register can be chosen, which could happen when:
1665 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1666 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1667 that are used on the moving path. */
1668 static bool
1669 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1671 static struct reg_rename reg_rename_data;
1673 regset used_regs;
1674 def_list_t original_insns = NULL;
1675 bool reg_ok;
1677 *is_orig_reg_p = false;
1679 /* Don't bother to do anything if this insn doesn't set any registers. */
1680 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1681 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1682 return true;
1684 used_regs = get_clear_regset_from_pool ();
1685 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1687 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1688 &original_insns);
1690 #ifdef ENABLE_CHECKING
1691 /* If after reload, make sure we're working with hard regs here. */
1692 if (reload_completed)
1694 reg_set_iterator rsi;
1695 unsigned i;
1697 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1698 gcc_unreachable ();
1700 #endif
1702 if (EXPR_SEPARABLE_P (expr))
1704 rtx best_reg = NULL_RTX;
1705 /* Check that we have computed availability of a target register
1706 correctly. */
1707 verify_target_availability (expr, used_regs, &reg_rename_data);
1709 /* Turn everything in hard regs after reload. */
1710 if (reload_completed)
1712 HARD_REG_SET hard_regs_used;
1713 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1715 /* Join hard registers unavailable due to register class
1716 restrictions and live range intersection. */
1717 IOR_HARD_REG_SET (hard_regs_used,
1718 reg_rename_data.unavailable_hard_regs);
1720 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1721 original_insns, is_orig_reg_p);
1723 else
1724 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1725 original_insns, is_orig_reg_p);
1727 if (!best_reg)
1728 reg_ok = false;
1729 else if (*is_orig_reg_p)
1731 /* In case of unification BEST_REG may be different from EXPR's LHS
1732 when EXPR's LHS is unavailable, and there is another LHS among
1733 ORIGINAL_INSNS. */
1734 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1736 else
1738 /* Forbid renaming of low-cost insns. */
1739 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1740 reg_ok = false;
1741 else
1742 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1745 else
1747 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1748 any of the HARD_REGS_USED set. */
1749 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1750 reg_rename_data.unavailable_hard_regs))
1752 reg_ok = false;
1753 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1755 else
1757 reg_ok = true;
1758 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1762 ilist_clear (&original_insns);
1763 return_regset_to_pool (used_regs);
1765 return reg_ok;
1769 /* Return true if dependence described by DS can be overcomed. */
1770 static bool
1771 can_speculate_dep_p (ds_t ds)
1773 if (spec_info == NULL)
1774 return false;
1776 /* Leave only speculative data. */
1777 ds &= SPECULATIVE;
1779 if (ds == 0)
1780 return false;
1783 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1784 that we can overcome. */
1785 ds_t spec_mask = spec_info->mask;
1787 if ((ds & spec_mask) != ds)
1788 return false;
1791 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1792 return false;
1794 return true;
1797 /* Get a speculation check instruction.
1798 C_EXPR is a speculative expression,
1799 CHECK_DS describes speculations that should be checked,
1800 ORIG_INSN is the original non-speculative insn in the stream. */
1801 static insn_t
1802 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1804 rtx check_pattern;
1805 rtx_insn *insn_rtx;
1806 insn_t insn;
1807 basic_block recovery_block;
1808 rtx label;
1810 /* Create a recovery block if target is going to emit branchy check, or if
1811 ORIG_INSN was speculative already. */
1812 if (targetm.sched.needs_block_p (check_ds)
1813 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1815 recovery_block = sel_create_recovery_block (orig_insn);
1816 label = BB_HEAD (recovery_block);
1818 else
1820 recovery_block = NULL;
1821 label = NULL_RTX;
1824 /* Get pattern of the check. */
1825 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1826 check_ds);
1828 gcc_assert (check_pattern != NULL);
1830 /* Emit check. */
1831 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1833 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1834 INSN_SEQNO (orig_insn), orig_insn);
1836 /* Make check to be non-speculative. */
1837 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1838 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1840 /* Decrease priority of check by difference of load/check instruction
1841 latencies. */
1842 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1843 - sel_vinsn_cost (INSN_VINSN (insn)));
1845 /* Emit copy of original insn (though with replaced target register,
1846 if needed) to the recovery block. */
1847 if (recovery_block != NULL)
1849 rtx twin_rtx;
1851 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1852 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1853 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1854 INSN_EXPR (orig_insn),
1855 INSN_SEQNO (insn),
1856 bb_note (recovery_block));
1859 /* If we've generated a data speculation check, make sure
1860 that all the bookkeeping instruction we'll create during
1861 this move_op () will allocate an ALAT entry so that the
1862 check won't fail.
1863 In case of control speculation we must convert C_EXPR to control
1864 speculative mode, because failing to do so will bring us an exception
1865 thrown by the non-control-speculative load. */
1866 check_ds = ds_get_max_dep_weak (check_ds);
1867 speculate_expr (c_expr, check_ds);
1869 return insn;
1872 /* True when INSN is a "regN = regN" copy. */
1873 static bool
1874 identical_copy_p (rtx insn)
1876 rtx lhs, rhs, pat;
1878 pat = PATTERN (insn);
1880 if (GET_CODE (pat) != SET)
1881 return false;
1883 lhs = SET_DEST (pat);
1884 if (!REG_P (lhs))
1885 return false;
1887 rhs = SET_SRC (pat);
1888 if (!REG_P (rhs))
1889 return false;
1891 return REGNO (lhs) == REGNO (rhs);
1894 /* Undo all transformations on *AV_PTR that were done when
1895 moving through INSN. */
1896 static void
1897 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1899 av_set_iterator av_iter;
1900 expr_t expr;
1901 av_set_t new_set = NULL;
1903 /* First, kill any EXPR that uses registers set by an insn. This is
1904 required for correctness. */
1905 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1906 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1907 && bitmap_intersect_p (INSN_REG_SETS (insn),
1908 VINSN_REG_USES (EXPR_VINSN (expr)))
1909 /* When an insn looks like 'r1 = r1', we could substitute through
1910 it, but the above condition will still hold. This happened with
1911 gcc.c-torture/execute/961125-1.c. */
1912 && !identical_copy_p (insn))
1914 if (sched_verbose >= 6)
1915 sel_print ("Expr %d removed due to use/set conflict\n",
1916 INSN_UID (EXPR_INSN_RTX (expr)));
1917 av_set_iter_remove (&av_iter);
1920 /* Undo transformations looking at the history vector. */
1921 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1923 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1924 insn, EXPR_VINSN (expr), true);
1926 if (index >= 0)
1928 expr_history_def *phist;
1930 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1932 switch (phist->type)
1934 case TRANS_SPECULATION:
1936 ds_t old_ds, new_ds;
1938 /* Compute the difference between old and new speculative
1939 statuses: that's what we need to check.
1940 Earlier we used to assert that the status will really
1941 change. This no longer works because only the probability
1942 bits in the status may have changed during compute_av_set,
1943 and in the case of merging different probabilities of the
1944 same speculative status along different paths we do not
1945 record this in the history vector. */
1946 old_ds = phist->spec_ds;
1947 new_ds = EXPR_SPEC_DONE_DS (expr);
1949 old_ds &= SPECULATIVE;
1950 new_ds &= SPECULATIVE;
1951 new_ds &= ~old_ds;
1953 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1954 break;
1956 case TRANS_SUBSTITUTION:
1958 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1959 vinsn_t new_vi;
1960 bool add = true;
1962 new_vi = phist->old_expr_vinsn;
1964 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1965 == EXPR_SEPARABLE_P (expr));
1966 copy_expr (tmp_expr, expr);
1968 if (vinsn_equal_p (phist->new_expr_vinsn,
1969 EXPR_VINSN (tmp_expr)))
1970 change_vinsn_in_expr (tmp_expr, new_vi);
1971 else
1972 /* This happens when we're unsubstituting on a bookkeeping
1973 copy, which was in turn substituted. The history is wrong
1974 in this case. Do it the hard way. */
1975 add = substitute_reg_in_expr (tmp_expr, insn, true);
1976 if (add)
1977 av_set_add (&new_set, tmp_expr);
1978 clear_expr (tmp_expr);
1979 break;
1981 default:
1982 gcc_unreachable ();
1988 av_set_union_and_clear (av_ptr, &new_set, NULL);
1992 /* Moveup_* helpers for code motion and computing av sets. */
1994 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1995 The difference from the below function is that only substitution is
1996 performed. */
1997 static enum MOVEUP_EXPR_CODE
1998 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2000 vinsn_t vi = EXPR_VINSN (expr);
2001 ds_t *has_dep_p;
2002 ds_t full_ds;
2004 /* Do this only inside insn group. */
2005 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2007 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2008 if (full_ds == 0)
2009 return MOVEUP_EXPR_SAME;
2011 /* Substitution is the possible choice in this case. */
2012 if (has_dep_p[DEPS_IN_RHS])
2014 /* Can't substitute UNIQUE VINSNs. */
2015 gcc_assert (!VINSN_UNIQUE_P (vi));
2017 if (can_substitute_through_p (through_insn,
2018 has_dep_p[DEPS_IN_RHS])
2019 && substitute_reg_in_expr (expr, through_insn, false))
2021 EXPR_WAS_SUBSTITUTED (expr) = true;
2022 return MOVEUP_EXPR_CHANGED;
2025 /* Don't care about this, as even true dependencies may be allowed
2026 in an insn group. */
2027 return MOVEUP_EXPR_SAME;
2030 /* This can catch output dependencies in COND_EXECs. */
2031 if (has_dep_p[DEPS_IN_INSN])
2032 return MOVEUP_EXPR_NULL;
2034 /* This is either an output or an anti dependence, which usually have
2035 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2036 will fix this. */
2037 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2038 return MOVEUP_EXPR_AS_RHS;
2041 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2042 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2043 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2044 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2045 && !sel_insn_is_speculation_check (through_insn))
2047 /* True when a conflict on a target register was found during moveup_expr. */
2048 static bool was_target_conflict = false;
2050 /* Return true when moving a debug INSN across THROUGH_INSN will
2051 create a bookkeeping block. We don't want to create such blocks,
2052 for they would cause codegen differences between compilations with
2053 and without debug info. */
2055 static bool
2056 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2057 insn_t through_insn)
2059 basic_block bbi, bbt;
2060 edge e1, e2;
2061 edge_iterator ei1, ei2;
2063 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2065 if (sched_verbose >= 9)
2066 sel_print ("no bookkeeping required: ");
2067 return FALSE;
2070 bbi = BLOCK_FOR_INSN (insn);
2072 if (EDGE_COUNT (bbi->preds) == 1)
2074 if (sched_verbose >= 9)
2075 sel_print ("only one pred edge: ");
2076 return TRUE;
2079 bbt = BLOCK_FOR_INSN (through_insn);
2081 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2083 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2085 if (find_block_for_bookkeeping (e1, e2, TRUE))
2087 if (sched_verbose >= 9)
2088 sel_print ("found existing block: ");
2089 return FALSE;
2094 if (sched_verbose >= 9)
2095 sel_print ("would create bookkeeping block: ");
2097 return TRUE;
2100 /* Return true when the conflict with newly created implicit clobbers
2101 between EXPR and THROUGH_INSN is found because of renaming. */
2102 static bool
2103 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2105 HARD_REG_SET temp;
2106 rtx_insn *insn;
2107 rtx reg, rhs, pat;
2108 hard_reg_set_iterator hrsi;
2109 unsigned regno;
2110 bool valid;
2112 /* Make a new pseudo register. */
2113 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2114 max_regno = max_reg_num ();
2115 maybe_extend_reg_info_p ();
2117 /* Validate a change and bail out early. */
2118 insn = EXPR_INSN_RTX (expr);
2119 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2120 valid = verify_changes (0);
2121 cancel_changes (0);
2122 if (!valid)
2124 if (sched_verbose >= 6)
2125 sel_print ("implicit clobbers failed validation, ");
2126 return true;
2129 /* Make a new insn with it. */
2130 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2131 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2132 start_sequence ();
2133 insn = emit_insn (pat);
2134 end_sequence ();
2136 /* Calculate implicit clobbers. */
2137 extract_insn (insn);
2138 preprocess_constraints (insn);
2139 ira_implicitly_set_insn_hard_regs (&temp);
2140 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2142 /* If any implicit clobber registers intersect with regular ones in
2143 through_insn, we have a dependency and thus bail out. */
2144 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2146 vinsn_t vi = INSN_VINSN (through_insn);
2147 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2148 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2149 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2150 return true;
2153 return false;
2156 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2157 performing necessary transformations. Record the type of transformation
2158 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2159 permit all dependencies except true ones, and try to remove those
2160 too via forward substitution. All cases when a non-eliminable
2161 non-zero cost dependency exists inside an insn group will be fixed
2162 in tick_check_p instead. */
2163 static enum MOVEUP_EXPR_CODE
2164 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2165 enum local_trans_type *ptrans_type)
2167 vinsn_t vi = EXPR_VINSN (expr);
2168 insn_t insn = VINSN_INSN_RTX (vi);
2169 bool was_changed = false;
2170 bool as_rhs = false;
2171 ds_t *has_dep_p;
2172 ds_t full_ds;
2174 /* ??? We use dependencies of non-debug insns on debug insns to
2175 indicate that the debug insns need to be reset if the non-debug
2176 insn is pulled ahead of it. It's hard to figure out how to
2177 introduce such a notion in sel-sched, but it already fails to
2178 support debug insns in other ways, so we just go ahead and
2179 let the deug insns go corrupt for now. */
2180 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2181 return MOVEUP_EXPR_SAME;
2183 /* When inside_insn_group, delegate to the helper. */
2184 if (inside_insn_group)
2185 return moveup_expr_inside_insn_group (expr, through_insn);
2187 /* Deal with unique insns and control dependencies. */
2188 if (VINSN_UNIQUE_P (vi))
2190 /* We can move jumps without side-effects or jumps that are
2191 mutually exclusive with instruction THROUGH_INSN (all in cases
2192 dependencies allow to do so and jump is not speculative). */
2193 if (control_flow_insn_p (insn))
2195 basic_block fallthru_bb;
2197 /* Do not move checks and do not move jumps through other
2198 jumps. */
2199 if (control_flow_insn_p (through_insn)
2200 || sel_insn_is_speculation_check (insn))
2201 return MOVEUP_EXPR_NULL;
2203 /* Don't move jumps through CFG joins. */
2204 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2205 return MOVEUP_EXPR_NULL;
2207 /* The jump should have a clear fallthru block, and
2208 this block should be in the current region. */
2209 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2210 || ! in_current_region_p (fallthru_bb))
2211 return MOVEUP_EXPR_NULL;
2213 /* And it should be mutually exclusive with through_insn. */
2214 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2215 && ! DEBUG_INSN_P (through_insn))
2216 return MOVEUP_EXPR_NULL;
2219 /* Don't move what we can't move. */
2220 if (EXPR_CANT_MOVE (expr)
2221 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2222 return MOVEUP_EXPR_NULL;
2224 /* Don't move SCHED_GROUP instruction through anything.
2225 If we don't force this, then it will be possible to start
2226 scheduling a sched_group before all its dependencies are
2227 resolved.
2228 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2229 as late as possible through rank_for_schedule. */
2230 if (SCHED_GROUP_P (insn))
2231 return MOVEUP_EXPR_NULL;
2233 else
2234 gcc_assert (!control_flow_insn_p (insn));
2236 /* Don't move debug insns if this would require bookkeeping. */
2237 if (DEBUG_INSN_P (insn)
2238 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2239 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2240 return MOVEUP_EXPR_NULL;
2242 /* Deal with data dependencies. */
2243 was_target_conflict = false;
2244 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2245 if (full_ds == 0)
2247 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2248 return MOVEUP_EXPR_SAME;
2250 else
2252 /* We can move UNIQUE insn up only as a whole and unchanged,
2253 so it shouldn't have any dependencies. */
2254 if (VINSN_UNIQUE_P (vi))
2255 return MOVEUP_EXPR_NULL;
2258 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2260 int res;
2262 res = speculate_expr (expr, full_ds);
2263 if (res >= 0)
2265 /* Speculation was successful. */
2266 full_ds = 0;
2267 was_changed = (res > 0);
2268 if (res == 2)
2269 was_target_conflict = true;
2270 if (ptrans_type)
2271 *ptrans_type = TRANS_SPECULATION;
2272 sel_clear_has_dependence ();
2276 if (has_dep_p[DEPS_IN_INSN])
2277 /* We have some dependency that cannot be discarded. */
2278 return MOVEUP_EXPR_NULL;
2280 if (has_dep_p[DEPS_IN_LHS])
2282 /* Only separable insns can be moved up with the new register.
2283 Anyways, we should mark that the original register is
2284 unavailable. */
2285 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2286 return MOVEUP_EXPR_NULL;
2288 /* When renaming a hard register to a pseudo before reload, extra
2289 dependencies can occur from the implicit clobbers of the insn.
2290 Filter out such cases here. */
2291 if (!reload_completed && REG_P (EXPR_LHS (expr))
2292 && HARD_REGISTER_P (EXPR_LHS (expr))
2293 && implicit_clobber_conflict_p (through_insn, expr))
2295 if (sched_verbose >= 6)
2296 sel_print ("implicit clobbers conflict detected, ");
2297 return MOVEUP_EXPR_NULL;
2299 EXPR_TARGET_AVAILABLE (expr) = false;
2300 was_target_conflict = true;
2301 as_rhs = true;
2304 /* At this point we have either separable insns, that will be lifted
2305 up only as RHSes, or non-separable insns with no dependency in lhs.
2306 If dependency is in RHS, then try to perform substitution and move up
2307 substituted RHS:
2309 Ex. 1: Ex.2
2310 y = x; y = x;
2311 z = y*2; y = y*2;
2313 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2314 moved above y=x assignment as z=x*2.
2316 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2317 side can be moved because of the output dependency. The operation was
2318 cropped to its rhs above. */
2319 if (has_dep_p[DEPS_IN_RHS])
2321 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2323 /* Can't substitute UNIQUE VINSNs. */
2324 gcc_assert (!VINSN_UNIQUE_P (vi));
2326 if (can_speculate_dep_p (*rhs_dsp))
2328 int res;
2330 res = speculate_expr (expr, *rhs_dsp);
2331 if (res >= 0)
2333 /* Speculation was successful. */
2334 *rhs_dsp = 0;
2335 was_changed = (res > 0);
2336 if (res == 2)
2337 was_target_conflict = true;
2338 if (ptrans_type)
2339 *ptrans_type = TRANS_SPECULATION;
2341 else
2342 return MOVEUP_EXPR_NULL;
2344 else if (can_substitute_through_p (through_insn,
2345 *rhs_dsp)
2346 && substitute_reg_in_expr (expr, through_insn, false))
2348 /* ??? We cannot perform substitution AND speculation on the same
2349 insn. */
2350 gcc_assert (!was_changed);
2351 was_changed = true;
2352 if (ptrans_type)
2353 *ptrans_type = TRANS_SUBSTITUTION;
2354 EXPR_WAS_SUBSTITUTED (expr) = true;
2356 else
2357 return MOVEUP_EXPR_NULL;
2360 /* Don't move trapping insns through jumps.
