2015-08-04 Thomas Preud'homme <thomas.preudhomme@arm.com>
[official-gcc.git] / gcc / tree-data-ref.h
blob18bcc5c89bb8e436c5becc6a6cada77672991233
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
24 #include "graphds.h"
25 #include "tree-chrec.h"
28 innermost_loop_behavior describes the evolution of the address of the memory
29 reference in the innermost enclosing loop. The address is expressed as
30 BASE + STEP * # of iteration, and base is further decomposed as the base
31 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
32 constant offset (INIT). Examples, in loop nest
34 for (i = 0; i < 100; i++)
35 for (j = 3; j < 100; j++)
37 Example 1 Example 2
38 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
41 innermost_loop_behavior
42 base_address &a p
43 offset i * D_i x
44 init 3 * D_j + offsetof (b) 28
45 step D_j 4
48 struct innermost_loop_behavior
50 tree base_address;
51 tree offset;
52 tree init;
53 tree step;
55 /* Alignment information. ALIGNED_TO is set to the largest power of two
56 that divides OFFSET. */
57 tree aligned_to;
60 /* Describes the evolutions of indices of the memory reference. The indices
61 are indices of the ARRAY_REFs, indexes in artificial dimensions
62 added for member selection of records and the operands of MEM_REFs.
63 BASE_OBJECT is the part of the reference that is loop-invariant
64 (note that this reference does not have to cover the whole object
65 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
66 not recommended to use BASE_OBJECT in any code generation).
67 For the examples above,
69 base_object: a *(p + x + 4B * j_0)
70 indices: {j_0, +, 1}_2 {16, +, 4}_2
72 {i_0, +, 1}_1
73 {j_0, +, 1}_2
76 struct indices
78 /* The object. */
79 tree base_object;
81 /* A list of chrecs. Access functions of the indices. */
82 vec<tree> access_fns;
84 /* Whether BASE_OBJECT is an access representing the whole object
85 or whether the access could not be constrained. */
86 bool unconstrained_base;
89 struct dr_alias
91 /* The alias information that should be used for new pointers to this
92 location. */
93 struct ptr_info_def *ptr_info;
96 /* An integer vector. A vector formally consists of an element of a vector
97 space. A vector space is a set that is closed under vector addition
98 and scalar multiplication. In this vector space, an element is a list of
99 integers. */
100 typedef int *lambda_vector;
102 /* An integer matrix. A matrix consists of m vectors of length n (IE
103 all vectors are the same length). */
104 typedef lambda_vector *lambda_matrix;
108 struct data_reference
110 /* A pointer to the statement that contains this DR. */
111 gimple stmt;
113 /* A pointer to the memory reference. */
114 tree ref;
116 /* Auxiliary info specific to a pass. */
117 void *aux;
119 /* True when the data reference is in RHS of a stmt. */
120 bool is_read;
122 /* Behavior of the memory reference in the innermost loop. */
123 struct innermost_loop_behavior innermost;
125 /* Subscripts of this data reference. */
126 struct indices indices;
128 /* Alias information for the data reference. */
129 struct dr_alias alias;
132 #define DR_STMT(DR) (DR)->stmt
133 #define DR_REF(DR) (DR)->ref
134 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
135 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
136 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
137 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
138 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
139 #define DR_IS_READ(DR) (DR)->is_read
140 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
141 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
142 #define DR_OFFSET(DR) (DR)->innermost.offset
143 #define DR_INIT(DR) (DR)->innermost.init
144 #define DR_STEP(DR) (DR)->innermost.step
145 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
146 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
148 typedef struct data_reference *data_reference_p;
150 enum data_dependence_direction {
151 dir_positive,
152 dir_negative,
153 dir_equal,
154 dir_positive_or_negative,
155 dir_positive_or_equal,
156 dir_negative_or_equal,
157 dir_star,
158 dir_independent
161 /* The description of the grid of iterations that overlap. At most
162 two loops are considered at the same time just now, hence at most
163 two functions are needed. For each of the functions, we store
164 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
165 where x, y, ... are variables. */
167 #define MAX_DIM 2
169 /* Special values of N. */
170 #define NO_DEPENDENCE 0
171 #define NOT_KNOWN (MAX_DIM + 1)
172 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
173 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
174 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
176 typedef vec<tree> affine_fn;
178 struct conflict_function
180 unsigned n;
181 affine_fn fns[MAX_DIM];
184 /* What is a subscript? Given two array accesses a subscript is the
185 tuple composed of the access functions for a given dimension.
