1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This program is used to produce insn-recog.c, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.c).
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence.
52 At a high level, the algorithm used in this file is as follows:
54 1. Build up a decision tree for each routine, using the following
55 approach to matching an rtx:
57 - First determine the "shape" of the rtx, based on GET_CODE,
58 XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
59 since SET_SRCs tend to be more distinctive. It examines other
60 operands in numerical order, since the canonicalization rules
61 prefer putting complex operands of commutative operators first.
63 - Next check modes and predicates. This phase examines all
64 operands in numerical order, even for SETs, since the mode of a
65 SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 for constant integers.
68 - Next check match_dups.
70 - Finally check the C condition and (where appropriate) pnum_clobbers.
72 2. Try to optimize the tree by removing redundant tests, CSEing tests,
73 folding tests together, etc.
75 3. Look for common subtrees and split them out into "pattern" routines.
76 These common subtrees can be identical or they can differ in mode,
77 code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78 In the latter case the users of the pattern routine pass the
79 appropriate mode, etc., as argument. For example, if two patterns
82 (plus:SI (match_operand:SI 1 "register_operand")
83 (match_operand:SI 2 "register_operand"))
85 we can split the associated matching code out into a subroutine.
86 If a pattern contains:
88 (minus:DI (match_operand:DI 1 "register_operand")
89 (match_operand:DI 2 "register_operand"))
91 then we can consider using the same matching routine for both
92 the plus and minus expressions, passing PLUS and SImode in the
93 former case and MINUS and DImode in the latter case.
95 The main aim of this phase is to reduce the compile time of the
96 insn-recog.c code and to reduce the amount of object code in
99 4. Split the matching trees into functions, trying to limit the
100 size of each function to a sensible amount.
102 Again, the main aim of this phase is to reduce the compile time
103 of insn-recog.c. (It doesn't help with the size of insn-recog.o.)
105 5. Write out C++ code for each function. */
108 #define INCLUDE_ALGORITHM
110 #include "coretypes.h"
115 #include "gensupport.h"
117 #undef GENERATOR_FILE
119 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
122 FIRST_GENERATOR_RTX_CODE
124 #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125 #define GENERATOR_FILE 1
127 /* Debugging variables to control which optimizations are performed.
128 Note that disabling merge_states_p leads to very large output. */
129 static const bool merge_states_p
= true;
130 static const bool collapse_optional_decisions_p
= true;
131 static const bool cse_tests_p
= true;
132 static const bool simplify_tests_p
= true;
133 static const bool use_operand_variables_p
= true;
134 static const bool use_subroutines_p
= true;
135 static const bool use_pattern_routines_p
= true;
137 /* Whether to add comments for optional tests that we decided to keep.
138 Can be useful when debugging the generator itself but is noise when
139 debugging the generated code. */
140 static const bool mark_optional_transitions_p
= false;
142 /* Whether pattern routines should calculate positions relative to their
143 rtx parameter rather than use absolute positions. This e.g. allows
144 a pattern routine to be shared between a plain SET and a PARALLEL
147 In principle it sounds like this should be useful, especially for
148 recog_for_combine, where the plain SET form is generated automatically
149 from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
150 seem to help much and leads to slightly bigger object files. */
151 static const bool relative_patterns_p
= false;
153 /* Whether pattern routines should be allowed to test whether pnum_clobbers
154 is null. This requires passing pnum_clobbers around as a parameter. */
155 static const bool pattern_have_num_clobbers_p
= true;
157 /* Whether pattern routines should be allowed to test .md file C conditions.
158 This requires passing insn around as a parameter, in case the C
159 condition refers to it. In practice this tends to lead to bigger
161 static const bool pattern_c_test_p
= false;
163 /* Whether to require each parameter passed to a pattern routine to be
164 unique. Disabling this check for example allows unary operators with
165 matching modes (like NEG) and unary operators with mismatched modes
166 (like ZERO_EXTEND) to be matched by a single pattern. However, we then
167 often have cases where the same value is passed too many times. */
168 static const bool force_unique_params_p
= true;
170 /* The maximum (approximate) depth of block nesting that an individual
171 routine or subroutine should have. This limit is about keeping the
172 output readable rather than reducing compile time. */
173 static const unsigned int MAX_DEPTH
= 6;
175 /* The minimum number of pseudo-statements that a state must have before
176 we split it out into a subroutine. */
177 static const unsigned int MIN_NUM_STATEMENTS
= 5;
179 /* The number of pseudo-statements a state can have before we consider
180 splitting out substates into subroutines. This limit is about avoiding
181 compile-time problems with very big functions (and also about keeping
182 functions within --param optimization limits, etc.). */
183 static const unsigned int MAX_NUM_STATEMENTS
= 200;
185 /* The minimum number of pseudo-statements that can be used in a pattern
187 static const unsigned int MIN_COMBINE_COST
= 4;
189 /* The maximum number of arguments that a pattern routine can have.
190 The idea is to prevent one pattern getting a ridiculous number of
191 arguments when it would be more beneficial to have a separate pattern
193 static const unsigned int MAX_PATTERN_PARAMS
= 5;
195 /* The maximum operand number plus one. */
198 /* Ways of obtaining an rtx to be tested. */
200 /* PATTERN (peep2_next_insn (ARG)). */
203 /* XEXP (BASE, ARG). */
206 /* XVECEXP (BASE, 0, ARG). */
210 /* The position of an rtx relative to X0. Each useful position is
211 represented by exactly one instance of this structure. */
214 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
215 struct position
*base
;
217 /* A position with the same BASE and TYPE, but with the next value
219 struct position
*next
;
221 /* A list of all POS_XEXP positions that use this one as their base,
222 chained by NEXT fields. The first entry represents XEXP (this, 0),
223 the second represents XEXP (this, 1), and so on. */
224 struct position
*xexps
;
226 /* A list of POS_XVECEXP0 positions that use this one as their base,
227 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
228 the second represents XVECEXP (this, 0, 1), and so on. */
229 struct position
*xvecexp0s
;
231 /* The type of position. */
232 enum position_type type
;
234 /* The argument to TYPE (shown as ARG in the position_type comments). */
237 /* The instruction to which the position belongs. */
238 unsigned int insn_id
;
240 /* The depth of this position relative to the instruction pattern.
241 E.g. if the instruction pattern is a SET, the SET itself has a
242 depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
245 /* A unique identifier for this position. */
250 SUBPATTERN
, RECOG
, SPLIT
, PEEPHOLE2
253 /* The root position (x0). */
254 static struct position root_pos
;
256 /* The number of positions created. Also one higher than the maximum
258 static unsigned int num_positions
= 1;
260 /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
261 since we are given that instruction's pattern as x0. */
262 static struct position
*peep2_insn_pos_list
= &root_pos
;
264 /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
265 points to where the unique object that represents the position
266 should be stored. Create the object if it doesn't already exist,
267 otherwise reuse the object that is already there. */
269 static struct position
*
270 next_position (struct position
**next_ptr
, struct position
*base
,
271 enum position_type type
, int arg
)
273 struct position
*pos
;
278 pos
= XCNEW (struct position
);
281 if (type
== POS_PEEP2_INSN
)
285 pos
->depth
= base
->depth
;
290 pos
->insn_id
= base
->insn_id
;
291 pos
->depth
= base
->depth
+ 1;
293 pos
->id
= num_positions
++;
299 /* Compare positions POS1 and POS2 lexicographically. */
302 compare_positions (struct position
*pos1
, struct position
*pos2
)
306 diff
= pos1
->depth
- pos2
->depth
;
310 while (pos1
->depth
!= pos2
->depth
);
314 while (pos1
->depth
!= pos2
->depth
);
317 diff
= (int) pos1
->type
- (int) pos2
->type
;
319 diff
= pos1
->arg
- pos2
->arg
;
326 /* Return the most deeply-nested position that is common to both
327 POS1 and POS2. If the positions are from different instructions,
328 return the one with the lowest insn_id. */
330 static struct position
*
331 common_position (struct position
*pos1
, struct position
*pos2
)
333 if (pos1
->insn_id
!= pos2
->insn_id
)
334 return pos1
->insn_id
< pos2
->insn_id
? pos1
: pos2
;
335 if (pos1
->depth
> pos2
->depth
)
336 std::swap (pos1
, pos2
);
337 while (pos1
->depth
!= pos2
->depth
)
347 /* Search for and return operand N, stop when reaching node STOP. */
350 find_operand (rtx pattern
, int n
, rtx stop
)
360 code
= GET_CODE (pattern
);
361 if ((code
== MATCH_SCRATCH
362 || code
== MATCH_OPERAND
363 || code
== MATCH_OPERATOR
364 || code
== MATCH_PARALLEL
)
365 && XINT (pattern
, 0) == n
)
368 fmt
= GET_RTX_FORMAT (code
);
369 len
= GET_RTX_LENGTH (code
);
370 for (i
= 0; i
< len
; i
++)
375 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
380 if (! XVEC (pattern
, i
))
385 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
386 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
391 case 'i': case 'r': case 'w': case '0': case 's':
402 /* Search for and return operand M, such that it has a matching
403 constraint for operand N. */
406 find_matching_operand (rtx pattern
, int n
)
413 code
= GET_CODE (pattern
);
414 if (code
== MATCH_OPERAND
415 && (XSTR (pattern
, 2)[0] == '0' + n
416 || (XSTR (pattern
, 2)[0] == '%'
417 && XSTR (pattern
, 2)[1] == '0' + n
)))
420 fmt
= GET_RTX_FORMAT (code
);
421 len
= GET_RTX_LENGTH (code
);
422 for (i
= 0; i
< len
; i
++)
427 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
432 if (! XVEC (pattern
, i
))
437 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
438 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
442 case 'i': case 'r': case 'w': case '0': case 's':
453 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454 don't use the MATCH_OPERAND constraint, only the predicate.
455 This is confusing to folks doing new ports, so help them
456 not make the mistake. */
459 constraints_supported_in_insn_p (rtx insn
)
461 return !(GET_CODE (insn
) == DEFINE_EXPAND
462 || GET_CODE (insn
) == DEFINE_SPLIT
463 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
);
466 /* Return the name of the predicate matched by MATCH_RTX. */
469 predicate_name (rtx match_rtx
)
471 if (GET_CODE (match_rtx
) == MATCH_SCRATCH
)
472 return "scratch_operand";
474 return XSTR (match_rtx
, 1);
477 /* Return true if OPERAND is a MATCH_OPERAND using a special predicate
481 special_predicate_operand_p (rtx operand
)
483 if (GET_CODE (operand
) == MATCH_OPERAND
)
485 const char *pred_name
= predicate_name (operand
);
486 if (pred_name
[0] != 0)
488 const struct pred_data
*pred
;
490 pred
= lookup_predicate (pred_name
);
491 return pred
!= NULL
&& pred
->special
;
498 /* Check for various errors in PATTERN, which is part of INFO.
499 SET is nonnull for a destination, and is the complete set pattern.
500 SET_CODE is '=' for normal sets, and '+' within a context that
501 requires in-out constraints. */
504 validate_pattern (rtx pattern
, md_rtx_info
*info
, rtx set
, int set_code
)
511 code
= GET_CODE (pattern
);
516 const char constraints0
= XSTR (pattern
, 1)[0];
518 if (!constraints_supported_in_insn_p (info
->def
))
522 error_at (info
->loc
, "constraints not supported in %s",
523 GET_RTX_NAME (GET_CODE (info
->def
)));
528 /* If a MATCH_SCRATCH is used in a context requiring an write-only
529 or read/write register, validate that. */
532 && constraints0
!= '='
533 && constraints0
!= '+')
535 error_at (info
->loc
, "operand %d missing output reload",
543 if (find_operand (info
->def
, XINT (pattern
, 0), pattern
) == pattern
)
544 error_at (info
->loc
, "operand %i duplicated before defined",
550 const char *pred_name
= XSTR (pattern
, 1);
551 const struct pred_data
*pred
;
554 c_test
= get_c_test (info
->def
);
556 if (pred_name
[0] != 0)
558 pred
= lookup_predicate (pred_name
);
560 error_at (info
->loc
, "unknown predicate '%s'", pred_name
);
565 if (code
== MATCH_OPERAND
)
567 const char *constraints
= XSTR (pattern
, 2);
568 const char constraints0
= constraints
[0];
570 if (!constraints_supported_in_insn_p (info
->def
))
574 error_at (info
->loc
, "constraints not supported in %s",
575 GET_RTX_NAME (GET_CODE (info
->def
)));
579 /* A MATCH_OPERAND that is a SET should have an output reload. */
580 else if (set
&& constraints0
)
584 if (constraints0
== '+')
586 /* If we've only got an output reload for this operand,
587 we'd better have a matching input operand. */
588 else if (constraints0
== '='
589 && find_matching_operand (info
->def
,
593 error_at (info
->loc
, "operand %d missing in-out reload",
596 else if (constraints0
!= '=' && constraints0
!= '+')
597 error_at (info
->loc
, "operand %d missing output reload",
601 /* For matching constraint in MATCH_OPERAND, the digit must be a
602 smaller number than the number of the operand that uses it in the
606 while (constraints
[0]
607 && (constraints
[0] == ' ' || constraints
[0] == ','))
612 if (constraints
[0] >= '0' && constraints
[0] <= '9')
616 sscanf (constraints
, "%d", &val
);
617 if (val
>= XINT (pattern
, 0))
618 error_at (info
->loc
, "constraint digit %d is not"
619 " smaller than operand %d",
620 val
, XINT (pattern
, 0));
623 while (constraints
[0] && constraints
[0] != ',')
628 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
629 while not likely to occur at runtime, results in less efficient
630 code from insn-recog.c. */
631 if (set
&& pred
&& pred
->allows_non_lvalue
)
632 error_at (info
->loc
, "destination operand %d allows non-lvalue",
635 /* A modeless MATCH_OPERAND can be handy when we can check for
636 multiple modes in the c_test. In most other cases, it is a
637 mistake. Only DEFINE_INSN is eligible, since SPLIT and
638 PEEP2 can FAIL within the output pattern. Exclude special
639 predicates, which check the mode themselves. Also exclude
640 predicates that allow only constants. Exclude the SET_DEST
641 of a call instruction, as that is a common idiom. */
643 if (GET_MODE (pattern
) == VOIDmode
644 && code
== MATCH_OPERAND
645 && GET_CODE (info
->def
) == DEFINE_INSN
648 && pred
->allows_non_const
649 && strstr (c_test
, "operands") == NULL
651 && GET_CODE (set
) == SET
652 && GET_CODE (SET_SRC (set
)) == CALL
))
653 message_at (info
->loc
, "warning: operand %d missing mode?",
660 machine_mode dmode
, smode
;
663 dest
= SET_DEST (pattern
);
664 src
= SET_SRC (pattern
);
666 /* STRICT_LOW_PART is a wrapper. Its argument is the real
667 destination, and it's mode should match the source. */
668 if (GET_CODE (dest
) == STRICT_LOW_PART
)
669 dest
= XEXP (dest
, 0);
671 /* Find the referent for a DUP. */
673 if (GET_CODE (dest
) == MATCH_DUP
674 || GET_CODE (dest
) == MATCH_OP_DUP
675 || GET_CODE (dest
) == MATCH_PAR_DUP
)
676 dest
= find_operand (info
->def
, XINT (dest
, 0), NULL
);
678 if (GET_CODE (src
) == MATCH_DUP
679 || GET_CODE (src
) == MATCH_OP_DUP
680 || GET_CODE (src
) == MATCH_PAR_DUP
)
681 src
= find_operand (info
->def
, XINT (src
, 0), NULL
);
683 dmode
= GET_MODE (dest
);
684 smode
= GET_MODE (src
);
686 /* Mode checking is not performed for special predicates. */
687 if (special_predicate_operand_p (src
)
688 || special_predicate_operand_p (dest
))
691 /* The operands of a SET must have the same mode unless one
693 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
694 error_at (info
->loc
, "mode mismatch in set: %smode vs %smode",
695 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
697 /* If only one of the operands is VOIDmode, and PC or CC0 is
698 not involved, it's probably a mistake. */
699 else if (dmode
!= smode
700 && GET_CODE (dest
) != PC
701 && GET_CODE (dest
) != CC0
702 && GET_CODE (src
) != PC
703 && GET_CODE (src
) != CC0
704 && !CONST_INT_P (src
)
705 && !CONST_WIDE_INT_P (src
)
706 && GET_CODE (src
) != CALL
)
709 which
= (dmode
== VOIDmode
? "destination" : "source");
710 message_at (info
->loc
, "warning: %s missing a mode?", which
);
713 if (dest
!= SET_DEST (pattern
))
714 validate_pattern (dest
, info
, pattern
, '=');
715 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
716 validate_pattern (SET_SRC (pattern
), info
, NULL_RTX
, 0);
721 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
725 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
726 validate_pattern (XEXP (pattern
, 1), info
, NULL_RTX
, 0);
727 validate_pattern (XEXP (pattern
, 2), info
, NULL_RTX
, 0);
730 case STRICT_LOW_PART
:
731 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
735 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
736 error_at (info
->loc
, "operand to label_ref %smode not VOIDmode",
737 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
741 if (GET_MODE (pattern
) != VOIDmode
)
743 machine_mode mode
= GET_MODE (pattern
);
744 machine_mode imode
= GET_MODE (XEXP (pattern
, 0));
746 = VECTOR_MODE_P (mode
) ? GET_MODE_INNER (mode
) : mode
;
747 if (GET_CODE (XEXP (pattern
, 1)) == PARALLEL
)
749 int expected
= VECTOR_MODE_P (mode
) ? GET_MODE_NUNITS (mode
) : 1;
750 if (XVECLEN (XEXP (pattern
, 1), 0) != expected
)
752 "vec_select parallel with %d elements, expected %d",
753 XVECLEN (XEXP (pattern
, 1), 0), expected
);
754 else if (VECTOR_MODE_P (imode
))
756 unsigned int nelems
= GET_MODE_NUNITS (imode
);
758 for (i
= 0; i
< expected
; ++i
)
759 if (CONST_INT_P (XVECEXP (XEXP (pattern
, 1), 0, i
))
760 && (UINTVAL (XVECEXP (XEXP (pattern
, 1), 0, i
))
763 "out of bounds selector %u in vec_select, "
764 "expected at most %u",
766 UINTVAL (XVECEXP (XEXP (pattern
, 1), 0, i
)),
770 if (imode
!= VOIDmode
&& !VECTOR_MODE_P (imode
))
771 error_at (info
->loc
, "%smode of first vec_select operand is not a "
772 "vector mode", GET_MODE_NAME (imode
));
773 else if (imode
!= VOIDmode
&& GET_MODE_INNER (imode
) != emode
)
774 error_at (info
->loc
, "element mode mismatch between vec_select "
775 "%smode and its operand %smode",
776 GET_MODE_NAME (emode
),
777 GET_MODE_NAME (GET_MODE_INNER (imode
)));
785 fmt
= GET_RTX_FORMAT (code
);
786 len
= GET_RTX_LENGTH (code
);
787 for (i
= 0; i
< len
; i
++)
792 validate_pattern (XEXP (pattern
, i
), info
, NULL_RTX
, 0);
796 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
797 validate_pattern (XVECEXP (pattern
, i
, j
), info
, NULL_RTX
, 0);
800 case 'i': case 'r': case 'w': case '0': case 's':
809 /* Simple list structure for items of type T, for use when being part
810 of a list is an inherent property of T. T must have members equivalent
811 to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
812 to set the parent list. */
813 template <typename T
>
816 /* A range of linked items. */
823 void set_parent (list_head
*);
828 void push_back (range
);
829 range
remove (range
);
830 void replace (range
, range
);
831 T
*singleton () const;
836 /* Create a range [START_IN, START_IN]. */
838 template <typename T
>
839 list_head
<T
>::range::range (T
*start_in
) : start (start_in
), end (start_in
) {}
841 /* Create a range [START_IN, END_IN], linked by next and prev fields. */
843 template <typename T
>
844 list_head
<T
>::range::range (T
*start_in
, T
*end_in
)
845 : start (start_in
), end (end_in
) {}
847 template <typename T
>
849 list_head
<T
>::range::set_parent (list_head
<T
> *owner
)
851 for (T
*item
= start
; item
!= end
; item
= item
->next
)
852 item
->set_parent (owner
);
853 end
->set_parent (owner
);
856 template <typename T
>
857 list_head
<T
>::list_head () : first (0), last (0) {}
859 /* Add R to the end of the list. */
861 template <typename T
>
863 list_head
<T
>::push_back (range r
)
866 last
->next
= r
.start
;
869 r
.start
->prev
= last
;
874 /* Remove R from the list. R remains valid and can be inserted into
877 template <typename T
>
878 typename list_head
<T
>::range
879 list_head
<T
>::remove (range r
)
882 r
.start
->prev
->next
= r
.end
->next
;
886 r
.end
->next
->prev
= r
.start
->prev
;
888 last
= r
.start
->prev
;
895 /* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
898 template <typename T
>
900 list_head
<T
>::replace (range oldr
, range newr
)
902 newr
.start
->prev
= oldr
.start
->prev
;
903 newr
.end
->next
= oldr
.end
->next
;
905 oldr
.start
->prev
= 0;
909 if (newr
.start
->prev
)
910 newr
.start
->prev
->next
= newr
.start
;
914 newr
.end
->next
->prev
= newr
.end
;
917 newr
.set_parent (this);
920 /* Empty the list and return the previous contents as a range that can
921 be inserted into other lists. */
923 template <typename T
>
924 typename list_head
<T
>::range
925 list_head
<T
>::release ()
927 range
r (first
, last
);
934 /* If the list contains a single item, return that item, otherwise return
937 template <typename T
>
939 list_head
<T
>::singleton () const
941 return first
== last
? first
: 0;
946 /* Describes a possible successful return from a routine. */
947 struct acceptance_type
949 /* The type of routine we're returning from. */
950 routine_type type
: 16;
952 /* True if this structure only really represents a partial match,
953 and if we must call a subroutine of type TYPE to complete the match.