2361 This check should be at the end to give a chance to control speculation
2362 to perform its duties. */
2363 if (CANT_MOVE_TRAPPING (expr, through_insn))
2364 return MOVEUP_EXPR_NULL;
2366 return (was_changed
2367 ? MOVEUP_EXPR_CHANGED
2368 : (as_rhs
2369 ? MOVEUP_EXPR_AS_RHS
2370 : MOVEUP_EXPR_SAME));
2373 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2374 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2375 that can exist within a parallel group. Write to RES the resulting
2376 code for moveup_expr. */
2377 static bool
2378 try_bitmap_cache (expr_t expr, insn_t insn,
2379 bool inside_insn_group,
2380 enum MOVEUP_EXPR_CODE *res)
2382 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2384 /* First check whether we've analyzed this situation already. */
2385 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2387 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2389 if (sched_verbose >= 6)
2390 sel_print ("removed (cached)\n");
2391 *res = MOVEUP_EXPR_NULL;
2392 return true;
2394 else
2396 if (sched_verbose >= 6)
2397 sel_print ("unchanged (cached)\n");
2398 *res = MOVEUP_EXPR_SAME;
2399 return true;
2402 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2404 if (inside_insn_group)
2406 if (sched_verbose >= 6)
2407 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2408 *res = MOVEUP_EXPR_SAME;
2409 return true;
2412 else
2413 EXPR_TARGET_AVAILABLE (expr) = false;
2415 /* This is the only case when propagation result can change over time,
2416 as we can dynamically switch off scheduling as RHS. In this case,
2417 just check the flag to reach the correct decision. */
2418 if (enable_schedule_as_rhs_p)
2420 if (sched_verbose >= 6)
2421 sel_print ("unchanged (as RHS, cached)\n");
2422 *res = MOVEUP_EXPR_AS_RHS;
2423 return true;
2425 else
2427 if (sched_verbose >= 6)
2428 sel_print ("removed (cached as RHS, but renaming"
2429 " is now disabled)\n");
2430 *res = MOVEUP_EXPR_NULL;
2431 return true;
2435 return false;
2438 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2439 if successful. Write to RES the resulting code for moveup_expr. */
2440 static bool
2441 try_transformation_cache (expr_t expr, insn_t insn,
2442 enum MOVEUP_EXPR_CODE *res)
2444 struct transformed_insns *pti
2445 = (struct transformed_insns *)
2446 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2447 &EXPR_VINSN (expr),
2448 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2449 if (pti)
2451 /* This EXPR was already moved through this insn and was
2452 changed as a result. Fetch the proper data from
2453 the hashtable. */
2454 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2455 INSN_UID (insn), pti->type,
2456 pti->vinsn_old, pti->vinsn_new,
2457 EXPR_SPEC_DONE_DS (expr));
2459 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2460 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2461 change_vinsn_in_expr (expr, pti->vinsn_new);
2462 if (pti->was_target_conflict)
2463 EXPR_TARGET_AVAILABLE (expr) = false;
2464 if (pti->type == TRANS_SPECULATION)
2466 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2467 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2470 if (sched_verbose >= 6)
2472 sel_print ("changed (cached): ");
2473 dump_expr (expr);
2474 sel_print ("\n");
2477 *res = MOVEUP_EXPR_CHANGED;
2478 return true;
2481 return false;
2484 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2485 static void
2486 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2487 enum MOVEUP_EXPR_CODE res)
2489 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2491 /* Do not cache result of propagating jumps through an insn group,
2492 as it is always true, which is not useful outside the group. */
2493 if (inside_insn_group)
2494 return;
2496 if (res == MOVEUP_EXPR_NULL)
2498 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2499 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2501 else if (res == MOVEUP_EXPR_SAME)
2503 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2504 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2506 else if (res == MOVEUP_EXPR_AS_RHS)
2508 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2509 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2511 else
2512 gcc_unreachable ();
2515 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2516 and transformation type TRANS_TYPE. */
2517 static void
2518 update_transformation_cache (expr_t expr, insn_t insn,
2519 bool inside_insn_group,
2520 enum local_trans_type trans_type,
2521 vinsn_t expr_old_vinsn)
2523 struct transformed_insns *pti;
2525 if (inside_insn_group)
2526 return;
2528 pti = XNEW (struct transformed_insns);
2529 pti->vinsn_old = expr_old_vinsn;
2530 pti->vinsn_new = EXPR_VINSN (expr);
2531 pti->type = trans_type;
2532 pti->was_target_conflict = was_target_conflict;
2533 pti->ds = EXPR_SPEC_DONE_DS (expr);
2534 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2535 vinsn_attach (pti->vinsn_old);
2536 vinsn_attach (pti->vinsn_new);
2537 *((struct transformed_insns **)
2538 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2539 pti, VINSN_HASH_RTX (expr_old_vinsn),
2540 INSERT)) = pti;
2543 /* Same as moveup_expr, but first looks up the result of
2544 transformation in caches. */
2545 static enum MOVEUP_EXPR_CODE
2546 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2548 enum MOVEUP_EXPR_CODE res;
2549 bool got_answer = false;
2551 if (sched_verbose >= 6)
2553 sel_print ("Moving ");
2554 dump_expr (expr);
2555 sel_print (" through %d: ", INSN_UID (insn));
2558 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2559 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2560 == EXPR_INSN_RTX (expr)))
2561 /* Don't use cached information for debug insns that are heads of
2562 basic blocks. */;
2563 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2564 /* When inside insn group, we do not want remove stores conflicting
2565 with previosly issued loads. */
2566 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2567 else if (try_transformation_cache (expr, insn, &res))
2568 got_answer = true;
2570 if (! got_answer)
2572 /* Invoke moveup_expr and record the results. */
2573 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2574 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2575 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2576 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2577 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2579 /* ??? Invent something better than this. We can't allow old_vinsn
2580 to go, we need it for the history vector. */
2581 vinsn_attach (expr_old_vinsn);
2583 res = moveup_expr (expr, insn, inside_insn_group,
2584 &trans_type);
2585 switch (res)
2587 case MOVEUP_EXPR_NULL:
2588 update_bitmap_cache (expr, insn, inside_insn_group, res);
2589 if (sched_verbose >= 6)
2590 sel_print ("removed\n");
2591 break;
2593 case MOVEUP_EXPR_SAME:
2594 update_bitmap_cache (expr, insn, inside_insn_group, res);
2595 if (sched_verbose >= 6)
2596 sel_print ("unchanged\n");
2597 break;
2599 case MOVEUP_EXPR_AS_RHS:
2600 gcc_assert (!unique_p || inside_insn_group);
2601 update_bitmap_cache (expr, insn, inside_insn_group, res);
2602 if (sched_verbose >= 6)
2603 sel_print ("unchanged (as RHS)\n");
2604 break;
2606 case MOVEUP_EXPR_CHANGED:
2607 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2608 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2609 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2610 INSN_UID (insn), trans_type,
2611 expr_old_vinsn, EXPR_VINSN (expr),
2612 expr_old_spec_ds);
2613 update_transformation_cache (expr, insn, inside_insn_group,
2614 trans_type, expr_old_vinsn);
2615 if (sched_verbose >= 6)
2617 sel_print ("changed: ");
2618 dump_expr (expr);
2619 sel_print ("\n");
2621 break;
2622 default:
2623 gcc_unreachable ();
2626 vinsn_detach (expr_old_vinsn);
2629 return res;
2632 /* Moves an av set AVP up through INSN, performing necessary
2633 transformations. */
2634 static void
2635 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2637 av_set_iterator i;
2638 expr_t expr;
2640 FOR_EACH_EXPR_1 (expr, i, avp)
2643 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2645 case MOVEUP_EXPR_SAME:
2646 case MOVEUP_EXPR_AS_RHS:
2647 break;
2649 case MOVEUP_EXPR_NULL:
2650 av_set_iter_remove (&i);
2651 break;
2653 case MOVEUP_EXPR_CHANGED:
2654 expr = merge_with_other_exprs (avp, &i, expr);
2655 break;
2657 default:
2658 gcc_unreachable ();
2663 /* Moves AVP set along PATH. */
2664 static void
2665 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2667 int last_cycle;
2669 if (sched_verbose >= 6)
2670 sel_print ("Moving expressions up in the insn group...\n");
2671 if (! path)
2672 return;
2673 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2674 while (path
2675 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2677 moveup_set_expr (avp, ILIST_INSN (path), true);
2678 path = ILIST_NEXT (path);
2682 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2683 static bool
2684 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2686 expr_def _tmp, *tmp = &_tmp;
2687 int last_cycle;
2688 bool res = true;
2690 copy_expr_onside (tmp, expr);
2691 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2692 while (path
2693 && res
2694 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2696 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2697 != MOVEUP_EXPR_NULL);
2698 path = ILIST_NEXT (path);
2701 if (res)
2703 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2704 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2706 if (tmp_vinsn != expr_vliw_vinsn)
2707 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2710 clear_expr (tmp);
2711 return res;
2715 /* Functions that compute av and lv sets. */
2717 /* Returns true if INSN is not a downward continuation of the given path P in
2718 the current stage. */
2719 static bool
2720 is_ineligible_successor (insn_t insn, ilist_t p)
2722 insn_t prev_insn;
2724 /* Check if insn is not deleted. */
2725 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2726 gcc_unreachable ();
2727 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2728 gcc_unreachable ();
2730 /* If it's the first insn visited, then the successor is ok. */
2731 if (!p)
2732 return false;
2734 prev_insn = ILIST_INSN (p);
2736 if (/* a backward edge. */
2737 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2738 /* is already visited. */
2739 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2740 && (ilist_is_in_p (p, insn)
2741 /* We can reach another fence here and still seqno of insn
2742 would be equal to seqno of prev_insn. This is possible
2743 when prev_insn is a previously created bookkeeping copy.
2744 In that case it'd get a seqno of insn. Thus, check here
2745 whether insn is in current fence too. */
2746 || IN_CURRENT_FENCE_P (insn)))
2747 /* Was already scheduled on this round. */
2748 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2749 && IN_CURRENT_FENCE_P (insn))
2750 /* An insn from another fence could also be
2751 scheduled earlier even if this insn is not in
2752 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2753 || (!pipelining_p
2754 && INSN_SCHED_TIMES (insn) > 0))
2755 return true;
2756 else
2757 return false;
2760 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2761 of handling multiple successors and properly merging its av_sets. P is
2762 the current path traversed. WS is the size of lookahead window.
2763 Return the av set computed. */
2764 static av_set_t
2765 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2767 struct succs_info *sinfo;
2768 av_set_t expr_in_all_succ_branches = NULL;
2769 int is;
2770 insn_t succ, zero_succ = NULL;
2771 av_set_t av1 = NULL;
2773 gcc_assert (sel_bb_end_p (insn));
2775 /* Find different kind of successors needed for correct computing of
2776 SPEC and TARGET_AVAILABLE attributes. */
2777 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2779 /* Debug output. */
2780 if (sched_verbose >= 6)
2782 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2783 dump_insn_vector (sinfo->succs_ok);
2784 sel_print ("\n");
2785 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2786 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2789 /* Add insn to the tail of current path. */
2790 ilist_add (&p, insn);
2792 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2794 av_set_t succ_set;
2796 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2797 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2799 av_set_split_usefulness (succ_set,
2800 sinfo->probs_ok[is],
2801 sinfo->all_prob);
2803 if (sinfo->all_succs_n > 1)
2805 /* Find EXPR'es that came from *all* successors and save them
2806 into expr_in_all_succ_branches. This set will be used later
2807 for calculating speculation attributes of EXPR'es. */
2808 if (is == 0)
2810 expr_in_all_succ_branches = av_set_copy (succ_set);
2812 /* Remember the first successor for later. */
2813 zero_succ = succ;
2815 else
2817 av_set_iterator i;
2818 expr_t expr;
2820 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2821 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2822 av_set_iter_remove (&i);
2826 /* Union the av_sets. Check liveness restrictions on target registers
2827 in special case of two successors. */
2828 if (sinfo->succs_ok_n == 2 && is == 1)
2830 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2831 basic_block bb1 = BLOCK_FOR_INSN (succ);
2833 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2834 av_set_union_and_live (&av1, &succ_set,
2835 BB_LV_SET (bb0),
2836 BB_LV_SET (bb1),
2837 insn);
2839 else
2840 av_set_union_and_clear (&av1, &succ_set, insn);
2843 /* Check liveness restrictions via hard way when there are more than
2844 two successors. */
2845 if (sinfo->succs_ok_n > 2)
2846 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2848 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2850 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2851 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2852 BB_LV_SET (succ_bb));
2855 /* Finally, check liveness restrictions on paths leaving the region. */
2856 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2857 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2858 mark_unavailable_targets
2859 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2861 if (sinfo->all_succs_n > 1)
2863 av_set_iterator i;
2864 expr_t expr;
2866 /* Increase the spec attribute of all EXPR'es that didn't come
2867 from all successors. */
2868 FOR_EACH_EXPR (expr, i, av1)
2869 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2870 EXPR_SPEC (expr)++;
2872 av_set_clear (&expr_in_all_succ_branches);
2874 /* Do not move conditional branches through other
2875 conditional branches. So, remove all conditional
2876 branches from av_set if current operator is a conditional
2877 branch. */
2878 av_set_substract_cond_branches (&av1);
2881 ilist_remove (&p);
2882 free_succs_info (sinfo);
2884 if (sched_verbose >= 6)
2886 sel_print ("av_succs (%d): ", INSN_UID (insn));
2887 dump_av_set (av1);
2888 sel_print ("\n");
2891 return av1;
2894 /* This function computes av_set for the FIRST_INSN by dragging valid
2895 av_set through all basic block insns either from the end of basic block
2896 (computed using compute_av_set_at_bb_end) or from the insn on which
2897 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2898 below the basic block and handling conditional branches.
2899 FIRST_INSN - the basic block head, P - path consisting of the insns
2900 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2901 and bb ends are added to the path), WS - current window size,
2902 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2903 static av_set_t
2904 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2905 bool need_copy_p)
2907 insn_t cur_insn;
2908 int end_ws = ws;
2909 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2910 insn_t after_bb_end = NEXT_INSN (bb_end);
2911 insn_t last_insn;
2912 av_set_t av = NULL;
2913 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2915 /* Return NULL if insn is not on the legitimate downward path. */
2916 if (is_ineligible_successor (first_insn, p))
2918 if (sched_verbose >= 6)
2919 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2921 return NULL;
2924 /* If insn already has valid av(insn) computed, just return it. */
2925 if (AV_SET_VALID_P (first_insn))
2927 av_set_t av_set;
2929 if (sel_bb_head_p (first_insn))
2930 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2931 else
2932 av_set = NULL;
2934 if (sched_verbose >= 6)
2936 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2937 dump_av_set (av_set);
2938 sel_print ("\n");
2941 return need_copy_p ? av_set_copy (av_set) : av_set;
2944 ilist_add (&p, first_insn);
2946 /* As the result after this loop have completed, in LAST_INSN we'll
2947 have the insn which has valid av_set to start backward computation
2948 from: it either will be NULL because on it the window size was exceeded
2949 or other valid av_set as returned by compute_av_set for the last insn
2950 of the basic block. */
2951 for (last_insn = first_insn; last_insn != after_bb_end;
2952 last_insn = NEXT_INSN (last_insn))
2954 /* We may encounter valid av_set not only on bb_head, but also on
2955 those insns on which previously MAX_WS was exceeded. */
2956 if (AV_SET_VALID_P (last_insn))
2958 if (sched_verbose >= 6)
2959 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2960 break;
2963 /* The special case: the last insn of the BB may be an
2964 ineligible_successor due to its SEQ_NO that was set on
2965 it as a bookkeeping. */
2966 if (last_insn != first_insn
2967 && is_ineligible_successor (last_insn, p))
2969 if (sched_verbose >= 6)
2970 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2971 break;
2974 if (DEBUG_INSN_P (last_insn))
2975 continue;
2977 if (end_ws > max_ws)
2979 /* We can reach max lookahead size at bb_header, so clean av_set
2980 first. */
2981 INSN_WS_LEVEL (last_insn) = global_level;
2983 if (sched_verbose >= 6)
2984 sel_print ("Insn %d is beyond the software lookahead window size\n",
2985 INSN_UID (last_insn));
2986 break;
2989 end_ws++;
2992 /* Get the valid av_set into AV above the LAST_INSN to start backward
2993 computation from. It either will be empty av_set or av_set computed from
2994 the successors on the last insn of the current bb. */
2995 if (last_insn != after_bb_end)
2997 av = NULL;
2999 /* This is needed only to obtain av_sets that are identical to
3000 those computed by the old compute_av_set version. */
3001 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
3002 av_set_add (&av, INSN_EXPR (last_insn));
3004 else
3005 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
3006 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
3008 /* Compute av_set in AV starting from below the LAST_INSN up to
3009 location above the FIRST_INSN. */
3010 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
3011 cur_insn = PREV_INSN (cur_insn))
3012 if (!INSN_NOP_P (cur_insn))
3014 expr_t expr;
3016 moveup_set_expr (&av, cur_insn, false);
3018 /* If the expression for CUR_INSN is already in the set,
3019 replace it by the new one. */
3020 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3021 if (expr != NULL)
3023 clear_expr (expr);
3024 copy_expr (expr, INSN_EXPR (cur_insn));
3026 else
3027 av_set_add (&av, INSN_EXPR (cur_insn));
3030 /* Clear stale bb_av_set. */
3031 if (sel_bb_head_p (first_insn))
3033 av_set_clear (&BB_AV_SET (cur_bb));
3034 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3035 BB_AV_LEVEL (cur_bb) = global_level;
3038 if (sched_verbose >= 6)
3040 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3041 dump_av_set (av);
3042 sel_print ("\n");
3045 ilist_remove (&p);
3046 return av;
3049 /* Compute av set before INSN.
3050 INSN - the current operation (actual rtx INSN)
3051 P - the current path, which is list of insns visited so far
3052 WS - software lookahead window size.
3053 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3054 if we want to save computed av_set in s_i_d, we should make a copy of it.
3056 In the resulting set we will have only expressions that don't have delay
3057 stalls and nonsubstitutable dependences. */
3058 static av_set_t
3059 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3061 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3064 /* Propagate a liveness set LV through INSN. */
3065 static void
3066 propagate_lv_set (regset lv, insn_t insn)
3068 gcc_assert (INSN_P (insn));
3070 if (INSN_NOP_P (insn))
3071 return;
3073 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3076 /* Return livness set at the end of BB. */
3077 static regset
3078 compute_live_after_bb (basic_block bb)
3080 edge e;
3081 edge_iterator ei;
3082 regset lv = get_clear_regset_from_pool ();
3084 gcc_assert (!ignore_first);
3086 FOR_EACH_EDGE (e, ei, bb->succs)
3087 if (sel_bb_empty_p (e->dest))
3089 if (! BB_LV_SET_VALID_P (e->dest))
3091 gcc_unreachable ();
3092 gcc_assert (BB_LV_SET (e->dest) == NULL);
3093 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3094 BB_LV_SET_VALID_P (e->dest) = true;
3096 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3098 else
3099 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3101 return lv;
3104 /* Compute the set of all live registers at the point before INSN and save
3105 it at INSN if INSN is bb header. */
3106 regset
3107 compute_live (insn_t insn)
3109 basic_block bb = BLOCK_FOR_INSN (insn);
3110 insn_t final, temp;
3111 regset lv;
3113 /* Return the valid set if we're already on it. */
3114 if (!ignore_first)
3116 regset src = NULL;
3118 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3119 src = BB_LV_SET (bb);
3120 else
3122 gcc_assert (in_current_region_p (bb));
3123 if (INSN_LIVE_VALID_P (insn))
3124 src = INSN_LIVE (insn);
3127 if (src)
3129 lv = get_regset_from_pool ();
3130 COPY_REG_SET (lv, src);
3132 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3134 COPY_REG_SET (BB_LV_SET (bb), lv);
3135 BB_LV_SET_VALID_P (bb) = true;
3138 return_regset_to_pool (lv);
3139 return lv;
3143 /* We've skipped the wrong lv_set. Don't skip the right one. */
3144 ignore_first = false;
3145 gcc_assert (in_current_region_p (bb));
3147 /* Find a valid LV set in this block or below, if needed.
3148 Start searching from the next insn: either ignore_first is true, or
3149 INSN doesn't have a correct live set. */
3150 temp = NEXT_INSN (insn);
3151 final = NEXT_INSN (BB_END (bb));
3152 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3153 temp = NEXT_INSN (temp);
3154 if (temp == final)
3156 lv = compute_live_after_bb (bb);
3157 temp = PREV_INSN (temp);
3159 else
3161 lv = get_regset_from_pool ();
3162 COPY_REG_SET (lv, INSN_LIVE (temp));
3165 /* Put correct lv sets on the insns which have bad sets. */
3166 final = PREV_INSN (insn);
3167 while (temp != final)
3169 propagate_lv_set (lv, temp);
3170 COPY_REG_SET (INSN_LIVE (temp), lv);
3171 INSN_LIVE_VALID_P (temp) = true;
3172 temp = PREV_INSN (temp);
3175 /* Also put it in a BB. */
3176 if (sel_bb_head_p (insn))
3178 basic_block bb = BLOCK_FOR_INSN (insn);
3180 COPY_REG_SET (BB_LV_SET (bb), lv);
3181 BB_LV_SET_VALID_P (bb) = true;
3184 /* We return LV to the pool, but will not clear it there. Thus we can
3185 legimatelly use LV till the next use of regset_pool_get (). */
3186 return_regset_to_pool (lv);
3187 return lv;
3190 /* Update liveness sets for INSN. */
3191 static inline void
3192 update_liveness_on_insn (rtx_insn *insn)
3194 ignore_first = true;
3195 compute_live (insn);
3198 /* Compute liveness below INSN and write it into REGS. */
3199 static inline void
3200 compute_live_below_insn (rtx_insn *insn, regset regs)
3202 rtx_insn *succ;
3203 succ_iterator si;
3205 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3206 IOR_REG_SET (regs, compute_live (succ));
3209 /* Update the data gathered in av and lv sets starting from INSN. */
3210 static void
3211 update_data_sets (rtx_insn *insn)
3213 update_liveness_on_insn (insn);
3214 if (sel_bb_head_p (insn))
3216 gcc_assert (AV_LEVEL (insn) != 0);
3217 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3218 compute_av_set (insn, NULL, 0, 0);
3223 /* Helper for move_op () and find_used_regs ().