186 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
187 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
188 are stored in the data_dependence_relation structure under the form
189 of an array of subscripts. */
191 struct subscript
193 /* A description of the iterations for which the elements are
194 accessed twice. */
195 conflict_function *conflicting_iterations_in_a;
196 conflict_function *conflicting_iterations_in_b;
198 /* This field stores the information about the iteration domain
199 validity of the dependence relation. */
200 tree last_conflict;
202 /* Distance from the iteration that access a conflicting element in
203 A to the iteration that access this same conflicting element in
204 B. The distance is a tree scalar expression, i.e. a constant or a
205 symbolic expression, but certainly not a chrec function. */
206 tree distance;
209 typedef struct subscript *subscript_p;
211 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
212 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
213 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
214 #define SUB_DISTANCE(SUB) SUB->distance
216 /* A data_dependence_relation represents a relation between two
217 data_references A and B. */
219 struct data_dependence_relation
222 struct data_reference *a;
223 struct data_reference *b;
225 /* A "yes/no/maybe" field for the dependence relation:
227 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
228 relation between A and B, and the description of this relation
229 is given in the SUBSCRIPTS array,
231 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
232 SUBSCRIPTS is empty,
234 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
235 but the analyzer cannot be more specific. */
236 tree are_dependent;
238 /* For each subscript in the dependence test, there is an element in
239 this array. This is the attribute that labels the edge A->B of
240 the data_dependence_relation. */
241 vec<subscript_p> subscripts;
243 /* The analyzed loop nest. */
244 vec<loop_p> loop_nest;
246 /* The classic direction vector. */
247 vec<lambda_vector> dir_vects;
249 /* The classic distance vector. */
250 vec<lambda_vector> dist_vects;
252 /* An index in loop_nest for the innermost loop that varies for
253 this data dependence relation. */
254 unsigned inner_loop;
256 /* Is the dependence reversed with respect to the lexicographic order? */
257 bool reversed_p;
259 /* When the dependence relation is affine, it can be represented by
260 a distance vector. */
261 bool affine_p;
263 /* Set to true when the dependence relation is on the same data
264 access. */
265 bool self_reference_p;
268 typedef struct data_dependence_relation *ddr_p;
270 #define DDR_A(DDR) DDR->a
271 #define DDR_B(DDR) DDR->b
272 #define DDR_AFFINE_P(DDR) DDR->affine_p
273 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
274 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
275 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
276 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
278 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
279 /* The size of the direction/distance vectors: the number of loops in
280 the loop nest. */
281 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
282 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
283 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
285 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
286 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
287 #define DDR_NUM_DIST_VECTS(DDR) \
288 (DDR_DIST_VECTS (DDR).length ())
289 #define DDR_NUM_DIR_VECTS(DDR) \
290 (DDR_DIR_VECTS (DDR).length ())
291 #define DDR_DIR_VECT(DDR, I) \
292 DDR_DIR_VECTS (DDR)[I]
293 #define DDR_DIST_VECT(DDR, I) \
294 DDR_DIST_VECTS (DDR)[I]
295 #define DDR_REVERSED_P(DDR) DDR->reversed_p
298 bool dr_analyze_innermost (struct data_reference *, struct loop *);
299 extern bool compute_data_dependences_for_loop (struct loop *, bool,
300 vec<loop_p> *,
301 vec<data_reference_p> *,
302 vec<ddr_p> *);
303 extern void debug_ddrs (vec<ddr_p> );
304 extern void dump_data_reference (FILE *, struct data_reference *);
305 extern void debug (data_reference &ref);
306 extern void debug (data_reference *ptr);
307 extern void debug_data_reference (struct data_reference *);
308 extern void debug_data_references (vec<data_reference_p> );
309 extern void debug (vec<data_reference_p> &ref);
310 extern void debug (vec<data_reference_p> *ptr);
311 extern void debug_data_dependence_relation (struct data_dependence_relation *);
312 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
313 extern void debug (vec<ddr_p> &ref);
314 extern void debug (vec<ddr_p> *ptr);
315 extern void debug_data_dependence_relations (vec<ddr_p> );
316 extern void free_dependence_relation (struct data_dependence_relation *);
317 extern void free_dependence_relations (vec<ddr_p> );
318 extern void free_data_ref (data_reference_p);
319 extern void free_data_refs (vec<data_reference_p> );
320 extern bool find_data_references_in_stmt (struct loop *, gimple,
321 vec<data_reference_p> *);
322 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
323 vec<data_reference_p> *);
324 tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
325 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
326 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
327 extern struct data_dependence_relation *initialize_data_dependence_relation
328 (struct data_reference *, struct data_reference *, vec<loop_p>);
329 extern void compute_affine_dependence (struct data_dependence_relation *,
330 loop_p);
331 extern void compute_self_dependence (struct data_dependence_relation *);
332 extern bool compute_all_dependences (vec<data_reference_p> ,
333 vec<ddr_p> *,
334 vec<loop_p>, bool);
335 extern tree find_data_references_in_bb (struct loop *, basic_block,
336 vec<data_reference_p> *);
338 extern bool dr_may_alias_p (const struct data_reference *,
339 const struct data_reference *, bool);
340 extern bool dr_equal_offsets_p (struct data_reference *,
341 struct data_reference *);
343 /* Return true when the base objects of data references A and B are
344 the same memory object. */
346 static inline bool
347 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
349 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
350 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
353 /* Return true when the data references A and B are accessing the same
354 memory object with the same access functions. */
356 static inline bool
357 same_data_refs (data_reference_p a, data_reference_p b)
359 unsigned int i;
361 /* The references are exactly the same. */
362 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
363 return true;
365 if (!same_data_refs_base_objects (a, b))
366 return false;
368 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
369 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
370 return false;
372 return true;
375 /* Return true when the DDR contains two data references that have the
376 same access functions. */
378 static inline bool
379 same_access_functions (const struct data_dependence_relation *ddr)
381 unsigned i;
383 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
384 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
385 DR_ACCESS_FN (DDR_B (ddr), i)))
386 return false;
388 return true;
391 /* Returns true when all the dependences are computable. */
393 inline bool
394 known_dependences_p (vec<ddr_p> dependence_relations)
396 ddr_p ddr;
397 unsigned int i;
399 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
400 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
401 return false;
403 return true;
406 /* Returns the dependence level for a vector DIST of size LENGTH.