954 In this case we'll call the subroutine and, if it succeeds, return
955 whatever the subroutine returned.
957 False if this structure presents a full match. */
958 unsigned int partial_p
: 1;
962 /* If PARTIAL_P, this is the number of the subroutine to call. */
965 /* Valid if !PARTIAL_P. */
968 /* The identifier of the matching pattern. For SUBPATTERNs this
969 value belongs to an ad-hoc routine-specific enum. For the
970 others it's the number of an .md file pattern. */
974 /* For RECOG, the number of clobbers that must be added to the
975 pattern in order for it to match CODE. */
978 /* For PEEPHOLE2, the number of additional instructions that were
979 included in the optimization. */
987 operator == (const acceptance_type
&a
, const acceptance_type
&b
)
989 if (a
.partial_p
!= b
.partial_p
)
992 return a
.u
.subroutine_id
== b
.u
.subroutine_id
;
994 return a
.u
.full
.code
== b
.u
.full
.code
;
998 operator != (const acceptance_type
&a
, const acceptance_type
&b
)
1000 return !operator == (a
, b
);
1003 /* Represents a parameter to a pattern routine. */
1006 /* The C type of parameter. */
1008 /* Represents an invalid parameter. */
1011 /* A machine_mode parameter. */
1014 /* An rtx_code parameter. */
1017 /* An int parameter. */
1020 /* An unsigned int parameter. */
1023 /* A HOST_WIDE_INT parameter. */
1028 parameter (type_enum
, bool, uint64_t);
1030 /* The type of the parameter. */
1033 /* True if the value passed is variable, false if it is constant. */
1036 /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
1037 format string. If !IS_PARAM, this is the constant value passed. */
1041 parameter::parameter ()
1042 : type (UNSET
), is_param (false), value (0) {}
1044 parameter::parameter (type_enum type_in
, bool is_param_in
, uint64_t value_in
)
1045 : type (type_in
), is_param (is_param_in
), value (value_in
) {}
1048 operator == (const parameter
¶m1
, const parameter
¶m2
)
1050 return (param1
.type
== param2
.type
1051 && param1
.is_param
== param2
.is_param
1052 && param1
.value
== param2
.value
);
1056 operator != (const parameter
¶m1
, const parameter
¶m2
)
1058 return !operator == (param1
, param2
);
1061 /* Represents a routine that matches a partial rtx pattern, returning
1062 an ad-hoc enum value on success and -1 on failure. The routine can
1063 be used by any subroutine type. The match can be parameterized by
1064 things like mode, code and UNSPEC number. */
1065 struct pattern_routine
1067 /* The state that implements the pattern. */
1070 /* The deepest root position from which S can access all the rtxes it needs.
1071 This is NULL if the pattern doesn't need an rtx input, usually because
1072 all matching is done on operands[] instead. */
1075 /* A unique identifier for the routine. */
1076 unsigned int pattern_id
;
1078 /* True if the routine takes pnum_clobbers as argument. */
1079 bool pnum_clobbers_p
;
1081 /* True if the routine takes the enclosing instruction as argument. */
1084 /* The types of the other parameters to the routine, if any. */
1085 auto_vec
<parameter::type_enum
, MAX_PATTERN_PARAMS
> param_types
;
1088 /* All defined patterns. */
1089 static vec
<pattern_routine
*> patterns
;
1091 /* Represents one use of a pattern routine. */
1094 /* The pattern routine to use. */
1095 pattern_routine
*routine
;
1097 /* The values to pass as parameters. This vector has the same length
1098 as ROUTINE->PARAM_TYPES. */
1099 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
1102 /* Represents a test performed by a decision. */
1107 /* The types of test that can be performed. Most of them take as input
1108 an rtx X. Some also take as input a transition label LABEL; the others
1109 are booleans for which the transition label is always "true".
1111 The order of the enum isn't important. */
1113 /* Check GET_CODE (X) == LABEL. */
1116 /* Check GET_MODE (X) == LABEL. */
1119 /* Check REGNO (X) == LABEL. */
1122 /* Check XINT (X, u.opno) == LABEL. */
1125 /* Check XWINT (X, u.opno) == LABEL. */
1128 /* Check XVECLEN (X, 0) == LABEL. */
1131 /* Check peep2_current_count >= u.min_len. */
1134 /* Check XVECLEN (X, 0) >= u.min_len. */
1137 /* Check whether X is a cached const_int with value u.integer. */
1140 /* Check u.predicate.data (X, u.predicate.mode). */
1143 /* Check rtx_equal_p (X, operands[u.opno]). */
1146 /* Check whether X matches pattern u.pattern. */
1149 /* Check whether pnum_clobbers is nonnull (RECOG only). */
1152 /* Check whether general C test u.string holds. In general the condition
1153 needs access to "insn" and the full operand list. */
1156 /* Execute operands[u.opno] = X. (Always succeeds.) */
1159 /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
1160 May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
1164 /* The position of rtx X in the above description, relative to the
1165 incoming instruction "insn". The position is null if the test
1166 doesn't take an X as input. */
1169 /* Which element of operands[] already contains POS, or -1 if no element
1170 is known to hold POS. */
1173 /* The type of test and its parameters, as described above. */
1186 const struct pred_data
*data
;
1187 /* True if the mode is taken from a machine_mode parameter
1188 to the routine rather than a constant machine_mode. If true,
1189 MODE is the number of the parameter (for an "i%d" format string),
1190 otherwise it is the mode itself. */
1194 pattern_use
*pattern
;
1196 acceptance_type acceptance
;
1199 static rtx_test
code (position
*);
1200 static rtx_test
mode (position
*);
1201 static rtx_test
regno_field (position
*);
1202 static rtx_test
int_field (position
*, int);
1203 static rtx_test
wide_int_field (position
*, int);
1204 static rtx_test
veclen (position
*);
1205 static rtx_test
peep2_count (int);
1206 static rtx_test
veclen_ge (position
*, int);
1207 static rtx_test
predicate (position
*, const pred_data
*, machine_mode
);
1208 static rtx_test
duplicate (position
*, int);
1209 static rtx_test
pattern (position
*, pattern_use
*);
1210 static rtx_test
have_num_clobbers ();
1211 static rtx_test
c_test (const char *);
1212 static rtx_test
set_op (position
*, int);
1213 static rtx_test
accept (const acceptance_type
&);
1215 bool terminal_p () const;
1216 bool single_outcome_p () const;
1219 rtx_test (position
*, kind_enum
);
1222 rtx_test::rtx_test () {}
1224 rtx_test::rtx_test (position
*pos_in
, kind_enum kind_in
)
1225 : pos (pos_in
), pos_operand (-1), kind (kind_in
) {}
1228 rtx_test::code (position
*pos
)
1230 return rtx_test (pos
, rtx_test::CODE
);
1234 rtx_test::mode (position
*pos
)
1236 return rtx_test (pos
, rtx_test::MODE
);
1240 rtx_test::regno_field (position
*pos
)
1242 rtx_test
res (pos
, rtx_test::REGNO_FIELD
);
1247 rtx_test::int_field (position
*pos
, int opno
)
1249 rtx_test
res (pos
, rtx_test::INT_FIELD
);
1255 rtx_test::wide_int_field (position
*pos
, int opno
)
1257 rtx_test
res (pos
, rtx_test::WIDE_INT_FIELD
);
1263 rtx_test::veclen (position
*pos
)
1265 return rtx_test (pos
, rtx_test::VECLEN
);
1269 rtx_test::peep2_count (int min_len
)
1271 rtx_test
res (0, rtx_test::PEEP2_COUNT
);
1272 res
.u
.min_len
= min_len
;
1277 rtx_test::veclen_ge (position
*pos
, int min_len
)
1279 rtx_test
res (pos
, rtx_test::VECLEN_GE
);
1280 res
.u
.min_len
= min_len
;
1285 rtx_test::predicate (position
*pos
, const struct pred_data
*data
,
1288 rtx_test
res (pos
, rtx_test::PREDICATE
);
1289 res
.u
.predicate
.data
= data
;
1290 res
.u
.predicate
.mode_is_param
= false;
1291 res
.u
.predicate
.mode
= mode
;
1296 rtx_test::duplicate (position
*pos
, int opno
)
1298 rtx_test
res (pos
, rtx_test::DUPLICATE
);
1304 rtx_test::pattern (position
*pos
, pattern_use
*pattern
)
1306 rtx_test
res (pos
, rtx_test::PATTERN
);
1307 res
.u
.pattern
= pattern
;
1312 rtx_test::have_num_clobbers ()
1314 return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS
);
1318 rtx_test::c_test (const char *string
)
1320 rtx_test
res (0, rtx_test::C_TEST
);
1321 res
.u
.string
= string
;
1326 rtx_test::set_op (position
*pos
, int opno
)
1328 rtx_test
res (pos
, rtx_test::SET_OP
);
1334 rtx_test::accept (const acceptance_type
&acceptance
)
1336 rtx_test
res (0, rtx_test::ACCEPT
);
1337 res
.u
.acceptance
= acceptance
;
1341 /* Return true if the test represents an unconditionally successful match. */
1344 rtx_test::terminal_p () const
1346 return kind
== rtx_test::ACCEPT
&& u
.acceptance
.type
!= PEEPHOLE2
;
1349 /* Return true if the test is a boolean that is always true. */
1352 rtx_test::single_outcome_p () const
1354 return terminal_p () || kind
== rtx_test::SET_OP
;
1358 operator == (const rtx_test
&a
, const rtx_test
&b
)
1360 if (a
.pos
!= b
.pos
|| a
.kind
!= b
.kind
)
1364 case rtx_test::CODE
:
1365 case rtx_test::MODE
:
1366 case rtx_test::REGNO_FIELD
:
1367 case rtx_test::VECLEN
:
1368 case rtx_test::HAVE_NUM_CLOBBERS
:
1371 case rtx_test::PEEP2_COUNT
:
1372 case rtx_test::VECLEN_GE
:
1373 return a
.u
.min_len
== b
.u
.min_len
;
1375 case rtx_test::INT_FIELD
:
1376 case rtx_test::WIDE_INT_FIELD
:
1377 case rtx_test::DUPLICATE
:
1378 case rtx_test::SET_OP
:
1379 return a
.u
.opno
== b
.u
.opno
;
1381 case rtx_test::SAVED_CONST_INT
:
1382 return (a
.u
.integer
.is_param
== b
.u
.integer
.is_param
1383 && a
.u
.integer
.value
== b
.u
.integer
.value
);
1385 case rtx_test::PREDICATE
:
1386 return (a
.u
.predicate
.data
== b
.u
.predicate
.data
1387 && a
.u
.predicate
.mode_is_param
== b
.u
.predicate
.mode_is_param
1388 && a
.u
.predicate
.mode
== b
.u
.predicate
.mode
);
1390 case rtx_test::PATTERN
:
1391 return (a
.u
.pattern
->routine
== b
.u
.pattern
->routine
1392 && a
.u
.pattern
->params
== b
.u
.pattern
->params
);
1394 case rtx_test::C_TEST
:
1395 return strcmp (a
.u
.string
, b
.u
.string
) == 0;
1397 case rtx_test::ACCEPT
:
1398 return a
.u
.acceptance
== b
.u
.acceptance
;
1404 operator != (const rtx_test
&a
, const rtx_test
&b
)
1406 return !operator == (a
, b
);
1409 /* A simple set of transition labels. Most transitions have a singleton
1410 label, so try to make that case as efficient as possible. */
1411 struct int_set
: public auto_vec
<uint64_t, 1>
1413 typedef uint64_t *iterator
;
1417 int_set (const int_set
&);
1419 int_set
&operator = (const int_set
&);
1425 int_set::int_set () : auto_vec
<uint64_t, 1> () {}
1427 int_set::int_set (uint64_t label
) :
1428 auto_vec
<uint64_t, 1> ()
1433 int_set::int_set (const int_set
&other
) :
1434 auto_vec
<uint64_t, 1> ()
1436 safe_splice (other
);
1440 int_set::operator = (const int_set
&other
)
1443 safe_splice (other
);
1456 return address () + length ();
1460 operator == (const int_set
&a
, const int_set
&b
)
1462 if (a
.length () != b
.length ())
1464 for (unsigned int i
= 0; i
< a
.length (); ++i
)
1471 operator != (const int_set
&a
, const int_set
&b
)
1473 return !operator == (a
, b
);
1478 /* Represents a transition between states, dependent on the result of
1482 transition (const int_set
&, state
*, bool);
1484 void set_parent (list_head
<transition
> *);
1486 /* Links to other transitions for T. Always null for boolean tests. */
1487 transition
*prev
, *next
;
1489 /* The transition should be taken when T has one of these values.
1490 E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1491 rtx_test::PREDICATE it is always a singleton "true". The labels are
1492 sorted in ascending order. */
1495 /* The source decision. */
1498 /* The target state. */
1501 /* True if TO would function correctly even if TEST wasn't performed.
1502 E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1503 before calling register_operand (x1, SImode), since register_operand
1504 performs its own mode check. However, checking GET_MODE can be a cheap
1505 way of disambiguating SImode and DImode register operands. */
1508 /* True if LABELS contains parameter numbers rather than constants.
1509 E.g. if this is true for a rtx_test::CODE, the label is the number
1510 of an rtx_code parameter rather than an rtx_code itself.
1511 LABELS is always a singleton when this variable is true. */
1515 /* Represents a test and the action that should be taken on the result.
1516 If a transition exists for the test outcome, the machine switches
1517 to the transition's target state. If no suitable transition exists,
1518 the machine either falls through to the next decision or, if there are no
1519 more decisions to try, fails the match. */
1520 struct decision
: list_head
<transition
>
1522 decision (const rtx_test
&);
1524 void set_parent (list_head
<decision
> *s
);
1525 bool if_statement_p (uint64_t * = 0) const;
1527 /* The state to which this decision belongs. */
1530 /* Links to other decisions in the same state. */
1531 decision
*prev
, *next
;
1533 /* The test to perform. */
1537 /* Represents one machine state. For each state the machine tries a list
1538 of decisions, in order, and acts on the first match. It fails without
1539 further backtracking if no decisions match. */
1540 struct state
: list_head
<decision
>
1542 void set_parent (list_head
<state
> *) {}
1545 transition::transition (const int_set
&labels_in
, state
*to_in
,
1547 : prev (0), next (0), labels (labels_in
), from (0), to (to_in
),
1548 optional (optional_in
), is_param (false) {}
1550 /* Set the source decision of the transition. */
1553 transition::set_parent (list_head
<transition
> *from_in
)
1555 from
= static_cast <decision
*> (from_in
);
1558 decision::decision (const rtx_test
&test_in
)
1559 : prev (0), next (0), test (test_in
) {}
1561 /* Set the state to which this decision belongs. */
1564 decision::set_parent (list_head
<decision
> *s_in
)
1566 s
= static_cast <state
*> (s_in
);
1569 /* Return true if the decision has a single transition with a single label.
1570 If so, return the label in *LABEL if nonnull. */
1573 decision::if_statement_p (uint64_t *label
) const
1575 if (singleton () && first
->labels
.length () == 1)
1578 *label
= first
->labels
[0];
1584 /* Add to FROM a decision that performs TEST and has a single transition
1588 add_decision (state
*from
, const rtx_test
&test
, transition
*trans
)
1590 decision
*d
= new decision (test
);
1591 from
->push_back (d
);
1592 d
->push_back (trans
);
1595 /* Add a transition from FROM to a new, empty state that is taken
1596 when TEST == LABELS. OPTIONAL says whether the new transition
1597 should be optional. Return the new state. */
1600 add_decision (state
*from
, const rtx_test
&test
, int_set labels
, bool optional
)
1602 state
*to
= new state
;
1603 add_decision (from
, test
, new transition (labels
, to
, optional
));
1607 /* Insert a decision before decisions R to make them dependent on
1608 TEST == LABELS. OPTIONAL says whether the new transition should be
1612 insert_decision_before (state::range r
, const rtx_test
&test
,
1613 const int_set
&labels
, bool optional
)
1615 decision
*newd
= new decision (test
);
1616 state
*news
= new state
;
1617 newd
->push_back (new transition (labels
, news
, optional
));
1618 r
.start
->s
->replace (r
, newd
);
1619 news
->push_back (r
);
1623 /* Remove any optional transitions from S that turned out not to be useful. */
1626 collapse_optional_decisions (state
*s
)
1628 decision
*d
= s
->first
;
1631 decision
*next
= d
->next
;
1632 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1633 collapse_optional_decisions (trans
->to
);
1634 /* A decision with a single optional transition doesn't help
1635 partition the potential matches and so is unlikely to be
1636 worthwhile. In particular, if the decision that performs the
1637 test is the last in the state, the best it could do is reject
1638 an invalid pattern slightly earlier. If instead the decision
1639 is not the last in the state, the condition it tests could hold
1640 even for the later decisions in the state. The best it can do
1641 is save work in some cases where only the later decisions can
1644 In both cases the optional transition would add extra work to
1645 successful matches when the tested condition holds. */
1646 if (transition
*trans
= d
->singleton ())
1647 if (trans
->optional
)
1648 s
->replace (d
, trans
->to
->release ());
1653 /* Try to squash several separate tests into simpler ones. */
1656 simplify_tests (state
*s
)
1658 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1661 /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1662 into checks for const_int_rtx[N'], if N is suitably small. */
1663 if (d
->test
.kind
== rtx_test::CODE
1664 && d
->if_statement_p (&label
)
1665 && label
== CONST_INT
)
1666 if (decision
*second
= d
->first
->to
->singleton ())
1667 if (d
->test
.pos
== second
->test
.pos
1668 && second
->test
.kind
== rtx_test::WIDE_INT_FIELD
1669 && second
->test
.u
.opno
== 0
1670 && second
->if_statement_p (&label
)
1671 && IN_RANGE (int64_t (label
),
1672 -MAX_SAVED_CONST_INT
, MAX_SAVED_CONST_INT
))
1674 d
->test
.kind
= rtx_test::SAVED_CONST_INT
;
1675 d
->test
.u
.integer
.is_param
= false;
1676 d
->test
.u
.integer
.value
= label
;
1677 d
->replace (d
->first
, second
->release ());
1678 d
->first
->labels
[0] = true;
1680 /* If we have a CODE test followed by a PREDICATE test, rely on
1681 the predicate to test the code.