3224 Return speculation type for which a check should be created on the place
3225 of INSN. EXPR is one of the original ops we are searching for. */
3226 static ds_t
3227 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3229 ds_t to_check_ds;
3230 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3232 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3234 if (targetm.sched.get_insn_checked_ds)
3235 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3237 if (spec_info != NULL
3238 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3239 already_checked_ds |= BEGIN_CONTROL;
3241 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3243 to_check_ds &= ~already_checked_ds;
3245 return to_check_ds;
3248 /* Find the set of registers that are unavailable for storing expres
3249 while moving ORIG_OPS up on the path starting from INSN due to
3250 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3252 All the original operations found during the traversal are saved in the
3253 ORIGINAL_INSNS list.
3255 REG_RENAME_P denotes the set of hardware registers that
3256 can not be used with renaming due to the register class restrictions,
3257 mode restrictions and other (the register we'll choose should be
3258 compatible class with the original uses, shouldn't be in call_used_regs,
3259 should be HARD_REGNO_RENAME_OK etc).
3261 Returns TRUE if we've found all original insns, FALSE otherwise.
3263 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3264 to traverse the code motion paths. This helper function finds registers
3265 that are not available for storing expres while moving ORIG_OPS up on the
3266 path starting from INSN. A register considered as used on the moving path,
3267 if one of the following conditions is not satisfied:
3269 (1) a register not set or read on any path from xi to an instance of
3270 the original operation,
3271 (2) not among the live registers of the point immediately following the
3272 first original operation on a given downward path, except for the
3273 original target register of the operation,
3274 (3) not live on the other path of any conditional branch that is passed
3275 by the operation, in case original operations are not present on
3276 both paths of the conditional branch.
3278 All the original operations found during the traversal are saved in the
3279 ORIGINAL_INSNS list.
3281 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3282 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3283 to unavailable hard regs at the point original operation is found. */
3285 static bool
3286 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3287 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3289 def_list_iterator i;
3290 def_t def;
3291 int res;
3292 bool needs_spec_check_p = false;
3293 expr_t expr;
3294 av_set_iterator expr_iter;
3295 struct fur_static_params sparams;
3296 struct cmpd_local_params lparams;
3298 /* We haven't visited any blocks yet. */
3299 bitmap_clear (code_motion_visited_blocks);
3301 /* Init parameters for code_motion_path_driver. */
3302 sparams.crosses_call = false;
3303 sparams.original_insns = original_insns;
3304 sparams.used_regs = used_regs;
3306 /* Set the appropriate hooks and data. */
3307 code_motion_path_driver_info = &fur_hooks;
3309 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3311 reg_rename_p->crosses_call |= sparams.crosses_call;
3313 gcc_assert (res == 1);
3314 gcc_assert (original_insns && *original_insns);
3316 /* ??? We calculate whether an expression needs a check when computing
3317 av sets. This information is not as precise as it could be due to
3318 merging this bit in merge_expr. We can do better in find_used_regs,
3319 but we want to avoid multiple traversals of the same code motion
3320 paths. */
3321 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3322 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3324 /* Mark hardware regs in REG_RENAME_P that are not suitable
3325 for renaming expr in INSN due to hardware restrictions (register class,
3326 modes compatibility etc). */
3327 FOR_EACH_DEF (def, i, *original_insns)
3329 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3331 if (VINSN_SEPARABLE_P (vinsn))
3332 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3334 /* Do not allow clobbering of ld.[sa] address in case some of the
3335 original operations need a check. */
3336 if (needs_spec_check_p)
3337 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3340 return true;
3344 /* Functions to choose the best insn from available ones. */
3346 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3347 static int
3348 sel_target_adjust_priority (expr_t expr)
3350 int priority = EXPR_PRIORITY (expr);
3351 int new_priority;
3353 if (targetm.sched.adjust_priority)
3354 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3355 else
3356 new_priority = priority;
3358 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3359 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3361 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3363 if (sched_verbose >= 4)
3364 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3365 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3366 EXPR_PRIORITY_ADJ (expr), new_priority);
3368 return new_priority;
3371 /* Rank two available exprs for schedule. Never return 0 here. */
3372 static int
3373 sel_rank_for_schedule (const void *x, const void *y)
3375 expr_t tmp = *(const expr_t *) y;
3376 expr_t tmp2 = *(const expr_t *) x;
3377 insn_t tmp_insn, tmp2_insn;
3378 vinsn_t tmp_vinsn, tmp2_vinsn;
3379 int val;
3381 tmp_vinsn = EXPR_VINSN (tmp);
3382 tmp2_vinsn = EXPR_VINSN (tmp2);
3383 tmp_insn = EXPR_INSN_RTX (tmp);
3384 tmp2_insn = EXPR_INSN_RTX (tmp2);
3386 /* Schedule debug insns as early as possible. */
3387 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3388 return -1;
3389 else if (DEBUG_INSN_P (tmp2_insn))
3390 return 1;
3392 /* Prefer SCHED_GROUP_P insns to any others. */
3393 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3395 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3396 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3398 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3399 cannot be cloned. */
3400 if (VINSN_UNIQUE_P (tmp2_vinsn))
3401 return 1;
3402 return -1;
3405 /* Discourage scheduling of speculative checks. */
3406 val = (sel_insn_is_speculation_check (tmp_insn)
3407 - sel_insn_is_speculation_check (tmp2_insn));
3408 if (val)
3409 return val;
3411 /* Prefer not scheduled insn over scheduled one. */
3412 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3414 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3415 if (val)
3416 return val;
3419 /* Prefer jump over non-jump instruction. */
3420 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3421 return -1;
3422 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3423 return 1;
3425 /* Prefer an expr with greater priority. */
3426 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3428 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3429 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3431 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3433 else
3434 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3435 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3436 if (val)
3437 return val;
3439 if (spec_info != NULL && spec_info->mask != 0)
3440 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3442 ds_t ds1, ds2;
3443 dw_t dw1, dw2;
3444 int dw;
3446 ds1 = EXPR_SPEC_DONE_DS (tmp);
3447 if (ds1)
3448 dw1 = ds_weak (ds1);
3449 else
3450 dw1 = NO_DEP_WEAK;
3452 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3453 if (ds2)
3454 dw2 = ds_weak (ds2);
3455 else
3456 dw2 = NO_DEP_WEAK;
3458 dw = dw2 - dw1;
3459 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3460 return dw;
3463 /* Prefer an old insn to a bookkeeping insn. */
3464 if (INSN_UID (tmp_insn) < first_emitted_uid
3465 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3466 return -1;
3467 if (INSN_UID (tmp_insn) >= first_emitted_uid
3468 && INSN_UID (tmp2_insn) < first_emitted_uid)
3469 return 1;
3471 /* Prefer an insn with smaller UID, as a last resort.
3472 We can't safely use INSN_LUID as it is defined only for those insns
3473 that are in the stream. */
3474 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3477 /* Filter out expressions from av set pointed to by AV_PTR
3478 that are pipelined too many times. */
3479 static void
3480 process_pipelined_exprs (av_set_t *av_ptr)
3482 expr_t expr;
3483 av_set_iterator si;
3485 /* Don't pipeline already pipelined code as that would increase
3486 number of unnecessary register moves. */
3487 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3489 if (EXPR_SCHED_TIMES (expr)
3490 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3491 av_set_iter_remove (&si);
3495 /* Filter speculative insns from AV_PTR if we don't want them. */
3496 static void
3497 process_spec_exprs (av_set_t *av_ptr)
3499 expr_t expr;
3500 av_set_iterator si;
3502 if (spec_info == NULL)
3503 return;
3505 /* Scan *AV_PTR to find out if we want to consider speculative
3506 instructions for scheduling. */
3507 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3509 ds_t ds;
3511 ds = EXPR_SPEC_DONE_DS (expr);
3513 /* The probability of a success is too low - don't speculate. */
3514 if ((ds & SPECULATIVE)
3515 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3516 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3517 || (pipelining_p && false
3518 && (ds & DATA_SPEC)
3519 && (ds & CONTROL_SPEC))))
3521 av_set_iter_remove (&si);
3522 continue;
3527 /* Search for any use-like insns in AV_PTR and decide on scheduling
3528 them. Return one when found, and NULL otherwise.
3529 Note that we check here whether a USE could be scheduled to avoid
3530 an infinite loop later. */
3531 static expr_t
3532 process_use_exprs (av_set_t *av_ptr)
3534 expr_t expr;
3535 av_set_iterator si;
3536 bool uses_present_p = false;
3537 bool try_uses_p = true;
3539 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3541 /* This will also initialize INSN_CODE for later use. */
3542 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3544 /* If we have a USE in *AV_PTR that was not scheduled yet,
3545 do so because it will do good only. */
3546 if (EXPR_SCHED_TIMES (expr) <= 0)
3548 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3549 return expr;
3551 av_set_iter_remove (&si);
3553 else
3555 gcc_assert (pipelining_p);
3557 uses_present_p = true;
3560 else
3561 try_uses_p = false;
3564 if (uses_present_p)
3566 /* If we don't want to schedule any USEs right now and we have some
3567 in *AV_PTR, remove them, else just return the first one found. */
3568 if (!try_uses_p)
3570 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3571 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3572 av_set_iter_remove (&si);
3574 else
3576 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3578 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3580 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3581 return expr;
3583 av_set_iter_remove (&si);
3588 return NULL;
3591 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3592 EXPR's history of changes. */
3593 static bool
3594 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3596 vinsn_t vinsn, expr_vinsn;
3597 int n;
3598 unsigned i;
3600 /* Start with checking expr itself and then proceed with all the old forms
3601 of expr taken from its history vector. */
3602 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3603 expr_vinsn;
3604 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3605 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3606 : NULL))
3607 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3608 if (VINSN_SEPARABLE_P (vinsn))
3610 if (vinsn_equal_p (vinsn, expr_vinsn))
3611 return true;
3613 else
3615 /* For non-separable instructions, the blocking insn can have
3616 another pattern due to substitution, and we can't choose
3617 different register as in the above case. Check all registers
3618 being written instead. */
3619 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3620 VINSN_REG_SETS (expr_vinsn)))
3621 return true;
3624 return false;
3627 #ifdef ENABLE_CHECKING
3628 /* Return true if either of expressions from ORIG_OPS can be blocked
3629 by previously created bookkeeping code. STATIC_PARAMS points to static
3630 parameters of move_op. */
3631 static bool
3632 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3634 expr_t expr;
3635 av_set_iterator iter;
3636 moveop_static_params_p sparams;
3638 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3639 created while scheduling on another fence. */
3640 FOR_EACH_EXPR (expr, iter, orig_ops)
3641 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3642 return true;
3644 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3645 sparams = (moveop_static_params_p) static_params;
3647 /* Expressions can be also blocked by bookkeeping created during current
3648 move_op. */
3649 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3650 FOR_EACH_EXPR (expr, iter, orig_ops)
3651 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3652 return true;
3654 /* Expressions in ORIG_OPS may have wrong destination register due to
3655 renaming. Check with the right register instead. */
3656 if (sparams->dest && REG_P (sparams->dest))
3658 rtx reg = sparams->dest;
3659 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3661 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3662 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3663 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3664 return true;
3667 return false;
3669 #endif
3671 /* Clear VINSN_VEC and detach vinsns. */
3672 static void
3673 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3675 unsigned len = vinsn_vec->length ();
3676 if (len > 0)
3678 vinsn_t vinsn;
3679 int n;
3681 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3682 vinsn_detach (vinsn);
3683 vinsn_vec->block_remove (0, len);
3687 /* Add the vinsn of EXPR to the VINSN_VEC. */
3688 static void
3689 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3691 vinsn_attach (EXPR_VINSN (expr));
3692 vinsn_vec->safe_push (EXPR_VINSN (expr));
3695 /* Free the vector representing blocked expressions. */
3696 static void
3697 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3699 vinsn_vec.release ();
3702 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3704 void sel_add_to_insn_priority (rtx insn, int amount)
3706 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3708 if (sched_verbose >= 2)
3709 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3710 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3711 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3714 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3715 true if there is something to schedule. BNDS and FENCE are current
3716 boundaries and fence, respectively. If we need to stall for some cycles
3717 before an expr from AV would become available, write this number to
3718 *PNEED_STALL. */
3719 static bool
3720 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3721 int *pneed_stall)
3723 av_set_iterator si;
3724 expr_t expr;
3725 int sched_next_worked = 0, stalled, n;
3726 static int av_max_prio, est_ticks_till_branch;
3727 int min_need_stall = -1;
3728 deps_t dc = BND_DC (BLIST_BND (bnds));
3730 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3731 already scheduled. */
3732 if (av == NULL)
3733 return false;
3735 /* Empty vector from the previous stuff. */
3736 if (vec_av_set.length () > 0)
3737 vec_av_set.block_remove (0, vec_av_set.length ());
3739 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3740 for each insn. */
3741 gcc_assert (vec_av_set.is_empty ());
3742 FOR_EACH_EXPR (expr, si, av)
3744 vec_av_set.safe_push (expr);
3746 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3748 /* Adjust priority using target backend hook. */
3749 sel_target_adjust_priority (expr);
3752 /* Sort the vector. */
3753 vec_av_set.qsort (sel_rank_for_schedule);
3755 /* We record maximal priority of insns in av set for current instruction
3756 group. */
3757 if (FENCE_STARTS_CYCLE_P (fence))
3758 av_max_prio = est_ticks_till_branch = INT_MIN;
3760 /* Filter out inappropriate expressions. Loop's direction is reversed to
3761 visit "best" instructions first. We assume that vec::unordered_remove
3762 moves last element in place of one being deleted. */
3763 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3765 expr_t expr = vec_av_set[n];
3766 insn_t insn = EXPR_INSN_RTX (expr);
3767 signed char target_available;
3768 bool is_orig_reg_p = true;
3769 int need_cycles, new_prio;
3770 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3772 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3773 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3775 vec_av_set.unordered_remove (n);
3776 continue;
3779 /* Set number of sched_next insns (just in case there
3780 could be several). */
3781 if (FENCE_SCHED_NEXT (fence))
3782 sched_next_worked++;
3784 /* Check all liveness requirements and try renaming.
3785 FIXME: try to minimize calls to this. */
3786 target_available = EXPR_TARGET_AVAILABLE (expr);
3788 /* If insn was already scheduled on the current fence,
3789 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3790 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3791 && !fence_insn_p)
3792 target_available = -1;
3794 /* If the availability of the EXPR is invalidated by the insertion of
3795 bookkeeping earlier, make sure that we won't choose this expr for
3796 scheduling if it's not separable, and if it is separable, then
3797 we have to recompute the set of available registers for it. */
3798 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3800 vec_av_set.unordered_remove (n);
3801 if (sched_verbose >= 4)
3802 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3803 INSN_UID (insn));
3804 continue;
3807 if (target_available == true)
3809 /* Do nothing -- we can use an existing register. */
3810 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3812 else if (/* Non-separable instruction will never
3813 get another register. */
3814 (target_available == false
3815 && !EXPR_SEPARABLE_P (expr))
3816 /* Don't try to find a register for low-priority expression. */
3817 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3818 /* ??? FIXME: Don't try to rename data speculation. */
3819 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3820 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3822 vec_av_set.unordered_remove (n);
3823 if (sched_verbose >= 4)
3824 sel_print ("Expr %d has no suitable target register\n",
3825 INSN_UID (insn));
3827 /* A fence insn should not get here. */
3828 gcc_assert (!fence_insn_p);
3829 continue;
3832 /* At this point a fence insn should always be available. */
3833 gcc_assert (!fence_insn_p
3834 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3836 /* Filter expressions that need to be renamed or speculated when
3837 pipelining, because compensating register copies or speculation
3838 checks are likely to be placed near the beginning of the loop,
3839 causing a stall. */
3840 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3841 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3843 /* Estimation of number of cycles until loop branch for
3844 renaming/speculation to be successful. */
3845 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3847 if ((int) current_loop_nest->ninsns < 9)
3849 vec_av_set.unordered_remove (n);
3850 if (sched_verbose >= 4)
3851 sel_print ("Pipelining expr %d will likely cause stall\n",
3852 INSN_UID (insn));
3853 continue;
3856 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3857 < need_n_ticks_till_branch * issue_rate / 2
3858 && est_ticks_till_branch < need_n_ticks_till_branch)
3860 vec_av_set.unordered_remove (n);
3861 if (sched_verbose >= 4)
3862 sel_print ("Pipelining expr %d will likely cause stall\n",
3863 INSN_UID (insn));
3864 continue;
3868 /* We want to schedule speculation checks as late as possible. Discard
3869 them from av set if there are instructions with higher priority. */
3870 if (sel_insn_is_speculation_check (insn)
3871 && EXPR_PRIORITY (expr) < av_max_prio)
3873 stalled++;
3874 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3875 vec_av_set.unordered_remove (n);
3876 if (sched_verbose >= 4)
3877 sel_print ("Delaying speculation check %d until its first use\n",
3878 INSN_UID (insn));
3879 continue;
3882 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3883 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3884 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3886 /* Don't allow any insns whose data is not yet ready.
3887 Check first whether we've already tried them and failed. */
3888 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3890 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3891 - FENCE_CYCLE (fence));
3892 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3893 est_ticks_till_branch = MAX (est_ticks_till_branch,
3894 EXPR_PRIORITY (expr) + need_cycles);
3896 if (need_cycles > 0)
3898 stalled++;
3899 min_need_stall = (min_need_stall < 0
3900 ? need_cycles
3901 : MIN (min_need_stall, need_cycles));
3902 vec_av_set.unordered_remove (n);
3904 if (sched_verbose >= 4)
3905 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3906 INSN_UID (insn),
3907 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3908 continue;
3912 /* Now resort to dependence analysis to find whether EXPR might be
3913 stalled due to dependencies from FENCE's context. */
3914 need_cycles = tick_check_p (expr, dc, fence);
3915 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3917 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3918 est_ticks_till_branch = MAX (est_ticks_till_branch,
3919 new_prio);
3921 if (need_cycles > 0)
3923 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3925 int new_size = INSN_UID (insn) * 3 / 2;
3927 FENCE_READY_TICKS (fence)
3928 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3929 new_size, FENCE_READY_TICKS_SIZE (fence),
3930 sizeof (int));
3932 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3933 = FENCE_CYCLE (fence) + need_cycles;
3935 stalled++;
3936 min_need_stall = (min_need_stall < 0
3937 ? need_cycles
3938 : MIN (min_need_stall, need_cycles));
3940 vec_av_set.unordered_remove (n);
3942 if (sched_verbose >= 4)
3943 sel_print ("Expr %d is not ready yet until cycle %d\n",
3944 INSN_UID (insn),
3945 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3946 continue;
3949 if (sched_verbose >= 4)
3950 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3951 min_need_stall = 0;
3954 /* Clear SCHED_NEXT. */
3955 if (FENCE_SCHED_NEXT (fence))
3957 gcc_assert (sched_next_worked == 1);
3958 FENCE_SCHED_NEXT (fence) = NULL;
3961 /* No need to stall if this variable was not initialized. */
3962 if (min_need_stall < 0)
3963 min_need_stall = 0;
3965 if (vec_av_set.is_empty ())
3967 /* We need to set *pneed_stall here, because later we skip this code
3968 when ready list is empty. */
3969 *pneed_stall = min_need_stall;
3970 return false;
3972 else
3973 gcc_assert (min_need_stall == 0);
3975 /* Sort the vector. */
3976 vec_av_set.qsort (sel_rank_for_schedule);
3978 if (sched_verbose >= 4)
3980 sel_print ("Total ready exprs: %d, stalled: %d\n",
3981 vec_av_set.length (), stalled);
3982 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3983 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3984 dump_expr (expr);
3985 sel_print ("\n");
3988 *pneed_stall = 0;
3989 return true;
3992 /* Convert a vectored and sorted av set to the ready list that
3993 the rest of the backend wants to see. */
3994 static void
3995 convert_vec_av_set_to_ready (void)
3997 int n;
3998 expr_t expr;
4000 /* Allocate and fill the ready list from the sorted vector. */
4001 ready.n_ready = vec_av_set.length ();
4002 ready.first = ready.n_ready - 1;
4004 gcc_assert (ready.n_ready > 0);
4006 if (ready.n_ready > max_issue_size)
4008 max_issue_size = ready.n_ready;
4009 sched_extend_ready_list (ready.n_ready);
4012 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4014 vinsn_t vi = EXPR_VINSN (expr);
4015 insn_t insn = VINSN_INSN_RTX (vi);
4017 ready_try[n] = 0;
4018 ready.vec[n] = insn;
4022 /* Initialize ready list from *AV_PTR for the max_issue () call.