407 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
408 to the sequence of statements, not carried by any loop. */
410 static inline unsigned
411 dependence_level (lambda_vector dist_vect, int length)
413 int i;
415 for (i = 0; i < length; i++)
416 if (dist_vect[i] != 0)
417 return i + 1;
419 return 0;
422 /* Return the dependence level for the DDR relation. */
424 static inline unsigned
425 ddr_dependence_level (ddr_p ddr)
427 unsigned vector;
428 unsigned level = 0;
430 if (DDR_DIST_VECTS (ddr).exists ())
431 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
433 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
434 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
435 DDR_NB_LOOPS (ddr)));
436 return level;
439 /* Return the index of the variable VAR in the LOOP_NEST array. */
441 static inline int
442 index_in_loop_nest (int var, vec<loop_p> loop_nest)
444 struct loop *loopi;
445 int var_index;
447 for (var_index = 0; loop_nest.iterate (var_index, &loopi);
448 var_index++)
449 if (loopi->num == var)
450 break;
452 return var_index;
455 /* Returns true when the data reference DR the form "A[i] = ..."
456 with a stride equal to its unit type size. */
458 static inline bool
459 adjacent_dr_p (struct data_reference *dr)
461 /* If this is a bitfield store bail out. */
462 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
463 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
464 return false;
466 if (!DR_STEP (dr)
467 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
468 return false;
470 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
471 DR_STEP (dr)),
472 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
475 void split_constant_offset (tree , tree *, tree *);
477 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
479 static inline int
480 lambda_vector_gcd (lambda_vector vector, int size)
482 int i;
483 int gcd1 = 0;
485 if (size > 0)
487 gcd1 = vector[0];
488 for (i = 1; i < size; i++)
489 gcd1 = gcd (gcd1, vector[i]);
491 return gcd1;
494 /* Allocate a new vector of given SIZE. */
496 static inline lambda_vector
497 lambda_vector_new (int size)
499 /* ??? We shouldn't abuse the GC allocator here. */
500 return ggc_cleared_vec_alloc<int> (size);
503 /* Clear out vector VEC1 of length SIZE. */
505 static inline void
506 lambda_vector_clear (lambda_vector vec1, int size)
508 memset (vec1, 0, size * sizeof (*vec1));
511 /* Returns true when the vector V is lexicographically positive, in
512 other words, when the first nonzero element is positive. */
514 static inline bool
515 lambda_vector_lexico_pos (lambda_vector v,
516 unsigned n)
518 unsigned i;
519 for (i = 0; i < n; i++)
521 if (v[i] == 0)
522 continue;
523 if (v[i] < 0)
524 return false;
525 if (v[i] > 0)
526 return true;
528 return true;
531 /* Return true if vector VEC1 of length SIZE is the zero vector. */
533 static inline bool
534 lambda_vector_zerop (lambda_vector vec1, int size)
536 int i;
537 for (i = 0; i < size; i++)
538 if (vec1[i] != 0)
539 return false;
540 return true;
543 /* Allocate a matrix of M rows x N cols. */
545 static inline lambda_matrix
546 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
548 lambda_matrix mat;
549 int i;
551 mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
553 for (i = 0; i < m; i++)
554 mat[i] = XOBNEWVEC (lambda_obstack, int, n);
556 return mat;
559 #endif /* GCC_TREE_DATA_REF_H */