1683 This case exists for match_operators. We initially treat the
1684 CODE test for a match_operator as non-optional so that we can
1685 safely move down to its operands. It may turn out that all
1686 paths that reach that code test require the same predicate
1687 to be true. cse_tests will then put the predicate test in
1688 series with the code test. */
1689 if (d
->test
.kind
== rtx_test::CODE
)
1690 if (transition
*trans
= d
->singleton ())
1692 state
*s
= trans
->to
;
1693 while (decision
*d2
= s
->singleton ())
1695 if (d
->test
.pos
!= d2
->test
.pos
)
1697 transition
*trans2
= d2
->singleton ();
1700 if (d2
->test
.kind
== rtx_test::PREDICATE
)
1703 trans
->labels
= int_set (true);
1704 s
->replace (d2
, trans2
->to
->release ());
1710 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1711 simplify_tests (trans
->to
);
1715 /* Return true if all successful returns passing through D require the
1716 condition tested by COMMON to be true.
1718 When returning true, add all transitions like COMMON in D to WHERE.
1719 WHERE may contain a partial result on failure. */
1722 common_test_p (decision
*d
, transition
*common
, vec
<transition
*> *where
)
1724 if (d
->test
.kind
== rtx_test::ACCEPT
)
1725 /* We found a successful return that didn't require COMMON. */
1727 if (d
->test
== common
->from
->test
)
1729 transition
*trans
= d
->singleton ();
1731 || trans
->optional
!= common
->optional
1732 || trans
->labels
!= common
->labels
)
1734 where
->safe_push (trans
);
1737 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1738 for (decision
*subd
= trans
->to
->first
; subd
; subd
= subd
->next
)
1739 if (!common_test_p (subd
, common
, where
))
1744 /* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
1745 const unsigned char TESTED_CODE
= 1;
1747 /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
1748 const unsigned char TESTED_VECLEN
= 2;
1750 /* Represents a set of conditions that are known to hold. */
1751 struct known_conditions
1753 /* A mask of TESTED_ values for each position, indexed by the position's
1755 auto_vec
<unsigned char> position_tests
;
1757 /* Index N says whether operands[N] has been set. */
1758 auto_vec
<bool> set_operands
;
1760 /* A guranteed lower bound on the value of peep2_current_count. */
1764 /* Return true if TEST can safely be performed at D, where
1765 the conditions in KC hold. TEST is known to occur along the
1766 first path from D (i.e. always following the first transition
1767 of the first decision). Any intervening tests can be used as
1768 negative proof that hoisting isn't safe, but only KC can be used
1769 as positive proof. */
1772 safe_to_hoist_p (decision
*d
, const rtx_test
&test
, known_conditions
*kc
)
1776 case rtx_test::C_TEST
:
1777 /* In general, C tests require everything else to have been
1778 verified and all operands to have been set up. */
1781 case rtx_test::ACCEPT
:
1782 /* Don't accept something before all conditions have been tested. */
1785 case rtx_test::PREDICATE
:
1786 /* Don't move a predicate over a test for VECLEN_GE, since the
1787 predicate used in a match_parallel can legitimately expect the
1788 length to be checked first. */
1789 for (decision
*subd
= d
;
1791 subd
= subd
->first
->to
->first
)
1792 if (subd
->test
.pos
== test
.pos
1793 && subd
->test
.kind
== rtx_test::VECLEN_GE
)
1797 case rtx_test::DUPLICATE
:
1798 /* Don't test for a match_dup until the associated operand has
1800 if (!kc
->set_operands
[test
.u
.opno
])
1804 case rtx_test::CODE
:
1805 case rtx_test::MODE
:
1806 case rtx_test::SAVED_CONST_INT
:
1807 case rtx_test::SET_OP
:
1809 /* Check whether it is safe to access the rtx under test. */
1810 switch (test
.pos
->type
)
1812 case POS_PEEP2_INSN
:
1813 return test
.pos
->arg
< kc
->peep2_count
;
1816 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_CODE
;
1819 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_VECLEN
;
1823 case rtx_test::REGNO_FIELD
:
1824 case rtx_test::INT_FIELD
:
1825 case rtx_test::WIDE_INT_FIELD
:
1826 case rtx_test::VECLEN
:
1827 case rtx_test::VECLEN_GE
:
1828 /* These tests access a specific part of an rtx, so are only safe
1829 once we know what the rtx is. */
1830 return kc
->position_tests
[test
.pos
->id
] & TESTED_CODE
;
1832 case rtx_test::PEEP2_COUNT
:
1833 case rtx_test::HAVE_NUM_CLOBBERS
:
1834 /* These tests can be performed anywhere. */
1837 case rtx_test::PATTERN
:
1843 /* Look for a transition that is taken by all successful returns from a range
1844 of decisions starting at OUTER and that would be better performed by
1845 OUTER's state instead. On success, store all instances of that transition
1846 in WHERE and return the last decision in the range. The range could
1847 just be OUTER, or it could include later decisions as well.
1849 WITH_POSITION_P is true if only tests with position POS should be tried,
1850 false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
1851 result is useful even when the range contains just a single decision
1852 with a single transition. KC are the conditions that are known to
1856 find_common_test (decision
*outer
, bool with_position_p
,
1857 position
*pos
, bool worthwhile_single_p
,
1858 known_conditions
*kc
, vec
<transition
*> *where
)
1860 /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1861 just a single decision is useful, regardless of the number of
1862 transitions it has. */
1863 if (!outer
->singleton ())
1864 worthwhile_single_p
= true;
1865 /* Quick exit if we don't have enough decisions to form a worthwhile
1867 if (!worthwhile_single_p
&& !outer
->next
)
1869 /* Follow the first chain down, as one example of a path that needs
1870 to contain the common test. */
1871 for (decision
*d
= outer
; d
; d
= d
->first
->to
->first
)
1873 transition
*trans
= d
->singleton ();
1875 && (!with_position_p
|| d
->test
.pos
== pos
)
1876 && safe_to_hoist_p (outer
, d
->test
, kc
))
1878 if (common_test_p (outer
, trans
, where
))
1881 /* We checked above whether the move is worthwhile. */
1883 /* See how many decisions in OUTER's chain could reuse
1885 decision
*outer_end
= outer
;
1888 unsigned int length
= where
->length ();
1889 if (!common_test_p (outer_end
->next
, trans
, where
))
1891 where
->truncate (length
);
1894 outer_end
= outer_end
->next
;
1896 while (outer_end
->next
);
1897 /* It is worth moving TRANS if it can be shared by more than
1899 if (outer_end
!= outer
|| worthwhile_single_p
)
1902 where
->truncate (0);
1908 /* Try to promote common subtests in S to a single, shared decision.
1909 Also try to bunch tests for the same position together. POS is the
1910 position of the rtx tested before reaching S. KC are the conditions
1911 that are known to hold on entry to S. */
1914 cse_tests (position
*pos
, state
*s
, known_conditions
*kc
)
1916 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1918 auto_vec
<transition
*, 16> where
;
1921 /* Try to find conditions that don't depend on a particular rtx,
1922 such as pnum_clobbers != NULL or peep2_current_count >= X.
1923 It's usually better to check these conditions as soon as
1924 possible, so the change is worthwhile even if there is
1925 only one copy of the test. */
1926 decision
*endd
= find_common_test (d
, true, 0, true, kc
, &where
);
1927 if (!endd
&& d
->test
.pos
!= pos
)
1928 /* Try to find other conditions related to position POS
1929 before moving to the new position. Again, this is
1930 worthwhile even if there is only one copy of the test,
1931 since it means that fewer position variables are live
1933 endd
= find_common_test (d
, true, pos
, true, kc
, &where
);
1935 /* Try to find any condition that is used more than once. */
1936 endd
= find_common_test (d
, false, 0, false, kc
, &where
);
1939 transition
*common
= where
[0];
1940 /* Replace [D, ENDD] with a test like COMMON. We'll recurse
1941 on the common test and see the original D again next time. */
1942 d
= insert_decision_before (state::range (d
, endd
),
1946 /* Remove the old tests. */
1947 while (!where
.is_empty ())
1949 transition
*trans
= where
.pop ();
1950 trans
->from
->s
->replace (trans
->from
, trans
->to
->release ());
1955 /* Make sure that safe_to_hoist_p isn't being overly conservative.
1956 It should realize that D's test is safe in the current
1958 gcc_assert (d
->test
.kind
== rtx_test::C_TEST
1959 || d
->test
.kind
== rtx_test::ACCEPT
1960 || safe_to_hoist_p (d
, d
->test
, kc
));
1962 /* D won't be changed any further by the current optimization.
1963 Recurse with the state temporarily updated to include D. */
1965 switch (d
->test
.kind
)
1967 case rtx_test::CODE
:
1968 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1969 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_CODE
;
1972 case rtx_test::VECLEN
:
1973 case rtx_test::VECLEN_GE
:
1974 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1975 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_VECLEN
;
1978 case rtx_test::SET_OP
:
1979 prev
= kc
->set_operands
[d
->test
.u
.opno
];
1981 kc
->set_operands
[d
->test
.u
.opno
] = true;
1984 case rtx_test::PEEP2_COUNT
:
1985 prev
= kc
->peep2_count
;
1986 kc
->peep2_count
= MAX (prev
, d
->test
.u
.min_len
);
1992 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1993 cse_tests (d
->test
.pos
? d
->test
.pos
: pos
, trans
->to
, kc
);
1994 switch (d
->test
.kind
)
1996 case rtx_test::CODE
:
1997 case rtx_test::VECLEN
:
1998 case rtx_test::VECLEN_GE
:
1999 kc
->position_tests
[d
->test
.pos
->id
] = prev
;
2002 case rtx_test::SET_OP
:
2003 kc
->set_operands
[d
->test
.u
.opno
] = prev
;
2006 case rtx_test::PEEP2_COUNT
:
2007 kc
->peep2_count
= prev
;
2016 /* Return the type of value that can be used to parameterize test KIND,
2017 or parameter::UNSET if none. */
2019 parameter::type_enum
2020 transition_parameter_type (rtx_test::kind_enum kind
)
2024 case rtx_test::CODE
:
2025 return parameter::CODE
;
2027 case rtx_test::MODE
:
2028 return parameter::MODE
;
2030 case rtx_test::REGNO_FIELD
:
2031 return parameter::UINT
;
2033 case rtx_test::INT_FIELD
:
2034 case rtx_test::VECLEN
:
2035 case rtx_test::PATTERN
:
2036 return parameter::INT
;
2038 case rtx_test::WIDE_INT_FIELD
:
2039 return parameter::WIDE_INT
;
2041 case rtx_test::PEEP2_COUNT
:
2042 case rtx_test::VECLEN_GE
:
2043 case rtx_test::SAVED_CONST_INT
:
2044 case rtx_test::PREDICATE
:
2045 case rtx_test::DUPLICATE
:
2046 case rtx_test::HAVE_NUM_CLOBBERS
:
2047 case rtx_test::C_TEST
:
2048 case rtx_test::SET_OP
:
2049 case rtx_test::ACCEPT
:
2050 return parameter::UNSET
;
2055 /* Initialize the pos_operand fields of each state reachable from S.
2056 If OPERAND_POS[ID] >= 0, the position with id ID is stored in
2057 operands[OPERAND_POS[ID]] on entry to S. */
2060 find_operand_positions (state
*s
, vec
<int> &operand_pos
)
2062 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2064 int this_operand
= (d
->test
.pos
? operand_pos
[d
->test
.pos
->id
] : -1);
2065 if (this_operand
>= 0)
2066 d
->test
.pos_operand
= this_operand
;
2067 if (d
->test
.kind
== rtx_test::SET_OP
)
2068 operand_pos
[d
->test
.pos
->id
] = d
->test
.u
.opno
;
2069 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2070 find_operand_positions (trans
->to
, operand_pos
);
2071 if (d
->test
.kind
== rtx_test::SET_OP
)
2072 operand_pos
[d
->test
.pos
->id
] = this_operand
;
2076 /* Statistics about a matching routine. */
2081 /* The total number of decisions in the routine, excluding trivial
2082 ones that never fail. */
2083 unsigned int num_decisions
;
2085 /* The number of non-trivial decisions on the longest path through
2086 the routine, and the return value that contributes most to that
2088 unsigned int longest_path
;
2089 int longest_path_code
;
2091 /* The maximum number of times that a single call to the routine
2092 can backtrack, and the value returned at the end of that path.
2093 "Backtracking" here means failing one decision in state and
2094 going onto to the next. */
2095 unsigned int longest_backtrack
;
2096 int longest_backtrack_code
;
2100 : num_decisions (0), longest_path (0), longest_path_code (-1),
2101 longest_backtrack (0), longest_backtrack_code (-1) {}
2103 /* Return statistics about S. */
2106 get_stats (state
*s
)
2109 unsigned int longest_path
= 0;
2110 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2112 /* Work out the statistics for D. */
2114 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2116 stats for_trans
= get_stats (trans
->to
);
2117 for_d
.num_decisions
+= for_trans
.num_decisions
;
2118 /* Each transition is mutually-exclusive, so just pick the
2119 longest of the individual paths. */
2120 if (for_d
.longest_path
<= for_trans
.longest_path
)
2122 for_d
.longest_path
= for_trans
.longest_path
;
2123 for_d
.longest_path_code
= for_trans
.longest_path_code
;
2125 /* Likewise for backtracking. */
2126 if (for_d
.longest_backtrack
<= for_trans
.longest_backtrack
)
2128 for_d
.longest_backtrack
= for_trans
.longest_backtrack
;
2129 for_d
.longest_backtrack_code
= for_trans
.longest_backtrack_code
;
2133 /* Account for D's test in its statistics. */
2134 if (!d
->test
.single_outcome_p ())
2136 for_d
.num_decisions
+= 1;
2137 for_d
.longest_path
+= 1;
2139 if (d
->test
.kind
== rtx_test::ACCEPT
)
2141 for_d
.longest_path_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2142 for_d
.longest_backtrack_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2145 /* Keep a running count of the number of backtracks. */
2147 for_s
.longest_backtrack
+= 1;
2149 /* Accumulate D's statistics into S's. */
2150 for_s
.num_decisions
+= for_d
.num_decisions
;
2151 for_s
.longest_path
+= for_d
.longest_path
;
2152 for_s
.longest_backtrack
+= for_d
.longest_backtrack
;
2154 /* Use the code from the decision with the longest individual path,
2155 since that's more likely to be useful if trying to make the
2156 path shorter. In the event of a tie, pick the later decision,
2157 since that's closer to the end of the path. */
2158 if (longest_path
<= for_d
.longest_path
)
2160 longest_path
= for_d
.longest_path
;
2161 for_s
.longest_path_code
= for_d
.longest_path_code
;
2164 /* Later decisions in a state are necessarily in a longer backtrack
2165 than earlier decisions. */
2166 for_s
.longest_backtrack_code
= for_d
.longest_backtrack_code
;
2171 /* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
2174 optimize_subroutine_group (const char *type
, state
*root
)
2176 /* Remove optional transitions that turned out not to be worthwhile. */
2177 if (collapse_optional_decisions_p
)
2178 collapse_optional_decisions (root
);
2180 /* Try to remove duplicated tests and to rearrange tests into a more
2184 known_conditions kc
;
2185 kc
.position_tests
.safe_grow_cleared (num_positions
);
2186 kc
.set_operands
.safe_grow_cleared (num_operands
);
2188 cse_tests (&root_pos
, root
, &kc
);
2191 /* Try to simplify two or more tests into one. */
2192 if (simplify_tests_p
)
2193 simplify_tests (root
);
2195 /* Try to use operands[] instead of xN variables. */
2196 if (use_operand_variables_p
)
2198 auto_vec
<int> operand_pos (num_positions
);
2199 for (unsigned int i
= 0; i
< num_positions
; ++i
)
2200 operand_pos
.quick_push (-1);
2201 find_operand_positions (root
, operand_pos
);
2204 /* Print a summary of the new state. */
2205 stats st
= get_stats (root
);
2206 fprintf (stderr
, "Statistics for %s:\n", type
);
2207 fprintf (stderr
, " Number of decisions: %6d\n", st
.num_decisions
);
2208 fprintf (stderr
, " longest path: %6d (code: %6d)\n",
2209 st
.longest_path
, st
.longest_path_code
);
2210 fprintf (stderr
, " longest backtrack: %6d (code: %6d)\n",
2211 st
.longest_backtrack
, st
.longest_backtrack_code
);
2214 struct merge_pattern_info
;
2216 /* Represents a transition from one pattern to another. */
2217 struct merge_pattern_transition
2219 merge_pattern_transition (merge_pattern_info
*);
2221 /* The target pattern. */
2222 merge_pattern_info
*to
;
2224 /* The parameters that the source pattern passes to the target pattern.
2225 "parameter (TYPE, true, I)" represents parameter I of the source
2227 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2230 merge_pattern_transition::merge_pattern_transition (merge_pattern_info
*to_in
)
2235 /* Represents a pattern that can might match several states. The pattern
2236 may replace parts of the test with a parameter value. It may also
2237 replace transition labels with parameters. */
2238 struct merge_pattern_info
2240 merge_pattern_info (unsigned int);
2242 /* If PARAM_TEST_P, the state's singleton test should be generalized
2243 to use the runtime value of PARAMS[PARAM_TEST]. */
2244 unsigned int param_test
: 8;
2246 /* If PARAM_TRANSITION_P, the state's single transition label should
2247 be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
2248 unsigned int param_transition
: 8;
2250 /* True if we have decided to generalize the root decision's test,
2251 as per PARAM_TEST. */
2252 unsigned int param_test_p
: 1;
2254 /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
2255 unsigned int param_transition_p
: 1;
2257 /* True if the contents of the structure are completely filled in. */
2258 unsigned int complete_p
: 1;
2260 /* The number of pseudo-statements in the pattern. Used to decide
2261 whether it's big enough to break out into a subroutine. */
2262 unsigned int num_statements
;
2264 /* The number of states that use this pattern. */
2265 unsigned int num_users
;
2267 /* The number of distinct success values that the pattern returns. */
2268 unsigned int num_results
;
2270 /* This array has one element for each runtime parameter to the pattern.