4023 If any unrecognizable insn found in *AV_PTR, return it (and skip
4024 max_issue). BND and FENCE are current boundary and fence,
4025 respectively. If we need to stall for some cycles before an expr
4026 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4027 static expr_t
4028 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4029 int *pneed_stall)
4031 expr_t expr;
4033 /* We do not support multiple boundaries per fence. */
4034 gcc_assert (BLIST_NEXT (bnds) == NULL);
4036 /* Process expressions required special handling, i.e. pipelined,
4037 speculative and recog() < 0 expressions first. */
4038 process_pipelined_exprs (av_ptr);
4039 process_spec_exprs (av_ptr);
4041 /* A USE could be scheduled immediately. */
4042 expr = process_use_exprs (av_ptr);
4043 if (expr)
4045 *pneed_stall = 0;
4046 return expr;
4049 /* Turn the av set to a vector for sorting. */
4050 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4052 ready.n_ready = 0;
4053 return NULL;
4056 /* Build the final ready list. */
4057 convert_vec_av_set_to_ready ();
4058 return NULL;
4061 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4062 static bool
4063 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4065 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4066 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4067 : FENCE_CYCLE (fence) - 1;
4068 bool res = false;
4069 int sort_p = 0;
4071 if (!targetm.sched.dfa_new_cycle)
4072 return false;
4074 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4076 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4077 insn, last_scheduled_cycle,
4078 FENCE_CYCLE (fence), &sort_p))
4080 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4081 advance_one_cycle (fence);
4082 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4083 res = true;
4086 return res;
4089 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4090 we can issue. FENCE is the current fence. */
4091 static int
4092 invoke_reorder_hooks (fence_t fence)
4094 int issue_more;
4095 bool ran_hook = false;
4097 /* Call the reorder hook at the beginning of the cycle, and call
4098 the reorder2 hook in the middle of the cycle. */
4099 if (FENCE_ISSUED_INSNS (fence) == 0)
4101 if (targetm.sched.reorder
4102 && !SCHED_GROUP_P (ready_element (&ready, 0))
4103 && ready.n_ready > 1)
4105 /* Don't give reorder the most prioritized insn as it can break
4106 pipelining. */
4107 if (pipelining_p)
4108 --ready.n_ready;
4110 issue_more
4111 = targetm.sched.reorder (sched_dump, sched_verbose,
4112 ready_lastpos (&ready),
4113 &ready.n_ready, FENCE_CYCLE (fence));
4115 if (pipelining_p)
4116 ++ready.n_ready;
4118 ran_hook = true;
4120 else
4121 /* Initialize can_issue_more for variable_issue. */
4122 issue_more = issue_rate;
4124 else if (targetm.sched.reorder2
4125 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4127 if (ready.n_ready == 1)
4128 issue_more =
4129 targetm.sched.reorder2 (sched_dump, sched_verbose,
4130 ready_lastpos (&ready),
4131 &ready.n_ready, FENCE_CYCLE (fence));
4132 else
4134 if (pipelining_p)
4135 --ready.n_ready;
4137 issue_more =
4138 targetm.sched.reorder2 (sched_dump, sched_verbose,
4139 ready.n_ready
4140 ? ready_lastpos (&ready) : NULL,
4141 &ready.n_ready, FENCE_CYCLE (fence));
4143 if (pipelining_p)
4144 ++ready.n_ready;
4147 ran_hook = true;
4149 else
4150 issue_more = FENCE_ISSUE_MORE (fence);
4152 /* Ensure that ready list and vec_av_set are in line with each other,
4153 i.e. vec_av_set[i] == ready_element (&ready, i). */
4154 if (issue_more && ran_hook)
4156 int i, j, n;
4157 rtx_insn **arr = ready.vec;
4158 expr_t *vec = vec_av_set.address ();
4160 for (i = 0, n = ready.n_ready; i < n; i++)
4161 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4163 expr_t tmp;
4165 for (j = i; j < n; j++)
4166 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4167 break;
4168 gcc_assert (j < n);
4170 tmp = vec[i];
4171 vec[i] = vec[j];
4172 vec[j] = tmp;
4176 return issue_more;
4179 /* Return an EXPR corresponding to INDEX element of ready list, if
4180 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4181 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4182 ready.vec otherwise. */
4183 static inline expr_t
4184 find_expr_for_ready (int index, bool follow_ready_element)
4186 expr_t expr;
4187 int real_index;
4189 real_index = follow_ready_element ? ready.first - index : index;
4191 expr = vec_av_set[real_index];
4192 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4194 return expr;
4197 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4198 of such insns found. */
4199 static int
4200 invoke_dfa_lookahead_guard (void)
4202 int i, n;
4203 bool have_hook
4204 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4206 if (sched_verbose >= 2)
4207 sel_print ("ready after reorder: ");
4209 for (i = 0, n = 0; i < ready.n_ready; i++)
4211 expr_t expr;
4212 insn_t insn;
4213 int r;
4215 /* In this loop insn is Ith element of the ready list given by
4216 ready_element, not Ith element of ready.vec. */
4217 insn = ready_element (&ready, i);
4219 if (! have_hook || i == 0)
4220 r = 0;
4221 else
4222 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4224 gcc_assert (INSN_CODE (insn) >= 0);
4226 /* Only insns with ready_try = 0 can get here
4227 from fill_ready_list. */
4228 gcc_assert (ready_try [i] == 0);
4229 ready_try[i] = r;
4230 if (!r)
4231 n++;
4233 expr = find_expr_for_ready (i, true);
4235 if (sched_verbose >= 2)
4237 dump_vinsn (EXPR_VINSN (expr));
4238 sel_print (":%d; ", ready_try[i]);
4242 if (sched_verbose >= 2)
4243 sel_print ("\n");
4244 return n;
4247 /* Calculate the number of privileged insns and return it. */
4248 static int
4249 calculate_privileged_insns (void)
4251 expr_t cur_expr, min_spec_expr = NULL;
4252 int privileged_n = 0, i;
4254 for (i = 0; i < ready.n_ready; i++)
4256 if (ready_try[i])
4257 continue;
4259 if (! min_spec_expr)
4260 min_spec_expr = find_expr_for_ready (i, true);
4262 cur_expr = find_expr_for_ready (i, true);
4264 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4265 break;
4267 ++privileged_n;
4270 if (i == ready.n_ready)
4271 privileged_n = 0;
4273 if (sched_verbose >= 2)
4274 sel_print ("privileged_n: %d insns with SPEC %d\n",
4275 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4276 return privileged_n;
4279 /* Call the rest of the hooks after the choice was made. Return
4280 the number of insns that still can be issued given that the current
4281 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4282 and the insn chosen for scheduling, respectively. */
4283 static int
4284 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4286 gcc_assert (INSN_P (best_insn));
4288 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4289 sel_dfa_new_cycle (best_insn, fence);
4291 if (targetm.sched.variable_issue)
4293 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4294 issue_more =
4295 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4296 issue_more);
4297 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4299 else if (GET_CODE (PATTERN (best_insn)) != USE
4300 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4301 issue_more--;
4303 return issue_more;
4306 /* Estimate the cost of issuing INSN on DFA state STATE. */
4307 static int
4308 estimate_insn_cost (rtx insn, state_t state)
4310 static state_t temp = NULL;
4311 int cost;
4313 if (!temp)
4314 temp = xmalloc (dfa_state_size);
4316 memcpy (temp, state, dfa_state_size);
4317 cost = state_transition (temp, insn);
4319 if (cost < 0)
4320 return 0;
4321 else if (cost == 0)
4322 return 1;
4323 return cost;
4326 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4327 This function properly handles ASMs, USEs etc. */
4328 static int
4329 get_expr_cost (expr_t expr, fence_t fence)
4331 rtx_insn *insn = EXPR_INSN_RTX (expr);
4333 if (recog_memoized (insn) < 0)
4335 if (!FENCE_STARTS_CYCLE_P (fence)
4336 && INSN_ASM_P (insn))
4337 /* This is asm insn which is tryed to be issued on the
4338 cycle not first. Issue it on the next cycle. */
4339 return 1;
4340 else
4341 /* A USE insn, or something else we don't need to
4342 understand. We can't pass these directly to
4343 state_transition because it will trigger a
4344 fatal error for unrecognizable insns. */
4345 return 0;
4347 else
4348 return estimate_insn_cost (insn, FENCE_STATE (fence));
4351 /* Find the best insn for scheduling, either via max_issue or just take
4352 the most prioritized available. */
4353 static int
4354 choose_best_insn (fence_t fence, int privileged_n, int *index)
4356 int can_issue = 0;
4358 if (dfa_lookahead > 0)
4360 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4361 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4362 can_issue = max_issue (&ready, privileged_n,
4363 FENCE_STATE (fence), true, index);
4364 if (sched_verbose >= 2)
4365 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4366 can_issue, FENCE_ISSUED_INSNS (fence));
4368 else
4370 /* We can't use max_issue; just return the first available element. */
4371 int i;
4373 for (i = 0; i < ready.n_ready; i++)
4375 expr_t expr = find_expr_for_ready (i, true);
4377 if (get_expr_cost (expr, fence) < 1)
4379 can_issue = can_issue_more;
4380 *index = i;
4382 if (sched_verbose >= 2)
4383 sel_print ("using %dth insn from the ready list\n", i + 1);
4385 break;
4389 if (i == ready.n_ready)
4391 can_issue = 0;
4392 *index = -1;
4396 return can_issue;
4399 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4400 BNDS and FENCE are current boundaries and scheduling fence respectively.
4401 Return the expr found and NULL if nothing can be issued atm.
4402 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4403 static expr_t
4404 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4405 int *pneed_stall)
4407 expr_t best;
4409 /* Choose the best insn for scheduling via:
4410 1) sorting the ready list based on priority;
4411 2) calling the reorder hook;
4412 3) calling max_issue. */
4413 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4414 if (best == NULL && ready.n_ready > 0)
4416 int privileged_n, index;
4418 can_issue_more = invoke_reorder_hooks (fence);
4419 if (can_issue_more > 0)
4421 /* Try choosing the best insn until we find one that is could be
4422 scheduled due to liveness restrictions on its destination register.
4423 In the future, we'd like to choose once and then just probe insns
4424 in the order of their priority. */
4425 invoke_dfa_lookahead_guard ();
4426 privileged_n = calculate_privileged_insns ();
4427 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4428 if (can_issue_more)
4429 best = find_expr_for_ready (index, true);
4431 /* We had some available insns, so if we can't issue them,
4432 we have a stall. */
4433 if (can_issue_more == 0)
4435 best = NULL;
4436 *pneed_stall = 1;
4440 if (best != NULL)
4442 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4443 can_issue_more);
4444 if (targetm.sched.variable_issue
4445 && can_issue_more == 0)
4446 *pneed_stall = 1;
4449 if (sched_verbose >= 2)
4451 if (best != NULL)
4453 sel_print ("Best expression (vliw form): ");
4454 dump_expr (best);
4455 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4457 else
4458 sel_print ("No best expr found!\n");
4461 return best;
4465 /* Functions that implement the core of the scheduler. */
4468 /* Emit an instruction from EXPR with SEQNO and VINSN after
4469 PLACE_TO_INSERT. */
4470 static insn_t
4471 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4472 insn_t place_to_insert)
4474 /* This assert fails when we have identical instructions
4475 one of which dominates the other. In this case move_op ()
4476 finds the first instruction and doesn't search for second one.
4477 The solution would be to compute av_set after the first found
4478 insn and, if insn present in that set, continue searching.
4479 For now we workaround this issue in move_op. */
4480 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4482 if (EXPR_WAS_RENAMED (expr))
4484 unsigned regno = expr_dest_regno (expr);
4486 if (HARD_REGISTER_NUM_P (regno))
4488 df_set_regs_ever_live (regno, true);
4489 reg_rename_tick[regno] = ++reg_rename_this_tick;
4493 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4494 place_to_insert);
4497 /* Return TRUE if BB can hold bookkeeping code. */
4498 static bool
4499 block_valid_for_bookkeeping_p (basic_block bb)
4501 insn_t bb_end = BB_END (bb);
4503 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4504 return false;
4506 if (INSN_P (bb_end))
4508 if (INSN_SCHED_TIMES (bb_end) > 0)
4509 return false;
4511 else
4512 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4514 return true;
4517 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4518 into E2->dest, except from E1->src (there may be a sequence of empty basic
4519 blocks between E1->src and E2->dest). Return found block, or NULL if new
4520 one must be created. If LAX holds, don't assume there is a simple path
4521 from E1->src to E2->dest. */
4522 static basic_block
4523 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4525 basic_block candidate_block = NULL;
4526 edge e;
4528 /* Loop over edges from E1 to E2, inclusive. */
4529 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4530 EDGE_SUCC (e->dest, 0))
4532 if (EDGE_COUNT (e->dest->preds) == 2)
4534 if (candidate_block == NULL)
4535 candidate_block = (EDGE_PRED (e->dest, 0) == e
4536 ? EDGE_PRED (e->dest, 1)->src
4537 : EDGE_PRED (e->dest, 0)->src);
4538 else
4539 /* Found additional edge leading to path from e1 to e2
4540 from aside. */
4541 return NULL;
4543 else if (EDGE_COUNT (e->dest->preds) > 2)
4544 /* Several edges leading to path from e1 to e2 from aside. */
4545 return NULL;
4547 if (e == e2)
4548 return ((!lax || candidate_block)
4549 && block_valid_for_bookkeeping_p (candidate_block)
4550 ? candidate_block
4551 : NULL);
4553 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4554 return NULL;
4557 if (lax)
4558 return NULL;
4560 gcc_unreachable ();
4563 /* Create new basic block for bookkeeping code for path(s) incoming into
4564 E2->dest, except from E1->src. Return created block. */
4565 static basic_block
4566 create_block_for_bookkeeping (edge e1, edge e2)
4568 basic_block new_bb, bb = e2->dest;
4570 /* Check that we don't spoil the loop structure. */
4571 if (current_loop_nest)
4573 basic_block latch = current_loop_nest->latch;
4575 /* We do not split header. */
4576 gcc_assert (e2->dest != current_loop_nest->header);
4578 /* We do not redirect the only edge to the latch block. */
4579 gcc_assert (e1->dest != latch
4580 || !single_pred_p (latch)
4581 || e1 != single_pred_edge (latch));
4584 /* Split BB to insert BOOK_INSN there. */
4585 new_bb = sched_split_block (bb, NULL);
4587 /* Move note_list from the upper bb. */
4588 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4589 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4590 BB_NOTE_LIST (bb) = NULL;
4592 gcc_assert (e2->dest == bb);
4594 /* Skip block for bookkeeping copy when leaving E1->src. */
4595 if (e1->flags & EDGE_FALLTHRU)
4596 sel_redirect_edge_and_branch_force (e1, new_bb);
4597 else
4598 sel_redirect_edge_and_branch (e1, new_bb);
4600 gcc_assert (e1->dest == new_bb);
4601 gcc_assert (sel_bb_empty_p (bb));
4603 /* To keep basic block numbers in sync between debug and non-debug
4604 compilations, we have to rotate blocks here. Consider that we
4605 started from (a,b)->d, (c,d)->e, and d contained only debug
4606 insns. It would have been removed before if the debug insns
4607 weren't there, so we'd have split e rather than d. So what we do
4608 now is to swap the block numbers of new_bb and
4609 single_succ(new_bb) == e, so that the insns that were in e before
4610 get the new block number. */
4612 if (MAY_HAVE_DEBUG_INSNS)
4614 basic_block succ;
4615 insn_t insn = sel_bb_head (new_bb);
4616 insn_t last;
4618 if (DEBUG_INSN_P (insn)
4619 && single_succ_p (new_bb)
4620 && (succ = single_succ (new_bb))
4621 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4622 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4624 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4625 insn = NEXT_INSN (insn);
4627 if (insn == last)
4629 sel_global_bb_info_def gbi;
4630 sel_region_bb_info_def rbi;
4631 int i;
4633 if (sched_verbose >= 2)
4634 sel_print ("Swapping block ids %i and %i\n",
4635 new_bb->index, succ->index);
4637 i = new_bb->index;
4638 new_bb->index = succ->index;
4639 succ->index = i;
4641 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4642 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4644 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4645 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4646 sizeof (gbi));
4647 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4649 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4650 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4651 sizeof (rbi));
4652 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4654 i = BLOCK_TO_BB (new_bb->index);
4655 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4656 BLOCK_TO_BB (succ->index) = i;
4658 i = CONTAINING_RGN (new_bb->index);
4659 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4660 CONTAINING_RGN (succ->index) = i;
4662 for (i = 0; i < current_nr_blocks; i++)
4663 if (BB_TO_BLOCK (i) == succ->index)
4664 BB_TO_BLOCK (i) = new_bb->index;
4665 else if (BB_TO_BLOCK (i) == new_bb->index)
4666 BB_TO_BLOCK (i) = succ->index;
4668 FOR_BB_INSNS (new_bb, insn)
4669 if (INSN_P (insn))
4670 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4672 FOR_BB_INSNS (succ, insn)
4673 if (INSN_P (insn))
4674 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4676 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4677 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4679 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4680 && LABEL_P (BB_HEAD (succ)));
4682 if (sched_verbose >= 4)
4683 sel_print ("Swapping code labels %i and %i\n",
4684 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4685 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4687 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4688 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4689 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4690 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4695 return bb;
4698 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4699 into E2->dest, except from E1->src. If the returned insn immediately
4700 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4701 static insn_t
4702 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4704 insn_t place_to_insert;
4705 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4706 create new basic block, but insert bookkeeping there. */
4707 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4709 if (book_block)
4711 place_to_insert = BB_END (book_block);
4713 /* Don't use a block containing only debug insns for
4714 bookkeeping, this causes scheduling differences between debug
4715 and non-debug compilations, for the block would have been
4716 removed already. */
4717 if (DEBUG_INSN_P (place_to_insert))
4719 rtx_insn *insn = sel_bb_head (book_block);
4721 while (insn != place_to_insert &&
4722 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4723 insn = NEXT_INSN (insn);
4725 if (insn == place_to_insert)
4726 book_block = NULL;
4730 if (!book_block)
4732 book_block = create_block_for_bookkeeping (e1, e2);
4733 place_to_insert = BB_END (book_block);
4734 if (sched_verbose >= 9)
4735 sel_print ("New block is %i, split from bookkeeping block %i\n",
4736 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4738 else
4740 if (sched_verbose >= 9)
4741 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4744 *fence_to_rewind = NULL;
4745 /* If basic block ends with a jump, insert bookkeeping code right before it.
4746 Notice if we are crossing a fence when taking PREV_INSN. */
4747 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4749 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4750 place_to_insert = PREV_INSN (place_to_insert);
4753 return place_to_insert;
4756 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4757 for JOIN_POINT. */
4758 static int
4759 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4761 int seqno;
4762 rtx next;
4764 /* Check if we are about to insert bookkeeping copy before a jump, and use
4765 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4766 next = NEXT_INSN (place_to_insert);
4767 if (INSN_P (next)
4768 && JUMP_P (next)
4769 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4771 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4772 seqno = INSN_SEQNO (next);
4774 else if (INSN_SEQNO (join_point) > 0)
4775 seqno = INSN_SEQNO (join_point);
4776 else
4778 seqno = get_seqno_by_preds (place_to_insert);
4780 /* Sometimes the fences can move in such a way that there will be
4781 no instructions with positive seqno around this bookkeeping.