2271 PARAMS[I] gives the default value of parameter I, which is always
2274 These default parameters are used in cases where we match the
2275 pattern against some state S1, then add more parameters while
2276 matching against some state S2. S1 is then left passing fewer
2277 parameters than S2. The array gives us enough informatino to
2278 construct a full parameter list for S1 (see update_parameters).
2280 If we decide to create a subroutine for this pattern,
2281 PARAMS[I].type determines the C type of parameter I. */
2282 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2284 /* All states that match this pattern must have the same number of
2285 transitions. TRANSITIONS[I] describes the subpattern for transition
2286 number I; it is null if transition I represents a successful return
2287 from the pattern. */
2288 auto_vec
<merge_pattern_transition
*, 1> transitions
;
2290 /* The routine associated with the pattern, or null if we haven't generated
2292 pattern_routine
*routine
;
2295 merge_pattern_info::merge_pattern_info (unsigned int num_transitions
)
2297 param_transition (0),
2298 param_test_p (false),
2299 param_transition_p (false),
2306 transitions
.safe_grow_cleared (num_transitions
);
2309 /* Describes one way of matching a particular state to a particular
2311 struct merge_state_result
2313 merge_state_result (merge_pattern_info
*, position
*, merge_state_result
*);
2315 /* A pattern that matches the state. */
2316 merge_pattern_info
*pattern
;
2318 /* If we decide to use this match and create a subroutine for PATTERN,
2319 the state should pass the rtx at position ROOT to the pattern's
2320 rtx parameter. A null root means that the pattern doesn't need
2321 an rtx parameter; all the rtxes it matches come from elsewhere. */
2324 /* The parameters that should be passed to PATTERN for this state.
2325 If the array is shorter than PATTERN->params, the missing entries
2326 should be taken from the corresponding element of PATTERN->params. */
2327 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2329 /* An earlier match for the same state, or null if none. Patterns
2330 matched by earlier entries are smaller than PATTERN. */
2331 merge_state_result
*prev
;
2334 merge_state_result::merge_state_result (merge_pattern_info
*pattern_in
,
2336 merge_state_result
*prev_in
)
2337 : pattern (pattern_in
), root (root_in
), prev (prev_in
)
2340 /* Information about a state, used while trying to match it against
2342 struct merge_state_info
2344 merge_state_info (state
*);
2346 /* The state itself. */
2349 /* Index I gives information about the target of transition I. */
2350 merge_state_info
*to_states
;
2352 /* The number of transitions in S. */
2353 unsigned int num_transitions
;
2355 /* True if the state has been deleted in favor of a call to a
2359 /* The previous state that might be a merge candidate for S, or null
2360 if no previous states could be merged with S. */
2361 merge_state_info
*prev_same_test
;
2363 /* A list of pattern matches for this state. */
2364 merge_state_result
*res
;
2367 merge_state_info::merge_state_info (state
*s_in
)
2370 num_transitions (0),
2375 /* True if PAT would be useful as a subroutine. */
2378 useful_pattern_p (merge_pattern_info
*pat
)
2380 return pat
->num_statements
>= MIN_COMBINE_COST
;
2383 /* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
2384 into PAT1's C routine. */
2387 same_pattern_p (merge_pattern_info
*pat1
, merge_pattern_info
*pat2
)
2389 return pat1
->num_users
== pat2
->num_users
|| !useful_pattern_p (pat2
);
2392 /* PAT was previously matched against SINFO based on tentative matches
2393 for the target states of SINFO's state. Return true if the match
2394 still holds; that is, if the target states of SINFO's state still
2395 match the corresponding transitions of PAT. */
2398 valid_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2400 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2401 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
2403 merge_state_result
*to_res
= sinfo
->to_states
[j
].res
;
2404 if (!to_res
|| to_res
->pattern
!= ptrans
->to
)
2410 /* Remove any matches that are no longer valid from the head of SINFO's
2414 prune_invalid_results (merge_state_info
*sinfo
)
2416 while (sinfo
->res
&& !valid_result_p (sinfo
->res
->pattern
, sinfo
))
2418 sinfo
->res
= sinfo
->res
->prev
;
2419 gcc_assert (sinfo
->res
);
2423 /* Return true if PAT represents the biggest posssible match for SINFO;
2424 that is, if the next action of SINFO's state on return from PAT will
2425 be something that cannot be merged with any other state. */
2428 complete_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2430 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2431 if (sinfo
->to_states
[j
].res
&& !pat
->transitions
[j
])
2436 /* Update TO for any parameters that have been added to FROM since TO
2437 was last set. The extra parameters in FROM will be constants or
2438 instructions to duplicate earlier parameters. */
2441 update_parameters (vec
<parameter
> &to
, const vec
<parameter
> &from
)
2443 for (unsigned int i
= to
.length (); i
< from
.length (); ++i
)
2444 to
.quick_push (from
[i
]);
2447 /* Return true if A and B can be tested by a single test. If the test
2448 can be parameterised, store the parameter value for A in *PARAMA and
2449 the parameter value for B in *PARAMB, otherwise leave PARAMA and
2453 compatible_tests_p (const rtx_test
&a
, const rtx_test
&b
,
2454 parameter
*parama
, parameter
*paramb
)
2456 if (a
.kind
!= b
.kind
)
2460 case rtx_test::PREDICATE
:
2461 if (a
.u
.predicate
.data
!= b
.u
.predicate
.data
)
2463 *parama
= parameter (parameter::MODE
, false, a
.u
.predicate
.mode
);
2464 *paramb
= parameter (parameter::MODE
, false, b
.u
.predicate
.mode
);
2467 case rtx_test::SAVED_CONST_INT
:
2468 *parama
= parameter (parameter::INT
, false, a
.u
.integer
.value
);
2469 *paramb
= parameter (parameter::INT
, false, b
.u
.integer
.value
);
2477 /* PARAMS is an array of the parameters that a state is going to pass
2478 to a pattern routine. It is still incomplete; index I has a kind of
2479 parameter::UNSET if we don't yet know what the state will pass
2480 as parameter I. Try to make parameter ID equal VALUE, returning
2484 set_parameter (vec
<parameter
> ¶ms
, unsigned int id
,
2485 const parameter
&value
)
2487 if (params
[id
].type
== parameter::UNSET
)
2489 if (force_unique_params_p
)
2490 for (unsigned int i
= 0; i
< params
.length (); ++i
)
2491 if (params
[i
] == value
)
2496 return params
[id
] == value
;
2499 /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2500 set of parameters that a particular state is going to pass to
2503 Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2504 that is equal to PARAM1 for the state and has a default value of
2505 PARAM2. Parameters beginning at START were added as part of the
2506 same match and so may be reused. */
2509 add_parameter (vec
<parameter
> ¶ms1
, vec
<parameter
> ¶ms2
,
2510 const parameter
¶m1
, const parameter
¶m2
,
2511 unsigned int start
, unsigned int *res
)
2513 gcc_assert (params1
.length () == params2
.length ());
2514 gcc_assert (!param1
.is_param
&& !param2
.is_param
);
2516 for (unsigned int i
= start
; i
< params2
.length (); ++i
)
2517 if (params1
[i
] == param1
&& params2
[i
] == param2
)
2523 if (force_unique_params_p
)
2524 for (unsigned int i
= 0; i
< params2
.length (); ++i
)
2525 if (params1
[i
] == param1
|| params2
[i
] == param2
)
2528 if (params2
.length () >= MAX_PATTERN_PARAMS
)
2531 *res
= params2
.length ();
2532 params1
.quick_push (param1
);
2533 params2
.quick_push (param2
);
2537 /* If *ROOTA is nonnull, return true if the same sequence of steps are
2538 required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
2539 is null, update it if necessary in order to make the condition hold. */
2542 merge_relative_positions (position
**roota
, position
*a
,
2543 position
*rootb
, position
*b
)
2545 if (!relative_patterns_p
)
2554 return *roota
== rootb
;
2556 /* If B does not belong to the same instruction as ROOTB, we don't
2557 start with ROOTB but instead start with a call to peep2_next_insn.
2558 In that case the sequences for B and A are identical iff B and A
2559 are themselves identical. */
2560 if (rootb
->insn_id
!= b
->insn_id
)
2564 if (!a
|| b
->type
!= a
->type
|| b
->arg
!= a
->arg
)
2574 /* A hasher of states that treats two states as "equal" if they might be
2575 merged (but trying to be more discriminating than "return true"). */
2576 struct test_pattern_hasher
: nofree_ptr_hash
<merge_state_info
>
2578 static inline hashval_t
hash (const value_type
&);
2579 static inline bool equal (const value_type
&, const compare_type
&);
2583 test_pattern_hasher::hash (merge_state_info
*const &sinfo
)
2586 decision
*d
= sinfo
->s
->singleton ();
2587 h
.add_int (d
->test
.pos_operand
+ 1);
2588 if (!relative_patterns_p
)
2589 h
.add_int (d
->test
.pos
? d
->test
.pos
->id
+ 1 : 0);
2590 h
.add_int (d
->test
.kind
);
2591 h
.add_int (sinfo
->num_transitions
);
2596 test_pattern_hasher::equal (merge_state_info
*const &sinfo1
,
2597 merge_state_info
*const &sinfo2
)
2599 decision
*d1
= sinfo1
->s
->singleton ();
2600 decision
*d2
= sinfo2
->s
->singleton ();
2601 gcc_assert (d1
&& d2
);
2603 parameter new_param1
, new_param2
;
2604 return (d1
->test
.pos_operand
== d2
->test
.pos_operand
2605 && (relative_patterns_p
|| d1
->test
.pos
== d2
->test
.pos
)
2606 && compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
)
2607 && sinfo1
->num_transitions
== sinfo2
->num_transitions
);
2610 /* Try to make the state described by SINFO1 use the same pattern as the
2611 state described by SINFO2. Return true on success.
2613 SINFO1 and SINFO2 are known to have the same hash value. */
2616 merge_patterns (merge_state_info
*sinfo1
, merge_state_info
*sinfo2
)
2618 merge_state_result
*res2
= sinfo2
->res
;
2619 merge_pattern_info
*pat
= res2
->pattern
;
2621 /* Write to temporary arrays while matching, in case we have to abort
2622 half way through. */
2623 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params1
;
2624 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params2
;
2625 params1
.quick_grow_cleared (pat
->params
.length ());
2626 params2
.splice (pat
->params
);
2627 unsigned int start_param
= params2
.length ();
2629 /* An array for recording changes to PAT->transitions[?].params.
2630 All changes involve replacing a constant parameter with some
2631 PAT->params[N], where N is the second element of the pending_param. */
2632 typedef std::pair
<parameter
*, unsigned int> pending_param
;
2633 auto_vec
<pending_param
, 32> pending_params
;
2635 decision
*d1
= sinfo1
->s
->singleton ();
2636 decision
*d2
= sinfo2
->s
->singleton ();
2637 gcc_assert (d1
&& d2
);
2639 /* If D2 tests a position, SINFO1's root relative to D1 is the same
2640 as SINFO2's root relative to D2. */
2641 position
*root1
= 0;
2642 position
*root2
= res2
->root
;
2643 if (d2
->test
.pos_operand
< 0
2645 && !merge_relative_positions (&root1
, d1
->test
.pos
,
2646 root2
, d2
->test
.pos
))
2649 /* Check whether the patterns have the same shape. */
2650 unsigned int num_transitions
= sinfo1
->num_transitions
;
2651 gcc_assert (num_transitions
== sinfo2
->num_transitions
);
2652 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2653 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2655 merge_state_result
*to1_res
= sinfo1
->to_states
[i
].res
;
2656 merge_state_result
*to2_res
= sinfo2
->to_states
[i
].res
;
2657 merge_pattern_info
*to_pat
= ptrans
->to
;
2658 gcc_assert (to2_res
&& to2_res
->pattern
== to_pat
);
2659 if (!to1_res
|| to1_res
->pattern
!= to_pat
)
2662 && !merge_relative_positions (&root1
, to1_res
->root
,
2663 root2
, to2_res
->root
))
2665 /* Match the parameters that TO1_RES passes to TO_PAT with the
2666 parameters that PAT passes to TO_PAT. */
2667 update_parameters (to1_res
->params
, to_pat
->params
);
2668 for (unsigned int j
= 0; j
< to1_res
->params
.length (); ++j
)
2670 const parameter
¶m1
= to1_res
->params
[j
];
2671 const parameter
¶m2
= ptrans
->params
[j
];
2672 gcc_assert (!param1
.is_param
);
2673 if (param2
.is_param
)
2675 if (!set_parameter (params1
, param2
.value
, param1
))
2678 else if (param1
!= param2
)
2681 if (!add_parameter (params1
, params2
,
2682 param1
, param2
, start_param
, &id
))
2684 /* Record that PAT should now pass parameter ID to TO_PAT,
2685 instead of the current contents of *PARAM2. We only
2686 make the change if the rest of the match succeeds. */
2687 pending_params
.safe_push
2688 (pending_param (&ptrans
->params
[j
], id
));
2693 unsigned int param_test
= pat
->param_test
;
2694 unsigned int param_transition
= pat
->param_transition
;
2695 bool param_test_p
= pat
->param_test_p
;
2696 bool param_transition_p
= pat
->param_transition_p
;
2698 /* If the tests don't match exactly, try to parameterize them. */
2699 parameter new_param1
, new_param2
;
2700 if (!compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
))
2702 if (new_param1
.type
!= parameter::UNSET
)
2704 /* If the test has not already been parameterized, all existing
2705 matches use constant NEW_PARAM2. */
2708 if (!set_parameter (params1
, param_test
, new_param1
))
2711 else if (new_param1
!= new_param2
)
2713 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2714 start_param
, ¶m_test
))
2716 param_test_p
= true;
2720 /* Match the transitions. */
2721 transition
*trans1
= d1
->first
;
2722 transition
*trans2
= d2
->first
;
2723 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2725 if (param_transition_p
|| trans1
->labels
!= trans2
->labels
)
2727 /* We can only generalize a single transition with a single
2729 if (num_transitions
!= 1
2730 || trans1
->labels
.length () != 1
2731 || trans2
->labels
.length () != 1)
2734 /* Although we can match wide-int fields, in practice it leads
2735 to some odd results for const_vectors. We end up
2736 parameterizing the first N const_ints of the vector
2737 and then (once we reach the maximum number of parameters)
2738 we go on to match the other elements exactly. */
2739 if (d1
->test
.kind
== rtx_test::WIDE_INT_FIELD
)
2742 /* See whether the label has a generalizable type. */
2743 parameter::type_enum param_type
2744 = transition_parameter_type (d1
->test
.kind
);
2745 if (param_type
== parameter::UNSET
)
2748 /* Match the labels using parameters. */
2749 new_param1
= parameter (param_type
, false, trans1
->labels
[0]);
2750 if (param_transition_p
)
2752 if (!set_parameter (params1
, param_transition
, new_param1
))
2757 new_param2
= parameter (param_type
, false, trans2
->labels
[0]);
2758 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2759 start_param
, ¶m_transition
))
2761 param_transition_p
= true;
2764 trans1
= trans1
->next
;
2765 trans2
= trans2
->next
;
2768 /* Set any unset parameters to their default values. This occurs if some
2769 other state needed something to be parameterized in order to match SINFO2,
2770 but SINFO1 on its own does not. */
2771 for (unsigned int i
= 0; i
< params1
.length (); ++i
)
2772 if (params1
[i
].type
== parameter::UNSET
)
2773 params1
[i
] = params2
[i
];
2775 /* The match was successful. Commit all pending changes to PAT. */
2776 update_parameters (pat
->params
, params2
);
2780 FOR_EACH_VEC_ELT (pending_params
, i
, pp
)
2781 *pp
->first
= parameter (pp
->first
->type
, true, pp
->second
);
2783 pat
->param_test
= param_test
;
2784 pat
->param_transition
= param_transition
;
2785 pat
->param_test_p
= param_test_p
;
2786 pat
->param_transition_p
= param_transition_p
;
2788 /* Record the match of SINFO1. */
2789 merge_state_result
*new_res1
= new merge_state_result (pat
, root1
,
2791 new_res1
->params
.splice (params1
);
2792 sinfo1
->res
= new_res1
;
2796 /* The number of states that were removed by calling pattern routines. */
2797 static unsigned int pattern_use_states
;
2799 /* The number of states used while defining pattern routines. */
2800 static unsigned int pattern_def_states
;
2802 /* Information used while constructing a use or definition of a pattern
2804 struct create_pattern_info
2806 /* The routine itself. */
2807 pattern_routine
*routine
;
2809 /* The first unclaimed return value for this particular use or definition.
2810 We walk the substates of uses and definitions in the same order
2811 so each return value always refers to the same position within
2813 unsigned int next_result
;
2816 static void populate_pattern_routine (create_pattern_info
*,
2817 merge_state_info
*, state
*,
2818 const vec
<parameter
> &);
2820 /* SINFO matches a pattern for which we've decided to create a C routine.
2821 Return a decision that performs a call to the pattern routine,
2822 but leave the caller to add the transitions to it. Initialize CPI
2823 for this purpose. Also create a definition for the pattern routine,
2824 if it doesn't already have one.
2826 PARAMS are the parameters that SINFO passes to its pattern. */
2829 init_pattern_use (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2830 const vec
<parameter
> ¶ms
)
2832 state
*s
= sinfo
->s
;
2833 merge_state_result
*res
= sinfo
->res
;
2834 merge_pattern_info
*pat
= res
->pattern
;
2835 cpi
->routine
= pat
->routine
;
2838 /* We haven't defined the pattern routine yet, so create
2839 a definition now. */
2840 pattern_routine
*routine
= new pattern_routine
;
2841 pat
->routine
= routine
;
2842 cpi
->routine
= routine
;
2843 routine
->s
= new state
;
2844 routine
->insn_p
= false;
2845 routine
->pnum_clobbers_p
= false;
2847 /* Create an "idempotent" mapping of parameter I to parameter I.
2848 Also record the C type of each parameter to the routine. */
2849 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> def_params
;
2850 for (unsigned int i
= 0; i
< pat
->params
.length (); ++i
)
2852 def_params
.quick_push (parameter (pat
->params
[i
].type
, true, i
));
2853 routine
->param_types
.quick_push (pat
->params
[i
].type
);
2856 /* Any of the states that match the pattern could be used to
2857 create the routine definition. We might as well use SINFO
2858 since it's already to hand. This means that all positions
2859 in the definition will be relative to RES->root. */
2860 routine
->pos
= res
->root
;
2861 cpi
->next_result
= 0;
2862 populate_pattern_routine (cpi
, sinfo
, routine
->s
, def_params
);
2863 gcc_assert (cpi
->next_result
== pat
->num_results
);
2865 /* Add the routine to the global list, after the subroutines
2867 routine
->pattern_id
= patterns
.length ();
2868 patterns
.safe_push (routine
);
2871 /* Create a decision to call the routine, passing PARAMS to it. */
2872 pattern_use
*use
= new pattern_use
;
2873 use
->routine
= pat
->routine
;
2874 use
->params
.splice (params
);
2875 decision
*d
= new decision (rtx_test::pattern (res
->root
, use
));
2877 /* If the original decision could use an element of operands[] instead
2878 of an rtx variable, try to transfer it to the new decision. */
2879 if (s
->first
->test
.pos
&& res
->root
== s
->first
->test
.pos
)
2880 d
->test
.pos_operand
= s
->first
->test
.pos_operand
;
2882 cpi
->next_result
= 0;
2886 /* Make S return the next unclaimed pattern routine result for CPI. */
2889 add_pattern_acceptance (create_pattern_info
*cpi
, state
*s
)
2891 acceptance_type acceptance
;
2892 acceptance
.type
= SUBPATTERN
;
2893 acceptance
.partial_p
= false;
2894 acceptance
.u
.full
.code
= cpi
->next_result
;
2895 add_decision (s
, rtx_test::accept (acceptance
), true, false);
2896 cpi
->next_result
+= 1;
2899 /* Initialize new empty state NEWS so that it implements SINFO's pattern
2900 (here referred to as "P"). P may be the top level of a pattern routine
2901 or a subpattern that should be inlined into its parent pattern's routine
2902 (as per same_pattern_p). The choice of SINFO for a top-level pattern is
2903 arbitrary; it could be any of the states that use P. The choice for
2904 subpatterns follows the choice for the parent pattern.
2906 PARAMS gives the value of each parameter to P in terms of the parameters
2907 to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
2908 is always "parameter (TYPE, true, I)". */
2911 populate_pattern_routine (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2912 state
*news
, const vec
<parameter
> ¶ms
)
2914 pattern_def_states
+= 1;
2916 decision
*d
= sinfo
->s
->singleton ();
2917 merge_pattern_info
*pat
= sinfo
->res
->pattern
;
2918 pattern_routine
*routine
= cpi
->routine
;
2920 /* Create a copy of D's test for the pattern routine and generalize it
2922 decision
*newd
= new decision (d
->test
);
2923 gcc_assert (newd
->test
.pos_operand
>= 0
2925 || common_position (newd
->test
.pos
,
2926 routine
->pos
) == routine
->pos
);
2927 if (pat
->param_test_p
)
2929 const parameter
¶m
= params
[pat
->param_test
];
2930 switch (newd
->test
.kind
)
2932 case rtx_test::PREDICATE
:
2933 newd
->test
.u
.predicate
.mode_is_param
= param
.is_param
;
2934 newd
->test
.u
.predicate
.mode
= param
.value
;
2937 case rtx_test::SAVED_CONST_INT
:
2938 newd
->test
.u
.integer
.is_param
= param
.is_param
;
2939 newd
->test
.u
.integer
.value
= param
.value
;
2947 if (d
->test
.kind
== rtx_test::C_TEST
)
2948 routine
->insn_p
= true;
2949 else if (d
->test
.kind
== rtx_test::HAVE_NUM_CLOBBERS
)
2950 routine
->pnum_clobbers_p
= true;
2951 news
->push_back (newd
);
2953 /* Fill in the transitions of NEWD. */
2955 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2957 /* Create a new state to act as the target of the new transition. */
2958 state
*to_news
= new state
;
2959 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2961 /* The pattern hasn't finished matching yet. Get the target
2962 pattern and the corresponding target state of SINFO. */
2963 merge_pattern_info
*to_pat
= ptrans
->to
;
2964 merge_state_info
*to
= sinfo
->to_states
+ i
;
2965 gcc_assert (to
->res
->pattern
== to_pat
);
2966 gcc_assert (ptrans
->params
.length () == to_pat
->params
.length ());
2968 /* Express the parameters to TO_PAT in terms of the parameters
2969 to the top-level pattern. */
2970 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> to_params
;
2971 for (unsigned int j
= 0; j
< ptrans
->params
.length (); ++j
)
2973 const parameter
¶m
= ptrans
->params
[j
];
2974 to_params
.quick_push (param
.is_param
2975 ? params
[param
.value
]
2979 if (same_pattern_p (pat
, to_pat
))
2980 /* TO_PAT is part of the current routine, so just recurse. */
2981 populate_pattern_routine (cpi
, to
, to_news
, to_params
);
2984 /* TO_PAT should be matched by calling a separate routine. */
2985 create_pattern_info sub_cpi
;
2986 decision
*subd
= init_pattern_use (&sub_cpi
, to
, to_params
);
2987 routine
->insn_p
|= sub_cpi
.routine
->insn_p
;
2988 routine
->pnum_clobbers_p
|= sub_cpi
.routine
->pnum_clobbers_p
;
2990 /* Add the pattern routine call to the new target state. */
2991 to_news
->push_back (subd
);
2993 /* Add a transition for each successful call result. */
2994 for (unsigned int j
= 0; j
< to_pat
->num_results
; ++j
)
2996 state
*res
= new state
;
2997 add_pattern_acceptance (cpi
, res
);
2998 subd
->push_back (new transition (j
, res
, false));
3003 /* This transition corresponds to a successful match. */
3004 add_pattern_acceptance (cpi
, to_news
);
3006 /* Create the transition itself, generalizing as necessary. */
3007 transition
*new_trans
= new transition (trans
->labels
, to_news
,
3009 if (pat
->param_transition_p
)
3011 const parameter
¶m
= params
[pat
->param_transition
];
3012 new_trans
->is_param
= param
.is_param
;
3013 new_trans
->labels
[0] = param
.value
;
3015 newd
->push_back (new_trans
);
3020 /* USE is a decision that calls a pattern routine and SINFO is part of the
3021 original state tree that the call is supposed to replace. Add the
3022 transitions for SINFO and its substates to USE. */
3025 populate_pattern_use (create_pattern_info
*cpi
, decision
*use
,
3026 merge_state_info
*sinfo
)
3028 pattern_use_states
+= 1;
3029 gcc_assert (!sinfo
->merged_p
);
3030 sinfo
->merged_p
= true;
3031 merge_state_result
*res
= sinfo
->res
;
3032 merge_pattern_info
*pat
= res
->pattern
;
3033 decision
*d
= sinfo
->s
->singleton ();
3035 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3037 if (pat
->transitions
[i
])
3038 /* The target state is also part of the pattern. */
3039 populate_pattern_use (cpi
, use
, sinfo
->to_states
+ i
);
3042 /* The transition corresponds to a successful return from the
3044 use
->push_back (new transition (cpi
->next_result
, trans
->to
, false));
3045 cpi
->next_result
+= 1;
3051 /* We have decided to replace SINFO's state with a call to a pattern
3052 routine. Make the change, creating a definition of the pattern routine
3053 if it doesn't have one already. */
3056 use_pattern (merge_state_info
*sinfo
)
3058 merge_state_result
*res
= sinfo
->res
;
3059 merge_pattern_info
*pat
= res
->pattern
;
3060 state
*s
= sinfo
->s
;
3062 /* The pattern may have acquired new parameters after it was matched
3063 against SINFO. Update the parameters that SINFO passes accordingly. */
3064 update_parameters (res
->params
, pat
->params
);
3066 create_pattern_info cpi
;
3067 decision
*d
= init_pattern_use (&cpi
, sinfo
, res
->params
);
3068 populate_pattern_use (&cpi
, d
, sinfo
);
3073 /* Look through the state trees in STATES for common patterns and
3074 split them into subroutines. */
3077 split_out_patterns (vec
<merge_state_info
> &states
)
3079 unsigned int first_transition
= states
.length ();
3080 hash_table
<test_pattern_hasher
> hashtab (128);
3081 /* Stage 1: Create an order in which parent states come before their child
3082 states and in which sibling states are at consecutive locations.
3083 Having consecutive sibling states allows merge_state_info to have
3084 a single to_states pointer. */
3085 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3086 for (decision
*d
= states
[i
].s
->first
; d
; d
= d
->next
)
3087 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3089 states
.safe_push (trans
->to
);
3090 states
[i
].num_transitions
+= 1;
3092 /* Stage 2: Now that the addresses are stable, set up the to_states
3093 pointers. Look for states that might be merged and enter them
3094 into the hash table. */
3095 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3097 merge_state_info
*sinfo
= &states
[i
];
3098 if (sinfo
->num_transitions
)
3100 sinfo
->to_states
= &states
[first_transition
];
3101 first_transition
+= sinfo
->num_transitions
;
3103 /* For simplicity, we only try to merge states that have a single
3104 decision. This is in any case the best we can do for peephole2,
3105 since whether a peephole2 ACCEPT succeeds or not depends on the
3106 specific peephole2 pattern (which is unique to each ACCEPT
3107 and so couldn't be shared between states). */
3108 if (decision
*d
= sinfo
->s
->singleton ())
3109 /* ACCEPT states are unique, so don't even try to merge them. */
3110 if (d
->test
.kind
!= rtx_test::ACCEPT
3111 && (pattern_have_num_clobbers_p
3112 || d
->test
.kind
!= rtx_test::HAVE_NUM_CLOBBERS
)
3113 && (pattern_c_test_p
3114 || d
->test
.kind
!= rtx_test::C_TEST
))
3116 merge_state_info
**slot
= hashtab
.find_slot (sinfo
, INSERT
);
3117 sinfo
->prev_same_test
= *slot
;
3121 /* Stage 3: Walk backwards through the list of states and try to merge
3122 them. This is a greedy, bottom-up match; parent nodes can only start
3123 a new leaf pattern if they fail to match when combined with all child
3124 nodes that have matching patterns.
3126 For each state we keep a list of potential matches, with each
3127 potential match being larger (and deeper) than the next match in
3128 the list. The final element in the list is a leaf pattern that
3129 matches just a single state.
3131 Each candidate pattern created in this loop is unique -- it won't
3132 have been seen by an earlier iteration. We try to match each pattern
3133 with every state that appears earlier in STATES.
3135 Because the patterns created in the loop are unique, any state
3136 that already has a match must have a final potential match that
3137 is different from any new leaf pattern. Therefore, when matching
3138 leaf patterns, we need only consider states whose list of matches
3141 The non-leaf patterns that we try are as deep as possible
3142 and are an extension of the state's previous best candidate match (PB).
3143 We need only consider states whose current potential match is also PB;
3144 any states that don't match as much as PB cannnot match the new pattern,
3145 while any states that already match more than PB must be different from
3147 for (unsigned int i2
= states
.length (); i2
-- > 0; )
3149 merge_state_info
*sinfo2
= &states
[i2
];
3151 /* Enforce the bottom-upness of the match: remove matches with later
3152 states if SINFO2's child states ended up finding a better match. */
3153 prune_invalid_results (sinfo2
);
3155 /* Do nothing if the state doesn't match a later one and if there are
3156 no earlier states it could match. */
3157 if (!sinfo2
->res
&& !sinfo2
->prev_same_test
)
3160 merge_state_result
*res2
= sinfo2
->res
;
3161 decision
*d2
= sinfo2
->s
->singleton ();
3162 position
*root2
= (d2
->test
.pos_operand
< 0 ? d2
->test
.pos
: 0);
3163 unsigned int num_transitions
= sinfo2
->num_transitions
;
3165 /* If RES2 is null then SINFO2's test in isolation has not been seen
3166 before. First try matching that on its own. */
3169 merge_pattern_info
*new_pat
3170 = new merge_pattern_info (num_transitions
);
3171 merge_state_result
*new_res2
3172 = new merge_state_result (new_pat
, root2
, res2
);
3173 sinfo2
->res
= new_res2
;
3175 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3176 new_pat
->num_results
= num_transitions
;
3177 bool matched_p
= false;
3178 /* Look for states that don't currently match anything but
3179 can be made to match SINFO2 on its own. */
3180 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3181 sinfo1
= sinfo1
->prev_same_test
)
3182 if (!sinfo1
->res
&& merge_patterns (sinfo1
, sinfo2
))
3186 /* No other states match. */
3196 /* Keep the existing pattern if it's as good as anything we'd
3197 create for SINFO2. */
3198 if (complete_result_p (res2
->pattern
, sinfo2
))
3200 res2
->pattern
->num_users
+= 1;
3204 /* Create a new pattern for SINFO2. */
3205 merge_pattern_info
*new_pat
= new merge_pattern_info (num_transitions
);
3206 merge_state_result
*new_res2
3207 = new merge_state_result (new_pat
, root2
, res2
);
3208 sinfo2
->res
= new_res2
;
3210 /* Fill in details about the pattern. */
3211 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3212 new_pat
->num_results
= 0;
3213 for (unsigned int j
= 0; j
< num_transitions
; ++j
)
3214 if (merge_state_result
*to_res
= sinfo2
->to_states
[j
].res
)
3216 /* Count the target state as part of this pattern.
3217 First update the root position so that it can reach
3218 the target state's root. */
3222 new_res2
->root
= common_position (new_res2
->root
,
3225 new_res2
->root
= to_res
->root
;
3227 merge_pattern_info
*to_pat
= to_res
->pattern
;
3228 merge_pattern_transition
*ptrans
3229 = new merge_pattern_transition (to_pat
);
3231 /* TO_PAT may have acquired more parameters when matching
3232 states earlier in STATES than TO_RES's, but the list is
3233 now final. Make sure that TO_RES is up to date. */
3234 update_parameters (to_res
->params
, to_pat
->params
);
3236 /* Start out by assuming that every user of NEW_PAT will
3237 want to pass the same (constant) parameters as TO_RES. */
3238 update_parameters (ptrans
->params
, to_res
->params
);
3240 new_pat
->transitions
[j
] = ptrans
;
3241 new_pat
->num_statements
+= to_pat
->num_statements
;
3242 new_pat
->num_results
+= to_pat
->num_results
;
3245 /* The target state doesn't match anything and so is not part
3247 new_pat
->num_results
+= 1;
3249 /* See if any earlier states that match RES2's pattern also match
3251 bool matched_p
= false;
3252 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3253 sinfo1
= sinfo1
->prev_same_test
)
3255 prune_invalid_results (sinfo1
);
3257 && sinfo1
->res
->pattern
== res2
->pattern
3258 && merge_patterns (sinfo1
, sinfo2
))
3263 /* Nothing else matches NEW_PAT, so go back to the previous
3264 pattern (possibly just a single-state one). */
3269 /* Assume that SINFO2 will use RES. At this point we don't know
3270 whether earlier states that match the same pattern will use
3271 that match or a different one. */
3272 sinfo2
->res
->pattern
->num_users
+= 1;
3274 /* Step 4: Finalize the choice of pattern for each state, ignoring
3275 patterns that were only used once. Update each pattern's size
3276 so that it doesn't include subpatterns that are going to be split
3277 out into subroutines. */
3278 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3280 merge_state_info
*sinfo
= &states
[i
];
3281 merge_state_result
*res
= sinfo
->res
;
3282 /* Wind past patterns that are only used by SINFO. */
3283 while (res
&& res
->pattern
->num_users
== 1)
3288 res
->pattern
->num_users
+= 1;
3293 /* We have a shared pattern and are now committed to the match. */
3294 merge_pattern_info
*pat
= res
->pattern
;
3295 gcc_assert (valid_result_p (pat
, sinfo
));
3297 if (!pat
->complete_p
)
3299 /* Look for subpatterns that are going to be split out and remove
3300 them from the number of statements. */
3301 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
3302 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
3304 merge_pattern_info
*to_pat
= ptrans
->to
;
3305 if (!same_pattern_p (pat
, to_pat
))
3306 pat
->num_statements
-= to_pat
->num_statements
;
3308 pat
->complete_p
= true;
3311 /* Step 5: Split out the patterns. */
3312 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3314 merge_state_info
*sinfo
= &states
[i
];
3315 merge_state_result
*res
= sinfo
->res
;
3316 if (!sinfo
->merged_p
&& res
&& useful_pattern_p (res
->pattern
))
3317 use_pattern (sinfo
);
3319 fprintf (stderr
, "Shared %d out of %d states by creating %d new states,"
3321 pattern_use_states
, states
.length (), pattern_def_states
,
3322 pattern_use_states
- pattern_def_states
);
3325 /* Information about a state tree that we're considering splitting into a
3329 /* The number of pseudo-statements in the state tree. */
3330 unsigned int num_statements
;
3332 /* The approximate number of nested "if" and "switch" statements that
3333 would be required if control could fall through to a later state. */
3337 /* Pairs a transition with information about its target state. */
3338 typedef std::pair
<transition
*, state_size
> subroutine_candidate
;
3340 /* Sort two subroutine_candidates so that the one with the largest
3341 number of statements comes last. */
3344 subroutine_candidate_cmp (const void *a
, const void *b
)
3346 return int (((const subroutine_candidate
*) a
)->second
.num_statements
3347 - ((const subroutine_candidate
*) b
)->second
.num_statements
);
3350 /* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
3351 state that performs a subroutine call to S. */
3354 create_subroutine (routine_type type
, state
*s
, vec
<state
*> &procs
)
3356 procs
.safe_push (s
);
3357 acceptance_type acceptance
;
3358 acceptance
.type
= type
;
3359 acceptance
.partial_p
= true;
3360 acceptance
.u
.subroutine_id
= procs
.length ();
3361 state
*news
= new state
;
3362 add_decision (news
, rtx_test::accept (acceptance
), true, false);
3366 /* Walk state tree S, of type TYPE, and look for subtrees that would be
3367 better split into subroutines. Accumulate all such subroutines in PROCS.
3368 Return the size of the new state tree (excluding subroutines). */
3371 find_subroutines (routine_type type
, state
*s
, vec
<state
*> &procs
)
3373 auto_vec
<subroutine_candidate
, 16> candidates
;
3375 size
.num_statements
= 0;
3377 for (decision
*d
= s
->first
; d
; d
= d
->next
)
3379 if (!d
->test
.single_outcome_p ())
3380 size
.num_statements
+= 1;
3381 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3383 /* Keep chains of simple decisions together if we know that no
3384 change of position is required. We'll output this chain as a
3385 single "if" statement, so it counts as a single nesting level. */
3386 if (d
->test
.pos
&& d
->if_statement_p ())
3389 decision
*newd
= trans
->to
->singleton ();
3392 && newd
->test
.pos_operand
< 0
3393 && newd
->test
.pos
!= d
->test
.pos
)
3394 || !newd
->if_statement_p ())
3396 if (!newd
->test
.single_outcome_p ())
3397 size
.num_statements
+= 1;
3398 trans
= newd
->singleton ();
3399 if (newd
->test
.kind
== rtx_test::SET_OP
3400 || newd
->test
.kind
== rtx_test::ACCEPT
)
3403 /* The target of TRANS is a subroutine candidate. First recurse
3404 on it to see how big it is after subroutines have been
3406 state_size to_size
= find_subroutines (type
, trans
->to
, procs
);
3407 if (d
->next
&& to_size
.depth
> MAX_DEPTH
)
3408 /* Keeping the target state in the same routine would lead
3409 to an excessive nesting of "if" and "switch" statements.
3410 Split it out into a subroutine so that it can use
3411 inverted tests that return early on failure. */
3412 trans
->to
= create_subroutine (type
, trans
->to
, procs
);
3415 size
.num_statements
+= to_size
.num_statements
;
3416 if (to_size
.num_statements
< MIN_NUM_STATEMENTS
)
3417 /* The target state is too small to be worth splitting.