4782 This means that there will be no way to get to it by a regular
4783 fence movement. Never mind because we pick up such pieces for
4784 rescheduling anyways, so any positive value will do for now. */
4785 if (seqno < 0)
4787 gcc_assert (pipelining_p);
4788 seqno = 1;
4792 gcc_assert (seqno > 0);
4793 return seqno;
4796 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4797 NEW_SEQNO to it. Return created insn. */
4798 static insn_t
4799 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4801 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4803 vinsn_t new_vinsn
4804 = create_vinsn_from_insn_rtx (new_insn_rtx,
4805 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4807 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4808 place_to_insert);
4810 INSN_SCHED_TIMES (new_insn) = 0;
4811 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4813 return new_insn;
4816 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4817 E2->dest, except from E1->src (there may be a sequence of empty blocks
4818 between E1->src and E2->dest). Return block containing the copy.
4819 All scheduler data is initialized for the newly created insn. */
4820 static basic_block
4821 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4823 insn_t join_point, place_to_insert, new_insn;
4824 int new_seqno;
4825 bool need_to_exchange_data_sets;
4826 fence_t fence_to_rewind;
4828 if (sched_verbose >= 4)
4829 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4830 e2->dest->index);
4832 join_point = sel_bb_head (e2->dest);
4833 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4834 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4835 need_to_exchange_data_sets
4836 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4838 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4840 if (fence_to_rewind)
4841 FENCE_INSN (fence_to_rewind) = new_insn;
4843 /* When inserting bookkeeping insn in new block, av sets should be
4844 following: old basic block (that now holds bookkeeping) data sets are
4845 the same as was before generation of bookkeeping, and new basic block
4846 (that now hold all other insns of old basic block) data sets are
4847 invalid. So exchange data sets for these basic blocks as sel_split_block
4848 mistakenly exchanges them in this case. Cannot do it earlier because
4849 when single instruction is added to new basic block it should hold NULL
4850 lv_set. */
4851 if (need_to_exchange_data_sets)
4852 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4853 BLOCK_FOR_INSN (join_point));
4855 stat_bookkeeping_copies++;
4856 return BLOCK_FOR_INSN (new_insn);
4859 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4860 on FENCE, but we are unable to copy them. */
4861 static void
4862 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4864 expr_t expr;
4865 av_set_iterator i;
4867 /* An expression does not need bookkeeping if it is available on all paths
4868 from current block to original block and current block dominates
4869 original block. We check availability on all paths by examining
4870 EXPR_SPEC; this is not equivalent, because it may be positive even
4871 if expr is available on all paths (but if expr is not available on
4872 any path, EXPR_SPEC will be positive). */
4874 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4876 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4877 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4878 && (EXPR_SPEC (expr)
4879 || !EXPR_ORIG_BB_INDEX (expr)
4880 || !dominated_by_p (CDI_DOMINATORS,
4881 BASIC_BLOCK_FOR_FN (cfun,
4882 EXPR_ORIG_BB_INDEX (expr)),
4883 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4885 if (sched_verbose >= 4)
4886 sel_print ("Expr %d removed because it would need bookkeeping, which "
4887 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4888 av_set_iter_remove (&i);
4893 /* Moving conditional jump through some instructions.
4895 Consider example:
4897 ... <- current scheduling point
4898 NOTE BASIC BLOCK: <- bb header
4899 (p8) add r14=r14+0x9;;
4900 (p8) mov [r14]=r23
4901 (!p8) jump L1;;
4902 NOTE BASIC BLOCK:
4905 We can schedule jump one cycle earlier, than mov, because they cannot be
4906 executed together as their predicates are mutually exclusive.
4908 This is done in this way: first, new fallthrough basic block is created
4909 after jump (it is always can be done, because there already should be a
4910 fallthrough block, where control flow goes in case of predicate being true -
4911 in our example; otherwise there should be a dependence between those
4912 instructions and jump and we cannot schedule jump right now);
4913 next, all instructions between jump and current scheduling point are moved
4914 to this new block. And the result is this:
4916 NOTE BASIC BLOCK:
4917 (!p8) jump L1 <- current scheduling point
4918 NOTE BASIC BLOCK: <- bb header
4919 (p8) add r14=r14+0x9;;
4920 (p8) mov [r14]=r23
4921 NOTE BASIC BLOCK:
4924 static void
4925 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4927 edge ft_edge;
4928 basic_block block_from, block_next, block_new, block_bnd, bb;
4929 rtx_insn *next, *prev, *link, *head;
4931 block_from = BLOCK_FOR_INSN (insn);
4932 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4933 prev = BND_TO (bnd);
4935 #ifdef ENABLE_CHECKING
4936 /* Moving of jump should not cross any other jumps or beginnings of new
4937 basic blocks. The only exception is when we move a jump through
4938 mutually exclusive insns along fallthru edges. */
4939 if (block_from != block_bnd)
4941 bb = block_from;
4942 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4943 link = PREV_INSN (link))
4945 if (INSN_P (link))
4946 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4947 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4949 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4950 bb = BLOCK_FOR_INSN (link);
4954 #endif
4956 /* Jump is moved to the boundary. */
4957 next = PREV_INSN (insn);
4958 BND_TO (bnd) = insn;
4960 ft_edge = find_fallthru_edge_from (block_from);
4961 block_next = ft_edge->dest;
4962 /* There must be a fallthrough block (or where should go
4963 control flow in case of false jump predicate otherwise?). */
4964 gcc_assert (block_next);
4966 /* Create new empty basic block after source block. */
4967 block_new = sel_split_edge (ft_edge);
4968 gcc_assert (block_new->next_bb == block_next
4969 && block_from->next_bb == block_new);
4971 /* Move all instructions except INSN to BLOCK_NEW. */
4972 bb = block_bnd;
4973 head = BB_HEAD (block_new);
4974 while (bb != block_from->next_bb)
4976 rtx_insn *from, *to;
4977 from = bb == block_bnd ? prev : sel_bb_head (bb);
4978 to = bb == block_from ? next : sel_bb_end (bb);
4980 /* The jump being moved can be the first insn in the block.
4981 In this case we don't have to move anything in this block. */
4982 if (NEXT_INSN (to) != from)
4984 reorder_insns (from, to, head);
4986 for (link = to; link != head; link = PREV_INSN (link))
4987 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4988 head = to;
4991 /* Cleanup possibly empty blocks left. */
4992 block_next = bb->next_bb;
4993 if (bb != block_from)
4994 tidy_control_flow (bb, false);
4995 bb = block_next;
4998 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4999 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
5001 gcc_assert (!sel_bb_empty_p (block_from)
5002 && !sel_bb_empty_p (block_new));
5004 /* Update data sets for BLOCK_NEW to represent that INSN and
5005 instructions from the other branch of INSN is no longer
5006 available at BLOCK_NEW. */
5007 BB_AV_LEVEL (block_new) = global_level;
5008 gcc_assert (BB_LV_SET (block_new) == NULL);
5009 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
5010 update_data_sets (sel_bb_head (block_new));
5012 /* INSN is a new basic block header - so prepare its data
5013 structures and update availability and liveness sets. */
5014 update_data_sets (insn);
5016 if (sched_verbose >= 4)
5017 sel_print ("Moving jump %d\n", INSN_UID (insn));
5020 /* Remove nops generated during move_op for preventing removal of empty
5021 basic blocks. */
5022 static void
5023 remove_temp_moveop_nops (bool full_tidying)
5025 int i;
5026 insn_t insn;
5028 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
5030 gcc_assert (INSN_NOP_P (insn));
5031 return_nop_to_pool (insn, full_tidying);
5034 /* Empty the vector. */
5035 if (vec_temp_moveop_nops.length () > 0)
5036 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5039 /* Records the maximal UID before moving up an instruction. Used for
5040 distinguishing between bookkeeping copies and original insns. */
5041 static int max_uid_before_move_op = 0;
5043 /* Remove from AV_VLIW_P all instructions but next when debug counter
5044 tells us so. Next instruction is fetched from BNDS. */
5045 static void
5046 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5048 if (! dbg_cnt (sel_sched_insn_cnt))
5049 /* Leave only the next insn in av_vliw. */
5051 av_set_iterator av_it;
5052 expr_t expr;
5053 bnd_t bnd = BLIST_BND (bnds);
5054 insn_t next = BND_TO (bnd);
5056 gcc_assert (BLIST_NEXT (bnds) == NULL);
5058 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5059 if (EXPR_INSN_RTX (expr) != next)
5060 av_set_iter_remove (&av_it);
5064 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5065 the computed set to *AV_VLIW_P. */
5066 static void
5067 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5069 if (sched_verbose >= 2)
5071 sel_print ("Boundaries: ");
5072 dump_blist (bnds);
5073 sel_print ("\n");
5076 for (; bnds; bnds = BLIST_NEXT (bnds))
5078 bnd_t bnd = BLIST_BND (bnds);
5079 av_set_t av1_copy;
5080 insn_t bnd_to = BND_TO (bnd);
5082 /* Rewind BND->TO to the basic block header in case some bookkeeping
5083 instructions were inserted before BND->TO and it needs to be
5084 adjusted. */
5085 if (sel_bb_head_p (bnd_to))
5086 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5087 else
5088 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5090 bnd_to = PREV_INSN (bnd_to);
5091 if (sel_bb_head_p (bnd_to))
5092 break;
5095 if (BND_TO (bnd) != bnd_to)
5097 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5098 FENCE_INSN (fence) = bnd_to;
5099 BND_TO (bnd) = bnd_to;
5102 av_set_clear (&BND_AV (bnd));
5103 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5105 av_set_clear (&BND_AV1 (bnd));
5106 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5108 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5110 av1_copy = av_set_copy (BND_AV1 (bnd));
5111 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5114 if (sched_verbose >= 2)
5116 sel_print ("Available exprs (vliw form): ");
5117 dump_av_set (*av_vliw_p);
5118 sel_print ("\n");
5122 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5123 expression. When FOR_MOVEOP is true, also replace the register of
5124 expressions found with the register from EXPR_VLIW. */
5125 static av_set_t
5126 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5128 av_set_t expr_seq = NULL;
5129 expr_t expr;
5130 av_set_iterator i;
5132 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5134 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5136 if (for_moveop)
5138 /* The sequential expression has the right form to pass
5139 to move_op except when renaming happened. Put the
5140 correct register in EXPR then. */
5141 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5143 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5145 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5146 stat_renamed_scheduled++;
5148 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5149 This is needed when renaming came up with original
5150 register. */
5151 else if (EXPR_TARGET_AVAILABLE (expr)
5152 != EXPR_TARGET_AVAILABLE (expr_vliw))
5154 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5155 EXPR_TARGET_AVAILABLE (expr) = 1;
5158 if (EXPR_WAS_SUBSTITUTED (expr))
5159 stat_substitutions_total++;
5162 av_set_add (&expr_seq, expr);
5164 /* With substitution inside insn group, it is possible
5165 that more than one expression in expr_seq will correspond
5166 to expr_vliw. In this case, choose one as the attempt to
5167 move both leads to miscompiles. */
5168 break;
5172 if (for_moveop && sched_verbose >= 2)
5174 sel_print ("Best expression(s) (sequential form): ");
5175 dump_av_set (expr_seq);
5176 sel_print ("\n");
5179 return expr_seq;
5183 /* Move nop to previous block. */
5184 static void ATTRIBUTE_UNUSED
5185 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5187 insn_t prev_insn, next_insn, note;
5189 gcc_assert (sel_bb_head_p (nop)
5190 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5191 note = bb_note (BLOCK_FOR_INSN (nop));
5192 prev_insn = sel_bb_end (prev_bb);
5193 next_insn = NEXT_INSN (nop);
5194 gcc_assert (prev_insn != NULL_RTX
5195 && PREV_INSN (note) == prev_insn);
5197 SET_NEXT_INSN (prev_insn) = nop;
5198 SET_PREV_INSN (nop) = prev_insn;
5200 SET_PREV_INSN (note) = nop;
5201 SET_NEXT_INSN (note) = next_insn;
5203 SET_NEXT_INSN (nop) = note;
5204 SET_PREV_INSN (next_insn) = note;
5206 BB_END (prev_bb) = nop;
5207 BLOCK_FOR_INSN (nop) = prev_bb;
5210 /* Prepare a place to insert the chosen expression on BND. */
5211 static insn_t
5212 prepare_place_to_insert (bnd_t bnd)
5214 insn_t place_to_insert;
5216 /* Init place_to_insert before calling move_op, as the later
5217 can possibly remove BND_TO (bnd). */
5218 if (/* If this is not the first insn scheduled. */
5219 BND_PTR (bnd))
5221 /* Add it after last scheduled. */
5222 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5223 if (DEBUG_INSN_P (place_to_insert))
5225 ilist_t l = BND_PTR (bnd);
5226 while ((l = ILIST_NEXT (l)) &&
5227 DEBUG_INSN_P (ILIST_INSN (l)))
5229 if (!l)
5230 place_to_insert = NULL;
5233 else
5234 place_to_insert = NULL;
5236 if (!place_to_insert)
5238 /* Add it before BND_TO. The difference is in the
5239 basic block, where INSN will be added. */
5240 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5241 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5242 == BLOCK_FOR_INSN (BND_TO (bnd)));
5245 return place_to_insert;
5248 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5249 Return the expression to emit in C_EXPR. */
5250 static bool
5251 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5252 av_set_t expr_seq, expr_t c_expr)
5254 bool b, should_move;
5255 unsigned book_uid;
5256 bitmap_iterator bi;
5257 int n_bookkeeping_copies_before_moveop;
5259 /* Make a move. This call will remove the original operation,
5260 insert all necessary bookkeeping instructions and update the
5261 data sets. After that all we have to do is add the operation
5262 at before BND_TO (BND). */
5263 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5264 max_uid_before_move_op = get_max_uid ();
5265 bitmap_clear (current_copies);
5266 bitmap_clear (current_originators);
5268 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5269 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5271 /* We should be able to find the expression we've chosen for
5272 scheduling. */
5273 gcc_assert (b);
5275 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5276 stat_insns_needed_bookkeeping++;
5278 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5280 unsigned uid;
5281 bitmap_iterator bi;
5283 /* We allocate these bitmaps lazily. */
5284 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5285 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5287 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5288 current_originators);
5290 /* Transitively add all originators' originators. */
5291 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5292 if (INSN_ORIGINATORS_BY_UID (uid))
5293 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5294 INSN_ORIGINATORS_BY_UID (uid));
5297 return should_move;
5301 /* Debug a DFA state as an array of bytes. */
5302 static void
5303 debug_state (state_t state)
5305 unsigned char *p;
5306 unsigned int i, size = dfa_state_size;
5308 sel_print ("state (%u):", size);
5309 for (i = 0, p = (unsigned char *) state; i < size; i++)
5310 sel_print (" %d", p[i]);
5311 sel_print ("\n");
5314 /* Advance state on FENCE with INSN. Return true if INSN is
5315 an ASM, and we should advance state once more. */
5316 static bool
5317 advance_state_on_fence (fence_t fence, insn_t insn)
5319 bool asm_p;
5321 if (recog_memoized (insn) >= 0)
5323 int res;
5324 state_t temp_state = alloca (dfa_state_size);
5326 gcc_assert (!INSN_ASM_P (insn));
5327 asm_p = false;
5329 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5330 res = state_transition (FENCE_STATE (fence), insn);
5331 gcc_assert (res < 0);
5333 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5335 FENCE_ISSUED_INSNS (fence)++;
5337 /* We should never issue more than issue_rate insns. */
5338 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5339 gcc_unreachable ();
5342 else
5344 /* This could be an ASM insn which we'd like to schedule
5345 on the next cycle. */
5346 asm_p = INSN_ASM_P (insn);
5347 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5348 advance_one_cycle (fence);
5351 if (sched_verbose >= 2)
5352 debug_state (FENCE_STATE (fence));
5353 if (!DEBUG_INSN_P (insn))
5354 FENCE_STARTS_CYCLE_P (fence) = 0;
5355 FENCE_ISSUE_MORE (fence) = can_issue_more;
5356 return asm_p;
5359 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5360 is nonzero if we need to stall after issuing INSN. */
5361 static void
5362 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5364 bool asm_p;
5366 /* First, reflect that something is scheduled on this fence. */
5367 asm_p = advance_state_on_fence (fence, insn);
5368 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5369 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5370 if (SCHED_GROUP_P (insn))
5372 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5373 SCHED_GROUP_P (insn) = 0;
5375 else
5376 FENCE_SCHED_NEXT (fence) = NULL;
5377 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5378 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5380 /* Set instruction scheduling info. This will be used in bundling,
5381 pipelining, tick computations etc. */
5382 ++INSN_SCHED_TIMES (insn);
5383 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5384 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5385 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5386 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5388 /* This does not account for adjust_cost hooks, just add the biggest
5389 constant the hook may add to the latency. TODO: make this
5390 a target dependent constant. */
5391 INSN_READY_CYCLE (insn)
5392 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5394 : maximal_insn_latency (insn) + 1);
5396 /* Change these fields last, as they're used above. */
5397 FENCE_AFTER_STALL_P (fence) = 0;
5398 if (asm_p || need_stall)
5399 advance_one_cycle (fence);
5401 /* Indicate that we've scheduled something on this fence. */
5402 FENCE_SCHEDULED_P (fence) = true;
5403 scheduled_something_on_previous_fence = true;
5405 /* Print debug information when insn's fields are updated. */
5406 if (sched_verbose >= 2)
5408 sel_print ("Scheduling insn: ");
5409 dump_insn_1 (insn, 1);
5410 sel_print ("\n");
5414 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5415 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5416 return it. */
5417 static blist_t *
5418 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5419 blist_t *bnds_tailp)
5421 succ_iterator si;
5422 insn_t succ;
5424 advance_deps_context (BND_DC (bnd), insn);
5425 FOR_EACH_SUCC_1 (succ, si, insn,
5426 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5428 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5430 ilist_add (&ptr, insn);
5432 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5433 && is_ineligible_successor (succ, ptr))
5435 ilist_clear (&ptr);
5436 continue;
5439 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5441 if (sched_verbose >= 9)
5442 sel_print ("Updating fence insn from %i to %i\n",
5443 INSN_UID (insn), INSN_UID (succ));
5444 FENCE_INSN (fence) = succ;
5446 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5447 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5450 blist_remove (bndsp);
5451 return bnds_tailp;
5454 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5455 static insn_t
5456 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5458 av_set_t expr_seq;
5459 expr_t c_expr = XALLOCA (expr_def);
5460 insn_t place_to_insert;
5461 insn_t insn;
5462 bool should_move;
5464 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5466 /* In case of scheduling a jump skipping some other instructions,
5467 prepare CFG. After this, jump is at the boundary and can be
5468 scheduled as usual insn by MOVE_OP. */
5469 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5471 insn = EXPR_INSN_RTX (expr_vliw);
5473 /* Speculative jumps are not handled. */
5474 if (insn != BND_TO (bnd)
5475 && !sel_insn_is_speculation_check (insn))
5476 move_cond_jump (insn, bnd);
5479 /* Find a place for C_EXPR to schedule. */
5480 place_to_insert = prepare_place_to_insert (bnd);
5481 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5482 clear_expr (c_expr);
5484 /* Add the instruction. The corner case to care about is when
5485 the expr_seq set has more than one expr, and we chose the one that
5486 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5487 we can't use it. Generate the new vinsn. */
5488 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5490 vinsn_t vinsn_new;
5492 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5493 change_vinsn_in_expr (expr_vliw, vinsn_new);
5494 should_move = false;
5496 if (should_move)
5497 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5498 else
5499 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5500 place_to_insert);
5502 /* Return the nops generated for preserving of data sets back
5503 into pool. */
5504 if (INSN_NOP_P (place_to_insert))
5505 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5506 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5508 av_set_clear (&expr_seq);
5510 /* Save the expression scheduled so to reset target availability if we'll
5511 meet it later on the same fence. */
5512 if (EXPR_WAS_RENAMED (expr_vliw))
5513 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5515 /* Check that the recent movement didn't destroyed loop
5516 structure. */
5517 gcc_assert (!pipelining_p
5518 || current_loop_nest == NULL
5519 || loop_latch_edge (current_loop_nest));
5520 return insn;
5523 /* Stall for N cycles on FENCE. */
5524 static void
5525 stall_for_cycles (fence_t fence, int n)
5527 int could_more;
5529 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5530 while (n--)
5531 advance_one_cycle (fence);
5532 if (could_more)
5533 FENCE_AFTER_STALL_P (fence) = 1;
5536 /* Gather a parallel group of insns at FENCE and assign their seqno
5537 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5538 list for later recalculation of seqnos. */
5539 static void
5540 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5542 blist_t bnds = NULL, *bnds_tailp;
5543 av_set_t av_vliw = NULL;
5544 insn_t insn = FENCE_INSN (fence);
5546 if (sched_verbose >= 2)
5547 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5548 INSN_UID (insn), FENCE_CYCLE (fence));
5550 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5551 bnds_tailp = &BLIST_NEXT (bnds);
5552 set_target_context (FENCE_TC (fence));
5553 can_issue_more = FENCE_ISSUE_MORE (fence);
5554 target_bb = INSN_BB (insn);
5556 /* Do while we can add any operation to the current group. */
5559 blist_t *bnds_tailp1, *bndsp;
5560 expr_t expr_vliw;
5561 int need_stall = false;
5562 int was_stall = 0, scheduled_insns = 0;
5563 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5564 int max_stall = pipelining_p ? 1 : 3;
5565 bool last_insn_was_debug = false;
5566 bool was_debug_bb_end_p = false;
5568 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5569 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5570 remove_insns_for_debug (bnds, &av_vliw);
5572 /* Return early if we have nothing to schedule. */
5573 if (av_vliw == NULL)
5574 break;
5576 /* Choose the best expression and, if needed, destination register
5577 for it. */
5580 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5581 if (! expr_vliw && need_stall)
5583 /* All expressions required a stall. Do not recompute av sets
5584 as we'll get the same answer (modulo the insns between
5585 the fence and its boundary, which will not be available for
5586 pipelining).