3418 Keep it in the same routine as S. */
3419 size
.depth
= MAX (size
.depth
, to_size
.depth
);
3421 /* Assume for now that we'll keep the target state in the
3422 same routine as S, but record it as a subroutine candidate
3423 if S grows too big. */
3424 candidates
.safe_push (subroutine_candidate (trans
, to_size
));
3428 if (size
.num_statements
> MAX_NUM_STATEMENTS
)
3430 /* S is too big. Sort the subroutine candidates so that bigger ones
3431 are nearer the end. */
3432 candidates
.qsort (subroutine_candidate_cmp
);
3433 while (!candidates
.is_empty ()
3434 && size
.num_statements
> MAX_NUM_STATEMENTS
)
3436 /* Peel off a candidate and force it into a subroutine. */
3437 subroutine_candidate cand
= candidates
.pop ();
3438 size
.num_statements
-= cand
.second
.num_statements
;
3439 cand
.first
->to
= create_subroutine (type
, cand
.first
->to
, procs
);
3442 /* Update the depth for subroutine candidates that we decided not to
3444 for (unsigned int i
= 0; i
< candidates
.length (); ++i
)
3445 size
.depth
= MAX (size
.depth
, candidates
[i
].second
.depth
);
3450 /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
3453 safe_predicate_mode (const struct pred_data
*pred
, machine_mode mode
)
3455 /* Scalar integer constants have VOIDmode. */
3456 if (GET_MODE_CLASS (mode
) == MODE_INT
3457 && (pred
->codes
[CONST_INT
]
3458 || pred
->codes
[CONST_DOUBLE
]
3459 || pred
->codes
[CONST_WIDE_INT
]
3460 || pred
->codes
[LABEL_REF
]))
3463 return !pred
->special
&& mode
!= VOIDmode
;
3466 /* Fill CODES with the set of codes that could be matched by PRED. */
3469 get_predicate_codes (const struct pred_data
*pred
, int_set
*codes
)
3471 for (int i
= 0; i
< NUM_TRUE_RTX_CODE
; ++i
)
3472 if (!pred
|| pred
->codes
[i
])
3473 codes
->safe_push (i
);
3476 /* Return true if the first path through D1 tests the same thing as D2. */
3479 has_same_test_p (decision
*d1
, decision
*d2
)
3483 if (d1
->test
== d2
->test
)
3485 d1
= d1
->first
->to
->first
;
3491 /* Return true if D1 and D2 cannot match the same rtx. All states reachable
3492 from D2 have single decisions and all those decisions have single
3496 mutually_exclusive_p (decision
*d1
, decision
*d2
)
3498 /* If one path through D1 fails to test the same thing as D2, assume
3499 that D2's test could be true for D1 and look for a later, more useful,
3500 test. This isn't as expensive as it looks in practice. */
3501 while (!has_same_test_p (d1
, d2
))
3503 d2
= d2
->singleton ()->to
->singleton ();
3507 if (d1
->test
== d2
->test
)
3509 /* Look for any transitions from D1 that have the same labels as
3510 the transition from D2. */
3511 transition
*trans2
= d2
->singleton ();
3512 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3514 int_set::iterator i1
= trans1
->labels
.begin ();
3515 int_set::iterator end1
= trans1
->labels
.end ();
3516 int_set::iterator i2
= trans2
->labels
.begin ();
3517 int_set::iterator end2
= trans2
->labels
.end ();
3518 while (i1
!= end1
&& i2
!= end2
)
3525 /* TRANS1 has some labels in common with TRANS2. Assume
3526 that D1 and D2 could match the same rtx if the target
3527 of TRANS1 could match the same rtx as D2. */
3528 for (decision
*subd1
= trans1
->to
->first
;
3529 subd1
; subd1
= subd1
->next
)
3530 if (!mutually_exclusive_p (subd1
, d2
))
3537 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3538 for (decision
*subd1
= trans1
->to
->first
; subd1
; subd1
= subd1
->next
)
3539 if (!mutually_exclusive_p (subd1
, d2
))
3544 /* Try to merge S2's decision into D1, given that they have the same test.
3545 Fail only if EXCLUDE is nonnull and the new transition would have the
3546 same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
3547 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3548 if the merge is complete. */
3551 merge_into_decision (decision
*d1
, state
*s2
, const int_set
*exclude
,
3552 state
**next_s1
, state
**next_s2
,
3553 const int_set
**next_exclude
)
3555 decision
*d2
= s2
->singleton ();
3556 transition
*trans2
= d2
->singleton ();
3558 /* Get a list of the transitions that intersect TRANS2. */
3559 auto_vec
<transition
*, 32> intersecting
;
3560 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3562 int_set::iterator i1
= trans1
->labels
.begin ();
3563 int_set::iterator end1
= trans1
->labels
.end ();
3564 int_set::iterator i2
= trans2
->labels
.begin ();
3565 int_set::iterator end2
= trans2
->labels
.end ();
3566 bool trans1_is_subset
= true;
3567 bool trans2_is_subset
= true;
3568 bool intersect_p
= false;
3569 while (i1
!= end1
&& i2
!= end2
)
3572 trans1_is_subset
= false;
3577 trans2_is_subset
= false;
3587 trans1_is_subset
= false;
3589 trans2_is_subset
= false;
3590 if (trans1_is_subset
&& trans2_is_subset
)
3592 /* There's already a transition that matches exactly.
3593 Merge the target states. */
3594 trans1
->optional
&= trans2
->optional
;
3595 *next_s1
= trans1
->to
;
3596 *next_s2
= trans2
->to
;
3600 if (trans2_is_subset
)
3602 /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
3603 the target of TRANS1, but (to avoid infinite recursion)
3604 make sure that we don't end up creating another transition
3606 *next_s1
= trans1
->to
;
3608 *next_exclude
= &trans1
->labels
;
3612 intersecting
.safe_push (trans1
);
3615 if (intersecting
.is_empty ())
3617 /* No existing labels intersect the new ones. We can just add
3619 d1
->push_back (d2
->release ());
3626 /* Take the union of the labels in INTERSECTING and TRANS2. Store the
3627 result in COMBINED and use NEXT as a temporary. */
3628 int_set tmp1
= trans2
->labels
, tmp2
;
3629 int_set
*combined
= &tmp1
, *next
= &tmp2
;
3630 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3632 transition
*trans1
= intersecting
[i
];
3634 next
->safe_grow (trans1
->labels
.length () + combined
->length ());
3635 int_set::iterator end
3636 = std::set_union (trans1
->labels
.begin (), trans1
->labels
.end (),
3637 combined
->begin (), combined
->end (),
3639 next
->truncate (end
- next
->begin ());
3640 std::swap (next
, combined
);
3643 /* Stop now if we've been told not to create a transition with these
3645 if (exclude
&& *combined
== *exclude
)
3648 /* Get the transition that should carry the new labels. */
3649 transition
*new_trans
= intersecting
[0];
3650 if (intersecting
.length () == 1)
3652 /* We're merging with one existing transition whose labels are a
3653 subset of those required. If both transitions are optional,
3654 we can just expand the set of labels so that it's suitable
3655 for both transitions. It isn't worth preserving the original
3656 transitions since we know that they can't be merged; we would
3657 need to backtrack to S2 if TRANS1->to fails. In contrast,
3658 we might be able to merge the targets of the transitions
3659 without any backtracking.
3661 If instead the existing transition is not optional, ensure that
3662 all target decisions are suitably protected. Some decisions
3663 might already have a more specific requirement than NEW_TRANS,
3664 in which case there's no point testing NEW_TRANS as well. E.g. this
3665 would have happened if a test for an (eq ...) rtx had been
3666 added to a decision that tested whether the code is suitable
3667 for comparison_operator. The original comparison_operator
3668 transition would have been non-optional and the (eq ...) test
3669 would be performed by a second decision in the target of that
3672 The remaining case -- keeping the original optional transition
3673 when adding a non-optional TRANS2 -- is a wash. Preserving
3674 the optional transition only helps if we later merge another
3675 state S3 that is mutually exclusive with S2 and whose labels
3676 belong to *COMBINED - TRANS1->labels. We can then test the
3677 original NEW_TRANS and S3 in the same decision. We keep the
3678 optional transition around for that case, but it occurs very
3680 gcc_assert (new_trans
->labels
!= *combined
);
3681 if (!new_trans
->optional
|| !trans2
->optional
)
3683 decision
*start
= 0;
3684 for (decision
*end
= new_trans
->to
->first
; end
; end
= end
->next
)
3686 if (!start
&& end
->test
!= d1
->test
)
3687 /* END belongs to a range of decisions that need to be
3688 protected by NEW_TRANS. */
3690 if (start
&& (!end
->next
|| end
->next
->test
== d1
->test
))
3692 /* Protect [START, END] with NEW_TRANS. The decisions
3693 move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
3694 state
*new_s
= new state
;
3695 decision
*new_d
= new decision (d1
->test
);
3696 new_d
->push_back (new transition (new_trans
->labels
, new_s
,
3697 new_trans
->optional
));
3698 state::range
r (start
, end
);
3699 new_trans
->to
->replace (r
, new_d
);
3700 new_s
->push_back (r
);
3702 /* Continue with an empty range. */
3705 /* Continue from the decision after NEW_D. */
3710 new_trans
->optional
= true;
3711 new_trans
->labels
= *combined
;
3715 /* We're merging more than one existing transition together.
3716 Those transitions are successfully dividing the matching space
3717 and so we want to preserve them, even if they're optional.
3719 Create a new transition with the union set of labels and make
3720 it go to a state that has the original transitions. */
3721 decision
*new_d
= new decision (d1
->test
);
3722 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3723 new_d
->push_back (d1
->remove (intersecting
[i
]));
3725 state
*new_s
= new state
;
3726 new_s
->push_back (new_d
);
3728 new_trans
= new transition (*combined
, new_s
, true);
3729 d1
->push_back (new_trans
);
3732 /* We now have an optional transition with labels *COMBINED. Decide
3733 whether we can use it as TRANS2 or whether we need to merge S2
3734 into the target of NEW_TRANS. */
3735 gcc_assert (new_trans
->optional
);
3736 if (new_trans
->labels
== trans2
->labels
)
3738 /* NEW_TRANS matches TRANS2. Just merge the target states. */
3739 new_trans
->optional
= trans2
->optional
;
3740 *next_s1
= new_trans
->to
;
3741 *next_s2
= trans2
->to
;
3746 /* Try to merge TRANS2 into the target of the overlapping transition,
3747 but (to prevent infinite recursion or excessive redundancy) without
3748 creating another transition of the same type. */
3749 *next_s1
= new_trans
->to
;
3751 *next_exclude
= &new_trans
->labels
;
3756 /* Make progress in merging S2 into S1, given that each state in S2
3757 has a single decision. If EXCLUDE is nonnull, avoid creating a new
3758 transition with the same test as S2's decision and with the labels
3761 Return true if there is still work to do. When returning true,
3762 set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3763 S1, S2 and EXCLUDE should have next time round.
3765 If S1 and S2 both match a particular rtx, give priority to S1. */
3768 merge_into_state_1 (state
*s1
, state
*s2
, const int_set
*exclude
,
3769 state
**next_s1
, state
**next_s2
,
3770 const int_set
**next_exclude
)
3772 decision
*d2
= s2
->singleton ();
3773 if (decision
*d1
= s1
->last
)
3775 if (d1
->test
.terminal_p ())
3776 /* D1 is an unconditional return, so S2 can never match. This can
3777 sometimes be a bug in the .md description, but might also happen
3778 if genconditions forces some conditions to true for certain
3782 /* Go backwards through the decisions in S1, stopping once we find one
3783 that could match the same thing as S2. */
3784 while (d1
->prev
&& mutually_exclusive_p (d1
, d2
))
3787 /* Search forwards from that point, merging D2 into the first
3789 for (; d1
; d1
= d1
->next
)
3791 /* If S2 performs some optional tests before testing the same thing
3792 as D1, those tests do not help to distinguish D1 and S2, so it's
3793 better to drop them. Search through such optional decisions
3794 until we find something that tests the same thing as D1. */
3798 decision
*sub_d2
= sub_s2
->singleton ();
3799 if (d1
->test
== sub_d2
->test
)
3801 /* Only apply EXCLUDE if we're testing the same thing
3803 const int_set
*sub_exclude
= (d2
== sub_d2
? exclude
: 0);
3805 /* Try to merge SUB_S2 into D1. This can only fail if
3806 it would involve creating a new transition with
3807 labels SUB_EXCLUDE. */
3808 if (merge_into_decision (d1
, sub_s2
, sub_exclude
,
3809 next_s1
, next_s2
, next_exclude
))
3810 return *next_s2
!= 0;
3812 /* Can't merge with D1; try a later decision. */
3815 transition
*sub_trans2
= sub_d2
->singleton ();
3816 if (!sub_trans2
->optional
)
3817 /* Can't merge with D1; try a later decision. */
3819 sub_s2
= sub_trans2
->to
;
3824 /* We can't merge D2 with any existing decision. Just add it to the end. */
3825 s1
->push_back (s2
->release ());
3829 /* Merge S2 into S1. If they both match a particular rtx, give
3830 priority to S1. Each state in S2 has a single decision. */
3833 merge_into_state (state
*s1
, state
*s2
)
3835 const int_set
*exclude
= 0;
3836 while (s2
&& merge_into_state_1 (s1
, s2
, exclude
, &s1
, &s2
, &exclude
))
3840 /* Pairs a pattern that needs to be matched with the rtx position at
3841 which the pattern should occur. */
3842 struct pattern_pos
{
3844 pattern_pos (rtx
, position
*);
3850 pattern_pos::pattern_pos (rtx pattern_in
, position
*pos_in
)
3851 : pattern (pattern_in
), pos (pos_in
)
3854 /* Compare entries according to their depth-first order. There shouldn't
3855 be two entries at the same position. */
3858 operator < (const pattern_pos
&e1
, const pattern_pos
&e2
)
3860 int diff
= compare_positions (e1
.pos
, e2
.pos
);
3861 gcc_assert (diff
!= 0 || e1
.pattern
== e2
.pattern
);
3865 /* Add new decisions to S that check whether the rtx at position POS
3866 matches PATTERN. Return the state that is reached in that case.
3867 TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
3870 match_pattern_2 (state
*s
, md_rtx_info
*info
, position
*pos
, rtx pattern
)
3872 auto_vec
<pattern_pos
, 32> worklist
;
3873 auto_vec
<pattern_pos
, 32> pred_and_mode_tests
;
3874 auto_vec
<pattern_pos
, 32> dup_tests
;
3876 worklist
.safe_push (pattern_pos (pattern
, pos
));
3877 while (!worklist
.is_empty ())
3879 pattern_pos next
= worklist
.pop ();
3880 pattern
= next
.pattern
;
3882 unsigned int reverse_s
= worklist
.length ();
3884 enum rtx_code code
= GET_CODE (pattern
);
3890 /* Add a test that the rtx matches the earlier one, but only
3891 after the structure and predicates have been checked. */
3892 dup_tests
.safe_push (pattern_pos (pattern
, pos
));
3894 /* Use the same code check as the original operand. */
3895 pattern
= find_operand (info
->def
, XINT (pattern
, 0), NULL_RTX
);
3898 case MATCH_PARALLEL
:
3901 case MATCH_OPERATOR
:
3903 const char *pred_name
= predicate_name (pattern
);
3904 const struct pred_data
*pred
= 0;
3905 if (pred_name
[0] != 0)
3907 pred
= lookup_predicate (pred_name
);
3908 /* Only report errors once per rtx. */
3909 if (code
== GET_CODE (pattern
))
3912 error_at (info
->loc
, "unknown predicate '%s' used in %s",
3913 pred_name
, GET_RTX_NAME (code
));
3914 else if (code
== MATCH_PARALLEL
3915 && pred
->singleton
!= PARALLEL
)
3916 error_at (info
->loc
, "predicate '%s' used in"
3917 " match_parallel does not allow only PARALLEL",
3922 if (code
== MATCH_PARALLEL
|| code
== MATCH_PAR_DUP
)
3924 /* Check that we have a parallel with enough elements. */
3925 s
= add_decision (s
, rtx_test::code (pos
), PARALLEL
, false);
3926 int min_len
= XVECLEN (pattern
, 2);
3927 s
= add_decision (s
, rtx_test::veclen_ge (pos
, min_len
),
3932 /* Check that the rtx has one of codes accepted by the
3933 predicate. This is necessary when matching suboperands
3934 of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3935 call XEXP (X, N) without checking that X has at least
3938 get_predicate_codes (pred
, &codes
);
3939 bool need_codes
= (pred
3940 && (code
== MATCH_OPERATOR
3941 || code
== MATCH_OP_DUP
));
3942 s
= add_decision (s
, rtx_test::code (pos
), codes
, !need_codes
);
3945 /* Postpone the predicate check until we've checked the rest
3946 of the rtx structure. */
3947 if (code
== GET_CODE (pattern
))
3948 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
3950 /* If we need to match suboperands, add them to the worklist. */
3951 if (code
== MATCH_OPERATOR
|| code
== MATCH_PARALLEL
)
3953 position
**subpos_ptr
;
3954 enum position_type pos_type
;
3956 if (code
== MATCH_OPERATOR
|| code
== MATCH_OP_DUP
)
3958 pos_type
= POS_XEXP
;
3959 subpos_ptr
= &pos
->xexps
;
3960 i
= (code
== MATCH_OPERATOR
? 2 : 1);
3964 pos_type
= POS_XVECEXP0
;
3965 subpos_ptr
= &pos
->xvecexp0s
;
3968 for (int j
= 0; j
< XVECLEN (pattern
, i
); ++j
)
3970 position
*subpos
= next_position (subpos_ptr
, pos
,
3972 worklist
.safe_push (pattern_pos (XVECEXP (pattern
, i
, j
),
3974 subpos_ptr
= &subpos
->next
;
3982 /* Check that the rtx has the right code. */
3983 s
= add_decision (s
, rtx_test::code (pos
), code
, false);
3985 /* Queue a test for the mode if one is specified. */
3986 if (GET_MODE (pattern
) != VOIDmode
)
3987 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
3989 /* Push subrtxes onto the worklist. Match nonrtx operands now. */
3990 const char *fmt
= GET_RTX_FORMAT (code
);
3991 position
**subpos_ptr
= &pos
->xexps
;
3992 for (size_t i
= 0; fmt
[i
]; ++i
)
3994 position
*subpos
= next_position (subpos_ptr
, pos
,
3999 worklist
.safe_push (pattern_pos (XEXP (pattern
, i
),
4005 /* Make sure the vector has the right number of
4007 int length
= XVECLEN (pattern
, i
);
4008 s
= add_decision (s
, rtx_test::veclen (pos
),
4011 position
**subpos2_ptr
= &pos
->xvecexp0s
;
4012 for (int j
= 0; j
< length
; j
++)
4014 position
*subpos2
= next_position (subpos2_ptr
, pos
,
4016 rtx x
= XVECEXP (pattern
, i
, j
);
4017 worklist
.safe_push (pattern_pos (x
, subpos2
));
4018 subpos2_ptr
= &subpos2
->next
;
4024 /* Make sure that XINT (X, I) has the right value. */
4025 s
= add_decision (s
, rtx_test::int_field (pos
, i
),
4026 XINT (pattern
, i
), false);
4030 /* Make sure that REGNO (X) has the right value. */
4031 gcc_assert (i
== 0);
4032 s
= add_decision (s
, rtx_test::regno_field (pos
),
4033 REGNO (pattern
), false);
4037 /* Make sure that XWINT (X, I) has the right value. */
4038 s
= add_decision (s
, rtx_test::wide_int_field (pos
, i
),
4039 XWINT (pattern
, 0), false);
4048 subpos_ptr
= &subpos
->next
;
4053 /* Operands are pushed onto the worklist so that later indices are
4054 nearer the top. That's what we want for SETs, since a SET_SRC
4055 is a better discriminator than a SET_DEST. In other cases it's
4056 usually better to match earlier indices first. This is especially
4057 true of PARALLELs, where the first element tends to be the most
4058 individual. It's also true for commutative operators, where the
4059 canonicalization rules say that the more complex operand should
4061 if (code
!= SET
&& worklist
.length () > reverse_s
)
4062 std::reverse (&worklist
[0] + reverse_s
,
4063 &worklist
[0] + worklist
.length ());
4066 /* Sort the predicate and mode tests so that they're in depth-first order.
4067 The main goal of this is to put SET_SRC match_operands after SET_DEST
4068 match_operands and after mode checks for the enclosing SET_SRC operators
4069 (such as the mode of a PLUS in an addition instruction). The latter
4070 two types of test can determine the mode exactly, whereas a SET_SRC
4071 match_operand often has to cope with the possibility of the operand
4072 being a modeless constant integer. E.g. something that matches
4073 register_operand (x, SImode) never matches register_operand (x, DImode),
4074 but a const_int that matches immediate_operand (x, SImode) also matches
4075 immediate_operand (x, DImode). The register_operand cases can therefore
4076 be distinguished by a switch on the mode, but the immediate_operand
4078 if (pred_and_mode_tests
.length () > 1)
4079 std::sort (&pred_and_mode_tests
[0],
4080 &pred_and_mode_tests
[0] + pred_and_mode_tests
.length ());
4082 /* Add the mode and predicate tests. */
4085 FOR_EACH_VEC_ELT (pred_and_mode_tests
, i
, e
)
4087 switch (GET_CODE (e
->pattern
))
4089 case MATCH_PARALLEL
:
4092 case MATCH_OPERATOR
:
4094 int opno
= XINT (e
->pattern
, 0);
4095 num_operands
= MAX (num_operands
, opno
+ 1);
4096 const char *pred_name
= predicate_name (e
->pattern
);
4099 const struct pred_data
*pred
= lookup_predicate (pred_name
);
4100 /* Check the mode first, to distinguish things like SImode
4101 and DImode register_operands, as described above. */
4102 machine_mode mode
= GET_MODE (e
->pattern
);
4103 if (pred
&& safe_predicate_mode (pred
, mode
))
4104 s
= add_decision (s
, rtx_test::mode (e
->pos
), mode
, true);
4106 /* Assign to operands[] first, so that the rtx usually doesn't
4107 need to be live across the call to the predicate.
4109 This shouldn't cause a problem with dirtying the page,
4110 since we fully expect to assign to operands[] at some point,
4111 and since the caller usually writes to other parts of
4112 recog_data anyway. */
4113 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4115 s
= add_decision (s
, rtx_test::predicate (e
->pos
, pred
, mode
),
4119 /* Historically we've ignored the mode when there's no
4120 predicate. Just set up operands[] unconditionally. */
4121 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4127 s
= add_decision (s
, rtx_test::mode (e
->pos
),
4128 GET_MODE (e
->pattern
), false);
4133 /* Finally add rtx_equal_p checks for duplicated operands. */
4134 FOR_EACH_VEC_ELT (dup_tests
, i
, e
)
4135 s
= add_decision (s
, rtx_test::duplicate (e
->pos
, XINT (e
->pattern
, 0)),
4140 /* Add new decisions to S that make it return ACCEPTANCE if:
4142 (1) the rtx doesn't match anything already matched by S
4143 (2) the rtx matches TOP_PATTERN and
4144 (3) the C test required by INFO->def is true
4146 For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4147 to match, otherwise it is a single instruction pattern. */
4150 match_pattern_1 (state
*s
, md_rtx_info
*info
, rtx pattern
,
4151 acceptance_type acceptance
)
4153 if (acceptance
.type
== PEEPHOLE2
)
4155 /* Match each individual instruction. */
4156 position
**subpos_ptr
= &peep2_insn_pos_list
;
4158 for (int i
= 0; i
< XVECLEN (pattern
, 0); ++i
)
4160 rtx x
= XVECEXP (pattern
, 0, i
);
4161 position
*subpos
= next_position (subpos_ptr
, &root_pos
,
4162 POS_PEEP2_INSN
, count
);
4164 s
= add_decision (s
, rtx_test::peep2_count (count
+ 1),
4166 s
= match_pattern_2 (s
, info
, subpos
, x
);
4167 subpos_ptr
= &subpos
->next
;
4170 acceptance
.u
.full
.u
.match_len
= count
- 1;
4174 /* Make the rtx itself. */
4175 s
= match_pattern_2 (s
, info
, &root_pos
, pattern
);
4177 /* If the match is only valid when extra clobbers are added,
4178 make sure we're able to pass that information to the caller. */
4179 if (acceptance
.type
== RECOG
&& acceptance
.u
.full
.u
.num_clobbers
)
4180 s
= add_decision (s
, rtx_test::have_num_clobbers (), true, false);
4183 /* Make sure that the C test is true. */
4184 const char *c_test
= get_c_test (info
->def
);
4185 if (maybe_eval_c_test (c_test
) != 1)
4186 s
= add_decision (s
, rtx_test::c_test (c_test
), true, false);
4188 /* Accept the pattern. */
4189 add_decision (s
, rtx_test::accept (acceptance
), true, false);
4192 /* Like match_pattern_1, but (if merge_states_p) try to merge the
4193 decisions with what's already in S, to reduce the amount of
4197 match_pattern (state
*s
, md_rtx_info
*info
, rtx pattern
,
4198 acceptance_type acceptance
)
4203 /* Add the decisions to a fresh state and then merge the full tree
4204 into the existing one. */
4205 match_pattern_1 (&root
, info
, pattern
, acceptance
);
4206 merge_into_state (s
, &root
);
4209 match_pattern_1 (s
, info
, pattern
, acceptance
);
4212 /* Begin the output file. */
4218 /* Generated automatically by the program `genrecog' from the target\n\
4219 machine description file. */\n\
4221 #include \"config.h\"\n\
4222 #include \"system.h\"\n\
4223 #include \"coretypes.h\"\n\
4224 #include \"backend.h\"\n\
4225 #include \"predict.h\"\n\
4226 #include \"rtl.h\"\n\
4227 #include \"memmodel.h\"\n\
4228 #include \"tm_p.h\"\n\
4229 #include \"emit-rtl.h\"\n\
4230 #include \"insn-config.h\"\n\
4231 #include \"recog.h\"\n\
4232 #include \"output.h\"\n\
4233 #include \"flags.h\"\n\
4234 #include \"df.h\"\n\
4235 #include \"resource.h\"\n\
4236 #include \"diagnostic-core.h\"\n\
4237 #include \"reload.h\"\n\
4238 #include \"regs.h\"\n\
4239 #include \"tm-constrs.h\"\n\
4243 /* `recog' contains a decision tree that recognizes whether the rtx\n\
4244 X0 is a valid instruction.\n\
4246 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
4247 returns a nonnegative number which is the insn code number for the\n\
4248 pattern that matched. This is the same as the order in the machine\n\
4249 description of the entry that matched. This number can be used as an\n\
4250 index into `insn_data' and other tables.\n");
4252 The third parameter to recog is an optional pointer to an int. If\n\
4253 present, recog will accept a pattern if it matches except for missing\n\
4254 CLOBBER expressions at the end. In that case, the value pointed to by\n\
4255 the optional pointer will be set to the number of CLOBBERs that need\n\
4256 to be added (it should be initialized to zero by the caller). If it");
4258 is set nonzero, the caller should allocate a PARALLEL of the\n\
4259 appropriate size, copy the initial entries, and call add_clobbers\n\
4260 (found in insn-emit.c) to fill in the CLOBBERs.\n\
4264 The function split_insns returns 0 if the rtl could not\n\
4265 be split or the split rtl as an INSN list if it can be.\n\
4267 The function peephole2_insns returns 0 if the rtl could not\n\
4268 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4269 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4273 /* Return the C type of a parameter with type TYPE. */
4276 parameter_type_string (parameter::type_enum type
)
4280 case parameter::UNSET
:
4283 case parameter::CODE
:
4286 case parameter::MODE
:
4287 return "machine_mode";
4289 case parameter::INT
:
4292 case parameter::UINT
:
4293 return "unsigned int";
4295 case parameter::WIDE_INT
:
4296 return "HOST_WIDE_INT";
4301 /* Return true if ACCEPTANCE requires only a single C statement even in
4302 a backtracking context. */
4305 single_statement_p (const acceptance_type
&acceptance
)
4307 if (acceptance
.partial_p
)
4308 /* We need to handle failures of the subroutine. */
4310 switch (acceptance
.type
)
4317 /* False if we need to assign to pnum_clobbers. */
4318 return acceptance
.u
.full
.u
.num_clobbers
== 0;
4321 /* We need to assign to pmatch_len_ and handle null returns from the
4322 peephole2 routine. */
4328 /* Return the C failure value for a routine of type TYPE. */
4331 get_failure_return (routine_type type
)
4346 /* Indicates whether a block of code always returns or whether it can fall
4354 /* Information used while writing out code. */
4358 /* The type of routine that we're generating. */
4361 /* Maps position ids to xN variable numbers. The entry is only valid if
4362 it is less than the length of VAR_TO_ID, but this holds for every position
4363 tested by a state when writing out that state. */
4364 auto_vec
<unsigned int> id_to_var
;
4366 /* Maps xN variable numbers to position ids. */
4367 auto_vec
<unsigned int> var_to_id
;
4369 /* Index N is true if variable xN has already been set. */
4370 auto_vec
<bool> seen_vars
;
4373 /* Return true if D is a call to a pattern routine and if there is some X
4374 such that the transition for pattern result N goes to a successful return
4375 with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
4376 to the number of return values. (We know that every PATTERN decision has
4377 a transition for every successful return.) */
4380 terminal_pattern_p (decision
*d
, unsigned int *base_out
,
4381 unsigned int *count_out
)
4383 if (d
->test
.kind
!= rtx_test::PATTERN
)
4385 unsigned int base
= 0;
4386 unsigned int count
= 0;
4387 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4389 if (trans
->is_param
|| trans
->labels
.length () != 1)
4391 decision
*subd
= trans
->to
->singleton ();
4392 if (!subd
|| subd
->test
.kind
!= rtx_test::ACCEPT
)
4394 unsigned int this_base
= (subd
->test
.u
.acceptance
.u
.full
.code
4395 - trans
->labels
[0]);
4396 if (trans
== d
->first
)
4398 else if (base
!= this_base
)
4407 /* Return true if TEST doesn't test an rtx or if the rtx it tests is
4408 already available in state OS. */
4411 test_position_available_p (output_state
*os
, const rtx_test
&test
)
4414 || test
.pos_operand
>= 0
4415 || os
->seen_vars
[os
->id_to_var
[test
.pos
->id
]]);
4418 /* Like printf, but print INDENT spaces at the beginning. */
4420 static void ATTRIBUTE_PRINTF_2
4421 printf_indent (unsigned int indent
, const char *format
, ...)
4424 va_start (ap
, format
);
4425 printf ("%*s", indent
, "");
4426 vprintf (format
, ap
);
4430 /* Emit code to initialize the variable associated with POS, if it isn't
4431 already valid in state OS. Indent each line by INDENT spaces. Update
4432 OS with the new state. */
4435 change_state (output_state
*os
, position
*pos
, unsigned int indent
)
4437 unsigned int var
= os
->id_to_var
[pos
->id
];
4438 gcc_assert (var
< os
->var_to_id
.length () && os
->var_to_id
[var
] == pos
->id
);
4439 if (os
->seen_vars
[var
])
4443 case POS_PEEP2_INSN
:
4444 printf_indent (indent
, "x%d = PATTERN (peep2_next_insn (%d));\n",
4449 change_state (os
, pos
->base
, indent
);
4450 printf_indent (indent
, "x%d = XEXP (x%d, %d);\n",
4451 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4455 change_state (os
, pos
->base
, indent
);
4456 printf_indent (indent
, "x%d = XVECEXP (x%d, 0, %d);\n",
4457 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4460 os
->seen_vars
[var
] = true;
4463 /* Print the enumerator constant for CODE -- the upcase version of
4467 print_code (enum rtx_code code
)
4470 for (p
= GET_RTX_NAME (code
); *p
; p
++)
4471 putchar (TOUPPER (*p
));
4474 /* Emit a uint64_t as an integer constant expression. We need to take
4475 special care to avoid "decimal constant is so large that it is unsigned"
4476 warnings in the resulting code. */
4479 print_host_wide_int (uint64_t val
)
4481 uint64_t min
= uint64_t (1) << (HOST_BITS_PER_WIDE_INT
- 1);
4483 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
" - 1)", val
+ 1);
4485 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
4488 /* Print the C expression for actual parameter PARAM. */
4491 print_parameter_value (const parameter
¶m
)
4494 printf ("i%d", (int) param
.value
+ 1);
4498 case parameter::UNSET
:
4502 case parameter::CODE
:
4503 print_code ((enum rtx_code
) param
.value
);
4506 case parameter::MODE
:
4507 printf ("E_%smode", GET_MODE_NAME ((machine_mode
) param
.value
));
4510 case parameter::INT
:
4511 printf ("%d", (int) param
.value
);
4514 case parameter::UINT
:
4515 printf ("%u", (unsigned int) param
.value
);
4518 case parameter::WIDE_INT
:
4519 print_host_wide_int (param
.value
);
4524 /* Print the C expression for the rtx tested by TEST. */
4527 print_test_rtx (output_state
*os
, const rtx_test
&test
)
4529 if (test
.pos_operand
>= 0)
4530 printf ("operands[%d]", test
.pos_operand
);
4532 printf ("x%d", os
->id_to_var
[test
.pos
->id
]);
4535 /* Print the C expression for non-boolean test TEST. */
4538 print_nonbool_test (output_state
*os
, const rtx_test
&test
)
4542 case rtx_test::CODE
:
4543 printf ("GET_CODE (");
4544 print_test_rtx (os
, test
);
4548 case rtx_test::MODE
:
4549 printf ("GET_MODE (");
4550 print_test_rtx (os
, test
);
4554 case rtx_test::VECLEN
:
4555 printf ("XVECLEN (");
4556 print_test_rtx (os
, test
);
4560 case rtx_test::INT_FIELD
:
4562 print_test_rtx (os
, test
);
4563 printf (", %d)", test
.u
.opno
);
4566 case rtx_test::REGNO_FIELD
:
4568 print_test_rtx (os
, test
);
4572 case rtx_test::WIDE_INT_FIELD
:
4574 print_test_rtx (os
, test
);
4575 printf (", %d)", test
.u
.opno
);
4578 case rtx_test::PATTERN
:
4580 pattern_routine
*routine
= test
.u
.pattern
->routine
;
4581 printf ("pattern%d (", routine
->pattern_id
);
4582 const char *sep
= "";
4585 print_test_rtx (os
, test
);
4588 if (routine
->insn_p
)
4590 printf ("%sinsn", sep
);
4593 if (routine
->pnum_clobbers_p
)
4595 printf ("%spnum_clobbers", sep
);
4598 for (unsigned int i
= 0; i
< test
.u
.pattern
->params
.length (); ++i
)
4600 fputs (sep
, stdout
);
4601 print_parameter_value (test
.u
.pattern
->params
[i
]);
4608 case rtx_test::PEEP2_COUNT
:
4609 case rtx_test::VECLEN_GE
:
4610 case rtx_test::SAVED_CONST_INT
:
4611 case rtx_test::DUPLICATE
:
4612 case rtx_test::PREDICATE
:
4613 case rtx_test::SET_OP
:
4614 case rtx_test::HAVE_NUM_CLOBBERS
:
4615 case rtx_test::C_TEST
:
4616 case rtx_test::ACCEPT
:
4621 /* IS_PARAM and LABEL are taken from a transition whose source
4622 decision performs TEST. Print the C code for the label. */
4625 print_label_value (const rtx_test
&test
, bool is_param
, uint64_t value
)
4627 print_parameter_value (parameter (transition_parameter_type (test
.kind
),
4631 /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4632 If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4633 Test for inequality if INVERT_P, otherwise test for equality. */
4636 print_test (output_state
*os
, const rtx_test
&test
, bool is_param
,
4637 uint64_t value
, bool invert_p
)
4641 /* Handle the non-boolean TESTs. */
4642 case rtx_test::CODE
:
4643 case rtx_test::MODE
:
4644 case rtx_test::VECLEN
:
4645 case rtx_test::REGNO_FIELD
:
4646 case rtx_test::INT_FIELD
:
4647 case rtx_test::WIDE_INT_FIELD
:
4648 case rtx_test::PATTERN
:
4649 print_nonbool_test (os
, test
);
4650 printf (" %s ", invert_p
? "!=" : "==");
4651 print_label_value (test
, is_param
, value
);
4654 case rtx_test::SAVED_CONST_INT
:
4655 gcc_assert (!is_param
&& value
== 1);
4656 print_test_rtx (os
, test
);
4657 printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4658 invert_p
? "!=" : "==");
4659 print_parameter_value (parameter (parameter::INT
,
4660 test
.u
.integer
.is_param
,
4661 test
.u
.integer
.value
));
4665 case rtx_test::PEEP2_COUNT
:
4666 gcc_assert (!is_param
&& value
== 1);
4667 printf ("peep2_current_count %s %d", invert_p
? "<" : ">=",
4671 case rtx_test::VECLEN_GE
:
4672 gcc_assert (!is_param
&& value
== 1);
4673 printf ("XVECLEN (");
4674 print_test_rtx (os
, test
);
4675 printf (", 0) %s %d", invert_p
? "<" : ">=", test
.u
.min_len
);
4678 case rtx_test::PREDICATE
:
4679 gcc_assert (!is_param
&& value
== 1);
4680 printf ("%s%s (", invert_p
? "!" : "", test
.u
.predicate
.data
->name
);
4681 print_test_rtx (os
, test
);
4683 print_parameter_value (parameter (parameter::MODE
,
4684 test
.u
.predicate
.mode_is_param
,
4685 test
.u
.predicate
.mode
));
4689 case rtx_test::DUPLICATE
:
4690 gcc_assert (!is_param
&& value
== 1);
4691 printf ("%srtx_equal_p (", invert_p
? "!" : "");
4692 print_test_rtx (os
, test
);
4693 printf (", operands[%d])", test
.u
.opno
);
4696 case rtx_test::HAVE_NUM_CLOBBERS
:
4697 gcc_assert (!is_param
&& value
== 1);
4698 printf ("pnum_clobbers %s NULL", invert_p
? "==" : "!=");
4701 case rtx_test::C_TEST
:
4702 gcc_assert (!is_param
&& value
== 1);
4705 rtx_reader_ptr
->print_c_condition (test
.u
.string
);
4708 case rtx_test::ACCEPT
:
4709 case rtx_test::SET_OP
:
4714 static exit_state
print_decision (output_state
*, decision
*,
4715 unsigned int, bool);
4717 /* Print code to perform S, indent each line by INDENT spaces.
4718 IS_FINAL is true if there are no fallback decisions to test on failure;
4719 if the state fails then the entire routine fails. */
4722 print_state (output_state
*os
, state
*s
, unsigned int indent
, bool is_final
)
4724 exit_state es
= ES_FALLTHROUGH
;
4725 for (decision
*d
= s
->first
; d
; d
= d
->next
)
4726 es
= print_decision (os
, d
, indent
, is_final
&& !d
->next
);
4727 if (es
!= ES_RETURNED
&& is_final
)
4729 printf_indent (indent
, "return %s;\n", get_failure_return (os
->type
));
4735 /* Print the code for subroutine call ACCEPTANCE (for which partial_p
4736 is known to be true). Return the C condition that indicates a successful
4740 print_subroutine_call (const acceptance_type
&acceptance
)
4742 switch (acceptance
.type
)
4748 printf ("recog_%d (x1, insn, pnum_clobbers)",
4749 acceptance
.u
.subroutine_id
);
4753 printf ("split_%d (x1, insn)", acceptance
.u
.subroutine_id
);
4754 return "!= NULL_RTX";
4757 printf ("peephole2_%d (x1, insn, pmatch_len_)",
4758 acceptance
.u
.subroutine_id
);
4759 return "!= NULL_RTX";
4764 /* Print code for the successful match described by ACCEPTANCE.