5587 If we are going to stall for too long, break to recompute av
5588 sets and bring more insns for pipelining. */
5589 was_stall++;
5590 if (need_stall <= 3)
5591 stall_for_cycles (fence, need_stall);
5592 else
5594 stall_for_cycles (fence, 1);
5595 break;
5599 while (! expr_vliw && need_stall);
5601 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5602 if (!expr_vliw)
5604 av_set_clear (&av_vliw);
5605 break;
5608 bndsp = &bnds;
5609 bnds_tailp1 = bnds_tailp;
5612 /* This code will be executed only once until we'd have several
5613 boundaries per fence. */
5615 bnd_t bnd = BLIST_BND (*bndsp);
5617 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5619 bndsp = &BLIST_NEXT (*bndsp);
5620 continue;
5623 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5624 last_insn_was_debug = DEBUG_INSN_P (insn);
5625 if (last_insn_was_debug)
5626 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5627 update_fence_and_insn (fence, insn, need_stall);
5628 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5630 /* Add insn to the list of scheduled on this cycle instructions. */
5631 ilist_add (*scheduled_insns_tailpp, insn);
5632 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5634 while (*bndsp != *bnds_tailp1);
5636 av_set_clear (&av_vliw);
5637 if (!last_insn_was_debug)
5638 scheduled_insns++;
5640 /* We currently support information about candidate blocks only for
5641 one 'target_bb' block. Hence we can't schedule after jump insn,
5642 as this will bring two boundaries and, hence, necessity to handle
5643 information for two or more blocks concurrently. */
5644 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5645 || (was_stall
5646 && (was_stall >= max_stall
5647 || scheduled_insns >= max_insns)))
5648 break;
5650 while (bnds);
5652 gcc_assert (!FENCE_BNDS (fence));
5654 /* Update boundaries of the FENCE. */
5655 while (bnds)
5657 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5659 if (ptr)
5661 insn = ILIST_INSN (ptr);
5663 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5664 ilist_add (&FENCE_BNDS (fence), insn);
5667 blist_remove (&bnds);
5670 /* Update target context on the fence. */
5671 reset_target_context (FENCE_TC (fence), false);
5674 /* All exprs in ORIG_OPS must have the same destination register or memory.
5675 Return that destination. */
5676 static rtx
5677 get_dest_from_orig_ops (av_set_t orig_ops)
5679 rtx dest = NULL_RTX;
5680 av_set_iterator av_it;
5681 expr_t expr;
5682 bool first_p = true;
5684 FOR_EACH_EXPR (expr, av_it, orig_ops)
5686 rtx x = EXPR_LHS (expr);
5688 if (first_p)
5690 first_p = false;
5691 dest = x;
5693 else
5694 gcc_assert (dest == x
5695 || (dest != NULL_RTX && x != NULL_RTX
5696 && rtx_equal_p (dest, x)));
5699 return dest;
5702 /* Update data sets for the bookkeeping block and record those expressions
5703 which become no longer available after inserting this bookkeeping. */
5704 static void
5705 update_and_record_unavailable_insns (basic_block book_block)
5707 av_set_iterator i;
5708 av_set_t old_av_set = NULL;
5709 expr_t cur_expr;
5710 rtx_insn *bb_end = sel_bb_end (book_block);
5712 /* First, get correct liveness in the bookkeeping block. The problem is
5713 the range between the bookeeping insn and the end of block. */
5714 update_liveness_on_insn (bb_end);
5715 if (control_flow_insn_p (bb_end))
5716 update_liveness_on_insn (PREV_INSN (bb_end));
5718 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5719 fence above, where we may choose to schedule an insn which is
5720 actually blocked from moving up with the bookkeeping we create here. */
5721 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5723 old_av_set = av_set_copy (BB_AV_SET (book_block));
5724 update_data_sets (sel_bb_head (book_block));
5726 /* Traverse all the expressions in the old av_set and check whether
5727 CUR_EXPR is in new AV_SET. */
5728 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5730 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5731 EXPR_VINSN (cur_expr));
5733 if (! new_expr
5734 /* In this case, we can just turn off the E_T_A bit, but we can't
5735 represent this information with the current vector. */
5736 || EXPR_TARGET_AVAILABLE (new_expr)
5737 != EXPR_TARGET_AVAILABLE (cur_expr))
5738 /* Unfortunately, the below code could be also fired up on
5739 separable insns, e.g. when moving insns through the new
5740 speculation check as in PR 53701. */
5741 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5744 av_set_clear (&old_av_set);
5748 /* The main effect of this function is that sparams->c_expr is merged
5749 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5750 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5751 lparams->c_expr_merged is copied back to sparams->c_expr after all
5752 successors has been traversed. lparams->c_expr_local is an expr allocated
5753 on stack in the caller function, and is used if there is more than one
5754 successor.
5756 SUCC is one of the SUCCS_NORMAL successors of INSN,
5757 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5758 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5759 static void
5760 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5761 insn_t succ ATTRIBUTE_UNUSED,
5762 int moveop_drv_call_res,
5763 cmpd_local_params_p lparams, void *static_params)
5765 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5767 /* Nothing to do, if original expr wasn't found below. */
5768 if (moveop_drv_call_res != 1)
5769 return;
5771 /* If this is a first successor. */
5772 if (!lparams->c_expr_merged)
5774 lparams->c_expr_merged = sparams->c_expr;
5775 sparams->c_expr = lparams->c_expr_local;
5777 else
5779 /* We must merge all found expressions to get reasonable
5780 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5781 do so then we can first find the expr with epsilon
5782 speculation success probability and only then with the
5783 good probability. As a result the insn will get epsilon
5784 probability and will never be scheduled because of
5785 weakness_cutoff in find_best_expr.
5787 We call merge_expr_data here instead of merge_expr
5788 because due to speculation C_EXPR and X may have the
5789 same insns with different speculation types. And as of
5790 now such insns are considered non-equal.
5792 However, EXPR_SCHED_TIMES is different -- we must get
5793 SCHED_TIMES from a real insn, not a bookkeeping copy.
5794 We force this here. Instead, we may consider merging
5795 SCHED_TIMES to the maximum instead of minimum in the
5796 below function. */
5797 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5799 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5800 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5801 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5803 clear_expr (sparams->c_expr);
5807 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5809 SUCC is one of the SUCCS_NORMAL successors of INSN,
5810 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5811 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5812 STATIC_PARAMS contain USED_REGS set. */
5813 static void
5814 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5815 int moveop_drv_call_res,
5816 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5817 void *static_params)
5819 regset succ_live;
5820 fur_static_params_p sparams = (fur_static_params_p) static_params;
5822 /* Here we compute live regsets only for branches that do not lie
5823 on the code motion paths. These branches correspond to value
5824 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5825 for such branches code_motion_path_driver is not called. */
5826 if (moveop_drv_call_res != 0)
5827 return;
5829 /* Mark all registers that do not meet the following condition:
5830 (3) not live on the other path of any conditional branch
5831 that is passed by the operation, in case original
5832 operations are not present on both paths of the
5833 conditional branch. */
5834 succ_live = compute_live (succ);
5835 IOR_REG_SET (sparams->used_regs, succ_live);
5838 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5839 into SP->CEXPR. */
5840 static void
5841 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5843 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5845 sp->c_expr = lp->c_expr_merged;
5848 /* Track bookkeeping copies created, insns scheduled, and blocks for
5849 rescheduling when INSN is found by move_op. */
5850 static void
5851 track_scheduled_insns_and_blocks (rtx insn)
5853 /* Even if this insn can be a copy that will be removed during current move_op,
5854 we still need to count it as an originator. */
5855 bitmap_set_bit (current_originators, INSN_UID (insn));
5857 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5859 /* Note that original block needs to be rescheduled, as we pulled an
5860 instruction out of it. */
5861 if (INSN_SCHED_TIMES (insn) > 0)
5862 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5863 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5864 num_insns_scheduled++;
5867 /* For instructions we must immediately remove insn from the
5868 stream, so subsequent update_data_sets () won't include this
5869 insn into av_set.
5870 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5871 if (INSN_UID (insn) > max_uid_before_move_op)
5872 stat_bookkeeping_copies--;
5875 /* Emit a register-register copy for INSN if needed. Return true if
5876 emitted one. PARAMS is the move_op static parameters. */
5877 static bool
5878 maybe_emit_renaming_copy (rtx_insn *insn,
5879 moveop_static_params_p params)
5881 bool insn_emitted = false;
5882 rtx cur_reg;
5884 /* Bail out early when expression can not be renamed at all. */
5885 if (!EXPR_SEPARABLE_P (params->c_expr))
5886 return false;
5888 cur_reg = expr_dest_reg (params->c_expr);
5889 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5891 /* If original operation has expr and the register chosen for
5892 that expr is not original operation's dest reg, substitute
5893 operation's right hand side with the register chosen. */
5894 if (REGNO (params->dest) != REGNO (cur_reg))
5896 insn_t reg_move_insn, reg_move_insn_rtx;
5898 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5899 params->dest);
5900 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5901 INSN_EXPR (insn),
5902 INSN_SEQNO (insn),
5903 insn);
5904 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5905 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5907 insn_emitted = true;
5908 params->was_renamed = true;
5911 return insn_emitted;
5914 /* Emit a speculative check for INSN speculated as EXPR if needed.
5915 Return true if we've emitted one. PARAMS is the move_op static
5916 parameters. */
5917 static bool
5918 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5919 moveop_static_params_p params)
5921 bool insn_emitted = false;
5922 insn_t x;
5923 ds_t check_ds;
5925 check_ds = get_spec_check_type_for_insn (insn, expr);
5926 if (check_ds != 0)
5928 /* A speculation check should be inserted. */
5929 x = create_speculation_check (params->c_expr, check_ds, insn);
5930 insn_emitted = true;
5932 else
5934 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5935 x = insn;
5938 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5939 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5940 return insn_emitted;
5943 /* Handle transformations that leave an insn in place of original
5944 insn such as renaming/speculation. Return true if one of such
5945 transformations actually happened, and we have emitted this insn. */
5946 static bool
5947 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5948 moveop_static_params_p params)
5950 bool insn_emitted = false;
5952 insn_emitted = maybe_emit_renaming_copy (insn, params);
5953 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5955 return insn_emitted;
5958 /* If INSN is the only insn in the basic block (not counting JUMP,
5959 which may be a jump to next insn, and DEBUG_INSNs), we want to
5960 leave a NOP there till the return to fill_insns. */
5962 static bool
5963 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5965 insn_t bb_head, bb_end, bb_next, in_next;
5966 basic_block bb = BLOCK_FOR_INSN (insn);
5968 bb_head = sel_bb_head (bb);
5969 bb_end = sel_bb_end (bb);
5971 if (bb_head == bb_end)
5972 return true;
5974 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5975 bb_head = NEXT_INSN (bb_head);
5977 if (bb_head == bb_end)
5978 return true;
5980 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5981 bb_end = PREV_INSN (bb_end);
5983 if (bb_head == bb_end)
5984 return true;
5986 bb_next = NEXT_INSN (bb_head);
5987 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5988 bb_next = NEXT_INSN (bb_next);
5990 if (bb_next == bb_end && JUMP_P (bb_end))
5991 return true;
5993 in_next = NEXT_INSN (insn);
5994 while (DEBUG_INSN_P (in_next))
5995 in_next = NEXT_INSN (in_next);
5997 if (IN_CURRENT_FENCE_P (in_next))
5998 return true;
6000 return false;
6003 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
6004 is not removed but reused when INSN is re-emitted. */
6005 static void
6006 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
6008 /* If there's only one insn in the BB, make sure that a nop is
6009 inserted into it, so the basic block won't disappear when we'll
6010 delete INSN below with sel_remove_insn. It should also survive
6011 till the return to fill_insns. */
6012 if (need_nop_to_preserve_insn_bb (insn))
6014 insn_t nop = get_nop_from_pool (insn);
6015 gcc_assert (INSN_NOP_P (nop));
6016 vec_temp_moveop_nops.safe_push (nop);
6019 sel_remove_insn (insn, only_disconnect, false);
6022 /* This function is called when original expr is found.
6023 INSN - current insn traversed, EXPR - the corresponding expr found.
6024 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6025 is static parameters of move_op. */
6026 static void
6027 move_op_orig_expr_found (insn_t insn, expr_t expr,
6028 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6029 void *static_params)
6031 bool only_disconnect;
6032 moveop_static_params_p params = (moveop_static_params_p) static_params;
6034 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6035 track_scheduled_insns_and_blocks (insn);
6036 handle_emitting_transformations (insn, expr, params);
6037 only_disconnect = params->uid == INSN_UID (insn);
6039 /* Mark that we've disconnected an insn. */
6040 if (only_disconnect)
6041 params->uid = -1;
6042 remove_insn_from_stream (insn, only_disconnect);
6045 /* The function is called when original expr is found.
6046 INSN - current insn traversed, EXPR - the corresponding expr found,
6047 crosses_call and original_insns in STATIC_PARAMS are updated. */
6048 static void
6049 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6050 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6051 void *static_params)
6053 fur_static_params_p params = (fur_static_params_p) static_params;
6054 regset tmp;
6056 if (CALL_P (insn))
6057 params->crosses_call = true;
6059 def_list_add (params->original_insns, insn, params->crosses_call);
6061 /* Mark the registers that do not meet the following condition:
6062 (2) not among the live registers of the point
6063 immediately following the first original operation on
6064 a given downward path, except for the original target
6065 register of the operation. */
6066 tmp = get_clear_regset_from_pool ();
6067 compute_live_below_insn (insn, tmp);
6068 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6069 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6070 IOR_REG_SET (params->used_regs, tmp);
6071 return_regset_to_pool (tmp);
6073 /* (*1) We need to add to USED_REGS registers that are read by
6074 INSN's lhs. This may lead to choosing wrong src register.
6075 E.g. (scheduling const expr enabled):
6077 429: ax=0x0 <- Can't use AX for this expr (0x0)
6078 433: dx=[bp-0x18]
6079 427: [ax+dx+0x1]=ax
6080 REG_DEAD: ax
6081 168: di=dx
6082 REG_DEAD: dx
6084 /* FIXME: see comment above and enable MEM_P
6085 in vinsn_separable_p. */
6086 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6087 || !MEM_P (INSN_LHS (insn)));
6090 /* This function is called on the ascending pass, before returning from
6091 current basic block. */
6092 static void
6093 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6094 void *static_params)
6096 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6097 basic_block book_block = NULL;
6099 /* When we have removed the boundary insn for scheduling, which also
6100 happened to be the end insn in its bb, we don't need to update sets. */
6101 if (!lparams->removed_last_insn
6102 && lparams->e1
6103 && sel_bb_head_p (insn))
6105 /* We should generate bookkeeping code only if we are not at the
6106 top level of the move_op. */
6107 if (sel_num_cfg_preds_gt_1 (insn))
6108 book_block = generate_bookkeeping_insn (sparams->c_expr,
6109 lparams->e1, lparams->e2);
6110 /* Update data sets for the current insn. */
6111 update_data_sets (insn);
6114 /* If bookkeeping code was inserted, we need to update av sets of basic
6115 block that received bookkeeping. After generation of bookkeeping insn,
6116 bookkeeping block does not contain valid av set because we are not following
6117 the original algorithm in every detail with regards to e.g. renaming
6118 simple reg-reg copies. Consider example:
6120 bookkeeping block scheduling fence
6122 \ join /
6123 ----------
6125 ----------
6128 r1 := r2 r1 := r3
6130 We try to schedule insn "r1 := r3" on the current
6131 scheduling fence. Also, note that av set of bookkeeping block
6132 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6133 been scheduled, the CFG is as follows:
6135 r1 := r3 r1 := r3
6136 bookkeeping block scheduling fence
6138 \ join /
6139 ----------
6141 ----------
6144 r1 := r2
6146 Here, insn "r1 := r3" was scheduled at the current scheduling point
6147 and bookkeeping code was generated at the bookeeping block. This
6148 way insn "r1 := r2" is no longer available as a whole instruction
6149 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6150 This situation is handled by calling update_data_sets.
6152 Since update_data_sets is called only on the bookkeeping block, and
6153 it also may have predecessors with av_sets, containing instructions that
6154 are no longer available, we save all such expressions that become
6155 unavailable during data sets update on the bookkeeping block in
6156 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6157 expressions for scheduling. This allows us to avoid recomputation of
6158 av_sets outside the code motion path. */
6160 if (book_block)
6161 update_and_record_unavailable_insns (book_block);
6163 /* If INSN was previously marked for deletion, it's time to do it. */
6164 if (lparams->removed_last_insn)
6165 insn = PREV_INSN (insn);
6167 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6168 kill a block with a single nop in which the insn should be emitted. */
6169 if (lparams->e1)
6170 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6173 /* This function is called on the ascending pass, before returning from the
6174 current basic block. */
6175 static void
6176 fur_at_first_insn (insn_t insn,
6177 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6178 void *static_params ATTRIBUTE_UNUSED)
6180 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6181 || AV_LEVEL (insn) == -1);
6184 /* Called on the backward stage of recursion to call moveup_expr for insn
6185 and sparams->c_expr. */
6186 static void
6187 move_op_ascend (insn_t insn, void *static_params)
6189 enum MOVEUP_EXPR_CODE res;
6190 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6192 if (! INSN_NOP_P (insn))
6194 res = moveup_expr_cached (sparams->c_expr, insn, false);
6195 gcc_assert (res != MOVEUP_EXPR_NULL);
6198 /* Update liveness for this insn as it was invalidated. */
6199 update_liveness_on_insn (insn);
6202 /* This function is called on enter to the basic block.
6203 Returns TRUE if this block already have been visited and
6204 code_motion_path_driver should return 1, FALSE otherwise. */
6205 static int
6206 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6207 void *static_params, bool visited_p)
6209 fur_static_params_p sparams = (fur_static_params_p) static_params;
6211 if (visited_p)
6213 /* If we have found something below this block, there should be at
6214 least one insn in ORIGINAL_INSNS. */
6215 gcc_assert (*sparams->original_insns);
6217 /* Adjust CROSSES_CALL, since we may have come to this block along
6218 different path. */
6219 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6220 |= sparams->crosses_call;
6222 else
6223 local_params->old_original_insns = *sparams->original_insns;
6225 return 1;
6228 /* Same as above but for move_op. */
6229 static int
6230 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6231 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6232 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6234 if (visited_p)
6235 return -1;
6236 return 1;
6239 /* This function is called while descending current basic block if current
6240 insn is not the original EXPR we're searching for.