4765 INDENT and IS_FINAL are as for print_state. */
4768 print_acceptance (const acceptance_type
&acceptance
, unsigned int indent
,
4771 if (acceptance
.partial_p
)
4773 /* Defer the rest of the match to a subroutine. */
4776 printf_indent (indent
, "return ");
4777 print_subroutine_call (acceptance
);
4783 printf_indent (indent
, "res = ");
4784 const char *res_test
= print_subroutine_call (acceptance
);
4786 printf_indent (indent
, "if (res %s)\n", res_test
);
4787 printf_indent (indent
+ 2, "return res;\n");
4788 return ES_FALLTHROUGH
;
4791 switch (acceptance
.type
)
4794 printf_indent (indent
, "return %d;\n", acceptance
.u
.full
.code
);
4798 if (acceptance
.u
.full
.u
.num_clobbers
!= 0)
4799 printf_indent (indent
, "*pnum_clobbers = %d;\n",
4800 acceptance
.u
.full
.u
.num_clobbers
);
4801 printf_indent (indent
, "return %d; /* %s */\n", acceptance
.u
.full
.code
,
4802 get_insn_name (acceptance
.u
.full
.code
));
4806 printf_indent (indent
, "return gen_split_%d (insn, operands);\n",
4807 acceptance
.u
.full
.code
);
4811 printf_indent (indent
, "*pmatch_len_ = %d;\n",
4812 acceptance
.u
.full
.u
.match_len
);
4815 printf_indent (indent
, "return gen_peephole2_%d (insn, operands);\n",
4816 acceptance
.u
.full
.code
);
4821 printf_indent (indent
, "res = gen_peephole2_%d (insn, operands);\n",
4822 acceptance
.u
.full
.code
);
4823 printf_indent (indent
, "if (res != NULL_RTX)\n");
4824 printf_indent (indent
+ 2, "return res;\n");
4825 return ES_FALLTHROUGH
;
4831 /* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
4834 print_decision (output_state
*os
, decision
*d
, unsigned int indent
,
4838 unsigned int base
, count
;
4840 /* Make sure the rtx under test is available either in operands[] or
4841 in an xN variable. */
4842 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
4843 change_state (os
, d
->test
.pos
, indent
);
4845 /* Look for cases where a pattern routine P1 calls another pattern routine
4846 P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
4847 is true and BASE is zero we can simply use:
4849 return patternN (...);
4851 Otherwise we can use:
4853 res = patternN (...);
4857 However, if BASE is nonzero and patternN only returns 0 or -1,
4858 the usual "return BASE;" is better than "return res + BASE;".
4859 If BASE is zero, "return res;" should be better than "return 0;",
4860 since no assignment to the return register is required. */
4861 if (os
->type
== SUBPATTERN
4862 && terminal_pattern_p (d
, &base
, &count
)
4863 && (base
== 0 || count
> 1))
4865 if (is_final
&& base
== 0)
4867 printf_indent (indent
, "return ");
4868 print_nonbool_test (os
, d
->test
);
4869 printf ("; /* [-1, %d] */\n", count
- 1);
4874 printf_indent (indent
, "res = ");
4875 print_nonbool_test (os
, d
->test
);
4877 printf_indent (indent
, "if (res >= 0)\n");
4878 printf_indent (indent
+ 2, "return res");
4880 printf (" + %d", base
);
4881 printf ("; /* [%d, %d] */\n", base
, base
+ count
- 1);
4882 return ES_FALLTHROUGH
;
4885 else if (d
->test
.kind
== rtx_test::ACCEPT
)
4886 return print_acceptance (d
->test
.u
.acceptance
, indent
, is_final
);
4887 else if (d
->test
.kind
== rtx_test::SET_OP
)
4889 printf_indent (indent
, "operands[%d] = ", d
->test
.u
.opno
);
4890 print_test_rtx (os
, d
->test
);
4892 return print_state (os
, d
->singleton ()->to
, indent
, is_final
);
4894 /* Handle decisions with a single transition and a single transition
4896 else if (d
->if_statement_p (&label
))
4898 transition
*trans
= d
->singleton ();
4899 if (mark_optional_transitions_p
&& trans
->optional
)
4900 printf_indent (indent
, "/* OPTIONAL IF */\n");
4902 /* Print the condition associated with TRANS. Invert it if IS_FINAL,
4903 so that we return immediately on failure and fall through on
4905 printf_indent (indent
, "if (");
4906 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4908 /* Look for following states that would be handled by this code
4909 on recursion. If they don't need any preparatory statements,
4910 include them in the current "if" statement rather than creating
4914 d
= trans
->to
->singleton ();
4916 || d
->test
.kind
== rtx_test::ACCEPT
4917 || d
->test
.kind
== rtx_test::SET_OP
4918 || !d
->if_statement_p (&label
)
4919 || !test_position_available_p (os
, d
->test
))
4923 if (mark_optional_transitions_p
&& trans
->optional
)
4924 printf_indent (indent
+ 4, "/* OPTIONAL IF */\n");
4925 printf_indent (indent
+ 4, "%s ", is_final
? "||" : "&&");
4926 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4930 /* Print the conditional code with INDENT + 2 and the fallthrough
4931 code with indent INDENT. */
4932 state
*to
= trans
->to
;
4935 /* We inverted the condition above, so return failure in the
4936 "if" body and fall through to the target of the transition. */
4937 printf_indent (indent
+ 2, "return %s;\n",
4938 get_failure_return (os
->type
));
4939 return print_state (os
, to
, indent
, is_final
);
4941 else if (to
->singleton ()
4942 && to
->first
->test
.kind
== rtx_test::ACCEPT
4943 && single_statement_p (to
->first
->test
.u
.acceptance
))
4945 /* The target of the transition is a simple "return" statement.
4946 It doesn't need any braces and doesn't fall through. */
4947 if (print_acceptance (to
->first
->test
.u
.acceptance
,
4948 indent
+ 2, true) != ES_RETURNED
)
4950 return ES_FALLTHROUGH
;
4954 /* The general case. Output code for the target of the transition
4955 in braces. This will not invalidate any of the xN variables
4956 that are already valid, but we mustn't rely on any that are
4957 set by the "if" body. */
4958 auto_vec
<bool, 32> old_seen
;
4959 old_seen
.safe_splice (os
->seen_vars
);
4961 printf_indent (indent
+ 2, "{\n");
4962 print_state (os
, trans
->to
, indent
+ 4, is_final
);
4963 printf_indent (indent
+ 2, "}\n");
4965 os
->seen_vars
.truncate (0);
4966 os
->seen_vars
.splice (old_seen
);
4967 return ES_FALLTHROUGH
;
4972 /* Output the decision as a switch statement. */
4973 printf_indent (indent
, "switch (");
4974 print_nonbool_test (os
, d
->test
);
4977 /* Each case statement starts with the same set of valid variables.
4978 These are also the only variables will be valid on fallthrough. */
4979 auto_vec
<bool, 32> old_seen
;
4980 old_seen
.safe_splice (os
->seen_vars
);
4982 printf_indent (indent
+ 2, "{\n");
4983 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4985 gcc_assert (!trans
->is_param
);
4986 if (mark_optional_transitions_p
&& trans
->optional
)
4987 printf_indent (indent
+ 2, "/* OPTIONAL CASE */\n");
4988 for (int_set::iterator j
= trans
->labels
.begin ();
4989 j
!= trans
->labels
.end (); ++j
)
4991 printf_indent (indent
+ 2, "case ");
4992 print_label_value (d
->test
, trans
->is_param
, *j
);
4995 if (print_state (os
, trans
->to
, indent
+ 4, is_final
))
4997 /* The state can fall through. Add an explicit break. */
4998 gcc_assert (!is_final
);
4999 printf_indent (indent
+ 4, "break;\n");
5003 /* Restore the original set of valid variables. */
5004 os
->seen_vars
.truncate (0);
5005 os
->seen_vars
.splice (old_seen
);
5007 /* Add a default case. */
5008 printf_indent (indent
+ 2, "default:\n");
5010 printf_indent (indent
+ 4, "return %s;\n",
5011 get_failure_return (os
->type
));
5013 printf_indent (indent
+ 4, "break;\n");
5014 printf_indent (indent
+ 2, "}\n");
5015 return is_final
? ES_RETURNED
: ES_FALLTHROUGH
;
5019 /* Make sure that OS has a position variable for POS. ROOT_P is true if
5020 POS is the root position for the routine. */
5023 assign_position_var (output_state
*os
, position
*pos
, bool root_p
)
5025 unsigned int idx
= os
->id_to_var
[pos
->id
];
5026 if (idx
< os
->var_to_id
.length () && os
->var_to_id
[idx
] == pos
->id
)
5028 if (!root_p
&& pos
->type
!= POS_PEEP2_INSN
)
5029 assign_position_var (os
, pos
->base
, false);
5030 os
->id_to_var
[pos
->id
] = os
->var_to_id
.length ();
5031 os
->var_to_id
.safe_push (pos
->id
);
5034 /* Make sure that OS has the position variables required by S. */
5037 assign_position_vars (output_state
*os
, state
*s
)
5039 for (decision
*d
= s
->first
; d
; d
= d
->next
)
5041 /* Positions associated with operands can be read from the
5042 operands[] array. */
5043 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
5044 assign_position_var (os
, d
->test
.pos
, false);
5045 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
5046 assign_position_vars (os
, trans
->to
);
5050 /* Print the open brace and variable definitions for a routine that
5051 implements S. ROOT is the deepest rtx from which S can access all
5052 relevant parts of the first instruction it matches. Initialize OS
5053 so that every relevant position has an rtx variable xN and so that
5054 only ROOT's variable has a valid value. */
5057 print_subroutine_start (output_state
*os
, state
*s
, position
*root
)
5059 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
5060 " = &recog_data.operand[0];\n");
5061 os
->var_to_id
.truncate (0);
5062 os
->seen_vars
.truncate (0);
5065 /* Create a fake entry for position 0 so that an id_to_var of 0
5066 is always invalid. This also makes the xN variables naturally
5067 1-based rather than 0-based. */
5068 os
->var_to_id
.safe_push (num_positions
);
5070 /* Associate ROOT with x1. */
5071 assign_position_var (os
, root
, true);
5073 /* Assign xN variables to all other relevant positions. */
5074 assign_position_vars (os
, s
);
5076 /* Output the variable declarations (except for ROOT's, which is
5077 passed in as a parameter). */
5078 unsigned int num_vars
= os
->var_to_id
.length ();
5081 for (unsigned int i
= 2; i
< num_vars
; ++i
)
5082 /* Print 8 rtx variables to a line. */
5084 i
== 2 ? " rtx" : (i
- 2) % 8 == 0 ? ";\n rtx" : ",", i
);
5088 /* Say that x1 is valid and the rest aren't. */
5089 os
->seen_vars
.safe_grow_cleared (num_vars
);
5090 os
->seen_vars
[1] = true;
5092 if (os
->type
== SUBPATTERN
|| os
->type
== RECOG
)
5093 printf (" int res ATTRIBUTE_UNUSED;\n");
5095 printf (" rtx_insn *res ATTRIBUTE_UNUSED;\n");
5098 /* Output the definition of pattern routine ROUTINE. */
5101 print_pattern (output_state
*os
, pattern_routine
*routine
)
5103 printf ("\nstatic int\npattern%d (", routine
->pattern_id
);
5104 const char *sep
= "";
5105 /* Add the top-level rtx parameter, if any. */
5108 printf ("%srtx x1", sep
);
5111 /* Add the optional parameters. */
5112 if (routine
->insn_p
)
5114 /* We can't easily tell whether a C condition actually reads INSN,
5115 so add an ATTRIBUTE_UNUSED just in case. */
5116 printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep
);
5119 if (routine
->pnum_clobbers_p
)
5121 printf ("%sint *pnum_clobbers", sep
);
5124 /* Add the "i" parameters. */
5125 for (unsigned int i
= 0; i
< routine
->param_types
.length (); ++i
)
5127 printf ("%s%s i%d", sep
,
5128 parameter_type_string (routine
->param_types
[i
]), i
+ 1);
5132 os
->type
= SUBPATTERN
;
5133 print_subroutine_start (os
, routine
->s
, routine
->pos
);
5134 print_state (os
, routine
->s
, 2, true);
5138 /* Output a routine of type TYPE that implements S. PROC_ID is the
5139 number of the subroutine associated with S, or 0 if S is the main
5143 print_subroutine (output_state
*os
, state
*s
, int proc_id
)
5153 printf ("static int\nrecog_%d", proc_id
);
5155 printf ("int\nrecog");
5156 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5157 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5158 "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n");
5163 printf ("static rtx_insn *\nsplit_%d", proc_id
);
5165 printf ("rtx_insn *\nsplit_insns");
5166 printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
5171 printf ("static rtx_insn *\npeephole2_%d", proc_id
);
5173 printf ("rtx_insn *\npeephole2_insns");
5174 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5175 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5176 "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
5179 print_subroutine_start (os
, s
, &root_pos
);
5182 printf (" recog_data.insn = NULL;\n");
5184 print_state (os
, s
, 2, true);
5188 /* Print out a routine of type TYPE that performs ROOT. */
5191 print_subroutine_group (output_state
*os
, routine_type type
, state
*root
)
5194 if (use_subroutines_p
)
5196 /* Split ROOT up into smaller pieces, both for readability and to
5197 help the compiler. */
5198 auto_vec
<state
*> subroutines
;
5199 find_subroutines (type
, root
, subroutines
);
5201 /* Output the subroutines (but not ROOT itself). */
5204 FOR_EACH_VEC_ELT (subroutines
, i
, s
)
5205 print_subroutine (os
, s
, i
+ 1);
5207 /* Output the main routine. */
5208 print_subroutine (os
, root
, 0);
5211 /* Return the rtx pattern for the list of rtxes in a define_peephole2. */
5214 get_peephole2_pattern (md_rtx_info
*info
)
5217 rtvec vec
= XVEC (info
->def
, 0);
5218 rtx pattern
= rtx_alloc (SEQUENCE
);
5219 XVEC (pattern
, 0) = rtvec_alloc (GET_NUM_ELEM (vec
));
5220 for (i
= j
= 0; i
< GET_NUM_ELEM (vec
); i
++)
5222 rtx x
= RTVEC_ELT (vec
, i
);
5223 /* Ignore scratch register requirements. */
5224 if (GET_CODE (x
) != MATCH_SCRATCH
&& GET_CODE (x
) != MATCH_DUP
)
5226 XVECEXP (pattern
, 0, j
) = x
;
5230 XVECLEN (pattern
, 0) = j
;
5232 error_at (info
->loc
, "empty define_peephole2");
5236 /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5237 rtx can be added automatically by add_clobbers. If so, update
5238 *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5239 of such trailing rtxes and update *PATTERN_PTR so that it contains
5240 the pattern without those rtxes. */
5243 remove_clobbers (acceptance_type
*acceptance_ptr
, rtx
*pattern_ptr
)
5248 /* Find the last non-clobber in the parallel. */
5249 rtx pattern
= *pattern_ptr
;
5250 for (i
= XVECLEN (pattern
, 0); i
> 0; i
--)
5252 rtx x
= XVECEXP (pattern
, 0, i
- 1);
5253 if (GET_CODE (x
) != CLOBBER
5254 || (!REG_P (XEXP (x
, 0))
5255 && GET_CODE (XEXP (x
, 0)) != MATCH_SCRATCH
))
5259 if (i
== XVECLEN (pattern
, 0))
5262 /* Build a similar insn without the clobbers. */
5264 new_pattern
= XVECEXP (pattern
, 0, 0);
5267 new_pattern
= rtx_alloc (PARALLEL
);
5268 XVEC (new_pattern
, 0) = rtvec_alloc (i
);
5269 for (int j
= 0; j
< i
; ++j
)
5270 XVECEXP (new_pattern
, 0, j
) = XVECEXP (pattern
, 0, j
);
5274 acceptance_ptr
->u
.full
.u
.num_clobbers
= XVECLEN (pattern
, 0) - i
;
5275 *pattern_ptr
= new_pattern
;
5280 main (int argc
, const char **argv
)
5282 state insn_root
, split_root
, peephole2_root
;
5284 progname
= "genrecog";
5286 if (!init_rtx_reader_args (argc
, argv
))
5287 return (FATAL_EXIT_CODE
);
5291 /* Read the machine description. */
5294 while (read_md_rtx (&info
))
5298 acceptance_type acceptance
;
5299 acceptance
.partial_p
= false;
5300 acceptance
.u
.full
.code
= info
.index
;
5303 switch (GET_CODE (def
))
5307 /* Match the instruction in the original .md form. */
5308 acceptance
.type
= RECOG
;
5309 acceptance
.u
.full
.u
.num_clobbers
= 0;
5310 pattern
= add_implicit_parallel (XVEC (def
, 1));
5311 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5312 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5314 /* If the pattern is a PARALLEL with trailing CLOBBERs,
5315 allow recog_for_combine to match without the clobbers. */
5316 if (GET_CODE (pattern
) == PARALLEL
5317 && remove_clobbers (&acceptance
, &pattern
))
5318 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5323 acceptance
.type
= SPLIT
;
5324 pattern
= add_implicit_parallel (XVEC (def
, 0));
5325 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5326 match_pattern (&split_root
, &info
, pattern
, acceptance
);
5328 /* Declare the gen_split routine that we'll call if the
5329 pattern matches. The definition comes from insn-emit.c. */
5330 printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
5334 case DEFINE_PEEPHOLE2
:
5335 acceptance
.type
= PEEPHOLE2
;
5336 pattern
= get_peephole2_pattern (&info
);
5337 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5338 match_pattern (&peephole2_root
, &info
, pattern
, acceptance
);
5340 /* Declare the gen_peephole2 routine that we'll call if the
5341 pattern matches. The definition comes from insn-emit.c. */
5342 printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
5352 return FATAL_EXIT_CODE
;
5356 /* Optimize each routine in turn. */
5357 optimize_subroutine_group ("recog", &insn_root
);
5358 optimize_subroutine_group ("split_insns", &split_root
);
5359 optimize_subroutine_group ("peephole2_insns", &peephole2_root
);
5362 os
.id_to_var
.safe_grow_cleared (num_positions
);
5364 if (use_pattern_routines_p
)
5366 /* Look for common patterns and split them out into subroutines. */
5367 auto_vec
<merge_state_info
> states
;
5368 states
.safe_push (&insn_root
);
5369 states
.safe_push (&split_root
);
5370 states
.safe_push (&peephole2_root
);
5371 split_out_patterns (states
);
5373 /* Print out the routines that we just created. */
5375 pattern_routine
*routine
;
5376 FOR_EACH_VEC_ELT (patterns
, i
, routine
)
5377 print_pattern (&os
, routine
);
5380 /* Print out the matching routines. */
5381 print_subroutine_group (&os
, RECOG
, &insn_root
);
5382 print_subroutine_group (&os
, SPLIT
, &split_root
);
5383 print_subroutine_group (&os
, PEEPHOLE2
, &peephole2_root
);
5386 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);