6242 Return value: FALSE, if code_motion_path_driver should perform a local
6243 cleanup and return 0 itself;
6244 TRUE, if code_motion_path_driver should continue. */
6245 static bool
6246 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6247 void *static_params)
6249 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6251 #ifdef ENABLE_CHECKING
6252 sparams->failed_insn = insn;
6253 #endif
6255 /* If we're scheduling separate expr, in order to generate correct code
6256 we need to stop the search at bookkeeping code generated with the
6257 same destination register or memory. */
6258 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6259 return false;
6260 return true;
6263 /* This function is called while descending current basic block if current
6264 insn is not the original EXPR we're searching for.
6266 Return value: TRUE (code_motion_path_driver should continue). */
6267 static bool
6268 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6270 bool mutexed;
6271 expr_t r;
6272 av_set_iterator avi;
6273 fur_static_params_p sparams = (fur_static_params_p) static_params;
6275 if (CALL_P (insn))
6276 sparams->crosses_call = true;
6277 else if (DEBUG_INSN_P (insn))
6278 return true;
6280 /* If current insn we are looking at cannot be executed together
6281 with original insn, then we can skip it safely.
6283 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6284 INSN = (!p6) r14 = r14 + 1;
6286 Here we can schedule ORIG_OP with lhs = r14, though only
6287 looking at the set of used and set registers of INSN we must
6288 forbid it. So, add set/used in INSN registers to the
6289 untouchable set only if there is an insn in ORIG_OPS that can
6290 affect INSN. */
6291 mutexed = true;
6292 FOR_EACH_EXPR (r, avi, orig_ops)
6293 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6295 mutexed = false;
6296 break;
6299 /* Mark all registers that do not meet the following condition:
6300 (1) Not set or read on any path from xi to an instance of the
6301 original operation. */
6302 if (!mutexed)
6304 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6305 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6306 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6309 return true;
6312 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6313 struct code_motion_path_driver_info_def move_op_hooks = {
6314 move_op_on_enter,
6315 move_op_orig_expr_found,
6316 move_op_orig_expr_not_found,
6317 move_op_merge_succs,
6318 move_op_after_merge_succs,
6319 move_op_ascend,
6320 move_op_at_first_insn,
6321 SUCCS_NORMAL,
6322 "move_op"
6325 /* Hooks and data to perform find_used_regs operations
6326 with code_motion_path_driver. */
6327 struct code_motion_path_driver_info_def fur_hooks = {
6328 fur_on_enter,
6329 fur_orig_expr_found,
6330 fur_orig_expr_not_found,
6331 fur_merge_succs,
6332 NULL, /* fur_after_merge_succs */
6333 NULL, /* fur_ascend */
6334 fur_at_first_insn,
6335 SUCCS_ALL,
6336 "find_used_regs"
6339 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6340 code_motion_path_driver is called recursively. Original operation
6341 was found at least on one path that is starting with one of INSN's
6342 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6343 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6344 of either move_op or find_used_regs depending on the caller.
6346 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6347 know for sure at this point. */
6348 static int
6349 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6350 ilist_t path, void *static_params)
6352 int res = 0;
6353 succ_iterator succ_i;
6354 insn_t succ;
6355 basic_block bb;
6356 int old_index;
6357 unsigned old_succs;
6359 struct cmpd_local_params lparams;
6360 expr_def _x;
6362 lparams.c_expr_local = &_x;
6363 lparams.c_expr_merged = NULL;
6365 /* We need to process only NORMAL succs for move_op, and collect live
6366 registers from ALL branches (including those leading out of the
6367 region) for find_used_regs.
6369 In move_op, there can be a case when insn's bb number has changed
6370 due to created bookkeeping. This happens very rare, as we need to
6371 move expression from the beginning to the end of the same block.
6372 Rescan successors in this case. */
6374 rescan:
6375 bb = BLOCK_FOR_INSN (insn);
6376 old_index = bb->index;
6377 old_succs = EDGE_COUNT (bb->succs);
6379 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6381 int b;
6383 lparams.e1 = succ_i.e1;
6384 lparams.e2 = succ_i.e2;
6386 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6387 current region). */
6388 if (succ_i.current_flags == SUCCS_NORMAL)
6389 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6390 static_params);
6391 else
6392 b = 0;
6394 /* Merge c_expres found or unify live register sets from different
6395 successors. */
6396 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6397 static_params);
6398 if (b == 1)
6399 res = b;
6400 else if (b == -1 && res != 1)
6401 res = b;
6403 /* We have simplified the control flow below this point. In this case,
6404 the iterator becomes invalid. We need to try again.
6405 If we have removed the insn itself, it could be only an
6406 unconditional jump. Thus, do not rescan but break immediately --
6407 we have already visited the only successor block. */
6408 if (!BLOCK_FOR_INSN (insn))
6410 if (sched_verbose >= 6)
6411 sel_print ("Not doing rescan: already visited the only successor"
6412 " of block %d\n", old_index);
6413 break;
6415 if (BLOCK_FOR_INSN (insn)->index != old_index
6416 || EDGE_COUNT (bb->succs) != old_succs)
6418 if (sched_verbose >= 6)
6419 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6420 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6421 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6422 goto rescan;
6426 #ifdef ENABLE_CHECKING
6427 /* Here, RES==1 if original expr was found at least for one of the
6428 successors. After the loop, RES may happen to have zero value
6429 only if at some point the expr searched is present in av_set, but is
6430 not found below. In most cases, this situation is an error.
6431 The exception is when the original operation is blocked by
6432 bookkeeping generated for another fence or for another path in current
6433 move_op. */
6434 gcc_assert (res == 1
6435 || (res == 0
6436 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6437 static_params))
6438 || res == -1);
6439 #endif
6441 /* Merge data, clean up, etc. */
6442 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6443 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6445 return res;
6449 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6450 is the pointer to the av set with expressions we were looking for,
6451 PATH_P is the pointer to the traversed path. */
6452 static inline void
6453 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6455 ilist_remove (path_p);
6456 av_set_clear (orig_ops_p);
6459 /* The driver function that implements move_op or find_used_regs
6460 functionality dependent whether code_motion_path_driver_INFO is set to
6461 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6462 of code (CFG traversal etc) that are shared among both functions. INSN
6463 is the insn we're starting the search from, ORIG_OPS are the expressions
6464 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6465 parameters of the driver, and STATIC_PARAMS are static parameters of
6466 the caller.
6468 Returns whether original instructions were found. Note that top-level
6469 code_motion_path_driver always returns true. */
6470 static int
6471 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6472 cmpd_local_params_p local_params_in,
6473 void *static_params)
6475 expr_t expr = NULL;
6476 basic_block bb = BLOCK_FOR_INSN (insn);
6477 insn_t first_insn, bb_tail, before_first;
6478 bool removed_last_insn = false;
6480 if (sched_verbose >= 6)
6482 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6483 dump_insn (insn);
6484 sel_print (",");
6485 dump_av_set (orig_ops);
6486 sel_print (")\n");
6489 gcc_assert (orig_ops);
6491 /* If no original operations exist below this insn, return immediately. */
6492 if (is_ineligible_successor (insn, path))
6494 if (sched_verbose >= 6)
6495 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6496 return false;
6499 /* The block can have invalid av set, in which case it was created earlier
6500 during move_op. Return immediately. */
6501 if (sel_bb_head_p (insn))
6503 if (! AV_SET_VALID_P (insn))
6505 if (sched_verbose >= 6)
6506 sel_print ("Returned from block %d as it had invalid av set\n",
6507 bb->index);
6508 return false;
6511 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6513 /* We have already found an original operation on this branch, do not
6514 go any further and just return TRUE here. If we don't stop here,
6515 function can have exponential behaviour even on the small code
6516 with many different paths (e.g. with data speculation and
6517 recovery blocks). */
6518 if (sched_verbose >= 6)
6519 sel_print ("Block %d already visited in this traversal\n", bb->index);
6520 if (code_motion_path_driver_info->on_enter)
6521 return code_motion_path_driver_info->on_enter (insn,
6522 local_params_in,
6523 static_params,
6524 true);
6528 if (code_motion_path_driver_info->on_enter)
6529 code_motion_path_driver_info->on_enter (insn, local_params_in,
6530 static_params, false);
6531 orig_ops = av_set_copy (orig_ops);
6533 /* Filter the orig_ops set. */
6534 if (AV_SET_VALID_P (insn))
6535 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6537 /* If no more original ops, return immediately. */
6538 if (!orig_ops)
6540 if (sched_verbose >= 6)
6541 sel_print ("No intersection with av set of block %d\n", bb->index);
6542 return false;
6545 /* For non-speculative insns we have to leave only one form of the
6546 original operation, because if we don't, we may end up with
6547 different C_EXPRes and, consequently, with bookkeepings for different
6548 expression forms along the same code motion path. That may lead to
6549 generation of incorrect code. So for each code motion we stick to
6550 the single form of the instruction, except for speculative insns
6551 which we need to keep in different forms with all speculation
6552 types. */
6553 av_set_leave_one_nonspec (&orig_ops);
6555 /* It is not possible that all ORIG_OPS are filtered out. */
6556 gcc_assert (orig_ops);
6558 /* It is enough to place only heads and tails of visited basic blocks into
6559 the PATH. */
6560 ilist_add (&path, insn);
6561 first_insn = insn;
6562 bb_tail = sel_bb_end (bb);
6564 /* Descend the basic block in search of the original expr; this part
6565 corresponds to the part of the original move_op procedure executed
6566 before the recursive call. */
6567 for (;;)
6569 /* Look at the insn and decide if it could be an ancestor of currently
6570 scheduling operation. If it is so, then the insn "dest = op" could
6571 either be replaced with "dest = reg", because REG now holds the result
6572 of OP, or just removed, if we've scheduled the insn as a whole.
6574 If this insn doesn't contain currently scheduling OP, then proceed
6575 with searching and look at its successors. Operations we're searching
6576 for could have changed when moving up through this insn via
6577 substituting. In this case, perform unsubstitution on them first.
6579 When traversing the DAG below this insn is finished, insert
6580 bookkeeping code, if the insn is a joint point, and remove
6581 leftovers. */
6583 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6584 if (expr)
6586 insn_t last_insn = PREV_INSN (insn);
6588 /* We have found the original operation. */
6589 if (sched_verbose >= 6)
6590 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6592 code_motion_path_driver_info->orig_expr_found
6593 (insn, expr, local_params_in, static_params);
6595 /* Step back, so on the way back we'll start traversing from the
6596 previous insn (or we'll see that it's bb_note and skip that
6597 loop). */
6598 if (insn == first_insn)
6600 first_insn = NEXT_INSN (last_insn);
6601 removed_last_insn = sel_bb_end_p (last_insn);
6603 insn = last_insn;
6604 break;
6606 else
6608 /* We haven't found the original expr, continue descending the basic
6609 block. */
6610 if (code_motion_path_driver_info->orig_expr_not_found
6611 (insn, orig_ops, static_params))
6613 /* Av set ops could have been changed when moving through this
6614 insn. To find them below it, we have to un-substitute them. */
6615 undo_transformations (&orig_ops, insn);
6617 else
6619 /* Clean up and return, if the hook tells us to do so. It may
6620 happen if we've encountered the previously created
6621 bookkeeping. */
6622 code_motion_path_driver_cleanup (&orig_ops, &path);
6623 return -1;
6626 gcc_assert (orig_ops);
6629 /* Stop at insn if we got to the end of BB. */
6630 if (insn == bb_tail)
6631 break;
6633 insn = NEXT_INSN (insn);
6636 /* Here INSN either points to the insn before the original insn (may be
6637 bb_note, if original insn was a bb_head) or to the bb_end. */
6638 if (!expr)
6640 int res;
6641 rtx_insn *last_insn = PREV_INSN (insn);
6642 bool added_to_path;
6644 gcc_assert (insn == sel_bb_end (bb));
6646 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6647 it's already in PATH then). */
6648 if (insn != first_insn)
6650 ilist_add (&path, insn);
6651 added_to_path = true;
6653 else
6654 added_to_path = false;
6656 /* Process_successors should be able to find at least one
6657 successor for which code_motion_path_driver returns TRUE. */
6658 res = code_motion_process_successors (insn, orig_ops,
6659 path, static_params);
6661 /* Jump in the end of basic block could have been removed or replaced
6662 during code_motion_process_successors, so recompute insn as the
6663 last insn in bb. */
6664 if (NEXT_INSN (last_insn) != insn)
6666 insn = sel_bb_end (bb);
6667 first_insn = sel_bb_head (bb);
6670 /* Remove bb tail from path. */
6671 if (added_to_path)
6672 ilist_remove (&path);
6674 if (res != 1)
6676 /* This is the case when one of the original expr is no longer available
6677 due to bookkeeping created on this branch with the same register.
6678 In the original algorithm, which doesn't have update_data_sets call
6679 on a bookkeeping block, it would simply result in returning
6680 FALSE when we've encountered a previously generated bookkeeping
6681 insn in moveop_orig_expr_not_found. */
6682 code_motion_path_driver_cleanup (&orig_ops, &path);
6683 return res;
6687 /* Don't need it any more. */
6688 av_set_clear (&orig_ops);
6690 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6691 the beginning of the basic block. */
6692 before_first = PREV_INSN (first_insn);
6693 while (insn != before_first)
6695 if (code_motion_path_driver_info->ascend)
6696 code_motion_path_driver_info->ascend (insn, static_params);
6698 insn = PREV_INSN (insn);
6701 /* Now we're at the bb head. */
6702 insn = first_insn;
6703 ilist_remove (&path);
6704 local_params_in->removed_last_insn = removed_last_insn;
6705 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6707 /* This should be the very last operation as at bb head we could change
6708 the numbering by creating bookkeeping blocks. */
6709 if (removed_last_insn)
6710 insn = PREV_INSN (insn);
6712 /* If we have simplified the control flow and removed the first jump insn,
6713 there's no point in marking this block in the visited blocks bitmap. */
6714 if (BLOCK_FOR_INSN (insn))
6715 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6716 return true;
6719 /* Move up the operations from ORIG_OPS set traversing the dag starting
6720 from INSN. PATH represents the edges traversed so far.
6721 DEST is the register chosen for scheduling the current expr. Insert
6722 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6723 C_EXPR is how it looks like at the given cfg point.
6724 Set *SHOULD_MOVE to indicate whether we have only disconnected
6725 one of the insns found.
6727 Returns whether original instructions were found, which is asserted
6728 to be true in the caller. */
6729 static bool
6730 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6731 rtx dest, expr_t c_expr, bool *should_move)
6733 struct moveop_static_params sparams;
6734 struct cmpd_local_params lparams;
6735 int res;
6737 /* Init params for code_motion_path_driver. */
6738 sparams.dest = dest;
6739 sparams.c_expr = c_expr;
6740 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6741 #ifdef ENABLE_CHECKING
6742 sparams.failed_insn = NULL;
6743 #endif
6744 sparams.was_renamed = false;
6745 lparams.e1 = NULL;
6747 /* We haven't visited any blocks yet. */
6748 bitmap_clear (code_motion_visited_blocks);
6750 /* Set appropriate hooks and data. */
6751 code_motion_path_driver_info = &move_op_hooks;
6752 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6754 gcc_assert (res != -1);
6756 if (sparams.was_renamed)
6757 EXPR_WAS_RENAMED (expr_vliw) = true;
6759 *should_move = (sparams.uid == -1);
6761 return res;
6765 /* Functions that work with regions. */
6767 /* Current number of seqno used in init_seqno and init_seqno_1. */
6768 static int cur_seqno;
6770 /* A helper for init_seqno. Traverse the region starting from BB and
6771 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6772 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6773 static void
6774 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6776 int bbi = BLOCK_TO_BB (bb->index);
6777 insn_t insn, note = bb_note (bb);
6778 insn_t succ_insn;
6779 succ_iterator si;
6781 bitmap_set_bit (visited_bbs, bbi);
6782 if (blocks_to_reschedule)
6783 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6785 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6786 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6788 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6789 int succ_bbi = BLOCK_TO_BB (succ->index);
6791 gcc_assert (in_current_region_p (succ));
6793 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6795 gcc_assert (succ_bbi > bbi);
6797 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6799 else if (blocks_to_reschedule)
6800 bitmap_set_bit (forced_ebb_heads, succ->index);
6803 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6804 INSN_SEQNO (insn) = cur_seqno--;
6807 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6808 blocks on which we're rescheduling when pipelining, FROM is the block where
6809 traversing region begins (it may not be the head of the region when
6810 pipelining, but the head of the loop instead).
6812 Returns the maximal seqno found. */
6813 static int
6814 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6816 sbitmap visited_bbs;
6817 bitmap_iterator bi;
6818 unsigned bbi;
6820 visited_bbs = sbitmap_alloc (current_nr_blocks);
6822 if (blocks_to_reschedule)
6824 bitmap_ones (visited_bbs);
6825 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6827 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6828 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6831 else
6833 bitmap_clear (visited_bbs);
6834 from = EBB_FIRST_BB (0);
6837 cur_seqno = sched_max_luid - 1;
6838 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6840 /* cur_seqno may be positive if the number of instructions is less than
6841 sched_max_luid - 1 (when rescheduling or if some instructions have been
6842 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6843 gcc_assert (cur_seqno >= 0);
6845 sbitmap_free (visited_bbs);
6846 return sched_max_luid - 1;
6849 /* Initialize scheduling parameters for current region. */
6850 static void
6851 sel_setup_region_sched_flags (void)
6853 enable_schedule_as_rhs_p = 1;
6854 bookkeeping_p = 1;
6855 pipelining_p = (bookkeeping_p
6856 && (flag_sel_sched_pipelining != 0)
6857 && current_loop_nest != NULL
6858 && loop_has_exit_edges (current_loop_nest));
6859 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6860 max_ws = MAX_WS;
6863 /* Return true if all basic blocks of current region are empty. */
6864 static bool
6865 current_region_empty_p (void)
6867 int i;
6868 for (i = 0; i < current_nr_blocks; i++)
6869 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6870 return false;
6872 return true;
6875 /* Prepare and verify loop nest for pipelining. */
6876 static void
6877 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6879 current_loop_nest = get_loop_nest_for_rgn (rgn);
6881 if (!current_loop_nest)
6882 return;
6884 /* If this loop has any saved loop preheaders from nested loops,
6885 add these basic blocks to the current region. */
6886 sel_add_loop_preheaders (bbs);
6888 /* Check that we're starting with a valid information. */
6889 gcc_assert (loop_latch_edge (current_loop_nest));
6890 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6893 /* Compute instruction priorities for current region. */
6894 static void
6895 sel_compute_priorities (int rgn)
6897 sched_rgn_compute_dependencies (rgn);
6899 /* Compute insn priorities in haifa style. Then free haifa style
6900 dependencies that we've calculated for this. */
6901 compute_priorities ();
6903 if (sched_verbose >= 5)
6904 debug_rgn_dependencies (0);
6906 free_rgn_deps ();
6909 /* Init scheduling data for RGN. Returns true when this region should not
6910 be scheduled. */
6911 static bool
6912 sel_region_init (int rgn)
6914 int i;
6915 bb_vec_t bbs;
6917 rgn_setup_region (rgn);
6919 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6920 do region initialization here so the region can be bundled correctly,
6921 but we'll skip the scheduling in sel_sched_region (). */
6922 if (current_region_empty_p ())
6923 return true;
6925 bbs.create (current_nr_blocks);
6927 for (i = 0; i < current_nr_blocks; i++)
6928 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6930 sel_init_bbs (bbs);
6932 if (flag_sel_sched_pipelining)
6933 setup_current_loop_nest (rgn, &bbs);
6935 sel_setup_region_sched_flags ();
6937 /* Initialize luids and dependence analysis which both sel-sched and haifa
6938 need. */
6939 sched_init_luids (bbs);
6940 sched_deps_init (false);
6942 /* Initialize haifa data. */
6943 rgn_setup_sched_infos ();
6944 sel_set_sched_flags ();
6945 haifa_init_h_i_d (bbs);
6947 sel_compute_priorities (rgn);
6948 init_deps_global ();
6950 /* Main initialization. */
6951 sel_setup_sched_infos ();
6952 sel_init_global_and_expr (bbs);
6954 bbs.release ();
6956 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6958 /* Init correct liveness sets on each instruction of a single-block loop.
6959 This is the only situation when we can't update liveness when calling
6960 compute_live for the first insn of the loop. */
6961 if (current_loop_nest)
6963 int header =
6964 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6966 : 0);
6968 if (current_nr_blocks == header + 1)
6969 update_liveness_on_insn
6970 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6973 /* Set hooks so that no newly generated insn will go out unnoticed. */
6974 sel_register_cfg_hooks ();
6976 /* !!! We call target.sched.init () for the whole region, but we invoke
6977 targetm.sched.finish () for every ebb. */
6978 if (targetm.sched.init)
6979 /* None of the arguments are actually used in any target. */
6980 targetm.sched.init (sched_dump, sched_verbose, -1);
6982 first_emitted_uid = get_max_uid () + 1;
6983 preheader_removed = false;
6985 /* Reset register allocation ticks array. */
6986 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6987 reg_rename_this_tick = 0;
6989 bitmap_initialize (forced_ebb_heads, 0);
6990 bitmap_clear (forced_ebb_heads);
6992 setup_nop_vinsn ();
6993 current_copies = BITMAP_ALLOC (NULL);
6994 current_originators = BITMAP_ALLOC (NULL);
6995 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6997 return false;
7000 /* Simplify insns after the scheduling. */
7001 static void
7002 simplify_changed_insns (void)
7004 int i;
7006 for (i = 0; i < current_nr_blocks; i++)
7008 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
7009 rtx_insn *insn;
7011 FOR_BB_INSNS (bb, insn)
7012 if (INSN_P (insn))
7014 expr_t expr = INSN_EXPR (insn);
7016 if (EXPR_WAS_SUBSTITUTED (expr))
7017 validate_simplify_insn (insn);
7022 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7023 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7024 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7025 static void
7026 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7028 rtx_insn *head, *tail;
7029 basic_block bb1 = bb;
7030 if (sched_verbose >= 2)
7031 sel_print ("Finishing schedule in bbs: ");
7035 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7037 if (sched_verbose >= 2)
7038 sel_print ("%d; ", bb1->index);
7040 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7042 if (sched_verbose >= 2)
7043 sel_print ("\n");
7045 get_ebb_head_tail (bb, bb1, &head, &tail);
7047 current_sched_info->head = head;
7048 current_sched_info->tail = tail;
7049 current_sched_info->prev_head = PREV_INSN (head);
7050 current_sched_info->next_tail = NEXT_INSN (tail);
7053 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7054 static void
7055 reset_sched_cycles_in_current_ebb (void)
7057 int last_clock = 0;
7058 int haifa_last_clock = -1;
7059 int haifa_clock = 0;
7060 int issued_insns = 0;
7061 insn_t insn;
7063 if (targetm.sched.init)
7065 /* None of the arguments are actually used in any target.
7066 NB: We should have md_reset () hook for cases like this. */
7067 targetm.sched.init (sched_dump, sched_verbose, -1);
7070 state_reset (curr_state);
7071 advance_state (curr_state);
7073 for (insn = current_sched_info->head;
7074 insn != current_sched_info->next_tail;
7075 insn = NEXT_INSN (insn))
7077 int cost, haifa_cost;
7078 int sort_p;
7079 bool asm_p, real_insn, after_stall, all_issued;
7080 int clock;
7082 if (!INSN_P (insn))
7083 continue;
7085 asm_p = false;
7086 real_insn = recog_memoized (insn) >= 0;
7087 clock = INSN_SCHED_CYCLE (insn);
7089 cost = clock - last_clock;
7091 /* Initialize HAIFA_COST. */
7092 if (! real_insn)
7094 asm_p = INSN_ASM_P (insn);
7096 if (asm_p)
7097 /* This is asm insn which *had* to be scheduled first
7098 on the cycle. */
7099 haifa_cost = 1;
7100 else
7101 /* This is a use/clobber insn. It should not change
7102 cost. */
7103 haifa_cost = 0;
7105 else
7106 haifa_cost = estimate_insn_cost (insn, curr_state);
7108 /* Stall for whatever cycles we've stalled before. */
7109 after_stall = 0;
7110 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7112 haifa_cost = cost;
7113 after_stall = 1;
7115 all_issued = issued_insns == issue_rate;
7116 if (haifa_cost == 0 && all_issued)
7117 haifa_cost = 1;
7118 if (haifa_cost > 0)
7120 int i = 0;
7122 while (haifa_cost--)
7124 advance_state (curr_state);
7125 issued_insns = 0;
7126 i++;
7128 if (sched_verbose >= 2)
7130 sel_print ("advance_state (state_transition)\n");
7131 debug_state (curr_state);
7134 /* The DFA may report that e.g. insn requires 2 cycles to be
7135 issued, but on the next cycle it says that insn is ready
7136 to go. Check this here. */
7137 if (!after_stall
7138 && real_insn
7139 && haifa_cost > 0
7140 && estimate_insn_cost (insn, curr_state) == 0)
7141 break;
7143 /* When the data dependency stall is longer than the DFA stall,
7144 and when we have issued exactly issue_rate insns and stalled,
7145 it could be that after this longer stall the insn will again
7146 become unavailable to the DFA restrictions. Looks strange
7147 but happens e.g. on x86-64. So recheck DFA on the last
7148 iteration. */
7149 if ((after_stall || all_issued)
7150 && real_insn
7151 && haifa_cost == 0)
7152 haifa_cost = estimate_insn_cost (insn, curr_state);
7155 haifa_clock += i;
7156 if (sched_verbose >= 2)
7157 sel_print ("haifa clock: %d\n", haifa_clock);
7159 else
7160 gcc_assert (haifa_cost == 0);
7162 if (sched_verbose >= 2)
7163 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7165 if (targetm.sched.dfa_new_cycle)
7166 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7167 haifa_last_clock, haifa_clock,
7168 &sort_p))
7170 advance_state (curr_state);
7171 issued_insns = 0;
7172 haifa_clock++;
7173 if (sched_verbose >= 2)
7175 sel_print ("advance_state (dfa_new_cycle)\n");
7176 debug_state (curr_state);
7177 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7181 if (real_insn)
7183 static state_t temp = NULL;
7185 if (!temp)
7186 temp = xmalloc (dfa_state_size);
7187 memcpy (temp, curr_state, dfa_state_size);
7189 cost = state_transition (curr_state, insn);
7190 if (memcmp (temp, curr_state, dfa_state_size))
7191 issued_insns++;
7193 if (sched_verbose >= 2)
7195 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7196 haifa_clock + 1);
7197 debug_state (curr_state);
7199 gcc_assert (cost < 0);
7202 if (targetm.sched.variable_issue)
7203 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7205 INSN_SCHED_CYCLE (insn) = haifa_clock;
7207 last_clock = clock;
7208 haifa_last_clock = haifa_clock;
7212 /* Put TImode markers on insns starting a new issue group. */
7213 static void
7214 put_TImodes (void)
7216 int last_clock = -1;
7217 insn_t insn;
7219 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7220 insn = NEXT_INSN (insn))
7222 int cost, clock;
7224 if (!INSN_P (insn))
7225 continue;
7227 clock = INSN_SCHED_CYCLE (insn);
7228 cost = (last_clock == -1) ? 1 : clock - last_clock;
7230 gcc_assert (cost >= 0);
7232 if (issue_rate > 1
7233 && GET_CODE (PATTERN (insn)) != USE
7234 && GET_CODE (PATTERN (insn)) != CLOBBER)
7236 if (reload_completed && cost > 0)
7237 PUT_MODE (insn, TImode);
7239 last_clock = clock;
7242 if (sched_verbose >= 2)
7243 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7247 /* Perform MD_FINISH on EBBs comprising current region. When
7248 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7249 to produce correct sched cycles on insns. */
7250 static void
7251 sel_region_target_finish (bool reset_sched_cycles_p)
7253 int i;
7254 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7256 for (i = 0; i < current_nr_blocks; i++)
7258 if (bitmap_bit_p (scheduled_blocks, i))
7259 continue;
7261 /* While pipelining outer loops, skip bundling for loop
7262 preheaders. Those will be rescheduled in the outer loop. */
7263 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7264 continue;
7266 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7268 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7269 continue;
7271 if (reset_sched_cycles_p)
7272 reset_sched_cycles_in_current_ebb ();
7274 if (targetm.sched.init)
7275 targetm.sched.init (sched_dump, sched_verbose, -1);
7277 put_TImodes ();
7279 if (targetm.sched.finish)
7281 targetm.sched.finish (sched_dump, sched_verbose);
7283 /* Extend luids so that insns generated by the target will
7284 get zero luid. */
7285 sched_extend_luids ();
7289 BITMAP_FREE (scheduled_blocks);
7292 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7293 is true, make an additional pass emulating scheduler to get correct insn
7294 cycles for md_finish calls. */
7295 static void
7296 sel_region_finish (bool reset_sched_cycles_p)
7298 simplify_changed_insns ();
7299 sched_finish_ready_list ();
7300 free_nop_pool ();
7302 /* Free the vectors. */
7303 vec_av_set.release ();
7304 BITMAP_FREE (current_copies);
7305 BITMAP_FREE (current_originators);
7306 BITMAP_FREE (code_motion_visited_blocks);
7307 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7308 vinsn_vec_free (vec_target_unavailable_vinsns);
7310 /* If LV_SET of the region head should be updated, do it now because
7311 there will be no other chance. */
7313 succ_iterator si;
7314 insn_t insn;
7316 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7317 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7319 basic_block bb = BLOCK_FOR_INSN (insn);
7321 if (!BB_LV_SET_VALID_P (bb))
7322 compute_live (insn);
7326 /* Emulate the Haifa scheduler for bundling. */
7327 if (reload_completed)
7328 sel_region_target_finish (reset_sched_cycles_p);
7330 sel_finish_global_and_expr ();
7332 bitmap_clear (forced_ebb_heads);
7334 free_nop_vinsn ();
7336 finish_deps_global ();
7337 sched_finish_luids ();
7338 h_d_i_d.release ();
7340 sel_finish_bbs ();
7341 BITMAP_FREE (blocks_to_reschedule);
7343 sel_unregister_cfg_hooks ();
7345 max_issue_size = 0;
7349 /* Functions that implement the scheduler driver. */
7351 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7352 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7353 of insns scheduled -- these would be postprocessed later. */
7354 static void
7355 schedule_on_fences (flist_t fences, int max_seqno,
7356 ilist_t **scheduled_insns_tailpp)
7358 flist_t old_fences = fences;
7360 if (sched_verbose >= 1)
7362 sel_print ("\nScheduling on fences: ");
7363 dump_flist (fences);
7364 sel_print ("\n");
7367 scheduled_something_on_previous_fence = false;
7368 for (; fences; fences = FLIST_NEXT (fences))
7370 fence_t fence = NULL;
7371 int seqno = 0;
7372 flist_t fences2;
7373 bool first_p = true;
7375 /* Choose the next fence group to schedule.
7376 The fact that insn can be scheduled only once
7377 on the cycle is guaranteed by two properties:
7378 1. seqnos of parallel groups decrease with each iteration.
7379 2. If is_ineligible_successor () sees the larger seqno, it
7380 checks if candidate insn is_in_current_fence_p (). */
7381 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7383 fence_t f = FLIST_FENCE (fences2);
7385 if (!FENCE_PROCESSED_P (f))
7387 int i = INSN_SEQNO (FENCE_INSN (f));
7389 if (first_p || i > seqno)
7391 seqno = i;
7392 fence = f;
7393 first_p = false;
7395 else
7396 /* ??? Seqnos of different groups should be different. */
7397 gcc_assert (1 || i != seqno);
7401 gcc_assert (fence);
7403 /* As FENCE is nonnull, SEQNO is initialized. */
7404 seqno -= max_seqno + 1;
7405 fill_insns (fence, seqno, scheduled_insns_tailpp);
7406 FENCE_PROCESSED_P (fence) = true;
7409 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7410 don't need to keep bookkeeping-invalidated and target-unavailable
7411 vinsns any more. */
7412 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7413 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7416 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7417 static void
7418 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7420 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7422 /* The first element is already processed. */
7423 while ((fences = FLIST_NEXT (fences)))
7425 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7427 if (*min_seqno > seqno)
7428 *min_seqno = seqno;
7429 else if (*max_seqno < seqno)
7430 *max_seqno = seqno;
7434 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7435 static flist_t
7436 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7438 flist_t old_fences = fences;
7439 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7440 int max_time = 0;
7442 flist_tail_init (new_fences);
7443 for (; fences; fences = FLIST_NEXT (fences))
7445 fence_t fence = FLIST_FENCE (fences);
7446 insn_t insn;
7448 if (!FENCE_BNDS (fence))
7450 /* This fence doesn't have any successors. */
7451 if (!FENCE_SCHEDULED_P (fence))
7453 /* Nothing was scheduled on this fence. */
7454 int seqno;
7456 insn = FENCE_INSN (fence);
7457 seqno = INSN_SEQNO (insn);
7458 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7460 if (sched_verbose >= 1)
7461 sel_print ("Fence %d[%d] has not changed\n",
7462 INSN_UID (insn),
7463 BLOCK_NUM (insn));
7464 move_fence_to_fences (fences, new_fences);
7467 else
7468 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7469 max_time = MAX (max_time, FENCE_CYCLE (fence));
7472 flist_clear (&old_fences);
7473 *ptime = max_time;
7474 return FLIST_TAIL_HEAD (new_fences);
7477 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7478 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7479 the highest seqno used in a region. Return the updated highest seqno. */
7480 static int
7481 update_seqnos_and_stage (int min_seqno, int max_seqno,
7482 int highest_seqno_in_use,
7483 ilist_t *pscheduled_insns)
7485 int new_hs;
7486 ilist_iterator ii;
7487 insn_t insn;
7489 /* Actually, new_hs is the seqno of the instruction, that was
7490 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7491 if (*pscheduled_insns)
7493 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7494 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7495 gcc_assert (new_hs > highest_seqno_in_use);
7497 else
7498 new_hs = highest_seqno_in_use;
7500 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7502 gcc_assert (INSN_SEQNO (insn) < 0);
7503 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7504 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7506 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7507 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7508 require > 1GB of memory e.g. on limit-fnargs.c. */
7509 if (! pipelining_p)
7510 free_data_for_scheduled_insn (insn);
7513 ilist_clear (pscheduled_insns);
7514 global_level++;
7516 return new_hs;
7519 /* The main driver for scheduling a region. This function is responsible
7520 for correct propagation of fences (i.e. scheduling points) and creating
7521 a group of parallel insns at each of them. It also supports
7522 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7523 of scheduling. */
7524 static void
7525 sel_sched_region_2 (int orig_max_seqno)
7527 int highest_seqno_in_use = orig_max_seqno;
7528 int max_time = 0;
7530 stat_bookkeeping_copies = 0;
7531 stat_insns_needed_bookkeeping = 0;
7532 stat_renamed_scheduled = 0;
7533 stat_substitutions_total = 0;
7534 num_insns_scheduled = 0;
7536 while (fences)
7538 int min_seqno, max_seqno;
7539 ilist_t scheduled_insns = NULL;
7540 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7542 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7543 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7544 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7545 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7546 highest_seqno_in_use,
7547 &scheduled_insns);
7550 if (sched_verbose >= 1)
7552 sel_print ("Total scheduling time: %d cycles\n", max_time);
7553 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7554 "bookkeeping, %d insns renamed, %d insns substituted\n",
7555 stat_bookkeeping_copies,
7556 stat_insns_needed_bookkeeping,
7557 stat_renamed_scheduled,
7558 stat_substitutions_total);
7562 /* Schedule a region. When pipelining, search for possibly never scheduled
7563 bookkeeping code and schedule it. Reschedule pipelined code without
7564 pipelining after. */
7565 static void
7566 sel_sched_region_1 (void)
7568 int orig_max_seqno;
7570 /* Remove empty blocks that might be in the region from the beginning. */
7571 purge_empty_blocks ();
7573 orig_max_seqno = init_seqno (NULL, NULL);
7574 gcc_assert (orig_max_seqno >= 1);
7576 /* When pipelining outer loops, create fences on the loop header,
7577 not preheader. */
7578 fences = NULL;
7579 if (current_loop_nest)
7580 init_fences (BB_END (EBB_FIRST_BB (0)));
7581 else
7582 init_fences (bb_note (EBB_FIRST_BB (0)));
7583 global_level = 1;
7585 sel_sched_region_2 (orig_max_seqno);
7587 gcc_assert (fences == NULL);
7589 if (pipelining_p)
7591 int i;
7592 basic_block bb;
7593 struct flist_tail_def _new_fences;
7594 flist_tail_t new_fences = &_new_fences;
7595 bool do_p = true;
7597 pipelining_p = false;
7598 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7599 bookkeeping_p = false;
7600 enable_schedule_as_rhs_p = false;
7602 /* Schedule newly created code, that has not been scheduled yet. */
7603 do_p = true;
7605 while (do_p)
7607 do_p = false;
7609 for (i = 0; i < current_nr_blocks; i++)
7611 basic_block bb = EBB_FIRST_BB (i);
7613 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7615 if (! bb_ends_ebb_p (bb))
7616 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7617 if (sel_bb_empty_p (bb))
7619 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7620 continue;
7622 clear_outdated_rtx_info (bb);
7623 if (sel_insn_is_speculation_check (BB_END (bb))
7624 && JUMP_P (BB_END (bb)))
7625 bitmap_set_bit (blocks_to_reschedule,
7626 BRANCH_EDGE (bb)->dest->index);
7628 else if (! sel_bb_empty_p (bb)
7629 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7630 bitmap_set_bit (blocks_to_reschedule, bb->index);
7633 for (i = 0; i < current_nr_blocks; i++)
7635 bb = EBB_FIRST_BB (i);
7637 /* While pipelining outer loops, skip bundling for loop
7638 preheaders. Those will be rescheduled in the outer
7639 loop. */
7640 if (sel_is_loop_preheader_p (bb))
7642 clear_outdated_rtx_info (bb);
7643 continue;
7646 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7648 flist_tail_init (new_fences);
7650 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7652 /* Mark BB as head of the new ebb. */
7653 bitmap_set_bit (forced_ebb_heads, bb->index);
7655 gcc_assert (fences == NULL);
7657 init_fences (bb_note (bb));
7659 sel_sched_region_2 (orig_max_seqno);
7661 do_p = true;
7662 break;
7669 /* Schedule the RGN region. */
7670 void
7671 sel_sched_region (int rgn)
7673 bool schedule_p;
7674 bool reset_sched_cycles_p;
7676 if (sel_region_init (rgn))
7677 return;
7679 if (sched_verbose >= 1)
7680 sel_print ("Scheduling region %d\n", rgn);
7682 schedule_p = (!sched_is_disabled_for_current_region_p ()
7683 && dbg_cnt (sel_sched_region_cnt));
7684 reset_sched_cycles_p = pipelining_p;
7685 if (schedule_p)
7686 sel_sched_region_1 ();
7687 else
7688 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7689 reset_sched_cycles_p = true;
7691 sel_region_finish (reset_sched_cycles_p);
7694 /* Perform global init for the scheduler. */
7695 static void
7696 sel_global_init (void)
7698 calculate_dominance_info (CDI_DOMINATORS);
7699 alloc_sched_pools ();
7701 /* Setup the infos for sched_init. */
7702 sel_setup_sched_infos ();
7703 setup_sched_dump ();
7705 sched_rgn_init (false);
7706 sched_init ();
7708 sched_init_bbs ();
7709 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7710 after_recovery = 0;
7711 can_issue_more = issue_rate;
7713 sched_extend_target ();
7714 sched_deps_init (true);
7715 setup_nop_and_exit_insns ();
7716 sel_extend_global_bb_info ();
7717 init_lv_sets ();
7718 init_hard_regs_data ();
7721 /* Free the global data of the scheduler. */
7722 static void
7723 sel_global_finish (void)
7725 free_bb_note_pool ();
7726 free_lv_sets ();
7727 sel_finish_global_bb_info ();
7729 free_regset_pool ();
7730 free_nop_and_exit_insns ();
7732 sched_rgn_finish ();
7733 sched_deps_finish ();
7734 sched_finish ();
7736 if (current_loops)
7737 sel_finish_pipelining ();
7739 free_sched_pools ();
7740 free_dominance_info (CDI_DOMINATORS);
7743 /* Return true when we need to skip selective scheduling. Used for debugging. */
7744 bool
7745 maybe_skip_selective_scheduling (void)
7747 return ! dbg_cnt (sel_sched_cnt);
7750 /* The entry point. */
7751 void
7752 run_selective_scheduling (void)
7754 int rgn;
7756 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7757 return;
7759 sel_global_init ();
7761 for (rgn = 0; rgn < nr_regions; rgn++)
7762 sel_sched_region (rgn);
7764 sel_global_finish ();
7767 #endif